Sample records for calculated capture rate

  1. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  2. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  3. Study of Gamow-Teller strength and associated weak-rates on odd-A nuclei in stellar matter

    NASA Astrophysics Data System (ADS)

    Majid, Muhammad; Nabi, Jameel-Un; Riaz, Muhammad

    In a recent study by Cole et al. [A. L. Cole et al., Phys. Rev. C 86 (2012) 015809], it was concluded that quasi-particle random phase approximation (QRPA) calculations show larger deviations and overestimate the total experimental Gamow-Teller (GT) strength. It was also concluded that QRPA calculated electron capture rates exhibit larger deviation than those derived from the measured GT strength distributions. The main purpose of this study is to probe the findings of the Cole et al. paper. This study gives useful information on the performance of QRPA-based nuclear models. As per simulation results, the capturing of electrons that occur on medium heavy isotopes have a significant role in decreasing the ratio of electron-to-baryon content of the stellar interior during the late stages of core evolution. We report the calculation of allowed charge-changing transitions strength for odd-A fp-shell nuclei (45Sc and 55Mn) by employing the deformed pn-QRPA approach. The computed GT transition strength is compared with previous theoretical calculations and measured data. For stellar applications, the corresponding electron capture rates are computed and compared with rates using previously calculated and measured GT values. Our finding shows that our calculated results are in decent accordance with measured data. At higher stellar temperature, our calculated electron capture rates are larger than those calculated by independent particle model (IPM) and shell model. It was further concluded that at low temperature and high density regions, the positron emission weak-rates from 45Sc and 55Mn may be neglected in simulation codes.

  4. Wobbly strings: calculating the capture rate of a webcam using the rolling shutter effect in a guitar

    NASA Astrophysics Data System (ADS)

    Cunnah, David

    2014-07-01

    In this paper I propose a method of calculating the time between line captures in a standard complementary metal-oxide-semiconductor (CMOS) webcam using the rolling shutter effect when filming a guitar. The exercise links the concepts of wavelength and frequency, while outlining the basic operation of a CMOS camera through vertical line capture.

  5. Wobbly Strings: Calculating the Capture Rate of a Webcam Using the Rolling Shutter Effect in a Guitar

    ERIC Educational Resources Information Center

    Cunnah, David

    2014-01-01

    In this paper I propose a method of calculating the time between line captures in a standard complementary metal-oxide-semiconductor (CMOS) webcam using the rolling shutter effect when filming a guitar. The exercise links the concepts of wavelength and frequency, while outlining the basic operation of a CMOS camera through vertical line capture.

  6. Gamow-Teller strength and lepton captures rates on 66-71Ni in stellar matter

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Majid, Muhammad

    Charge-changing transitions play a significant role in stellar weak-decay processes. The fate of the massive stars is decided by these weak-decay rates including lepton (positron and electron) captures rates, which play a consequential role in the dynamics of core collapse. As per previous simulation results, weak interaction rates on nickel (Ni) isotopes have significant influence on the stellar core vis-à-vis controlling the lepton content of stellar matter throughout the silicon shell burning phases of high mass stars up to the presupernova stages. In this paper, we perform a microscopic calculation of Gamow-Teller (GT) charge-changing transitions, in the β-decay and electron capture (EC) directions, for neutron-rich Ni isotopes (66-71Ni). We further compute the associated weak-decay rates for these selected Ni isotopes in stellar environment. The computations are accomplished by employing the deformed proton-neutron quasiparticle random phase approximation (pn-QRPA) model. A recent study showed that the deformed pn-QRPA theory is well suited for the estimation of GT transitions. The astral weak-decay rates are determined over densities in the range of 10-1011g/cm3 and temperatures in the range of 0.01 × 109-30 × 109K. The calculated lepton capture rates are compared with the previous calculation of Pruet and Fuller (PF). The overall comparison demonstrates that, at low stellar densities and high temperatures, our EC rates are bigger by as much as two orders of magnitude. Our results show that, at higher temperatures, the lepton capture rates are the dominant mode for the stellar weak rates and the corresponding lepton emission rates may be neglected.

  7. Gamow-Teller Strength Distributions for pf-shell Nuclei and its Implications in Astrophysics

    NASA Astrophysics Data System (ADS)

    Rahman, M.-U.; Nabi, J.-U.

    2009-08-01

    The {pf}-shell nuclei are present in abundance in the pre-supernova and supernova phases and these nuclei are considered to play an important role in the dynamics of core collapse supernovae. The B(GT) values are calculated for the {pf}-shell nuclei 55Co and 57Zn using the pn-QRPA theory. The calculated B(GT) strengths have differences with earlier reported shell model calculations, however, the results are in good agreement with the experimental data. These B(GT) strengths are used in the calculations of weak decay rates which play a decisive role in the core-collapse supernovae dynamics and nucleosynthesis. Unlike previous calculations the so-called Brink's hypothesis is not assumed in the present calculation which leads to a more realistic estimate of weak decay rates. The electron capture rates are calculated over wide grid of temperature ({0.01} × 109 - 30 × 109 K) and density (10-1011 g-cm-3). Our rates are enhanced compared to the reported shell model rates. This enhancement is attributed partly to the liberty of selecting a huge model space, allowing consideration of many more excited states in the present electron capture rates calculations.

  8. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  9. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors.

    PubMed

    Shi, Lin; Wang, Lin-Wang

    2012-12-14

    Nonradiative carrier recombination is of both applied and fundamental interest. Here a novel algorithm is introduced to calculate such a deep level nonradiative recombination rate using the ab initio density functional theory. This algorithm can calculate the electron-phonon coupling constants all at once. An approximation is presented to calculate the phonon modes for one impurity in a large supercell. The neutral Zn impurity site together with a N vacancy is considered as the carrier-capturing deep impurity level in bulk GaN. Its capture coefficient is calculated as 5.57 × 10(-10)cm(3)/s at 300 K. We found that there is no apparent onset of such a nonradiative process as a function of temperature.

  10. Three-body radiative capture reactions

    NASA Astrophysics Data System (ADS)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2018-01-01

    Radiative capture reaction rates for 6He, 9Be and 17Ne formation at astrophysical conditions are studied within a three-body model using the analytical transformed harmonic oscillator method to calculate their states. An alternative procedure to estimate these rates from experimental data on low-energy breakup is also discussed.

  11. Asynchronous beating of cilia enhances particle capture rate

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  12. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  13. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.

    PubMed

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-04-10

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.

  14. Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter

    PubMed Central

    Fanjiang, Yong-Yi; Lu, Shih-Wei

    2017-01-01

    This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost. PMID:28394306

  15. Theoretical studies of dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The calculation of dissociative recombination rates and cross sections over a wide temperature range by theoretical quantum chemical techniques is described. Model calculations on electron capture by diatomic ions are reported which illustrate the dependence of the rates and cross sections on electron energy, electron temperature, and vibrational temperature for three model crossings of neutral and ionic potential curves. It is shown that cross sections for recombination to the lowest vibrational level of the ion can vary by several orders of magnitude depending upon the position of the neutral and ionic potential curve crossing within the turning points of the v = 1 vibrational level. A new approach for calculating electron capture widths is reported. Ab initio calculations are described for recombination of O2(+) leading to excited O atoms.

  16. Nuclear structure properties and stellar weak rates for 76Se: Unblocking of the Gamow Teller strength

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Ishfaq, Mavra; Böyükata, Mahmut; Riaz, Muhammad

    2017-10-01

    At finite temperatures (≥ 107K), 76Se is abundant in the core of massive stars and electron capture on 76Se has a consequential role to play in the dynamics of core-collapse. The present work may be classified into two main categories. In the first phase we study the nuclear structure properties of 76Se using the interacting boson model-1 (IBM-1). The IBM-1 investigations include the energy levels, B (E 2) values and the prediction of the geometry. We performed the extended consistent-Q formalism (ECQF) calculation and later the triaxial formalism calculation (constructed by adding the cubic term to the ECQF). The geometry of 76Se can be envisioned within the formalism of the potential energy surface based on the classical limit of IBM-1 model. In the second phase, we reconfirm the unblocking of the Gamow-Teller (GT) strength in 76Se (a test case for nuclei having N > 40 and Z < 40). Using the deformed pn-QRPA model we calculate GT transitions, stellar electron capture cross section (within the limit of low momentum transfer) and stellar weak rates for 76Se. The distinguishing feature of our calculation is a state-by-state evaluation of stellar weak rates in a fully microscopic fashion. Results are compared with experimental data and previous calculations. The calculated GT distribution fulfills the Ikeda sum rule. Rates for β-delayed neutrons and emission probabilities are also calculated. Our study suggests that at high stellar temperatures and low densities, the β+-decay on 76Se should not be neglected and needs to be taken into consideration along with electron capture rates for simulation of presupernova evolution of massive stars.

  17. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.

    PubMed

    Culbertson, C N; Wangerin, K; Ghandourah, E; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for neutron capture therapy related modeling. A boron neutron capture therapy model was analyzed comparing COG calculational results to results from the widely used MCNP4B (Monte Carlo N-Particle) transport code. The approach for computing neutron fluence rate and each dose component relevant in boron neutron capture therapy is described, and calculated values are shown in detail. The differences between the COG and MCNP predictions are qualified and quantified. The differences are generally small and suggest that the COG code can be applied for BNCT research related problems.

  18. Radiative capture of proton by ^{12}C at low energy

    NASA Astrophysics Data System (ADS)

    Irgaziev, Bakhadir Fayzullaevich; Nabi, Jameel-Un; Kabir, Abdul

    2018-07-01

    Within the framework of potential cluster model, astrophysical S-factor of radiative capture reaction ^{12}C (p,γ)^{13}N has been calculated in the two body cluster model for the energy range 0-1 MeV. The nuclear interaction in the initial and final states is described by the Woods-Saxon potential. The calculated astrophysical S-factor and rates are compared with known experimental results.

  19. Minimum required capture radius in a coplanar model of the aerial combat problem

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Merz, A. W.

    1977-01-01

    Coplanar aerial combat is modeled with constant speeds and specified turn rates. The minimum capture radius which will always permit capture, regardless of the initial conditions, is calculated. This 'critical' capture radius is also the maximum range which the evader can guarantee indefinitely if the initial range, for example, is large. A composite barrier is constructed which gives the boundary, at any heading, of relative positions for which the capture radius is less than critical.

  20. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  1. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.

    2018-01-01

    The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang

    We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in amore » non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.« less

  3. Long-range Self-interacting Dark Matter in the Sun

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang; Zhou, Yu-Feng

    2015-12-01

    We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in a non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.

  4. Estimates of Stellar Weak Interaction Rates for Nuclei in the Mass Range A=65-80

    NASA Astrophysics Data System (ADS)

    Pruet, Jason; Fuller, George M.

    2003-11-01

    We estimate lepton capture and emission rates, as well as neutrino energy loss rates, for nuclei in the mass range A=65-80. These rates are calculated on a temperature/density grid appropriate for a wide range of astrophysical applications including simulations of late time stellar evolution and X-ray bursts. The basic inputs in our single-particle and empirically inspired model are (i) experimentally measured level information, weak transition matrix elements, and lifetimes, (ii) estimates of matrix elements for allowed experimentally unmeasured transitions based on the systematics of experimentally observed allowed transitions, and (iii) estimates of the centroids of the GT resonances motivated by shell model calculations in the fp shell as well as by (n, p) and (p, n) experiments. Fermi resonances (isobaric analog states) are also included, and it is shown that Fermi transitions dominate the rates for most interesting proton-rich nuclei for which an experimentally determined ground state lifetime is unavailable. For the purposes of comparing our results with more detailed shell model based calculations we also calculate weak rates for nuclei in the mass range A=60-65 for which Langanke & Martinez-Pinedo have provided rates. The typical deviation in the electron capture and β-decay rates for these ~30 nuclei is less than a factor of 2 or 3 for a wide range of temperature and density appropriate for presupernova stellar evolution. We also discuss some subtleties associated with the partition functions used in calculations of stellar weak rates and show that the proper treatment of the partition functions is essential for estimating high-temperature β-decay rates. In particular, we show that partition functions based on unconverged Lanczos calculations can result in errors in estimates of high-temperature β-decay rates.

  5. Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ) 69Ni

    DOE PAGES

    Spyrou, Artemis; Larsen, Ann-Cecilie; Liddick, Sean N.; ...

    2017-02-22

    Neutron-capture reactions play an important role in heavy element nucleosynthesis, since they are the driving force for the two processes that create the vast majority of the heavy elements. When a neutron capture occurs on a short-lived nucleus, it is extremely challenging to study the reaction directly and therefore the use of indirect techniques is essential. The present work reports on such an indirect measurement that provides strong constraints on the 68Ni(n,g) 69Ni reaction rate.The commonly used reaction libraries JINA-REACLIB and BRUSLIB are in relatively good agreement with the experimental rate. The impact of the new rate on weak r-processmore » calculations is discussed.« less

  6. Density Functional Theory Calculations of Activation Energies for Non-radiative Carrier Capture by Deep Defect Levels in Semiconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modine, Normand Arthur; Wright, Alan F.; Lee, Stephen R.

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Kohn-Sham density functional theory (DFT) has been widely and successfully used to predict defect levels in semiconductors and insulators, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture cross-sections in the 1970s and showed that, in most cases, room temperature carrier-capture cross-sections differ between defects primarily due to differences in the carrier capture activationmore » energies. Here, we present an approach to using DFT to calculate carrier capture activation energies that does not depend on perturbation theory or an assumed configuration coordinate, and we demonstrate this approach for the -3/-2 level of the Ga vacancy in wurtzite GaN.« less

  7. Two-proton capture on the 68Se nucleus with a new self-consistent cluster model

    NASA Astrophysics Data System (ADS)

    Hove, D.; Garrido, E.; Jensen, A. S.; Sarriguren, P.; Fynbo, H. O. U.; Fedorov, D. V.; Zinner, N. T.

    2018-07-01

    We investigate the two-proton capture reaction of the prominent rapid proton capture waiting point nucleus, 68Se, that produces the borromean nucleus 70Kr (68Se + p + p). We apply a recently formulated general model where the core nucleus, 68Se, is treated in the mean-field approximation and the three-body problem of the two valence protons and the core is solved exactly. We compare using two popular Skyrme interactions, SLy4 and SkM*. We calculate E2 electromagnetic two-proton dissociation and capture cross sections, and derive the temperature dependent capture rates. We vary the unknown 2+ resonance energy without changing any of the structures computed self-consistently for both core and valence particles. We find rates increasing quickly with temperature below 2-4 GK after which we find rates varying by about a factor of two independent of 2+ resonance energy. The capture mechanism is sequential through the f5/2 proton-core resonance, but the continuum background contributes significantly.

  8. Electron capture in collisions of S4+ with helium

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Stancil, P. C.; Zygelman, B.

    2002-07-01

    Charge transfer due to collisions of ground-state S4+(3s2 1S) ions with helium is investigated for energies between 0.1 meV u-1 and 10 MeV u-1. Total and state-selective single electron capture (SEC) cross sections and rate coefficients are obtained utilizing the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling (AOCC), classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Previous data are limited to a calculation of the total SEC rate coefficient using the Landau-Zener model that is, in comparison to the results presented here, three orders of magnitude smaller. The MOCC SEC cross sections at low energy reveal a multichannel interference effect. True double capture is also investigated with the AOCC and CTMC approaches while autoionizing double capture and transfer ionization (TI) is explored with CTMC. SEC is found to be the dominant process except for E>200 keV u-1 when TI becomes the primary capture channel. Astrophysical implications are briefly discussed.

  9. Long-range Self-interacting Dark Matter in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing; State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China,Institute of Theoretical Physics, Chinese Academy of Science,Zhong Guan Cun East Street 55#, Beijing, 100190; Liang, Zheng-Liang

    2015-12-10

    We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in amore » non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.« less

  10. Comment on "Comparative study of ab initio nonradiative recombination rate calculations under different formalisms"

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Shen, Jimmy-Xuan; Alkauskas, Audrius; Van de Walle, Chris G.

    2018-02-01

    In a recent article [Phys. Rev. B 91, 205315 (2015), 10.1103/PhysRevB.91.205315] Shi, Xu, and Wang presented a comparison of several formalisms to calculate nonradiative recombination rates and concluded the "one-dimensional (1D) quantum formula" that was used by Alkauskas et al. [Phys. Rev. B 90, 075202 (2014), 10.1103/PhysRevB.90.075202] is insufficient to accurately describe nonradiative capture rates. Our analysis of the results of Shi, Xu, and Wang indicates that their conclusions about the 1D quantum formula are unfounded and stem from an error in their calculations. Our own calculations demonstrate that the 1D quantum formula approach yields reliable and accurate results for nonradiative recombination rates.

  11. Direct measurement of neon production rates by (α,n) reactions in minerals

    NASA Astrophysics Data System (ADS)

    Cox, Stephen E.; Farley, Kenneth A.; Cherniak, Daniele J.

    2015-01-01

    The production of nucleogenic neon from alpha particle capture by 18O and 19F offers a potential chronometer sensitive to temperatures higher than the more widely used (U-Th)/He chronometer. The accuracy depends on the cross sections and the calculated stopping power for alpha particles in the mineral being studied. Published 18O(α,n)21Ne production rates are in poor agreement and were calculated from contradictory cross sections, and therefore demand experimental verification. Similarly, the stopping powers for alpha particles are calculated from SRIM (Stopping Range of Ions in Matter software) based on a limited experimental dataset. To address these issues we used a particle accelerator to implant alpha particles at precisely known energies into slabs of synthetic quartz (SiO2) and barium tungstate (BaWO4) to measure 21Ne production from capture by 18O. Within experimental uncertainties the observed 21Ne production rates compare favorably to our predictions using published cross sections and stopping powers, indicating that ages calculated using these quantities are accurate at the ∼3% level. In addition, we measured the 22Ne/21Ne ratio and (U-Th)/He and (U-Th)/Ne ages of Durango fluorapatite, which is an important model system for this work because it contains both oxygen and fluorine. Finally, we present 21Ne/4He production rate ratios for a variety of minerals of geochemical interest along with software for calculating neon production rates and (U-Th)/Ne ages.

  12. Capture Versus Capture Zones: Clarifying Terminology Related to Sources of Water to Wells.

    PubMed

    Barlow, Paul M; Leake, Stanley A; Fienen, Michael N

    2018-03-15

    The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water-budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head-dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three-dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water-budget analyses, most often with groundwater-flow models. Transport models, particularly particle-tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  13. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, Normand; Wright, Alan; Lee, Stephen

    2015-03-01

    Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture by multiphonon emission in the 1970s and showed that, above the Debye temperature, carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for the -3/-2 level of the Ga vacancy in wurtzite GaN. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.

    2016-01-01

    The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.

  16. Estimation of weapon-radius versus maneuverability trade-off for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1977-01-01

    A chase in a horizontal plane between a pursuer with a large capture radius and a more maneuverable evading vehicle is examined with constant-speed vehicle models. An approximation to the 'sidestepping' maneuver of the Homicidal Chauffeur Game is modified to account for the effect of evader turning rate, and an estimate of capture radius required is so obtained which agrees remarkably well with Cockayne's point-capture result. The maneuver assumes central importance for barrier surfaces appearing in the Game of Two Cars. Results are given for required weapon capture-radius in terms of the maneuverability of the two vehicles. Some calculations of capture radius are presented.

  17. What Are Confidence Judgments Made of? Students' Explanations for Their Confidence Ratings and What that Means for Calibration

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Parkinson, Meghan M.

    2013-01-01

    Although calibration has been widely studied, questions remain about how best to capture confidence ratings, how to calculate continuous variable calibration indices, and on what exactly students base their reported confidence ratings. Undergraduates in a research methods class completed a prior knowledge assessment, two sets of readings and…

  18. A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida

    USGS Publications Warehouse

    Reed, R.N.; Hart, K.M.; Rodda, G.H.; Mazzotti, F.J.; Snow, R.W.; Cherkiss, M.; Rozar, R.; Goetz, S.

    2011-01-01

    Context. Invasive Burmese pythons (Python molurus bivittatus) are established over thousands of square kilometres of southern Florida, USA, and consume a wide range of native vertebrates. Few tools are available to control the python population, and none of the available tools have been validated in the field to assess capture success as a proportion of pythons available to be captured. Aims. Our primary aim was to conduct a trap trial for capturing invasive pythons in an area east of Everglades National Park, where many pythons had been captured in previous years, to assess the efficacy of traps for population control.Wealso aimed to compare results of visual surveys with trap capture rates, to determine capture rates of non-target species, and to assess capture rates as a proportion of resident pythons in the study area. Methods.Weconducted a medium-scale (6053 trap nights) experiment using two types of attractant traps baited with live rats in the Frog Pond area east of Everglades National Park.Wealso conducted standardised and opportunistic visual surveys in the trapping area. Following the trap trial, the area was disc harrowed to expose pythons and allow calculation of an index of the number of resident pythons. Key results. We captured three pythons and 69 individuals of various rodent, amphibian, and reptile species in traps. Eleven pythons were discovered during disc harrowing operations, as were large numbers of rodents. Conclusions. The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications. Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons. ?? CSIRO 2011.

  19. Platform control for space-based imaging: the TOPSAT mission

    NASA Astrophysics Data System (ADS)

    Dungate, D.; Morgan, C.; Hardacre, S.; Liddle, D.; Cropp, A.; Levett, W.; Price, M.; Steyn, H.

    2004-11-01

    This paper describes the imaging mode ADCS design for the TOPSAT satellite, an Earth observation demonstration mission targeted at military applications. The baselined orbit for TOPSAT is a 600-700km sun synchronous orbit from which images up to 30° off track can be captured. For this baseline, the imaging camera proves a resolution of 2.5m and a nominal image size of 15x15km. The ADCS design solution for the imaging mode uses a moving demand approach to enable a single control algorithm solution for both the preparatory reorientation prior to image capture and the post capture return to nadir pointing. During image capture proper, control is suspended to minimise the disturbances experienced by the satellite from the wheels. Prior to each imaging sequence, the moving demand attitude and rate profiles are calculated such that the correct attitude and rate are achieved at the correct orbital position, enabling the correct target area to be captured.

  20. The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam.

    PubMed

    van Kuijk, Marijke; Anten, N P R; Oomen, R J; van Bentum, D W; Werger, M J A

    2008-08-01

    It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.

  1. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; Kawano, T.; Ullmann, J. L.; Krtička, M.; Sprouse, T. M.

    2017-08-01

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function as model inputs. It has recently been suggested that the M 1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M 1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M 1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M 1 scissors mode active.

  2. Spatial heterogeneity of tungsten transmutation in a fusion device

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.

    2017-04-01

    Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.

  3. Design of a boron neutron capture enhanced fast neutron therapy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhonglu

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator nearmore » the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm 2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm 2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm 2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm 2 collimator. Five 1.0-cm thick 20x20 cm 2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick tungsten filter is (16.6 ± 1.8)%, which agrees well with the MCNP simulation of the simplified BNCEFNT assembly, (16.4 ± 0.5)%. The error in the calculated dose enhancement only considers the statistical uncertainties. The total dose rate measured at 5.0-cm depth using the non-borated ion chamber is (0.765 ± 0.076) Gy/MU, about 61% of the fast neutron standard dose rate (1.255Gy/MU) at 5.0-cm depth for the standard 10x10 cm 2 treatment beam. The increased doses to other organs due to the use of the BNCEFNT assembly were calculated using MCNP5 and a MIRD phantom. The activities of the activation products produced in the BNCEFNT assembly after neutron beam delivery were computed. The photon ambient dose rate due to the radioactive activation products was also estimated.« less

  4. ELECTRON-CAPTURE AND β-DECAY RATES FOR sd-SHELL NUCLEI IN STELLAR ENVIRONMENTS RELEVANT TO HIGH-DENSITY O–NE–MG CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshio; Toki, Hiroshi; Nomoto, Ken’ichi, E-mail: suzuki@phys.chs.nihon-u.ac.jp

    Electron-capture and β-decay rates for nuclear pairs in the sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O–Ne–Mg cores of stars with initial masses of 8–10 M{sub ⊙}. Electron capture induces a rapid contraction of the electron-degenerate O–Ne–Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars is determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes aremore » induced by electron capture and β-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A = 20, 23, 24, 25, and 27 by shell-model calculations in the sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A = 23 and 25 are important for nuclear Urca processes that determine the cooling rate of the O–Ne–Mg core, while those for pairs with A = 20 and 24 are important for the core contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O–Ne–Mg cores but also a wider range of stars, such as C–O cores of lower-mass stars.« less

  5. Relocking of intrinsic angular momenta in collisions of diatoms with ions: Capture of H2(j = 0,1) by H2+

    NASA Astrophysics Data System (ADS)

    Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.

    2016-12-01

    Rate coefficients for capture of H2(j = 0,1) by H2+ are calculated in perturbed rotor approximation, i.e., at collision energies considerably lower than Bhc (where B denotes the rotational constant of H2). The results are compared with the results from an axially nonadiabatic channel (ANC) approach, the latter providing a very good approximation from the low-temperature Bethe-Wigner to the high temperature Langevin limit. The classical ANC approximation performs satisfactorily at temperatures above 0.1 K. At 0.1 K, the rate coefficient for j =1 is about 25% higher than that for j = 0 while the latter is close to the Langevin rate coefficient. The Bethe-Wigner limit of the rate coefficient for j = 1 is about twice that for j = 0. The analysis of the relocking of the intrinsic angular momentum of H2 during the course of the collision illustrates the significance of relocking in capture dynamics in general.

  6. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules

    PubMed Central

    Koehl, M. A. R.

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. PMID:26763332

  7. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.

    PubMed

    Waldrop, Lindsay D; Koehl, M A R

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. © 2016 The Author(s).

  8. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    USGS Publications Warehouse

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  9. Attrition-enhanced sulfur capture by limestone particles in fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saastamoinen, J.J.; Shimizu, T.

    2007-02-14

    Sulfur capture by limestone particles in fluidized beds is a well-established technology. The underlying chemical and physical phenomena of the process have been extensively studied and modeled. However, most of the studies have been focused on the relatively brief initial stage of the process, which extends from a few minutes to hours, yet the residence time of the particles in the boiler is much longer. Following the initial stage, a dense product layer will be formed on the particle surface, which decreases the rate of sulfur capture and the degree of utilization of the sorbent. Attrition can enhance sulfur capturemore » by removing this layer. A particle model for sulfur capture has been incorporated with an attrition model. After the initial stage, the rate of sulfur capture stabilizes, so that attrition removes the surface at the same rate as diffusion and chemical reaction produces new product in a thin surface layer of a particle. An analytical solution for the conversion of particles for this regime is presented. The solution includes the effects of the attrition rate, diffusion, chemical kinetics, pressure, and SO{sub 2} concentration, relative to conversion-dependent diffusivity and the rate of chemical reaction. The particle model results in models that describe the conversion of limestone in both fly ash and bottom ash. These are incorporated with the residence time (or reactor) models to calculate the average conversion of the limestone in fly ash and bottom ash, as well as the efficiency of sulfur capture. Data from a large-scale pressurized fluidized bed are compared with the model results.« less

  10. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Ullmann, John Leonard; ...

    2017-08-17

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ-strength function as model inputs. It has recently been suggested that the M1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M1more » scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. As a result, we comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M1 scissors mode active.« less

  11. Quantum effects in the capture of charged particles by dipolar polarizable symmetric top molecules. I. General axially nonadiabatic channel treatment.

    PubMed

    Auzinsh, M; Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J

    2013-08-28

    The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).

  12. Cost-benefit analysis for invasive species control: the case of greater Canada goose Branta canadensis in Flanders (northern Belgium)

    PubMed Central

    Casaer, Jim; De Smet, Lieven; Devos, Koen; Huysentruyt, Frank; Robertson, Peter A.; Verbeke, Tom

    2018-01-01

    Background Sound decisions on control actions for established invasive alien species (IAS) require information on ecological as well as socio-economic impact of the species and of its management. Cost-benefit analysis provides part of this information, yet has received relatively little attention in the scientific literature on IAS. Methods We apply a bio-economic model in a cost-benefit analysis framework to greater Canada goose Branta canadensis, an IAS with documented social, economic and ecological impacts in Flanders (northern Belgium). We compared a business as usual (BAU) scenario which involved non-coordinated hunting and egg destruction with an enhanced scenario based on a continuation of these activities but supplemented with coordinated capture of moulting birds. To assess population growth under the BAU scenario we fitted a logistic growth model to the observed pre-moult capture population. Projected damage costs included water eutrophication and damage to cultivated grasslands and were calculated for all scenarios. Management costs of the moult captures were based on a representative average of the actual cost of planning and executing moult captures. Results Comparing the scenarios with different capture rates, different costs for eutrophication and various discount rates, showed avoided damage costs were in the range of 21.15 M€ to 45.82 M€ under the moult capture scenario. The lowest value for the avoided costs applied to the scenario where we lowered the capture rate by 10%. The highest value occurred in the scenario where we lowered the real discount rate from 4% to 2.5%. Discussion The reduction in damage costs always outweighed the additional management costs of moult captures. Therefore, additional coordinated moult captures could be applied to limit the negative economic impact of greater Canada goose at a regional scale. We further discuss the strengths and weaknesses of our approach and its potential application to other IAS. PMID:29404211

  13. Cost-benefit analysis for invasive species control: the case of greater Canada goose Branta canadensis in Flanders (northern Belgium).

    PubMed

    Reyns, Nikolaas; Casaer, Jim; De Smet, Lieven; Devos, Koen; Huysentruyt, Frank; Robertson, Peter A; Verbeke, Tom; Adriaens, Tim

    2018-01-01

    Sound decisions on control actions for established invasive alien species (IAS) require information on ecological as well as socio-economic impact of the species and of its management. Cost-benefit analysis provides part of this information, yet has received relatively little attention in the scientific literature on IAS. We apply a bio-economic model in a cost-benefit analysis framework to greater Canada goose Branta canadensis , an IAS with documented social, economic and ecological impacts in Flanders (northern Belgium). We compared a business as usual (BAU) scenario which involved non-coordinated hunting and egg destruction with an enhanced scenario based on a continuation of these activities but supplemented with coordinated capture of moulting birds. To assess population growth under the BAU scenario we fitted a logistic growth model to the observed pre-moult capture population. Projected damage costs included water eutrophication and damage to cultivated grasslands and were calculated for all scenarios. Management costs of the moult captures were based on a representative average of the actual cost of planning and executing moult captures. Comparing the scenarios with different capture rates, different costs for eutrophication and various discount rates, showed avoided damage costs were in the range of 21.15 M€ to 45.82 M€ under the moult capture scenario. The lowest value for the avoided costs applied to the scenario where we lowered the capture rate by 10%. The highest value occurred in the scenario where we lowered the real discount rate from 4% to 2.5%. The reduction in damage costs always outweighed the additional management costs of moult captures. Therefore, additional coordinated moult captures could be applied to limit the negative economic impact of greater Canada goose at a regional scale. We further discuss the strengths and weaknesses of our approach and its potential application to other IAS.

  14. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  15. Quantum dot laser optimization: selectively doped layers

    NASA Astrophysics Data System (ADS)

    Korenev, Vladimir V.; Konoplev, Sergey S.; Savelyev, Artem V.; Shernyakov, Yurii M.; Maximov, Mikhail V.; Zhukov, Alexey E.

    2016-08-01

    Edge emitting quantum dot (QD) lasers are discussed. It has been recently proposed to use modulation p-doping of the layers that are adjacent to QD layers in order to control QD's charge state. Experimentally it has been proven useful to enhance ground state lasing and suppress the onset of excited state lasing at high injection. These results have been also confirmed with numerical calculations involving solution of drift-diffusion equations. However, deep understanding of physical reasons for such behavior and laser optimization requires analytical approaches to the problem. In this paper, under a set of assumptions we provide an analytical model that explains major effects of selective p-doping. Capture rates of elections and holes can be calculated by solving Poisson equations for electrons and holes around the charged QD layer. The charge itself is ruled by capture rates and selective doping concentration. We analyzed this self-consistent set of equations and showed that it can be used to optimize QD laser performance and to explain underlying physics.

  16. Dynamics of the cascade capture of electrons by charged donors in GaAs and InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshkin, V. Ya., E-mail: aleshkin@ipmras.ru; Gavrilenko, L. V.

    2016-08-15

    The times for the cascade capture of an electron by a charged impurity have been calculated for pulsed and stationary excitations of impurity photoconductivity in GaAs and InP. The characteristic capture times under pulsed and continuous excitations are shown to differ noticeably both from each other and from the value given by the Abakumov–Perel–Yassievich formula for a charged impurity concentration greater than 10{sup 10} cm{sup –3}. The cause of this difference has been established. The Abakumov–Perel–Yassievich formula for the cascade capture cross section in the case of stationary excitation has been generalized. The dependences of the cascade capture rate onmore » the charged impurity concentration in GaAs and InP have been found for three temperatures in the case of pulsed excitation.« less

  17. Continuous slope-area discharge records in Maricopa County, Arizona, 2004–2012

    USGS Publications Warehouse

    Wiele, Stephen M.; Heaton, John W.; Bunch, Claire E.; Gardner, David E.; Smith, Christopher F.

    2015-12-29

    Analyses of sources of errors and the impact stage data errors have on calculated discharge time series are considered, along with issues in data reduction. Steeper, longer stream reaches are generally less sensitive to measurement error. Other issues considered are pressure transducer drawdown, capture of flood peaks with discrete stage data, selection of stage record for development of rating curves, and minimum stages for the calculation of discharge.

  18. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  19. FAC: Flexible Atomic Code

    NASA Astrophysics Data System (ADS)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  20. Calculation of astrophysical S-factor and reaction rate in 12C(p, γ)13N reaction

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-02-01

    The 12C(p, γ)13N reaction is the first process in the CNO cycle. Also it is a source of low-energy solar neutrinos in various neutrino experiments. Therefore, it is of high interest to gain data of the astrophysical S-factor in low energies. By applying Faddeev's method, we calculated wave functions for the bound state of 13N. Then the cross sections for resonance and non-resonance were calculated through using Breit-Wigner and direct capture cross section formulae, respectively. After that, we calculated the total S-factor and compared it with previous experimental data, revealing a good agreement altogether. Then, we extrapolated the S-factor in zero energy and the result was 1.32 ± 0.19 (keV.b). In the end, we calculated reaction rate and compared it with NACRE data.

  1. 77 FR 65999 - Assessments, Large Bank Pricing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... period for PD estimation, as opposed to a longer history, to capture the consumer behavior that generated... default behavior of consumers during a period of economic stress, the default rate is to be calculated as... consumer behavior that affect the riskiness of different product types. To ensure that the PD methodology...

  2. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    NASA Astrophysics Data System (ADS)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  3. Experimental and Theoretical Understanding of Neutron Capture on Uranium Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard

    2017-09-21

    Neutron capture cross sections on uranium isotopes are important quantities needed to model nuclear explosion performance, nuclear reactor design, nuclear test diagnostics, and nuclear forensics. It has been difficult to calculate capture accurately, and factors of 2 or more be- tween calculation and measurements are not uncommon, although normalization to measurements of the average capture width and nuclear level density can improve the result. The calculations of capture for 233,235,237,239U are further complicated by the need to accurately include the fission channel.

  4. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barack, Leor; Department of Mathematics, University of Southampton, Southampton, SO17 1BJ; Cutler, Curt

    Captures of compact objects (COs) by massive black holes (MBHs) in galactic nuclei will be an important source for LISA, the proposed space-based gravitational wave (GW) detector. However, a large fraction of captures will not be individually resolvable - either because they are too distant, have unfavorable orientation, or have too many years to go before final plunge - and so will constitute a source of 'confusion noise', obscuring other types of sources. In this paper we estimate the shape and overall magnitude of the GW background energy spectrum generated by CO captures. This energy spectrum immediately translates to amore » spectral density S{sub h}{sup capt}(f) for the amplitude of capture-generated GWs registered by LISA. The overall magnitude of S{sub h}{sup capt}(f) is linear in the CO capture rates, which are rather uncertain; therefore we present results for a plausible range of rates. S{sub h}{sup capt}(f) includes the contributions from both resolvable and unresolvable captures, and thus represents an upper limit on the confusion noise level. We then estimate what fraction of S{sub h}{sup capt}(f) is due to unresolvable sources and hence constitutes confusion noise. We find that almost all of the contribution to S{sub h}{sup capt}(f) coming from white dwarf and neutron star captures, and at least {approx}30% of the contribution from black hole captures, is from sources that cannot be individually resolved. Nevertheless, we show that the impact of capture confusion noise on the total LISA noise curve ranges from insignificant to modest, depending on the rates. Capture rates at the high end of estimated ranges would raise LISA's overall (effective) noise level [fS{sub h}{sup eff}(f)]{sup 1/2} by at most a factor {approx}2 in the frequency range 1-10 mHz, where LISA is most sensitive. While this slightly elevated noise level would somewhat decrease LISA's sensitivity to other classes of sources, we argue that, overall, this would be a pleasant problem for LISA to have: It would also imply that detection rates for CO captures were at nearly their maximum possible levels (given LISA's baseline design and the level of confusion noise from galactic white dwarf binaries). This paper also contains, as intermediate steps, several results that should be useful in further studies of LISA capture sources, including (i) a calculation of the total GW energy output from generic inspirals of COs into Kerr MBHs (ii) an approximate GW energy spectrum for a typical capture, and (iii) an estimate showing that in the population of detected capture sources, roughly half the white dwarfs and a third of the neutron stars will be detected when they still have > or approx. 10 years to go before final plunge.« less

  6. Measurement of key resonances for the 24Al(p ,γ )25Si reaction rate using in-beam γ -ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Longfellow, B.; Gade, A.; Brown, B. A.; Richter, W. A.; Bazin, D.; Bender, P. C.; Bowry, M.; Elman, B.; Lunderberg, E.; Weisshaar, D.; Williams, S. J.

    2018-05-01

    Energy levels and branching ratios for the rp-process nucleus 25Si were determined from the reactions 9Be(26Si,25Si)X and 9Be(25Al,25Si)X using in-beam γ -ray spectroscopy with both high-efficiency and high-resolution detector arrays. Proton-unbound states at 3695(14) and 3802(11) keV were identified and assigned tentative spins and parities based on comparison to theory and the mirror nucleus. The 24Al(p ,γ )25Si reaction rate was calculated using the experimental states and states from charge-dependent USDA and USDB shell-model calculations with downward shifts of the 1 s1 /2 proton orbital to account for the observed Thomas-Ehrman shift, leading to a factor of 10-100 increase in rate for the temperature region of 0.22 GK as compared to a previous calculation. These shifts may be applicable to neighboring nuclei, impacting the proton capture rates in this region of the chart.

  7. 77 FR 53059 - Risk-Based Capital Guidelines: Market Risk

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ...The Office of the Comptroller of the Currency (OCC), Board of Governors of the Federal Reserve System (Board), and Federal Deposit Insurance Corporation (FDIC) are revising their market risk capital rules to better capture positions for which the market risk capital rules are appropriate; reduce procyclicality; enhance the rules' sensitivity to risks that are not adequately captured under current methodologies; and increase transparency through enhanced disclosures. The final rule does not include all of the methodologies adopted by the Basel Committee on Banking Supervision for calculating the standardized specific risk capital requirements for debt and securitization positions due to their reliance on credit ratings, which is impermissible under the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010. Instead, the final rule includes alternative methodologies for calculating standardized specific risk capital requirements for debt and securitization positions.

  8. PbSnTe:In compound: Electron capture levels, galvanomagnetic properties, and THz sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, D. V., E-mail: miracle4348@gmail.com; Klimov, A. E.; Shumsky, V. N.

    A model of the Pb{sub 1–x}Sn{sub x}Te:In compound, based on concepts of the theory of disordered systems is considered. The temperature dependences of the Fermi-level position and carrier concentration are calculated depending on the indium doping level and are compared with experimental data. The transient current–voltage characteristics are calculated in the mode of injection from the contact and current limitation by space charge at various voltage-variation rates. The data obtained are compared with the experiments. It is demonstrated that the shape of the characteristics is controlled by the parameters of electron capture at localized states. Photocurrent relaxation in a magneticmore » field is studied, and the mechanism of such relaxation is discussed under the assumption of the magnetic freezing of carriers.« less

  9. Dependence of weak interaction rates on the nuclear composition during stellar core collapse

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi

    2017-02-01

    We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.

  10. Recent results in nucleocosmochronology

    NASA Astrophysics Data System (ADS)

    Cowan, John J.; Thielemann, F.-K.; Truran, J. W.

    Rates for beta-delayed neutron emission and fission have recently been calculated for the mass range 70-100. Using these new rates and the calculated rates for neutron capture, photodisintegration and beta decay, dynamical r-process calculations have been performed. For certain assumed conditions, these r-process calculations give a good fit to the solar system r-process abundance curve. These calculations have been used to obtain new production ratios for the nuclear chronometer pairs used to determine the age of the Galaxy - (Th-232)/(U-238) = 1.60, (U-235)/(U-238) = 1.16, and (Pu-244)/(U-238) = 0.40. Using the new production ratio for (Th-232)/(U-238) and (U-235)/(U238), with the observed meteoritic values for these nuclei and assuming a model of chemical evolution of the Galaxy, the age of the Galaxy has been determined. The results depend upon the initial nucleosynthesis enrichment in the Galactic disk, S0. While there are uncertainties in the calculations for a range of S0 from 0.1 to 0.3 (i.e., from 10 to 30 percent), the age of the Galaxy is found to be 12.4-14.7 Gyr.

  11. Neutron radiative capture cross section of Cu,6563 between 0.4 and 7.5 MeV

    NASA Astrophysics Data System (ADS)

    Newsome, I.; Bhike, M.; Krishichayan, Tornow, W.

    2018-04-01

    Natural copper is commonly used as cooling and shielding medium in detector arrangements designed to search for neutrinoless double-β decay. Neutron-induced background reactions on copper could potentially produce signals that are indistinguishable from the signals of interest. The present work focuses on radiative neutron capture experiments on Cu,6563 in the 0.4 to 7.5 MeV neutron energy range. The new data provide evaluations and model calculations with benchmark data needed to extend their applicability in predicting background rates in neutrinoless double-β decay experiments.

  12. Gyroscopic effect in low-energy classical capture of a rotating quadrupolar diatom by an ion.

    PubMed

    Dashevskaya, Elena; Litvin, Iliya; Nikitin, Evgueni

    2006-03-09

    The low-energy capture of homonuclear diatoms by ions is due mainly to the long-range part of the interpartner potential with leading terms that correspond to charge-quadrupole interaction and charge-induced dipole interaction. The capture dynamics is described by the perturbed-rotor adiabatic potentials and the Coriolis interaction between manifold of states that belong to a given value of the intrinsic angular momentum. When the latter is large enough, it can noticeably affect the capture cross section calculated in the adiabatic channel approximation due to the gyroscopic property of a rotating diatom. This paper presents the low-energy (low-temperature) state-selected partial and mean capture cross sections (rate coefficients) for the charge-quadrupole interaction that include the gyroscopic effect (decoupling of intrinsic angular momentum from the collision axis), quantum correction for the diatom rotation, and the correction for the charge-induced dipole interaction. These results complement recent studies on the gyroscopic effect in the quantum regime of diatom-ion capture (Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J. J. Chem. Phys. 2004, 120, 9989-9997).

  13. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A method for grounding grid corrosion rate prediction

    NASA Astrophysics Data System (ADS)

    Han, Juan; Du, Jingyi

    2017-06-01

    Involved in a variety of factors, prediction of grounding grid corrosion complex, and uncertainty in the acquisition process, we propose a combination of EAHP (extended AHP) and fuzzy nearness degree of effective grounding grid corrosion rate prediction model. EAHP is used to establish judgment matrix and calculate the weight of each factors corrosion of grounding grid; different sample classification properties have different corrosion rate of contribution, and combining the principle of close to predict corrosion rate.The application result shows, the model can better capture data variation, thus to improve the validity of the model to get higher prediction precision.

  15. Ion dipole capture cross sections at low ion and rotational energies - Comparison of integrated capture cross sections with reaction cross sections for NH3 and H2O parent-ion collisions.

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.; Canright, R. B., Jr.

    1972-01-01

    The numerical capture cross section is calculated from the capture ratio, defined as the fraction of trajectories reaching a prescribed minimum separation of 3 A. The calculated capture cross sections for a rotational temperature of 77 K suggest large reaction cross sections in 80 K experiments for the large dipole-moment target, methyl cyanide.

  16. Electron capture strength for Ni60,62 and Ni58,60,62,64(p, n)Cu58,60,62,64 reactions at 134.3 MeV

    NASA Astrophysics Data System (ADS)

    Anantaraman, N.; Austin, Sam M.; Brown, B. A.; Crawley, G. M.; Galonsky, A.; Zegers, R. G. T.; Anderson, B. D.; Baldwin, A. R.; Flanders, B. S.; Madey, R.; Watson, J. W.; Foster, C. C.

    2008-12-01

    Background: The strength of electron capture for medium mass nuclei has a significant effect on the evolution of supernovae. There is insufficient knowledge of these strengths and very little data for important radioactive nuclei. Purpose: Determine whether it is feasible to obtain EC strength from studies of To+1 excitations in (p, n) reactions, and whether this might yield information for radioactive nuclei. Methods: Cross sections for the Ni58,60,62,64(p, n)Cu58,60,62,64 reactions were measured over the angular range of 0.3∘ to 11.6∘ at 134.3 MeV using the IUCF neutron time-of-flight facility. Results: The To+1 excitations in Ni60,62 were identified by comparison with inelastic proton scattering spectra, their B(GT) were extracted, and the corresponding electron capture rates in supernovae were calculated. Data from the TRIUMF (n, p) experiments at 198 MeV were reanalyzed; the electron capture rates for the reanalyzed data are in moderately good agreement with the higher resolution (p, n) results, but differ in detail. The possibility of future measurements with radioactive nuclei was considered. Conclusions: It may be possible to obtain low-lying electron capture strength for radioactive nuclei by studying (p, n) reactions in inverse kinematics.

  17. Highly-Effective Purification of Air on the Fibrous Filtering Nozzles

    NASA Astrophysics Data System (ADS)

    Galtseva, O. V.; Bordunov, S. V.; Torgaev, S. N.

    2016-02-01

    A series of experiments by air purification on fibrous filtering nozzles was made. It is experimentally shown that the fibrous filter can operate in a wide rate range. The degree of trapping of fine aerosols of glass was 99% at a linear rate of 0.01 m/s. the degree of capture decreased to 85% at the increasing of filtration rate up to 0.06 m/s. Dustiness of the air ranged from 3 to 5 g/m3 at the course of the experiment. Hydraulic resistance changed from 5 to 25 mm of water column. The calculated data of resistance and falling of pressure on fibrous filters are given; these data were received on the equations from various sources in comparison with experimentally obtained data. According to the results of series of experiments the amendment of the well-known Fuchsian equation is calculated for calculation of the resistance of fibrous air filter. This amendment considers a form and defects of surface of the fibers received by centrifugal-spinneret method.

  18. Measurement of key resonances for the Al 24 ( p , γ ) Si 25 reaction rate using in-beam γ -ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longfellow, B.; Gade, A.; Brown, B. A.

    Energy levels and branching ratios for the rp-process nucleus 25Si were determined from the reactions 9Be ( 26Si, 25Si) X and 9Be ( 25Al, 25Si) X using in-beam γ-ray spectroscopy with both high-efficiency and high-resolution detector arrays. Proton-unbound states at 3695(14) and 3802(11) keV were identified and assigned tentative spins and parities based on comparison to theory and the mirror nucleus. The 24Al (p, γ) 25Si reaction rate was calculated using the experimental states and states from charge-dependent USDA and USDB shell-model calculations with downward shifts of the 1s 1/2 proton orbital to account for the observed Thomas-Ehrman shift, leadingmore » to a factor of 10–100 increase in rate for the temperature region of 0.22 GK as compared to a previous calculation. These shifts may be applicable to neighboring nuclei, impacting the proton capture rates in this region of the chart.« less

  19. Measurement of key resonances for the Al 24 ( p , γ ) Si 25 reaction rate using in-beam γ -ray spectroscopy

    DOE PAGES

    Longfellow, B.; Gade, A.; Brown, B. A.; ...

    2018-05-04

    Energy levels and branching ratios for the rp-process nucleus 25Si were determined from the reactions 9Be ( 26Si, 25Si) X and 9Be ( 25Al, 25Si) X using in-beam γ-ray spectroscopy with both high-efficiency and high-resolution detector arrays. Proton-unbound states at 3695(14) and 3802(11) keV were identified and assigned tentative spins and parities based on comparison to theory and the mirror nucleus. The 24Al (p, γ) 25Si reaction rate was calculated using the experimental states and states from charge-dependent USDA and USDB shell-model calculations with downward shifts of the 1s 1/2 proton orbital to account for the observed Thomas-Ehrman shift, leadingmore » to a factor of 10–100 increase in rate for the temperature region of 0.22 GK as compared to a previous calculation. These shifts may be applicable to neighboring nuclei, impacting the proton capture rates in this region of the chart.« less

  20. Observation of low-lying resonances in the quasicontinuum of 195,196Pt and enhanced astrophysical reaction rates

    DOE PAGES

    Giacoppo, F.; Bello Garrote, F. L.; Eriksen, T. K.; ...

    2015-05-28

    An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.

  1. Behavioral aspects of Lutzomyia longipalpis (Diptera: Psychodidae) in urban area endemic for visceral leishmaniasis.

    PubMed

    De Oliveira, E F; Silva, E A; Casaril, A E; Fernandes, C E S; Paranhos Filho, A C; Gamarra, R M; Ribeiro, A A; Brazil, R P; Oliveira, A G

    2013-03-01

    The study of some of the behavioral aspects of the main vector of Leishmania infantum chagasi Cunha & Chagas in the Americas, Lutzomyia longipalpis (Lutz & Neiva), such as dispersion, population size, and vector survival rates, is important for the elucidation of the mechanisms of visceral leishmaniasis transmission. These parameters were studied by means of capture-mark-release-recapture experiments in an urban area of Campo Grande municipality, an endemic area of visceral leishmaniasis, situated in Mato Grosso do Sul state, Brazil. Six capture-mark-release-recapture experiments were undertaken between November 2009 and November 2010 and once in January 2012 with a view to assessing the population size and survival rate of Lu. longipalpis. The insects were released in a peridomicile surrounded by 13 residences. The recaptures were undertaken with automatic light traps for four consecutive weeks after release in the surrounding area. In total, 3,354 sand flies were captured, marked, and released. The overall recapture rate during the capture-mark-release-recapture experiments was 4.23%, of which 92.45% were recaptured at the release site, indicating limited dispersal. The greatest distance recorded from the release site was 165 m for males and 241 m for females. The male daily survival rate, calculated on the basis of regressions from the numbers of marked recaptured insects during the 15 successive days after release was 0.897. The estimated male population size measured by the Lincoln Index was 10,947.127. Though Lu. longipalpis presented a limited dispersion the physical barriers typical of urban environments did not prevent the sand flies from flying long distances.

  2. Development and validation of a questionnaire to measure preferences and expectations of patients undergoing palliative chemotherapy: EXPECT questionnaire.

    PubMed

    Patil, V M; Chakraborty, S; Jithin, T K; Dessai, S; Sajith Babu, T P; Raghavan, V; Geetha, M; Kumar, T Shiva; Biji, M S; Bhattacharjee, A; Nair, C

    2016-01-01

    The objective was to design and validate the questionnaire for capturing palliative chemotherapy-related preferences and expectations. Single arm, unicentric, prospective observational study. EXPECT questionnaire was designed to capture preferences and expectations of patients undergoing palliative chemotherapy. This questionnaire underwent a linguistic validation and then was tested in patients. Ten patients are undergoing chemotherapy for solid tumors who fulfilled the inclusion and exclusion criteria self-administered the EXPECT questionnaire in regional language. After filling this questionnaire, they self-administered quick questionnaire-10 (QQ-10). SPSS version 16 (IBM New York) was used for analysis. Completion rate of EXPECT questionnaire was calculated. The feasibility, face validity, utility and time taken for completion of EXPECT questionnaire was also assessed. The completion rate of this questionnaire was 100%. All patients completed questionnaire within 5 min. The QQ-10 tool confirmed the feasibility, face validity and utility of the questionnaire. EXPECT questionnaire was validated in the regional language, and it's an effective tool for capturing patient's preferences and expectation from chemotherapy.

  3. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

  4. Astrophysical S-Factor of p 7Be Capture at Low Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Burkova, N. A.; Dzhazairov-Kakhramanov, A. V.; Tkachenko, A. S.

    2018-04-01

    In the modified potential cluster model, the possibility of describing the astrophysical S-factor of radiative p7Be→8Bγ capture to the ground state of the 8B nucleus at energies from 10 keV to 1 MeV is considered. Potentials of intercluster interactions, matched to the spectra of the 8B nucleus for scattering processes, and the potential of the bound 3P2 ground state in the p7Be cluster channel are constructed. The resonance in the 3P1 scattering wave at the energy 0.722 MeV, which leads to an M1-transition to the ground state, is considered. Total cross sections and the reaction rate of p7Be capture are calculated in the temperature range from 0.01·T9 to 5·T9.

  5. Charge transfer and ionization in collisions of Si3+ with H from low to high energy

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-01

    Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  6. The impact of nuclear mass models on r-process nucleosynthesis network calculations

    NASA Astrophysics Data System (ADS)

    Vaughan, Kelly

    2002-10-01

    An insight into understanding various nucleosynthesis processes is via modelling of the process with network calculations. My project focus is r-process network calculations where the r-process is nucleosynthesis via rapid neutron capture thought to take place in high entropy supernova bubbles. One of the main uncertainties of the simulations is the Nuclear Physics input. My project investigates the role that nuclear masses play in the resulting abundances. The code tecode, involves rapid (n,γ) capture reactions in competition with photodisintegration and β decay onto seed nuclei. In order to fully analyze the effects of nuclear mass models on the relative isotopic abundances, calculations were done from the network code, keeping the initial environmental parameters constant throughout. The supernova model investigated by Qian et al (1996) in which two r-processes, of high and low frequency with seed nucleus ^90Se and of fixed luminosity (fracL_ν_e(0)r_7(0)^2 ˜= 8.77), contribute to the nucleosynthesis of the heavier elements. These two r-processes, however, do not contribute equally to the total abundance observed. The total isotopic abundance produced from both events was therefore calculated using equation refabund. Y(H+L) = fracY(H)+fY(L)f+1 <~belabund where Y(H) denotes the relative isotopic abundance produced in the high frequency event, Y(L) corresponds to the low freqeuncy event and f is the ratio of high event matter to low event matter produced. Having established reliable, fixed parameters, the network code was run using data files containing parameters such as the mass excess, neutron separation energy, β decay rates and neutron capture rates based around three different nuclear mass models. The mass models tested are the HFBCS model (Hartree-Fock BCS) derived from first principles, the ETFSI-Q model (Extended Thomas-Fermi with Strutinsky Integral including shell Quenching) known for its particular successes in the replication of Solar System abundances, and the P-Scheme Model tePscheme. The aims of this research is to test the applicability of the P-Scheme in relation to the other mass models to the r-process network calculations. 02 Pscheme Aprahamian,A., Gadala-Maria,A. & Cuka,N. 1996, Revista Mexicana de Fisica,42,1 code Surman,R. & Engel,J. 1998, Phys.Rev. C,54,4 thebibliography

  7. Form factors for dark matter capture by the Sun in effective theories

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Schwabe, Bodo

    2015-04-01

    In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, 3He, 4He, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 40Ar, 40Ca, 56Fe, and 59Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark matter capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.

  8. Effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication.

    PubMed

    Dhir, L; Habib, N E; Monro, D M; Rakshit, S

    2010-06-01

    The purpose of this study was to investigate the effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication. Prospective non-comparative cohort study. Images of 15 subjects were captured before (enrolment), and 5, 10, and 15 min after instillation of mydriatics before routine cataract surgery. After cataract surgery, images were captured 2 weeks thereafter. Enrolled and test images (after pupillary dilation and after cataract surgery) were segmented to extract the iris. This was then unwrapped onto a rectangular format for normalization and a novel method using the Discrete Cosine Transform was applied to encode the image into binary bits. The numerical difference between two iris codes (Hamming distance, HD) was calculated. The HD between identification and enrolment codes was used as a score and was compared with a confidence threshold for specific equipment, giving a match or non-match result. The Correct Recognition Rate (CRR) and Equal Error Rates (EERs) were calculated to analyse overall system performance. After cataract surgery, perfect identification and verification was achieved, with zero false acceptance rate, zero false rejection rate, and zero EER. After pupillary dilation, non-elastic deformation occurs and a CRR of 86.67% and EER of 9.33% were obtained. Conventional circle-based localization methods are inadequate. Matching reliability decreases considerably with increase in pupillary dilation. Cataract surgery has no effect on iris pattern recognition, whereas pupil dilation may be used to defeat an iris-based authentication system.

  9. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  10. Low-frequency Carbon Radio Recombination Lines. I. Calculations of Departure Coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, F.; Morabito, L. K.; Oonk, J. B. R.

    In the first paper of this series, we study the level population problem of recombining carbon ions. We focus our study on high quantum numbers, anticipating observations of carbon radio recombination lines to be carried out by the Low Frequency Array. We solve the level population equation including angular momentum levels with updated collision rates up to high principal quantum numbers. We derive departure coefficients by solving the level population equation in the hydrogenic approximation and including low-temperature dielectronic capture effects. Our results in the hydrogenic approximation agree well with those of previous works. When comparing our results including dielectronicmore » capture, we find differences that we ascribe to updates in the atomic physics (e.g., collision rates) and to the approximate solution method of the statistical equilibrium equations adopted in previous studies. A comparison with observations is discussed in an accompanying article, as radiative transfer effects need to be considered.« less

  11. Gamma heating in reflector heat shield of gas core reactor

    NASA Technical Reports Server (NTRS)

    Lofthouse, J. H.; Kunze, J. F.; Young, T. E.; Young, R. C.

    1972-01-01

    Heating rate measurements made in a mock-up of a BeO heat shield for a gas core nuclear rocket engine yields results nominally a factor of two greater than calculated by two different methods. The disparity is thought to be caused by errors in neutron capture cross sections and gamma spectra from the low cross-section elements, D, O, and Be.

  12. Sparger system for MMH-helium vents

    NASA Technical Reports Server (NTRS)

    Rakow, A.

    1983-01-01

    Based on a calculated vent flow rate and MMH concentration, a TI-59 program was run to determine total sparger hole area for a given sparger inlet pressure. Hole diameter is determined from a mass transfer analysis in the holding tank to achieve complete capture of MMH. In addition, based on oxidation kinetics and vapor pressure data, MMh atmospheric concentrations are determined 2 ft above the holding tank.

  13. Numerical exploration of dissimilar supersonic coaxial jets mixing

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-06-01

    Mixing of two coaxial supersonic dissimilar gases in free jet environment is numerically explored. Three dimensional RANS equations with a k-ε turbulence model are solved using commercial CFD software. Two important experimental cases (RELIEF experiments) representing compressible mixing flow phenomenon under scramjet operating conditions for which detail profiles of thermochemical variables are available are taken as validation cases. Two different convective Mach numbers 0.16 and 0.70 are considered for simulations. The computed growth rate, pitot pressure and mass fraction profiles for both these cases match extremely well with experimental values and results of other high fidelity numerical results both in far field and near field regions. For higher convective Mach number predicted growth rate matches nicely with empirical Dimotakis curve; whereas for lower convective Mach number, predicted growth rate is higher. It is shown that well resolved RANS calculation can capture the mixing of two supersonic dissimilar gases better than high fidelity LES calculations.

  14. Ensemble of electrophoretically captured gold nanoparticles as a fingerprint of Boltzmann velocity distribution

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Kang, M. G.; Lim, J. H.; Hwang, S. W.

    2008-07-01

    An ensemble of electrophoretically captured gold nanoparticles is exploited to fingerprint their velocity distribution in solution. The electrophoretic capture is performed using a dc biased nanogap electrode, and panoramic scanning electron microscopic images are inspected to obtain the regional density of the captured gold nanoparticles. The regional density profile along the surface of the electrode is in a quantitative agreement with the calculated density of the captured nanoparticles. The calculated density is obtained by counting, in the Boltzmann distribution, the number of nanoparticles whose thermal velocity is smaller than the electrophoretic velocity.

  15. Gamma ray heating and neutrino cooling rates due to weak interaction processes on sd-shell nuclei in stellar cores

    NASA Astrophysics Data System (ADS)

    Fayaz, Muhammad; Nabi, Jameel-Un; Majid, Muhammad

    2017-07-01

    Gamma ray heating and neutrino cooling rates, due to weak interaction processes, on sd-shell nuclei in stellar core are calculated using the proton neutron quasiparticle random phase approximation theory. The recent extensive experimental mass compilation of Wang et al. (Chin. Phys. C 36:1603, 2012), other improved model input parameters including nuclear quadrupole deformation (Raman et al. in At. Data Nucl. Data Tables 78(1):1-128, 2001; Möller et al. in At. Data Nucl. Data Tables 109:1-204, 2016) and physical constants are taken into account in the current calculation. The purpose of this work is two fold, one is to improve the earlier calculation of weak rates performed by Nabi and Klapdor-Kleingrothaus (At. Data Nucl. Data Tables 71:149, 1999a) using the same theory. We further compare our results with previous calculations. The selected sd-shell nuclei, considered in this work, are of special interest for the evolution of O-Ne-Mg core in 8-10 M_{⊙} stars due to competitive gamma ray heating rates and cooling by URCA processes. The outcome of these competitions is to determine, whether the stars end up as a white dwarf (Nabi in Phys. Rev. C 78(4):045801, 2008b), an electron-capture supernova (Jones et al. in Astrophys. J. 772(2):150, 2013) or Fe core-collapse supernova (Suzuki et al. in Astrophys. J. 817(2):163, 2016). The selected sd-shell nuclei for calculation of associated weak-interaction rates include ^{20,23}O, ^{20,23}F, ^{20,23,24}Ne, {}^{20,23-25}Na, and {}^{23-25}Mg. The cooling and heating rates are calculated for density range (10 ≤ ρ (g cm^{-3}) ≤ 10^{11}) and temperature range (0.01× 109≤ T(K)≤ 30× 109). The calculated gamma heating rates are orders of magnitude bigger than the shell model rates (except for ^{25}Mg at low densities). At high temperatures the gamma heating rates are in reasonable agreement. The calculated cooling rates are up to an order of magnitude bigger for odd-A nuclei.

  16. 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, or three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1D, 2D, and 3D assumption with regards to capturing the physical phenomena of interest and computational requirements.

  17. Precise calculation of neutron-capture reactions contribution in energy release for different types of VVER-1000 fuel assemblies

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Bahdanovich, Rynat; Pham, Phu

    2017-09-01

    Precise calculation of energy release in a nuclear reactor is necessary to obtain the correct spatial power distribution and predict characteristics of burned nuclear fuel. In this work, previously developed method for calculation neutron-capture reactions - capture component - contribution in effective energy release in a fuel core of nuclear reactor is discussed. The method was improved and implemented to the different models of VVER-1000 reactor developed for MCU 5 and MCNP 4 computer codes. Different models of equivalent cell and fuel assembly in the beginning of fuel cycle were calculated. These models differ by the geometry, fuel enrichment and presence of burnable absorbers. It is shown, that capture component depends on fuel enrichment and presence of burnable absorbers. Its value varies for different types of hot fuel assemblies from 3.35% to 3.85% of effective energy release. Average capture component contribution in effective energy release for typical serial fresh fuel of VVER-1000 is 3.5%, which is 7 MeV/fission. The method will be used in future to estimate the dependency of capture energy on fuel density, burn-up, etc.

  18. A catalytic role of surface silanol groups in CO2 capture on the amine-anchored silica support.

    PubMed

    Cho, Moses; Park, Joonho; Yavuz, Cafer T; Jung, Yousung

    2018-05-03

    A new mechanism of CO2 capture on the amine-functionalized silica support is demonstrated using density functional theory calculations, in which the silica surface not only acts as a support to anchor amines, but also can actively participate in the CO2 capture process through a facile proton transfer reaction with the amine groups. The surface-mediated proton transfer mechanism in forming a carbamate-ammonium product has lower kinetic barrier (8.1 kcal mol-1) than the generally accepted intermolecular mechanism (12.7 kcal mol-1) under dry conditions, and comparable to that of the water-assisted intermolecular mechanism (6.0 kcal mol-1) under humid conditions. These findings suggest that the CO2 adsorption on the amine-anchored silica surface would mostly occur via the rate-determining proton transfer step that is catalyzed by the surface silanol groups.

  19. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    NASA Technical Reports Server (NTRS)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate astrophysical nebulae, and will enable robust determinations of nebular Se abundances.

  20. Systematic study of proton capture reactions in medium-mass nuclei relevant to the p process: The case of 103Rh and In,115113

    NASA Astrophysics Data System (ADS)

    Harissopulos, S.; Spyrou, A.; Foteinou, V.; Axiotis, M.; Provatas, G.; Demetriou, P.

    2016-02-01

    The cross sections of the 103Rh(p ,γ )104Pd and the In,115113(p ,γ )Sn,116114 reactions have been determined from γ angular distribution measurements carried out at beam energies from 2 to 3.5 MeV. An array of four highly efficient HPGe detectors all shielded with BGO crystals for Compton background suppression was used. Astrophysical S factors and reaction rates were deduced from the measured cross sections. Statistical model calculations were performed using the Hauser-Feshbach (HF) code TALYS and were compared with the new data. A good agreement between theory and experiment was found. In addition, the effect of different combinations of the nuclear input parameters entering the HF calculations on the ground-state reaction rates was investigated. It was found that these rates differ by a factor 3 at the most, being thus within the average discrepancies observed between calculated p -nuclei abundances and observations, if certain combinations of optical model potentials, nuclear level densities, and γ -ray strength functions are used.

  1. Investigation of the reaction 74Ge(p,γ)75As using the in-beam method to improve reaction network predictions for p nuclei

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Endres, J.; Netterdon, L.; Zilges, A.; Foteinou, V.; Provatas, G.; Konstantinopoulos, T.; Axiotis, M.; Ashley, S. F.; Harissopulos, S.; Rauscher, T.

    2012-09-01

    Background: Astrophysical models studying the origin of the neutron-deficient p nuclides require knowledge of proton capture cross sections at low energy. The production site of the p nuclei is still under discussion but a firm basis of nuclear reaction rates is required to address the astrophysical uncertainties. Data at astrophysically relevant interaction energies are scarce. Problems with the prediction of charged particle capture cross sections at low energy were found in the comparisons between previous data and calculations in the Hauser-Feshbach statistical model of compound reactions.Purpose: A measurement of 74Ge(p,γ)75As at low proton energies, inside the astrophysically relevant energy region, is important in several respects. The reaction is directly important because it is a bottleneck in the reaction flow which produces the lightest p nucleus 74Se. It is also an important addition to the data set required to test reaction-rate predictions and to allow an improvement in the global p+nucleus optical potential required in such calculations.Method: An in-beam experiment was performed, making it possible to measure in the range 2.1≤Ep≤3.7MeV, which is for the most part inside the astrophysically relevant energy window. Angular distributions of the γ-ray transitions were measured with high-purity germanium detectors at eight angles relative to the beam axis. In addition to the total cross sections, partial cross sections for the direct population of 12 levels were determined.Results: The resulting cross sections were compared to Hauser-Feshbach calculations using the code smaragd. Only a constant renormalization factor of the calculated proton widths allowed a good reproduction of both total and partial cross sections. The accuracy of the calculation made it possible to check the spin assignment of some states in 75As. In the case of the 1075-keV state, a double state with spins and parities of 3/2- and 5/2- is needed to explain the experimental partial cross sections. A change in parity from 5/2+ to 5/2- is required for the state at 401 keV. Furthermore, in the case of 74Ge, studying the combination of total and partial cross sections made it possible to test the γ width, which is essential in the calculation of the astrophysical 74As(n,γ)75As rate.Conclusions: Between data and statistical model prediction a factor of about two was found. Nevertheless, the improved astrophysical reaction rate of 74Ge(p,γ) (and its reverse reaction) is only 28% larger than the previous standard rate. The prediction of the 74As(n,γ)75As rate (and its reverse) was confirmed, the newly calculated rate differs only by a few percent from the previous prediction. The in-beam method with high-efficiency detectors proved to be a powerful tool for studies in nuclear astrophysics and nuclear structure.

  2. Effects of tag loss on direct estimates of population growth rate

    USGS Publications Warehouse

    Rotella, J.J.; Hines, J.E.

    2005-01-01

    The temporal symmetry approach of R. Pradel can be used with capture-recapture data to produce retrospective estimates of a population's growth rate, lambda(i), and the relative contributions to lambda(i) from different components of the population. Direct estimation of lambda(i) provides an alternative to using population projection matrices to estimate asymptotic lambda and is seeing increased use. However, the robustness of direct estimates of lambda(1) to violations of several key assumptions has not yet been investigated. Here, we consider tag loss as a possible source of bias for scenarios in which the rate of tag loss is (1) the same for all marked animals in the population and (2) a function of tag age. We computed analytic approximations of the expected values for each of the parameter estimators involved in direct estimation and used those values to calculate bias and precision for each parameter estimator. Estimates of lambda(i) were robust to homogeneous rates of tag loss. When tag loss rates varied by tag age, bias occurred for some of the sampling situations evaluated, especially those with low capture probability, a high rate of tag loss, or both. For situations with low rates of tag loss and high capture probability, bias was low and often negligible. Estimates of contributions of demographic components to lambda(i) were not robust to tag loss. Tag loss reduced the precision of all estimates because tag loss results in fewer marked animals remaining available for estimation. Clearly tag loss should be prevented if possible, and should be considered in analyses of lambda(i), but tag loss does not necessarily preclude unbiased estimation of lambda(i).

  3. Systematic and statistical uncertainties in simulated r-process abundances due to uncertain nuclear masses

    DOE PAGES

    Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail

    2017-02-27

    Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β-decaymore » lifetimes, and β-delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. Here, we find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.« less

  4. Systematic and statistical uncertainties in simulated r-process abundances due to uncertain nuclear masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail

    Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β-decaymore » lifetimes, and β-delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. Here, we find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J. L.; Kawano, T.; Baramsai, B.

    The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238 U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. Our paper extends that analysis to 234 , 236 U by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectramore » and were in excellent agreement with the reported cross sections for all three isotopes.« less

  6. Form factors for dark matter capture by the Sun in effective theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Schwabe, Bodo

    2015-04-24

    In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less

  7. Constraining the calculation of U 234 , 236 , 238 ( n , γ ) cross sections with measurements of the γ -ray spectra at the DANCE facility

    DOE PAGES

    Ullmann, J. L.; Kawano, T.; Baramsai, B.; ...

    2017-08-31

    The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238 U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. Our paper extends that analysis to 234 , 236 U by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectramore » and were in excellent agreement with the reported cross sections for all three isotopes.« less

  8. Constraining the calculation of 234,236,238U (n ,γ ) cross sections with measurements of the γ -ray spectra at the DANCE facility

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Krtička, M.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Mitchell, G. E.

    2017-08-01

    The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. This paper extends that analysis to U,236234 by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectra and were in excellent agreement with the reported cross sections for all three isotopes.

  9. The Experimental Study of Nuclear Astrophysics Reaction Rate of 93Zr(n,γ)94Zr

    NASA Astrophysics Data System (ADS)

    Gan, L.; Li, Z. H.; Su, J.; Yan, S. Q.; Guo, B.; Du, X. C.; Wu, Z. D.; Zeng, S.; Jin, S. J.; Wang, Y. B.; Bai, X. X.; Zhang, W. J.; Sun, H. B.; Li, E. T.

    The slow neutron capture (s-) process plays a very important role in the nucleosynthesis, which produces about half of the elements heavier than iron. 94Zr is mainly from 93Zr(n,γ)94Zr in the s-process, and the direct component of the 93Zr(n,γ)94Zr capture reaction can be derived from the neutron spectroscopic factor of 94Zr. As the existing neutron spectroscopic factors of 94Zr vary from each other up to 60%, a new work should be adopted to measure it exactly. In the present work, the angular distributions of 94Zr(13C,13C)94Zr, 94Zr(12C,12C)94Zr and 94Zr(12C,13C)93Zr were obtained using the highprecision Q3D magnetic spectrograph. In addition, distorted-wave Born approximation (DWBA) calculations of the transfer differential cross sections were performed. The calculated result displays a good agreement with the experiment data, and a value of 2.60±0.20 for the neutron spectroscopic factor of 94Zr was extracted, and the direct capture cross section versus neutron energy of 93Zr(n,γ)94Zr for the ground state of 94Zr was obtained too.

  10. Symptomatic Dengue Disease in Five Southeast Asian Countries: Epidemiological Evidence from a Dengue Vaccine Trial.

    PubMed

    Nealon, Joshua; Taurel, Anne-Frieda; Capeding, Maria Rosario; Tran, Ngoc Huu; Hadinegoro, Sri Rezeki; Chotpitayasunondh, Tawee; Chong, Chee Kheong; Wartel, T Anh; Beucher, Sophie; Frago, Carina; Moureau, Annick; Simmerman, Mark; Laot, Thelma; L'Azou, Maïna; Bouckenooghe, Alain

    2016-08-01

    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2-14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14's active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions.

  11. Symptomatic Dengue Disease in Five Southeast Asian Countries: Epidemiological Evidence from a Dengue Vaccine Trial

    PubMed Central

    Taurel, Anne-Frieda; Capeding, Maria Rosario; Tran, Ngoc Huu; Hadinegoro, Sri Rezeki; Chotpitayasunondh, Tawee; Chong, Chee Kheong; Wartel, T. Anh; Beucher, Sophie; Frago, Carina; Moureau, Annick; Simmerman, Mark; Laot, Thelma; L’Azou, Maïna; Bouckenooghe, Alain

    2016-01-01

    Dengue incidence has increased globally, but empirical burden estimates are scarce. Prospective methods are best-able to capture all severities of disease. CYD14 was an observer-blinded dengue vaccine study conducted in children 2–14 years of age in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. The control group received no vaccine and resembled a prospective, observational study. We calculated the rates of dengue according to different laboratory or clinical criteria to make inferences about dengue burden, and compared with rates reported in the passive surveillance systems to calculate expansion factors which describe under-reporting. Over 6,933 person-years of observation in the control group there were 319 virologically confirmed dengue cases, a crude attack rate of 4.6%/year. Of these, 92 cases (28.8%) were clinically diagnosed as dengue fever or dengue hemorrhagic fever by investigators and 227 were not, indicating that most symptomatic disease fails to satisfy existing case definitions. When examining different case definitions, there was an inverse relationship between clinical severity and observed incidence rates. CYD14’s active surveillance system captured a greater proportion of symptomatic dengue than national passive surveillance systems, giving rise to expansion factors ranging from 0.5 to 31.7. This analysis showed substantial, unpredictable and variable under-reporting of symptomatic dengue, even within a controlled clinical trial environment, and emphasizes that burden estimates are highly sensitive to case definitions. These data will assist in generating disease burden estimates and have important policy implications when considering the introduction and health economics of dengue prevention and control interventions. PMID:27532617

  12. Factors influencing the variation in capture rates of shrews in southern California, USA

    USGS Publications Warehouse

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2003-01-01

    We examined the temporal variation in capture rates of shrewsNotiosorex crawfordi (Coues, 1877) and Sorex ornatus (Merriam, 1895) in 20 sites representing fragmented and continuous habitats in southern California, USA. InN. crawfordi, the temporal variation was significantly correlated with the mean capture rates. Of the 6 landscape variables analyzed (size of the landscape, size of the sample area, altitude, edge, longitude and latitude), sample area was positively correlated with variation in capture rates ofN. crawfordi. InS. ornatus, longitude was negatively correlated with variation in capture rates. Analysis of the effect of precipitation on the short- and long-term capture rates at 2 of the sites showed no correlation between rainfall and capture rates of shrews even though peak number of shrews at both sites were reached during the year of highest amount of rainfall. A key problem confounding capture rates of shrews in southern California is the low overall abundance of both shrew species in all habitats and seasons.

  13. Calculation of astrophysical S-factor in reaction ^{13}C(p,γ )^{14}N for first resonance levels

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-01-01

    The ^{13}C(p,γ )^{14}N reaction is one of the important reactions in the CNO cycle, which is a key process in nucleosynthesis. We first calculated wave functions for the bound state of ^{14}N with Faddeev's method. In this method, the considered reaction components are ^{12}C+n+p. Then, by using direct capture cross section and Breit-Wigner formulae, the non-resonant and resonant cross sections were calculated, respectively. In the next step, we calculated the total S-factor and compared it with experimental data, which showed good agreement between them. Next, we extrapolated the S-factor for the transition to the ground state at zero energy and obtained S(0)=5.8 ± 0.7 (keV b) and then calculate reaction rate. These ones are in agreement with previous reported results.

  14. Nuclear structure for SNe r- and neutrino processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio

    2014-09-01

    SNe r- and neutrino-processes are investigated based on recent advances in the studies of spin responses in nuclei. New shell-model Hamiltonians, which can well describe spin responses in nuclei with proper tensor components, are used to make accurate evaluations of reaction cross sections and rates in astrophysical processes. Nucleosyntheses in SNe r- and ν -processes as well as rp-processes are discussed with these new reaction rates with improved accuracies. (1) Beta-decay rates for N = 126 isotones are evaluated by shell-model calculations, and new rates are applied to study r-process nucleosynthesis in SNe's around its third peak as well as beyond the peak region up to uranium. (2) ν -processes for light-element synthesis in core-collapse SNe are studied with a new shell-model Hamiltonian in p-shell, SFO. Effects of MSW ν -oscillations on the production yields of 7Li and 11B and sensitivity of the yield ratio on ν -oscillation parameters are discussed. ν -induced reactions on 16O are also studied. (3) A new shell-model Hamiltonian in pf-shell, GXPF1J, is used to evaluate e-capture rates in pf-shell nuclei at stellar environments. New e-capture rates are applied to study nucleosynthesis in type-Ia supernova explosions, rp-process and X-ray bursts.

  15. Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.

    Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{submore » m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.« less

  16. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    NASA Astrophysics Data System (ADS)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  17. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  18. Perpetrator, worker and workplace characteristics associated with patient and visitor perpetrated violence (Type II) on hospital workers: a review of the literature and existing occupational injury data.

    PubMed

    Pompeii, Lisa; Dement, John; Schoenfisch, Ashley; Lavery, Amy; Souder, Megan; Smith, Claudia; Lipscomb, Hester

    2013-02-01

    Non-fatal type II violence experienced by hospital workers (patient/visitor-on-worker violence) is not well described. Hospital administration data (2004-2009) were examined for purposes of calculating rates of type II violent events experienced by workers. We also conducted a review of the hospital-based literature (2000-2010) and summarized findings associated with type II violence. 484 physical assaults were identified in the data, with a rate of 1.75 events/100 full-time equivalents. Only few details about events were captured, while non-physical events were not captured. The literature yielded 17 studies, with a range proportion of verbal abuse (22%-90%), physical threats (12%-64%) and assaults (2%-32%) reported. The literature lacked rigorous methods for examining incidence and circumstances surrounding events or rates of events over time. For purposes of examining the impact of type II violence on worker safety, satisfaction and retention, rigorous surveillance efforts by hospital employers and researchers are warranted. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  19. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  20. Truth in Reporting: How Data Capture Methods Obfuscate Actual Surgical Site Infection Rates within a Health Care Network System.

    PubMed

    Bordeianou, Liliana; Cauley, Christy E; Antonelli, Donna; Bird, Sarah; Rattner, David; Hutter, Matthew; Mahmood, Sadiqa; Schnipper, Deborah; Rubin, Marc; Bleday, Ronald; Kenney, Pardon; Berger, David

    2017-01-01

    Two systems measure surgical site infection rates following colorectal surgeries: the American College of Surgeons National Surgical Quality Improvement Program and the Centers for Disease Control and Prevention National Healthcare Safety Network. The Centers for Medicare & Medicaid Services pay-for-performance initiatives use National Healthcare Safety Network data for hospital comparisons. This study aimed to compare database concordance. This is a multi-institution cohort study of systemwide Colorectal Surgery Collaborative. The National Surgical Quality Improvement Program requires rigorous, standardized data capture techniques; National Healthcare Safety Network allows 5 data capture techniques. Standardized surgical site infection rates were compared between databases. The Cohen κ-coefficient was calculated. This study was conducted at Boston-area hospitals. National Healthcare Safety Network or National Surgical Quality Improvement Program patients undergoing colorectal surgery were included. Standardized surgical site infection rates were the primary outcomes of interest. Thirty-day surgical site infection rates of 3547 (National Surgical Quality Improvement Program) vs 5179 (National Healthcare Safety Network) colorectal procedures (2012-2014). Discrepancies appeared: National Surgical Quality Improvement Program database of hospital 1 (N = 1480 patients) routinely found surgical site infection rates of approximately 10%, routinely deemed rate "exemplary" or "as expected" (100%). National Healthcare Safety Network data from the same hospital and time period (N = 1881) revealed a similar overall surgical site infection rate (10%), but standardized rates were deemed "worse than national average" 80% of the time. Overall, hospitals using less rigorous capture methods had improved surgical site infection rates for National Healthcare Safety Network compared with standardized National Surgical Quality Improvement Program reports. The correlation coefficient between standardized infection rates was 0.03 (p = 0.88). During 25 site-time period observations, National Surgical Quality Improvement Program and National Healthcare Safety Network data matched for 52% of observations (13/25). κ = 0.10 (95% CI, -0.1366 to 0.3402; p = 0.403), indicating poor agreement. This study investigated hospitals located in the Northeastern United States only. Variation in Centers for Medicare & Medicaid Services-mandated National Healthcare Safety Network infection surveillance methodology leads to unreliable results, which is apparent when these results are compared with standardized data. High-quality data would improve care quality and compare outcomes among institutions.

  1. The 3D rocket combustor acoustics model

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1992-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.

  2. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)

    2006-01-01

    Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.

  3. A comparison of radiative capture with decay gamma-ray method in bore hole logging for economic minerals

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.

    1972-01-01

    The recent availability of borehole logging sondes employing a source of neutrons and a Ge(Li) detector opens up the possibility of analyzing either decay or capture gamma rays. The most efficient method for a given element can be predicted by calculating the decay-to-capture count ratio for the most prominent peaks in the respective spectra. From a practical point of view such a calculation must be slanted toward short irradiation and count times at each station in a borehole. A simplified method of computation is shown, and the decay-to-capture count ratio has been calculated and tabulated for the optimum value in the decay mode irrespective of the irradiation time, and also for a ten minute irradiation time. Based on analysis of a single peak in each spectrum, the results indicate the preferred technique and the best decay or capture peak to observe for those elements of economic interest. ?? 1972.

  4. Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera

    NASA Astrophysics Data System (ADS)

    Endo, Yutaka; Wakunami, Koki; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ichihashi, Yasuyuki; Yamamoto, Kenji; Ito, Tomoyoshi

    2015-12-01

    This paper shows the process used to calculate a computer-generated hologram (CGH) for real scenes under natural light using a commercial portable plenoptic camera. In the CGH calculation, a light field captured with the commercial plenoptic camera is converted into a complex amplitude distribution. Then the converted complex amplitude is propagated to a CGH plane. We tested both numerical and optical reconstructions of the CGH and showed that the CGH calculation from captured data with the commercial plenoptic camera was successful.

  5. Tsunami probability in the Caribbean Region

    USGS Publications Warehouse

    Parsons, T.; Geist, E.L.

    2008-01-01

    We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ???500-year empirical record compiled by O'Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0 - 30% regionally. ?? irkhaueser 2008.

  6. Protonium Formation in Collisions of Antiprotons with Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    1997-04-01

    The first full-dynamics calculation of barp capture by the H2 molecule has been performed using the quasiclassical Kirschbaum-Wilets method with modifications for accurate treatment of the molecular structure. It had been speculated in calculations of heavy-negative-particle (μ^-) capture by the H atom(J. S. Cohen, R. L. Martin, and W. R. Wadt, Phys. Rev. A 27), 1821 (1983). that the capture cross section for the H2 molecule might be smaller than that for the atom at very low energies (based on the absence of adiabatic ionization for the molecule) but larger at higher energies (based on the molecule having two electrons and a higher ionization potential). This speculation seemed to be borne out by a diabatic-states calculation,(G. Ya. Korenman and V. P. Popov, AIP Conference Proceedings 181, p. 145 (1989).) which showed the two cross sections crossing at a center-of-mass energy of ~8 eV. However, both the qualitative argument and that calculation neglected the molecular vibrational and rotational dynamics. The present calculations show that the molecular degrees of freedom of the target are important and that the molecular capture cross section is always larger and extends to a higher collision energy ( ~80 eV vs. ~25 eV) than the atomic cross section. The distribution of n and l quantum numbers of the captured barp will also be presented.

  7. Dissociative recombination of O2(+), NO(+) and N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1983-01-01

    A new L(2) approach for the calculation of the threshold molecular capture width needed for the determination of DR cross sections was developed. The widths are calculated with Fermi's golden rule by substituting Rydberg orbitals for the free electron continuum coulomb orbital. It is shown that the calculated width converges exponentially as the effective principal quantum number of the Rydberg orbital increases. The threshold capture width is then easily obtained. Since atmospheric recombination involves very low energy electrons, the threshold capture widths are essential to the calculation of DR cross sections for the atmospheric species studied here. The approach described makes use of bound state computer codes already in use. A program that collects width matrix elements over CI wavefunctions for the initial and final states is described.

  8. Measurement of radiative proton capture on F 18 and implications for oxygen-neon novae reexamined

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akers, C.; Laird, A. M.; Fulton, B. R.

    The rate of the F-18(p, gamma)Ne-19 reaction affects the final abundance of the gamma-ray observable radioisotope F-18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F-19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F-18(p, gamma)Ne-19 reaction. Themore » strength of the 665 keV resonance (E-x = 7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F-18 at any astrophysical energy.« less

  9. Ab initio thermodynamic approach to identify mixed solid sorbents for CO 2 capture technology

    DOE PAGES

    Duan, Yuhua

    2015-10-15

    Because the current technologies for capturing CO 2 are still too energy intensive, new materials must be developed that can capture CO 2 reversibly with acceptable energy costs. At a given CO 2 pressure, the turnover temperature (T t) of the reaction of an individual solid that can capture CO 2 is fixed. Such T t may be outside the operating temperature range (ΔT o) for a practical capture technology. To adjust T t to fit the practical ΔT o, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functionalmore » theory and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift T t to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO 2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.« less

  10. A novel teaching system for industrial robots.

    PubMed

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  11. A Novel Teaching System for Industrial Robots

    PubMed Central

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-01-01

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles. PMID:24681669

  12. Super-AGB Stars and their Role as Electron Capture Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Siess, Lionel; Lattanzio, John C.

    2017-11-01

    We review the lives, deaths and nucleosynthetic signatures of intermediate-mass stars in the range ≈6-12 M⊙, which form super-AGB stars near the end of their lives. The critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe), and between white dwarfs and supernovae, are examined along with the relative fraction of super-AGB stars that end life either as an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova event. The contribution of the other potential single-star channel to electron-capture supernovae, that of the failed massive stars, is also discussed. The factors that influence these different final fates and mass limits, such as composition, rotation, the efficiency of convection, the nuclear reaction rates, mass-loss rates, and third dredge-up efficiency, are described. We stress the importance of the binary evolution channels for producing electron-capture supernovae. Recent nucleosynthesis calculations and elemental yield results are discussed and a new set of s-process heavy element yields is presented. The contribution of super-AGB star nucleosynthesis is assessed within a Galactic perspective, and the (super-)AGB scenario is considered in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Last, we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.

  13. Molecular processes in a high temperature shock layer

    NASA Technical Reports Server (NTRS)

    Guberman, S. L.

    1985-01-01

    The development of techniques for the calculation of electron capture widths, electronic wave functions, cross sections and rates needed for the description of the dissociative recombination (DR) of molecular ions with electrons were described. The cross sections and rates were calculated by using harmonic oscillator wave functions for the ion and a delta function approximation for the continuum vibrational wave function in the repulsive dissociative channel. In order to obtain DR cross sections of quantitative accuracy, a computer program which solves the one dimensional nuclear motion wave equation was revised to calculate the cross sections and rates. The program and the new results are described. Included is a discussion of large windows found in the dissociative recombination cross sections from excited ion vibrational levels. These windows have not been previously reported in the literature. The magnitude of the DR cross sections for several dissociative routes are sensitive to the location of the crossing of the neutral and ion potential curves. Studies of the effects of basis set and CI wave function size on vertical excitation energies are described. Preliminary studies on N2 and O2 using large scale wave functions are also reported.

  14. Combustion Of Metals In Reduced Gravity And Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; Modak, A.; Branch, M. C.

    2003-01-01

    The recent focus of this research project has been to model the combustion of isolated metal droplets and, in particular, to couple the existing theories and formulations of phenomena such as condensation, reaction kinetics, radiation, and surface reactions to formulate a more complete combustion model. A fully transient, one-dimensional (spherical symmetry) numerical model that uses detailed chemical kinetics, multi-component molecular transport mechanisms, condensation kinetics, and gas phase radiation heat transfer was developed. A coagulation model was used to simulate the particulate formation of MgO. The model was used to simulate the combustion of an Mg droplet in pure O2 and CO2. Methanol droplet combustion is considered as a test case for the solution method for both quasi-steady and fully transient simulations. Although some important processes unique to methanol combustion, such as water absorption at the surface, are not included in the model, the results are in sufficient agreement with the published data. Since the major part of the heat released in combustion of Mg, and in combustion of metals in general, is due to the condensation of the metal oxide, it is very important to capture the condensation processes correctly. Using the modified nucleation theory, an Arrhenius type rate expression is derived to calculate the condensation rate of MgO. This expression can be easily included in the CHEMKIN reaction mechanism format. Although very little property data is available for MgO, the condensation rate expression derived using the existing data is able to capture the condensation of MgO. An appropriate choice of the reference temperature to calculate the rate coefficients allows the model to correctly predict the subsequent heat release and hence the flame temperature.

  15. Capture and decay of electroweak WIMPonium

    NASA Astrophysics Data System (ADS)

    Asadi, Pouya; Baumgart, Matthew; Fitzpatrick, Patrick J.; Krupczak, Emmett; Slatyer, Tracy R.

    2017-02-01

    The spectrum of Weakly-Interacting-Massive-Particle (WIMP) dark matter generically possesses bound states when the WIMP mass becomes sufficiently large relative to the mass of the electroweak gauge bosons. The presence of these bound states enhances the annihilation rate via resonances in the Sommerfeld enhancement, but they can also be produced directly with the emission of a low-energy photon. In this work we compute the rate for SU(2) triplet dark matter (the wino) to bind into WIMPonium—which is possible via single-photon emission for wino masses above 5 TeV for relative velocity v < O(10-2) —and study the subsequent decays of these bound states. We present results with applications beyond the wino case, e.g. for dark matter inhabiting a nonabelian dark sector; these include analytic capture and transition rates for general dark sectors in the limit of vanishing force carrier mass, efficient numerical routines for calculating positive and negative-energy eigenstates of a Hamiltonian containing interactions with both massive and massless force carriers, and a study of the scaling of bound state formation in the short-range Hulth&apos{e}n potential. In the specific case of the wino, we find that the rate for bound state formation is suppressed relative to direct annihilation, and so provides only a small correction to the overall annihilation rate. The soft photons radiated by the capture process and by bound state transitions could permit measurement of the dark matter's quantum numbers; for wino-like dark matter, such photons are rare, but might be observable by a future ground-based gamma-ray telescope combining large effective area and a low energy threshold.

  16. [Review of lime carbon sink.

    PubMed

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  17. Prediction of the Thrust Performance and the Flowfield of Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Wang, T.-S.

    1990-01-01

    In an effort to improve the current solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics (CFD) model capable of calculating the reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, was investigated as a sample case. The CFD model, FDNS, is a pressure based, non-staggered grid, viscous/inviscid, ideal gas/real gas, reactive code. An adaptive upwinding differencing scheme is employed for the spatial discretization. The upwind scheme is based on fourth order central differencing with fourth order damping for smooth regions, and second order central differencing with second order damping for shock capturing. It is equipped with a CHMQGM equilibrium chemistry algorithm and a PARASOL finite rate chemistry algorithm using the point implicit method. The computed flow results and performance compared well with those of other standard codes and engine hot fire test data. In addition, the transient nozzle flowfield calculation was also performed to demonstrate the ability of FDNS in capturing the flow separation during the startup process.

  18. Modeling time-coincident ultrafast electron transfer and solvation processes at molecule-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Li, Lesheng; Giokas, Paul G.; Kanai, Yosuke; Moran, Andrew M.

    2014-06-01

    Kinetic models based on Fermi's Golden Rule are commonly employed to understand photoinduced electron transfer dynamics at molecule-semiconductor interfaces. Implicit in such second-order perturbative descriptions is the assumption that nuclear relaxation of the photoexcited electron donor is fast compared to electron injection into the semiconductor. This approximation breaks down in systems where electron transfer transitions occur on 100-fs time scale. Here, we present a fourth-order perturbative model that captures the interplay between time-coincident electron transfer and nuclear relaxation processes initiated by light absorption. The model consists of a fairly small number of parameters, which can be derived from standard spectroscopic measurements (e.g., linear absorbance, fluorescence) and/or first-principles electronic structure calculations. Insights provided by the model are illustrated for a two-level donor molecule coupled to both (i) a single acceptor level and (ii) a density of states (DOS) calculated for TiO2 using a first-principles electronic structure theory. These numerical calculations show that second-order kinetic theories fail to capture basic physical effects when the DOS exhibits narrow maxima near the energy of the molecular excited state. Overall, we conclude that the present fourth-order rate formula constitutes a rigorous and intuitive framework for understanding photoinduced electron transfer dynamics that occur on the 100-fs time scale.

  19. Enhancement of the Accretion of Jupiters Core by a Voluminous Low-Mass Envelope

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; D'angelo, Gennaro; Weidenschilling, Stuart John; Bodenheimer, Peter; Hubickyj, Olenka

    2013-01-01

    We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 100 kilometers. We follow the evolution of the swarm by accounting for growth and fragmentation, viscous and gravitational stirring, and for drag-induced migration and velocity damping. Gas capture by the core substantially enhances the cross-section of the planet for accretion of small planetesimals. The dust opacity within the atmosphere surrounding the planetary core is computed self-consistently, accounting for coagulation and sedimentation of dust particles released in the envelope as passing planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and an initial solids' surface density of 10/g/cm^2 at that distance. The results give a core mass of 7 Earth masses and an envelope mass of approximately 0.1 Earth mass after 500,000 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope gives a core mass of only 4 Earth masses.

  20. Putting the "Student" Back into the Student-Athlete: In an Effort to Improve Retention and Graduation Rates, the NCAA Rolls out New Rules and Regulations

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    College sports is a numbers game, full of so many calculations--batting averages, free-throw percentages, BCS and RPI scores--that keeping them all straight can be a full-time job for a sports program. Now, the National Collegiate Athletic Association has put a new number on the table, and it has captured the attention of every athletic director,…

  1. Aircraft Maneuvers for the Evaluation of Flying Qualities and Agility. Volume 1. Maneuver Development Process and Initial Maneuver Set

    DTIC Science & Technology

    1993-08-01

    subtitled "Simulation Data," consists of detailed infonrnation on the design parmneter variations tested, subsequent statistical analyses conducted...used with confidence during the design process. The data quality can be examined in various forms such as statistical analyses of measure of merit data...merit, such as time to capture or nmaximurn pitch rate, can be calculated from the simulation time history data. Statistical techniques are then used

  2. Systematic R -matrix analysis of the 13C(p ,γ )14N capture reaction

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suprita; deBoer, Richard; Mukherjee, Avijit; Roy, Subinit

    2015-04-01

    Background: The proton capture reaction 13C(p ,γ )14N is an important reaction in the CNO cycle during hydrogen burning in stars with mass greater than the mass of the Sun. It also occurs in astrophysical sites such as red giant stars: the asymptotic giant branch (AGB) stars. The low energy astrophysical S factor of this reaction is dominated by a resonance state at an excitation energy of around 8.06 MeV (Jπ=1-,T =1 ) in 14N. The other significant contributions come from the low energy tail of the broad resonance with Jπ=0-,T =1 at an excitation of 8.78 MeV and the direct capture process. Purpose: Measurements of the low energy astrophysical S factor of the radiative capture reaction 13C(p ,γ )14N reported extrapolated values of S (0 ) that differ by about 30 % . Subsequent R -matrix analysis and potential model calculations also yielded significantly different values for S (0 ) . The present work intends to look into the discrepancy through a detailed R -matrix analysis with emphasis on the associated uncertainties. Method: A systematic reanalysis of the available decay data following the capture to the Jπ=1-,T =1 resonance state of 14N around 8.06 MeV excitation had been performed within the framework of the R -matrix method. A simultaneous analysis of the 13C(p ,p0 ) data, measured over a similar energy range, was carried out with the capture data. The data for the ground state decay of the broad resonance state (Jπ=0-,T =1 ) around 8.78 MeV excitations was included as well. The external capture model along with the background poles to simulate the internal capture contribution were used to estimate the direct capture contribution. The asymptotic normalization constants (ANCs) for all states were extracted from the capture data. The multichannel, multilevel R -matrix code azure2 was used for the calculation. Results: The values of the astrophysical S factor at zero relative energy, resulting from the present analysis, are found to be consistent within the error bars for the two sets of capture data used. However, it is found from the fits to the elastic scattering data that the position of the Jπ=1-,T =1 resonance state is uncertain by about 0.6 keV, preferring an excitation energy value of 8.062 MeV. Also the extracted ANC values for the states of 14N corroborate the values from the transfer reaction studies. The reaction rates from the present calculation are about 10 -15 % lower than the values of the NACRE II compilation but compare well with those from NACRE I. Conclusion: The precise energy of the Jπ=1-,T =1 resonance level around 8.06 MeV in 14N must be determined. Further measurements around and below 100 keV with precision are necessary to reduce the uncertainty in the S -factor value at zero relative energy.

  3. Gamma-ray spectra and doses from the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germaniummore » detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10/sup 13/ fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables.« less

  4. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Pinzhi; Lu, Jie; Yu, Hualong; Ren, Ning; Lockwood, Frances E.; Wang, Q. Jane

    2017-08-01

    The shear thinning of a lubricant significantly affects lubrication film generation at high shear rates. The critical shear rate, defined at the onset of shear thinning, marks the transition of lubricant behaviors. It is challenging to capture the entire shear-thinning curve by means of molecular dynamics (MD) simulations owing to the low signal-to-noise ratio or long calculation time at comparatively low shear rates (104-106 s-1), which is likely coincident with the shear rates of interest for lubrication applications. This paper proposes an approach that correlates the shear-thinning phenomenon with the change in the molecular conformation characterized by the radius of gyration of the molecule. Such a correlation should be feasible to capture the major mechanism of shear thinning for small- to moderate-sized non-spherical molecules, which is shear-induced molecular alignment. The idea is demonstrated by analyzing the critical shear rate for squalane (C30H62) and 1-decene trimer (C30H62); it is then implemented to study the behaviors of different molecular weight poly-α-olefin (PAO) structures. Time-temperature-pressure superpositioning (TTPS) is demonstrated and it helps further extend the ranges of the temperature and pressure for shear-thinning behavior analyses. The research leads to a relationship between molecular weight and critical shear rate for PAO structures, and the results are compared with those from the Einstein-Debye equation.

  5. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Schwabe, Bodo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: bodo.schwabe@theorie.physik.uni-goettingen.de

    In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less

  7. Electric and Magnetic Dipole Strength at Low Energy.

    PubMed

    Sieja, K

    2017-08-04

    A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ-ray strength of the ^{44}Sc isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1ℏω  sd-pf-gds model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M1 strength but show quite different behavior for the E1 strength.

  8. Study on the keV neutron capture reaction in 56Fe and 57Fe

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  9. Cluster states and container picture in light nuclei, and triple-alpha reaction rate

    NASA Astrophysics Data System (ADS)

    Funaki, Yasuro

    2015-04-01

    The excited states in 12C are investigated by using an extended version of the so- called Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, where both the 3α condensate and 8Be + α cluster asymptotic configurations are included. We focus on the structures of the “Hoyle band” states, 2+2, and 4+2 states, which are recently observed above the Hoyle state, and of the 0+3 and 0+4 states, which are also quite recently identified in experiment. We show that the Hoyle band is not simply considered to be the 8Be(0+) + α rotation as suggested by previous cluster model calculations, nor to be a rotation of a rigid-body triangle-shaped object composed of the 3α particles. We also discuss the rate of the triple-alpha radiative capture reaction, applyng the imaginary-time method. Results of the triple-alpha reaction rate are consistent with NACRE rate for both high (≈ 109K) and low (≈ 107 K) temperatures. We show that the rate of the imaginary-time calculation in coupled-channels approach has a large enhancement for low temperatures if we truncate the number of channels.

  10. Ionization rate from the electron precipitation during August 2011 storm

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Huang, C. Y.; Su, Y.

    2013-12-01

    We apply a parameterization by Fang et al. [2010] (Fang2010) to the complex energy spectra measured by DMSP F16 satellites to calculate the ionization rate from electron precipitation during a moderate storm on August 6th, 2011. The DMSP electron flux measurements show that there is clear enhancement of electron fluxes in the polar cap. The mean energy in the polar cap is mostly above 100 eV, while the mean energy of auroral zone is above 1 keV. F16 also captures a strong Poynting flux enhancement in the polar cap. The electron impact ionization rates using thermospheric densities and temperatures from NRLMSISE-00, TIE-GCM and GITM show clear enhancement at F-region altitudes in the polar cap region due to the low-energy electrons precipitated. Using the default empirical formulations of electron impact ionization in GCMs, TIE-GCM and GITM do not capture the F-region ionization shown in the results of Fang2010 parameterization. Fang, X, C. E. Randall, D. Lummerzheim, W. Wang, G. Lu, S. C. Solomon, and R. A. Frahm (2010), Geophys. Res. Lett., 37, L22106, doi:10.1029/2010GL045406.

  11. S/sub n/ analysis of the TRX metal lattices with ENDF/B version III data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, F.J.; Pearlstein, S.

    1975-03-01

    Two critical assemblies, designated as thermal-reactor benchmarks TRX-1 and TRX-2 for ENDF/B data testing, were analyzed using the one-dimensional S/sub n/-theory code SCAMP. The two assemblies were simple lattices of aluminum-clad, uranium-metal fuel rods in triangular arrays with D$sub 2$O as moderator and reflector. The fuel was low-enriched (1.3 percent $sup 235$U), 0.387-inch in diameter and had an active height of 48 inches. The volume ratio of water to uranium was 2.35 for the TRX-1 lattice and 4.02 for TRX-2. Full-core S/sub n/ calculations based on Version III data were performed for these assemblies and the results obtained were comparedmore » with the measured values of the multiplication factors, the ratio of epithermal-to-thermal neutron capture in $sup 238$U, the ratio of epithermal-to-thermal fission in $sup 235$U, the ratio of $sup 238$U fission to $sup 235$U fission, and the ratio of capture in $sup 238$U to fission in $sup 235$U. Reaction rates were obtained from a central region of the full- core problems. Multigroup cross sections for the reactor calculation were obtained from S/sub n/ cell calculations with resonance self-shielding calculated using the RABBLE treatment. The results of the analyses are generally consistent with results obtained by other investigators. (auth)« less

  12. Upbend and M1 scissors mode in neutron-rich nuclei - consequences for r-process $$(n,\\gamma )$$ reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A. C.; Goriely, S.; Bernstein, L. A.

    2015-01-01

    An enhanced probability for low-energy γ-emission ( upbend, Eγ < 3 MeV) at high excitation energies has been observed for several light and medium-mass nuclei close to the valley of stability. Also the M1 scissors mode seen in deformed nuclei increases the γ-decay probability for low-energy γ-rays (E γ ≈ 2–3 MeV). These phenomena, if present in neutron-rich nuclei, have the potential to increase radiative neutron-capture rates relevant for the r-process. Furthermore, the experimental and theoretical status of the upbend is discussed, and preliminary calculations of (n,γ) reaction rates for neutron-rich, mid-mass nuclei including the scissors mode are shown.

  13. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Kiss, G. G.; Gyürky, Gy.; Halász, Z.; Fülöp, Zs.; Rauscher, T.

    2018-01-01

    The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ)195Au, 191Ir(α,n)194Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions have been measured with the activation technique between Eα = 13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α + nucleus optical potential gives a good description of the experimental data.

  14. Investigation of Gamow Teller transition properties in 56-64Ni isotopes using QRPA methods

    NASA Astrophysics Data System (ADS)

    Cakmak, Sadiye; Nabi, Jameel-Un; Babacan, Tahsin

    2018-02-01

    Weak rates in nickel isotopes play an integral role in the dynamics of supernovae. Electron capture and β-decay of nickel isotopes, dictated by Gamow-Teller transitions, significantly alter the lepton fraction of the stellar matter. In this paper we calculate Gamow-Teller (GT) transitions for isotopes of nickel, Ni6456-, using QRPA methods. The GT strength distributions were calculated using four different QRPA models. Our results are also compared with previous theoretical calculations and measured strength distributions wherever available. Our investigation concluded that amongst all RPA models, the pn-QRPA(C) model best described the measured GT distributions (including total GT strength and centroid placement). It is hoped that the current investigation of GT properties would prove handy and may lead to a better understanding of the presupernova evolution of massive stars.

  15. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroshi; Powell, J.

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.

  16. Age and growth of flathead catfish, Pylodictus olivaris rafinesque, in the Altamaha River system, Georgia

    USGS Publications Warehouse

    Grabowski, T.B.; Isely, J.J.; Weller, R.R.

    2004-01-01

    Flathead catfish were introduced to the Altamaha River system, Georgia in the 1970's. We determined the length-weight relationship, Von Bertalanffy growth parameters, and back calculated lengths by examining the sagittal otoliths of 331 individuals captured from this population. We found that there were no sex related differences in length weight relationship or Von Bertalanffy growth parameters. Flathead catfish in the Altamaha River system grow at about the same rate as individuals in other introduced populations.

  17. Effects of capturing and collaring on polar bears: findings from long-term research on the southern Beaufort Sea population

    USGS Publications Warehouse

    Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Atwood, Todd C.; Durner, George M.; Simac, Kristin S.; Amstrup, Steven C.

    2014-01-01

    Context: The potential for research methods to affect wildlife is an increasing concern among both scientists and the public. This topic has a particular urgency for polar bears because additional research is needed to monitor and understand population responses to rapid loss of sea ice habitat.Aims: This study used data collected from polar bears sampled in the Alaska portion of the southern Beaufort Sea to investigate the potential for capture to adversely affect behaviour and vital rates. We evaluated the extent to which capture, collaring and handling may influence activity and movement days to weeks post-capture, and body mass, body condition, reproduction and survival over 6 months or more.Methods: We compared post-capture activity and movement rates, and relationships between prior capture history and body mass, body condition and reproductive success. We also summarised data on capture-related mortality.Key results: Individual-based estimates of activity and movement rates reached near-normal levels within 2–3 days and fully normal levels within 5 days post-capture. Models of activity and movement rates among all bears had poor fit, but suggested potential for prolonged, lower-level rate reductions. Repeated captures was not related to negative effects on body condition, reproduction or cub growth or survival. Capture-related mortality was substantially reduced after 1986, when immobilisation drugs were changed, with only 3 mortalities in 2517 captures from 1987–2013.Conclusions: Polar bears in the southern Beaufort Sea exhibited the greatest reductions in activity and movement rates 3.5 days post-capture. These shorter-term, post-capture effects do not appear to have translated into any long-term effects on body condition, reproduction, or cub survival. Additionally, collaring had no effect on polar bear recovery rates, body condition, reproduction or cub survival.Implications: This study provides empirical evidence that current capture-based research methods do not have long-term implications, and are not contributing to observed changes in body condition, reproduction or survival in the southern Beaufort Sea. Continued refinement of capture protocols, such as the use of low-impact dart rifles and reversible drug combinations, might improve polar bear response to capture and abate short-term reductions in activity and movement post-capture.

  18. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xu, Ke; Wang, Lin-Wang

    2015-05-01

    Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to calculate the nonradiative carrier recombinations of two complex defect structures GaP :Z nGa-OP and GaN :Z nGa-VN , and compared the results with experiments. In order to apply different multiphonon assisted electron transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the static coupling theory are 4.30 ×10-8 and 1.46 ×10-7c m3/s for GaP :Z nGa-OP and GaN :Z nGa-VN , which are in good agreement with the experiment results, (4-1+2) ×10-8 and 3.0 ×10-7c m3/s , respectively. We also provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of semiconductors.

  19. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  20. Study on data acquisition system based on reconfigurable cache technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qinchuan; Li, Min; Jiang, Jun

    2018-03-01

    Waveform capture rate is one of the key features of digital acquisition systems, which represents the waveform processing capability of the system in a unit time. The higher the waveform capture rate is, the larger the chance to capture elusive events is and the more reliable the test result is. First, this paper analyzes the impact of several factors on the waveform capture rate of the system, then the novel technology based on reconfigurable cache is further proposed to optimize system architecture, and the simulation results show that the signal-to-noise ratio of signal, capacity, and structure of cache have significant effects on the waveform capture rate. Finally, the technology is demonstrated by the engineering practice, and the results show that the waveform capture rate of the system is improved substantially without significant increase of system's cost, and the technology proposed has a broad application prospect.

  1. Ground-state proton decay of {sup 69}Br and implications for the {sup 68}Se astrophysical rapid proton-capture process waiting point.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A. M.; Famiano, M. A.; Lynch, W. G.

    2011-06-24

    We report on the first direct measurement of the proton separation energy for the proton-unbound nucleus {sup 69}Br. Bypassing the {sup 68}Se waiting point in the rp process is directly related to the 2p-capture rate through {sup 69}Br, which depends exponentially on the proton separation energy. We find a proton separation energy for {sup 69}Br of S{sub p}({sup 69}Br) = -785{sub -40}{sup +34} keV; this is less bound compared to previous predictions which have relied on uncertain theoretical calculations. The influence of the extracted proton separation energy on the rp process occurring in type I x-ray bursts is examined withinmore » the context of a one-zone burst model.« less

  2. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.

    PubMed

    Alecu, I M; Truhlar, Donald G

    2011-12-29

    Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society

  3. Quasiclassical treatment of the Auger effect in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Frémont, F.

    2017-09-01

    A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.

  4. High-pressure xenon time projection Titanium chamber: a methodology for detecting background radiation in neutrinoless double-beta decay experiments

    NASA Astrophysics Data System (ADS)

    Bachri, A.; Elmhamdi, A.; Hawron, M.; Grant, P.; Zazoum, B.; Martin, C.

    2017-10-01

    The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α-n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α-n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies comparable to the Qβ β -value) originating from thermal neutron capture with all stable elemental isotopes present in the TPC. We show that to limit the most probable reactions to a rate of one event per year or less, the neutron flux would have to be reduced to (3-6) × 10-10 cm-2ṡs-1. The predictions of our crude theoretical calculation are in good agreement with full simulation of TPC radiation background by existing experimental collaboration using xenon for 0ν β β experiment.

  5. Modeling hydrodynamic effects on choanoflagellate feeding

    NASA Astrophysics Data System (ADS)

    Oakes, Christian; Hguyen, Hoa; Koehl, Mimi; Fauci, Lisa

    2017-11-01

    Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. As the closest living relative to animals, they are important for both ecological and evolutionary studies. Choanoflagellates have three unicellular types: slow swimmers, fast swimmers, and thecate (attached to a surface by a stalk). Each has different morphology and feeding rate. We use the method of regularized Stokeslets to simulate cell-fluid interactions of each type and show the hydrodynamic effects on the amount and directions of fluid flow toward the collar. After validating the swimming speeds of our models with experimental data, we calculate the rate of flow across a capture zone around the collar (flux). This sheds light on how each morphological aspect of the cell aids in bacteria capture during feeding. Among the three types, the thecate cells have the largest average flux values, implying that they take advantage of the nearby surface by creating eddies that draw bacteria into their collar for ingestion. Funding Source: FASTER Grant SURF `` National Science Foundation DUE S-STEM Award 1153796, Mach Fellowship.

  6. Capture and reproductive trends in summer bat communities in West Virginia: Assessing the impact of white-nose syndrome

    USGS Publications Warehouse

    Francl, Karen E.; Ford, W. Mark; Sparks, Dale W.; Brack, Virgil

    2012-01-01

    Although it has been widely documented that populations of cave-roosting bats rapidly decline following the arrival of white-nose syndrome (WNS), longer term reproductive effects are less well-known and essentially unexplored at the community scale. In West Virginia, WNS was first detected in the eastern portion of the state in 2009 and winter mortality was documented in 2009 and 2010. However, quantitative impacts on summer bat communities remained unknown. We compared “historical” (pre-WNS) capture records and reproductive rates from 11,734 bats captured during summer (15 May to 15 August) of 1997–2008 and 1,304 captures during 2010. We predicted that capture rates (number of individuals captured/net-night) would decrease in 2010. We also expected the energetic strain of WNS would cause delayed or reduced reproduction, as denoted by a greater proportion of pregnant or lactating females later in the summer and a lower relative proportion of juvenile captures in the mid–late summer. We found a dramatic decline in capture rates of little brown Myotis lucifugus, northern long-eared M. septentrionalis, small-footed M. leibii, Indiana M. sodalis, tri-colored Perimyotis subflavus, and hoary Lasiurus cinereus bats after detection of WNS in 2009. For these six species, 2010 capture rates were 10–37% of pre-WNS rates. Conversely, capture rates of big brown bats Eptesicus fuscus increased by 17% in 2010, whereas capture rates of eastern red bats Lasiurus borealis did not change. Together, big brown and eastern red bats were 58% of all 2010 captures but only 11% of pre-WNS captures. Reproductive data from 12,314 bats showed shifts in pregnancy and lactation dates, and an overall narrowing in the windows of time of each reproductive event, for northern-long-eared and little brown bats. Additionally, the proportion of juvenile captures declined in 2010 for these species. In contrast, lactation and pregnancy rates of big brown and eastern red bats, and the proportion of juveniles, were similar to historical patterns. Our results further elucidate the significance of short-term effects and provide a basis to examine long-term consequences of WNS.

  7. Real-time detection of respiration rate with non-contact mode based on low-end imaging equipment

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoli; Dong, Liquan; Zhao, Yuejin; Liu, Xiaohua; Liu, Ming; Yang, Lei; Liu, Weiyu; Zhao, Jingsheng; Xing, Jinhui

    2013-09-01

    Standard instrumentation for the assessment of respiration rate is large and based on invasive method, and not suitable for daily inspection. An optical, simple and non-contact measurement method to detect human respiration rate using lowend imaging equipment is discussed. This technology is based on the visible light absorption of blood, which contains many important physiological information of the cardiovascular system. The light absorption of facial area can be indirectly reflected to gray value of the corresponding area image. In this paper, we acquire the respiration rate through the video signal captured by low-end imaging equipment. Firstly, the color CCD captures the facial area below the eyes and every frame of the video can be separated into three RGB channels. The blue channel is extracted as the research object. Then, we calculate the mean gray value for each image and draw the mean gray curve along the time. Fourier transform can get the frequency spectrogram of the graph, which is filtered through the Fourier filter. The extreme point is the value of the respiratory rate. Finally, an available interface program is designed and we have some volunteers tested. The correlation coefficient between the experimental data and the data provided by a reference instrument is 0.98. The consistency of the experimental results is very well. This technology costs so low that it will be widely used in medical and daily respiration rate measurement.

  8. Electric and Magnetic Dipole Strength at Low Energy

    NASA Astrophysics Data System (ADS)

    Sieja, K.

    2017-08-01

    A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ -ray strength of the Sc 44 isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1 ℏω s d -p f -g d s model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M 1 strength but show quite different behavior for the E 1 strength.

  9. Dark matter in the Sun: scattering off electrons vs nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garani, Raghuveer; Palomares-Ruiz, Sergio, E-mail: garani@th.physik.uni-bonn.de, E-mail: sergiopr@ific.uv.es

    The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic scattering cross section can be constrained. Although the process of DM capture in astrophysical objects like the Sun is commonly assumed to be due to interactions only with nucleons, there are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced interactions with nucleons are allowed, scatterings off electrons could be the dominant capture mechanism. We consider this possibility and study in detail all the ingredients necessary tomore » compute the neutrino production rates from DM annihilations in the Sun (capture, annihilation and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic and momentum-dependent scattering cross sections for DM interactions with electrons and compare them with the results obtained for the case of interactions with nucleons. Moreover, we improve the usual calculations in a number of ways and provide analytical expressions in three appendices. Interestingly, we find that the evaporation mass in the case of interactions with electrons could be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun, which would open a new mass window for searching for this type of scenarios.« less

  10. Functionalization of nanotextured substrates for enhanced identification of metastatic breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mansur, Nuzhat; Raziul Hasan, Mohammad; Kim, Young-tae; Iqbal, Samir M.

    2017-09-01

    Metastasis is the major cause of low survival rates among cancer patients. Once cancer cells metastasize, it is extremely difficult to contain the disease. We report on a nanotextured platform for enhanced detection of metastatic cells. We captured metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer cells on anti-EGFR aptamer modified plane and nanotextured substrates. Metastatic cells were seen to change their morphology at higher rates when captured on nanotextured substrates than on plane substrates. Analysis showed statistically different morphological behaviors of metastatic cells that were very pronounced on the nanotextured substrates. Several distance matrices were calculated to quantify the dissimilarity of cell shape change. Nanotexturing increased the dissimilarity of the metastatic cells and as a result the contrast between metastatic and non-metastatic cells increased. Jaccard distance measurements found that the shape change ratio of the non-metastatic and metastatic cells was enhanced from 1:1.01 to 1:1.81, going from plane to nanotextured substrates. The shape change ratio of the non-metastatic to metastatic cells improved from 1:1.48 to 1:2.19 for the Hausdorff distance and from 1:1.87 to 1:4.69 for the Mahalanobis distance after introducing nanotexture. Distance matrix analysis showed that nanotexture increased the shape change ratios of non-metastatic and metastatic cells. Hence, the detectability of metastatic cells increased. These calculated matrices provided clear and explicit measures to discriminate single cells for their metastatic state on functional nanotextured substrates.

  11. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidalmore » captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.« less

  12. Lowland tapir (Tapirus terrestris) distribution, activity patterns and relative abundance in the Greater Madidi-Tambopata Landscape.

    PubMed

    Wallace, Robert; Ayala, Guido; Viscarra, Maria

    2012-12-01

    Lowland tapir distribution is described in northwestern Bolivia and southeastern Peru within the Greater Madidi-Tambopata Landscape, a priority Tapir Conservation Unit, using 1255 distribution points derived from camera trapping efforts, field research and interviews with park guards from 5 national protected areas and hunters from 19 local communities. A total of 392 independent camera trapping events from 14 camera trap surveys at 11 sites demonstrated the nocturnal and crepuscular activity patterns (86%) of the lowland tapir and provide 3 indices of relative abundance for spatial and temporal comparison. Capture rates for lowland tapirs were not significantly different between camera trapping stations placed on river beaches versus those placed in the forest. Lowland tapir capture rates were significantly higher in the national protected areas of the region versus indigenous territories and unprotected portions of the landscape. Capture rates through time suggested that lowland tapir populations are recovering within the Tuichi Valley, an area currently dedicated towards ecotourism activities, following the creation (1995) and subsequent implementation (1997) of the Madidi National Park in Bolivia. Based on our distributional data and published conservative estimates of population density, we calculated that this transboundary landscape holds an overall lowland tapir population of between 14 540 and 36 351 individuals, of which at least 24.3% are under protection from national and municipal parks. As such, the Greater Madidi-Tambopata Landscape should be considered a lowland tapir population stronghold and priority conservation efforts are discussed in order to maintain this population. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  13. Capturing Functional Independence Measure (FIM®) Ratings.

    PubMed

    Torres, Audrey

    The aim of the study was to identify interventions to capture admission functional independence measure (FIM®) ratings on the day of admission to an inpatient rehabilitation facility. A quantitative evidence-based practice quality improvement study utilizing descriptive statistics. Admission FIM® ratings from patients discharged in June 2012 (retrospective review) were compared to admission FIM® ratings from patients discharged in June 2014 (prospective review). The logic model was utilized to determine the project inputs, outputs, and outcomes. Interventions to capture admission FIM® ratings on the day of admission are essential to accurately predict the patient's burden of care, length of stay, and reimbursement. Waiting until Day 2 or Day 3 after admission to capture the admission FIM® assessment resulted in inflated admission FIM® ratings and suboptimal quality outcomes. Interventions to capture admission FIM® ratings on the day of admission were successful at improving the quality of care, length of stay efficiency, and accurately recording admission FIM® ratings to determine the patient's burden of care.

  14. Mechanism for the Green Glow of the Upper Ionosphere

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1997-01-01

    The generation of the green line of atomic oxygen by dissociative recombination of 02 plus occurs by the capture of an electron into a repulsive state of 02 followed by dissociation along another state of a different electronic symmetry. The two states are coupled together by mixed symmetry Rydberg states. Quantum chemical calculations give a rate coefficient at room temperature of (0.39 (+ 0.31 or -0.19)) x 10 exp -8 cubic centimeters per second. The quantum yield of excited oxygen is within the range deduced from ground, rocket, and satellite observations. The rate coefficients and yields are needed in models of the optical emission, chemistry, and energy balance of planetary ionospheres.

  15. Low energy dipole strength from large scale shell model calculations

    NASA Astrophysics Data System (ADS)

    Sieja, Kamila

    2017-09-01

    Low energy enhancement of radiative strength functions has been deduced from experiments in several mass regions of nuclei. Such an enhancement is believed to impact the calculated neutron capture rates which are crucial input for reaction rates of astrophysical interest. Recently, shell model calculations have been performed to explain the upbend of the γ-strength as due to the M1 transitions between close-lying states in the quasi-continuum in Fe and Mo nuclei. Beyond mean-↓eld calculations in Mo suggested, however, a non-negligible role of electric dipole in the low energy enhancement. So far, no calculations of both dipole components within the same theoretical framework have been presented in this context. In this work we present newly developed large scale shell model appraoch that allows to treat on the same footing natural and non-natural parity states. The calculations are performed in a large sd - pf - gds model space, allowing for 1p{1h excitations on the top of the full pf-shell con↓guration mixing. We restrict the discussion to the magnetic part of the dipole strength, however, we calculate for the ↓rst time the magnetic dipole strength between states built of excitations going beyond the classical shell model spaces. Our results corroborate previous ↓ndings for the M1 enhancement for the natural parity states while we observe no enhancement for the 1p{1h contributions. We also discuss in more detail the e↑ects of con↓guration mixing limitations on the enhancement coming out from shell model calculations.

  16. Integral experiments on thorium assemblies with D-T neutron source

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Yang, Yiwei; Feng, Song; Zheng, Lei; Lai, Caifeng; Lu, Xinxin; Wang, Mei; Jiang, Li

    2017-09-01

    To validate nuclear data and code in the neutronics design of a hybrid reactor with thorium, integral experiments in two kinds of benchmark thorium assemblies with a D-T fusion neutron source have been performed. The one kind of 1D assemblies consists of polyethylene and depleted uranium shells. The other kind of 2D assemblies consists of three thorium oxide cylinders. The capture reaction rates, fission reaction rates, and (n, 2n) reaction rates in 232Th in the assemblies are measured by ThO2 foils. The leakage neutron spectra from the ThO2 cylinders are measured by a liquid scintillation detector. The experimental uncertainties in all the results are analyzed. The measured results are compared to the calculated ones with MCNP code and ENDF/B-VII.0 library data.

  17. Spatial Variability of accumulation across the Western Greenland Ice Sheet Percolation Zone from ground-penetrating-radar and shallow firn cores

    NASA Astrophysics Data System (ADS)

    Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.

    2017-12-01

    The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.

  18. Use of models to map potential capture of surface water

    USGS Publications Warehouse

    Leake, Stanley A.

    2006-01-01

    The effects of ground-water withdrawals on surface-water resources and riparian vegetation have become important considerations in water-availability studies. Ground water withdrawn by a well initially comes from storage around the well, but with time can eventually increase inflow to the aquifer and (or) decrease natural outflow from the aquifer. This increased inflow and decreased outflow is referred to as “capture.” For a given time, capture can be expressed as a fraction of withdrawal rate that is accounted for as increased rates of inflow and decreased rates of outflow. The time frames over which capture might occur at different locations commonly are not well understood by resource managers. A ground-water model, however, can be used to map potential capture for areas and times of interest. The maps can help managers visualize the possible timing of capture over large regions. The first step in the procedure to map potential capture is to run a ground-water model in steady-state mode without withdrawals to establish baseline total flow rates at all sources and sinks. The next step is to select a time frame and appropriate withdrawal rate for computing capture. For regional aquifers, time frames of decades to centuries may be appropriate. The model is then run repeatedly in transient mode, each run with one well in a different model cell in an area of interest. Differences in inflow and outflow rates from the baseline conditions for each model run are computed and saved. The differences in individual components are summed and divided by the withdrawal rate to obtain a single capture fraction for each cell. Values are contoured to depict capture fractions for the time of interest. Considerations in carrying out the analysis include use of realistic physical boundaries in the model, understanding the degree of linearity of the model, selection of an appropriate time frame and withdrawal rate, and minimizing error in the global mass balance of the model.

  19. Patient-days: a better measure of incidence of occupational bloodborne exposures.

    PubMed

    Chen, Luke F; Sexton, Daniel J; Kaye, Keith S; Anderson, Deverick J

    2009-09-01

    There is currently no accepted standard denominator to calculate and to report the incidence of occupational exposures to bloodborne pathogens (OEBBPs) in health care. We performed a multicenter study of OEBBP injuries reported from 31 community hospitals in the southeastern United States from January 2003 to December 2006. A qualitative design was used to assess 4 commonly used denominators to calculate the incidence of OEBBP: patient-days; staffed beds; occupied beds and full-time employee equivalents (FTEs). Six criteria were used to assess the quality and suitability of each denominator as a standard method to calculate incidence of OEBBP. We also analyzed the correlation of hospital rankings produced by these 4 denominators. During 4 years of study, a total of 3375 occupational exposures were reported. Patient-days outperformed others as a denominator to calculate rates of OEBBP when judged by 6 predefined criteria. Data for staffed beds, occupied beds, and FTE were manually collected, infrequently reported, and often subject to missing data. Furthermore, FTE and staffed beds data also captured unoccupied beds and non-clinical employee data that were not associated with risk of OEBBP. Patient-days may be the most suitable and readily available denominator for standard reporting and benchmarking of incidence of OEBBP. Patient-days may be used as a standard method for comparing rates of OEBBP.

  20. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of differentmore » classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.« less

  1. Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Fukui, Tokuro

    2017-11-01

    Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.

  2. Neutron Capture Rates and the r-Process Abundance Pattern in Shocked Neutrino-Driven Winds

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Surman, Rebecca

    2009-10-01

    The r-process is an important process in nucleosynthesis in which nuclei will undergo rapid neutron captures. Models of the r-process require nuclear data such as neutron capture rates for thousands of individual nuclei, many of which lie far from stability. Among the potential sites for the r-process, and the one that we investigate, is the shocked neutrino-driven wind in core-collapse supernovae. Here we examine the importance of the neutron capture rates of specific, individual nuclei in the second r-process abundance peak occurring at A ˜ 130 for a range of parameterized neutrino-driven wind trajectories. Of specific interest are the nuclei whose capture rates affect the abundances of nuclei outside of the A ˜ 130 peak. We found that increasing the neutron capture rate for a number of nuclei including ^135In, ^132Sn, ^133Sb, ^137Sb, and ^136Te can produce changes in the resulting abundance pattern of up to 13%.

  3. Modeling association among demographic parameters in analysis of open population capture-recapture data.

    PubMed

    Link, William A; Barker, Richard J

    2005-03-01

    We present a hierarchical extension of the Cormack-Jolly-Seber (CJS) model for open population capture-recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis-Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.

  4. Capture and photonuclear reaction rates involving charged-particles: Impacts of nuclear ingredients and future measurement on ELI-NP

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Balabanski, D. L.; Chesnevskaya, S.; Guardo, G. L.; La Cognata, M.; Lan, H. Y.; Lattuada, D.; Luo, W.; Matei, C.

    2018-05-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the impact of nuclear ingredients, especially the nuclear potential, level density and strength function, to the astrophysical re-action rates of (p,γ), (α,γ), (γ,p), and (γ,α) reactions are systematically studied. The calculations are performed basad on the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12≤Z≤110. In particular, both of the Wood-Saxon potential and the microscopic folding potential are taken into account. It is found that both the capture and photonuclear reaction rates are very sensitive to the nuclear potential, thus the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  5. Analysis of a water moderated critical assembly with anisn-Vitamin C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, L.

    1979-03-01

    A tightly packed water moderated /sup 233/UO/sub 2/--ThO/sub 2/ critical assembly was analyzed with the Vitamin C library and the 1-D S/s n/ code, ANISN (S/sub 8/,P/sub 3/). The purpose of the study was to provide validation of this calculational model as applied to water-cooled hybrid fusion blankets. The quantities compared were the core eigenvalue and various activation shapes. The calculated eigenvalue was 1.02 +- 0.01. The /sup 233/U fission and /sup 232/Th capture shapes were found to be in good agreement (+-5%) with experiment, except near water--metal boundaries where differences up to 24% were observed. No such error peakingmore » was observed in the /sup 232/Th fast fission shape. We conclude that the model provides good volume averaged reaction rates in water-cooled systems. However, care must be exercised near water boundaries where thermally dependent reaction rates are significantly underestimated.« less

  6. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  7. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  8. Concurrent Application of ANC and THM to assess the 13C(α, n)16O Absolute Cross Section at Astrophysical Energies and Possible Consequences for Neutron Production in Low-mass AGB Stars

    NASA Astrophysics Data System (ADS)

    Trippella, O.; La Cognata, M.

    2017-03-01

    The {}13{{C}}{(α ,n)}16{{O}} reaction is considered to be the main neutron source responsible for the production of heavy nuclides (from {Sr} to {Bi}) through slow n-capture nucleosynthesis (s-process) at low temperatures during the asymptotic giant branch phase of low-mass stars (≲ 3{--}4 {M}⊙ , or LMSs). In recent years, several direct and indirect measurements have been carried out to determine the cross section at the energies of astrophysical interest (around 190+/- 40 {keV}). However, they yield inconsistent results that cause a highly uncertain reaction rate and affect the neutron release in LMSs. In this work we have combined two indirect approaches, the asymptotic normalization coefficient and the Trojan horse method, to unambiguously determine the absolute value of the {}13{{C}}{(α ,n)}16{{O}} astrophysical factor. With these, we have determined a very accurate reaction rate to be introduced into astrophysical models of s-process nucleosynthesis in LMSs. Calculations using this recommended rate have shown limited variations in the production of those neutron-rich nuclei (with 86≤slant A≤slant 209) that receive contribution only by slow neutron captures.

  9. Topics in electron capture by fast ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, S.H.

    1987-01-01

    The post-collision interaction (PCI) model was applied, together with the eikonal approximation, to study the (n = 2,3) capture cross sections in p + H(ls) collisions. The results indeed improve the previous eikonal calculations for l = 0 cases, and agree quite well with present experimental data. Calculations using the strong-potential Born (SPB) approximation, with the Sil and McGuire technique, for capture into the np, nd levels are also presented. While these cross sections are smaller than cross sections for capture into the ns levels at high velocities, nevertheless the Thomas peak is clearly evident in both the absolute valuemore » m = 2, absolute value m = 1 and m = 0 magnetic substates in p + H(ls) collisions. Also calculated were corrections to the SPB using the Distorted-Wave Born formalism of Taulbjerg and Briggs. In the sense of a plane-wave Born expansion, all terms of the third Born approximation and all single switching fourth Born terms are included, but a peaking approximation is needed to reduce the calculation to tractable form. Effects of the higher terms are most visible in the valley between the Thomas peak and the forward peak. The Thomas peak is visible in the correction term, even though it includes no second Born contributions.« less

  10. Secondary scattering on the intensity dependence of the capture velocity in a magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Loos, M. R.; Massardo, S. B.; de S. Zanon, R. A.; de Oliveira, A. L.

    2005-08-01

    In this work, we consider a three-dimensional model to simulate the capture velocity behavior in a sample of cold-trapped sodium atoms as a function of the trapping laser intensity. We expand on previous work [V. S. Bagnato, L. G. Marcassa, S. G. Miranda, S. R. Muniz, and A. L. de Oliveira, Phys. Rev. A 62, 013404 (2000)] by calculating the capture velocity over a broad range of light intensities considering the secondary scattering in a magneto-optical trap. Our calculations are in a good agreement with recent measured values [S. R. Muniz , Phys. Rev. A 65, 015402 (2001)].

  11. A low cost PSD-based monocular motion capture system

    NASA Astrophysics Data System (ADS)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  12. Electron capture in collisions of S4+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-06-01

    Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.

  13. Studying Electron-Capture on ^64Zn in Supernovae with the (t,^3He) Charge-Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Hitt, G. W.; Austin, Sam M.; Bazin, D.; Gade, A.; Guess, C. J.; Galaviz-Redondo, D.; Shimbara, Y.; Tur, C.; Zegers, R. G. T.; Horoi, M.; Howard, M. E.; Smith, E. E.

    2008-10-01

    A secondary, 115 MeV/u triton beam has been developed at NSCL for use in (t,^3He) charge-exchange(CE) reaction studies. This (n,p)-type CE reaction is useful for extracting the full Gamow-Teller (GT) response of the nucleus, overcoming Q-value restrictions present in conventional beta-decay studies. The strength (B(GT)) in ^64Cu has been determined from the absolute cross section measurement of ^64Zn(t,^3He) near zero-degrees, exploiting an empirical proportionality between cross section and B(GT). The detailed features of the B(GT) distribution in a nucleus has an important impact on electron-capture (EC) rates in Type Ia and Core-Collapse supernovae. The measured B(GT) in ^64Cu is directly compared with the results of modern shell model interactions which are used to calculate the GT contribution to EC on nuclei in supernova simulations.

  14. Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation.

    PubMed

    Morales-Salvador, Raul; Morales-García, Ángel; Viñes, Francesc; Illas, Francesc

    2018-06-13

    The performance of novel two-dimensional nitrides in carbon capture and storage (CCS) is analyzed for a broad range of pressures and temperatures. Employing an integrated theoretical framework where CO2 adsorption/desorption rates on the M2N (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) surfaces are derived from transition state theory and density functional theory based calculations, the present theoretical simulations consistently predict that, depending on the particular composition, CO2 can be strongly adsorbed and even activated at temperatures above 1000 K. For practical purposes, Ti2N, Zr2N, Hf2N, V2N, Nb2N, and Ta2N are predicted as the best suited materials for CO2 activation. Moreover, the estimated CO2 uptake of 2.32-7.96 mol CO2 kg-1 reinforces the potential of these materials for CO2 abatement.

  15. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-03

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.

  16. REVISED BIG BANG NUCLEOSYNTHESIS WITH LONG-LIVED, NEGATIVELY CHARGED MASSIVE PARTICLES: UPDATED RECOMBINATION RATES, PRIMORDIAL {sup 9}Be NUCLEOSYNTHESIS, AND IMPACT OF NEW {sup 6}Li LIMITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X {sup –}, on big bang nucleosynthesis (BBN). The BBN model with an X {sup –} particle was originally motivated by the discrepancy between the {sup 6,} {sup 7}Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, {sup 7}Be is destroyed via the recombination with an X {sup –} particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of {sup 7}Be, {sup 7}Li, {sup 9}Be, and {sup 4}He with X {sup –}. Inmore » nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X {sup –} mass, m{sub X} ≳ 100 GeV, the d-wave → 2P transition is most important for {sup 7}Li and {sup 7,} {sup 9}Be, unlike recombination with electrons. Our new nonresonant rate of the {sup 7}Be recombination for m{sub X} = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for {sup 9}Be production: the recombination of {sup 7}Li and X {sup –} followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of {sup 7}Be destruction depends significantly on the charge distribution of {sup 7}Be. Finally, updated constraints on the initial abundance and the lifetime of the X {sup –} are derived in the context of revised upper limits to the primordial {sup 6}Li abundance. Parameter regions for the solution to the {sup 7}Li problem and the primordial {sup 9}Be abundances are revised.« less

  17. Lotka-Volterra systems in environments with randomly disordered temporal periodicity

    NASA Astrophysics Data System (ADS)

    Naess, Arvid; Dimentberg, Michael F.; Gaidai, Oleg

    2008-08-01

    A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey’s interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey’s reproduction rate. Two models of the variations are considered, each of them combining randomness with “hidden” periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.

  18. Lotka-Volterra systems in environments with randomly disordered temporal periodicity.

    PubMed

    Naess, Arvid; Dimentberg, Michael F; Gaidai, Oleg

    2008-08-01

    A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey's interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey's reproduction rate. Two models of the variations are considered, each of them combining randomness with "hidden" periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.

  19. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    DOE PAGES

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less

  20. Gadolinium as a Neutron Capture Therapy Agent

    NASA Astrophysics Data System (ADS)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd distribution and its relative concentration in samples has been developed. Concentrations of ^{157}Gd in samples range from 20 ppm to 500 ppm can be determined with this technique. The intrinsic spatial resolution of the imaging system in 70 mum.

  1. Computational designing and screening of solid materials for CO2capture

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    In this presentation, we will update our progress on computational designing and screening of solid materials for CO2 capture. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials have been proposed and validated at NETL. The advantage of this method is that it identifies the thermodynamic properties of the CO2 capture reaction as a function of temperature and pressure without any experimental input beyond crystallographic structural information of the solid phases involved. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to identify only those solid materials for which lower capture energy costs are expected at the desired working conditions. In addition, we present a simulation scheme to increase and decrease the turnover temperature (Tt) of solid capturing CO2 reaction by mixing other solids. Our results also show that some solid sorbents can serve as bi-functional materials: CO2 sorbent and CO oxidation catalyst. Such dual functionality could be used for removing both CO and CO2 after water-gas-shift to obtain pure H2.

  2. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  3. Proton threshold states in the Na22(p,γ)Mg23 reaction and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Comisel, H.; Hategan, C.; Graw, G.; Wolter, H. H.

    2007-04-01

    Proton threshold states in Mg23 are important for the astrophysically relevant proton capture reaction Na22(p,γ)Mg23. In the indirect determination of the resonance strength of the lowest states, which were not accessible by direct methods, some of the spin-parity-assignments remained experimentally uncertain. We have investigated these states with shell model, Coulomb displacement, and Thomas-Ehrman shift calculations. From the comparison of calculated and observed properties, we relate the lowest relevant resonance state at Ex=7643 keV to an excited 3/2+ state in accordance with a recent experimental determination by Jenkins From this we deduce significantly improved values for the Na22(p,γ)Mg23 reaction rate at stellar temperatures below T9=0.1 K.

  4. Thermal Rate Coefficients for the Astrochemical Process C + CH+ → C2+ + H by Ring Polymer Molecular Dynamics.

    PubMed

    Rampino, Sergio; Suleimanov, Yury V

    2016-12-22

    Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.

  5. Density functional calculations of multiphonon capture cross sections at defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2014-03-01

    The theory of electron capture cross sections by multiphonon processes in semiconductors has a long and controversial history. Here we present a comprehensive theory and describe its implementation for realistic calculations. The Born-Oppenheimer and the Frank-Condon approximations are employed. The transition probability of an incoming electron is written as a product of an instantaneous electronic transition in the initial defect configuration and the line shape function (LSF) that describes the multiphonon processes that lead to lattice relaxation. The electronic matrix elements are calculated using the Projector Augmented Wave (PAW) method which yields the true wave functions while still employing a plane-wave basis. The LSF is calculated by employing a Monte Carlo method and the real phonon modes of the defect, calculated using density functional theory in the PAW scheme. Initial results of the capture cross section for a prototype system, namely a triply hydrogenated vacancy in Si are presented. The results are relevant for modeling device degradation by hot electron effects. This work is supported in part by the Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program and by the LDRD program at ORNL.

  6. Collective Poisson process with periodic rates: applications in physics from micro-to nanodevices.

    PubMed

    da Silva, Roberto; Lamb, Luis C; Wirth, Gilson Inacio

    2011-01-28

    Continuous reductions in the dimensions of semiconductor devices have led to an increasing number of noise sources, including random telegraph signals (RTS) due to the capture and emission of electrons by traps at random positions between oxide and semiconductor. The models traditionally used for microscopic devices become of limited validity in nano- and mesoscale systems since, in such systems, distributed quantities such as electron and trap densities, and concepts like electron mobility, become inadequate to model electrical behaviour. In addition, current experimental works have shown that RTS in semiconductor devices based on carbon nanotubes lead to giant current fluctuations. Therefore, the physics of this phenomenon and techniques to decrease the amplitudes of RTS need to be better understood. This problem can be described as a collective Poisson process under different, but time-independent, rates, τ(c) and τ(e), that control the capture and emission of electrons by traps distributed over the oxide. Thus, models that consider calculations performed under time-dependent periodic capture and emission rates should be of interest in order to model more efficient devices. We show a complete theoretical description of a model that is capable of showing a noise reduction of current fluctuations in the time domain, and a reduction of the power spectral density in the frequency domain, in semiconductor devices as predicted by previous experimental work. We do so through numerical integrations and a novel Monte Carlo Markov chain (MCMC) algorithm based on microscopic discrete values. The proposed model also handles the ballistic regime, relevant in nano- and mesoscale devices. Finally, we show that the ballistic regime leads to nonlinearity in the electrical behaviour.

  7. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    PubMed

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park's population of grizzly bears requires continued conservation-oriented management actions.

  8. Giga-year evolution of Jupiter Trojans and the asymmetry problem

    NASA Astrophysics Data System (ADS)

    Di Sisto, Romina P.; Ramos, Ximena S.; Beaugé, Cristián

    2014-11-01

    We present a series of numerical integrations of observed and fictitious Jupiter Trojan asteroids, under the gravitational effects of the four outer planets, for time-spans comparable with the age of the Solar System. From these results we calculate the escape rate from each Lagrange point, and construct dynamical maps of ;permanence; time in different regions of the phase space. Fictitious asteroids in L4 and L5 show no significant difference, showing almost identical dynamical maps and escape rates. For real Trojans, however, we found that approximately 23% of the members of the leading swarm escaped after 4.5 Gyrs, while this number increased to 28.3% for L5 . This implies that the asymmetry between the two populations increases with time, indicating that it may have been smaller at the time of formation/capture of these asteroids. Nevertheless, the difference in chaotic diffusion cannot, in itself, account for the current observed asymmetry (∼40%), and must be primarily primordial and characteristic of the capture mechanism of the Trojans. Finally, we calculate new proper elements for all the numbered Trojans using the semi-analytical approach of Beaugé and Roig (Beaugé, C., Roig, F.V. [2001]. Icarus, 153, 391-415), and compare the results with the numerical estimations by Brož and Rosehnal (Brož, M., Rosehnal, J. [2011]. Mon. Not. R. Astron. Soc. 414, 565-574). For asteroids that were already numbered in 2011, both methods yield very similar results, while significant differences were found for those bodies that became numbered after 2011.

  9. Development of a Configurable Growth Chamber with a Computer Vision System to Study Circadian Rhythm in Plants

    PubMed Central

    Navarro, Pedro J.; Fernández, Carlos; Weiss, Julia; Egea-Cortines, Marcos

    2012-01-01

    Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus) flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode. PMID:23202214

  10. A methodology of the assessment of environmental and human health risks from amine emissions from post combustion CO2 capture technology

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Manzoor, Saba; Simperler, Alexandra

    2015-04-01

    Post combustion CO2 capture (PCCC) technology in power plants using amines as solvent for CO2 capture, is one of the reduction technologies employed to combat escalating levels of CO2 in the atmosphere. However, amine solvents used for capturing CO2 produce negative emissions such as, nitrosamines and nitramines, which are suspected to be potent carcinogens. It is therefore essential to assess the atmospheric fate of these amine emissions in the atmosphere by studying their atmospheric chemistry, dispersion and transport pathways away from the source and deposition in the environment, so as to be able to assess accurately the risk posed to human health and the natural environment. An important knowledge gap until recently has been the consideration of the atmospheric chemistry of these amine emissions simultaneously with dispersion and deposition studies so as to perform reliable human health and environmental risk assessments. The authors have developed a methodology to assess the distribution of such emissions away from a post-combustion facility by studying the atmospheric chemistry of monoethanolamine, the most commonly used solvent for CO2 capture, and those of the resulting degradation amines, methylamine and dimethylamine. This was coupled with dispersion modeling calculations (Manzoor, et al., 2014; Manzoor et al,2015). Rate coefficients describing the entire atmospheric chemistry schemes of the amines studied were evaluated employing quantum chemical theoretical and kinetic modeling calculations. These coefficients were used to solve the advection-dispersion-chemical equation using an atmospheric dispersion model, ADMS 5. This methodology is applicable to any size of a power plant and at any geographical location. In this paper, the humman health risk assessment is integrated in the modelling study. The methodology is demonstrated on a case study on the UK's largest capture pilot plant, Ferrybridge CCPilot 100+, to estimate the dispersion, chemical transformation and transport pathways of the amines and their degradation products away from the emitting facilities for the worst case scenario. The obtained results are used in calculating the cancer risks centred on oral cancer slope factor (CSF), risk-specific dose (RSD) and tolerant risk level of these chemical discharges. According to the CSF and RSD relationship (WQSA, 2011), at high CSF the RSD is small i.e. resulting in a high potent carcinogen risk. The health risk assessment is performed by following the US EPA method (USEPA, 1992) which considers atmospheric concentrations of these pollutants (mg m-3, evaluated by the dispersion model), daily intake through inhalation (mg kg-1 d-1), inhalation rate (m3 d-1), body weight (kg), average time (d), exposure time (d), exposure frequency (d), absorption factor and retention factor. Deterministic and probabilistic risk estimation of human health risks caused by exposure to these chemical pollutant discharges are conducted as well. From the findings of this study, it is suggested that the developed methodology is reliable in determining the risk these amine emissions from PCCC technology pose to human health. With this reliable and a universal approach it is possible to assess the fate of the amine emissions which remains a key area to address for the large scale CCS implementation.

  11. The Prevalence of Multiple Sclerosis in the Metropolitan Area of Rome: A Capture-Recapture Analysis.

    PubMed

    Farcomeni, Alessio; Cortese, Antonio; Sgarlata, Eleonora; Alunni Fegatelli, Danilo; Marfia, Gerolama Alessandra; Buttari, Fabio; Mirabella, Massimiliano; De Fino, Chiara; Prosperini, Luca; Pozzilli, Carlo; Grasso, Maria Grazia; Iasevoli, Luigi; Di Battista, Giancarlo; Millefiorini, Enrico

    2018-03-02

    Limited data are available on the prevalence of multiple sclerosis (MS) in central Italy. The objective of this study is to estimate MS prevalence in the metropolitan area of Rome. We used the capture-recapture method to calculate prevalence estimates in the study area. The selected prevalence day was December 31, 2015. A total of 1,007 patients, with a definite diagnosis of MS according to the revised McDonald's criteria, were considered for crude, age- and sex-specific prevalence estimation. The overall crude prevalence rate was 146.2 cases per 100,000 (95% CI 119.9-172.5). A higher prevalence rate was recorded in females (194.1, 95% CI 149.6-238.6) than in males (93.0, 95% CI 67.2-118.8) with a female to male ratio of 1.8. Age-specific prevalence peaked in the 25-34 , 35-44 and 45-54 years class; moreover, it was found to increase up to the 45-54 years age group in females and the 35-44 years age group in males, decreasing thereafter. The results confirm that the metropolitan area of Rome is a high-risk area for MS. © 2018 S. Karger AG, Basel.

  12. HOPE: An On-Line Piloted Handling Qualities Experiment Data Book

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Proffitt, Melissa S.

    2010-01-01

    A novel on-line database for capturing most of the information obtained during piloted handling qualities experiments (either flight or simulated) is described. The Hyperlinked Overview of Piloted Evaluations (HOPE) web application is based on an open-source object-oriented Web-based front end (Ruby-on-Rails) that can be used with a variety of back-end relational database engines. The hyperlinked, on-line data book approach allows an easily-traversed way of looking at a variety of collected data, including pilot ratings, pilot information, vehicle and configuration characteristics, test maneuvers, and individual flight test cards and repeat runs. It allows for on-line retrieval of pilot comments, both audio and transcribed, as well as time history data retrieval and video playback. Pilot questionnaires are recorded as are pilot biographies. Simple statistics are calculated for each selected group of pilot ratings, allowing multiple ways to aggregate the data set (by pilot, by task, or by vehicle configuration, for example). Any number of per-run or per-task metrics can be captured in the database. The entire run metrics dataset can be downloaded in comma-separated text for further analysis off-line. It is expected that this tool will be made available upon request

  13. The calculation of neutron capture gamma-ray yields for space shielding applications

    NASA Technical Reports Server (NTRS)

    Yost, K. J.

    1972-01-01

    The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.

  14. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    The Poloidal Diverter Experiment (PDX) facility at Princeton University is the first operating tokamak to require substantial radiation shielding. A calculational model has been developed to estimate the radiation dose in the PDX control room and at the site boundary due to the skyshine effect. An efficient one-dimensional method is used to compute the neutron and capture gamma leakage currents at the top surface of the PDX roof shield. This method employs an S /SUB n/ calculation in slab geometry and, for the PDX, is superior to spherical models found in the literature. If certain conditions are met, the slabmore » model provides the exact probability of leakage out the top surface of the roof for fusion source neutrons and for capture gamma rays produced in the PDX floor and roof shield. The model also provides the correct neutron and capture gamma leakage current spectra and angular distributions, averaged over the top roof shield surface. For the PDX, this method is nearly as accurate as multidimensional techniques for computing the roof leakage and is much less costly. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab S /SUB n/ calculation. The capture gamma dose is computed using a simple point-kernel single-scatter method.« less

  15. Video-Based Fingerprint Verification

    PubMed Central

    Qin, Wei; Yin, Yilong; Liu, Lili

    2013-01-01

    Conventional fingerprint verification systems use only static information. In this paper, fingerprint videos, which contain dynamic information, are utilized for verification. Fingerprint videos are acquired by the same capture device that acquires conventional fingerprint images, and the user experience of providing a fingerprint video is the same as that of providing a single impression. After preprocessing and aligning processes, “inside similarity” and “outside similarity” are defined and calculated to take advantage of both dynamic and static information contained in fingerprint videos. Match scores between two matching fingerprint videos are then calculated by combining the two kinds of similarity. Experimental results show that the proposed video-based method leads to a relative reduction of 60 percent in the equal error rate (EER) in comparison to the conventional single impression-based method. We also analyze the time complexity of our method when different combinations of strategies are used. Our method still outperforms the conventional method, even if both methods have the same time complexity. Finally, experimental results demonstrate that the proposed video-based method can lead to better accuracy than the multiple impressions fusion method, and the proposed method has a much lower false acceptance rate (FAR) when the false rejection rate (FRR) is quite low. PMID:24008283

  16. Monte Carlo analysis of TRX lattices with ENDF/B version 3 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J. Jr.

    1975-03-01

    Four TRX water-moderated lattices of slightly enriched uranium rods have been reanalyzed with consistent ENDF/B Version 3 data by means of the full-range Monte Carlo program RECAP. The following measured lattice parameters were studied: ratio of epithermal-to-thermal $sup 238$U capture, ratio of epithermal- to-thermal $sup 235$U fissions, ration of $sup 238$U captures to $sup 235$U fissions, ratio of $sup 238$U fissions to $sup 235$U fissions, and multiplication factor. In addition to the base calculations, some studies were done to find sensitivity of the TRX lattice parameters to selected variations of cross section data. Finally, additional experimental evidence is afforded bymore » effective $sup 238$U capture integrals for isolated rods. Shielded capture integrals were calculated for $sup 238$U metal and oxide rods. These are compared with other measurements. (auth)« less

  17. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    PubMed

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.

  18. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  19. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2005-11-01

    The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.

  20. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    PubMed

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.

  1. Modeling association among demographic parameters in analysis of open population capture-recapture data

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.

    2005-01-01

    We present a hierarchical extension of the Cormack–Jolly–Seber (CJS) model for open population capture–recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis–Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.

  2. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    NASA Astrophysics Data System (ADS)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  3. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2012-11-02

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.« less

  4. Multiple Sensor Camera for Enhanced Video Capturing

    NASA Astrophysics Data System (ADS)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  5. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  6. An assessment of the efficacy and peak catch rates of emergence tents for measuring bee nesting.

    PubMed

    Pane, Alexander M; Harmon-Threatt, Alexandra N

    2017-06-01

    Emergence tents are a new tool used to understand nesting ecology of ground nesting bee species. However, many questions remain about how to use tents effectively. We assessed (a) variance in tent capture rates over time, (b) the effects of site characteristics on proportion of tents capturing bees, and (c) the effect of soil characteristics on nest site choice. Emergence tents were placed out for one week in May, June, and August and checked daily. Soil, bee, and floral characteristics were recorded. Across all sites and months the average number of tents capturing bees was less than 20% during one week of sampling, but this varied between sites. Tent captures decreased after 48 h deployment, but accumulation differed seasonally, with slower accumulation of total bees caught in May than in June or August. Although capture rates were not affected by bee or floral abundance, soil moisture beneath a tent influenced where bees were captured. Effective use of emergence tents may require adjusting the length of deployment depending on season and will require a minimum of 48 h installation to help maximize efficacy. The overall low capture rates demonstrate the need to optimize emergence tent use.

  7. Physiological reactions to capture in hibernating brown bears.

    PubMed

    Evans, Alina L; Singh, Navinder J; Fuchs, Boris; Blanc, Stéphane; Friebe, Andrea; Laske, Timothy G; Frobert, Ole; Swenson, Jon E; Arnemo, Jon M

    2016-01-01

    Human disturbance can affect animal life history and even population dynamics. However, the consequences of these disturbances are difficult to measure. This is especially true for hibernating animals, which are highly vulnerable to disturbance, because hibernation is a process of major physiological changes, involving conservation of energy during a resource-depleted time of year. During the winters of 2011-15, we captured 15 subadult brown bears ( Ursus arctos ) and recorded their body temperatures ( n  = 11) and heart rates ( n = 10) before, during and after capture using biologgers. We estimated the time for body temperature and heart rate to normalize after the capture event. We then evaluated the effect of the captures on the pattern and depth of hibernation and the day of den emergence by comparing the body temperature of captured bears with that of undisturbed subadult bears ( n  = 11). Both body temperature and heart rate increased during capture and returned to hibernation levels after 15-20 days. We showed that bears required 2-3 weeks to return to hibernation levels after winter captures, suggesting high metabolic costs during this period. There were also indications that the winter captures resulted in delayed den emergence.

  8. Pre-slip and Localized Strain Band - A Study Based on Large Sample Experiment and DIC

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Zhuo, Y. Q.; Liu, L.; Ma, J.

    2017-12-01

    Meta-instability stage (MIS) is the stage occurs between a fault reaching the peak differential stress and the onset of the final stress drop. It is the crucial stage during which a fault transits from "stick" to "slip". Therefore, if one can quantitatively analyze the spatial and temporal characteristics of the deformation field of a fault at MIS, it will be of great significance both to fault mechanics and earthquake prediction study. In order to do so, a series of stick-slip experiments were conducted using a biaxial servo-controlled pressure machine. Digital images of the sample surfaces were captured by a high speed camera and processed using a digital image correlation method (DIC). If images of a rock sample are acquired before and after deformation, then DIC can be used to infer the displacement and strain fields. In our study, sample images were captured at the rate of 1000 frame per second and the resolution is 2048 by 2048 in pixel. The displacement filed, strain filed and fault displacement were calculated from the captured images. Our data shows that (1) pre-sliding can be a three-stage process, including a relative long and slow first stage at slipping rate of 7.9nm/s, a relatively short and fast second one at rate of 3µm/s and the last stage only last for 0.2s but the slipping rate reached as high as 220µm/s. (2) Localized strain bands were observed nearly perpendicular to the fault. A possible mechanism is that the pre-sliding is distributed heterogeneously along the fault, which means there are relatively adequately sliding segments and the less sliding ones, they become the constrain condition of deformation of the adjacent subregion. The localized deformation band tends to radiate from the discontinuity point of sliding. While the adequately sliding segments are competing with the less sliding ones, the strain bands are evolving accordingly.

  9. Infrared problem in quantum acoustodynamics

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Sengupta, Sanghita

    2017-05-01

    Quantum electrodynamics (QED) provides a highly accurate description of phenomena involving the interaction of atoms with light. We argue that the quantum theory describing the interaction of cold atoms with a vibrating membrane—quantum acoustodynamics (QAD)—shares many issues and features with QED. Specifically, the adsorption of an atom on a vibrating membrane can be viewed as the counterpart to QED radiative electron capture. A calculation of the adsorption rate to lowest order in the atom-phonon coupling is finite; however, higher-order contributions suffer from an infrared problem mimicking the case of radiative capture in QED. Terms in the perturbation series for the adsorption rate diverge as a result of massless particles in the model (flexural phonons of the membrane in QAD and photons in QED). We treat this infrared problem in QAD explicitly to obtain finite results by regularizing with a low-frequency cutoff that corresponds to the inverse size of the membrane. Using a coherent-state basis for the soft-phonon final state, we then sum the dominant contributions to derive a new formula for the multiphonon adsorption rate of atoms on the membrane that gives results that are finite, nonperturbative in the atom-phonon coupling, and consistent with the Kinoshita-Lee-Nauenberg theorem. For micromembranes, we predict a reduction with increasing membrane size for the low-energy adsorption rate. We discuss the relevance of this to the adsorption of a cold gas of atomic hydrogen on suspended graphene.

  10. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  11. Discriminating the Drivers of Edge Effects on Nest Predation: Forest Edges Reduce Capture Rates of Ship Rats (Rattus rattus), a Globally Invasive Nest Predator, by Altering Vegetation Structure

    PubMed Central

    Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340

  12. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.

    PubMed

    Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  13. Photon emission from quark-gluon plasma out of equilibrium

    NASA Astrophysics Data System (ADS)

    Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles

    2018-01-01

    The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.

  14. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based systemmore » demonstrates significant advantages compared to the MEA system.« less

  16. A pragmatic trial in the Rio de Janeiro subway to capture smokers for a quitline: methodological challenges and opportunities.

    PubMed

    Szklo, André Salem; da Silva Freire Coutinho, Evandro; Reichenheim, Michael Eduardo

    2012-01-01

    According to the World Health Organization, smoking is an important cause of death worldwide. To encourage smoking cessation, persuasive messages can be used to raise smokers' risk perception. This article discusses challenges and solutions in designing a study to evaluate the effect of two different communication strategies ("gains from quitting" vs. "losses from continuing smoking") in encouraging calls to a quitline. The authors conducted an intervention study in two subway stations for 4 weeks, considering only 1 strategy per station. Large posters containing non-age-specific images and texts, on the basis of the theme"shortness of breath," were displayed on central dividing columns on the boarding platforms. Call rates from the selected stations, and respective rate ratios, overall and per study week, were calculated. Passengers who were smokers, exposed to the positive-content message, called on average 1.7 times more often than did those exposed to the negative-content message (p = .01). Moreover, call rate ratios did not decline over the 4 weeks of the study (p = .40). The effectiveness findings suggest that antismoking campaigns could use positive-content messages in order to recruit a larger smoker population. The proposed methodology can also be used to evaluate effectiveness of messages for "capturing" individuals with other health problems (e.g., alcohol abuse), thereby increasing its potential impact.

  17. Beta-decay rates of FP shell nuclei with A greater than 60 in massive stars at the presupernova stage

    NASA Astrophysics Data System (ADS)

    Kar, K.; Ray, A.; Sarkar, S.

    1994-10-01

    Beta decay and electron capture on a number of neutron-rich nuclei with A greater than 60 at the presupernova stage may play an important role in determining the hydrostatic core structure of massive presupernova stars and, through this, affect the subsequent evolution during the gravitational collapse and supernova explosion phases. In particular, some isotopes of cobalt and copper can make a substantial contribution to the overall changes in the lepton fraction and entropy of the stellar core during its very late stage of evolution. In the stellar evolution calculations to date, many of these nuclei could not be appropriately tracked in the reaction network, since reliable rates for these have not been available so far. We describe a model to calculate the beta-decay rates using an average beta strength function and an electron phase-space factor evaluated for typical presupernova matter density (rho = 3 x 107-3 x 109 g/cu cm) and temperature (T = (2-5) x 109 K). For the Gamnow-Teller (GT) strength function we use a sum rule calculated by the spectral distribution theory, and the centroid of the distribution is obtained from experimental data on (p, n) reactions. The width sigma of the GT strength function has two parts (sigma2 = (sigmaN exp 2 + (sigmaC exp 2, with sigmaC = 0.157ZA-1/3). The parameter sigmaN is fixed by a best fit to the observed half-lives for the free decays of a number of A greater than 60 nuclei. In the calculation of rates we include contributions from the excited states of the mother nucleus wherever they are known experimentally. For the excited states one uses the same form of the GT strength function, but shifted in energy using the extended isobaric analog state argument. The method is particularly suited for calculating contributions from the excited states important at high temperatures relevant at the presupernova stellar evolution phase. We also include the contributions to the transition rates from the Gamow-Teller resonance states (e.g., the GTR+ state) in the mother nucleus, which may be thermally populated. The beta-decay rates for nuclei having A greater than 60 reported here can be inputs for presupernova stellar evolution and nucleosynthesis calculations employing detailed nuclear reaction networks relevant in the advanced phases of hydrostatic nuclear burning.

  18. A simulation test of the effectiveness of several methods for error-checking non-invasive genetic data

    USGS Publications Warehouse

    Roon, David A.; Waits, L.P.; Kendall, K.C.

    2005-01-01

    Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.

  19. Electron capture in collisions of N+ with H and H+ with N

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Stancil, P. C.; Gu, J. P.; Buenker, R. J.; Kimura, M.

    2005-06-01

    Charge-transfer processes due to collisions of N+ with atomic hydrogen and H+ with atomic nitrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained with the multireference single- and double-excitation configuration interaction approach. Total and state-selective cross sections for the energy range 0.1meV/u-1keV/u are presented and compared with existing experimental and theoretical data. A large number of low-energy resonances are obtained for exoergic channels and near thresholds of endoergic channels. Rate coefficients are also obtained and comparison to previous calculations suggests nonadiabatic effects dominate for temperatures greater than 20 000 K, but that the spin-orbit interaction plays a major role for lower temperatures.

  20. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  1. Using Economic Evaluation to Illustrate Value of Care for Improving Patient Safety and Quality: Choosing the Right Method.

    PubMed

    Padula, William V; Lee, Ken K H; Pronovost, Peter J

    2017-08-03

    To scale and sustain successful quality improvement (QI) interventions, it is recommended for health system leaders to calculate the economic and financial sustainability of the intervention. Many methods of economic evaluation exist, and the type of method depends on the audience: providers, researchers, and hospital executives. This is a primer to introduce cost-effectiveness analysis, budget impact analysis, and return on investment calculation as 3 distinct methods for each stakeholder needing a measurement of the value of QI at the health system level. Using cases for the QI of hospital-acquired condition rates (e.g., pressure injuries), this primer proceeds stepwise through each method beginning from the same starting point of constructing a model so that the repetition of steps is minimized and thereby capturing the attention of all intended audiences.

  2. Analysis of the passive stabilization of the long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Siegel, S. H.; Vishwanath, N. S.

    1977-01-01

    The nominal Long Duration Exposure Facility (LDEF) configurations and the anticipated orbit parameters are presented. A linear steady state analysis was performed using these parameters. The effects of orbit eccentricity, solar pressure, aerodynamic pressure, magnetic dipole, and the magnetically anchored rate damper were evaluated to determine the configuration sensitivity to variations in these parameters. The worst case conditions for steady state errors were identified, and the performance capability calculated. Garber instability bounds were evaluated for the range of configuration and damping coefficients under consideration. The transient damping capabilities of the damper were examined, and the time constant as a function of damping coefficient and spacecraft moment of inertia determined. The capture capabilities of the damper were calculated, and the results combined with steady state, transient, and Garber instability analyses to select damper design parameters.

  3. A new equation of state Based on Nuclear Statistical Equilibrium for Core-Collapse Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-09-01

    We calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  4. Improving Accuracy of Influenza-Associated Hospitalization Rate Estimates

    PubMed Central

    Reed, Carrie; Kirley, Pam Daily; Aragon, Deborah; Meek, James; Farley, Monica M.; Ryan, Patricia; Collins, Jim; Lynfield, Ruth; Baumbach, Joan; Zansky, Shelley; Bennett, Nancy M.; Fowler, Brian; Thomas, Ann; Lindegren, Mary L.; Atkinson, Annette; Finelli, Lyn; Chaves, Sandra S.

    2015-01-01

    Diagnostic test sensitivity affects rate estimates for laboratory-confirmed influenza–associated hospitalizations. We used data from FluSurv-NET, a national population-based surveillance system for laboratory-confirmed influenza hospitalizations, to capture diagnostic test type by patient age and influenza season. We calculated observed rates by age group and adjusted rates by test sensitivity. Test sensitivity was lowest in adults >65 years of age. For all ages, reverse transcription PCR was the most sensitive test, and use increased from <10% during 2003–2008 to ≈70% during 2009–2013. Observed hospitalization rates per 100,000 persons varied by season: 7.3–50.5 for children <18 years of age, 3.0–30.3 for adults 18–64 years, and 13.6–181.8 for adults >65 years. After 2009, hospitalization rates adjusted by test sensitivity were ≈15% higher for children <18 years, ≈20% higher for adults 18–64 years, and ≈55% for adults >65 years of age. Test sensitivity adjustments improve the accuracy of hospitalization rate estimates. PMID:26292017

  5. Roles of nuclear weak rates on the evolution of degenerate cores in stars

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Tsunodaa, Naofumi; Tsunoda, Yuhsuke; Shimizu, Noritaka; Otsuka, Takaharu

    2018-01-01

    Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass) and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.

  6. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models

    PubMed Central

    Whittington, Jesse; Sawaya, Michael A.

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions. PMID:26230262

  7. IMPACT OF NEW GAMOW–TELLER STRENGTHS ON EXPLOSIVE TYPE IA SUPERNOVA NUCLEOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka

    2016-12-20

    Recent experimental results have confirmed a possible reduction in the Gamow–Teller (GT{sub +}) strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of SNe Ia. While prior GT strengths result in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT{sub +} strength can result in a slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed thatmore » more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of SNe Ia, and the final mass fractions are compared to those obtained using more commonly used rates.« less

  8. The galactic luminous supersoft X-ray source RXJ0925.7-4758 / MR Vel

    NASA Astrophysics Data System (ADS)

    Prodhani, Nandita; Baruah, Monmoyuri

    2018-02-01

    A steady-state model has been considered to explain the observed properties of the LSSS RXJ0925.7-4748 / MR Vel. The steady-state models consist of a C-O core surrounded by a hydrogen-rich envelope of the solar abundances. At the bottom of the envelope, hydrogen is burned at the same rate as the star accreted it. Using the most recent proton capturing reaction rates and β -decay rates, the cyclic reactions have been studied. In the present work, effort has been made to explain the observed characteristics of the source RXJ0925.7-4758 / MR Vel considering the above mentioned model. The calculated values of luminosity (8.56 × 10^{37} erg s^{-1}) and effective temperature (94.19 eV) tally well with the observed one. Photoionisation code CLOUDY has been used to explain the observed absorption edges in the spectrum of RXJ0925.7-4758 / MR Vel.

  9. Impact of New Gamow-Teller Strengths on Explosive Type Ia Supernova Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Suzuki, Toshio; Hidaka, Jun; Honma, Michio; Iwamoto, Koichi; Nomoto, Ken'ichi; Otsuka, Takaharu

    2016-12-01

    Recent experimental results have confirmed a possible reduction in the Gamow-Teller (GT+) strengths of pf-shell nuclei. These proton-rich nuclei are of relevance in the deflagration and explosive burning phases of SNe Ia. While prior GT strengths result in nucleosynthesis predictions with a lower-than-expected electron fraction, a reduction in the GT+ strength can result in a slightly increased electron fraction compared to previous shell model predictions, though the enhancement is not as large as previous enhancements in going from rates computed by Fuller, Fowler, and Newman based on an independent particle model. A shell model parametrization has been developed that more closely matches experimental GT strengths. The resultant electron-capture rates are used in nucleosynthesis calculations for carbon deflagration and explosion phases of SNe Ia, and the final mass fractions are compared to those obtained using more commonly used rates.

  10. Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Asenovski, Simeon; Mateev, Lachezar

    2013-04-01

    Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35-90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

  11. Shell-model method for Gamow-Teller transitions in heavy deformed odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Long-Jun; Sun, Yang; Ghorui, Surja K.

    2018-04-01

    A shell-model method for calculating Gamow-Teller (GT) transition rates in heavy deformed odd-mass nuclei is presented. The method is developed within the framework of the projected shell model. To implement the computation requirement when many multi-quasiparticle configurations are included in the basis, a numerical advancement based on the Pfaffian formula is introduced. With this new many-body technique, it becomes feasible to perform state-by-state calculations for the GT nuclear matrix elements of β -decay and electron-capture processes, including those at high excitation energies in heavy nuclei which are usually deformed. The first results, β- decays of the well-deformed A =153 neutron-rich nuclei, are shown as the example. The known log(f t ) data corresponding to the B (GT- ) decay rates of the ground state of 153Nd to the low-lying states of 153Pm are well described. It is further shown that the B (GT) distributions can have a strong dependence on the detailed microscopic structure of relevant states of both the parent and daughter nuclei.

  12. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Calculate the annual mass of CO2 captured, extracted, imported, or exported through each flow meter in... flow meters are used, you shall calculate the annual mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate...

  13. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    PubMed

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  14. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure

    PubMed Central

    Fillingham, Melanie; Singh, Jessica; Burtt, Stephen; Crolla, Anna; Kinsley, Chris; MacDonald, J. Douglas

    2017-01-01

    Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N) loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM) were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE) GPM was used to (1) characterize the effect of total ammonium nitrogen (TAN) concentration, temperature, and pH on the ammonia capture rate using GPM, and (2) to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 and 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment. PMID:28991162

  15. The impact of intonation and valence on objective and subjective attention capture by auditory alarms.

    PubMed

    Ljungberg, Jessica K; Parmentier, Fabrice

    2012-10-01

    The objective was to study the involuntary capture of attention by spoken words varying in intonation and valence. In studies of verbal alarms, the propensity of alarms to capture attention has been primarily assessed with the use of subjective ratings of their perceived urgency. Past studies suggest that such ratings vary with the alarms' spoken urgency and content. We measured attention capture by spoken words varying in valence (negative vs. neutral) and intonation (urgently vs. nonurgently spoken) through subjective ratings and behavioral measures. The key behavioral measure was the response latency to visual stimuli in the presence of spoken words breaking away from the periodical repetition of a tone. The results showed that all words captured attention relative to a baseline standard tone but that this effect was partly counteracted by a relative speeding of responses for urgently compared with nonurgently spoken words. Word valence did not affect behavioral performance. Rating data showed that both intonation and valence increased significantly perceived urgency and attention grabbing without any interaction. The data suggest a congruency between subjective ratings and behavioral performance with respect to spoken intonation but not valence. This study demonstrates the usefulness and feasibility of objective measures of attention capture to help design efficient alarm systems.

  16. ASSESSMENT OF THE RATES OF INJURY AND MORTALITY IN WATERFOWL CAPTURED WITH FIVE METHODS OF CAPTURE AND TECHNIQUES FOR MINIMIZING RISKS.

    PubMed

    O'Brien, Michelle F; Lee, Rebecca; Cromie, Ruth; Brown, Martin J

    2016-04-01

    Swan pipes, duck decoys, cage traps, cannon netting, and roundups are widely used to capture waterfowl in order to monitor populations. These methods are often regulated in countries with national ringing or banding programs and are considered to be safe, and thus justifiable given the benefits to conservation. However, few published studies have addressed how frequently injuries and mortalities occur, or the nature of any injuries. In the present study, rates of mortality and injury during captures with the use of these methods carried out by the Wildfowl & Wetlands Trust as part of conservation programs were assessed. The total rate of injury (including mild dermal abrasions) was 0.42% across all species groups, whereas total mortality was 0.1% across all capture methods. Incidence of injury varied among species groups (ducks, geese, swans, and rails), with some, for example, dabbling ducks, at greater risk than others. We also describe techniques used before, during, and after a capture to reduce stress and injury in captured waterfowl. Projects using these or other capture methods should monitor and publish their performance to allow sharing of experience and to reduce risks further.

  17. Capture of shrinking targets with realistic shrink patterns.

    PubMed

    Hoffmann, Errol R; Chan, Alan H S; Dizmen, Coskun

    2013-01-01

    Previous research [Hoffmann, E. R. 2011. "Capture of Shrinking Targets." Ergonomics 54 (6): 519-530] reported experiments for capture of shrinking targets where the target decreased in size at a uniform rate. This work extended this research for targets having a shrink-size versus time pattern that of an aircraft receding from an observer. In Experiment 1, the time to capture the target in this case was well correlated in terms of Fitts' index of difficulty, measured at the time of capture of the target, a result that is in agreement with the 'balanced' model of Johnson and Hart [Johnson, W. W., and Hart, S. G. 1987. "Step Tracking Shrinking Targets." Proceedings of the human factors society 31st annual meeting, New York City, October 1987, 248-252]. Experiment 2 measured the probability of target capture for varying initial target sizes and target shrink rates constant, defined as the time for the target to shrink to half its initial size. Data of shrink time constant for 50% probability of capture were related to initial target size but did not greatly affect target capture as the rate of target shrinking decreased rapidly with time.

  18. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    PubMed

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  20. Sequential Change of Wound Calculated by Image Analysis Using a Color Patch Method during a Secondary Intention Healing.

    PubMed

    Yang, Sejung; Park, Junhee; Lee, Hanuel; Kim, Soohyun; Lee, Byung-Uk; Chung, Kee-Yang; Oh, Byungho

    2016-01-01

    Photographs of skin wounds have the most important information during the secondary intention healing (SIH). However, there is no standard method for handling those images and analyzing them efficiently and conveniently. To investigate the sequential changes of SIH depending on the body sites using a color patch method. We performed retrospective reviews of 30 patients (11 facial and 19 non-facial areas) who underwent SIH for the restoration of skin defects and captured sequential photographs with a color patch which is specially designed for automatically calculating defect and scar sizes. Using a novel image analysis method with a color patch, skin defects were calculated more accurately (range of error rate: -3.39% ~ + 3.05%). All patients had smaller scar size than the original defect size after SIH treatment (rates of decrease: 18.8% ~ 86.1%), and facial area showed significantly higher decrease rate compared with the non-facial area such as scalp and extremities (67.05 ± 12.48 vs. 53.29 ± 18.11, P < 0.05). From the result of estimating the date corresponding to the half of the final decrement, all of the facial area showed improvements within two weeks (8.45 ± 3.91), and non-facial area needed 14.33 ± 9.78 days. From the results of sequential changes of skin defects, SIH can be recommended as an alternative treatment method for restoration with more careful dressing for initial two weeks.

  1. Effects of chemical immobilization on survival of African buffalo in the Kruger National Park

    USGS Publications Warehouse

    Oosthuizen, W.C.; Cross, P.C.; Bowers, J.A.; Hay, C.; Ebinger, M.R.; Buss, P.; Hofmeyr, M.; Cameron, E.Z.

    2009-01-01

    Capturing, immobilizing, and fitting radiocollars are common practices in studies of large mammals, but success is based on the assumptions that captured animals are representative of the rest of the population and that the capture procedure has negligible effects. We estimated effects of chemical immobilization on mortality rates of African buffalo (Syncerus caffer) in the Kruger National Park, South Africa. We used a Cox proportional hazards approach to test for differences in mortality among age, sex, and capture classes of repeatedly captured radiocollared buffalo. Capture variables did not improve model fit and the Cox regression did not indicate increased risk of death for captured individuals up to 90 days postcapture [exp (??) = 1.07]. Estimated confidence intervals, however, span from a halving to a doubling of the mortality rate (95% CI = 0.56-2.02). Therefore, capture did not influence survival of captured individuals using data on 875 captures over a 5-year period. Consequently, long-term research projects on African buffalo involving immobilization, such as associated with research on bovine tuberculosis, should result in minimal capture mortality, but monitoring of possible effects should continue.

  2. Reaction μ-+6Li-->3H+3H+νμ and the axial current form factor in the timelike region

    NASA Astrophysics Data System (ADS)

    Mintz, S. L.

    1983-09-01

    The differential muon-capture rate dΓdET is obtained for the reaction μ-+6Li-->3H+3H+νμ over the allowed range of ET, the tritium energy, for two assumptions concerning the behavior of FA, the axial current form factor, in the timelike region; analytic continuation from the spacelike region and mirror behavior, FA(q2, timelike)=FA(q2, spacelike). The values of dΓdET under these two assumptions are found to vary substantially in the timelike region as a function of the mass MA in the dipole fit to FA. Values of dΓdET are given for MA2=2mπ2, 4.95mπ2, and 8mπ2. NUCLEAR REACTIONS Muon capture 6Li(μ-, νμ)3H3H, Γ, dΓdET calculated for two assumptions concerning the axial current form factor behavior in timelike region.

  3. Extrapolation of astrophysical S factors for the reaction {sup 14}N((p, {gamma}) {sup 15}O to near-zero energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemov, S. V.; Igamov, S. B., E-mail: igamov@inp.uz; Tursunmakhatov, Q. I.

    2012-03-15

    The astrophysical S factors for the radiative-capture reaction {sup 14}N(p, {gamma}){sup 15}O in the region of ultralow energies were calculated on the basis of the R-matrix approach. The values of the radiative and protonic widths were fitted to new experimental data. The contribution of direct radiative capture to bound states of the {sup 15}O nucleus was determined with the aid of asymptotic normalization coefficients, whose values were refined in the present study on the basis of the results obtained from an analysis of the reaction {sup 14}N({sup 3}He, d){sup 15}O at three different energies of incident helium ions. A valuemore » of S(0) = 1.79 {+-} 0.31 keV b was obtained for the total astrophysical S factor, and the reaction rate was determined for the process {sup 14}N(p, {gamma}){sup 15}O.« less

  4. A computational approach to real-time image processing for serial time-encoded amplified microscopy

    NASA Astrophysics Data System (ADS)

    Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi

    2016-03-01

    High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.

  5. Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villar, R.; Klix, A.; Fischer, U.; Kodeli, I.; Perel, R. L.; Pohorecky, W.

    2017-09-01

    A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries.

  6. Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions

    NASA Astrophysics Data System (ADS)

    McKinley, Gareth

    2008-03-01

    Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.

  7. Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision

    NASA Astrophysics Data System (ADS)

    Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.

    2018-06-01

    A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.

  8. The rate dependent response of a bistable chain at finite temperature

    NASA Astrophysics Data System (ADS)

    Benichou, Itamar; Zhang, Yaojun; Dudko, Olga K.; Givli, Sefi

    2016-10-01

    We study the rate dependent response of a bistable chain subjected to thermal fluctuations. The study is motivated by the fact that the behavior of this model system is prototypical to a wide range of nonlinear processes in materials physics, biology and chemistry. To account for the stochastic nature of the system response, we formulate a set of governing equations for the evolution of the probability density of meta-stable configurations. Based on this approach, we calculate the behavior for a wide range of parametric values, such as rate, temperature, overall stiffness, and number of elements in the chain. Our results suggest that fundamental characteristics of the response, such as average transition stress and hysteresis, can be captured by a simple law which folds the influence of all these factors into a single non-dimensional quantity. We also show that the applicability of analytical results previously obtained for single-well systems can be extended to systems having multiple wells by proper definition of rate and of the transition stress.

  9. Isomeric ratio measurements for the radiative neutron capture 176Lu(n ,γ ) at the LANL DANCE facility

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-11-01

    The isomeric ratios for the neutron capture reaction 176Lu(n ,γ ) to the Jπ=5 /2- , 761.7 keV, T1 /2=32.8 ns and the Jπ=15 /2+ , 1356.9 keV, T1 /2=11.1 ns levels of 177Lu have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with talys calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental γ -ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations.

  10. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru; Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg

    We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

  12. Effects of capture-related injury on postcapture movement of white-tailed deer.

    PubMed

    Dechen Quinn, Amy C; Williams, David M; Porter, William F; Fitzgerald, Scott D; Hynes, Kevin

    2014-04-01

    Capture-related injuries or deaths of wildlife study subjects pose concerns to researchers, from considerations for animal welfare to inflated project costs and biased data. Capture myopathy (CM) is an injury that can affect an animal's survival ≤ 30 days postrelease, but is often difficult to detect without close monitoring and immediate necropsy. We evaluated the influence of capture and handling on postcapture movement in an attempt to characterize movement rates of animals suffering from CM. We captured and global positioning system-collared 95 white-tailed deer (Odocoileus virginianus) in central and northern New York during 2006-2008. Six juveniles died within 30 days postrelease, and necropsy reports indicated that two suffered CM (2%). We compared postcapture movement rates for juveniles that survived >30 days with those that died ≤ 30 days postcapture. Survivor movement rates (43.74 m/hr, SD = 3.53, n = 28) were significantly higher than rates for deer that died within 30 days (17.70 m/hr, SD = 1.57, n = 6) (P<0.01). Additionally, movement rates of juveniles that died of CM (15.1 m/hr) were 5.1 m/hr lower than those for juveniles that died of other causes ≤ 30 days postcapture (20.2 m/hr), but we were unable to evaluate this statistically because of insufficient sample size. We found no difference in vital rates (temperature, heart rate, respiration rate) during handling between survivors and juveniles that died within 30 days postcapture but observed that survivors were in better body condition at capture. These results suggest that deer likely to die within the 30-day CM window can be identified soon after capture, provided that intensive movement data are collected. Further, even if necropsy reports are unavailable, these animals should be censored from analysis because their behavior is not representative of movements of surviving animals.

  13. Bogolon-mediated electron capture by impurities in hybrid Bose-Fermi systems

    NASA Astrophysics Data System (ADS)

    Boev, M. V.; Kovalev, V. M.; Savenko, I. G.

    2018-04-01

    We investigate the processes of electron capture by a Coulomb impurity center residing in a hybrid system consisting of spatially separated two-dimensional layers of electron and Bose-condensed dipolar exciton gases coupled via the Coulomb forces. We calculate the probability of the electron capture accompanied by the emission of a single Bogoliubov excitation (bogolon), similar to regular phonon-mediated scattering in solids. Furthermore, we study the electron capture mediated by the emission of a pair of bogolons in a single capture event and show that these processes not only should be treated in the same order of the perturbation theory, but also they give a more important contribution than single-bogolon-mediated capture, in contrast with regular phonon scattering.

  14. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.

    PubMed

    Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R

    2001-01-01

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.

  15. Rate-dependent Loss of Capture during Ventricular Pacing.

    PubMed

    Wang, Jingfeng; Chen, Haiyan; Su, Yangang; Ge, Junbo

    2015-01-01

    A 63-year-old patient who had undergone atrial septal defect surgical repair received implantation of a single chamber VVI pacemaker for long RR intervals during atrial fibrillation. One week later, an intermittent loss of capture and sensing failure was detected at a pacing rate of 70 beats/min. However, a successful capture was observed during rapid pacing. Consequently, the pacing rate was temporarily adjusted to 90 beats/min. At the 3-month follow-up, the pacemaker was shown to be functioning properly independent of the pacing rate. An echocardiogram showed that the increased pacing rates were accompanied by a reduction in the right ventricular outflow tract dimension. The pacemaker was then permanently programmed at a lower rate of 60 beats/min.

  16. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  17. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE PAGES

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-04

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  18. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance

    PubMed Central

    Gullström, Martin; Lyimo, Liberatus D.; Dahl, Martin; Hamisi, Mariam I.; Mtolera, Matern S. P.; Björk, Mats

    2017-01-01

    Coastal vegetative habitats are known to be highly productive environments with a high ability to capture and store carbon. During disturbance this important function could be compromised as plant photosynthetic capacity, biomass, and/or growth are reduced. To evaluate effects of disturbance on CO2 capture in plants we performed a five-month manipulative experiment in a tropical seagrass (Thalassia hemprichii) meadow exposed to two intensity levels of shading and simulated grazing. We assessed CO2 capture potential (as net CO2 fixation) using areal productivity calculated from continuous measurements of diel photosynthetic rates, and estimates of plant morphology, biomass and productivity/respiration (P/R) ratios (from the literature). To better understand the plant capacity to coping with level of disturbance we also measured plant growth and resource allocation. We observed substantial reductions in seagrass areal productivity, biomass, and leaf area that together resulted in a negative daily carbon balance in the two shading treatments as well as in the high-intensity simulated grazing treatment. Additionally, based on the concentrations of soluble carbohydrates and starch in the rhizomes, we found that the main reserve sources for plant growth were reduced in all treatments except for the low-intensity simulated grazing treatment. If permanent, these combined adverse effects will reduce the plants’ resilience and capacity to recover after disturbance. This might in turn have long-lasting and devastating effects on important ecosystem functions, including the carbon sequestration capacity of the seagrass system. PMID:28704565

  19. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance.

    PubMed

    Deyanova, Diana; Gullström, Martin; Lyimo, Liberatus D; Dahl, Martin; Hamisi, Mariam I; Mtolera, Matern S P; Björk, Mats

    2017-01-01

    Coastal vegetative habitats are known to be highly productive environments with a high ability to capture and store carbon. During disturbance this important function could be compromised as plant photosynthetic capacity, biomass, and/or growth are reduced. To evaluate effects of disturbance on CO2 capture in plants we performed a five-month manipulative experiment in a tropical seagrass (Thalassia hemprichii) meadow exposed to two intensity levels of shading and simulated grazing. We assessed CO2 capture potential (as net CO2 fixation) using areal productivity calculated from continuous measurements of diel photosynthetic rates, and estimates of plant morphology, biomass and productivity/respiration (P/R) ratios (from the literature). To better understand the plant capacity to coping with level of disturbance we also measured plant growth and resource allocation. We observed substantial reductions in seagrass areal productivity, biomass, and leaf area that together resulted in a negative daily carbon balance in the two shading treatments as well as in the high-intensity simulated grazing treatment. Additionally, based on the concentrations of soluble carbohydrates and starch in the rhizomes, we found that the main reserve sources for plant growth were reduced in all treatments except for the low-intensity simulated grazing treatment. If permanent, these combined adverse effects will reduce the plants' resilience and capacity to recover after disturbance. This might in turn have long-lasting and devastating effects on important ecosystem functions, including the carbon sequestration capacity of the seagrass system.

  20. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    PubMed

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  1. Ab initio phonon point defect scattering and thermal transport in graphene

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos A.; Lindsay, Lucas

    2018-01-01

    We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.

  2. Multiview robotic microscope reveals the in-plane kinematics of amphibian neurulation.

    PubMed

    Veldhuis, Jim H; Brodland, G Wayne; Wiebe, Colin J; Bootsma, Gregory J

    2005-06-01

    A new robotic microscope system, called the Frogatron 3000, was developed to collect time-lapse images from arbitrary viewing angles over the surface of live embryos. Embryos are mounted at the center of a horizontal, fluid-filled, cylindrical glass chamber around which a camera with special optics traverses. To hold them at the center of the chamber and revolve them about a vertical axis, the embryos are placed on the end of a small vertical glass tube that is rotated under computer control. To demonstrate operation of the system, it was used to capture time-lapse images of developing axolotl (amphibian) embryos from 63 viewing angles during the process of neurulation and the in-plane kinematics of the epithelia visible at the center of each view was calculated. The motions of points on the surface of the embryo were determined by digital tracking of their natural surface texture, and a least-squares algorithm was developed to calculate the deformation-rate tensor from the motions of these surface points. Principal strain rates and directions were extracted from this tensor using decomposition and eigenvector techniques. The highest observed principal true strain rate was 28 +/- 5% per hour, along the midline of the neural plate during developmental stage 14, while the greatest contractile true strain rate was--35 +/- 5% per hour, normal to the embryo midline during stage 15.

  3. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A < 17. We calculate the astrophysical factor for the dipole electronic transition E1 and magnetic dipole transition M1 and electric quadrupole transition E2 by using the M3Y potential for non-resonances and resonances captures. Then we have got the parameter of a central part and spin-orbit part of M3Y potential and spectroscopic factor for reaction channels. For the astrophysical S-factor of this article the good agreement is achieved In comparison with experimental data and other theoretical methods.

  4. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes.

    PubMed

    Karacan, C Özgen; Olea, Ricardo A

    2013-04-01

    Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.

  5. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes

    USGS Publications Warehouse

    Karacan, C. Özgen; Olea, Ricardo A.

    2013-01-01

    Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests.

  6. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes

    PubMed Central

    Karacan, C.Özgen; Olea, Ricardo A.

    2015-01-01

    Gob gas ventholes (GGVs) are used to control methane inflows into a longwall mining operation by capturing the gas within the overlying fractured strata before it enters the work environment. Using geostatistical co-simulation techniques, this paper maps the parameters of their rate decline behaviors across the study area, a longwall mine in the Northern Appalachian basin. Geostatistical gas-in-place (GIP) simulations were performed, using data from 64 exploration boreholes, and GIP data were mapped within the fractured zone of the study area. In addition, methane flowrates monitored from 10 GGVs were analyzed using decline curve analyses (DCA) techniques to determine parameters of decline rates. Surface elevation showed the most influence on methane production from GGVs and thus was used to investigate its relation with DCA parameters using correlation techniques on normal-scored data. Geostatistical analysis was pursued using sequential Gaussian co-simulation with surface elevation as the secondary variable and with DCA parameters as the primary variables. The primary DCA variables were effective percentage decline rate, rate at production start, rate at the beginning of forecast period, and production end duration. Co-simulation results were presented to visualize decline parameters at an area-wide scale. Wells located at lower elevations, i.e., at the bottom of valleys, tend to perform better in terms of their rate declines compared to those at higher elevations. These results were used to calculate drainage radii of GGVs using GIP realizations. The calculated drainage radii are close to ones predicted by pressure transient tests. PMID:26190930

  7. Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Landmeyer, J.E.

    1994-01-01

    Ground-water capture zone boundaries for individual pumped wells in a confined aquffer were delineated by using groundwater models. Both analytical and numerical (semi-analytical) models that more accurately represent the $round-water-flow system were used. All models delineated 2-dimensional boundaries (capture zones) that represent the areal extent of groundwater contribution to a pumped well. The resultant capture zones were evaluated on the basis of the ability of each model to realistically rapresent the part of the ground-water-flow system that contributed water to the pumped wells. Analytical models used were based on a fixed radius approach, and induded; an arbitrary radius model, a calculated fixed radius model based on the volumetric-flow equation with a time-of-travel criterion, and a calculated fixed radius model derived from modification of the Theis model with a drawdown criterion. Numerical models used induded the 2-dimensional, finite-difference models RESSQC and MWCAP. The arbitrary radius and Theis analytical models delineated capture zone boundaries that compared least favorably with capture zones delineated using the volumetric-flow analytical model and both numerical models. The numerical models produced more hydrologically reasonable capture zones (that were oriented parallel to the regional flow direction) than the volumetric-flow equation. The RESSQC numerical model computed more hydrologically realistic capture zones than the MWCAP numerical model by accounting for changes in the shape of capture zones caused by multiple-well interference. The capture zone boundaries generated by using both analytical and numerical models indicated that the curnmtly used 100-foot radius of protection around a wellhead in South Carolina is an underestimate of the extent of ground-water capture for pumped wetis in this particular wellfield in the Upper Floridan aquifer. The arbitrary fixed radius of 100 feet was shown to underestimate the upgradient contribution of ground-water flow to a pumped well.

  8. Perspectives on Applying Metabolomics to Understand Carbon Cycling and Process Rates in Deep-Sea Microorganisms

    NASA Astrophysics Data System (ADS)

    Vidoudez, C.; Saghatelian, A.; Girguis, P. R.

    2014-12-01

    The metabolisms of deep-sea microorganisms are still poorly characterized. So far, transcriptomics has been the most comprehensive proxy for the whole metabolisms of these organisms, but this approach is limited because it only represents the physiological poise of the cells, and is not linearly correlated to the rates and activity of the metabolic pathways. Using thermodynamics calculations and isotopic analyses can provide constraints on activity, but there are often discrepancies between available energy and calculated active biomass. A further understanding of metabolism both at the species and community level is necessary and metabolomics provides a means of capturing a "snapshot" of cell's metabolite pools, or of following labelled substrates as they move through metabolic pathways. We present our method development and initial results from our studies of the model organism Photobacterium profundum, and the benefits and challenges in meaningfully applying these methods to natural communities. These methods open the way to better understanding deep-sea metabolism on a more comprehensive level, including reserves compounds, alternate and secondary metabolism and potentially new metabolic pathways, and moreover the response of metabolism to changes in experimental conditions and carbon source can be readily followed. These will allow a better understanding of the carbon cycling pathways and their rate in natural communities.

  9. Quantitative analysis of a frequency-domain nonlinearity indicator.

    PubMed

    Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G

    2016-05-01

    In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.

  10. Uncertainties in s -process nucleosynthesis in low mass stars determined from Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Hirschi, R.; Nishimura, N.; den Hartogh, J. W.; Rauscher, T.; Murphy, A. St J.; Cristallo, S.

    2018-05-01

    The main s-process taking place in low mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensive nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties link to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that β-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50%). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are 56Fe(n,γ), 64Ni(n,γ), and 138Ba(n,γ). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.

  11. Hydrogen burning of oxygen-17

    NASA Astrophysics Data System (ADS)

    Newton, Joseph

    Classical novae are explosive binary systems involving the accretion of hydrogen rich material from a main sequence star onto the surface of a white dwarf partner, reaching peak temperatures of T = 0.1-0.4 GK. Observed elemental abundances from the ejecta provide much needed constraints for the modeling of these explosions. Novae are thought to be the most significant source of 15 N and 17 O in the universe. The 17 O(p,g) 18 F and 17 O(p,g) 14 N reactions have an important effect on nucleosynthesis in novae, since they determine the creation and destruction of 17 O and 18 F, which produces detectable g- radiation. The dominant contributor to the 17 O(p,g) 14 N reaction is a resonance at [Special characters omitted.] = 193 keV. The strength of this resonance has been measured and the results are presented. For the 17 O(p,g) 18 F reaction, the dominant contribution comes from the nonresonant direct capture process. The literature direct capture cross sections currently differ by a factor of two. This cross section has been measured in the current work and the results are also presented. New reaction rates have been calculated with these measured cross sections using a new Monte Carlo technique and these new rates have significantly reduced uncertainties compared to the current literature.

  12. A 2.5D Reactive Transport Model for Fracture Alteration Simulation

    DOE PAGES

    Deng, Hang; Molins, Sergi; Steefel, Carl; ...

    2016-06-30

    Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here in this paper, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the modelmore » is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO 2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. Finally, with an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.« less

  13. Comparative capture rate responses of mosquito vectors to light trap and human landing collection methods

    USDA-ARS?s Scientific Manuscript database

    Landing rates (LR) of female Anopheles quadrimaculatus, Culex nigripalpus, Cx. quinquefasciatus, Ochlerotatus triseriatus and Aedes albopictus on human hosts were compared with capture rates responses by the same species to CDC-type light traps (LT) augmented with CO2. A significant relationship be...

  14. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  15. Proton threshold states in the {sup 22}Na(p,{gamma}){sup 23}Mg reaction and astrophysical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisel, H.; Hategan, C.; Graw, G.

    Proton threshold states in {sup 23}Mg are important for the astrophysically relevant proton capture reaction {sup 22}Na(p,{gamma}){sup 23}Mg. In the indirect determination of the resonance strength of the lowest states, which were not accessible by direct methods, some of the spin-parity-assignments remained experimentally uncertain. We have investigated these states with shell model, Coulomb displacement, and Thomas-Ehrman shift calculations. From the comparison of calculated and observed properties, we relate the lowest relevant resonance state at E{sub x}=7643 keV to an excited 3/2{sup +} state in accordance with a recent experimental determination by Jenkins et al. From this we deduce significantly improvedmore » values for the {sup 22}Na(p,{gamma}){sup 23}Mg reaction rate at stellar temperatures below T{sub 9}=0.1 K.« less

  16. Hydraulic containment: analytical and semi-analytical models for capture zone curve delineation

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Goltz, Mark N.

    2002-05-01

    We present an efficient semi-analytical algorithm that uses complex potential theory and superposition to delineate the capture zone curves of extraction wells. This algorithm is more flexible than previously published techniques and allows the user to determine the capture zone for a number of arbitrarily positioned extraction wells pumping at different rates. The algorithm is applied to determine the capture zones and optimal well spacing of two wells pumping at different flow rates and positioned at various orientations to the direction of regional groundwater flow. The algorithm is also applied to determine capture zones for non-colinear three-well configurations as well as to determine optimal well spacing for up to six wells pumping at the same rate. We show that the optimal well spacing is found by minimizing the difference in the stream function evaluated at the stagnation points.

  17. Removal of malaria-infected red blood cells using magnetic cell separators: A computational study

    PubMed Central

    Kim, Jeongho; Massoudi, Mehrdad; Antaki, James F.; Gandini, Alberto

    2012-01-01

    High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1st –5th order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs. PMID:22345827

  18. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.

    PubMed

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-02-22

    Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.

  19. Digital radiography reject analysis: data collection methodology, results, and recommendations from an in-depth investigation at two hospitals.

    PubMed

    Foos, David H; Sehnert, W James; Reiner, Bruce; Siegel, Eliot L; Segal, Arthur; Waldman, David L

    2009-03-01

    Reject analysis was performed on 288,000 computed radiography (CR) image records collected from a university hospital (UH) and a large community hospital (CH). Each record contains image information, such as body part and view position, exposure level, technologist identifier, and--if the image was rejected--the reason for rejection. Extensive database filtering was required to ensure the integrity of the reject-rate calculations. The reject rate for CR across all departments and across all exam types was 4.4% at UH and 4.9% at CH. The most frequently occurring exam types with reject rates of 8% or greater were found to be common to both institutions (skull/facial bones, shoulder, hip, spines, in-department chest, pelvis). Positioning errors and anatomy cutoff were the most frequently occurring reasons for rejection, accounting for 45% of rejects at CH and 56% at UH. Improper exposure was the next most frequently occurring reject reason (14% of rejects at CH and 13% at UH), followed by patient motion (11% of rejects at CH and 7% at UH). Chest exams were the most frequently performed exam at both institutions (26% at UH and 45% at CH) with half captured in-department and half captured using portable x-ray equipment. A ninefold greater reject rate was found for in-department (9%) versus portable chest exams (1%). Problems identified with the integrity of the data used for reject analysis can be mitigated in the future by objectifying quality assurance (QA) procedures and by standardizing the nomenclature and definitions for QA deficiencies.

  20. Analysis of benchmark critical experiments with ENDF/B-VI data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J. Jr.; Kahler, A.C.

    1991-12-31

    Several clean critical experiments were analyzed with ENDF/B-VI data to assess the adequacy of the data for U{sup 235}, U{sup 238} and oxygen. These experiments were (1) a set of homogeneous U{sup 235}-H{sub 2}O assemblies spanning a wide range of hydrogen/uranium ratio, and (2) TRX-1, a simple, H{sub 2}O-moderated Bettis lattice of slightly-enriched uranium metal rods. The analyses used the Monte Carlo program RCP01, with explicit three-dimensional geometry and detailed representation of cross sections. For the homogeneous criticals, calculated k{sub crit} values for large, thermal assemblies show good agreement with experiment. This supports the evaluated thermal criticality parameters for U{supmore » 235}. However, for assemblies with smaller H/U ratios, k{sub crit} values increase significantly with increasing leakage and flux-spectrum hardness. These trends suggest that leakage is underpredicted and that the resonance eta of the ENDF/B-VI U{sup 235} is too large. For TRX-1, reasonably good agreement is found with measured lattice parameters (reaction-rate ratios). Of primary interest is rho28, the ratio of above-thermal to thermal U{sup 238} capture. Calculated rho28 is 2.3 ({+-} 1.7) % above measurement, suggesting that U{sup 238} resonance capture remains slightly overpredicted with ENDF/B-VI. However, agreement is better than observed with earlier versions of ENDF/B.« less

  1. Strong-potential Born calculations for electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Sil, N.C.

    1983-12-01

    A closed-form expression for 1s-1s electron capture has been developed in the strong-potential Born (SPB) approximation. Terms of the order (Z/sub p//v)/sup 2/ are ignored in our expression, where Z/sub p/ is the charge of the projectile and v is the collision velocity. Our errors of order (Z/sub p//v)/sup 2/ are within the accuracy of the SPB approximation itself, which is valid to first order in the projectile-electron interaction V/sub p/ (and all orders in the stronger target potential V/sub T/). Calculations using our expression are in better agreement with experimental observations of the shape of the Thomas peak thanmore » are other calculations.« less

  2. Incidence and Prevalence of Rheumatoid Arthritis in a Health Management Organization in Argentina: A 15-year Study.

    PubMed

    Di, Wai Tan; Vergara, Facundo; Bertiller, Emmanuel; Gallardo, Maria de Los Angeles; Gandino, Ignacio; Scolnik, Marina; Martinez, Maximiliano J; Schpilberg, Mónica G; Rosa, Javier; Soriano, Enrique R

    2016-07-01

    To estimate incidence and prevalence rates of rheumatoid arthritis (RA) in the city of Buenos Aires (CABA), Argentina, using data from a university hospital-based health management organization. Global, age-specific, and sex-specific incidence and prevalence rates were calculated for members of the Hospital Italiano Medical Care Program (HIMCP), age ≥ 18 years. Incidence study followed members with continuous affiliation ≥ 1 year from January 2000 to January 2015 until he/she voluntarily left the HIMCP, RA was diagnosed, death, or study finalization. Cases from the Rheumatology Section database, electronic medical records, laboratory database, and pharmacy database were filtered with the 2010 American College of Rheumatology/European League Against Rheumatism criteria. Prevalence was calculated on January 1, 2015, and standardized for CABA. Capture-recapture (C-RC) analysis estimated true population sizes. In the study period, incidence rates (cases per 100,000 person-yrs) were 18.5 (95% CI 16.7-20.4) overall, 25.2 (95% CI 22.4-28.0) for women, and 8.8 (95% CI 6.8-10.8) for men. Prevalence rates (percentage of RA cases in the sample population) were 0.329 (95% CI 0.298-0.359) overall, 0.464 (95% CI 0.417-0.510) for women, and 0.123 (95% CI 0.093-0.152) for men. Standardized CABA prevalence rate was 0.300 (95% CI 0.292-0.307). C-RC adjusted rates were almost the same as unadjusted rates. This study's incidence and prevalence rates are in the lower range of the rates found around the world. Our female to male prevalence ratio was 4:1. Our peak incidence age was in the sixth and seventh decades for both sexes.

  3. Demography and population dynamics of the mouse opossum (Thylamys elegans) in semi-arid Chile: seasonality, feedback structure and climate.

    PubMed Central

    Lima, M.; Stenseth, N. C.; Yoccoz, N. G.; Jaksic, F. M.

    2001-01-01

    Here we present, to the authors' knowledge for the very first time for a small marsupial, a thorough analysis of the demography and population dynamics of the mouse opossum (Thylamys elegans) in western South America. We test the relative importance of feedback structure and climatic factors (rainfall and the Southern Oscillation Index) in explaining the temporal variation in the demography of the mouse opossum. The demographic information was incorporated into a stage-structured population dynamics model and the model's predictions were compared with observed patterns. The mouse opossum's capture rates showed seasonal (within-year) and between-year variability, with individuals having higher capture rates during late summer and autumn and lower capture rates during winter and spring. There was also a strong between-year effect on capture probabilities. The reproductive (the fraction of reproductively active individuals) and recruitment rates showed a clear seasonal and a between-year pattern of variation with the peak of reproductive activity occuring during winter and early spring. In addition, the fraction of reproductive individuals was positively related to annual rainfall, while population density and annual rainfall positively influenced the recruitment rate. The survival rates were negatively related to annual rainfall. The average finite population growth rate during the study period was estimated to be 1.011 +/- 0.0019 from capture-recapture estimates. While the annual growth rate estimated from the seasonal linear matrix models was 1.026, the subadult and adult survival and maturation rates represent between 54% (winter) and 81% (summer) of the impact on the annual growth rate. PMID:11571053

  4. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2016-12-01

    Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  5. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2016-01-01

    Aims Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Methods and results Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. Conclusion In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. PMID:28011835

  6. Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, H., E-mail: H-Sadeghi@Araku.ac.ir; Firoozabadi, M. M.

    2016-01-15

    On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiativemore » capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.« less

  7. Mexican sign language recognition using normalized moments and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Solís-V., J.-Francisco; Toxqui-Quitl, Carina; Martínez-Martínez, David; H.-G., Margarita

    2014-09-01

    This work presents a framework designed for the Mexican Sign Language (MSL) recognition. A data set was recorded with 24 static signs from the MSL using 5 different versions, this MSL dataset was captured using a digital camera in incoherent light conditions. Digital Image Processing was used to segment hand gestures, a uniform background was selected to avoid using gloved hands or some special markers. Feature extraction was performed by calculating normalized geometric moments of gray scaled signs, then an Artificial Neural Network performs the recognition using a 10-fold cross validation tested in weka, the best result achieved 95.83% of recognition rate.

  8. Mercury's helium exosphere after Mariner 10's third encounter

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Hartle, R. E.

    1977-01-01

    From Mariner 10 third encounter UV data, a value of .00045 was calculated as the fraction of the solar wind He++ flux intercepted and captured by Mercury's magnetosphere if the observed He atmosphere is maintained by the solar wind. If an internal source for He prevails, the corresponding upper bound for the global outgassing rate is estimated to be 4.5 x 10 to the 22nd power per sec. A surface temperature distribution was used which satisfies the heat equation over Mercury's entire surface using Mariner 10 determined mean surface thermal characteristics. The means stand off distance of Mercury's magnetopause averaged over Mercury's orbit was also used.

  9. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.

    PubMed

    Xue, Peng; Wu, Yafeng; Guo, Jinhong; Kang, Yuejun

    2015-04-01

    Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80% on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4% on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.

  10. Short-duration respirometry underestimates metabolic rate for discontinuous breathers.

    PubMed

    Winwood-Smith, Hugh S; White, Craig R

    2018-06-07

    Metabolic rate is commonly estimated from rates of gas exchange. An underappreciated factor that can influence estimates is patterns of pulmonary respiration. Amphibians display discontinuous respiratory patterns, often including long apnoeas, in addition to cutaneous gas exchange. The contribution of cutaneous exchange increases at low temperatures when metabolic rate is low. Due to the relatively low permeability of skin, measurements that disproportionately capture cutaneous exchange can produce underestimates of metabolic rate. The permeability of amphibian skin to CO 2 is greater than O 2 , therefore calculating the ratio of whole-animal CO 2 emission to O 2 uptake (the respiratory exchange ratio, RER) can be used to avoid underestimates of metabolic rate by ensuring that observed values of RER fall within the normal physiological range (∼0.7 to 1). Using data for cane toads Rhinella marina we show that short-duration measurements lead to underestimates of metabolic rate and overestimates of RER. At low temperatures this problem is exacerbated, requiring over 12 hours for RER to fall within the normal physiological range. Many published values of metabolic rate in animals that utilise cutaneous exchange may be underestimates. © 2018. Published by The Company of Biologists Ltd.

  11. Defining trade-offs among conservation, profitability, and food security in the California current bottom-trawl fishery.

    PubMed

    Hilborn, Ray; Stewart, Ian J; Branch, Trevor A; Jensen, Olaf P

    2012-04-01

    Although it is recognized that marine wild-capture fisheries are an important source of food for much of the world, the cost of sustainable capture fisheries to species diversity is uncertain, and it is often questioned whether industrial fisheries can be managed sustainably. We evaluated the trade-off among sustainable food production, profitability, and conservation objectives in the groundfish bottom-trawl fishery off the U.S. West Coast, where depletion (i.e., reduction in abundance) of six rockfish species (Sebastes) is of particular concern. Trade-offs are inherent in this multispecies fishery because there is limited capacity to target species individually. From population models and catch of 34 stocks of bottom fish, we calculated the relation between harvest rate, long-term yield (i.e., total weight of fish caught), profit, and depletion of each species. In our models, annual ecosystem-wide yield from all 34 stocks was maximized with an overall 5.4% harvest rate, but profit was maximized at a 2.8% harvest rate. When we reduced harvest rates to the level (2.2% harvest rate) at which no stocks collapsed (<10% of unfished levels), biomass harvested was 76% of the maximum sustainable yield and profit 89% of maximum. A harvest rate under which no stocks fell below the biomass that produced maximum sustainable yield (1% harvest rate), resulted in 45% of potential yield and 67% of potential profit. Major reductions in catch in the late 1990s led to increase in the biomass of the most depleted stocks, but this rebuilding resulted in the loss of >30% of total sustainable yield, whereas yield lost from stock depletion was 3% of total sustainable yield. There are clear conservation benefits to lower harvest rates, but avoiding overfishing of all stocks in a multispecies fishery carries a substantial cost in terms of lost yield and profit. ©2011 Society for Conservation Biology.

  12. Rotation histories of the natural satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1977-01-01

    Recent advances in the theory of rotation are combined with traditional approaches to study the rotational evolution of the 33 known natural satellites. A calculation similar to that reported by Burns and Safronov (1973) is applied to each satellite to obtain the characteristic time of decay of any wobble motion to smooth rotation about the principal axis of maximum moment of inertia. Stability criteria and capture probabilities are calculated for the 3/2 spin resonance. Results show that only the regular satellites and Iapetus, Hyperion, Triton, and the moon are tidally evolved. Of these, 13 have confirmed synchronous rotation periods; capture probabilities into the 3/2 resonance indicate that none of the remaining 10 should be captured in nonsynchronous, commensurate spin states. For the most part, the irregular satellites retain their original spins except for a relaxation to principal axis rotation. Tidal evolution of the obliquities of the satellites is evaluated in the framework of the generalization of Cassini's laws for the moon. Nearly resonant, forced librations in longitude of 4.8 and 0.5 deg are calculated on the basis of the observed shapes of Phobos and Deimos, respectively.

  13. Radiative-emission analysis in charge-exchange collisions of O6 + with argon, water, and methane

    NASA Astrophysics Data System (ADS)

    Leung, Anthony C. K.; Kirchner, Tom

    2017-04-01

    Processes of electron capture followed by Auger and radiative decay were investigated in slow ion-atom and -molecule collisions. A quantum-mechanical analysis which utilizes the basis generator method within an independent electron model was carried out for collisions of O 6 + with Ar, H2O , and CH4 at impact energies of 1.17 and 2.33 keV/amu. At these impact energies, a closure approximation in the spectral representation of the Hamiltonian for molecules was found to be necessary to yield reliable results. Total single-, double-, and triple-electron-capture cross sections obtained show good agreement with previous measurements and calculations using the classical trajectory Monte Carlo method. The corresponding emission spectra from single capture for each collision system are in satisfactory agreement with previous calculations.

  14. Capture cross sections on unstable nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  15. Electron-phonon relaxation and excited electron distribution in gallium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, V. P.; Donostia International Physics Center; Tyuterev, V. G., E-mail: valtyut00@mail.ru

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates ofmore » inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.« less

  16. Using Generic Data to Establish Dormancy Failure Rates

    NASA Technical Reports Server (NTRS)

    Reistle, Bruce

    2014-01-01

    Many hardware items are dormant prior to being operated. The dormant period might be especially long, for example during missions to the moon or Mars. In missions with long dormant periods the risk incurred during dormancy can exceed the active risk contribution. Probabilistic Risk Assessments (PRAs) need to account for the dormant risk contribution as well as the active contribution. A typical method for calculating a dormant failure rate is to multiply the active failure rate by a constant, the dormancy factor. For example, some practitioners use a heuristic and divide the active failure rate by 30 to obtain an estimate of the dormant failure rate. To obtain a more empirical estimate of the dormancy factor, this paper uses the recently updated database NPRD-2011 [1] to arrive at a set of distributions for the dormancy factor. The resulting dormancy factor distributions are significantly different depending on whether the item is electrical, mechanical, or electro-mechanical. Additionally, this paper will show that using a heuristic constant fails to capture the uncertainty of the possible dormancy factors.

  17. SPATIO-TEMPORAL MODELING OF AGRICULTURAL YIELD DATA WITH AN APPLICATION TO PRICING CROP INSURANCE CONTRACTS

    PubMed Central

    Ozaki, Vitor A.; Ghosh, Sujit K.; Goodwin, Barry K.; Shirota, Ricardo

    2009-01-01

    This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Paraná (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited. PMID:19890450

  18. Hypersonic blunt body computations including real gas effects

    NASA Technical Reports Server (NTRS)

    Montagne, J.-L.; Yee, H. C.; Klopfer, G. H.; Vinokur, M.

    1989-01-01

    Various second-order explicit and implicit TVD shock-capturing methods, a generalization of Roe's approximate Riemann solver, and a generalized flux-vector splitting scheme are used to study two-dimensional hypersonic real-gas flows. Special attention is given to the identification of some of the elements and parameters which can affect the convergence rate for high Mach numbers or real gases, but have negligible effect for low Mach numbers, for cases involving steady-state inviscid blunt flows. Blunt body calculations at Mach numbers of greater than 15 are performed to treat real-gas effects, and impinging shock results are obtained to test the treatment of slip surfaces and complex structures. Even with the addition of improvements, the convergence rate of algorithms in the hypersonic flow regime is found to be generally slower for a real gas than for a perfect gas.

  19. Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.

    PubMed

    Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M

    2007-01-01

    In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.

  20. Computational screening of functional groups for capture of toxic industrial chemicals in porous materials.

    PubMed

    Kim, Ki Chul; Fairen-Jimenez, David; Snurr, Randall Q

    2017-12-06

    A thermodynamic analysis using quantum chemical methods was carried out to identify optimal functional group candidates that can be included in metal-organic frameworks and activated carbons for the selective capture of toxic industrial chemicals (TICs) in humid air. We calculated the binding energies of 14 critical TICs plus water with a series of 10 functional groups attached to a naphthalene ring model. Using vibrational calculations, the free energies of adsorption were calculated in addition to the binding energies. Our results show that, in these systems, the binding energies and free energies follow similar trends. We identified copper(i) carboxylate as the optimal functional group (among those studied) for the selective binding of the majority of the TICs in humid air, and this functional group exhibits especially strong binding for sulfuric acid. Further thermodynamic analysis shows that the presence of water weakens the binding strength of sulfuric acid with the copper carboxylate group. Our calculations predict that functionalization of aromatic rings would be detrimental to selective capture of COCl 2 , CO 2 , and Cl 2 under humid conditions. Finally, we found that forming an ionic complex, H 3 O + HSO 4 - , between H 2 SO 4 and H 2 O via proton transfer is not favorable on copper carboxylate.

  1. Temporal patterns in capture rate and sex ratio of forest bats in Arkansas

    Treesearch

    Roger W. Perry; S. Andrew Carter; Ronald E. Thill

    2010-01-01

    We quantified changes in capture rates and sex ratios from May to Sept. for eight species of bats, derived from 8 y of extensive mist netting in forests of the Ouachita Mountains, Arkansas. Our primary goal was to determine patterns of relative abundance for each species of bat captured over forest streams and to determine if these patterns were similar to patterns of...

  2. Impact of the uncertainty in α-captures on {sup 22}Ne on the weak s-process in massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, N.; Hirschi, R.; Pignatari, M.

    2014-05-02

    Massive stars at solar metallicity contribute to the production of heavy elements with atomic masses between A = 60 and A = 90 via the so-called weak s-process (which takes place during core He and shell C burning phases). Furthermore, recent studies have shown that rotation boosts the s-process production in massive stars at low metallicities, with a production that may reach the barium neutron-magic peak. These results are very sensitive to neutron source and neutron poison reaction rates. For the weak s-process, the main neutron source is the reaction {sup 22}Ne(α,n){sup 25}Mg, which is in competition with {sup 22}Ne(α,γ){supmore » 26}Mg. The uncertainty of both rates strongly affects the nucleosynthesis predictions from stellar model calculations. In this study, we investigate the impact of the uncertainty in α-captures on {sup 22}Ne on the s-process nucleosynthesis in massive stars both at solar and at very low metallicity. For this purpose, we post-process, with the Nugrid mppnp code, non-rotating and rotating evolutionary models 25M{sub ⊙} stars at two different metallicities: Z = Z{sub ⊙} and Z = 10{sup −5}Z{sub ⊙}, respectively. Our results show that uncertainty of {sup 22}Ne(α,n){sup 25}Mg and {sup 22}Ne(α,γ){sup 26}Mg rates have a significant impact on the final elemental production especially for metal poor rotating models. Beside uncertainties in the neutron source reactions, for fast rotating massive stars at low metallicity we revisit the impact of the neutron poisoning effect by the reaction chain {sup 16}O(n,γ){sup 17}O(α,γ){sup 21}Ne, in competition with the {sup 17}O(α,n){sup 20}Ne, recycling the neutrons captured by {sup 16}O.« less

  3. Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona

    USGS Publications Warehouse

    Leake, Stanley A.; Pool, Donald R.; Leenhouts, James M.

    2008-01-01

    In the context of ground-water resources, “capture” or “streamflow depletion” refers to withdrawal-induced changes in inflow to or outflow from an aquifer. These concepts are helpful in understanding the effects of long-term development of ground-water resources. For the Upper San Pedro Basin in Arizona, USA and Sonora, Mexico, a recently developed ground-water flow model is available to help quantify capture of water from the river and riparian system. A common method of analysis is to compute curves of capture and aquifer-storage change for a range of time at select points of interest. This study, however, presents results of a method to show spatial distributions of total change in inflow and outflow from withdrawal or injection for select times of interest. The mapped areal distributions show the effect of a single well in terms of the ratio of the change in boundary flow rate to rate of withdrawal or injection by the well. To the extent that the system responds linearly to ground-water withdrawal or injection, fractional responses in the mapped distributions can be used to quantify response for any withdrawal or injection rate. Capture distributions calculated using the Upper San Pedro model include response to (1) withdrawal in the lower basin-fill aquifer for times of 10 and 50 years following the initiation of pumping from predevelopment conditions and (2) artificial recharge to the water table in the area underlain by the lower basin-fill aquifer after 10 and 50 years. The mapped distributions show that response to withdrawals and injections is greatest near the river/riparian system. Presence of clay layers in the vertical interval between withdrawal locations and the river/riparian system, however, can delay the response.

  4. Accretion rates of protoplanets

    NASA Astrophysics Data System (ADS)

    Greenzweig, Yuval

    The giant planets' solid cores must have formed prior to the dispersal of the primordial solar nebula, to allow the capture of their massive, gaseous envelopes from the nebula. Recent observations of disks of dust surrounding nearby solar-like stars lead to estimates of nebula lifetimes at 106 to 107 years. Thus, theories of solid particle accretion must explain how the solid cores of the giant planets may have formed within comparable timescales. Calculations are presented which support the sole currently hypothesized mechanism of planetary accretion in which the duration of the stage of growth from planetesimals (1 to 10 km size bodies) to moon- or planet-size bodies lies within the widely accepted time constraint mentioned above. It has been shown that under certain conditions a growth advantage is given to the larger bodies of a swarm of Sun-orbiting planetesimals, resulting in runaway growth of the largest body (or bodies) in the swarm. The gravitational cross section of the protoplanet (the largest body in the swarm) increases with its size, eventually requiring the inclusion of the effect of the solar tidal force on the interaction between it and a passing planetesimal. Thus, numerical integrations of the three-body problem (Sun, protoplanet and planetesimal) are needed to determine the accretion rates of protoplanets. Existing analytical formulas are refined for the two-body (no solar tidal force) accretion rates of planetesimals or small protoplanets, and numerically derives the three-body accretion rates of large protoplanets. The three-body accretion rates calculated span a wide range of protoplanetary orbital radii, masses, and densities, and a wide range of planetesimal orbital eccentricities and inclinations. The most useful numerical results are approximated by algebraic expressions, to facilitate their use in accretion calculations, particularly by numerical codes. Since planetary accretion rates depend strongly on planetesimal random velocities, the effect of the three body encounter on the velocity dispersion was also studied. It was found that protoplanets are more effective perturbers of planetesimal eccentricities than previously noted.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, John Leonard; Couture, Aaron Joseph; Koehler, Paul E.

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since themore » detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γ γ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.« less

  6. Characterising stormwater gross pollutants captured in catch basin inserts.

    PubMed

    Alam, Md Zahanggir; Anwar, A H M Faisal; Sarker, Dipok Chandra; Heitz, Anna; Rothleitner, Craig

    2017-05-15

    The accumulation of wash-off solid waste, termed gross pollutants (GPs), in drainage systems has become a major constraint for best management practices (BMPs) of stormwater. GPs should be captured at source before the material clogs the drainage network, seals the infiltration capacity of side entry pits or affects the aquatic life in receiving waters. BMPs intended to reduce stormwater pollutants include oil and grit separators, grassed swales, vegetated filter strips, retention ponds, and catch basin inserts (CBIs) are used to remove GP at the source and have no extra land use requirement because they are typically mounted within a catch basin (e.g. side entry pits; grate or gully pits). In this study, a new type of CBI, recently developed by Urban Stormwater Technologies (UST) was studied for its performance at a site in Gosnells, Western Australia. This new type of CBI can capture pollutants down to particle sizes of 150μm while retaining its shape and pollutant capturing capacity for at least 1year. Data on GP and associated water samples were collected during monthly servicing of CBIs for one year. The main component of GPs was found to be vegetation (93%): its accumulation showed a strong relationship (r 2 =0.9) with rainfall especially during the wet season. The average accumulation of total GP load for each CBI was 384kg/ha/yr (dry mass) with the GP moisture content ranging from 24 to 52.5%. Analysis of grain sizes of GPs captured in each CBI showed similar distributions in the different CBIs. The loading rate coefficient (K) calculated from runoff and GP load showed higher K-values for CBI located near trees. The UST developed CBI in this study showed higher potential to capture GPs down to 150μm in diameter than similar CBI devices described in previous studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of sea otter capture after the Exxon Valdez oil spill, Prince William Sound, Alaska

    USGS Publications Warehouse

    Bodkin, James L.; Weltz, F.; Bayha, Keith; Kormendy, Jennifer

    1990-01-01

    After the T/V Exxon Valdez oil spill into Prince William Sound, the U.S. Fish and Wildlife Service and Exxon Company, U.S.A., began rescuing sea otters (Enhydra lutris). The primary objective of this operation was to capture live, oiled sea otters for cleaning and rehabilitation. Between 30 March and 29 May 1989, 139 live sea otters were captured in the sound and transported to rehabilitation centers in Valdez, Alaska. Within the first 15 days of capture operations, 122 (88%) otters were captured. Most sea otters were captured near Knight, Green, and Evans islands in the western sound. The primary capture method consisted of dipnetting otters out of water and off beaches. While capture rates declined over time, survival of captured otters increased as the interval from spill date to capture date increased. The relative degree of oiling observed for each otter captured declined over time. Declining capture rates led to the use of tangle nets. The evidence suggests the greatest threat to sea otters in Prince William Sound occurred within the first 3 weeks after the spill. Thus, in the future, the authors believe rescue efforts should begin as soon as possible after an oil spill in sea otter habitat. Further, preemptive capture and relocation of sea otters in Prince William Sound may have increased the number of otters that could have survived this event.

  8. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2017-09-01

    The isomeric ratios for the neutron capture reaction 176Lu(n,γ) to the Jπ = 5/2-, 761.7 keV, T1/2 = 32.8 ns and the Jπ = 15/2+, 1356.9 keV, T1/2 = 11.1 ns levels of 177Lu, have been measured for the first time with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. These measured isomeric ratios are compared with TALYS calculations.

  9. Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach

    NASA Astrophysics Data System (ADS)

    Vasuki, Yathunanthan; Holden, Eun-Jung; Kovesi, Peter; Micklethwaite, Steven

    2014-08-01

    Recent advances in data acquisition technologies, such as Unmanned Aerial Vehicles (UAVs), have led to a growing interest in capturing high-resolution rock surface images. However, due to the large volumes of data that can be captured in a short flight, efficient analysis of this data brings new challenges, especially the time it takes to digitise maps and extract orientation data. We outline a semi-automated method that allows efficient mapping of geological faults using photogrammetric data of rock surfaces, which was generated from aerial photographs collected by a UAV. Our method harnesses advanced automated image analysis techniques and human data interaction to rapidly map structures and then calculate their dip and dip directions. Geological structures (faults, joints and fractures) are first detected from the primary photographic dataset and the equivalent three dimensional (3D) structures are then identified within a 3D surface model generated by structure from motion (SfM). From this information the location, dip and dip direction of the geological structures are calculated. A structure map generated by our semi-automated method obtained a recall rate of 79.8% when compared against a fault map produced using expert manual digitising and interpretation methods. The semi-automated structure map was produced in 10 min whereas the manual method took approximately 7 h. In addition, the dip and dip direction calculation, using our automated method, shows a mean±standard error of 1.9°±2.2° and 4.4°±2.6° respectively with field measurements. This shows the potential of using our semi-automated method for accurate and efficient mapping of geological structures, particularly from remote, inaccessible or hazardous sites.

  10. Behavioral and reproductive effects of bird-borne data logger attachment on Brown Pelicans (Pelecanus occidentalis) on three temporal scales

    USGS Publications Warehouse

    Lamb, Juliet S.; Satgé, Yvan G.; Fiorello, Christine V.; Jodice, Patrick G. R.

    2017-01-01

    Although the use of bird-borne data loggers has become widespread in avian field research, the effects of capture and transmitter attachment on behavior and demographic rates are not often measured. Tag- and capture-induced effects on individual behavior, survival and reproduction may limit extrapolation of transmitter data to wider populations. However, measuring individual responses to capture and tagging is a necessary step in developing research techniques that minimize negative effects. We measured the short-term behavioral effects of handling and GPS transmitter attachment on Brown Pelicans under both captive and field conditions, and followed tagged individuals through a full breeding season to assess whether capture and transmitter attachment increased rates of nest abandonment or breeding failure. We observed slight increases in preening among tagged individuals 0–2 h after capture relative to controls that had not been captured or tagged, with a corresponding reduction in time spent resting. One to three days post-capture, nesting behavior of tagged pelicans resembled that of neighbors that had not been captured or tagged. Eighty-eight percent of tagged breeders remained at the same nest location for more than 48 h after capture, attending nests and chicks for an average of 49 days, and 51% were assumed to successfully fledge young. Breeding success was driven primarily by variation in location; however, sex and handling time also influenced the probability of successful breeding in tagged pelicans, suggesting that individual characteristics and the capture process itself can confound the effects of capture and transmitter attachment. We conclude that pelicans fitted with GPS transmitters exhibit comparable behaviors to untagged individuals within a day of capture and that GPS tracking is a viable technique for studying behavior and demography in this species. We also identify measures to minimize post-capture nest abandonment rates in tracking studies, including minimizing handling time and covering nests during processing.

  11. Assessment of the 3He pressure inside the CABRI transient rods - Development of a surrogate model based on measurements and complementary CFD calculations

    NASA Astrophysics Data System (ADS)

    Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno

    2018-01-01

    CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.

  12. iNICU - Integrated Neonatal Care Unit: Capturing Neonatal Journey in an Intelligent Data Way.

    PubMed

    Singh, Harpreet; Yadav, Gautam; Mallaiah, Raghuram; Joshi, Preetha; Joshi, Vinay; Kaur, Ravneet; Bansal, Suneyna; Brahmachari, Samir K

    2017-08-01

    Neonatal period represents first 28 days of life, which is the most vulnerable time for a child's survival especially for the preterm babies. High neonatal mortality is a prominent and persistent problem across the globe. Non-availability of trained staff and infrastructure are the major recognized hurdles in the quality care of these neonates. Hourly progress growth charts and reports are still maintained manually by nurses along with continuous calculation of drug dosage and nutrition as per the changing weight of the baby. iNICU (integrated Neonatology Intensive Care Unit) leverages Beaglebone and Intel Edison based IoT integration with biomedical devices in NICU i.e. monitor, ventilator and blood gas machine. iNICU is hosted on IBM Softlayer based cloud computing infrastructure and map NICU workflow in Java based responsive web application to provide translational research informatics support to the clinicians. iNICU captures real time vital parameters i.e. respiration rate, heart rate, lab data and PACS amounting for millions of data points per day per child. Stream of data is sent to Apache Kafka layer which stores the same in Apache Cassandra NoSQL. iNICU also captures clinical data like feed intake, urine output, and daily assessment of child in PostgreSQL database. It acts as first Big Data hub (of both structured and unstructured data) of neonates across India offering temporal (longitudinal) data of their stay in NICU and allow clinicians in evaluating efficacy of their interventions. iNICU leverages drools based clinical rule based engine and deep learning based big data analytical model coded in R and PMML. iNICU solution aims to improve care time, fills skill gap, enable remote monitoring of neonates in rural regions, assists in identifying the early onset of disease, and reduction in neonatal mortality.

  13. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system

    NASA Astrophysics Data System (ADS)

    Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina

    2016-05-01

    Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.

  14. The East London glaucoma prediction score: web-based validation of glaucoma risk screening tool

    PubMed Central

    Stephen, Cook; Benjamin, Longo-Mbenza

    2013-01-01

    AIM It is difficult for Optometrists and General Practitioners to know which patients are at risk. The East London glaucoma prediction score (ELGPS) is a web based risk calculator that has been developed to determine Glaucoma risk at the time of screening. Multiple risk factors that are available in a low tech environment are assessed to provide a risk assessment. This is extremely useful in settings where access to specialist care is difficult. Use of the calculator is educational. It is a free web based service. Data capture is user specific. METHOD The scoring system is a web based questionnaire that captures and subsequently calculates the relative risk for the presence of Glaucoma at the time of screening. Three categories of patient are described: Unlikely to have Glaucoma; Glaucoma Suspect and Glaucoma. A case review methodology of patients with known diagnosis is employed to validate the calculator risk assessment. RESULTS Data from the patient records of 400 patients with an established diagnosis has been captured and used to validate the screening tool. The website reports that the calculated diagnosis correlates with the actual diagnosis 82% of the time. Biostatistics analysis showed: Sensitivity = 88%; Positive predictive value = 97%; Specificity = 75%. CONCLUSION Analysis of the first 400 patients validates the web based screening tool as being a good method of screening for the at risk population. The validation is ongoing. The web based format will allow a more widespread recruitment for different geographic, population and personnel variables. PMID:23550097

  15. A Novel Method to Compute Breathing Volumes via Motion Capture Systems: Design and Experimental Trials.

    PubMed

    Massaroni, Carlo; Cassetta, Eugenio; Silvestri, Sergio

    2017-10-01

    Respiratory assessment can be carried out by using motion capture systems. A geometrical model is mandatory in order to compute the breathing volume as a function of time from the markers' trajectories. This study describes a novel model to compute volume changes and calculate respiratory parameters by using a motion capture system. The novel method, ie, prism-based method, computes the volume enclosed within the chest by defining 82 prisms from the 89 markers attached to the subject chest. Volumes computed with this method are compared to spirometry volumes and to volumes computed by a conventional method based on the tetrahedron's decomposition of the chest wall and integrated in a commercial motion capture system. Eight healthy volunteers were enrolled and 30 seconds of quiet breathing data collected from each of them. Results show a better agreement between volumes computed by the prism-based method and the spirometry (discrepancy of 2.23%, R 2  = .94) compared to the agreement between volumes computed by the conventional method and the spirometry (discrepancy of 3.56%, R 2  = .92). The proposed method also showed better performances in the calculation of respiratory parameters. Our findings open up prospects for the further use of the new method in the breathing assessment via motion capture systems.

  16. Human health risk assessment of nitrosamines and nitramines for potential application in CO2 capture.

    PubMed

    Ravnum, S; Rundén-Pran, E; Fjellsbø, L M; Dusinska, M

    2014-07-01

    Emission and accumulation of carbon dioxide (CO2) in the atmosphere exert an environmental and climate change challenge. An attempt to deal with this challenge is made at Mongstad by application of amines for CO2 capture and storage (CO2 capture Mongstad (CCM) project). As part of the CO2 capture process, nitrosamines and nitramines may be emitted. Toxicological testing of nitrosamines and nitramines indicate a genotoxic potential of these substances. Here we present a risk characterization and assessment for five nitrosamines (N-Nitrosodi-methylamine (NDMA) N-Nitrosodi-ethylamine (NDEA), N-Nitroso-morpholine (NNM), N-Nitroso-piperidine (NPIP), and Dinitroso-piperazine (DNP)) and two nitramines (N-Methyl-nitramine (NTMA), Dimethyl-nitramine (NDTMA)), which are potentially emitted from the CO2 capture plant (CCP). Human health risk assessment of genotoxic non-threshold substances is a heavily debated topic, and no consensus methodology exists internationally. Extrapolation modeling from high-dose animal exposures to low-dose human exposures can be crucial for the final risk calculation. In the work presented here, different extrapolation models are discussed, and suggestions on applications are given. Then, preferred methods for calculating derived minimal effect level (DMEL) are presented with the selected nitrosamines and nitramines. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  18. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  19. A New Eddy Dissipation Rate Formulation for the Terminal Area PBL Prediction System(TAPPS)

    NASA Technical Reports Server (NTRS)

    Charney, Joseph J.; Kaplan, Michael L.; Lin, Yuh-Lang; Pfeiffer, Karl D.

    2000-01-01

    The TAPPS employs the MASS model to produce mesoscale atmospheric simulations in support of the Wake Vortex project at Dallas Fort-Worth International Airport (DFW). A post-processing scheme uses the simulated three-dimensional atmospheric characteristics in the planetary boundary layer (PBL) to calculate the turbulence quantities most important to the dissipation of vortices: turbulent kinetic energy and eddy dissipation rate. TAPPS will ultimately be employed to enhance terminal area productivity by providing weather forecasts for the Aircraft Vortex Spacing System (AVOSS). The post-processing scheme utilizes experimental data and similarity theory to determine the turbulence quantities from the simulated horizontal wind field and stability characteristics of the atmosphere. Characteristic PBL quantities important to these calculations are determined based on formulations from the Blackadar PBL parameterization, which is regularly employed in the MASS model to account for PBL processes in mesoscale simulations. The TAPPS forecasts are verified against high-resolution observations of the horizontal winds at DFW. Statistical assessments of the error in the wind forecasts suggest that TAPPS captures the essential features of the horizontal winds with considerable skill. Additionally, the turbulence quantities produced by the post-processor are shown to compare favorably with corresponding tower observations.

  20. Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Jha, V.; Kailas, S.

    2017-11-01

    We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.

  1. Capture cross sections on unstable nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.

    2017-09-13

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photonmore » beams. Here, challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.« less

  2. A surface-associated activity trap for capturing water surface and aquatic invertebrates in wetlands

    USGS Publications Warehouse

    Hanson, Mark A.; Roy, Christiane C.; Euliss, Ned H.; Zimmer, Kyle D.; Riggs, Michael R.; Butler, Malcolm G.

    2000-01-01

    We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

  3. A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands

    USGS Publications Warehouse

    Hanson, M.A.; Roy, C.C.; Euliss, N.H.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.

    2000-01-01

    We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

  4. Baited lines: An active nondestructive collection method for burrowing crayfish

    USGS Publications Warehouse

    Loughman, Zachary J.; Foltz, David A.; Welsh, Stuart A.

    2013-01-01

    A new method (baited lines) is described for the collection of burrowing crayfishes, where fishing hooks baited with earthworms and tied to monofilament leaders are used to lure crayfishes from their burrow entrances. We estimated capture rates using baited lines at four locations across West Virginia for a total of four crayfish taxa; the taxa studied were orange, blue, and blue/orange morphs of Cambarus dubius (Upland Burrowing Catfish), and C. thomai (Little Brown Mudbug). Baited-line capture rates were lowest for C. thomai (81%; n = 21 attempts) and highest for the orange morph ofC. dubius (99%; n = 13 attempts). The pooled capture rate across all taxa was 91.5% (n = 50 attempts). Baited lines represent an environmentally nondestructive method to capture burrowing crayfishes without harm to individuals, and without disturbing burrows or the surrounding area. This novel method allows for repeat captures and long-term studies, providing a useful sampling method for ecological studies of burrowing crayfishes.

  5. Functional response and capture timing in an individual-based model: predation by northern squawfish (Ptychocheilus oregonensis) on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, James H.; DeAngelis, Donald L.

    1992-01-01

    The behavior of individual northern squawfish (Ptychocheilus oregonensis) preying on juvenile salmonids was modeled to address questions about capture rate and the timing of prey captures (random versus contagious). Prey density, predator weight, prey weight, temperature, and diel feeding pattern were first incorporated into predation equations analogous to Holling Type 2 and Type 3 functional response models. Type 2 and Type 3 equations fit field data from the Columbia River equally well, and both models predicted predation rates on five of seven independent dates. Selecting a functional response type may be complicated by variable predation rates, analytical methods, and assumptions of the model equations. Using the Type 2 functional response, random versus contagious timing of prey capture was tested using two related models. ln the simpler model, salmon captures were assumed to be controlled by a Poisson renewal process; in the second model, several salmon captures were assumed to occur during brief "feeding bouts", modeled with a compound Poisson process. Salmon captures by individual northern squawfish were clustered through time, rather than random, based on comparison of model simulations and field data. The contagious-feeding result suggests that salmonids may be encountered as patches or schools in the river.

  6. Electron capture from circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Lundsgaard, M. F. V.; Chen, Z.; Lin, C. D.; Toshima, N.

    1995-02-01

    Electron capture cross sections from circular Rydberg states as a function of the angle cphi between the ion velocity and the angular momentum of the circular orbital have been reported recently by Hansen et al. [Phys. Rev. Lett. 71, 1522 (1993)]. We show that the observed cphi dependence can be explained in terms of the propensity rule that governs the dependence of electron capture cross sections on the magnetic quantum numbers of the initial excited states. We also carried out close-coupling calculations to show that electron capture from the circular H(3d,4f,5g) states by protons at the same scaled velocity has nearly the same cphi dependence.

  7. Capture-ready power plants - options, technologies and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, M.C.

    2006-06-15

    A plant can be considered to be capture-ready if at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The first part of the thesis outlines the two major designs that are being considered for construction in the near-term - pulverized coal (PC) and integrated gasification/combined cycle (IGCC). It details the steps that are necessary to retrofit each of these plants for CO{sub 2} capture and sequestration and assesses the steps that can be taken to reduce the costs and output de-rating of the plant after a retrofit. The second part of the thesis evaluates the lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO{sub 2} capture. Three scenarios are evaluated - a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. The results of this thesis show that a baseline PC plant is the most economical choice under low CO{sub 2} tax rates, and IGCC plants are preferable at higher tax rates. The third part of this thesis evaluates the concept of CO{sub 2} 'lock-in'. CO{sub 2} lock-in occurs when a newly built plant is so prohibitively expensive to retrofit for CO{sub 2} capture that it will never be retrofitted for capture, and offers no economic opportunity to reduce the CO{sub 2} emissions from the plant, besides shutting down or rebuilding. The results show that IGCC plants are expected to have lower lifetime CO{sub 2} emissions than a PC plant, given moderate (10-35more » $$/ton CO{sub 2}) initial tax rates. Higher 4 (above $$40) or lower (below $7) initial tax rates do not result in significant differences in lifetime CO{sub 2} emissions from these plants. Little difference is seen in the lifetime CO{sub 2} emissions between the IGCC plants with and without pre-investment for CO{sub 2} capture. 32 refs., 22 figs., 20 tabs., 1 app.« less

  8. Unemployment and inflation dynamics prior to the economic downturn of 2007-2008.

    PubMed

    Guastello, Stephen J; Myers, Adam

    2009-10-01

    This article revisits a long-standing theoretical issue as to whether a "natural rate" of unemployment exists in the sense of an exogenously driven fixed-point Walrasian equilibrium or attractor, or whether more complex dynamics such as hysteresis or chaos characterize an endogenous dynamical process instead. The same questions are posed regarding a possible natural rate of inflation along with an investigation of the actual relationship between inflation and unemployment for which extent theories differ. Time series of unemployment and inflation for US data - were analyzed using the exponential model series and nonlinear regression for capturing Lyapunov exponents and transfer effects from other variables. The best explanation for unemployment was that it is a chaotic variable that is driven in part by inflation. The best explanation for inflation is that it is also a chaotic variable driven in part by unemployment and the prices of treasury bills. Estimates of attractors' epicenters were calculated in lieu of classical natural rates.

  9. Smartphone-based photoplethysmographic imaging for heart rate monitoring.

    PubMed

    Alafeef, Maha

    2017-07-01

    The purpose of this study is to make use of visible light reflected mode photoplethysmographic (PPG) imaging for heart rate (HR) monitoring via smartphones. The system uses the built-in camera feature in mobile phones to capture video from the subject's index fingertip. The video is processed, and then the PPG signal resulting from the video stream processing is used to calculate the subject's heart rate. Records from 19 subjects were used to evaluate the system's performance. The HR values obtained by the proposed method were compared with the actual HR. The obtained results show an accuracy of 99.7% and a maximum absolute error of 0.4 beats/min where most of the absolute errors lay in the range of 0.04-0.3 beats/min. Given the encouraging results, this type of HR measurement can be adopted with great benefit, especially in the conditions of personal use or home-based care. The proposed method represents an efficient portable solution for HR accurate detection and recording.

  10. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...

  11. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...

  12. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...

  13. The Intrinsic Temperature Sensitivity of Ecosystem Respiration as Explained by Thermodynamics

    NASA Astrophysics Data System (ADS)

    Woods, K. D.; Arcus, V. L.; Schipper, L. A.; Schwalm, C.

    2016-12-01

    Biological processes exhibit thermal optima; a range within which processes such as photosynthesis and respiration reach a maximum rate. The response of these processes to temperature is well observed in the field and lab experiments, but is poorly captured or explained by widely used Arrhenius equations and Q10 constants. Both Arrhenius and Q10-based explanations of respiration misleadingly project an exponential increase in rate with temperature and rely on concepts such as enzyme denaturation to explain decreases at higher temperatures. This explanation is problematic in that it ignores observed declines which are far below experimental observations of enzyme denaturation. Here, we present a novel theory which explains the intrinsic temperature dependence of plant, soil, and ecosystem respiration based on the thermodynamics of enzyme-catalysed reactions. MacroMolecular Rate Theory (MMRT) allows for the calculation of thermal optima for respiration and photosynthesis (an important input substrate for respiration), as well as for the calculation of the curvature of response which defines temperatures where changes in rates are maximal. To test this theory, we used the recently released FLUXNET2015 dataset which is comprised of 165 sites and 23 years of data. We accounted for the effect of water through partial correlation analysis and extracted the temperature signal of respiration and photosynthesis to fit MacroMolecular Rate Theory. Across ecosystems and biomes, photosynthesis and respiration rates maximized at 7-18oC and 15-27oC respectively. At 16-25oC, and 26-36oC rates photosynthesis and respiration declined. These points, and this method for explaining changes in these processes are important for understanding and predicting net ecosystem carbon gain or loss. They demonstrate temperatures where the sign and magnitude of carbon exchange undergoes important shifts, holding important implications for future carbon cycling.

  14. Temperature dependence of carrier capture by defects in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structuremore » that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.« less

  15. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polanco, Carlos A.; Lindsay, Lucas R.

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  16. A simulation study of homogeneous ice nucleation in supercooled salty water

    NASA Astrophysics Data System (ADS)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  17. Ab initio phonon point defect scattering and thermal transport in graphene

    DOE PAGES

    Polanco, Carlos A.; Lindsay, Lucas R.

    2018-01-04

    Here, we study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitudemore » smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (~ω 0) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. In conclusion, this work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.« less

  18. A simulation study of homogeneous ice nucleation in supercooled salty water.

    PubMed

    Soria, Guiomar D; Espinosa, Jorge R; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-14

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  19. Initial results from a video-laser rangefinder device

    Treesearch

    Neil A. Clark

    2000-01-01

    Three hundred and nine width measurements at various heights to 10 m on a metal light pole were calculated from video images captured with a prototype video-laser rangefinder instrument. Data were captured at distances from 6 to 15 m. The endpoints for the width measurements were manually selected to the nearest pixel from individual video frames.Chi-square...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO 2, and halogen species were introduced through the burner to produce a radical pool representativemore » of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO 2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO 2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO 2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO 2, and NO 2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations under-predicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO 2, and halogen species were introduced through the burner to produce a radical pool representativemore » of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO 2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO 2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO 2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO 2, and NO 2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.« less

  2. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows

    USGS Publications Warehouse

    Hales, T.C.; Scharer, K.M.; Wooten, R.M.

    2012-01-01

    Understanding the dynamics of sediment generation and transport on hillslopes provides important constraints on the rate of sediment output from orogenic systems. Hillslope sediment fluxes are recorded by organic material found in the deposits infilling unchanneled convergent topographic features called hollows. This study describes the first hollow infilling rates measured in the southern Appalachian Mountains. Infilling rates (and bedrock erosion rates) were calculated from the vertical distribution of radiocarbon ages at two sites in the Coweeta drainage basin, western North Carolina. At each site we dated paired charcoal and silt soil organic matter samples from five different horizons. Paired radiocarbon samples were used to bracket the age of the soil material in order to capture the range of complex soil forming processes and deposition within the hollows. These dates constrain hillslope erosion rates of between 0.051 and 0.111mmyr-1. These rates are up to 4 times higher than spatially-averaged rates for the Southern Appalachian Mountains making creep processes one of the most efficient erosional mechanisms in this mountain range. Our hillslope erosion rates are consistent with those of forested mountain ranges in the western United States, suggesting that the mechanisms (dominantly tree throw) driving creep erosion in both the western United States and the Southern Appalachian Mountains are equally effective. ?? 2011 Elsevier B.V.

  3. Local survival of Dunlin wintering in California

    USGS Publications Warehouse

    Warnock, N.; Page, G.W.; Sandercock, B.K.

    1997-01-01

    We estimated local annual survival of 1,051 individually color-banded Dunlin (Calidris alpina) at Bolinas Lagoon, California from 1979 to 1992. Resighting rates for birds banded as adults varied significantly among years, and resighting rates for first-year birds varied by sex and year. No significant differences in local survival rates were found between males and females in any age classes. First-year birds had lower local survival rates than adults. We suspect that raptor predation accounted for much of this difference and other variation in survival rates. Adult Dunlin had lower local survival rates in the year of capture than in subsequent years. Variation in resighting of some groups of individuals including transient Dunlin may account for some differences. However, capture and release of Dunlin may induce short-term behavioral changes that increase the risk of depredation by avian predators within the first few days after capture.

  4. Northern Saw-whet Owls (Aegolius acadicus) captured at Cape May Point, NJ, 1980-1994: comparison of two capture techniques

    Treesearch

    Katharine E. Duffy; Patrick E. Matheny

    1997-01-01

    During autumn migration 1980-1994, 1,270 Northern Saw-whet Owls (Aegolius acadicus) (NSWO) were captured and banded at Cape May Point, NJ. From 1980-1988, captures were effected by passive mist-netting. From 1989-1994, an audiolure (NSWO territorial song broadcast loudly from dusk to dawn in the trapping area) was used to enhance capture rate. 638...

  5. Adult tree swallow (Tachycineta bicolor) survival on the polychlorinated biphenyl-contaminated Housatonic River, Massachusetts, USA

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.; Hines, J.E.; Nichols, J.D.; Dummer, P.M.

    2007-01-01

    Tree swallows (Tachycineta bicolor) were captured and banded at six sites that differed in polychlorinated biphenyl (PCB) contamination levels in the Housatonic River watershed, western Massachusetts, USA, from 2000 through 2004 to test the prediction that apparent survival rates of females in more contaminated areas were lower than those from less contaminated areas. We also tested whether plumage coloration affected over-winter survival and whether concentrations of PCBs in eggs differed between birds that did and that did not return the following year. Apparent survival rates were calculated using mark?recapture methods and compared using Akaike's Information Criterion. Model-adjusted survival rates ranged from 0.365 to 0.467 for PCB-contaminated females and between 0.404 and 0.476 for reference females. Models with either survival or capture probability modeled as functions of treatment (degree of PCB contamination), year, and age received some support. The model-averaged parameter estimate reflecting a treatment effect for high-PCB birds was negative ( = -0.046, SE() = 0.0939). Fifty-four percent of the total model weights involved models in which survival was a function of PCB treatment. Eggs were collected for contaminant analyses from a random sample of females that did and that did not return the following year. Concentrations of total PCBs were the same or higher in the eggs of females that returned compared to the eggs of those that did not return at both the highly and the moderately contaminated PCB sites. This may have resulted from higher-quality females with higher lipid reserves being more likely than lower-quality females to return the following year. Percentage lipid was positively correlated with total PCBs in eggs. Survival rates were similar among swallows with brown versus blue plumage.

  6. Determination of the astrophysical 12N(p,γ)13O reaction rate from the 2H(12N,13O)n reaction and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.

    2013-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.

  7. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy

    PubMed Central

    Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli

    2007-01-01

    Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463

  8. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.

    PubMed

    Chatterjee, Abhijit; Voter, Arthur F

    2010-05-21

    We present a novel computational algorithm called the accelerated superbasin kinetic Monte Carlo (AS-KMC) method that enables a more efficient study of rare-event dynamics than the standard KMC method while maintaining control over the error. In AS-KMC, the rate constants for processes that are observed many times are lowered during the course of a simulation. As a result, rare processes are observed more frequently than in KMC and the time progresses faster. We first derive error estimates for AS-KMC when the rate constants are modified. These error estimates are next employed to develop a procedure for lowering process rates with control over the maximum error. Finally, numerical calculations are performed to demonstrate that the AS-KMC method captures the correct dynamics, while providing significant CPU savings over KMC in most cases. We show that the AS-KMC method can be employed with any KMC model, even when no time scale separation is present (although in such cases no computational speed-up is observed), without requiring the knowledge of various time scales present in the system.

  9. Temporal variability of submarine groundwater discharge: Assessments via radon and seep meters, the southern carmel coast, Israel

    USGS Publications Warehouse

    Weinstein, Y.; Shalem, Y.; Burnett, W.C.; Swarzenski, P.W.; Herut, B.

    2007-01-01

    Seep meter data from Dor Bay, Israel, showed a steady decrease in submarine groundwater discharge (SGD) rates between March and July 2006 (averages of 34, 10.4 and 1.5 cm d-1 in March, May and July, respectively), while estimates based on radon time series showed remarkably uniform averages (8 cm d-1). The May seep meter data show a rough positive correlation with sea level, unlike the negative correlation shown by the Rn-calculated rates. Smaller-size meters, deployed in July adjacent to the regular-size ones, showed significantly higher rates (10 cm d-1), which negatively correlated with salinity. It is suggested that the decreased rates documented by the seep meters are the result of an increased shallow seawater recharge in the bay (due to decreasing hydraulic gradients). This is not captured by the radon, since recharging water is radon-poor. The positive correlation of discharge with sea level is due to increased seawater recycling in times of high sea stand. Copyright ?? 2007 IAHS Press.

  10. Strong-potential Born calculations for 1s-1s electron capture from atoms by protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, J.H.; Kletke, R.E.; Sil, N.C.

    1985-08-01

    The strong-potential Born (SPB) approximation is examined by comparing various SPB calculations of high-velocity 1s-1s electron capture cross sections with one another and with experimental data. Above about 1 MeV, calculations using the SPB method of McGuire and Sil (SPMS) (Phys. Rev. A 28, 3679 (1983)) are in good agreement with total-cross-section observations for protons on H, He, C, Ne, and Ar as expected. For p+H and p+He, the SPB full-peaking (SPB-FP) approximation of Macek and Alston (Phys. Rev. A 26, 250 (1982)) and the SPB transverse-peaking (SPB-TP) approximation of Alston (Phys. Rev. A 27, 2342 (1982)) differ from ourmore » SPMS total cross sections by typically a factor of 2, as expected from general validity criteria. However, the differential cross sections at very forward angles (well within the Thomas angle) are the same in SPMS, SPB-FP, and SPB-TP methods in all cases. Below 1 MeV, cross sections obtained with use of various SPB methods differ considerably from one another, placing a limit of validity for these SPB calculations. We also suggest that in the gap between those energies where continuum intermediate states simply dominate, and above those energies where bound intermediate states simply dominate, detailed conceptual understanding of electron capture is incomplete.« less

  11. Microscopic approach based on a multiscale algebraic version of the resonating group model for radiative capture reactions

    NASA Astrophysics Data System (ADS)

    Solovyev, Alexander S.; Igashov, Sergey Yu.

    2017-12-01

    A microscopic approach to description of radiative capture reactions based on a multiscale algebraic version of the resonating group model is developed. The main idea of the approach is to expand wave functions of discrete spectrum and continuum for a nuclear system over different bases of the algebraic version of the resonating group model. These bases differ from each other by values of oscillator radius playing a role of scale parameter. This allows us in a unified way to calculate total and partial cross sections (astrophysical S factors) as well as branching ratio for the radiative capture reaction, to describe phase shifts for the colliding nuclei in the initial channel of the reaction, and at the same time to reproduce breakup thresholds of the final nucleus. The approach is applied to the theoretical study of the mirror 3H(α ,γ )7Li and 3He(α ,γ )7Be reactions, which are of great interest to nuclear astrophysics. The calculated results are compared with existing experimental data and with our previous calculations in the framework of the single-scale algebraic version of the resonating group model.

  12. Differential Decomposition Among Pig, Rabbit, and Human Remains.

    PubMed

    Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe

    2018-03-30

    While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.

  13. Energy requirements for CO2 capture from ambient air (DAC) competitive with capture from flue-gas (PCC)

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph

    2015-03-01

    Capture of CO2, whether from a flue gas source (PCC) or from distributed sources via ambient air (DAC), is a key enabling technology to provide carbon for sustainable synthetic energy carriers such as solar fuels. Based on thermodynamic minimum considerations, DAC is often expected to require about 3 times more energy (per ton CO2 captured) than PCC because CO2 in ambient air is more dilute. Here, we calculate the energy required for a humidity swing-based DAC installation that uses an anionic exchange resin as sorbent. The calculation uses recently measured equilibrium CO2 loadings of the sorbent as function of partial CO2 pressure, temperature, and humidity. We calculate the installation's electricity consumption to be about 45 kJ per mole of pure CO2 at 1 bar (scenario-dependent). Furthermore, we estimate the amount of heat provided by ambient air and thus provide context of the overall energy and entropy balance and thermodynamic minimum views. The electricity consumption is competitive with typical parasitic loads of PCC-equipped coal-fired power plants (40-50 kJ per mole at same pressure) and significantly lower than predicted for other DAC installations such as Na(OH) sorbent-based systems. Our analyses elucidate why DAC is not always more energy-intensive that PCC, thus alleviating often cited concerns of significant cost impediments. Financial support by ABB for research presented herein is gratefully acknowledged.

  14. Intermittent child employment and its implications for estimates of child labour

    PubMed Central

    LEVISON, Deborah; HOEK, Jasper; LAM, David; DURYEA, Suzanne

    2008-01-01

    Using longitudinal data from urban Brazil, the authors track the employment patterns of thousands of children aged 10-16 during four months of their lives in the 1980s and 1990s. The proportion of children who work at some point during a four-month period is substantially higher than the fraction observed working in any single month. The authors calculate an intermittency multiplier to summarize the difference between employment rates in one reference week vs. four reference weeks over a four-month period. They conclude that intermittent employment is a crucial characteristic of child labour which must be recognized to capture levels of child employment adequately and identify child workers. PMID:18815624

  15. Mass ejection by strange star mergers and observational implications.

    PubMed

    Bauswein, A; Janka, H-T; Oechslin, R; Pagliara, G; Sagert, I; Schaffner-Bielich, J; Hohle, M M; Neuhäuser, R

    2009-07-03

    We determine the Galactic production rate of strangelets as a canonical input to calculations of the measurable cosmic ray flux of strangelets by performing simulations of strange star mergers and combining the results with recent estimates of stellar binary populations. We find that the flux depends sensitively on the bag constant of the MIT bag model of QCD and disappears for high values of the bag constant and thus more compact strange stars. In the latter case, strange stars could coexist with ordinary neutron stars as they are not converted by the capture of cosmic ray strangelets. An unambiguous detection of an ordinary neutron star would then not rule out the strange matter hypothesis.

  16. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  17. Comparative capture rate responses of mosquito vectors to light trap and human landing collection methods

    USDA-ARS?s Scientific Manuscript database

    Capture rate responses of female Aedes albopictus Skuse, Anopheles quadrimaculatus Say, Culex nigripalpus Theobald, Culex quinquefasciatus Say, and Ochlerotatus triseriatus (Wiedemann) to CDC-type light trap (LT) and human landing (HL) collection methods were observed and evaluated for congruency wi...

  18. Conceptual schematic for capture of biomethane released from hydroelectric power facilities.

    PubMed

    Kikuchi, R; Amaral, P Bingre do

    2008-09-01

    Though dam-related biomethane was identified in the 1960s, its capture has not been sufficiently discussed. Captured biomethane could be burned to produce energy, and the burning of biomethane turns the carbon in it into CO(2) that is far less potent as a greenhouse gas; this paper therefore aims to technically discuss the capture/use of dam-related biomethane. A great amount of bubbles would be formed by the rapid drop in water pressure (i.e. cavitation) after turbine passage, so it is proposed to capture methane-bearing bubbles by means of a flow tube for adjusting residence time and hydrophilic screens for trapping these bubbles. The results from the performed calculation show that biomethane can be trapped in a yield of 60%.

  19. Age-structured mark-recapture analysis: A virtual-population-analysis-based model for analyzing age-structured capture-recapture data

    USGS Publications Warehouse

    Coggins, L.G.; Pine, William E.; Walters, C.J.; Martell, S.J.D.

    2006-01-01

    We present a new model to estimate capture probabilities, survival, abundance, and recruitment using traditional Jolly-Seber capture-recapture methods within a standard fisheries virtual population analysis framework. This approach compares the numbers of marked and unmarked fish at age captured in each year of sampling with predictions based on estimated vulnerabilities and abundance in a likelihood function. Recruitment to the earliest age at which fish can be tagged is estimated by using a virtual population analysis method to back-calculate the expected numbers of unmarked fish at risk of capture. By using information from both marked and unmarked animals in a standard fisheries age structure framework, this approach is well suited to the sparse data situations common in long-term capture-recapture programs with variable sampling effort. ?? Copyright by the American Fisheries Society 2006.

  20. Estimating taxonomic diversity, extinction rates, and speciation rates from fossil data using capture-recapture models

    USGS Publications Warehouse

    Nichols, J.D.; Pollock, K.H.

    1983-01-01

    Capture-recapture models can be used to estimate parameters of interest from paleobiological data when encouter probabilities are unknown and variable over time. These models also permit estimation of sampling variances and goodness-of-fit tests are available for assessing the fit of data to most models. The authors describe capture-recapture models which should be useful in paleobiological analyses and discuss the assumptions which underlie them. They illustrate these models with examples and discuss aspects of study design.

  1. Nurse-patient assignment models considering patient acuity metrics and nurses' perceived workload.

    PubMed

    Sir, Mustafa Y; Dundar, Bayram; Barker Steege, Linsey M; Pasupathy, Kalyan S

    2015-06-01

    Patient classification systems (PCSs) are commonly used in nursing units to assess how many nursing care hours are needed to care for patients. These systems then provide staffing and nurse-patient assignment recommendations for a given patient census based on these acuity scores. Our hypothesis is that such systems do not accurately capture workload and we conduct an experiment to test this hypothesis. Specifically, we conducted a survey study to capture nurses' perception of workload in an inpatient unit. Forty five nurses from oncology and surgery units completed the survey and rated the impact of patient acuity indicators on their perceived workload using a six-point Likert scale. These ratings were used to calculate a workload score for an individual nurse given a set of patient acuity indicators. The approach offers optimization models (prescriptive analytics), which use patient acuity indicators from a commercial PCS as well as a survey-based nurse workload score. The models assign patients to nurses in a balanced manner by distributing acuity scores from the PCS and survey-based perceived workload. Numerical results suggest that the proposed nurse-patient assignment models achieve a balanced assignment and lower overall survey-based perceived workload compared to the assignment based solely on acuity scores from the PCS. This results in an improvement of perceived workload that is upwards of five percent. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Schwab, Josiah

    2017-01-01

    In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.

  3. A New Method for Computing Three-Dimensional Capture Fraction in Heterogeneous Regional Systems using the MODFLOW Adjoint Code

    NASA Astrophysics Data System (ADS)

    Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.

    2011-12-01

    Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.

  4. Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation.

    PubMed

    Dash, Bibek

    2018-04-26

    The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.

  5. Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key.

    PubMed

    Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele

    2013-11-14

    We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.

  6. Free stream capturing in fluid conservation law for moving coordinates in three dimensions

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.

  7. Ab initio investigation of electron capture by Cl{sup 7+} ions from H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L. B.; Stancil, P. C.; Watanabe, A.

    2007-08-15

    An investigation of charge transfer in collisions of ground-state Cl{sup 7+} with H has been conducted based on a fully quantum-mechanical molecular-orbital close-coupling (QMOCC) approach. The charge-transfer process Cl{sup 7+}({sup 1}S)+H{yields}Cl{sup 6+}(2p{sup 6}nl {sup 2}S,{sup 2}P{sup o},{sup 2}D,{sup 2}F{sup o},{sup 2}G)+H{sup +} with n=5 and 6 is taken into account for collision energies between 10{sup -4} eV/u and 1 keV/u. The relevant adiabatic potentials and nonadiabatic coupling matrix elements for the ClH{sup 7+} system are evaluated with the configuration-interaction method. The investigation shows that electron capture into the 5d, 5f, 5g, and 6p states dominates for collision energies less thanmore » {approx}1 eV/u, while above 100 eV/u the 5s, 5p, 5d, and 6p are the primary capture channels. Comparison with experimental data for collisions of Cl{sup 7+}({sup 1}S) with D reveals a discrepancy over the full range of measured energies (5-430 eV/u), while no significant isotope effect is found for QMOCC calculations with deuterium. Furthermore, comparison with a previous calculation of the one-electron N{sup 7+}+H system, as well as measurements of the multielectron Al{sup 7+}+H and Fe{sup 7+}+H systems, suggests that the electronic structure of the core has a non-negligible effect on the charge-transfer process. A one-electron model for relative l distributions is found to agree with the QMOCC results for n=5 between 100 and 1000 eV/u, but fails at lower collision energies. Finally, state-selective and total rate coefficients are given for temperatures between 10 and 200 000 K.« less

  8. A method for the calculation of anaerobic oxidation of methane rates across regional scales: an example from the Belt Seas and The Sound (North Sea-Baltic Sea transition)

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Dale, Andrew W.; Jensen, Jørn B.; Schlüter, Michael; Regnier, Pierre

    2013-08-01

    Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean-atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea-Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year-1) than previous estimates (4.6 Tmol year-1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.

  9. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlawer,E.; Dunn,M.; Mlawer, E.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less

  10. Catch of channel catfish with tandem-set hoop nets and gill nets in lentic systems of Nebraska

    USGS Publications Warehouse

    Richters, Lindsey K.; Pope, Kevin L.

    2011-01-01

    Twenty-six Nebraska water bodies representing two ecosystem types (small standing waters and large standing waters) were surveyed during 2008 and 2009 with tandem-set hoop nets and experimental gill nets to determine if similar trends existed in catch rates and size structures of channel catfish Ictalurus punctatus captured with these gears. Gear efficiency was assessed as the number of sets (nets) that would be required to capture 100 channel catfish given observed catch per unit effort (CPUE). Efficiency of gill nets was not correlated with efficiency of hoop nets for capturing channel catfish. Small sample sizes prohibited estimation of proportional size distributions in most surveys; in the four surveys for which sample size was sufficient to quantify length-frequency distributions of captured channel catfish, distributions differed between gears. The CPUE of channel catfish did not differ between small and large water bodies for either gear. While catch rates of hoop nets were lower than rates recorded in previous studies, this gear was more efficient than gill nets at capturing channel catfish. However, comparisons of size structure between gears may be problematic.

  11. Caught Ya! A School-Based Practical Activity to Evaluate the Capture-Mark-Release-Recapture Method

    ERIC Educational Resources Information Center

    Kingsnorth, Crawford; Cruickshank, Chae; Paterson, David; Diston, Stephen

    2017-01-01

    The capture-mark-release-recapture method provides a simple way to estimate population size. However, when used as part of ecological sampling, this method does not easily allow an opportunity to evaluate the accuracy of the calculation because the actual population size is unknown. Here, we describe a method that can be used to measure the…

  12. Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1979-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation, allowing for the target atom to remain unexcited or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%-30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions, has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results.

  13. Electron capture and excitation processes in H+-H collisions in dense quantum plasmas

    NASA Astrophysics Data System (ADS)

    Jakimovski, D.; Markovska, N.; Janev, R. K.

    2016-10-01

    Electron capture and excitation processes in proton-hydrogen atom collisions taking place in dense quantum plasmas are studied by employing the two-centre atomic orbital close-coupling (TC-AOCC) method. The Debye-Hückel cosine (DHC) potential is used to describe the plasma screening effects on the Coulomb interaction between charged particles. The properties of a hydrogen atom with DHC potential are investigated as a function of the screening strength of the potential. It is found that the decrease in binding energy of nl levels with increasing screening strength is considerably faster than in the case of the Debye-Hückel (DH) screening potential, appropriate for description of charged particle interactions in weakly coupled classical plasmas. This results in a reduction in the number of bound states in the DHC potential with respect to that in the DH potential for the same plasma screening strength, and is reflected in the dynamics of excitation and electron capture processes for the two screened potentials. The TC-AOCC cross sections for total and state-selective electron capture and excitation cross sections with the DHC potential are calculated for a number of representative screening strengths in the 1-300 keV energy range and compared with those for the DH and pure Coulomb potential. The total capture cross sections for a selected number of screening strengths are compared with the available results from classical trajectory Monte Carlo calculations.

  14. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and the energy of the particles enabling the reconstruction of the kinematics at the target. The focal plane energy calibration allowed for the study of 26 Mg levels from Ex = 7.69 - 12.06 MeV in the (alpha; alpha0) measurement and Ex = 7.36 - 11.32 MeV in the (6Li,d) measurement. Six levels (Ex = 10717 (9) keV , 10822 (10) keV, 10951 (21) keV, 11085 (8) keV, 11167 (8) keV and 11317 (18) keV) were observed above the alpha-threshold in the region of interest (10.61 - 11.32 MeV). The Ex = 10717 keV had a negligible contribution to the alpha-capture rates. The Ex = 10951, 11167 and 11317 keV exhibited pronounced alpha-cluster structure and hence, dominated the alpha-capture rates. The Ex = 11167 keV had the most appreciable impact on the (alpha; gamma ) rate increasing it by 2 orders of magnitude above Longland et al. [58] and Bisterzo et al. [8] rates and by a factor of 3 above NACRE [2] rate. Hence, the recommended 22Ne(alpha,n) + 22Ne(alpha; ) rates, from the present work, strongly favour the reduction of s-process over-abundances associated with massive stars as well as AGB stars of intermediate initial mass. Also, the uncertainty range corresponding to the present rates suggest the need for a more refined measurement of the associated resonance parameters.

  15. Relationship between mosquito (Diptera: Culicidae) landing rates on a human subject and numbers captured using CO2-baited light traps.

    PubMed

    Barnard, D R; Knue, G J; Dickerson, C Z; Bernier, U R; Kline, D L

    2011-06-01

    Capture rates of insectary-reared female Aedes albopictus (Skuse), Anopheles quadrimaculatus Say, Culex nigripalpus Theobald, Culex quinquefasciatus Say and Aedes triseriatus (Say) in CDC-type light traps (LT) supplemented with CO2 and using the human landing (HL) collection method were observed in matched-pair experiments in outdoor screened enclosures. Mosquito responses were compared on a catch-per-unit-effort basis using regression analysis with LT and HL as the dependent and independent variables, respectively. The average number of mosquitoes captured in 1 min by LT over a 24-h period was significantly related to the average number captured in 1 min by HL only for Cx. nigripalpus and Cx. quinquefasciatus. Patterns of diel activity indicated by a comparison of the mean response to LT and HL at eight different times in a 24-h period were not superposable for any species. The capture rate efficiency of LT when compared with HL was ≤15% for all mosquitoes except Cx. quinquefasciatus (43%). Statistical models of the relationship between mosquito responses to each collection method indicate that, except for Ae. albopictus, LT and HL capture rates are significantly related only during certain times of the diel period. Estimates of mosquito activity based on observations made between sunset and sunrise were most precise in this regard for An. quadrimaculatus and Cx. nigripalpus, as were those between sunrise and sunset for Cx. quinquefasciatus and Ae. triseriatus.

  16. Modeling the effect of toe clipping on treefrog survival: Beyond the return rate

    USGS Publications Warehouse

    Waddle, J.H.; Rice, K.G.; Mazzotti, F.J.; Percival, H.F.

    2008-01-01

    Some studies have described a negative effect of toe clipping on return rates of marked anurans, but the return rate is limited in that it does not account for heterogeneity of capture probabilities. We used open population mark-recapture models to estimate both apparent survival (ϕ) and the recapture probability (p) of two treefrog species individually marked by clipping 2–4 toes. We used information-theoretic model selection to examine the effect of toe clipping on survival while accounting for variation in capture probability. The model selection results indicate strong support for an effect of toe clipping on survival of Green Treefrogs (Hyla cinerea) and only limited support for an effect of toe clipping on capture probability. We estimate there was a mean absolute decrease in survival of 5.02% and 11.16% for Green Treefrogs with three and four toes removed, respectively, compared to individuals with just two toes removed. Results for Squirrel Treefrogs (Hyla squirella) indicate little support for an effect of toe clipping on survival but may indicate some support for a negative effect on capture probability. We believe that the return rate alone should not be used to examine survival of marked animals because constant capture probability must be assumed, and our examples demonstrate how capture probability may vary over time and among groups. Mark-recapture models provide a method for estimating the effect of toe clipping on anuran survival in situations where unique marks are applied.

  17. Comment on 'Are survival rates for northern spotted owls biased?'

    USGS Publications Warehouse

    Franklin, A.B.; Nichols, J.D.; Anthony, R.G.; Burnham, K.P.; White, Gary C.; Forsman, E.D.; Anderson, D.R.

    2006-01-01

    Loehle et al. recently estimated survival rates from radio-telemetered northern spotted owls (Strix occidentalis caurina (Merriam, 1898)) and suggested that survival rates estimated for this species from capture-recapture studies were negatively biased, which subsequently resulted in the negatively biased estimates of rates of population change (lambda) reported by Anthony et al. (Wildl. Monogr. No. 163, pp. 1-47 (2006)). We argue that their survival estimates were inappropriate for comparison with capture-recapture estimates because (i) the manner in which they censored radio-telemetered individuals had the potential to positively bias their survival estimates, (ii) their estimates of survival were not valid for evaluating bias, and (iii) the size and distribution of their radiotelemetry study areas were sufficiently different from capture-recapture study areas to preclude comparisons. In addition, their inferences of negative bias in rates of population change estimated by Anthony et al. were incorrect and reflected a misunderstanding about those estimators.

  18. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects

    DOE PAGES

    Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...

    2015-01-05

    In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less

  19. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  20. Provider Communication, Prompts, and Feedback to Improve HPV Vaccination Rates in Resident Clinics.

    PubMed

    Rand, Cynthia M; Schaffer, Stanley J; Dhepyasuwan, Nui; Blumkin, Aaron; Albertin, Christina; Serwint, Janet R; Darden, Paul M; Humiston, Sharon G; Mann, Keith J; Stratbucker, William; Szilagyi, Peter G

    2018-04-01

    Human papillomavirus (HPV) vaccination rates lag behind vaccination rates for other adolescent vaccines; a bundled intervention may improve HPV vaccination rates. Our objective is to evaluate the impact of quality improvement (QI) training plus a bundled practice-based intervention (provider prompts plus communication skills training plus performance feedback) on improving HPV vaccinations in pediatric resident continuity clinics. Staff and providers in 8 resident clinics participated in a 12-month QI study. The intervention included training to strengthen provider communication about the HPV vaccine. Clinics also implemented provider prompts, received monthly performance feedback, and participated in learning collaborative calls. The primary outcome measure was eligible visits with vaccination divided by vaccine-eligible visits (captured HPV vaccination opportunities). Practices performed chart audits that were fed into monthly performance feedback on captured HPV vaccination opportunities. We used conditional logistic regression (conditioning on practice) to assess captured vaccination opportunities, with the time period of the study (before and after the QI intervention) as the independent variable. Overall, captured opportunities for HPV vaccination increased by 16.4 percentage points, from 46.9% to 63.3%. Special cause was demonstrated by centerline shift, with 8 consecutive points above the preintervention mean. On adjusted analyses, patients were more likely to receive a vaccine during, versus before, the intervention (odds ratio: 1.87; 95% confidence interval: 1.54-2.28). Captured HPV vaccination rates improved at both well-child and other visits (by 11.7 and 13.0 percentage points, respectively). A bundled intervention of provider prompts and training in communication skills plus performance feedback increased captured opportunities for HPV vaccination. Copyright © 2018 by the American Academy of Pediatrics.

  1. Physician Assistants Improve Efficiency and Decrease Costs in Outpatient Oral and Maxillofacial Surgery.

    PubMed

    Resnick, Cory M; Daniels, Kimberly M; Flath-Sporn, Susan J; Doyle, Michael; Heald, Ronald; Padwa, Bonnie L

    2016-11-01

    To determine the effects on time, cost, and complication rates of integrating physician assistants (PAs) into the procedural components of an outpatient oral and maxillofacial surgery practice. This is a prospective cohort study of patients from the Department of Plastic and Oral Surgery at Boston Children's Hospital who underwent removal of 4 impacted third molars with intravenous sedation in our outpatient facility. Patients were separated into the "no PA group" and PA group. Process maps were created to capture all activities from room preparation to patient discharge, and all activities were timed for each case. A time-driven activity-based costing method was used to calculate the average times and costs from the provider's perspective for each group. Complication rates were calculated during the periods for both groups. Descriptive statistics were calculated, and significance was set at P < .05. The total process time did not differ significantly between groups, but the average total procedure cost decreased by $75.08 after the introduction of PAs (P < .001). The time that the oral and maxillofacial surgeon was directly involved in the procedure decreased by an average of 19.2 minutes after the introduction of PAs (P < .001). No significant differences in postoperative complications were found. The addition of PAs into the procedural components of an outpatient oral and maxillofacial surgery practice resulted in decreased costs whereas complication rates remained constant. The increased availability of the oral and maxillofacial surgeon after the incorporation of PAs allows for more patients to be seen during a clinic session, which has the potential to further increase efficiency and revenue. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O{sub 2} + O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov

    Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less

  3. Developments in capture-γ libraries for nonproliferation applications

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Bleuel, D. L.; Basunia, M. S.; Bečvář, F.; Belgya, T.; Bernstein, L. A.; Carroll, J. J.; Detwiler, B.; Escher, J. E.; Genreith, C.; Goldblum, B. L.; Krtička, M.; Lerch, A. G.; Matters, D. A.; McClory, J. W.; McHale, S. R.; Révay, Zs.; Szentmiklosi, L.; Turkoglu, D.; Ureche, A.; Vujic, J.

    2017-09-01

    The neutron-capture reaction is fundamental for identifying and analyzing the γ-ray spectrum from an unknown assembly because it provides unambiguous information on the neutron-absorbing isotopes. Nondestructive-assay applications may exploit this phenomenon passively, for example, in the presence of spontaneous-fission neutrons, or actively where an external neutron source is used as a probe. There are known gaps in the Evaluated Nuclear Data File libraries corresponding to neutron-capture γ-ray data that otherwise limit transport-modeling applications. In this work, we describe how new thermal neutron-capture data are being used to improve information in the neutron-data libraries for isotopes relevant to nonproliferation applications. We address this problem by providing new experimentally-deduced partial and total neutron-capture reaction cross sections and then evaluate these data by comparison with statistical-model calculations.

  4. Fast Sampling Gas Chromatography (GC) System for Speciation in a Shock Tube

    DTIC Science & Technology

    2016-10-31

    capture similar ethylene decomposition rates for temperature-dependent shock experiments. (a) Papers published in peer-reviewed journals (N/A for none...3 GC Sampling System Validation Experiments ............................................................................... 5 Ethylene ...results for cold shock experiments, and both techniques capture similar ethylene decomposition rates for temperature-dependent shock experiments. Problem

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas, E-mail: emb@kth.se, E-mail: juhg@kth.se, E-mail: schwetz@fysik.su.se

    We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on themore » capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or b b start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas

    We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on themore » capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or bb start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.« less

  7. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  8. Electron capture by Ne3+ ions from atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Rejoub, R.; Bannister, M. E.; Havener, C. C.; Savin, D. W.; Verzani, C. J.; Wang, J. G.; Stancil, P. C.

    2004-05-01

    Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u . Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u . Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ˜1 eV/u , an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ˜4 eV/u , the present calculations show a significant target isotope effect.

  9. Taking Another Look: Zr and Y abundances in Halo Stars

    NASA Astrophysics Data System (ADS)

    Burris, Debra L.; Jones, E.

    2007-12-01

    The elements Zirconium and Yttrium are produced via neutron capture (n-capture). These elements reside in the mass range where there is uncertainty about the production mechanism at early time. The rapid n-capture process (r-process) was believed to be responsible for the production, but no study (Burris et al 2000, Gilroy et al 1988 and others) has been able to successfully use the r-process to reproduce the abundance signature for elements in this mass range for metal-poor halo stars. It has been suggested (Sneden and Cowan 2003) that there may be an undiscovered component to the r-process. New abundance calculations for these elements have been conducted for a sample of metal-poor halo stars. Transition probabilities for Zr II from Malcheva et al (2006) and for YII from Hannaford et al (1982) were utilized in these calculations. This work is supported in part by the AAS Small Grant Program, the Arkansas Space Grant Consortium and the UCA Undergraduate Research Council.

  10. Sensitivity to value-driven attention is predicted by how we learn from value.

    PubMed

    Jahfari, Sara; Theeuwes, Jan

    2017-04-01

    Reward learning is known to influence the automatic capture of attention. This study examined how the rate of learning, after high- or low-value reward outcomes, can influence future transfers into value-driven attentional capture. Participants performed an instrumental learning task that was directly followed by an attentional capture task. A hierarchical Bayesian reinforcement model was used to infer individual differences in learning from high or low reward. Results showed a strong relationship between high-reward learning rates (or the weight that is put on learning after a high reward) and the magnitude of attentional capture with high-reward colors. Individual differences in learning from high or low rewards were further related to performance differences when high- or low-value distractors were present. These findings provide novel insight into the development of value-driven attentional capture by showing how information updating after desired or undesired outcomes can influence future deployments of automatic attention.

  11. A goodness-of-fit test for capture-recapture model M(t) under closure

    USGS Publications Warehouse

    Stanley, T.R.; Burnham, K.P.

    1999-01-01

    A new, fully efficient goodness-of-fit test for the time-specific closed-population capture-recapture model M(t) is presented. This test is based on the residual distribution of the capture history data given the maximum likelihood parameter estimates under model M(t), is partitioned into informative components, and is based on chi-square statistics. Comparison of this test with Leslie's test (Leslie, 1958, Journal of Animal Ecology 27, 84- 86) for model M(t), using Monte Carlo simulations, shows the new test generally outperforms Leslie's test. The new test is frequently computable when Leslie's test is not, has Type I error rates that are closer to nominal error rates than Leslie's test, and is sensitive to behavioral variation and heterogeneity in capture probabilities. Leslie's test is not sensitive to behavioral variation in capture probabilities but, when computable, has greater power to detect heterogeneity than the new test.

  12. A method for modeling contact dynamics for automated capture mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.

    1991-01-01

    Logicon Control Dynamics develops contact dynamics models for space-based docking and berthing vehicles. The models compute contact forces for the physical contact between mating capture mechanism surfaces. Realistic simulation requires proportionality constants, for calculating contact forces, to approximate surface stiffness of contacting bodies. Proportionality for rigid metallic bodies becomes quite large. Small penetrations of surface boundaries can produce large contact forces.

  13. Atomic Data for Nebular Abundance Determinations: Photoionization and Recombination Properties of Xenon Ions

    NASA Astrophysics Data System (ADS)

    Sterling, Nicholas C.; Kerlin, Austin B.

    2016-01-01

    We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.

  14. Multiscale simulation of xenon diffusion and grain boundary segregation in UO₂

    DOE PAGES

    Andersson, David A.; Tonks, Michael R.; Casillas, Luis; ...

    2015-07-01

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO₂ have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model formore » the interaction between Xe atoms and three different grain boundaries in UO₂ (Σ5 tilt, Σ5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures.« less

  15. Sensitivity tests on the rates of the excited states of positron decays during the rapid proton capture process of the one-zone X-ray burst model

    NASA Astrophysics Data System (ADS)

    Lau, Rita

    2018-02-01

    In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).

  16. Measurement of the beta+ and orbital electron-capture decay rates in fully ionized, hydrogenlike, and heliumlike 140Pr ions.

    PubMed

    Litvinov, Yu A; Bosch, F; Geissel, H; Kurcewicz, J; Patyk, Z; Winckler, N; Batist, L; Beckert, K; Boutin, D; Brandau, C; Chen, L; Dimopoulou, C; Fabian, B; Faestermann, T; Fragner, A; Grigorenko, L; Haettner, E; Hess, S; Kienle, P; Knöbel, R; Kozhuharov, C; Litvinov, S A; Maier, L; Mazzocco, M; Montes, F; Münzenberg, G; Musumarra, A; Nociforo, C; Nolden, F; Pfützner, M; Plass, W R; Prochazka, A; Reda, R; Reuschl, R; Scheidenberger, C; Steck, M; Stöhlker, T; Torilov, S; Trassinelli, M; Sun, B; Weick, H; Winkler, M

    2007-12-31

    We report on the first measurement of the beta+ and orbital electron-capture decay rates of 140Pr nuclei with the simplest electron configurations: bare nuclei, hydrogenlike, and heliumlike ions. The measured electron-capture decay constant of hydrogenlike 140Pr58+ ions is about 50% larger than that of heliumlike 140Pr57+ ions. Moreover, 140Pr ions with one bound electron decay faster than neutral 140Pr0+ atoms with 59 electrons. To explain this peculiar observation one has to take into account the conservation of the total angular momentum, since only particular spin orientations of the nucleus and of the captured electron can contribute to the allowed decay.

  17. Evaluating the use of PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of nuclear canister filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    This document details the distinction between using PAO (4 cSt polyalphaoelfin) oil instead of DOP (di-octyl phthalate) oil for measuring the aerosol capture of filters. This document is developed to justify the use of PAO rather than DOP for evaluating the performance of filters in the SAVY 4000 and Hagan containers. The design criteria (Anderson et al, 2012) for purchasing SAVY 4000 containers and the Safety Analysis Report for the SAVY 4000 Container Series specified that the filter must “capture greater than 99.97% of 0.45 μm mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentrationmore » of 65±15 micrograms per liter.”This corresponds to a leakage percent of 0.03% (3.0x10 -2). The density of DOP oil is 985 kg/m 3 and the density of PAO oil is 819 kg/m 3. ATI Test Inc measured the mass mean diameter of aerosol distributions produced by a single Laskin type III-A nozzle operating at a 20 psig air pressure as 0.563 μm for DOP oil and 0.549 μm for PAO oil. (See Appendix A.) For both types of oil in this document, the single fiber method calculated the leakage percent to be 4.4x10 -5 for DOP oil and 4.7x10 -5 for PAO oil. Although the percent error between these two quantities is 7.7%, these calculated leakage percent values are more than two orders of magnitude less than the criterion specified in the SAVY canister SAR. As a point of reference, the photometer used to measure the SAVY canister filter performance cannot resolve values for the leakage percent below 1.0x10 -5. Additionally, over a range of particle sizes from 0.01 μm to 3.0 μm, there was less than 4.0x10 -5 error between the calculated filter efficiency for the two types of oil at any particular particle size diameter. In conclusion, the difference between using DOP and PAO for testing SAVY canister filters is of inconsequential concern.« less

  18. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    NASA Technical Reports Server (NTRS)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  19. The breakout of the Hot CNO cycle via ^18Ne resonant states

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Tan, W.; Aprahamian, A.; Bucher, B.; Gorres, J.; Roberts, A.; Villano, A.; Wiescher, M.; Brune, C.; Heinen, Z.; Massey, T.; Ozkan, N.; Guray, R. T.; Mach, H.

    2010-11-01

    The energy generation rate in the HCNO cycle is limited by the β decay of the waiting point nuclei ^14O and ^15O. However, when the temperatures and densities are high enough (e.g. Novae and X-ray Bursts) it is possible to bypass them by p/α captures resulting in a thermonuclear runaway towards the rp-process. One of the two paths for breakouts from the HCNO cycle is the reaction chain ^14O(α,p)^17F(p,γ)^18Ne(α,p), which proceeds through resonant states on ^18Ne, making their reactions rates very sensitive on the partial and total widths, excitation energies and spins of such resonances. We studied the resonant states in ^18Ne via ^16O(^3He,n) reaction. The neutrons were measured with an array of liquid scintillators using Time-of-Flight and pulse-shape discrimination techniques. The charged particles were detected in coincidence with neutrons by an array of silicon detectors, allowing us to measure α, p, p' and 2p decay branching ratios. Tentative spin assignments were made in comparison with zero range DWBA calculations. This new information will be included in reaction network calculations to evaluate its impact on the nuclear energy generation that occurs in these stellar explosive environments.

  20. Burden of Violent Death on Years of Life Lost in Rhode Island, 2006-2013.

    PubMed

    Jiang, Yongwen; Ranney, Megan L; Perez, Beatriz; Viner-Brown, Samara

    2016-11-01

    Mortality from injuries, particularly violent injuries, is more common among the young. Although traditional epidemiologic measures describe burden of death using rate-related mortalities, this method may not accurately represent burden of premature death. Years of life lost (YLLs) incorporate time discounting and age weighting to more accurately estimate the burden of death. To the authors' knowledge, there has been no examination of YLLs using the Rhode Island Violent Death Reporting System data. This study's objective was to assess the burden of violent death in Rhode Island in terms of YLLs. This study used 2006-2013 Rhode Island Violent Death Reporting System data. YLLs as a result of premature violent deaths were assessed overall and by age, sex, race/ethnicity, and manner of death. Data were analyzed in 2015. Suicide made the largest contribution to the overall YLLs (61.3%), followed by homicide (24.0%), whereas undetermined intent deaths captured by the system accounted for 14.8% of YLLs. In Rhode Island, people aged 25-44 years had the highest YLLs due to suicide, and Hispanics had the highest YLLs due to homicide/legal intervention. By comparison, using crude mortality rate calculations, people aged 45-64 years had the highest suicide mortality rate and non-Hispanic blacks had the highest homicide mortality rate. YLL calculations provide a different picture than crude mortality-based assessments of the population at highest risk for violent death. This study demonstrates the strengths of using YLL to assess the burden of violent death at the state level. Published by Elsevier Inc.

  1. Complex responses to movement-based disease control: when livestock trading helps.

    PubMed

    Prentice, Jamie C; Marion, Glenn; Hutchings, Michael R; McNeilly, Tom N; Matthews, Louise

    2017-01-01

    Livestock disease controls are often linked to movements between farms, for example, via quarantine and pre- or post-movement testing. Designing effective controls, therefore, benefits from accurate assessment of herd-to-herd transmission. Household models of human infections make use of R * , the number of groups infected by an initial infected group, which is a metapopulation level analogue of the basic reproduction number R 0 that provides a better characterization of disease spread in a metapopulation. However, existing approaches to calculate R * do not account for individual movements between locations which means we lack suitable tools for livestock systems. We address this gap using next-generation matrix approaches to capture movements explicitly and introduce novel tools to calculate R * in any populations coupled by individual movements. We show that depletion of infectives in the source group, which hastens its recovery, is a phenomenon with important implications for design and efficacy of movement-based controls. Underpinning our results is the observation that R * peaks at intermediate livestock movement rates. Consequently, under movement-based controls, infection could be controlled at high movement rates but persist at intermediate rates. Thus, once control schemes are present in a livestock system, a reduction in movements can counterintuitively lead to increased disease prevalence. We illustrate our results using four important livestock diseases (bovine viral diarrhoea, bovine herpes virus, Johne's disease and Escherichia coli O157) that each persist across different movement rate ranges with the consequence that a change in livestock movements could help control one disease, but exacerbate another. © 2017 The Authors.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, Aaron Joseph

    This report documents aspects of direct and indirect neutron capture. The importance of neutron capture rates and methods to determine them are presented. The following conclusions are drawn: direct neutron capture measurements remain a backbone of experimental study; work is being done to take increased advantage of indirect methods for neutron capture; both instrumentation and facilities are making new measurements possible; more work is needed on the nuclear theory side to understand what is needed furthest from stability.

  3. Relationship between mosquito (Diptera: Culicidae) landing rates on a human subject and numbers captured using CO2-baited light traps

    USDA-ARS?s Scientific Manuscript database

    Capture rates of female Aedes albopictus Skuse, Aedes triseriatus (Say), Anopheles quadrimaculatus Say, Culex nigripalpus Theobald, and Culex quinquefasciatus Say in CDC-type light traps supplemented with CO2 (LT) and using the human landing (HL) collection method were observed in matched-pair exper...

  4. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood.

    PubMed

    Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro

    2015-01-01

    Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.

  5. Assessment of bird populations in a high quality savanna/woodland: a banding approach

    USGS Publications Warehouse

    Wilmore, Sandra L.; Glowacki, Gary A.; Grundel, Ralph

    2005-01-01

    During the course of this six year study, the fall migration capture rate declined significantly, suggesting that reduced productivity may have occurred in bird populations. There was a positive response during the spring migration to earlier spring wildfires, indicated by high capture rates in 2000 and 2002 that corresponded with fires affecting most of the bird banding net locations. For several common species found at the Miller Woods site, the ratio of juveniles to adults was compared to ratios at other banding stations in the north central U.S. Breeding site fidelity was documented for 20 species, all common breeders. Variation in capture rates among net locations demonstrated the role of the shrub layer within the savanna habitat mosaic during migration stopover.

  6. Changes in rates of capture and demographics of Myotis septentrionalis (Northern Long-eared Bat) in Western Virginia before and after onset of white-nose syndrome

    USGS Publications Warehouse

    Reynolds, Richard J.; Powers, Karen E.; Orndorff, Wil; Ford, W. Mark; Hobson, Christopher S.

    2016-01-01

    Documenting the impacts of white-nose syndrome (WNS) on demographic patterns, such as annual survivorship and recruitment, is important to understanding the extirpation or possible stabilization and recovery of species over time. To document demographic impacts of WNS on Myotis septentrionalis (Northern Long-eared Bat), we mistnetted at sites in western Virginia where Northern Long-eared Bats were captured in summer before (1990–2009) and after (2011–2013) the onset of WNS. Our mean capture rates per hour, adjusted for area of net and sampling duration, declined significantly from 0.102 bats/ m2/h before WNS to 0.005 bats/m2/h (-95.1%) by 2013. We noted a time lag in the rate of decline between published data based on bats captured during the swarming season and our summer mist-netting captures from the same geographic area. Although proportions of pregnant or lactating females did not vary statistically in samples obtained before and after the onset of WNS, the proportion of juvenile bats declined significantly (-76.7%), indicating that the viability of Northern Long-eared Bats in western Virginia is tenuous.

  7. Accounting for false-positive acoustic detections of bats using occupancy models

    USGS Publications Warehouse

    Clement, Matthew J.; Rodhouse, Thomas J.; Ormsbee, Patricia C.; Szewczak, Joseph M.; Nichols, James D.

    2014-01-01

    4. Synthesis and applications. Our results suggest that false positives sufficient to affect inferences may be common in acoustic surveys for bats. We demonstrate an approach that can estimate occupancy, regardless of the false-positive rate, when acoustic surveys are paired with capture surveys. Applications of this approach include monitoring the spread of White-Nose Syndrome, estimating the impact of climate change and informing conservation listing decisions. We calculate a site-specific probability of occupancy, conditional on survey results, which could inform local permitting decisions, such as for wind energy projects. More generally, the magnitude of false positives suggests that false-positive occupancy models can improve accuracy in research and monitoring of bats and provide wildlife managers with more reliable information.

  8. Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore

    PubMed Central

    He, Yuhui; Tsutsui, Makusu; Scheicher, Ralph H.; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2013-01-01

    Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account. PMID:23931325

  9. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel

    PubMed Central

    Phillips, Joseph A.; Xu, Ye; Xia, Zheng

    2009-01-01

    This work describes the development and investigation of an aptamer modified microfluidic device that captures rare cells to achieve a rapid assay without pre-treatment of cells. To accomplish this, aptamers are first immobilized on the surface of a poly (dimethylsiloxane) microchannel, followed by pumping a mixture of cells through the device. This process permits the use of optical microscopy to measure the cell-surface density from which we calculate the percentage of cells captured as a function of cell and aptamer concentration, flow velocity, and incubation time. This aptamer-based device was demonstrated to capture target cells with > 97% purity and > 80% efficiency. Since the cell capture assay is completed within minutes and requires no pre-treatment of cells, the device promises to play a key role in the early detection and diagnosis of cancer where rare diseased cells can first be enriched and then captured for detection. PMID:19115856

  10. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  11. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  12. Radiative capture reactions in astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, Carl R.; Davids, Barry

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  13. Radiative capture reactions in astrophysics

    DOE PAGES

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  14. A New Algorithm to Optimize Maximal Information Coefficient

    PubMed Central

    Luo, Feng; Yuan, Zheming

    2016-01-01

    The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001

  15. Al or Si decorated graphene-oxide: A promising material for capture and activation of ethylene and acetylene

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Dinparast, Leila

    2018-06-01

    In this work, quantum chemical calculations are performed to compare adsorption behavior of ethylene and acetylene molecules over Al- or Si-decorated graphene oxide (Al/Si-GO). The corresponding adsorption energies, geometrical parameters and net charge-transfer values are calculated using the dispersion-corrected DFT calculations. The obtained large adsorption energies of the Al and Si atoms over GO suggest that both Al-GO and Si-GO are stable enough to be used as a stable substrate to capture and activate ethylene or acetylene. The results show that the adsorption of C2H4 or C2H2 on Al-GO is more favorable than over Si-GO surface, mainly due to the orbital interactions between the adsorbate and surface. Also, the DFT calculations reveal that the interaction of C2H2 with both surfaces is stronger than that of C2H4. Our findings are applicable for future theoretical and experimental studies about the interaction of hydrocarbons with light metal decorated graphene-based materials as well as heterogeneous catalysis.

  16. A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida

    USGS Publications Warehouse

    Reed, Robert N.; Hart, Kristen M.; Rodda, Gordon H.; Mazzotti, Frank J.; Snow, Ray W.; Cherkiss, Michael; Rozar, Rondald; Goetz, Scott

    2011-01-01

    Conclusions: The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications: Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons.

  17. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  18. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.

    PubMed

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-08-19

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.

  19. Communication: Relationship between local structure and the stability of water in hydrophobic confinement

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Debenedetti, Pablo G.

    2017-12-01

    Liquid water confined between nanoscale hydrophobic objects can become metastable with respect to its vapor at nanoscale separations. While the separations are only several molecular diameters, macroscopic theories are often invoked to interpret the thermodynamics and kinetics of water under confinement. We perform detailed rate and free energy calculations via molecular simulations in order to assess the dependence of the rate of evaporation, free energy barriers, and free energy differences between confined liquid and vapor upon object separation and compare them to the relevant macroscopic theories. At small enough separations, the rate of evaporation appears to deviate significantly from the predictions of classical nucleation theory, and we attribute such deviations to changes in the structure of the confined liquid film. However, the free energy difference between the confined liquid and vapor phases agrees quantitatively with macroscopic theory, and the free energy barrier to condensation displays qualitative agreement. Overall, the present work suggests that theories attempting to capture the kinetic behavior of nanoscale systems should incorporate structural details rather than treating it as a continuum.

  20. Prevalence Rates of Work Organization Characteristics Among Workers in the U.S.: Data From the 2010 National Health Interview Survey

    PubMed Central

    Alterman, Toni; Luckhaupt, Sara E.; Dahlhamer, James M.; Ward, Brian W.; Calvert, Geoffrey M.

    2015-01-01

    Background Surveillance is needed to capture work organization characteristics and to identify their trends. Methods Data from the 2010 National Health Interview Survey (NHIS) were used to calculate prevalence rates for four work organization characteristics (long work hours, non-standard work arrangements, temporary positions, and alternative shifts) overall, and by demographic characteristics, and industry and occupation of current/recent employment. Results Data were available for 27,157 adults, of which 65% were current/recent workers. Among adults who worked in the past 12 months, 18.7% worked 48 hr or more per week, 7.2% worked 60 hr or more per week, 18.7% had non-standard work arrangements, 7.2% were in temporary positions, and 28.7% worked an alternative shift. Conclusions Prevalence rates of work organization characteristics are provided. These national estimates can be used to help occupational health professionals and employers to identify emerging occupational safety and health risks, allow researchers to examine associations with health, and use the data for benchmarking. PMID:22911666

  1. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    PubMed Central

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-01-01

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395

  2. Study of 232Th(n, γ) and 232Th(n,f) reaction rates in a graphite moderated spallation neutron field produced by 1.6 GeV deuterons on lead target

    NASA Astrophysics Data System (ADS)

    Asquith, N. L.; Hashemi-Nezhad, S. R.; Westmeier, W.; Zhuk, I.; Tyutyunnikov, S.; Adam, J.

    2015-02-01

    The Gamma-3 assembly of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is designed to emulate the neutron spectrum of a thermal Accelerator Driven System (ADS). It consists of a lead spallation target surrounded by reactor grade graphite. The target was irradiated with 1.6 GeV deuterons from the Nuclotron accelerator and the neutron capture and fission rate of 232Th in several locations within the assembly were experimentally measured. 232Th is a proposed fuel for envisaged Accelerator Driven Systems and these two reactions are fundamental to the performance and feasibility of 232Th in an ADS. The irradiation of the Gamma-3 assembly was also simulated using MCNPX 2.7 with the INCL4 intra-nuclear cascade and ABLA fission/evaporation models. Good agreement between the experimentally measured and calculated reaction rates was found. This serves as a good validation for the computational models and cross section data used to simulate neutron production and transport of spallation neutrons within a thermal ADS.

  3. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    NASA Astrophysics Data System (ADS)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  4. Integration of image capture and processing: beyond single-chip digital camera

    NASA Astrophysics Data System (ADS)

    Lim, SukHwan; El Gamal, Abbas

    2001-05-01

    An important trend in the design of digital cameras is the integration of capture and processing onto a single CMOS chip. Although integrating the components of a digital camera system onto a single chip significantly reduces system size and power, it does not fully exploit the potential advantages of integration. We argue that a key advantage of integration is the ability to exploit the high speed imaging capability of CMOS image senor to enable new applications such as multiple capture for enhancing dynamic range and to improve the performance of existing applications such as optical flow estimation. Conventional digital cameras operate at low frame rates and it would be too costly, if not infeasible, to operate their chips at high frame rates. Integration solves this problem. The idea is to capture images at much higher frame rates than he standard frame rate, process the high frame rate data on chip, and output the video sequence and the application specific data at standard frame rate. This idea is applied to optical flow estimation, where significant performance improvements are demonstrate over methods using standard frame rate sequences. We then investigate the constraints on memory size and processing power that can be integrated with a CMOS image sensor in a 0.18 micrometers process and below. We show that enough memory and processing power can be integrated to be able to not only perform the functions of a conventional camera system but also to perform applications such as real time optical flow estimation.

  5. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission capture systems and add-on controls, the organic HAP emission rate for the web coating/printing... demonstrate that all capture systems and control devices for the web coating/printing operation(s) meet the... capture systems and control devices for the web coating/printing operation(s) meet the operating limits...

  6. Potential for parasite-induced biases in aquatic invertebrate population studies

    USGS Publications Warehouse

    Fisher, Justin D.L.; Mushet, David M.; Stockwell, Craig A.

    2014-01-01

    Recent studies highlight the need to include estimates of detection/capture probability in population studies. This need is particularly important in studies where detection and/or capture probability is influenced by parasite-induced behavioral alterations. We assessed potential biases associated with sampling a population of the amphipod Gammarus lacustris in the presence of Polymorphus spp. acanthocephalan parasites shown to increase positive phototaxis in their amphipod hosts. We trapped G. lacustris at two water depths (benthic and surface) and compared number of captures and number of parasitized individuals at each depth. While we captured the greatest number of G. lacustris individuals in benthic traps, parasitized individuals were captured most often in surface traps. These results reflect the phototaxic movement of infected individuals from benthic locations to sunlit surface waters. We then explored the influence of varying infection rates on a simulated population held at a constant level of abundance. Simulations resulted in increasingly biased abundance estimates as infection rates increased. Our results highlight the need to consider parasite-induced biases when quantifying detection and/or capture probability in studies of aquatic invertebrate populations.

  7. Age-related decline in lateralised prey capture success in Garnett's bushbaby (Otolemur garnettii).

    PubMed

    Hanbury, David B; Edens, Kyle D; Legg, Claire E; Harrell, Shane P; Greer, Tammy F; Watson, Sheree L

    2012-01-01

    We examined differences in prey capture success when reaching for moving prey with the preferred and non-preferred hand (as determined previously using stationary food items) in 12 Garnett's bushbabies (Otolemur garnettii). Hand preference was determined by a test of simple reaching for stationary food items. We assessed both the frequency of hand use and success rates for each hand in capturing live mealworms. We also examined the effect of age on overall prey capture success. Subjects were individually presented with live mealworms in a cup partially filled with a cornmeal medium. The preferred hand was used significantly more often than the non-preferred hand to obtain the moving prey; however, no differences were found in the frequency of usage of the left vs the right hand. Furthermore, there were no differences in the success rates of the left vs the right hand, nor the preferred vs the non-preferred hand. There was a significant negative correlation between age and prey capture success. These data suggest that age, rather than preferred hand, may be the most relevant factor in the bushbabies' prey capture success.

  8. Theoretical study of radiative electron attachment to CN, C{sub 2}H, and C{sub 4}H radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douguet, Nicolas; Fonseca dos Santos, S.; Orel, Ann E.

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN{sup −}, C{sub 4}H{sup −}, and C{sub 2}H{sup −}. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiativemore » decay. We have shown that the contribution of the indirect pathway to the formation of CN{sup −} is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10{sup −16} cm{sup 3}/s for CN{sup −}, 7 × 10{sup −17} cm{sup 3}/s for C{sub 2}H{sup −}, and 2 × 10{sup −16} cm{sup 3}/s for C{sub 4}H{sup −}. These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.« less

  9. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    PubMed

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  10. Retarding friction versus white noise in the description of heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Chushnyakova, Maria; Gontchar, Igor

    2014-03-01

    We performed modeling of the collision of two spherical nuclei resulting in capture. For this aim the stochastic differential equations are used with the white or colored noise and with the instant or retarding friction, respectively. The dissipative forces are proportional to the squared derivative of the strong nucleus-nucleus interaction potential (SnnP). The SnnP is calculated in the framework of the double folding approach with the density-dependent M3Y NN-forces. Calculations performed for 28Si+144Sm reaction show that accounting for the fluctuations typically reduces the capture cross sections by not more than 10%. In contradistinction, the influence of the memory effects is found resulting in about 20% enhancement of the cross section.

  11. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  12. Development of an aerial counting system in oil palm plantations

    NASA Astrophysics Data System (ADS)

    Zulyma Miserque Castillo, Jhany; Laverde Diaz, Rubbermaid; Rueda Guzmán, Claudia Leonor

    2016-07-01

    This paper proposes the development of a counting aerial system capable of capturing, process and analyzing images of an oil palm plantation to register the number of cultivated palms. It begins with a study of the available UAV technologies to define the most appropriate model according to the project needs. As result, a DJI Phantom 2 Vision+ is used to capture pictures that are processed by a photogrammetry software to create orthomosaics from the areas of interest, which are handled by the developed software to calculate the number of palms contained in them. The implemented algorithm uses a sliding window technique in image pyramids to generate candidate windows, an LBP descriptor to model the texture of the picture, a logistic regression model to classify the windows and a non-maximum suppression algorithm to refine the decision. The system was tested in different images than the ones used for training and for establishing the set point. As result, the system showed a 95.34% detection rate with a 97.83% precision in mature palms and a 79.26% detection rate with a 97.53% precision in young palms giving an FI score of 0.97 for mature palms and 0.87 for the small ones. The results are satisfactory getting the census and high-quality images from which is possible to get more information from the area of interest. All this, achieved through a low-cost system capable of work even in cloudy conditions.

  13. Parametric Instability Rates in Periodically Driven Band Systems

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Bukov, M.; Demler, E.; Goldman, N.

    2017-04-01

    In this work, we analyze the dynamical properties of periodically driven band models. Focusing on the case of Bose-Einstein condensates, and using a mean-field approach to treat interparticle collisions, we identify the origin of dynamical instabilities arising from the interplay between the external drive and interactions. We present a widely applicable generic numerical method to extract instability rates and link parametric instabilities to uncontrolled energy absorption at short times. Based on the existence of parametric resonances, we then develop an analytical approach within Bogoliubov theory, which quantitatively captures the instability rates of the system and provides an intuitive picture of the relevant physical processes, including an understanding of how transverse modes affect the formation of parametric instabilities. Importantly, our calculations demonstrate an agreement between the instability rates determined from numerical simulations and those predicted by theory. To determine the validity regime of the mean-field analysis, we compare the latter to the weakly coupled conserving approximation. The tools developed and the results obtained in this work are directly relevant to present-day ultracold-atom experiments based on shaken optical lattices and are expected to provide an insightful guidance in the quest for Floquet engineering.

  14. A survey of the prevalence of selected bacteria in wild birds

    USGS Publications Warehouse

    Brittingham, M.C.; Temple, S.A.; Duncan, R.M.

    1988-01-01

    We determined the prevalence of six genera of bacteria from a sample of 387 cloacal swabs from 364 passerines and woodpeckers. The prevalence of bacteria were as follows: Escherichia coli (1%), Pseudomonas spp. (22%), Salmonella spp. (0%), Staphylococcus spp. (15%), Streptococcus spp. (18%), and Yersinia spp. (1%). The prevalence of Streptococcus spp. was higher in omnivorous species than in granivorous species (20% versus 8%). Individuals captured at feeders had a lower prevalence of both Streptococcus spp. (15% versus 33%) and Escherichia coli (0.5% versus 4%) than birds that did not have access to feeders. These differences are probably not due to the feeder per se, but instead to other site related differences. The prevalence of bacteria did not differ between male and female black-capped chickadees, Parus atricapillus. For 279 color marked black-capped chickadees, we calculated the cumulative mortality rate during 12 wk following swabbing. Although the cumulative mortality rates of infected birds were consistently higher than the rates of non-infected birds, none of these differences were significant. Infections may cause slight reductions in survival rates, but we were not able to confirm this with our data.

  15. Approaches for the Direct estimation of rate of increase in population size (λ) using capture-recapture data

    Treesearch

    James D. Nichols; Scott T. Sillett; James E. Hines; Richard T. Holmes

    2005-01-01

    Recent developments in the modeling of capture-recapture data permit the direct estimation and modeling of population growth rate Pradel (1996). Resulting estimates reflect changes in numbers of birds on study areas, and such changes result from movement as well as survival and reproductive recruitment. One measure of the “importance” of a...

  16. Seasonal oxygen dynamics in a warm temperate estuary: effects of hydrologic variability on measurements of primary production, respiration, and net metabolism.

    PubMed

    Murrell, Michael C; Caffrey, Jane M; Marcovich, Dragoslav T; Beck, Marcus W; Jarvis, Brandon M; Hagy, James D

    2018-05-01

    Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum's open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O 2 m -2 d -1 ) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates, but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O 2 m -2 d -1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O 2 m -2 d -1 . The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem - water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O 2 m -2 d -1 , but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O 2 m -2 d -1 in spring to 86.7 mmol O 2 m -2 d -1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes, and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.

  17. Characterization of reactive CaCO 3 crystallization in a fluidized bed reactor as a central process of direct air capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor

    A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less

  18. Performance characteristics of the MIT fission converter based epithermal neutron beam.

    PubMed

    Riley, K J; Binns, P J; Harling, O K

    2003-04-07

    A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed with activation foils and paired ionization chambers. The facility currently provides an epithermal neutron flux of 4.6 x 10(9) n cm(-2) s(-1) in-air at the patient position that makes it the most intense BNCT source in the world. This epithermal neutron flux is accompanied by very low specific photon and fast neutron absorbed doses of 3.5 +/- 0.5 and 1.4 +/- 0.2 x 10(-13) Gy cm2, respectively. A therapeutic dose rate of 1.7 RBE Gy min(-1) is achievable at the advantage depth of 97 mm when boronated phenylalanine (BPA) is used as the delivery agent, giving an average therapeutic ratio of 5.7. In clinical trials of normal tissue tolerance when using the FCB, the effective prescribed dose is due principally to neutron interactions with the nonselectively absorbed BPA present in brain. If an advanced compound is considered, the dose to brain would instead be predominately from the photon kerma induced by thermal neutron capture in hydrogen and advantage parameters of 0.88 Gy min(-1), 121 mm and 10.8 would be realized for the therapeutic dose rate, advantage depth and therapeutic ratio, respectively. This study confirms the success of a new approach to producing a high intensity, high purity epithermal neutron source that attains near optimal physical performance and which is well suited to exploit the next generation of boron delivery agents.

  19. Characterization of reactive CaCO 3 crystallization in a fluidized bed reactor as a central process of direct air capture

    DOE PAGES

    Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...

    2017-10-25

    A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less

  20. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  1. Capturing interactions between nitrogen and hydrological cycles under historical climate and land use: Susquehanna watershed analysis with the GFDL land model LM3-TAN

    USGS Publications Warehouse

    Lee, M.; Malyshev, S.; Shevliakova, E.; Milly, Paul C. D.; Jaffé, P. R.

    2014-01-01

    We developed a process model LM3-TAN to assess the combined effects of direct human influences and climate change on terrestrial and aquatic nitrogen (TAN) cycling. The model was developed by expanding NOAA's Geophysical Fluid Dynamics Laboratory land model LM3V-N of coupled terrestrial carbon and nitrogen (C-N) cycling and including new N cycling processes and inputs such as a soil denitrification, point N sources to streams (i.e., sewage), and stream transport and microbial processes. Because the model integrates ecological, hydrological, and biogeochemical processes, it captures key controls of the transport and fate of N in the vegetation–soil–river system in a comprehensive and consistent framework which is responsive to climatic variations and land-use changes. We applied the model at 1/8° resolution for a study of the Susquehanna River Basin. We simulated with LM3-TAN stream dissolved organic-N, ammonium-N, and nitrate-N loads throughout the river network, and we evaluated the modeled loads for 1986–2005 using data from 16 monitoring stations as well as a reported budget for the entire basin. By accounting for interannual hydrologic variability, the model was able to capture interannual variations of stream N loadings. While the model was calibrated with the stream N loads only at the last downstream Susquehanna River Basin Commission station Marietta (40°02' N, 76°32' W), it captured the N loads well at multiple locations within the basin with different climate regimes, land-use types, and associated N sources and transformations in the sub-basins. Furthermore, the calculated and previously reported N budgets agreed well at the level of the whole Susquehanna watershed. Here we illustrate how point and non-point N sources contributing to the various ecosystems are stored, lost, and exported via the river. Local analysis of six sub-basins showed combined effects of land use and climate on soil denitrification rates, with the highest rates in the Lower Susquehanna Sub-Basin (extensive agriculture; Atlantic coastal climate) and the lowest rates in the West Branch Susquehanna Sub-Basin (mostly forest; Great Lakes and Midwest climate). In the re-growing secondary forests, most of the N from non-point sources was stored in the vegetation and soil, but in the agricultural lands most N inputs were removed by soil denitrification, indicating that anthropogenic N applications could drive substantial increase of N2O emission, an intermediate of the denitrification process.

  2. Survival-mediated capture and fusion cross sections for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Yao, L.; Loveland, W.

    2018-01-01

    The cross section for producing a heavy evaporation residue σEVR in a fusion reaction can be written as a product of three nonseparable factors, i.e., the capture cross section, the fusion probability PCN, and the survival probability Wsur. Each of these factors is dependent on the spin. However, one must remember that the Wsur term is zero or very small for higher spin values, thus effectively limiting the capture and fusion terms. For a series of ˜287 reactions leading to heavy evaporation residues with ZCN≤110 , we point out the implications of this fact for capture cross sections for heavy element formation reactions. From a comparison of calculated and measured evaporation residue cross sections we deduce values of the fusion probability PCN for some of these reactions.

  3. Borophene as a Promising Material for Charge-Modulated Switchable CO2 Capture.

    PubMed

    Tan, Xin; Tahini, Hassan A; Smith, Sean C

    2017-06-14

    Ideal carbon dioxide (CO 2 ) capture materials for practical applications should bind CO 2 molecules neither too weakly to limit good loading kinetics nor too strongly to limit facile release. Although charge-modulated switchable CO 2 capture has been proposed to be a controllable, highly selective, and reversible CO 2 capture strategy, the development of a practical gas-adsorbent material remains a great challenge. In this study, by means of density functional theory (DFT) calculations, we have examined the possibility of conductive borophene nanosheets as promising sorbent materials for charge-modulated switchable CO 2 capture. Our results reveal that the binding strength of CO 2 molecules on negatively charged borophene can be significantly enhanced by injecting extra electrons into the adsorbent. At saturation CO 2 capture coverage, the negatively charged borophene achieves CO 2 capture capacities up to 6.73 × 10 14 cm -2 . In contrast to the other CO 2 capture methods, the CO 2 capture/release processes on negatively charged borophene are reversible with fast kinetics and can be easily controlled via switching on/off the charges carried by borophene nanosheets. Moreover, these negatively charged borophene nanosheets are highly selective for separating CO 2 from mixtures with CH 4 , H 2 , and/or N 2 . This theoretical exploration will provide helpful guidance for identifying experimentally feasible, controllable, highly selective, and high-capacity CO 2 capture materials with ideal thermodynamics and reversibility.

  4. The influence of hook type, angler experience, and fish size on injury rates and the duration of capture in an Alaskan catch-and-release rainbow trout fishery

    USGS Publications Warehouse

    Meka, Julie M.

    2004-01-01

    Owing to concerns about the high incidence of past hooking injuries in Alagnak River rainbow trout Oncorhynchus mykiss, fish were captured with spin- and fly-fishing gear with barbed and barbless circle and "J" hooks to determine gear types contributing to injury. Landing and hook removal times were measured for a portion of fish captured, and the anatomical hooking location, hooking scar locations, bleeding intensity, angler experience, and fish size were recorded for all captured fish. Approximately 62% of fish captured experienced at least one new hooking injury, and 29% of fish had at least one past hooking injury. Small fish sustained higher new injury and bleeding rates, but large fish had higher past injury rates. Injury rates were higher for barbed J hooks, barbed J hooks took longer to remove, and fish caught by spin-fishing were injured more frequently than fish caught by fly-fishing. Fewer fly-fishing-caught fish were injured using circle hooks, and circle hooks tended to hook fish in only one location, generally in the jaw. Barbed J hooks were more efficient at landing fish, and J hooks were more efficient at landing fish than circle hooks. Novice anglers injured proportionally more fish than experienced anglers, primarily during hook removal. Landing time was positively correlated with fish size, and experienced anglers took longer to land fish than novices because they captured larger fish. These results suggest that a reduction in hooking injuries may be achieved by using circle hooks as an alternative to J hooks and barbless J hooks to reduce injury and handling time, yet catch efficiency for both methods would be reduced. Although fish captured with barbless J hooks and circle hooks had fewer injuries, it is important to note that each hook type also caused significant injury, and angler education is recommended to promote proper hook removal techniques.

  5. Estimating Suicide Rates in Developing Nations: A Low-Cost Newspaper Capture-Recapture Approach in Cambodia.

    PubMed

    Harris, Keith M; Thandrayen, Joanne; Samphoas, Chien; Se, Pros; Lewchalermwongse, Boontriga; Ratanashevorn, Rattanakorn; Perry, Megan L; Britts, Choloe

    2016-04-01

    This study tested a low-cost method for estimating suicide rates in developing nations that lack adequate statistics. Data comprised reported suicides from Cambodia's 2 largest newspapers. Capture-recapture modeling estimated a suicide rate of 3.8/100 000 (95% CI = 2.5-6.7) for 2012. That compares to World Health Organization estimates of 1.3 to 9.4/100 000 and a Cambodian government estimate of 3.5/100 000. Suicide rates of males were twice that of females, and rates of those <40 years were twice that of those ≥40 years. Capture-recapture modeling with newspaper reports proved a reasonable method for estimating suicide rates for countries with inadequate official data. These methods are low-cost and can be applied to regions with at least 2 newspapers with overlapping reports. Means to further improve this approach are discussed. These methods are applicable to both recent and historical data, which can benefit epidemiological work, and may also be applicable to homicides and other statistics. © 2016 APJPH.

  6. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging systemmore » concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.« less

  7. A coarse-grained model for synergistic action of multiple enzymes on cellulose

    DOE PAGES

    Asztalos, Andrea; Daniels, Marcus; Sethi, Anurag; ...

    2012-08-01

    In this study, degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing -1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, -glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose,more » several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. As a result, we present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. In conclusion, our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.« less

  8. Models to capture the potential for disease transmission in domestic sheep flocks.

    PubMed

    Schley, David; Whittle, Sophie; Taylor, Michael; Kiss, Istvan Zoltan

    2012-09-15

    Successful control of livestock diseases requires an understanding of how they spread amongst animals and between premises. Mathematical models can offer important insight into the dynamics of disease, especially when built upon experimental and/or field data. Here the dynamics of a range of epidemiological models are explored in order to determine which models perform best in capturing real-world heterogeneities at sufficient resolution. Individual based network models are considered together with one- and two-class compartmental models, for which the final epidemic size is calculated as a function of the probability of disease transmission occurring during a given physical contact between two individuals. For numerical results the special cases of a viral disease with a fast recovery rate (foot-and-mouth disease) and a bacterial disease with a slow recovery rate (brucellosis) amongst sheep are considered. Quantitative results from observational studies of physical contact amongst domestic sheep are applied and results from the differently structured flocks (ewes with newborn lambs, ewes with nearly weaned lambs and ewes only) compared. These indicate that the breeding cycle leads to significant changes in the expected basic reproduction ratio of diseases. The observed heterogeneity of contacts amongst animals is best captured by full network simulations, although simple compartmental models describe the key features of an outbreak but, as expected, often overestimate the speed of an outbreak. Here the weights of contacts are heterogeneous, with many low weight links. However, due to the well-connected nature of the networks, this has little effect and differences between models remain small. These results indicate that simple compartmental models can be a useful tool for modelling real-world flocks; their applicability will be greater still for more homogeneously mixed livestock, which could be promoted by higher intensity farming practices. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A Double-Blinded, Randomized Comparison of Medetomidine-Tiletamine-Zolazepam and Dexmedetomidine-Tiletamine-Zolazepam Anesthesia in Free-Ranging Brown Bears (Ursus Arctos)

    PubMed Central

    Cattet, Marc; Zedrosser, Andreas; Stenhouse, Gordon B.; Küker, Susanne; Evans, Alina L.; Arnemo, Jon M.

    2017-01-01

    We compared anesthetic features, blood parameters, and physiological responses to either medetomidine-tiletamine-zolazepam or dexmedetomidine-tiletamine-zolazepam using a double-blinded, randomized experimental design during 40 anesthetic events of free-ranging brown bears (Ursus arctos) either captured by helicopter in Sweden or by culvert trap in Canada. Induction was smooth and predictable with both anesthetic protocols. Induction time, the need for supplemental drugs to sustain anesthesia, and capture-related stress were analyzed using generalized linear models, but anesthetic protocol did not differentially affect these variables. Arterial blood gases and acid-base status, and physiological responses were examined using linear mixed models. We documented acidemia (pH of arterial blood < 7.35), hypoxemia (partial pressure of arterial oxygen < 80 mmHg), and hypercapnia (partial pressure of arterial carbon dioxide ≥ 45 mmHg) with both protocols. Arterial pH and oxygen partial pressure were similar between groups with the latter improving markedly after oxygen supplementation (p < 0.001). We documented dose-dependent effects of both anesthetic protocols on induction time and arterial oxygen partial pressure. The partial pressure of arterial carbon dioxide increased as respiratory rate increased with medetomidine-tiletamine-zolazepam, but not with dexmedetomidine-tiletamine-zolazepam, demonstrating a differential drug effect. Differences in heart rate, respiratory rate, and rectal temperature among bears could not be attributed to the anesthetic protocol. Heart rate increased with increasing rectal temperature (p < 0.001) and ordinal day of capture (p = 0.002). Respiratory rate was significantly higher in bears captured by helicopter in Sweden than in bears captured by culvert trap in Canada (p < 0.001). Rectal temperature significantly decreased over time (p ≤ 0.05). Overall, we did not find any benefit of using dexmedetomidine-tiletamine-zolazepam instead of medetomidine-tiletamine-zolazepam in the anesthesia of brown bears. Both drug combinations appeared to be safe and reliable for the anesthesia of free-ranging brown bears captured by helicopter or by culvert trap. PMID:28118413

  10. Trends in Intussusception Hospitalizations Among US Infants, 1993–2004: Implications for Monitoring the Safety of the New Rotavirus Vaccination Program

    PubMed Central

    Tate, Jacqueline E.; Simonsen, Lone; Viboud, Cecile; Steiner, Claudia; Patel, Manish M.; Curns, Aaron T.; Parashar, Umesh D.

    2009-01-01

    OBJECTIVES In 2006, a new rotavirus vaccine was recommended for routine immunization of US infants. Because a previous rotavirus vaccine was withdrawn in 1999 after it was associated with intussusception, monitoring for this adverse event with the new vaccine is important. The objectives of this study were to assess intussusception hospitalizations trends among US infants for 1993 to 2004; provide estimates of hospitalization rates for intussusception for 2002–2004; and assess variations in background rates by age, race/ethnicity, and surgical management. METHODS By using the Healthcare Cost and Utilization Project’s State Inpatient Data-base that captures US hospital discharges from 16 states representing 49% of the birth cohort during 1993–2004 and from 35 states representing 85% of the birth cohort in 2002–2004, we examined hospitalizations among infants (<12 months of age) with an International Classification of Disease, Ninth Revision, Clinical Modification code for intussusception (560.0). Incidence rates were calculated by using census data, and rate ratios with 95% confidence intervals were calculated by using Poisson regression data. RESULTS Annual intussusception hospitalization rates declined 25% from 1993 to 2004 but have remained stable at ~35 cases per 100 000 infants since 2000. Rates were very low for infants younger than 9 weeks (<5 per 100 000) then increased rapidly, peaking at ~62 per 100 000 at 26 to 29 weeks, before declining gradually to 26 per 100 000 at 52 weeks. Compared with rates among non-Hispanic white infants (27 per 100 000), rates were greater among non-Hispanic black infants (37 per 100 000) and Hispanic infants (45 per 100 000); however, rates did not differ by race/ethnicity for infants who were younger than 16 weeks. CONCLUSIONS This assessment of US hospitalizations provides up-to-date and nationally representative prevaccine rates of intussusception. Because rates varied almost 12-fold by week of age and to a lesser extent by race/ethnicity during the age of vaccination, adjusting baseline rates to reflect the demographics of the vaccinated population will be crucial for assessing risk for intussusception after rotavirus vaccination. PMID:18450856

  11. Trends in intussusception hospitalizations among US infants, 1993-2004: implications for monitoring the safety of the new rotavirus vaccination program.

    PubMed

    Tate, Jacqueline E; Simonsen, Lone; Viboud, Cecile; Steiner, Claudia; Patel, Manish M; Curns, Aaron T; Parashar, Umesh D

    2008-05-01

    In 2006, a new rotavirus vaccine was recommended for routine immunization of US infants. Because a previous rotavirus vaccine was withdrawn in 1999 after it was associated with intussusception, monitoring for this adverse event with the new vaccine is important. The objectives of this study were to assess intussusception hospitalizations trends among US infants for 1993 to 2004; provide estimates of hospitalization rates for intussusception for 2002-2004; and assess variations in background rates by age, race/ethnicity, and surgical management. By using the Healthcare Cost and Utilization Project's State Inpatient Database that captures US hospital discharges from 16 states representing 49% of the birth cohort during 1993-2004 and from 35 states representing 85% of the birth cohort in 2002-2004, we examined hospitalizations among infants (<12 months of age) with an International Classification of Disease, Ninth Revision, Clinical Modification code for intussusception (560.0). Incidence rates were calculated by using census data, and rate ratios with 95% confidence intervals were calculated by using Poisson regression data. Annual intussusception hospitalization rates declined 25% from 1993 to 2004 but have remained stable at approximately 35 cases per 100,000 infants since 2000. Rates were very low for infants younger than 9 weeks (<5 per 100,000) then increased rapidly, peaking at approximately 62 per 100,000 at 26 to 29 weeks, before declining gradually to 26 per 100,000 at 52 weeks. Compared with rates among non-Hispanic white infants (27 per 100,000), rates were greater among non-Hispanic black infants (37 per 100,000) and Hispanic infants (45 per 100,000); however, rates did not differ by race/ethnicity for infants who were younger than 16 weeks. This assessment of US hospitalizations provides up-to-date and nationally representative prevaccine rates of intussusception. Because rates varied almost 12-fold by week of age and to a lesser extent by race/ethnicity during the age of vaccination, adjusting baseline rates to reflect the demographics of the vaccinated population will be crucial for assessing risk for intussusception after rotavirus vaccination.

  12. Cross sections of relativistic radiative electron capture by use of the strong-potential Born calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hino, K.; Watanabe, T.

    1987-07-15

    The relativistically extended strong-potential Born (SPB) formalism is applied to the radiative electron capture process caused by the bombardment of a heavy and highly stripped charged particle with relativistically high velocity. The results are compared with those by use of nonrelativistic SPB calculations and with those by use of the relativistic Born calculation (Sauter's formula), which includes no distortion effects between a heavy projectile ion and an active electron. Even if the strong distortion effects are taken into consideration, the shapes of photon angular distributions in the laboratory frame still nearly depend on sin/sup 2/theta/sub L/(theta/sub L/ is the anglemore » of the emitted photon) in the vicinity of the angle of 90/sup 0/, which is the same as the results by use of Sauter's formula. The higher the charge of a projectile ion becomes, however, the greater the discrepancy between the angular shape of our results and that of Sauter's becomes at both smaller and larger angles than at 90/sup 0/. As is expected, the magnitudes of the differential and the total cross sections are drastically influenced by the distortion effects ascribable to a large charge of a heavy projectile ion such as U/sup 92+/. Our results are in good agreement with recent experiments. In addition, the Coulomb off-shell factor introduced by the SPB theory is found playing important roles in the case of the relativistic radiative electron capture process because the results calculated by using the relativistic impulse approximation are too underestimated.« less

  13. Neutron radiative capture reactions on nuclei of relevance to 0νββ, dark matter and neutrino/antineutrino searches

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, Megha

    2015-05-01

    A program is underway at the Triangle Universities Nuclear Laboratory (TUNL) to measure the neutron capture cross section in the 0.5 to 15 MeV energy range on nuclei whose radioactive daughters could potentially create backgrounds in searches for rare events. Here, we refer to neutrino-less double-beta decay and dark-matter searches, and to detectors built for neutrino and/or antineutrino studies. Neutron capture cross-section data obtained by using the activation method are reported for 40Ar, 74,76Ge, 128,130Te and 136Xe and compared to model calculations and evaluations.

  14. Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Porras, I.; Praena, J.; Arias de Saavedra, F.; Pedrosa, M.; Esquinas, P.; L. Jiménez-Bonilla, P.

    2016-11-01

    Two applications for neutron capture therapy of epithermal neutron beams calculated from the 7Li ( p , n reaction are discussed. In particular, i) for a proton beam of 1920 keV of a 30 mA, a neutron beam of adequate features for BNCT is found at an angle of 80° from the forward direction; and ii) for a proton beam of 1910 keV, a neutron beam is obtained at the forward direction suitable for performing radiobiology experiments for the determination of the biological weighting factors of the fast dose component in neutron capture therapy.

  15. Distribution and abundance of hematophagous flies (Glossinidae, Stomoxys, and Tabanidae) in two national parks of Gabon

    PubMed Central

    Bitome Essono, Paul Yannick; Dechaume-Moncharmont, François-Xavier; Mavoungou, Jacques; Obiang Mba, Régis; Duvallet, Gérard; Bretagnolle, François

    2015-01-01

    In order to minimize risks of pathogen transmission with the development of ecotourism in Gabon, a seasonal inventory has been performed in five contrasted biotopes in Ivindo (INP) and Moukalaba-Doudou (MDNP) National Parks. A total of 10,033 hematophagous flies were captured. The Glossinidae, with six different species identified, was the most abundant group and constitutes about 60% of the captured flies compared to the Stomoxys (6 species also identified) and Tabanidae with 28% and 12%, respectively. The Glossinidae showed a higher rate of capture in primary forest and in research camps. In INP, the Stomoxys showed a higher rate of capture in secondary forest and at village borders, whereas in MDNP the Stomoxys were captured more in the savannah area. Thus, each fly group seemed to reach maximum abundance in different habitats. The Glossinidae were more abundant in primary forest and near research camps while Stomoxys were more abundant in secondary forest and savannah. The Tabanidae did not show a clear habitat preference. PMID:26187781

  16. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy.

    PubMed

    Takada, Kenta; Kumada, Hiroaki; Liem, Peng Hong; Sakurai, Hideyuki; Sakae, Takeji

    2016-12-01

    We simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently. We simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture. For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared. In the evaluations of body movements, there were no significant differences even with shifting up to 9mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9mm in a direction away from the irradiation aperture. When comparing both calculations in the phantom surface up to 3cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation. In the evaluation, the longitudinal displacement has a considerable effect on the organ doses. We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Decoy trapping and rocket-netting for northern pintails in spring

    USGS Publications Warehouse

    Grand, James B.; Fondell, Thomas F.

    1994-01-01

    Decoy traps and rocket-nets were compared for capturing Northern Pintails (Anas acuta: hereafter pintails) during May 1991 on the Yukon Flats, Alaska. Males were captured at similar rates using both methods (1.38 vs. 1.07 males/trap d, respectively), but baited rocket-nets were more efficient than decoy traps for capturing females (0.52 vs. 0.12 females/trap d). There were no significant differences in masses of pintails captured by each method.

  18. Capture of sandhill cranes using alpha-chloralose: a 10-year follow-up.

    PubMed

    Hartup, Barry K; Schneider, Lauren; Engels, J Michael; Hayes, Matthew A; Barzen, Jeb A

    2014-01-01

    Seasonal adjustment of alpha-chloralose captures of sandhill cranes was associated with a modest increase in capture efficacy (+13%), decreased morbidity from exertional myopathy (-1.4%), and overall mortality (-1.7%) rates despite little change in sedation scores. Postcapture fluid administration also decreased confinement times by several hours over most sedation scores.

  19. Spatial patterns of bee captures in North American bowl trapping surveys

    USGS Publications Warehouse

    Droege, Sam; Tepedino, Vincent J.; Lebuhn, Gretchen; Link, William; Minckley, Robert L.; Chen, Qian; Conrad, Casey

    2010-01-01

    1. Bowl and pan traps are now commonly used to capture bees (Hymenoptera: Apiformes) for research and surveys. 2. Studies of how arrangement and spacing of bowl traps affect captures of bees are needed to increase the efficiency of this capture technique. 3. We present results from seven studies of bowl traps placed in trapping webs, grids, and transects in four North American ecoregions (Mid-Atlantic, Coastal California, Chihuahuan Desert, and Columbia Plateau). 4. Over 6000 specimens from 31 bee genera were captured and analysed across the studies. 5. Based on the results from trapping webs and distance tests, the per bowl capture rate of bees does not plateau until bowls are spaced 3–5 m apart. 6. Minor clumping of bee captures within transects was detected, with 26 of 56 transects having index of dispersion values that conform to a clumped distribution and 39 transects having positive Green's index values, 13 with zero, and only four negative. However, degree of clumping was slight with an average value of only 0.06 (the index ranges from -1 to 1) with only five values >0.15. Similarly, runs tests were significant for only 5.9% of the transects. 7. Results indicate that (i) capture rates are unaffected by short distances between bowls within transects and (ii) that bowls and transects should be dispersed throughout a study site.

  20. Atmospheric CO2 capture for the artificial photosynthetic system.

    PubMed

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2018-04-15

    The aim of these studies is to evaluate the ambient CO 2 capture abilities of the membrane contactor system in the same conditions as leafs, such as ambient temperature, pressure and low CO 2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane employed was made by a phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and the hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of membrane and absorbent was evaluated, in order to exclude wetting issues by meaning of swelling, dynamic contact angle and AFM analysis. The prepared membranes were introduced into a cross flow module and used as contactors between CO 2 and the absorbing media, a potassium hydroxide solution. The influence of the membrane thickness, absorbent stirring rate, solution pH and absorption time on CO 2 capture were evaluated. Absorbent solution stirring rate showed no statistically significant influence on absorption. We observed a non-linear correlation between the capture rate and the increase of absorbent solution pH as well as absorption time. The results showed that the efficiency of our CO 2 capture system is similar to stomatal carbon dioxide assimilation rate, achieving stable value of 20μmol/m 2 ·s after 1h of experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A parallel architecture of interpolated timing recovery for high- speed data transfer rate and wide capture-range

    NASA Astrophysics Data System (ADS)

    Higashino, Satoru; Kobayashi, Shoei; Yamagami, Tamotsu

    2007-06-01

    High data transfer rate has been demanded for data storage devices along increasing the storage capacity. In order to increase the transfer rate, high-speed data processing techniques in read-channel devices are required. Generally, parallel architecture is utilized for the high-speed digital processing. We have developed a new architecture of Interpolated Timing Recovery (ITR) to achieve high-speed data transfer rate and wide capture-range in read-channel devices for the information storage channels. It facilitates the parallel implementation on large-scale-integration (LSI) devices.

  2. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  3. Opto-numerical procedures supporting dynamic lower limbs monitoring and their medical diagnosis

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Kujawińska, Malgorzata; Rapp, Walter; Sitnik, Robert

    2006-01-01

    New optical full-field shape measurement systems allow transient shape capture at rates between 15 and 30 Hz. These frequency rates are enough to monitor controlled movements used e.g. for medical examination purposes. In this paper we present a set of algorithms which may be applied for processing of data gathered by fringe projection method implemented for lower limbs shape measurement. The purpose of presented algorithms is to locate anatomical structures based on the limb shape and its deformation in time. The algorithms are based on local surface curvature calculation and analysis of curvature maps changes during the measurement sequence. One of anatomical structure of high medical interest that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. Therefore the usefulness of the algorithms developed was proven at examples of patella localization and monitoring.

  4. Study of the 26Alm (d ,p )27Al Reaction and the Influence of the 26 0+ Isomer on the Destruction of 26Al in the Galaxy

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Rehm, K. E.; Gerken, N.; Avila, M. L.; Kay, B. P.; Talwar, R.; Ayangeakaa, A. D.; Bottoni, S.; Chen, A. A.; Deibel, C. M.; Dickerson, C.; Hanselman, K.; Hoffman, C. R.; Jiang, C. L.; Kuvin, S. A.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Sethi, J.; Ugalde, C.

    2017-08-01

    The existence of 26 (t1 /2=7.17 ×105 yr ) in the interstellar medium provides a direct confirmation of ongoing nucleosynthesis in the Galaxy. The presence of a low-lying 0+ isomer (26m ), however, severely complicates the astrophysical calculations. We present for the first time a study of the 26Al m(d ,p ) 27Al reaction using an isomeric 26Al beam. The selectivity of this reaction allowed the study of ℓ=0 transfers to T =1 /2 , and T =3 /2 states in 27Al. Mirror symmetry arguments were then used to constrain the 26Al m(p ,γ ) 27Si reaction rate and provide an experimentally determined upper limit of the rate for the destruction of isomeric 26Al via radiative proton capture reactions, which is expected to dominate the destruction path of 26Alm in asymptotic giant branch stars, classical novae, and core collapse supernovae.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less

  6. Neutrinos from type Ia supernovae: The deflagration-to-detonation transition scenario

    DOE PAGES

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; ...

    2016-07-19

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear—type Ia—supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, energy, line of sight, and neutrino-flavor-dependent features of the neutrino signal expected from a three-dimensional delayed-detonation explosion simulation, where a deflagration-to-detonation transition triggers the complete disruption ofmore » a near-Chandrasekhar mass carbon-oxygen white dwarf. We also calculate the neutrino flavor evolution along eight lines of sight through the simulation as a function of time and energy using an exact three-flavor transformation code. We identify a characteristic spectral peak at ˜10 MeV as a signature of electron captures on copper. This peak is a potentially distinguishing feature of explosion models since it reflects the nucleosynthesis conditions early in the explosion. We simulate the event rates in the Super-K, Hyper-K, JUNO, and DUNE neutrino detectors with the SNOwGLoBES event rate calculation software and also compute the IceCube signal. Hyper-K will be able to detect neutrinos from our model out to a distance of ˜10 kpc. Here, at 1 kpc, JUNO, Super-K, and DUNE would register a few events while IceCube and Hyper-K would register several tens of events.« less

  7. Monte Carlo analyses of TRX slightly enriched uranium-H/sub 2/O critical experiments with ENDF/B-IV and related data sets (AWBA Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J. Jr.

    1977-12-01

    Four H/sub 2/O-moderated, slightly-enriched-uranium critical experiments were analyzed by Monte Carlo methods with ENDF/B-IV data. These were simple metal-rod lattices comprising Cross Section Evaluation Working Group thermal reactor benchmarks TRX-1 through TRX-4. Generally good agreement with experiment was obtained for calculated integral parameters: the epi-thermal/thermal ratio of U238 capture (rho/sup 28/) and of U235 fission (delta/sup 25/), the ratio of U238 capture to U235 fission (CR*), and the ratio of U238 fission to U235 fission (delta/sup 28/). Full-core Monte Carlo calculations for two lattices showed good agreement with cell Monte Carlo-plus-multigroup P/sub l/ leakage corrections. Newly measured parameters for themore » low energy resonances of U238 significantly improved rho/sup 28/. In comparison with other CSEWG analyses, the strong correlation between K/sub eff/ and rho/sup 28/ suggests that U238 resonance capture is the major problem encountered in analyzing these lattices.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp

    Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less

  9. EDOS Data Capture for ALOS

    NASA Technical Reports Server (NTRS)

    McLemore, Bruce; Cordier, Guy R.; Wood, Terri; Gamst, Harek

    2012-01-01

    In 2008, NASA's Earth Sciences Missions Operations (ESMO) at Goddard Space Flight Center (GSFC) directed the Earth Observing System Data Operations System (EDOS) project to provide a prototype system to assess the feasibility of high rate data capture for the Japan Aerospace Exploration Agency's (JAXA) Advanced Land Observing Satellite (ALOS) spacecraft via NASA's Tracking and Data Relay Satellite System (TDRSS). The key objective of this collaborative effort between NASA and JAXA was to share science data collected over North and South America previously unavailable due to limitations in ALOS downlink capacity. EDOS provided a single system proof-of-concept in 4 months at White Sands TDRS Ground Terminal The system captured 6 ALOS events error-free at 277 Mbps and delivered the data to the Alaska Satellite Facility (ASF) within 3 hours (May/June '08). This paper describes the successful rapid prototyping approach which led to a successful demonstration and agreement between NASA and JAXA for operational support. The design of the operational system will be discussed with emphasis on concurrent high-rate data capture, Level-O processing, real-time display and high-rate delivery with stringent latency requirements. A similar solution was successfully deployed at Svalbard, Norway to support the Suomi NPP launch (October 2011) and capture all X-band data and provide a 30-day backup archive.

  10. High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection.

    PubMed

    Autebert, Julien; Coudert, Benoit; Champ, Jérôme; Saias, Laure; Guneri, Ezgi Tulukcuoglu; Lebofsky, Ronald; Bidard, François-Clément; Pierga, Jean-Yves; Farace, Françoise; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis

    2015-05-07

    A new generation of the Ephesia cell capture technology optimized for CTC capture and genetic analysis is presented, characterized in depth and compared with the CellSearch system as a reference. This technology uses magnetic particles bearing tumour-cell specific EpCAM antibodies, self-assembled in a regular array in a microfluidic flow cell. 48,000 high aspect-ratio columns are generated using a magnetic field in a high throughput (>3 ml h(-1)) device and act as sieves to specifically capture the cells of interest through antibody-antigen interactions. Using this device optimized for CTC capture and analysis, we demonstrated the capture of epithelial cells with capture efficiency above 90% for concentrations as low as a few cells per ml. We showed the high specificity of capture with only 0.26% of non-epithelial cells captured for concentrations above 10 million cells per ml. We investigated the capture behavior of cells in the device, and correlated the cell attachment rate with the EpCAM expression on the cell membranes for six different cell lines. We developed and characterized a two-step blood processing method to allow for rapid processing of 10 ml blood tubes in less than 4 hours, and showed a capture rate of 70% for as low as 25 cells spiked in 10 ml blood tubes, with less than 100 contaminating hematopoietic cells. Using this device and procedure, we validated our system on patient samples using an automated cell immunostaining procedure and a semi-automated cell counting method. Our device captured CTCs in 75% of metastatic prostate cancer patients and 80% of metastatic breast cancer patients, and showed similar or better results than the CellSearch device in 10 out of 13 samples. Finally, we demonstrated the possibility of detecting cancer-related PIK3CA gene mutation in 20 cells captured in the chip with a good correlation between the cell count and the quantitation value Cq of the post-capture qPCR.

  11. NATIONAL STORMWATER CALCULATOR USER'S GUIDE ...

    EPA Pesticide Factsheets

    The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US. It estimates the amount of stormwater runoff generated from a site under different development and control scenarios over a long term period of historical rainfall. The analysis takes into account local soil conditions, slope, land cover and meteorology. Different types of low impact development (LID) practices (also known as green infrastructure) can be employed to help capture and retain rainfall on-site. Future climate change scenarios taken from internationally recognized climate change projections can also be considered. The calculator provides planning level estimates of capital and maintenance costs which will allow planners and managers to evaluate and compare effectiveness and costs of LID controls.The calculator’s primary focus is informing site developers and property owners on how well they can meet a desired stormwater retention target. It can be used to answer such questions as:• What is the largest daily rainfall amount that can be captured by a site in either its pre-development, current, or post-development condition?• To what degree will storms of different magnitudes be captured on site?• What mix of LID controls can be deployed to meet a given stormwater retention target?• How well will LID controls perform under future meteorological projections made by global climate change models?• What are the relativ

  12. Estimation of unemployment rates using small area estimation model by combining time series and cross-sectional data

    NASA Astrophysics Data System (ADS)

    Muchlisoh, Siti; Kurnia, Anang; Notodiputro, Khairil Anwar; Mangku, I. Wayan

    2016-02-01

    Labor force surveys conducted over time by the rotating panel design have been carried out in many countries, including Indonesia. Labor force survey in Indonesia is regularly conducted by Statistics Indonesia (Badan Pusat Statistik-BPS) and has been known as the National Labor Force Survey (Sakernas). The main purpose of Sakernas is to obtain information about unemployment rates and its changes over time. Sakernas is a quarterly survey. The quarterly survey is designed only for estimating the parameters at the provincial level. The quarterly unemployment rate published by BPS (official statistics) is calculated based on only cross-sectional methods, despite the fact that the data is collected under rotating panel design. The study purpose to estimate a quarterly unemployment rate at the district level used small area estimation (SAE) model by combining time series and cross-sectional data. The study focused on the application and comparison between the Rao-Yu model and dynamic model in context estimating the unemployment rate based on a rotating panel survey. The goodness of fit of both models was almost similar. Both models produced an almost similar estimation and better than direct estimation, but the dynamic model was more capable than the Rao-Yu model to capture a heterogeneity across area, although it was reduced over time.

  13. Mutual capture of dipolar molecules at low and very low energies. I. Approximate analytical treatment.

    PubMed

    Nikitin, E E; Troe, J

    2010-09-16

    Approximate analytical expressions are derived for the low-energy rate coefficients of capture of two identical dipolar polarizable rigid rotors in their lowest nonresonant (j(1) = 0 and j(2) = 0) and resonant (j(1) = 0,1 and j(2) = 1,0) states. The considered range extends from the quantum, ultralow energy regime, characterized by s-wave capture, to the classical regime described within fly wheel and adiabatic channel approaches, respectively. This is illustrated by the table of contents graphic (available on the Web) that shows the scaled rate coefficients for the mutual capture of rotors in the resonant state versus the reduced wave vector between the Bethe zero-energy (left arrows) and classical high-energy (right arrow) limits for different ratios δ of the dipole-dipole to dispersion interaction.

  14. Investigation of complete and incomplete fusion in the 7Li+124Sn reaction near Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Parkar, V. V.; Sharma, Sushil K.; Palit, R.; Upadhyaya, S.; Shrivastava, A.; Pandit, S. K.; Mahata, K.; Jha, V.; Santra, S.; Ramachandran, K.; Nag, T. N.; Rath, P. K.; Kanagalekar, Bhushan; Trivedi, T.

    2018-01-01

    The complete and incomplete fusion cross sections for the 7Li+124Sn reaction were measured using online and offline characteristic γ -ray detection techniques. The complete fusion (CF) cross sections at energies above the Coulomb barrier were found to be suppressed by ˜26 % compared to the coupled channel calculations. This suppression observed in complete fusion cross sections is found to be commensurate with the measured total incomplete fusion (ICF) cross sections. There is a distinct feature observed in the ICF cross sections, i.e., t capture is found to be dominant compared to α capture at all the measured energies. A simultaneous explanation of complete, incomplete, and total fusion (TF) data was also obtained from the calculations based on the continuum discretized coupled channel method with short range imaginary potentials. The cross section ratios of CF/TF and ICF/TF obtained from the data as well as the calculations showed the dominance of ICF at below-barrier energies and CF at above-barrier energies.

  15. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less

  16. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    NASA Astrophysics Data System (ADS)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  17. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method

    NASA Astrophysics Data System (ADS)

    Abshirini, Mohammad; Soltani, Nasser; Marashizadeh, Parisa

    2016-03-01

    Mode I of fracture of centrally cracked Brazilian disc was investigated experimentally using a digital image correlation (DIC) method. Experiments were performed on PMMA polymers subjected to diametric-compression load. The displacement fields were determined by a correlation between the reference and the deformed images captured before and during loading. The stress intensity factors were calculated by displacement fields using William's equation and the least square algorithm. The parameters involved in the accuracy of SIF calculation such as number of terms in William's equation and the region of analysis around the crack were discussed. The DIC results were compared with the numerical results available in literature and a very good agreement between them was observed. By extending the tests up to the critical state, mode I fracture toughness was determined by analyzing the image of specimen captured at the moment before fracture. The results showed that the digital image correlation was a reliable technique for the calculation of the fracture toughness of brittle materials.

  18. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  19. A versatile technique for capturing urban gulls during winter

    USGS Publications Warehouse

    Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen

    2014-01-01

    The capture of birds is a common part of many avian studies but often requires large investments of time and resources. We developed a novel technique for capturing gulls during the non-breeding season using a net launcher that was effective and efficient. The technique can be used in a variety of habitats and situations, including urban areas. Using this technique, we captured 1,326 gulls in 125 capture events from 2008 to 2012 in Massachusetts, USA. On average, 10 ring-billed gulls (Larus delawarensis; range = 1–37) were captured per trapping event. Capture rate (the number of birds captured per trapping event) was influenced by the type of bait used and also the time of the year (greatest in autumn, lowest in winter). Our capture technique could be adapted to catch a variety of urban or suburban birds and mammals that are attracted to bait.

  20. Effects of the number of people on efficient capture and sample collection: a lion case study.

    PubMed

    Ferreira, Sam M; Maruping, Nkabeng T; Schoultz, Darius; Smit, Travis R

    2013-05-24

    Certain carnivore research projects and approaches depend on successful capture of individuals of interest. The number of people present at a capture site may determine success of a capture. In this study 36 lion capture cases in the Kruger National Park were used to evaluate whether the number of people present at a capture site influenced lion response rates and whether the number of people at a sampling site influenced the time it took to process the collected samples. The analyses suggest that when nine or fewer people were present, lions appeared faster at a call-up locality compared with when there were more than nine people. The number of people, however, did not influence the time it took to process the lions. It is proposed that efficient lion capturing should spatially separate capture and processing sites and minimise the number of people at a capture site.

Top