ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
NASA Astrophysics Data System (ADS)
Liu, Yue-Lin; Ding, Fang; Luo, G.-N.; Chen, Chang-An
2017-12-01
We have carried out systematic first-principles total energy and vibration spectrum calculations to investigate the finite-temperature H dissolution behaviors in tungsten and molybdenum, which are considered promising candidates for the first wall in nuclear fusion reactors. The temperature effect is considered by the lattice expansion and phonon vibration. We demonstrate that the H Gibbs energy of formation in both tetrahedral and octahedral interstitial positions depends strongly on the temperature. The H Gibbs energy of formation under one atmosphere of pressure increases significantly with increasing temperature. The phonon vibration contribution plays a decisive role in the H Gibbs energy of formation with the increasing temperature. Using the predicted H Gibbs energy of formation, our calculated H concentrations in both metals are about one or two orders of magnitude lower than the experimental data at temperature range from 900 to 2400 K. Such a discrepancy can be reasonably explained by the defect-capturing effect.
Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.
Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph
2017-04-01
ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol -1 . Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol -1 . For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tikhonov, D. A.; Sobolev, E. V.
2011-04-01
A method of integral equations of the theory of liquids in the reference interaction site model (RISM) approximation is used to estimate the Gibbs energy averaged over equilibrium trajectories computed by molecular mechanics. Peptide oxytocin is selected as the object of interest. The Gibbs energy is calculated using all chemical potential formulas introduced in the RISM approach for the excess chemical potential of solvation and is compared with estimates by the generalized Born model. Some formulas are shown to give the wrong sign of Gibbs energy changes when peptide passes from the gas phase into water environment; the other formulas give overestimated Gibbs energy changes with the right sign. Note that allowance for the repulsive correction in the approximate analytical expressions for the Gibbs energy derived by thermodynamic perturbation theory is not a remedy.
Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.
Toure, Oumar; Dussap, Claude-Gilles
2016-08-01
Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi
2017-01-01
In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg
2016-02-01
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.
Hemingway, B.S.; Robie, R.A.; Kittrick, J.A.
1978-01-01
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq-] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq-] at 298.15 K is -1305 ?? 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 ??m. The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are -9210 ?? 5.0, -918.4 ?? 2.1 and -1153 ?? 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq-] calculated in this paper and the acceptance of -1582.2 ?? 1.3 and -1154.9 ?? 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively. Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq-] were also calculated as -914.2 ?? 2.1 and -830.9 ?? 2.1 kJ/mol, respectively. The use of [AlC2 aq-] as a chemical species is discouraged. A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of -1307.5 ?? 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies. Smoothed values for the thermodynamic functions CP0, ( HT0 - H2980) T, ( GT0 - H2980) T, ST0 - S00, ??Hf{hook},2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 - 0.78850 T + 3.0340 ?? 10-4 T2 -1.85158 ?? 10-4 T2 1 2 + 8.3341 ?? 106 T-2. The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite. ?? 1978.
NASA Technical Reports Server (NTRS)
Isham, M. A.
1992-01-01
Silicon carbide and silicon nitride are considered for application as structural materials and coating in advanced propulsion systems including nuclear thermal. Three-dimensional Gibbs free energy were constructed for reactions involving these materials in H2 and H2/H2O. Free energy plots are functions of temperature and pressure. Calculations used the definition of Gibbs free energy where the spontaneity of reactions is calculated as a function of temperature and pressure. Silicon carbide decomposes to Si and CH4 in pure H2 and forms a SiO2 scale in a wet atmosphere. Silicon nitride remains stable under all conditions. There was no apparent difference in reaction thermodynamics between ideal and Van der Waals treatment of gaseous species.
Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.
Ding, Xinqiang; Vilseck, Jonah Z; Hayes, Ryan L; Brooks, Charles L
2017-06-13
λ-dynamics is a generalized ensemble method for alchemical free energy calculations. In traditional λ-dynamics, the alchemical switch variable λ is treated as a continuous variable ranging from 0 to 1 and an empirical estimator is utilized to approximate the free energy. In the present article, we describe an alternative formulation of λ-dynamics that utilizes the Gibbs sampler framework, which we call Gibbs sampler-based λ-dynamics (GSLD). GSLD, like traditional λ-dynamics, can be readily extended to calculate free energy differences between multiple ligands in one simulation. We also introduce a new free energy estimator, the Rao-Blackwell estimator (RBE), for use in conjunction with GSLD. Compared with the current empirical estimator, the advantage of RBE is that RBE is an unbiased estimator and its variance is usually smaller than the current empirical estimator. We also show that the multistate Bennett acceptance ratio equation or the unbinned weighted histogram analysis method equation can be derived using the RBE. We illustrate the use and performance of this new free energy computational framework by application to a simple harmonic system as well as relevant calculations of small molecule relative free energies of solvation and binding to a protein receptor. Our findings demonstrate consistent and improved performance compared with conventional alchemical free energy methods.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases
NASA Astrophysics Data System (ADS)
Waldner, Peter
2017-08-01
All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.
The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems
ERIC Educational Resources Information Center
Smith, Norman O.
2004-01-01
An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…
NASA Astrophysics Data System (ADS)
Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.
2012-11-01
Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.
Density-functional theory computer simulations of CZTS0.25Se0.75 alloy phase diagrams
NASA Astrophysics Data System (ADS)
Chagarov, E.; Sardashti, K.; Haight, R.; Mitzi, D. B.; Kummel, A. C.
2016-08-01
Density-functional theory simulations of CZTS, CZTSe, and CZTS0.25Se0.75 photovoltaic compounds have been performed to investigate the stability of the CZTS0.25Se0.75 alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS0.25Se0.75 alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to the Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS0.25Se0.75 that the chemical potentials for stability differ between typical processing temperature (˜900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS0.25Se0.75 in a thermodynamically stable state to minimize phase decomposition.
Thermodynamic Study of the Nickel Addition in Zinc Hot-Dip Galvanizing Baths
NASA Astrophysics Data System (ADS)
Pistofidis, N.; Vourlias, G.
2010-01-01
A usual practice during zinc hot-dip galvanizing is the addition of nickel in the liquid zinc which is used to inhibit the Sandelin effect. Its action is due to the fact that the ζ (zeta) phase of the Fe-Zn system is replaced by the Τ (tau) phase of the Fe-Zn-Ni system. In the present work an attempt is made to explain the formation of the Τ phase with thermodynamics. For this reason the Gibbs free energy changes for Τ and ζ phases were calculated. The excess free energy for the system was calculated with the Redlich-Kister polyonyme. From this calculation it was deduced that the Gibbs energy change for the tau phase is negative. As a result its formation is spontaneous.
Surfactant Adsorption: A Revised Physical Chemistry Lab
ERIC Educational Resources Information Center
Bresler, Marc R.; Hagen, John P.
2008-01-01
Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…
Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids
NASA Astrophysics Data System (ADS)
Cheng, Bingqing; Ceriotti, Michele
2018-02-01
The Gibbs free energy is the fundamental thermodynamic potential underlying the relative stability of different states of matter under constant-pressure conditions. However, computing this quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is often used as a proxy. In this paper, we use a combination of thermodynamic integration methods to accurately evaluate the Gibbs free energies associated with defects in crystals, including the vacancy formation energy in bcc iron, and the stacking fault energy in fcc nickel, iron, and cobalt. We quantify the importance of entropic and anharmonic effects in determining the free energies of defects at high temperatures, and show that the potential energy approximation as well as the harmonic approximation may produce inaccurate or even qualitatively wrong results. Our calculations manifest the necessity to employ accurate free energy methods such as thermodynamic integration to estimate the stability of crystallographic defects at high temperatures.
Density-functional theory computer simulations of CZTS{sub 0.25}Se{sub 0.75} alloy phase diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chagarov, E.; Sardashti, K.; Kummel, A. C.
2016-08-14
Density-functional theory simulations of CZTS, CZTSe, and CZTS{sub 0.25}Se{sub 0.75} photovoltaic compounds have been performed to investigate the stability of the CZTS{sub 0.25}Se{sub 0.75} alloy vs. decomposition into CZTS, CZTSe, and other secondary compounds. The Gibbs energy for vibrational contributions was estimated by calculating phonon spectra and thermodynamic properties at finite temperatures. It was demonstrated that the CZTS{sub 0.25}Se{sub 0.75} alloy is stabilized not by enthalpy of formation but primarily by the mixing contributions to the Gibbs energy. The Gibbs energy gains/losses for several decomposition reactions were calculated as a function of temperature with/without intermixing and vibration contributions to themore » Gibbs energy. A set of phase diagrams was built in the multidimensional space of chemical potentials at 300 K and 900 K temperatures to demonstrate alloy stability and boundary compounds at various chemical conditions. It demonstrated for CZTS{sub 0.25}Se{sub 0.75} that the chemical potentials for stability differ between typical processing temperature (∼900 K) and operating temperature (300 K). This implies that as cooling progresses, the flux/concentration of S should be increased in MBE growth to maintain the CZTS{sub 0.25}Se{sub 0.75} in a thermodynamically stable state to minimize phase decomposition.« less
NASA Astrophysics Data System (ADS)
Barber, Duncan Henry
During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel. Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors. A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system. In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A benchmark calculation demonstrates the improvement in agreement of the total inventory of those chemical elements included in the RMC fuel model to an ORIGEN-S calculation. ORIGEN-S is the Oak Ridge isotope generation and depletion computer program. The Gibbs energy minimizer requires a chemical database containing coefficients from which the Gibbs energy of pure compounds, gas and liquid mixtures, and solid solutions can be calculated. The RMC model of irradiated uranium dioxide fuel has been converted into the required format. The Gibbs energy minimizer has been incorporated into a new model of fission-product vaporization from the fuel surface. Calculated release fractions using the new code have been compared to results calculated with SOURCE IST 2.0P11 and to results of tests used in the validation of SOURCE 2.0. The new code shows improvements in agreement with experimental releases for a number of nuclides. Of particular significance is the better agreement between experimental and calculated release fractions for 140La. The improved agreement reflects the inclusion in the RMC model of the solubility of lanthanum (III) oxide (La2O3) in the fuel matrix. Calculated lanthanide release fractions from earlier computer programs were a challenge to environmental qualification analysis of equipment for some accident scenarios. The new prototype computer program would alleviate this concern. Keywords: Nuclear Engineering; Material Science; Thermodynamics; Radioactive Material, Gibbs Energy Minimization, Actinide Generation and Depletion, FissionProduct Generation and Depletion.
Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.
Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim
2016-10-26
For CO and N 2 on Mg 2+ sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.
Hemingway, B.S.
1990-01-01
Smoothed values of the heat capacities and derived thermodynamic functions are given for bunsenite, magnetite, and hematite for the temperature interval 298.15 to 1800 K. The Gibbs free energy for the reaction Ni + 0.5O2 = NiO is given by the equation ??rG0T = -238.39 + 0.1146T - 3.72 ?? 10-3T ln T and is valid from 298.15 K to 1700 K. The Gibbs free energy (in kJ) of the reaction 2 magnetite + 3 quartz = 3 fayalite + O2 may be calculated from the equation ??rG0T = 474.155 - 0.16120 T in kJ and between 800 and 1400 K. The Gibbs free energy (in kJ) of the reaction 6 hematite = 4 magnetite + O2 may be calculated from the following equations: ??rG0T = 496.215 - 0.27114T, ??rG0T = 514.690 - 0.29753T, ??rG0T = 501.348 - 0.2854T. -from Author
Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-Wen
2018-07-01
Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.
eQuilibrator--the biochemical thermodynamics calculator.
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.
eQuilibrator—the biochemical thermodynamics calculator
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852
Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein
2016-01-01
First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge e inside of a spherical static body with mass M. It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point Mc=2|e|/√{3} with corresponding temperature Tc=1/24π√{3|e|}. Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for 0< T< Tc but not for negative values which means the system is made from two subsystem. For negative temperatures entropy reaches to zero value at Tto-∞ and so takes Bose-Einstein condensation single state. Entropy increases monotonically in case 0< T< Tc. Regarding results of the work presented at Wang and Huang (Phys. Rev. D 63:124014, 2001) we calculate again the mentioned thermodynamical variables for remnant stable final state of evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is m_{final}=|e| in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).
NASA Astrophysics Data System (ADS)
Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.
2015-11-01
Earlier a two-component pseudopotential plasma model, which we called a “shelf Coulomb” model has been developed. A Monte-Carlo study of canonical NVT ensemble with periodic boundary conditions has been undertaken to calculate equations of state, pair distribution functions, internal energies and other thermodynamics properties of the model. In present work, an attempt is made to apply so-called hybrid Gibbs statistical ensemble Monte-Carlo technique to this model. First simulation results data show qualitatively similar results for critical point region for both methods. Gibbs ensemble technique let us to estimate the melting curve position and a triple point of the model (in reduced temperature and specific volume coordinates): T* ≈ 0.0476, v* ≈ 6 × 10-4.
Hemingway, B.S.; Robie, R.A.; Apps, J.A.
1991-01-01
Heat capacity measurements are reported for a well-characterized boehmite that differ significantly from results reported earlier by Shomate and Cook (1946) for a monohydrate of alumina. It is suggested that the earlier measurements were made on a sample that was a mixture of phases and that use of that heat-capacity and derived thermodynamic data be discontinued. The entropy of boehmite derived in this study is 37.19 ?? 0.10 J/(mol.K) at 298.15 K. Based on our value for the entropy and accepting the recommended Gibbs free energy for Al(OH)-4, the Gibbs free energy and enthalpy of formation of boehmite are calculated to be -918.4 ?? 2.1 and -996.4 ?? 2.2 kJ/mol, respectively, from solubility data for boehmite. The Gibbs energy for boehmite is unchanged from that given by Hemingway et al. (1978). -from Authors
NASA Astrophysics Data System (ADS)
Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.
2018-04-01
The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.
ERIC Educational Resources Information Center
Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie
2016-01-01
Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…
NASA Astrophysics Data System (ADS)
Harvey, J.-P.; Gheribi, A. E.; Chartrand, P.
2012-12-01
In this work, an in silico procedure to generate a fully coherent set of thermodynamic properties obtained from classical molecular dynamics (MD) and Monte Carlo (MC) simulations is proposed. The procedure is applied to the Al-Zr system because of its importance in the development of high strength Al-Li alloys and of bulk metallic glasses. Cohesive energies of the studied condensed phases of the Al-Zr system (the liquid phase, the fcc solid solution, and various orthorhombic stoichiometric compounds) are calculated using the modified embedded atom model (MEAM) in the second-nearest-neighbor formalism (2NN). The Al-Zr MEAM-2NN potential is parameterized in this work using ab initio and experimental data found in the literature for the AlZr3-L12 structure, while its predictive ability is confirmed for several other solid structures and for the liquid phase. The thermodynamic integration (TI) method is implemented in a general MC algorithm in order to evaluate the absolute Gibbs energy of the liquid and the fcc solutions. The entropy of mixing calculated from the TI method, combined to the enthalpy of mixing and the heat capacity data generated from MD/MC simulations performed in the isobaric-isothermal/canonical (NPT/NVT) ensembles are used to parameterize the Gibbs energy function of all the condensed phases in the Al-rich side of the Al-Zr system in a CALculation of PHAse Diagrams (CALPHAD) approach. The modified quasichemical model in the pair approximation (MQMPA) and the cluster variation method (CVM) in the tetrahedron approximation are used to define the Gibbs energy of the liquid and the fcc solid solution respectively for their entire range of composition. Thermodynamic and structural data generated from our MD/MC simulations are used as input data to parameterize these thermodynamic models. A detailed analysis of the validity and transferability of the Al-Zr MEAM-2NN potential is presented throughout our work by comparing the predicted properties obtained from this formalism with available ab initio and experimental data for both liquid and solid phases.
Recommendations for terminology and databases for biochemical thermodynamics.
Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V
2011-05-01
Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.
Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.
1993-01-01
The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.
NASA Astrophysics Data System (ADS)
Sudolská, Mária; Cantrel, Laurent; Budzák, Šimon; Černušák, Ivan
2014-03-01
Monohydrated complexes of iodine species (I, I2, HI, and HOI) have been studied by correlated ab initio calculations. The standard enthalpies of formation, Gibbs free energy and the temperature dependence of the heat capacities at constant pressure were calculated. The values obtained have been implemented in ASTEC nuclear accident simulation software to check the thermodynamic stability of hydrated iodine compounds in the reactor coolant system and in the nuclear containment building of a pressurised water reactor during a severe accident. It can be concluded that iodine complexes are thermodynamically unstable by means of positive Gibbs free energies and would be represented by trace level concentrations in severe accident conditions; thus it is well justified to only consider pure iodine species and not hydrated forms.
Mora Osorio, Camilo Andrés; González Barrios, Andrés Fernando
2016-12-07
Calculation of the Gibbs free energy changes of biological molecules at the oil-water interface is commonly performed with Molecular Dynamics simulations (MD). It is a process that could be performed repeatedly in order to find some molecules of high stability in this medium. Here, an alternative method of calculation has been proposed: a group contribution method (GCM) for peptides based on MD of the twenty classic amino acids to obtain free energy change during the insertion of any peptide chain in water-dodecane interfaces. Multiple MD of the twenty classic amino acids located at the interface of rectangular simulation boxes with a dodecane-water medium were performed. A GCM to calculate the free energy of entire peptides is then proposed. The method uses the summation of the Gibbs free energy of each amino acid adjusted in function of its presence or absence in the chain as well as its hydrophobic characteristics. Validation of the equation was performed with twenty-one peptides all simulated using MD in dodecane-water rectangular boxes in previous work, obtaining an average relative error of 16%.
Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A
2011-10-14
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.
Solubility and dissolution thermodynamics of tetranitroglycoluril in organic solvents at 295-318 K
NASA Astrophysics Data System (ADS)
Zheng, Zhihua; Wang, Jianlong; Hu, Zhiyan; Du, Hongbin
2017-08-01
The solubility data of tetranitroglycoluril in acetone, methanol, ethanol, ethyl acetate, nitromethane and chloroform at temperatures ranging from 295-318 K were measured by gravimetric method. The solubility data of tetranitroglycoluril were fitted with Apelblat semiempirical equation. The dissolution enthalpy, entropy and Gibbs energy of tetranitroglycoluril were calculated using the Van't Hoff and Gibbs equations. The results showed that the Apelblat semiempirical equation was significantly correlated with solubility data. The dissolving process was endothermic, entropy-driven, and nonspontaneous.
Sudolská, Mária; Cantrel, Laurent; Cernušák, Ivan
2014-04-01
Structure and thermodynamic properties (standard enthalpies of formation and Gibbs free energies) of hydrated caesium species of nuclear safety interest, Cs, CsOH, CsI and its dimer Cs₂I₂, with one up to three water molecules, are calculated to assess their possible existence in severe accident occurring to a pressurized water reactor. The calculations were performed using the coupled cluster theory including single, double and non-iterative triple substitutions (CCSD(T)) in conjunction with the basis sets (ANO-RCC) developed for scalar relativistic calculations. The second-order spin-free Douglas-Kroll-Hess Hamiltonian was used to account for the scalar relativistic effects. Thermodynamic properties obtained by these correlated ab initio calculations (entropies and thermal capacities at constant pressure as a function of temperature) are used in nuclear accident simulations using ASTEC/SOPHAEROS software. Interaction energies, standard enthalpies and Gibbs free energies of successive water molecules addition determine the ordering of the complexes. CsOH forms the most hydrated stable complexes followed by CsI, Cs₂I₂, and Cs. CsOH still exists in steam atmosphere even at quite high temperature, up to around 1100 K.
On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres.
Krissansen-Totton, Joshua; Bergsman, David S; Catling, David C
2016-01-01
Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in Solar System atmospheres, in which we quantify the available Gibbs energy: the Gibbs free energy of an observed atmosphere minus that of atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere is mostly attributable to O2 and CH4. The available Gibbs energy is not unusual compared to other Solar System atmospheres and smaller than that of Mars. However, Earth's fluid envelope contains an ocean, allowing gases to react with water and requiring a multiphase calculation with aqueous species. The disequilibrium in Earth's atmosphere-ocean system (in joules per mole of atmosphere) ranges from ∼20 to 2 × 10(6) times larger than the disequilibria of other atmospheres in the Solar System, where Mars is second to Earth. Only on Earth is the chemical disequilibrium energy comparable to the thermal energy per mole of atmosphere (excluding comparison to Titan with lakes, where quantification is precluded because the mean lake composition is unknown). Earth's disequilibrium is biogenic, mainly caused by the coexistence of N2, O2, and liquid water instead of more stable nitrate. In comparison, the O2-CH4 disequilibrium is minor, although kinetics requires a large CH4 flux into the atmosphere. We identify abiotic processes that cause disequilibrium in the other atmospheres. Our metric requires minimal assumptions and could potentially be calculated from observations of exoplanet atmospheres. However, further work is needed to establish whether thermodynamic disequilibrium is a practical exoplanet biosignature, requiring an assessment of false positives, noisy observations, and other detection challenges. Our Matlab code and databases for these calculations are available, open source.
Naumov, Sergej; von Sonntag, Clemens
2011-11-01
Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.
2008-01-01
The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. PMID:18260641
NASA Astrophysics Data System (ADS)
Kuhn, J.; Kesler, O.
2015-03-01
For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.
Calculating phase diagrams using PANDAT and panengine
NASA Astrophysics Data System (ADS)
Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.
2003-12-01
Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.
Enzyme Catalysis and the Gibbs Energy
ERIC Educational Resources Information Center
Ault, Addison
2009-01-01
Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)
NASA Astrophysics Data System (ADS)
Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael
2014-12-01
The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.
Analytic second derivatives of the energy in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro
2013-04-01
We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.
Illustrating the Effect of pH on Enzyme Activity Using Gibbs Energy Profiles
ERIC Educational Resources Information Center
Bearne, Stephen L.
2014-01-01
Gibbs energy profiles provide students with a visual representation of the energy changes that occur during enzyme catalysis, making such profiles useful as teaching and learning tools. Traditional kinetic topics, such as the effect of pH on enzyme activity, are often not discussed in terms of Gibbs energy profiles. Herein, the symbolism of Gibbs…
NASA Astrophysics Data System (ADS)
Farrukh, Muhammad Akhyar; Kauser, Robina; Adnan, Rohana
2013-09-01
The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5-4.5) and temperature (15-35°C) in the presence and absence of surfactant were investigated. Activation parameters, Δ E a, Δ H #, Δ S #, Δ G ≠, for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule ( A min), average area occupied by each molecule of surfactant ( a), surface pressure at the CMC (Πmax), Gibb's energy of micellization (Δ G M°), Gibb's energy of adsorption (Δ G ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.
Computation of thermodynamic equilibrium in systems under stress
NASA Astrophysics Data System (ADS)
Vrijmoed, Johannes C.; Podladchikov, Yuri Y.
2016-04-01
Metamorphic reactions may be partly controlled by the local stress distribution as suggested by observations of phase assemblages around garnet inclusions related to an amphibolite shear zone in granulite of the Bergen Arcs in Norway. A particular example presented in fig. 14 of Mukai et al. [1] is discussed here. A garnet crystal embedded in a plagioclase matrix is replaced on the left side by a high pressure intergrowth of kyanite and quartz and on the right side by chlorite-amphibole. This texture apparently represents disequilibrium. In this case, the minerals adapt to the low pressure ambient conditions only where fluids were present. Alternatively, here we compute that this particular low pressure and high pressure assemblage around a stressed rigid inclusion such as garnet can coexist in equilibrium. To do the computations we developed the Thermolab software package. The core of the software package consists of Matlab functions that generate Gibbs energy of minerals and melts from the Holland and Powell database [2] and aqueous species from the SUPCRT92 database [3]. Most up to date solid solutions are included in a general formulation. The user provides a Matlab script to do the desired calculations using the core functions. Gibbs energy of all minerals, solutions and species are benchmarked versus THERMOCALC, PerpleX [4] and SUPCRT92 and are reproduced within round off computer error. Multi-component phase diagrams have been calculated using Gibbs minimization to benchmark with THERMOCALC and Perple_X. The Matlab script to compute equilibrium in a stressed system needs only two modifications of the standard phase diagram script. Firstly, Gibbs energy of phases considered in the calculation is generated for multiple values of thermodynamic pressure. Secondly, for the Gibbs minimization the proportion of the system at each particular thermodynamic pressure needs to be constrained. The user decides which part of the stress tensor is input as thermodynamic pressure. To compute a case of high and low pressure around a stressed inclusion we first did a Finite Element Method calculation of a rigid inclusion in a viscous matrix under simple shear. From the computed stress distribution we took the local pressure (mean stress) in each grid point of the FEM calculation. This was used as input thermodynamic pressure in the Gibbs minimization and the result showed it is possible to have an equilibrium situation in which chlorite-amphibole is stable in the low pressure domain and kyanite in the high pressure domain of the stress field around the inclusion. Interestingly, the calculation predicts the redistribution of fluid from an average content of fluid in the system. The fluid in equilibrium tends to accumulate in the low pressure areas whereas it leaves the high pressure areas dry. Transport of fluid components occurs not necessarily by fluid flow, but may happen for example by diffusion. We conclude that an apparent disequilibrium texture may be explained by equilibrium under pressure variations, and apparent fluid addition by redistribution of fluid controlled by the local stress distribution. [1] Mukai et al. (2014), Journal of Petrology, 55 (8), p. 1457-1477. [2] Holland and Powell (1998), Journal of Metamorphic Geology, 16, p. 309-343 [3] Johnson et al. (1992), Computers & Geosciences, 18 (7), p. 899-947 [4] Connolly (2005), Earth and Planetary Science Letters, 236, p. 524-541
NASA Astrophysics Data System (ADS)
Amend, Jan P.; Plyasunov, Andrey V.
2001-11-01
Experimental thermodynamic data for aqueous organic compounds can be combined with the revised Helgeson-Kirkham-Flowers (HKF) equations of state to generate parameters that can be used to estimate standard molal properties as functions of temperature and pressure. In this study, we regressed thermodynamic data for aqueous carbohydrates at temperatures up to 393 K reported in the literature to permit the calculation of the apparent standard molal Gibbs free energies and enthalpies of formation (ΔGo and ΔHo, respectively) and the standard molal entropies (S2o), heat capacities (CP,2o), and volumes (V2o) to 423 K and several hundred MPa of aqueous C5 aldoses (ribose, arabinose, xylose, lyxose) and C5 ketoses (ribulose, xylulose) as well as C6 aldoses (glucose, mannose, galactose) and C6 ketoses (fructose, sorbose). Values of ΔGo for these 11 aqueous carbohydrates are given as a function of temperature at the saturated water vapor pressure (PSAT) and at 50 MPa. Values of ΔGo for aqueous glucose are then combined with those of other aqueous organic and inorganic compounds to calculate values of the standard molal Gibbs free energies of 13 fermentation and respiration reactions (ΔGro) known or likely to be carried out by thermophilic microorganisms. Finally, values of the overall Gibbs free energies of these reactions (ΔGr) are calculated at the temperature, pressure, and chemical composition that obtain in the hydrothermal fluids of Vulcano Island, southern Italy, a site that is widely known for its tremendous diversity of organisms able to live at high temperatures. At likely activities of aqueous glucose, it is shown that thermophiles in the hot springs of Vulcano at 373 K and ∼0.1 MPa can gain between 400 and 3000 kJ per mole of glucose fermented or respired.
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.
1994-07-01
In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.
ERIC Educational Resources Information Center
Bozlee, Brian J.
2007-01-01
The impact of raising Gibbs energy of the enzyme-substrate complex (G[subscript 3]) and the reformulation of the Michaelis-Menten equation are discussed. The maximum velocity of the reaction (v[subscript m]) and characteristic constant for the enzyme (K[subscript M]) will increase with increase in Gibbs energy, indicating that the rate of reaction…
Hemingway, B.S.; Robie, R.A.
1984-01-01
Measured heat capacities between 15 and 305 K and calculated heat capacities, entropies, enthalpy functions and Gibbs energy functions are reported and analysed for phillipsite and clinoptilolite. - J.A.Z.
ERIC Educational Resources Information Center
Gary, Ronald K.
2004-01-01
The concentration dependence of (delta)S term in the Gibbs free energy function is described in relation to its application to reversible reactions in biochemistry. An intuitive and non-mathematical argument for the concentration dependence of the (delta)S term in the Gibbs free energy equation is derived and the applicability of the equation to…
Reactions of cisplatin with cysteine and methionine at constant pH; a computational study.
Zimmermann, Tomás; Burda, Jaroslav V
2010-02-07
Interactions of hydrated cisplatin complexes cis-[Pt(NH(3))(2)Cl(H(2)O)](+) and cis-[Pt(NH(3))(2)(OH)(H(2)O)](+) with cysteine and methionine in an aqueous solution at constant pH were explored using computational methods. Thermodynamic parameters of considered reactions were studied in a broad pH range, taking up to 4 protonation states of each molecule into account. Reaction free energies at constant pH were obtained from standard Gibbs free energies using the Legendre transformation. Solvation free energies and pK(a) values were calculated using the PCM model with UAHF cavities, recently adapted by us for transition metal complexes. The root mean square error of pK(a) values on a set of model platinum complexes and amino acids was equal to 0.74. At pH 7, the transformed Gibbs free energies differ by up to 15 kcal mol(-1) from the Gibbs free energies of model reactions with a constant number of protons. As for cysteine, calculations confirmed a strong preference for kappaS monodenate bonding in a broad pH range. The most stable product of the second reaction step, which proceeds from monodentate to chelate complex, is the kappa(2)S,N coordinated chelate. The reaction with methionine is more complex. In the first step all three considered methionine donor atoms (N, S and O) are thermodynamically preferred products depending on the platinum complex and the pH. This is in accordance with the experimental observation of a pH dependent migration between N and S donor atoms in a chemically related system. The most stable chelates of platinum with methionine are kappa(2)S,N and kappa(2)N,O bonded complexes. The comparison of reaction free energies of both amino acids suggests, that the bidentate methionine ligand can be displaced even by the monodentate cysteine ligand under certain conditions.
Statistical mechanics of money and income
NASA Astrophysics Data System (ADS)
Dragulescu, Adrian; Yakovenko, Victor
2001-03-01
Money: In a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium probability distribution of money will assume the exponential Boltzmann-Gibbs form characterized by an effective temperature. We demonstrate how the Boltzmann-Gibbs distribution emerges in computer simulations of economic models. We discuss thermal machines, the role of debt, and models with broken time-reversal symmetry for which the Boltzmann-Gibbs law does not hold. Reference: A. Dragulescu and V. M. Yakovenko, "Statistical mechanics of money", Eur. Phys. J. B 17, 723-729 (2000), [cond-mat/0001432]. Income: Using tax and census data, we demonstrate that the distribution of individual income in the United States is exponential. Our calculated Lorenz curve without fitting parameters and Gini coefficient 1/2 agree well with the data. We derive the distribution function of income for families with two earners and show that it also agrees well with the data. The family data for the period 1947-1994 fit the Lorenz curve and Gini coefficient 3/8=0.375 calculated for two-earners families. Reference: A. Dragulescu and V. M. Yakovenko, "Evidence for the exponential distribution of income in the USA", cond-mat/0008305.
NASA Astrophysics Data System (ADS)
Suthar, Shyam Sunder; Purohit, Suresh
2018-05-01
Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.
Pourbaix ("E"-pH-M) Diagrams in Three Dimensions
ERIC Educational Resources Information Center
Pesterfield, Lester L.; Maddox, Jeremy B.; Crocker, Michael S.; Schweitzer, George K.
2012-01-01
"E"-pH (Pourbaix) diagrams provide an important graphical link between the thermodynamic calculations of potential, pH, equilibrium constant, concentration, and changes in Gibbs energy and the experimentally observed behavior of species in aqueous solutions. The utility of "E"-pH diagrams is extended with the introduction of an additional…
NASA Astrophysics Data System (ADS)
Salati, Amin; Mokhtari, Esmail; Panjepour, Masoud; Aryanpour, Gholamreza
2013-04-01
The temperature at which polymorphic phase transformation occurs in nanocrystalline (NC) materials is different from that of coarse-grained specimens. This anomaly has been related to the role of grain boundary component in these materials and can be predicted by a dilated crystal model. In this study, based on this model, a modified equation of state (MEOS) method (instead of equation of state, EOS, method) is used to calculate the total Gibbs free energy of each phase (β-Zr or α-Zr) in NC Zr. Thereupon, the change in the total Gibbs free energy for β-Zr to α-Zr phase transformation (ΔGβ→α) via the grain size is calculated by this method. Similar to polymorphic transformation in other NC materials (Fe, Nb, Co, TiO2, Al2O3 and ZnS), it is found that the estimated transformation temperature in NC Zr (β→α) is reduced with decreasing grain size. Finally, a molecular dynamics (MD) simulation is employed to confirm the theoretical results.
NASA Astrophysics Data System (ADS)
Yin, K.; Belonoshko, A. B.; Zhou, H.; Lu, X.
2016-12-01
The melting temperatures of materials in the interior of the Earth has significant implications in many areas of geophysics. The direct calculations of the melting point by atomic simulations would face substantial hysteresis problem. To overcome the hysteresis encountered in the atomic simulations there are a few different melting-point determination methods available nowadays, which are founded independently, such as the free energy method, the two-phase or coexistence method, and the Z method, etc. In this study, we provide a theoretical understanding the relations of these methods from a geometrical perspective based on a quantitative construction of the volume-entropy-energy thermodynamic surface, a model first proposed by J. Willard Gibbs in 1873. Then combining with an experimental data and/or a previous melting-point determination method, we apply this model to derive the high-pressure melting curves for several lower mantle minerals with less computational efforts relative to using previous methods only. Through this way, some polyatomic minerals at extreme pressures which are almost unsolvable before are calculated fully from first principles now.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.
2016-10-01
We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a unified open-source framework for modeling chemically reactive systems.
NASA Astrophysics Data System (ADS)
Tarumi, Moto; Nakai, Hiromi
2018-05-01
This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.
Extension of Gibbs-Duhem equation including influences of external fields
NASA Astrophysics Data System (ADS)
Guangze, Han; Jianjia, Meng
2018-03-01
Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.
Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K
NASA Astrophysics Data System (ADS)
Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.
2017-01-01
The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.
Seal, R.R.; Inan, E.E.; Hemingway, B.S.
2001-01-01
The Gibbs free energy of formation of nukundamite (Cu3.38Fe0.62S4) was calculated from published experimental studies of the reaction 3.25 Cu3.38Fe0.62S4 + S2 = 11 CuS + 2 FeS2 in order to correct an erroneous expression in the published record. The correct expression describing the Gibbs free energy of formation (kJ???mol-1) of nukundamite relative to the elements and ideal S2 gas is ??fG?? nukundamite T(K) = -549.75 + 0.23242 T + 3.1284 T0.5, with an uncertainty of 0.6%. An evaluation of the phase equilibria of nukundamite with associated phases in the system Cu-Fe-S as a function of temperature and sulfur fugacity indicates that nukundamite is stable from 224 to 501??C at high sulfidation states. At its greatest extent, at 434??C, the stability field of nukundamite is only 0.4 log f(S2) units wide, which explains its rarity. Equilibria between nukundamite and bornite, which limit the stability of both phases, involve bornite compositions that deviate significantly from stoichiometric Cu5FeS4. Under equilibrium conditions in the system Cu-Fe-S, nukundamite + chalcopyrite is not a stable assemblage at any temperature.
Interaction of monovalent cations with acetonitrile
NASA Astrophysics Data System (ADS)
Černušák, Ivan; Aranyosiová, Monika; Vollárová, Ol'ga; Velič, Dušan; Kirdajová, Ol'ga; Benko, Ján
Solvation of monovalent cations (Me+) of alkali metals=Na+, K+, Rb+, and Cs+, coinage metals=Cu+, Ag+, Au+, and p-block elements Ga+, In+, and Tl+ with acetonitrile was studied by means of ab initio calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The intermolecular interactions in the complexes Me+···CH3CN were investigated using the coupled clusters theory including single, double, and noniterative triple substitutions (CCSD(T)) in conjunction with the Pol and Pol-dk basis sets. The binding energies of these donor-acceptor complexes were estimated; taking into account the basis set superposition error, zero-point vibrations, correlation contribution, and scalar relativistic corrections. The theoretical ΔG0298 K values based on CCSD(T)/Pol and/or CCSD(T)/Pol-dk binding energies correlated well with experimental transfer Gibbs energies (from water to acetonitrile) for the series of cations. In the case of Au monocation, relativistic correction turned out to be extremely important. Composition of the complex of Ag+ and Na+ with acetonitrile was determined by using SIMS supporting both theoretical and experimental transfer Gibbs energies.
Thermodynamic properties of adsorption and micellization of n-oktyl-β-D-glucopiranoside.
Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław
2014-02-01
Measurements of the surface tension, density and viscosity of aqueous solutions of n-oktyl-β-D-glucopiranoside (OGP) were made at 293 K. From the obtained results the Gibbs surface excess concentration of OGP at the water-air interface and its critical micelle concentration were determined. The Gibbs surface excess concentration of OGP used in the Gu and Zhu isotherm equation allowed us to determine the Gibbs standard free energy of OGP adsorption at the water-air interface. The Gibbs standard free energy of OGP adsorption was also determined on the basis of the Langmuir, Szyszkowski, Gamboa and Olea equations as well the surface tension of "hydrophobic" part of OGP and "hydrophobic" part-water interface tension. It appeared that there is an agreement between the values of Gibbs standard free energy of OGP adsorption at the water-air interface determined by using all the above mentioned methods. It also proved that standard free energy of OGP micellization determined from CMC is consistent with that obtained on the basis of the free energy of the interactions between the "hydrophobic" part of the OPG through the water phase. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermodynamic Functions of Yttrium Trifluoride and Its Dimer in the Gas Phase
NASA Astrophysics Data System (ADS)
Osina, E. L.; Kovtun, D. M.
2018-05-01
New calculations of the functions for YF3 and Y2F6 in the gas phase using quantum-chemical calculations by MP2 and CCSD(T) methods are performed in connection with the ongoing work on obtaining reliable thermodynamic data of yttrium halides. The obtained values are entered in the database of the IVTANTERMO software complex. Equations approximating the temperature dependence of the reduced Gibbs energy in the T = 298.15-6000 K range of temperatures are presented.
The thermodynamic properties of benzothiazole and benzoxazole
NASA Astrophysics Data System (ADS)
Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.
1991-08-01
This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.
NASA Astrophysics Data System (ADS)
Seo, Won-Gap; Matsuura, Hiroyuki; Tsukihashi, Fumitaka
2006-04-01
Recently, molecular dynamics (MD) simulation has been widely employed as a very useful method for the calculation of various physicochemical properties in the molten slags and fluxes. In this study, MD simulation has been applied to calculate the structural, transport, and thermodynamic properties for the FeCl2, PbCl2, and ZnCl2 systems using the Born—Mayer—Huggins type pairwise potential with partial ionic charges. The interatomic potential parameters were determined by fitting the physicochemical properties of iron chloride, lead chloride, and zinc chloride systems with experimentally measured results. The calculated structural, transport, and thermodynamic properties of pure FeCl2, PbCl2, and ZnCl2 showed the same tendency with observed results. Especially, the calculated structural properties of molten ZnCl2 and FeCl2 show the possibility of formation of polymeric network structures based on the ionic complexes of ZnCl{4/2-}, ZnCl{3/-}, FeCl{4/2-}, and FeCl{3/-}, and these calculations have successfully reproduced the measured results. The enthalpy, entropy, and Gibbs energy of mixing for the PbCl2-ZnCl2, FeCl2-PbCl2, and FeCl2-ZnCl2 systems were calculated based on the thermodynamic and structural parameters of each binary system obtained from MD simulation. The phase diagrams of the PbCl2-ZnCl2, FeCl2-PbCl2, and FeCl2-ZnCl2 systems estimated by using the calculated Gibbs energy of mixing reproduced the experimentally measured ones reasonably well.
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
Illustrating Enzyme Inhibition Using Gibbs Energy Profiles
ERIC Educational Resources Information Center
Bearne, Stephen L.
2012-01-01
Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…
Computational Thermodynamics of Materials Zi-Kui Liu and Yi Wang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram
This authoritative volume introduces the reader to computational thermodynamics and the use of this approach to the design of material properties by tailoring the chemical composition. The text covers applications of this approach, introduces the relevant computational codes, and offers exercises at the end of each chapter. The book has nine chapters and two appendices that provide background material on computer codes. Chapter 1 covers the first and second laws of thermodynamics, introduces the spinodal as the limit of stability, and presents the Gibbs-Duhem equation. Chapter 2 focuses on the Gibbs energy function. Starting with a homogeneous system with amore » single phase, the authors proceed to phases with variable compositions, and polymer blends. The discussion includes the contributions of external electric and magnetic fields to the Gibbs energy. Chapter 3 deals with phase equilibria in heterogeneous systems, the Gibbs phase rule, and phase diagrams. Chapter 4 briefly covers experimental measurements of thermodynamic properties used as input for thermodynamic modeling by Calculation of Phase Diagrams (CALPHAD). Chapter 5 discusses the use of density functional theory to obtain thermochemical data and fill gaps where experimental data is missing. The reader is introduced to the Vienna Ab Initio Simulation Package (VASP) for density functional theory and the YPHON code for phonon calculations. Chapter 6 introduces the modeling of Gibbs energy of phases with the CALPHAD method. Chapter 7 deals with chemical reactions and the Ellingham diagram for metal-oxide systems and presents the calculation of the maximum reaction rate from equilibrium thermodynamics. Chapter 8 is devoted to electrochemical reactions and Pourbaix diagrams with application examples. Chapter 9 concludes this volume with the application of a model of multiple microstates to Ce and Fe3Pt. CALPHAD modeling is briefly discussed in the context of genomics of materials. The book introduces basic thermodynamic concepts clearly and directs readers to appropriate references for advanced concepts and details of software implementation. The list of references is quite comprehensive. The authors make liberal use of diagrams to illustrate key concepts. The two Appendices at the end discuss software requirements and the file structure, and present templates for special quasi-random structures. There is also a link to download pre-compiled binary files of the YPHON code for Linux or Microsoft Windows systems. The exercises at the end of the chapters assume that the reader has access to VASP, which is not freeware. Readers without access to this code can work on a limited number of exercises. However, results from other first principles codes can be organized in the YPHON format as explained in the Appendix. This book will serve as an excellent reference on computational thermodynamics and the exercises provided at the end of each chapter make it valuable as a graduate level textbook. Reviewer: Ram Devanathan is Acting Director of Earth Systems Science Division, Pacific Northwest National Laboratory, USA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.; Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333
We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1)more » GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.« less
NASA Astrophysics Data System (ADS)
Kishimoto, Naoki; Waizumi, Hiroki
2017-10-01
Stable conformers of L-cysteine and L,L-cystine were explored using an automated and efficient conformational searching method. The Gibbs energies of the stable conformers of L-cysteine and L,L-cystine were calculated with G4 and MP2 methods, respectively, at 450, 298.15, and 150 K. By assuming thermodynamic equilibrium and the barrier energies for the conformational isomerization pathways, the estimated ratios of the stable conformers of L-cysteine were compared with those determined by microwave spectroscopy in a previous study. Equilibrium structures of 1:1 and 2:1 cystine-Fe complexes were also calculated, and the energy of insertion of Fe into the disulfide bond was obtained.
Thermodynamic calculations for the liquid systems NaK, KCs and LiPb
NASA Astrophysics Data System (ADS)
Alblas, B. P.; Van Der Lugt, W.; Visser, E. G.; De Hosson, J. Th. M.
1982-06-01
The semi-empirical model for the calculation of the Gibbs free energy of mixing via the entropy of mixing, proposed by Visser et al. [1], is used to determine the activity coefficients and the long-wavelength limit of the structure factor, SCC(0). For the liquid alloys systems NaK and KCs the method leads to fairly accurate results, indicating almost ideal behaviour. For the compound-forming liquid alloys systems LiPb the agreement with experiment is less favourable, but the calculations clearly demonstrate the important influence of the volume contraction on the entropy.
Thermodynamic properties of potassium chloride aqueous solutions
NASA Astrophysics Data System (ADS)
Zezin, Denis; Driesner, Thomas
2017-04-01
Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.
Size- and shape-dependent surface thermodynamic properties of nanocrystals
NASA Astrophysics Data System (ADS)
Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang
2018-05-01
As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.
Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L
2009-01-01
Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800
Interfacial interactions between plastic particles in plastics flotation.
Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian
2015-12-01
Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mechanistic Studies on the Dibenzofuran Formation from Phenanthrene, Fluorene and 9–Fluorenone
Li, Shanqing; Zhang, Qingzhu
2015-01-01
We carried out molecular orbital theory calculations for the homogeneous gas‑phase formation of dibenzofuran from phenanthrene, fluorene, 9-methylfluorene and 9-fluorenone. Dibenzofuran will be formed if ∙OH adds to C8a, and the order of reactivity follows as 9-fluorenone > 9-methylfluorene > fluorene > phenanthrene. The oxidations initiated by ClO∙ are more favorable processes, considering that the standard reaction Gibbs energies are at least 21.63 kcal/mol lower than those of the equivalent reactions initiated by ∙OH. The adding of ∙OH and then O2 to phenanthrene is a more favorable route than adding ∙OH to C8a of phenanthrene, when considering the greater reaction extent. The reaction channel from fluorene and O2 to 9-fluorenone and H2O seems very important, not only because it contains only three elementary reactions, but because the standard reaction Gibbs energies are lower than −80.07 kcal/mol. PMID:25756381
Hansen, Andreas; Bannwarth, Christoph; Grimme, Stefan; Petrović, Predrag; Werlé, Christophe; Djukic, Jean-Pierre
2014-10-01
Reliable thermochemical measurements and theoretical predictions for reactions involving large transition metal complexes in which long-range intramolecular London dispersion interactions contribute significantly to their stabilization are still a challenge, particularly for reactions in solution. As an illustrative and chemically important example, two reactions are investigated where a large dipalladium complex is quenched by bulky phosphane ligands (triphenylphosphane and tricyclohexylphosphane). Reaction enthalpies and Gibbs free energies were measured by isotherm titration calorimetry (ITC) and theoretically 'back-corrected' to yield 0 K gas-phase reaction energies (ΔE). It is shown that the Gibbs free solvation energy calculated with continuum models represents the largest source of error in theoretical thermochemistry protocols. The ('back-corrected') experimental reaction energies were used to benchmark (dispersion-corrected) density functional and wave function theory methods. Particularly, we investigated whether the atom-pairwise D3 dispersion correction is also accurate for transition metal chemistry, and how accurately recently developed local coupled-cluster methods describe the important long-range electron correlation contributions. Both, modern dispersion-corrected density functions (e.g., PW6B95-D3(BJ) or B3LYP-NL), as well as the now possible DLPNO-CCSD(T) calculations, are within the 'experimental' gas phase reference value. The remaining uncertainties of 2-3 kcal mol(-1) can be essentially attributed to the solvation models. Hence, the future for accurate theoretical thermochemistry of large transition metal reactions in solution is very promising.
NASA Astrophysics Data System (ADS)
Georgiev, Anton; Kostadinov, Anton; Ivanov, Deyan; Dimov, Deyan; Stoyanov, Simeon; Nedelchev, Lian; Nazarova, Dimana; Yancheva, Denitsa
2018-03-01
This paper describes the synthesis, spectroscopic characterization and quantum mechanical calculations of three azo-azomethine dyes. The dyes were synthesized via condensation reaction between 4-(dimethylamino)benzaldehyde and three different 4-aminobenzene azo dyes. Quantum chemical calculations on the optimized molecular geometry and electron densities of the trans (E) and cis (Z) isomers and their vibrational frequencies have been computed by using DFT/B3LYP density-functional theory with 6-311 ++G(d,p) basis set in vacuo. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans → cis, Δμtrans → cis,ΔHtrans → cis, ΔGtrans → cis and ΔStrans → cis values. After molecular geometry optimization the electronic spectra have been obtained by TD-DFT calculations at same basis set and correlated with the spectra of vapour deposited nanosized films of the dyes. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. Solvatochromism was investigated by UV-VIS spectroscopy in five different organic solvents with increasing polarity. The dynamic photoisomerization experiments have been performed in DMF by pump lasers λ = 355 nm (mostly E → Z) and λ = 491 nm (mostly Z → E) in spectral region 300 nm - 800 nm at equal concentrations and times of illumination in order to investigate the photodynamical trans-cis-trans properties of the sbnd CHdbnd Nsbnd and sbnd Ndbnd Nsbnd chromophore groups of the dyes.
ERIC Educational Resources Information Center
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.
2008-01-01
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)
An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1987-01-01
An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.
How reliable are thermodynamic feasibility statements of biochemical pathways?
Maskow, Thomas; von Stockar, Urs
2005-10-20
The driving force for organo- or lithotrophic growth as well as for each step in the metabolic network is the Gibbs reaction energy. For each enzymatic step it must be negative. Thermodynamics contributes therefore to the in-silico description of living systems. It may be used for assessing the feasibility of a given pathway because it provides a further constraint for those pathways which are feasible from the point of view of mass balance calculations (metabolic flux analysis) and the genetic potential of an organism. However, when this constraint was applied to lactic acid fermentation according to a method proposed by Mavrovouniotis (1993a, ISMB 93:273-283) it turned out that an unrealistically wide metabolite concentration range had to be assumed to make this well-known glycolytic pathway thermodynamically feasible. During a search for the reasons of this surprising result the insufficient consideration of the activity coefficients was identified as main cause. However, it is shown in the present contribution that the influence of the activity coefficients on Gibbs reaction energy can be easily taken into account based on the intracellular ionic strength. The uncertainty of the tabulated equilibrium constants and of the apparent standard Gibbs energies derived from them was found to be the second most important reason for the erroneous result of the feasibility analysis. Deviations of intracellular pH from the standard value and bad estimations of currency metabolites, e.g., NAD(+) and NADH, were found to be of lesser importance but not negligible. The pH dependency of Gibbs reaction enthalpy was proved to be easily taken into account. Therefore, the application of thermodynamics for a better in-silico prediction of the behavior of living cell factories calls predominantly for better equilibrium data determined under well defined conditions and also for a more detailed knowledge about the intracellular ionic strength and pH value. Copyright 2005 Wiley Periodicals, Inc.
SteamTables: An approach of multiple variable sets
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2009-10-01
Using the IAPWS-95 formulation, an ActiveX component SteamTablesIIE in Visual Basic 6.0 is developed to calculate thermodynamic properties of pure water as a function of two independent intensive variables: (1) temperature ( T) or pressure ( P) and (2) T, P, volume ( V), internal energy ( U), enthalpy ( H), entropy ( S) or Gibbs free energy ( G). The second variable cannot be the same as variable 1. Additionally, it calculates the properties along the separation boundaries (i.e., sublimation, saturation, critical isochor, ice I melting, ice III to ice IIV melting and minimum volume curves) considering the input parameter as T or P for the variable 1. SteamTablesIIE is an extension of the ActiveX component SteamTables implemented earlier considering T (190 to 2000 K) and P (3.23×10 -8 to 10000 MPa) as independent variables. It takes into account the following 27 intensive properties: temperature ( T), pressure ( P), fraction, state, volume ( V), density ( Den), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( C p), heat capacity at constant volume ( C v), coefficient of thermal expansion ( CTE), isothermal compressibility ( Z iso), speed of sound ( VelS), partial derivative of P with T at constant V ( dPdT), partial derivative of T with V at constant P ( dTdV), partial derivative of V with P at constant T ( dVdP), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons).
NASA Astrophysics Data System (ADS)
González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar
2018-04-01
We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties such as the equation of state are explicitly calculated. In the (3 + 1)-dimensional case the Gibbs energy function of each model is used to discuss the presence of phase transitions.
Liu, Min Hsien; Chen, Cheng; Hong, Yaw Shun
2005-02-08
A three-parametric modification equation and the least-squares approach are adopted to calibrating hybrid density-functional theory energies of C(1)-C(10) straight-chain aldehydes, alcohols, and alkoxides to accurate enthalpies of formation DeltaH(f) and Gibbs free energies of formation DeltaG(f), respectively. All calculated energies of the C-H-O composite compounds were obtained based on B3LYP6-311++G(3df,2pd) single-point energies and the related thermal corrections of B3LYP6-31G(d,p) optimized geometries. This investigation revealed that all compounds had 0.05% average absolute relative error (ARE) for the atomization energies, with mean value of absolute error (MAE) of just 2.1 kJ/mol (0.5 kcal/mol) for the DeltaH(f) and 2.4 kJ/mol (0.6 kcal/mol) for the DeltaG(f) of formation.
Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.
Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier
2016-08-04
Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Critical evaluation and thermodynamic optimization of the Iron-Rare-Earth systems
NASA Astrophysics Data System (ADS)
Konar, Bikram
Rare-Earth elements by virtue of its typical magnetic, electronic and chemical properties are gaining importance in power, electronics, telecommunications and sustainable green technology related industries. The Magnets from RE-alloys are more powerful than conventional magnets which have more longevity and high temperature workability. The dis-equilibrium in the Rare-Earth element supply and demand has increased the importance of recycling and extraction of REE's from used permanent Magnets. However, lack of the thermodynamic data on RE alloys has made it difficult to design an effective extraction and recycling process. In this regard, Computational Thermodynamic calculations can serve as a cost effective and less time consuming tool to design a waste magnet recycling process. The most common RE permanent magnet is Nd magnet (Nd 2Fe14B). Various elements such as Dy, Tb, Pr, Cu, Co, Ni, etc. are also added to increase its magnetic and mechanical properties. In order to perform reliable thermodynamic calculations for the RE recycling process, accurate thermodynamic database for RE and related alloys are required. The thermodynamic database can be developed using the so-called CALPHAD method. The database development based on the CALPHAD method is essentially the critical evaluation and optimization of all available thermodynamic and phase diagram data. As a results, one set of self-consistent thermodynamic functions for all phases in the given system can be obtained, which can reproduce all reliable thermodynamic and phase diagram data. The database containing the optimized Gibbs energy functions can be used to calculate complex chemical reactions for any high temperature processes. Typically a Gibbs energy minimization routine, such as in FactSage software, can be used to obtain the accurate thermodynamic equilibrium in multicomponent systems. As part of a large thermodynamic database development for permanent magnet recycling and Mg alloy design, all thermodynamic and phase diagram data in the literature for the fourteen Fe-RE binary systems: Fe-La, Fe-Ce, Fe-Pr, Fe-Nd, Fe-Sm, Fe-Gd, Fe-Tb, Fe-Dy, Fe-Ho, Fe-Er, Fe-Tm, Fe-Lu, Fe-Sc and Fe-Y are critically evaluated and optimized to obtain thermodynamic model parameters. The model parameters can be used to calculate phase diagrams and Gibbs energies of all phases as functions of temperature and composition. This database can be incorporated with the present thermodynamic database in FactSage software to perform complex chemical reactions and phase diagram calculations for RE magnet recycling process.
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe; Gheribi, Aïmen E.; Chartrand, Patrice
2012-10-01
In this work, the glass forming ability of Al-Zr alloys is quantified using Monte Carlo (MC) and molecular dynamic (MD) simulations as well as classical thermodynamic calculations. The total energy of each studied structure of the Al-Zr system is described using the modified embedded atom model in the second-nearest-neighbour formalism. The parameterized Al-Zr cross potential which has been extensively validated using available experimental and ab initio data for several solid structures and for the liquid phase is used to evaluate thermodynamic, structural, and physical properties of the glass state and of the fully disordered (FD) face-centered cubic (FCC) solid solution with no short range order (SRO). The local environment of the Al-Zr amorphous phase is identified to be similar to that of a FCC solid structure with short range chemical order. A new approach to model the Gibbs energy of the amorphous phase based on the cluster variation method in the tetrahedron approximation is presented. The Gibbs energy of the fully disordered FCC solid solution with no short range order is determined and compared to the Gibbs energy of the amorphous phase. According to our volumetric and energetic criteria defined in our work to evaluate the possible formation of a glass structure at room temperature and zero pressure, a glass forming range of (0.25≤XZr≤0.75) and of (0.21≤XZr≤0.75) are identified, respectively. All the available quantitative experimental data regarding the amorphization of Al-Zr alloys are compared to the prediction of our MD/MC simulations throughout this study.
Thermodynamic and structural aspects of novel 1,2,4-thiadiazoles in solid and biological mediums.
Perlovich, German L; Proshin, Alexey N; Volkova, Tatyana V; Bui, Cong Trinh; Bachurin, Sergey O
2011-10-03
Novel 1,2,4-thiadiazoles were synthesized. Crystal structures of these compounds were solved by X-ray diffraction experiments, and comparative analysis of packing architecture and hydrogen bond networks was carried out. Thermodynamic aspects of sublimation processes of the compounds under study were analyzed using temperature dependencies of vapor pressure. Thermophysical characteristics of the molecular crystals were obtained and compared with the sublimation and structural parameters. The melting points correlate with sublimation Gibbs energies. Moreover, an increase of donor-acceptor interactions in crystal structures leads to growth of Gibbs energy values. Relationships between the melting points and the fragmental contributions to the packing energies were established: R(1)-R(4) fragmental interactions are responsible for the fusion processes of this class of compounds. Solubility and solvation processes of 1,2,4-thiadiazoles in buffer, n-hexane and n-octanol were studied within a wide range of temperature intervals, and their thermodynamic functions were calculated. Specific and nonspecific interactions of molecules resolved in crystals and solvents were estimated and compared. It was found that the melting points correlate with sublimation Gibbs energies. Distribution processes of compounds in buffer/n-octanol and buffer/n-hexane systems (describing different types of membranes) were investigated. Transfer processes of the studied molecules from the buffer to n-octanol/n-hexane phases were analyzed by the diagram method with evaluation of the enthalpic and entropic terms. This approach allowed us to design drug molecules with optimal passive transport properties. Calcium-blocking properties of the substances were evaluated. The trend between the ability to inhibit Glu-Ca uptake and the distribution coefficients in buffer/hexane system was observed.
Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method.
Du, Bin; Zhang, Zhen; Grubner, Sharon; Yurkovich, James T; Palsson, Bernhard O; Zielinski, Daniel C
2018-06-05
Reaction-equilibrium constants determine the metabolite concentrations necessary to drive flux through metabolic pathways. Group-contribution methods offer a way to estimate reaction-equilibrium constants at wide coverage across the metabolic network. Here, we present an updated group-contribution method with 1) additional curated thermodynamic data used in fitting and 2) capabilities to calculate equilibrium constants as a function of temperature. We first collected and curated aqueous thermodynamic data, including reaction-equilibrium constants, enthalpies of reaction, Gibbs free energies of formation, enthalpies of formation, entropy changes of formation of compounds, and proton- and metal-ion-binding constants. Next, we formulated the calculation of equilibrium constants as a function of temperature and calculated the standard entropy change of formation (Δ f S ∘ ) using a model based on molecular properties. The median absolute error in estimating Δ f S ∘ was 0.013 kJ/K/mol. We also estimated magnesium binding constants for 618 compounds using a linear regression model validated against measured data. We demonstrate the improved performance of the current method (8.17 kJ/mol in median absolute residual) over the current state-of-the-art method (11.47 kJ/mol) in estimating the 185 new reactions added in this work. The efforts here fill in gaps for thermodynamic calculations under various conditions, specifically different temperatures and metal-ion concentrations. These, to our knowledge, new capabilities empower the study of thermodynamic driving forces underlying the metabolic function of organisms living under diverse conditions. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace
NASA Astrophysics Data System (ADS)
Kruskopf, Ari; Visuri, Ville-Valtteri
2017-12-01
In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.
First-Year University Chemistry Textbooks' Misrepresentation of Gibbs Energy
ERIC Educational Resources Information Center
Quilez, Juan
2012-01-01
This study analyzes the misrepresentation of Gibbs energy by college chemistry textbooks. The article reports the way first-year university chemistry textbooks handle the concepts of spontaneity and equilibrium. Problems with terminology are found; confusion arises in the meaning given to [delta]G, [delta][subscript r]G, [delta]G[degrees], and…
The entropy and Gibbs free energy of formation of the aluminum ion
Hemingway, B.S.; Robie, R.A.
1977-01-01
A reevaluation of the entropy and Gibbs free energy of formation of Al3+(aq) yields -308 ?? 15 J/K??mol and 489.4 ?? 1.4kj/mol for S0298 and ??G0f{hook},298 respectively. The standard electrode potential for aluminum is 1.691 ?? 0.005 volts. ?? 1977.
Gibbs energies of transferring triglycine from water into H2O-DMSO solvent
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Kuz'mina, K. I.; Lan, Pham Thi; Kuz'mina, I. A.; Sharnin, V. A.
2014-08-01
The Gibbs energies of transferring triglycine (3Gly, glycyl-glycyl-glycine) from water into mixtures of water with dimethyl sulfoxide (χDMSO = 0.05, 0.10, and 0.15 mole fractions) at 298.15 K are determined from the interphase distribution. An increased dimethyl sulfoxide (DMSO) concentration in the solvent slightly raises the positive values of Δtr G ○(3Gly), possibly indicating the formation of more stable 3Gly-H2O solvated complexes than ones of 3Gly-DMSO. It is shown that the change in the Gibbs energy of transfer of 3Gly is determined by the enthalpy component. The relationship of 3Gly and 18-crown-6 ether (18C6) solvation's contributions to the change in the Gibbs energy of [3Gly18C6] molecular complex formation in H2O-DMSO solvents is analyzed, and the key role of 3Gly solvation's contribution to the change in the stability of [3Gly18C6] upon moving from H2O to mixtures with DMSO is revealed.
NASA Astrophysics Data System (ADS)
Gelb, Lev D.; Chakraborty, Somendra Nath
2011-12-01
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase.
Predictions of nucleation theory applied to Ehrenfest thermodynamic transitions
NASA Technical Reports Server (NTRS)
Barker, R. E., Jr.; Campbell, K. W.
1984-01-01
A modified nucleation theory is used to determine a critical nucleus size and a critical activation-energy barrier for second-order Ehrenfest thermodynamic transitions as functions of the degree of undercooling, the interfacial energy, the heat-capacity difference, the specific volume of the transformed phase, and the equilibrium transition temperature. The customary approximations of nucleation theory are avoided by expanding the Gibbs free energy in a Maclaurin series and applying analytical thermodynamic expressions to evaluate the expansion coefficients. Nonlinear correction terms for first-order-transition calculations are derived, and numerical results are presented graphically for water and polystyrene as examples of first-order and quasi-second-order transitions, respectively.
NASA Astrophysics Data System (ADS)
Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju
2014-10-01
Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.
Rational computational design for the development of andrographolide molecularly imprinted polymer
NASA Astrophysics Data System (ADS)
Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor
2017-10-01
Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.
A Generalized Deduction of the Ideal-Solution Model
ERIC Educational Resources Information Center
Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.
2006-01-01
A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…
[Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].
Kostiukov, V V
2011-01-01
The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.
Chemical potential of carbon in the system UPuCON: Measurements and calculation
NASA Astrophysics Data System (ADS)
Anthonysamy, S.; Ananthasivan, K.; Kahappan, I.; Chandramouli, V.; Vasudeva Rao, P. R.; Mathews, C. K.; Jacob, K. T.
1995-05-01
The carbon potential of (U,Pu) mixed carbides with Pu/(U + Pu) ratios of 0.55 and 0.70 was measured in the temperature range 973 to 1173 K by employing a methane-hydrogen gas equilibration technique. The technique was validated by measuring the Gibbs energy of formation of WC. The compatibility of the mixed carbides with the stainless steel clad was analysed by using the measured carbon potentials. The carbon potentials of mixed carbides of other compositions were calculated theoretically in order to assess their compatibility. The calculations assume ideal solution behavior for all the solid solutions present in the UPuCON system.
Thermodynamics of dissolved nitrogen, nitrous oxide, and ammonia in perfluorodecalin
NASA Astrophysics Data System (ADS)
Moshnyaga, A. V.; Khoroshilov, A. V.; Selivanova, D. I.; Aksenova, D. M.
2017-11-01
The solubility of N2, N2O, and NH3 is studied in different organic solvents. The best dissolution (0.27 ppm) is found to be for N2O in perfluorodecalin at 291 K and a pressure of 99 kPa. The dependence of N2O solubility in perfluorodecalin on pressure is studied at 291 K. The Gibbs energy of the solubility of nitrogen, nitrous oxide, and ammonia in perfluorodecalin is calculated.
Thermal E/ Z Isomerization in First Generation Molecular Motors.
Kuwahara, Shunsuke; Suzuki, Yuri; Sugita, Naoya; Ikeda, Mari; Nagatsugi, Fumi; Harada, Nobuyuki; Habata, Yoichi
2018-04-20
Determination of a thermal E/ Z isomerization barrier of first generation molecular motors is reported. Stable ( E)-1a directly converts to stable ( Z)-1c without photochemical E/ Z isomerization. The activation Gibbs energy of the isomerization was determined to be 123 kJ mol -1 by circular dichroism spectral changes. Density functional theory calculations show that ( Z)-1c is ∼11.4 kJ mol -1 more stable than ( E)-1a.
Fugacity of H2O from 0° to 350°C at the liquid-vapor equilibrium and at 1 atmosphere
Hass, John L.
1970-01-01
The fugacity and fugacity coefficient of H2O at the liquid-vapor equilibrium, the fugacity and the Gibbs free energy of formation of H2O at 1 atm (1.01325 bars) total pressure have been calculated from published data on the physical and thermodynamic properties of H2O and are presented at ten-degree intervals from 0° to 350°C.
Thermodynamic properties of model CdTe/CdSe mixtures
van Swol, Frank; Zhou, Xiaowang W.; Challa, Sivakumar R.; ...
2015-02-20
We report on the thermodynamic properties of binary compound mixtures of model groups II–VI semiconductors. We use the recently introduced Stillinger–Weber Hamiltonian to model binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the mixture closely follows Vegard's law: a linear relation. This implies that the excess volume is a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and zincblende structures. We found that the potential energy exhibits a positive deviation frommore » ideal soluton behaviour; the excess enthalpy is nearly independent of temperatures studied (300 and 533 K) and is well described by a simple cubic function of the mole fraction. Using a regular solution approach (combining non-ideal behaviour for the enthalpy with ideal solution behaviour for the entropy of mixing), we arrive at the Gibbs free energy of the mixture. The Gibbs free energy results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute temperature is found to be 335 K. Finally, we provide the surface energy as a function of composition. Moreover, it roughly follows ideal solution theory, but with a negative deviation (negative excess surface energy). This indicates that alloying increases the stability, even for nano-particles.« less
Weakly Nonergodic Dynamics in the Gross-Pitaevskii Lattice
NASA Astrophysics Data System (ADS)
Mithun, Thudiyangal; Kati, Yagmur; Danieli, Carlo; Flach, Sergej
2018-05-01
The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.
Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.
2018-02-01
In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
1988-11-01
rates.6 The Hammet equation , also called the Linear Free Energy Relationship (LFER) because of the relationship of the Gibb’s Free Energy to the... equations for numerous biological and physicochemical properties. Linear Solvation Enery Relationship (LSER), a sub-set of QSAR have been used by...originates from thermodynamics, where Hammet recognized the relationship of structure to the Gibb’s Free Energy, and ultimately to equilibria and reaction
Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study
NASA Astrophysics Data System (ADS)
Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László
2017-03-01
Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Durães, L.; Campos, J.; Portugal, A.
1998-07-01
The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.
NASA Astrophysics Data System (ADS)
Valadbeigi, Younes; Farrokhpour, Hossein; Tabrizchi, Mahmoud
2014-05-01
Isomerization and tautomerism of the three water soluble vitamins including B3, B5 and B7 were studied applying density functional theory using B3LYP method in gas and aqueous phases. Activation energies (Ea), Gibbs free energies of activation (ΔG#), and imaginary frequencies of the transition state structures were calculated for all the isomerization and tautomerism reactions. Activation energies of the neutral → zwitterion (amine-enamine) tautomerism in vitamin B3 were 310-360 kJ/mol where these values for the keto-enol tautomerism were 100-130 kJ/mol. It was found that water molecule catalyzes the tautomerism and decreases the activation energies about 90-160 kJ/mol.
On adiabatic pair potentials of highly charged colloid particles
NASA Astrophysics Data System (ADS)
Sogami, Ikuo S.
2018-03-01
Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.
Calculating the thermodynamic properties of aqueous solutions of alkali metal carboxylates
NASA Astrophysics Data System (ADS)
Rudakov, A. M.; Sergievskii, V. V.; Zhukova, T. V.
2014-06-01
A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.
2013-01-01
Narten, J. Chem. Phys., 1975, 63, 3624–3631. 10 A. Botti, F. Bruni, S. Imberti, M. A. Ricci and A. K. Soper , J. Chem. Phys., 2004, 121, 7840–7848. 11 D...10478. 48 I. Harsányi and L. Pusztai, J. Phys.: Condens. Matter, 2005, 17, S59–S65. 49 A. Botti, F. Bruni, M. A. Ricci and A. K. Soper , J. Chem. Phys
Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: Quantum chemical calculations
NASA Astrophysics Data System (ADS)
Kazemi, Mohammad; Rad, Ali Shokuhi
2017-06-01
In the present study, we used density functional theory calculations (at B3LYP and ωB97XD Levels) to search on the adsorption of Sulfur mustard gas (defined as mustard gas) on the surface of fullerene-like ZnO nanocage as a semiconductor. We found three different configurations of adsorbed gas on the surface of this nanostructure semiconductor. The values of adsorption energy of mustard gas are calculated in the range of -144∼ -200 kJ/mol with enthalpies in the range of -132∼-195 kJ/mol and Gibbs free energies in the range of -88∼-144 kJ/mol (T = 298 K, based on ωB97XD level), which indicate exothermic and spontaneous chemisorption. For all geometries, we calculated geometry parameters by taking into account the charge analysis and frontier molecular orbital study. The result of this study can be a support for next studies to develop new nanomaterials as adsorbent/sensor for mustard gas.
Li, Rongjin; Zhang, Xiaotao; Dong, Huanli; Li, Qikai; Shuai, Zhigang; Hu, Wenping
2016-02-24
The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gelb, Lev D; Chakraborty, Somendra Nath
2011-12-14
The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase. © 2011 American Institute of Physics
Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs.
Mazloomi Moqaddam, Ali; Derome, Dominique; Carmeliet, Jan
2018-05-15
The contact line dynamics of evaporating droplets deposited on a set of parallel microribs is analyzed with the use of a recently developed entropic lattice Boltzmann model for two-phase flow. Upon deposition, part of the droplet penetrates into the space between ribs because of capillary action, whereas the remaining liquid of the droplet remains pinned on top of the microribs. In the first stage, evaporation continues until the droplet undergoes a series of pinning-depinning events, showing alternatively the constant contact radius and constant contact angle modes. While the droplet is pinned, evaporation results in a contact angle reduction, whereas the contact radius remains constant. At a critical contact angle, the contact line depins, the contact radius reduces, and the droplet rearranges to a larger apparent contact angle. This pinning-depinning behavior goes on until the liquid above the microribs is evaporated. By computing the Gibbs free energy taking into account the interfacial energy, pressure terms, and viscous dissipation due to drop internal flow, we found that the mechanism that causes the unpinning of the contact line results from an excess in Gibbs free energy. The spacing distance and the rib height play an important role in controlling the pinning-depinning cycling, the critical contact angle, and the excess Gibbs free energy. However, we found that neither the critical contact angle nor the maximum excess Gibbs free energy depends on the rib width. We show that the different terms, that is, pressure term, viscous dissipation, and interfacial energy, contributing to the excess Gibbs free energy, can be varied differently by varying different geometrical properties of the microribs. It is demonstrated that, by varying the spacing distance between the ribs, the energy barrier is controlled by the interfacial energy while the contribution of the viscous dissipation is dominant if either rib height or width is changed. Main finding of this is study is that, for microrib patterned surfaces, the energy barrier required for the contact line to depin can be enlarged by increasing the spacing or the rib height, which can be important for practical applications.
Grain-boundary free energy in an assembly of elastic disks.
Lusk, Mark T; Beale, Paul D
2004-02-01
Grain-boundary free energy is estimated as a function of misoriention for symmetric tilt boundaries in an assembly of nearly hard disks. Fluctuating cell theory is used to accomplish this since the most common techniques for calculating interfacial free energy cannot be applied to such assemblies. The results are analogous to those obtained using a Leonard-Jones potential, but in this case the interfacial energy is dominated by an entropic contribution. Disk assemblies colorized with free and specific volume elucidate differences between these two characteristics of boundary structure. Profiles are also provided of the Helmholtz and Gibbs free energies as a function of distance from the grain boundaries. Low angle grain boundaries are shown to follow the classical relationship between dislocation orientation/spacing and misorientation angle.
Consistent Estimation of Gibbs Energy Using Component Contributions
Milo, Ron; Fleming, Ronan M. T.
2013-01-01
Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased precision. We present here a way to combine the estimations of group contribution with the more accurate reactant contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism. PMID:23874165
NASA Astrophysics Data System (ADS)
Badawi, Hassan M.; Ali, Shaikh A.
2009-09-01
The complex internal rotations and conformational equilibria in oxiraneethanol were investigated at the DFT-B3LYP/6-311G** level of theory. Four minima were predicted in the CCOH potential energy scans of the molecule to have relative energies of about 2 kcal/mol or less and all were calculated to have real frequencies upon full optimization of structural parameters and the calculation of the Gibb's free-energies at the DFT level of calculation. At the DFT-B3LYP, the MP2 and the MP4(SDQ) levels of theory, the G1gg1 conformation, predicted to be the lowest energy conformation for oxiraneethanol, was in excellent agreement with the rotational microwave study. The equilibrium mixture was calculated to be about 47% G1gg1, 32% Cg1g, 15% Gg1t and 6% G1g1g at the B3LYP/6-311G** level of theory at 298.15 K. Solvent study corroborated the presence of the high energy Cg1g form in the liquid phase of oxiraneethanol. The vibrational frequencies of oxiraneethanol in its two stable forms were computed at the B3LYP level and vibrational assignments were made for the two lowest energy G1gg1 and Cg1g forms on the basis of calculated and experimental data of the molecule.
Energetic constraints on life in deep marine sediments
NASA Astrophysics Data System (ADS)
Amend, J.; LaRowe, D.
2013-12-01
Microorganisms are abundant in deep-sea sediments, but what percentage of cells is active, how fast do they grow, and what factors control their diversity and population size? Geochemical modelling of redox reaction energetics can help in answering these questions. Calculations of Gibbs energies reveal which reactions are thermodynamically possible, but they also highlight which geochemical variables (e.g., temperature, pressure, pH, composition) may control microbial activity and how the amount and type of biomass are affected by energy limitations. We will discuss recent results from sediment cores collected at the Peru Margin (active continental shelf with high primary productivity and significant organic matter accumulation), the South Pacific Gyre (ultra-slow sedimentation rate and low organic carbon content), and the Juan de Fuca Ridge flank (high rate of sedimentation influenced by hydrothermal circulation). However, this approach to evaluating bioenergetic potential and predicting microbial activity can be applied to any environment where the geochemistry is well characterized, even if microbiology data have not been collected. When Gibbs energies are calculated on a basis of per mole of electrons transferred (as is commonly done), aerobic oxidation of hydrogen and organic matter in South Pacific Gyre sediments is the most exergonic. Based on this, one might posit that the fastest catabolic rates and the largest biomass would be found there. However, cell counts at Juan de Fuca and the Peru Margin are several orders of magnitude higher. When recast as energy densities (in J per cm3 of sediment), we observe far more energy available in sediments at Juan de Fuca and the Peru Margin than at those in the South Pacific Gyre. We also note that the identity of the most exergonic reaction changes with depth, suggesting corresponding changes in the microbial community structure. The thermodynamic approach used here for energy supply can also be used for energy demand, including the often-considered minimum or threshold energy, also referred to as the biological energy quantum. Based on this energetic minimum theory, many reactions cannot support microbial communities because their energy yield is apparently too low. However, we show that when evaluated as energy densities, some energetically ';impossible' catabolisms become ';possible' and vice versa.
Thermodynamics of the Trp-cage Miniprotein Unfolding in Urea
Wafer, Lucas N. R.; Streicher, Werner W.; Makhatadze, George I.
2010-01-01
The thermodynamic properties of unfolding of the Trp-cage mini protein in the presence of various concentrations of urea have been characterized using temperature-induced unfolding monitored by far-UV circular dichroism spectroscopy. Analysis of the data using a two-state model allowed the calculation of the Gibbs energy of unfolding at 25°C as a function of urea concentration. This in turn was analyzed by the linear extrapolation model that yielded the dependence of Gibbs energy on urea concentration, i.e. the m-value for Trp-cage unfolding. The m-value obtained from the experimental data, as well as the experimental heat capacity change upon unfolding, were correlated with the structural parameters derived from the three dimensional structure of Trp-cage. It is shown that the m-value can be predicted well using a transfer model, while the heat capacity changes are in very good agreement with the empirical models based on model compounds studies. These results provide direct evidence that Trp-cage, despite its small size, is an excellent model for studies of protein unfolding and provide thermodynamic data that can be used to compare with atomistic computer simulations. PMID:20112418
Computational investigation of hydrogen storage on B5V3
NASA Astrophysics Data System (ADS)
Guo, Chen; Wang, Chong
2018-05-01
Based on density functional theory method with 6-311+G(d,p) basis set, the structures, stability and hydrogen storage capacity of B5V3 have been theoretically investigated. It is found that a maximum of seven hydrogen molecules can be adsorbed on B5V3 with gravimetric uptake capacity of 6.39 wt%. The uptake capacity exceeds the target set by the US Department of Energy for vehicular application. Moreover, the average adsorption energy of B5V3 01 (7H2) is 0.60 eV/H2 in the desirable range of reversible hydrogen storage. The kinetic stability of H2 adsorbed on B5V3 01 is confirmed by using gap between highest occupied molecular orbital (HOMO)and the lowest unoccupied molecular orbital (LUMO). The gap value of B5V3 01 (7H2) is 2.81 eV, which indicates the compound with high stability. In addition, the thermochemistry calculation (Gibbs free energy corrected adsorption energy) is used to analyse if the adsorption is favourable or not at different temperatures. It can be found that the Gibbs corrected adsorption energy of B5V3 01 (7H2) is still positive at 400 K at 1 atm. It means that the adsorption of seven hydrogen molecules on B5V3 01 is energetically favourable in a fairly wide temperature range. All the results show that B5V3 01 can be considered as a promising material for hydrogen storage.
Tugsuz, Tugba
2010-12-30
Extensive DFT calculations on the standard electrode potentials of imidazole (Im), tetrathiafulvalene (TTF), and 2-, 4-, and 5-TTF-Im were carried out. Geometries and Gibbs free energies of H-bonded dimer, anion, protonated cation, and neutral structures of Im, mono- and dication, and neutral structures of TTF in gas and acetonitrile solvent were computed by using 10 hybrid density functionals (B3LYP, TPSSH, PBEH1PBE, M06, M062X, X3LYP, BMK, B1B95, M05, M052X) combined with the TZVP basis set. CPCM and SMD solvation models were applied to predict the Gibbs free energies of molecules in acetonitrile solvent. Frequency calculations were carried out for all structures, and none of them has been found to exhibit any imaginary frequency. Finally, the BMK hybrid functional was selected for computation of the standard electrode potential of TTF-Im, because it gives the most accurate values in both Im and TTF, differing by 0.05 V from the experimental ones. Moreover, frequencies from the BMK functional are reasonably close to the experimental ones. The standard electrode potentials of 2-, 4-, and 5-TTF-Im predicted for two-electron oxidation are 0.946, 0.870, and 0.839 V in CPCM and 0.927, 0.866, and 0.824 V in SMD. For one-electron oxidation these are 0.491, 0.421, and 0.400 V in CPCM and 0.476, 0.377, and 0.360 V in SMD, respectively.
Waxman, Eleanor M; Elm, Jonas; Kurtén, Theo; Mikkelsen, Kurt V; Ziemann, Paul J; Volkamer, Rainer
2015-10-06
Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols. We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na(+), and NH4(+) and find Gibbs free energies of water displacement of -10.9, -22.0, -22.9, 2.09, and 1.2 kJ/mol for glyoxal monohydrate and -3.1, -10.3, -7.91, 6.11, and 1.6 kJ/mol for methylglyoxal monohydrate with uncertainties of 8 kJ/mol. The quantum chemical calculations support that SO4(2-), NO3(-), and Cl(-) modify partitioning, while cations do not. Other factors such as ion charge or partitioning volume effects likely need to be considered to fully explain salting effects.
B1 to B2 structural phase transition in LiF under pressure
NASA Astrophysics Data System (ADS)
Jain, Aayushi; Dixit, R. C.
2018-05-01
In the last few decades the alkali halides emerged as crystals with useful applications and their high-pressure behaviour is the most intensively studied subject in high-pressure physics/chemistry, material science, and geosciences. Most alkali halides follow the B1 (NaCl-type)→B2 (CsCl-type) phase-transition route under pressure. In the present paper, we have investigated the characteristics of structural phase transition that occurred in Lithium Florid compound under high pressure. The transition pressure of B1-B2 was calculated using an effective interionic interaction potential (EIOP). The changes of the characteristics of crystals like, Gibbs free energy, cohesive energy, volume collapse, and lattice constant are calculated for the B1 and B2 structures. These data were compared with the available experimental and theoretical data.
Raja, B; Balachandran, V; Revathi, B
2015-03-05
The FT-IR and FT-Raman spectra of N-acetyl-l-phenylalanine were recorded and analyzed. Natural bond orbital analysis has been carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) were obtained for the range of temperature 100-1000K. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes. Copyright © 2014 Elsevier B.V. All rights reserved.
Stress versus temperature dependence of activation energies for creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1992-01-01
The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.
Direct measurements of the Gibbs free energy of OH using a CW tunable laser
NASA Technical Reports Server (NTRS)
Killinger, D. K.; Wang, C. C.
1979-01-01
The paper describes an absorption measurement for determining the Gibbs free energy of OH generated in a mixture of water and oxygen vapor. These measurements afford a direct verification of the accuracy of thermochemical data of H2O at high temperatures and pressures. The results indicate that values for the heat capacity of H2O obtained through numerical computations are correct within an experimental uncertainty of 0.15 cal/mole K.
Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production
NASA Astrophysics Data System (ADS)
Judge, W. D.; Azimi, G.
2017-10-01
Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.
Jover, Jesús
2017-11-08
DFT calculations are widely used for computing properties, reaction mechanisms and energy profiles in organometallic reactions. A qualitative agreement between the experimental and the calculated results seems to usually be enough to validate a computational methodology but recent advances in computation indicate that a nearly quantitative agreement should be possible if an appropriate DFT study is carried out. Final percent product concentrations, often reported as yields, are by far the most commonly reported properties in experimental metal-mediated synthesis studies but reported DFT studies have not focused on predicting absolute product amounts. The recently reported stoichiometric pentafluoroethylation of benzoic acid chlorides (R-C 6 H 4 COCl) with [(phen)Cu(PPh 3 )C 2 F 5 ] (phen = 1,10-phenanthroline, PPh 3 = triphenylphosphine) has been used as a case study to check whether the experimental product concentrations can be reproduced by any of the most popular DFT approaches with high enough accuracy. To this end, the Gibbs energy profile for the pentafluoroethylation of benzoic acid chloride has been computed using 14 different DFT methods. These computed Gibbs energy profiles have been employed to build kinetic models predicting the final product concentration in solution. The best results are obtained with the D3-dispersion corrected B3LYP functional, which has been successfully used afterwards to model the reaction outcomes of other simple (R = o-Me, p-Me, p-Cl, p-F, etc.) benzoic acid chlorides. The product concentrations of more complex reaction networks in which more than one position of the substrate may be activated by the copper catalyst (R = o-Br and p-I) are also predicted appropriately.
NASA Astrophysics Data System (ADS)
Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.
2013-05-01
Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.
Stress versus temperature dependent activation energies in creep
NASA Technical Reports Server (NTRS)
Freed, A. D.; Raj, S. V.; Walker, K. P.
1990-01-01
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.
Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy
NASA Astrophysics Data System (ADS)
Wang, Haipeng; Luo, Bingchi; Chang, Jian; Wei, Bingbo
2007-08-01
The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 T m) was achieved and the specific heat was determined as 44.71 J·mol-1·K-1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe
In this work, the possibility to calculate and evaluate with a high degree of precision the Gibbs energy of complex multiphase equilibria for which chemical ordering is explicitly and simultaneously considered in the thermodynamic description of solid (short range order and long range order) and liquid (short range order) metallic phases is studied. The cluster site approximation (CSA) and the cluster variation method (CVM) are implemented in a new minimization technique of the Gibbs energy of multicomponent and multiphase systems to describe the thermodynamic behaviour of metallic solid solutions showing strong chemical ordering. The modified quasichemical model in the pair approximation (MQMPA) is also implemented in the new minimization algorithm presented in this work to describe the thermodynamic behaviour of metallic liquid solutions. The constrained minimization technique implemented in this work consists of a sequential quadratic programming technique based on an exact Newton’s method (i.e. the use of exact second derivatives in the determination of the Hessian of the objective function) combined to a line search method to identify a direction of sufficient decrease of the merit function. The implementation of a new algorithm to perform the constrained minimization of the Gibbs energy is justified by the difficulty to identify, in specific cases, the correct multiphase assemblage of a system where the thermodynamic behaviour of the equilibrium phases is described by one of the previously quoted models using the FactSage software (ex.: solid_CSA+liquid_MQMPA; solid1_CSA+solid2_CSA). After a rigorous validation of the constrained Gibbs energy minimization algorithm using several assessed binary and ternary systems found in the literature, the CVM and the CSA models used to describe the energetic behaviour of metallic solid solutions present in systems with key industrial applications such as the Cu-Zr and the Al-Zr systems are parameterized using fully consistent thermodynamic an structural data generated from a Monte Carlo (MC) simulator also implemented in the framework of this project. In this MC simulator, the modified embedded atom model in the second nearest neighbour formalism (MEAM-2NN) is used to describe the cohesive energy of each studied structure. A new Al-Zr MEAM-2NN interatomic potential needed to evaluate the cohesive energy of the condensed phases of this system is presented in this work. The thermodynamic integration (TI) method implemented in the MC simulator allows the evaluation of the absolute Gibbs energy of the considered solid or liquid structures. The original implementation of the TI method allowed us to evaluate theoretically for the first time all the thermodynamic mixing contributions (i.e., mixing enthalpy and mixing entropy contributions) of a metallic liquid (Cu-Zr and Al-Zr) and of a solid solution (face-centered cubic (FCC) Al-Zr solid solution) described by the MEAM-2NN. Thermodynamic and structural data obtained from MC and molecular dynamic simulations are then used to parameterize the CVM for the Al-Zr FCC solid solution and the MQMPA for the Al-Zr and the Cu-Zr liquid phase respectively. The extended thermodynamic study of these systems allow the introduction of a new type of configuration-dependent excess parameters in the definition of the thermodynamic function of solid solutions described by the CVM or the CSA. These parameters greatly improve the precision of these thermodynamic models based on experimental evidences found in the literature. A new parameterization approach of the MQMPA model of metallic liquid solutions is presented throughout this work. In this new approach, calculated pair fractions obtained from MC/MD simulations are taken into account as well as configuration-independent volumetric relaxation effects (regular like excess parameters) in order to parameterize precisely the Gibbs energy function of metallic melts. The generation of a complete set of fully consistent thermodynamic, physical and structural data for solid, liquid, and stoichiometric compounds and the subsequent parameterization of their respective thermodynamic model lead to the first description of the complete Al-Zr phase diagram in the range of composition [0 ≤ XZr ≤ 5 / 9] based on theoretical and fully consistent thermodynamic properties. MC and MD simulations are performed for the Al-Zr system to define for the first time the precise thermodynamic behaviour of the amorphous phase for its entire range of composition. Finally, all the thermodynamic models for the liquid phase, the FCC solid solution and the amorphous phase are used to define conditions based on thermodynamic and volumetric considerations that favor the amorphization of Al-Zr alloys.
A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound
NASA Astrophysics Data System (ADS)
Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.
2012-10-01
A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.
Thermal degradation of ternary blend films containing PVA/chitosan/vanillin
NASA Astrophysics Data System (ADS)
Kasai, Deepak; Chougale, Ravindra; Masti, Saraswati; Narasgoudar, Shivayogi
2018-05-01
The ternary chitosan/poly (vinyl alcohol)/vanillin blend films were prepared by solution casting method. The influence of equal weight percent of poly (vinyl alcohol) and vanillin on thermal stability of the chitosan blend films were investigated by using thermogravimetric analysis (TGA). The kinetic parameters such as enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) in the first and second decomposition steps based on the thermogravimetric data were calculated. The thermal stabilities of the blend films were confirmed by thermodynamic parameters obtained in the activation energies, which indicated that increase in the equal weight percent of PVA/vanillin decreased the thermal stability of the chitosan film.
Hodge, Ian M
2006-08-01
The nonlinear thermorheologically complex Adam Gibbs (extended "Scherer-Hodge") model for the glass transition is applied to enthalpy relaxation data reported by Sartor, Mayer, and Johari for hydrated methemoglobin. A sensible range in values for the average localized activation energy is obtained (100-200 kJ mol(-1)). The standard deviation in the inferred Gaussian distribution of activation energies, computed from the reported KWW beta-parameter, is approximately 30% of the average, consistent with the suggestion that some relaxation processes in hydrated proteins have exceptionally low activation energies.
Amino acids at water-vapor interfaces: surface activity and orientational ordering.
Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro
2010-10-14
The surface activity and orientational ordering of amino acids at water-vapor interfaces were studied with molecular dynamics simulations in combination with thermodynamic integration and umbrella sampling. Asparagine, representing amino acids with polar side chains, displays no surface activity. Tryptophan, in contrast, with its hydrophobic indole ring as side chain unveils a free energy minimum at the water-vapor interface, which lies 6 kJ/mol under the hydration free energy. To study the orientational ordering of tryptophan along the interface, the order parameter was calculated. At the free energy minimum and at the Gibbs dividing surface, the order parameter reveals a parallel alignment of the indole ring with the water surface exposing the π-system to electrophiles in the hydrophobic phase and indicating polarization dependent spectroscopy. In the vicinity of this position a perpendicular orientation is obtained. The surface excess, calculated from the potential of mean force along the interface, is in excellent agreement with experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baryshev, Sergey V.; Thimsen, Elijah
2015-04-14
Herein, we report an analytical procedure to calculate the enthalpy of formation for thin film multinary compounds from sputtering rates measured during ion bombardment. The method is based on Sigmunds sputtering theory and the BornHaber cycle. Using this procedure, an enthalpy of formation for a CZTS film of the composition Cu1.9Zn1.5Sn0.8S4 was measured as -930 +/- 98 kJ mol1. This value is much more negative than the sum of the enthalpies of formation for the constituent binary compounds, meaning the multinary formation reaction is predicted to be exothermic. The measured enthalpy of formation was used to estimate the temperature dependencemore » of the Gibbs free energy of reaction, which appears consistent with many experimental reports in the CZTS processing literature.« less
Szczepaniak, Marek; Moc, Jerzy
2015-11-05
D-Erythrose is a C4 monosaccharide with a biological and potential astrobiological relevance. We have investigated low-energy structures of d-erythrose and their interconversion in the gas phase with the highest-level calculations up-to-date. We have identified a number of structurally distinct furanose and open-chain isomers and predicted α ↔ α and β ↔ β furanose interconversion pathways involving the O-H rotamers. We have estimated relative Gibbs free energies of the erythrose species based on the CCSD(T)/aug-cc-pVTZ electronic energies and MP2/aug-cc-pVTZ vibrational frequencies. By using natural bond orbital theory we have also quantified a stabilization of erythrose conformers and interconversion transition states by intramolecular H-bonds.
Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang
2016-01-01
The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation.
Compositional dependence of lower crustal viscosity
NASA Astrophysics Data System (ADS)
Shinevar, William J.; Behn, Mark D.; Hirth, Greg
2015-10-01
We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.
Effect of Surface Excess Energy Transport on the Rupture of an Evaporating Film
NASA Astrophysics Data System (ADS)
Luo, Yan; Zhou, Jianqiu; Yang, Xia; Liu, Rong
2018-05-01
In most of existing works on the instabilities of an evaporating film, the energy boundary condition only takes into account contributions of the evaporation latent heat and the heat conduction in the liquid. We use a new generalized energy boundary condition at the evaporating liquid-vapor interface, in which the contribution of the transport of the Gibbs excess energy is included. We have derived the long-wave equations in which the thickness of film and the interfacial temperature are coupled to describe the dynamics of an evaporating thin film. The results of our computation show that the transport of the Gibbs excess internal energy delay the rupture of thin films due to van de Waals force, evaporating effect and vapor recoil.
Viability of pyrite pulled metabolism in the ‘iron-sulfur world’ theory: Quantum chemical assessment
NASA Astrophysics Data System (ADS)
Michalkova, Andrea; Kholod, Yana; Kosenkov, Dmytro; Gorb, Leonid; Leszczynski, Jerzy
2011-04-01
The viability of pyrite-pulled metabolism in the 'iron-sulfur world' theory was assessed using a simple model of iron-nickel sulfide (Fe-Ni-S) surface and data obtained from quantum chemical calculations. We have investigated how the individual reactions in the carbon fixation cycle (carboxylic acids formation) on an Fe-Ni-S surface could have operated to produce carboxylic acids from carbon oxide and water. The proposed model cycle reveals how the individual reactions might have functioned and provides the thermodynamics of each step of the proposed pathway. The feasibility of individual reactions, as well the whole cycle was considered. The reaction of acetic acid production from CH 3SH and CO on an Fe-Ni sulfide surface was revealed to be endergonic with a few partial steps having positive Gibbs free energy. On the other hand, the pyrite formation was found to be slightly exergonic. The significance of the catalytic activity of transition metal sulfides in generation of acetic acid was shown. The Gibbs free energy values indicate that the acetic acid synthesis is unfavorable to proceed on the studied Fe-Ni-S model under simulated conditions. The importance of these results in terms of a primordial chemistry on iron-nickel sulfide surfaces is discussed.
Size Fluctuations of Near Critical Nuclei and Gibbs Free Energy for Nucleation of BDA on Cu(001)
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene
2012-07-01
We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus.
Size fluctuations of near critical nuclei and Gibbs free energy for nucleation of BDA on Cu(001).
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J W; Poelsema, Bene
2012-07-06
We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus.
Lai, Yin-Hung; Chen, Bo-Gaun; Lee, Yuan Tseh; Wang, Yi-Sheng; Lin, Sheng Hsien
2014-08-15
Although several reaction models have been proposed in the literature to explain matrix-assisted laser desorption/ionization (MALDI), further study is still necessary to explore the important ionization pathways that occur under the high-temperature environment of MALDI. 2,4,6-Trihydroxyacetophenone (THAP) is an ideal compound for evaluating the contribution of thermal energy to an initial reaction with minimum side reactions. Desorbed neutral THAP and ions were measured using a crossed-molecular beam machine and commercial MALDI-TOF instrument, respectively. A quantitative model incorporating an Arrhenius-type desorption rate derived from transition state theory was proposed. Reaction enthalpy was calculated using GAUSSIAN 03 software with dielectric effect. Additional evidence of thermal-induced proton disproportionation was given by the indirect ionization of THAP embedded in excess fullerene molecules excited by a 450 nm laser. The quantitative model predicted that proton disproportionation of THAP would be achieved by thermal energy converted from a commonly used single UV laser photon. The dielectric effect reduced the reaction Gibbs free energy considerably even when the dielectric constant was reduced under high-temperature MALDI conditions. With minimum fitting parameters, observations of pure THAP and THAP mixed with fullerene both agreed with predictions. Proton disproportionation of solid THAP was energetically favorable with a single UV laser photon. The quantitative model revealed an important initial ionization pathway induced by the abrupt heating of matrix crystals. In the matrix crystals, the dielectric effect reduced reaction Gibbs free energy under typical MALDI conditions. The result suggested that thermal energy plays an important role in the initial ionization reaction of THAP. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Isaeva, V. A.; Kuzina, E. N.; Sharnin, V. A.
2012-12-01
Gibbs energies for the transfer of glycylglycine and glycylglycinate ions from water to water-dimethylsulfoxide solvents are determined from the interface distribution of substances between immiscible phases in the composition range of 0.00 to 0.20 molar fractions of DMSO at 298.15 K. It is shown that with a rise in the concentration of nonaqueous components in solution, we observe the solvation of dipeptide and its anion, due mainly to the destabilization of the carboxyl group.
Computational study of Ca, Sr and Ba under pressure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2006-05-01
A first-principles procedure for the calculation of equilibrium properties of crystals under hydrostatic pressure is applied to Ca, Sr and Ba. The procedure is based on minimizing the Gibbs free energy G (at zero temperature) with respect to the structure at a given pressure p, and hence does not require the equation of state to fix the pressure. The calculated lattice constants of Ca, Sr and Ba are shown to be generally closer to measured values than previous calculations using other procedures. In particular for Ba, where careful and extensive pressure data are available, the calculated lattice parameters fit measurements to about 1% in three different phases, both cubic and hexagonal. Rigid-lattice transition pressures between phases which come directly from the crossing of G(p) curves are not close to measured transition pressures. One reason is the need to include zero-point energy (ZPE) of vibration in G. The ZPE of cubic phases is calculated with a generalized Debye approximation and applied to Ca and Sr, where it produces significant shifts in transition pressures. An extensive tabulation is given of structural parameters and elastic constants from the literature, including both theoretical and experimental results.
Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method
NASA Astrophysics Data System (ADS)
Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.
2016-05-01
Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol fraction: Δ HL m i x=XA LXB L(a1+b1XA L+c1XA LXB L),Δ HS m i x=XA SXB S(a2+b2XA S+c2XA SXB S) From the latter expressions it can be possible to modelize the phase diagram of a binary mixtures by using the a,b and c couples of parameters. To calculate those coefficients a method commonly employed in literature is to measure the mixing enthalpies, or to use one reported of the enthalpy of mixing (for instance for the liquid state) and calculate the other one using the phase diagram points. A direct ΔHmix (in solid or liquid phase) measurement can be difficult to carry out using common DSC equipment generally present in research laboratories. In fact, such determinations can be, in principle, performed, but the obtained data will be affected by large experimental errors. On the other hand, it is possible to obtain values with great precision regarding the algebraic sum of mixing enthalpies and the phase diagram trend. For this reason, only the phase diagrams are proposed to be used to calculate a, b, c parameters, and, subsequently, the total (liquid-solid algebraic sum) enthalpy of mixing will be employed to verify their validity. At this aim, a C++ code was assessed and used. Three binary mixtures were considered by combining NaNO3, KNO3 and NaNO2.
NASA Astrophysics Data System (ADS)
Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.
2016-08-01
The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).
Sorption of certain isatins on various sorbents under RP-HPLC conditions
NASA Astrophysics Data System (ADS)
Konstantinov, A. V.; Shafigulin, R. V.; Il'in, M. M.; Davankov, V. A.; Bulanova, A. V.; Purygin, P. P.
2013-06-01
The results from chromatographic analysis of biologically active isatin derivatives on hyper-crosslinked polystyrene (HCLPS) and silica gel modified by octadecyl groups (SilC18) are presented. The constants of distribution of sorbates between a mobile phase and the investigated sorbents ( K x ) and the changes in the standard differential molar Gibbs energies of adsorption (Δ _a bar G^circ ) are calculated, along with the chromatographic retention-physicochemical property of sorbate dependences. It is found that the equations describing these dependences have high forecasting ability with respect to the values of retention factors of the investigated sorbates.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Sorption characteristic of uranium(VI) ion onto K-feldspar.
Gao, Xiaoqing; Bi, Mingliang; Shi, Keliang; Chai, Zhifang; Wu, Wangsuo
2017-10-01
The effect of pH, contact time, temperature, ionic strength and initial U(VI) concentration on U(VI) sorption onto K-feldspar was investigated using batch techniques. The sorption kinetics was evaluated and the activation energy was obtained based on the rate constants at different temperature. Graphical correlations of sorption isotherm models have been evaluated and applied for U(VI) uptake by K-feldspar. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going sorption process have been calculated and the possible sorption mechanism of U(VI) was deduced. The results are expected to help better understand the migration of uranium in the host materials of granite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermodynamic properties of liquid Au–Cu–Sn alloys determined from electromotive force measurements
Guo, Zhongnan; Hindler, Michael; Yuan, Wenxia; Mikula, Adolf
2011-01-01
The thermodynamic properties of the ternary Au–Cu–Sn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Three different cross-sections with constant Au:Cu ratios of 3:1, 1:1, and 1:3 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 1023 K. The partial free energies of Sn in liquid Au–Cu–Sn alloys were obtained from EMF data. The integral Gibbs free energy and the integral enthalpy at 900 K were calculated by Gibbs–Duhem integration. The ternary interaction parameters were evaluated using the Redlich–Kister–Muggianu polynomial. PMID:22039311
Delocalization via Sliding in Solid 4He: Is It Plausible?
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2010-02-01
The modified Debye approach was used to calculate the Gibbs free energy for solid 4He and energetic profiles for different atomic displacements with respect to an equilibrium lattice. Atoms interact via the applied Aziz potential. We have found that individual atomic displacements may hardly give rise to any delocalization because of huge barriers but cooperative plane sliding is highly plausible especially in the intermediate phase, which was found to be more favorable than hcp for small cluster sizes. In the latter case the roughness of the potential profile is less than one kelvin. In some particular sliding cases the energy levels in the nearest wells nearly coincide that is a well-known precursor for the delocalization effect.
Thermal behavior and compatibility study of dihydroxylammonium 3,4-dinitraminofurazan
NASA Astrophysics Data System (ADS)
Huang, Haifeng; Shi, Yameng; Yu, Yao; Yang, Jun
2018-04-01
A large number of nitramino-featured energetic salts have been reported and some of them show promising properties. Among them, the dihydroxylammonium 3,4-dinitraminofurazan (HADNAF) is easy to synthesize and shows high calculated detonation performances and acceptable thermal stability. The non-isothermal kinetics parameters of HADNAF including the apparent activation energy (E) and pre-exponential factor (A) of the exothermic decomposition reaction, and activation entropy (ΔS≠), activation enthalpy (ΔH≠), activation Gibbs free energy (ΔG≠) at TP0 of the reaction and the critical temperature of thermal explosion (Tb) were obtained by Kissinger's and Ozawa's method, respectively. Additionally, the compatibility of HADNAF with other materials (e.g. TNT, RDX, HMX, B, Mg) was tested by DSC method.
PHASEGO: A toolkit for automatic calculation and plot of phase diagram
NASA Astrophysics Data System (ADS)
Liu, Zhong-Li
2015-06-01
The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.
NASA Astrophysics Data System (ADS)
Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru
2015-09-01
We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.
Free energies of stable and metastable pores in lipid membranes under tension.
den Otter, Wouter K
2009-11-28
The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to obtain the Helmholtz free energy as a function of pore size for thermodynamically stable, metastable, and unstable pores, and the system-size dependence of these elongations is discussed. A link to the Gibbs free energy at constant tension, commonly known as the Litster model, is established by a Legendre transformation. The change of genus upon pore formation is exploited to estimate the saddle-splay modulus or Gaussian curvature modulus of the membrane leaflets. Details are provided of the simulation approach, which combines the potential of mean constraint force method with a reaction coordinate based on the local lipid density.
Standard Gibbs energy of formation of Mo 3Te 4 by emf measurements
NASA Astrophysics Data System (ADS)
Mallika, C.; Sreedharan, O. M.
1990-03-01
The emf of the galvanic cells Pt, Mo, MoO 2¦8 YSZ¦'FeO', Fe, Pt (I) and Pt, Fe,'FeO' ¦8 YSZ¦MoO 2, Mo 3Te 4, MoTe 2(α), C, Pt (II) were measured over the temperature ranges 837 to 1151 K and 775 to 1196 K, respectively, using 8 mass% yttria-stabilized zirconia (8 YSZ) as the solid electrolyte. From the emf values, the partial molar Gibbs energy of solution of molybdenum in Mo 3Te 4/MoTe 2(α), Δ ḠMo was found to be Δ ḠMo ± 1.19 ( kJ/mol) = -025.08 + 0.00420T(K) . Using the literature data for the Gibbs energy of formation of MoTe 2(α). the expression ΔG° f( Mo3Te4, s) ± 5.97 (kj/mol) = -253.58 + 0.09214 T( K) was derived for the range 775 to 1196 K. A third-law analysis yielded a value of -209 ± 10 kJ/mol for ΔH° f.298o of Mo 3Te 4(s).
Inference with minimal Gibbs free energy in information field theory.
Ensslin, Torsten A; Weig, Cornelius
2010-11-01
Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior.
NASA Astrophysics Data System (ADS)
Kuz'mina, I. A.; Usacheva, T. R.; Kuz'mina, K. I.; Volkova, M. A.; Sharnin, V. A.
2015-01-01
The Gibbs energies of the transfer of 18-crown-6 ether from methanol to its mixtures with acetonitrile (χAN = 0.0-1.0 mole fraction) are determined by means of interphase distribution at 298 K. The effect the solvent composition has on the thermodynamic characteristics of the solvation of 18-crown-6 ether is analyzed. An increase in the content of acetonitrile in the mixed solvent enhances the solvation of crown ether due to changes in the energy of the solution. Resolvation of the macrocycle is assumed to be complete at acetonitrile concentrations higher than 0.6 mole fraction.
Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.
2014-01-01
The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere. PMID:25429287
NASA Astrophysics Data System (ADS)
Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.
2018-03-01
The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.
Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S
2016-11-01
We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.
Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media
NASA Astrophysics Data System (ADS)
Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna
2017-12-01
Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.
Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka
2014-01-01
The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logK OW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logK OW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logK OW values was established (R 2 = 0.8024–0.9658). PMID:24587761
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Rong, Mingzhe; Wang, Xiaohua; Wu, Junhui; Han, Guiquan; Han, Guohui; Lu, Yanhui; Yang, Aijun; Wu, Yi
2017-07-01
C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat) are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity) are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat) and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity), while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.
Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations
NASA Astrophysics Data System (ADS)
Srivastava, Abhinav; Debnath, Ananya
2018-03-01
Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.
A density functional theory based approach for predicting melting points of ionic liquids
Chen, Lihua; Bryantsev, Vyacheslav S.
2017-01-17
Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculating melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressedmore » through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. As a result, continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.« less
A density functional theory based approach for predicting melting points of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lihua; Bryantsev, Vyacheslav S.
Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculating melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressedmore » through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro-containing anions. As a result, continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.« less
When Density Functional Approximations Meet Iron Oxides.
Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong
2016-10-11
Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.
NASA Astrophysics Data System (ADS)
Core, D.; Essene, E. J.; Luhr, J. F.; Kesler, S. E.
2004-12-01
The Gibbs free energy of hydroxyellestadite [Ca10(SiO4)3(SO4)3(OH)2] was estimated using mineral equilibria applied to analyzed assemblages from the experimental charges of Luhr (1990). The apatite analyses of Peng et al. (1997) were used in conjunction with new analyses of the oxides and silicates in this study. An ideal mixing model was employed for apatite combined with mixing models from MELTS (Ghiorso & Sack, 1994) and Gibbs free energy data from Robie & Hemingway (1995) for the other crystalline phases. The resultant equation of the Gibbs free energy vs. T for hydroxyellestadite is as follows: DG°T(elem) = [2.817(T - 273) - 11831]/1000 kJ/mol, T in K. The calculated entropy for hydroxyellestadite is 1944 J/mol.K at 1073 K and 2151 J/mol.K at 1227 K. Independent estimates of the entropy of hydroxyellestadite obtained with the method of Robinson & Haas (1983) are within 5% of these values. The thermodynamic data on hydroxyellestadite were used to calculate the locus of the reactions: 2Ca10(SiO4)3(SO4)3(OH)2 + 7S2 + 21O2 = 20CaSO4 + 6SiO2 + 2H2O 6Ca10(SiO4)3(SO4)3(OH)2 + 102SiO2 + 20Fe3O4 = 60CaFeSi2O6 + 6H2O + 9S2 + 37O2 2Ca10(SiO4)3(SO4)3(OH)2 + 10Mg2Si2O6 + 14SiO2 = 20CaMgSi2O6 + 2H2O + 3S2 + 9O2 in fO2-fS2 space at fixed P-T. Application of these equilibria to apatite zoned in sulfate from oxidized granitoids reflects a drop in fS2 by more than 1 log unit during its growth. The zoning is interpreted to represent the removal of a magmatic vapor phase during crystallization of these plutons. Removal of sulfur from magmas by hydrothermal fluids is important to the ore-forming process and to the production of acid sulfate aerosols during eruption of oxidized magmas. Preservation of sulfatian apatite may yield data on the sulfidation states of ancient flood basalts such as the Deccan Traps of India and the Parana basalts of Brazil to address the environmental impact of these giant eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, S. L., E-mail: sobolev@icp.ac.ru
An analytical model has been developed to describe the influence of solute trapping during rapid alloy solidification on the components of the Gibbs free energy change at the phase interface with emphasis on the solute drag energy. For relatively low interface velocity V < V{sub D}, where V{sub D} is the characteristic diffusion velocity, all the components, namely mixing part, local nonequilibrium part, and solute drag, significantly depend on solute diffusion and partitioning. When V ≥ V{sub D}, the local nonequilibrium effects lead to a sharp transition to diffusionless solidification. The transition is accompanied by complete solute trapping and vanishingmore » solute drag energy, i.e. partitionless and “dragless” solidification.« less
An Improved Mnemonic Diagram for Thermodynamic Relationships.
ERIC Educational Resources Information Center
Rodriguez, Joaquin; Brainard, Alan J.
1989-01-01
Considers pressure, volume, entropy, temperature, Helmholtz free energy, Gibbs free energy, enthalpy, and internal energy. Suggests the mnemonic diagram is for use with simple systems that are defined as macroscopically homogeneous, isotropic, uncharged, and chemically inert. (MVL)
Calculating Free Energy Changes in Continuum Solvation Models
Ho, Junming; Ertem, Mehmed Z.
2016-02-27
We recently showed for a large dataset of pK as and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents (Phys. Chem. Chem. Phys. 2015, 17, 2859). In this paper, we significantly expand the scope of our study to examine the suitability of this approach for the calculation of general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMDM062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems and reaction types. This includes cluster-continuum schemes for pKmore » a calculations, as well as various neutral, radical and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and bimolecular SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar – the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 kJ mol -1 and 25 kJ mol -1 respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. The results indicate that when appropriate combinations of electronic structure methods are employed, the direct approach provides a reliable alternative to the thermodynamic cycle calculations of solution phase kinetics and thermodynamics across a broad range of organic reactions.« less
Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential.
Ahmad, Muhammad Sajjad; Mehmood, Muhammad Aamer; Al Ayed, Omar S; Ye, Guangbin; Luo, Huibo; Ibrahim, Muhammad; Rashid, Umer; Arbi Nehdi, Imededdine; Qadir, Ghulam
2017-01-01
The biomass of Urochloa mutica was subjected to thermal degradation analyses to understand its pyrolytic behavior for bioenergy production. Thermal degradation experiments were performed at three different heating rates, 10, 30 and 50°Cmin -1 using simultaneous thermogravimetric-differential scanning calorimetric analyzer, under an inert environment. The kinetic analyses were performed using isoconversional models of Kissenger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The high heating value was calculated as 15.04MJmol -1 . The activation energy (E) values were shown to be ranging from 103 through 233 kJmol -1 . Pre-exponential factors (A) indicated the reaction to follow first order kinetics. Gibbs free energy (ΔG) was measured to be ranging from 169 to 173kJmol -1 and 168 to 172kJmol -1 , calculated by KAS and FWO methods, respectively. We have shown that Para grass biomass has considerable bioenergy potential comparable to established bioenergy crops such as switchgrass and miscanthus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization
NASA Astrophysics Data System (ADS)
Behúlová, M.; Grgač, P.; Čička, R.
2017-11-01
Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.
Thermodynamic stability of copper gallates determined from the E.M.F. method
NASA Astrophysics Data System (ADS)
Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof
2015-12-01
Employing following electrochemical cells with the solid YSZ electrolyte: CuO, Cu2O /O2-/ air (pO2 = 0.21 atm) CuGa2O4, CuGaO2, Ga2O3 /O2-/ air (pO2 = 0.21 a t m) CuGa2O4, CuGaO2, Cu2O /O2-/ air (pO2 = 0.21 atm) Ni, NiO /O2-/ Ga2O3, CuGaO2, Cu The Gibbs free energy of formation of solid CuGa2O4 and CuGaO2 phases was determined in the temperature range from 1048 to 1223 K. Obtained results were used to derive Gibbs free energy change of the reaction of formation of solid phases from respective oxides: CuO+Ga2O3=CuGa2O4 ∆ GCuGa2O4 0(J/mol) = 21642 - 26.01 × T(± 630) ½Cu2O +½Ga2O3=CuGaO2 ∆ G CuGa O2 0 (J / mol) = - 12879 + 6.29 × T (± 640) Finally, present results were applied to the calculation of oxygen potential diagrams at different temperatures, and consequently, to the prediction of the stability ranges of these both solid phases.
NASA Astrophysics Data System (ADS)
Ghaedi, Mehrorang; Khajesharifi, Habibollah; Hemmati Yadkuri, Amin; Roosta, Mostafa; Sahraei, Reza; Daneshfar, Ali
2012-02-01
In the present research, cadmium hydroxide nanowire loaded on activated carbon (Cd(OH) 2-NW-AC) was synthesized and characterized. This new adsorbent was applied for the removal of Bromocresol Green (BCG) molecules from aqueous solutions. The influence of effective variables such as solution pH, contact time, initial BCG concentration, amount of Cd(OH) 2-NW-AC and temperature on the adsorption efficiency of BCG in batch system was examined. During all experiments BCG contents were determined by UV-Vis spectrophotometer. Fitting the experimental data to different kinetic models including pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models show the suitability of the pseudo-second-order kinetic model to interpret in the experimental data. Equilibrium isotherm studies were examined by application of different conventional models such as Langmuir, Freundlich and Tempkin models to explain the experimental data. Based on considering R2 value as criterion the adsorption data well fitted to Langmuir model with maximum adsorption capacity of 108.7 mg g -1. Thermodynamic parameters (Gibb's free energy, entropy and enthalpy) of adsorption were calculated according to general procedure to take some information about the on-going adsorption process. The high negative value of Gibb's free energy and positive value of enthalpy show the feasibility and endothermic nature of adsorption process.
Ghaedi, Mehrorang; Khajesharifi, Habibollah; Hemmati Yadkuri, Amin; Roosta, Mostafa; Sahraei, Reza; Daneshfar, Ali
2012-02-01
In the present research, cadmium hydroxide nanowire loaded on activated carbon (Cd(OH)(2)-NW-AC) was synthesized and characterized. This new adsorbent was applied for the removal of Bromocresol Green (BCG) molecules from aqueous solutions. The influence of effective variables such as solution pH, contact time, initial BCG concentration, amount of Cd(OH)(2)-NW-AC and temperature on the adsorption efficiency of BCG in batch system was examined. During all experiments BCG contents were determined by UV-Vis spectrophotometer. Fitting the experimental data to different kinetic models including pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models show the suitability of the pseudo-second-order kinetic model to interpret in the experimental data. Equilibrium isotherm studies were examined by application of different conventional models such as Langmuir, Freundlich and Tempkin models to explain the experimental data. Based on considering R(2) value as criterion the adsorption data well fitted to Langmuir model with maximum adsorption capacity of 108.7 mg g(-1). Thermodynamic parameters (Gibb's free energy, entropy and enthalpy) of adsorption were calculated according to general procedure to take some information about the on-going adsorption process. The high negative value of Gibb's free energy and positive value of enthalpy show the feasibility and endothermic nature of adsorption process. Copyright © 2011 Elsevier B.V. All rights reserved.
He, Fuyuan; Deng, Kaiwen; Shi, Jilian; Liu, Wenlong; Pi, Fengjuan
2011-11-01
To establish the unitive multicomponent quality system bridged macrostate mathematic model parameters of material quality and microstate component concentration for Chinese materia medica (CMM). According to law of biologic laws of thermodynamics, the state functions of macrostate qulity of the CMM were established. The validation test was carried out as modeling drug as alcohol extract of Radix Rhozome (AERR), their enthalpy of combustion was determined, and entropy and the capability of information by chromatographic fingerprint were assayed, and then the biologic apparent macrostate parameters were calculated. The biologic macrostate mathematic models, for the CMM quality controll, were established as parameters as the apparent equilibrium constant, biologic enthalpy, Gibbs free energy and biologic entropy etc. The total molarity for the 10 batchs of AERR were 0.153 4 mmol x g(-1) with 28.26% of RSD, with the average of apparent equilibrium constants, biologic enthalpy, Gibbs free energy and biologic entropy were 0.039 65, 8 005 J x mol(-1), -2.408 x 10(7) J x mol(-1) and - 8.078 x 10(4) J x K(-1) with RSD as 6.020%, 1.860%, 42.32% and 42.31%, respectively. The macrostate quality models for CMM can represent their intrinsic quality for multicomponent dynamic system such as the CMM, to manifest out as if the forest away from or tree near from to see it.
Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems
NASA Astrophysics Data System (ADS)
Kleykamp, H.
1989-09-01
The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.
NASA Astrophysics Data System (ADS)
Xiong, Z.; Tsuchiya, T.
2017-12-01
Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein. We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007) 567-576
NASA Astrophysics Data System (ADS)
Sreedharan, O. M.; Madan, B. S.; Gnanamoorthy, J. B.
1983-12-01
The compound NaCrO 2(s) is an important corrosion product in sodium-cooled LMFBRs. The standard Gibbs energy of formation of NaCrO 2(s) is required for the computation of threshold oxygen levels in Na(1) for the formation of NaCrO 2(s) on 18-8 stainless steels. For this purpose the emf of the galvanic cell: Pt, NaCrO 2, Cr 2O 3, Na 2CrO 4/15 YSZ/O 2 ( P O 2 = 0.21 atm, air), Pt was measured over 784-1012 K to be: (E±4.4)(mV) = 483.67-0.34155 T(K). From this, the standard Gibbs energy of formation of NaCrO 2(s) from the elements ( ΔG f,T0) and from the oxides ( ΔG f,OX,T0) was calculated to be: [ΔG f,T0(NaCrO 2, s)±1.86] (kJ/mol) =-869.98 + 0.18575 T(K) , [ΔG f,OX,T0(NaCr0 2, s)±4.8] (kJ/mol) = -104.25-0.00856 T(K) . The molar heat capacity, C P0, of NaCrO 2(s) was measured by DSC to be (350-600 K): C P0(NaCrO 2, s) (J/K mol) = 27.15 + 0.1247 T (K) , From these data, values of -99.3 kJ/mol and 91.6 J/K mol were computed for ΔH f,2980 and S 2980 of NaCrO 2(s). The internal consistency was checked with the use of enthalpy data on Na 2CrO 4(s). From the standard Gibbs energy of formation of NaCrO 2(s) the equation logC 0(wppm) = 3.9905-3147.6 T(K) was derived, where C 0 is the threshold oxygen level for the formation of NaCrO 2(s) on 18-8 stainless steels.
Resorcarene-based receptor: versatile behavior in its interaction with heavy and soft metal cations.
Danil de Namor, Angela F; Chaaban, Jinane K; Piro, Oscar E; Castellano, Eduardo E
2006-02-09
Standard solution Gibbs energies, DeltasG degrees, of the resorcarene-based receptor 5,11,17,23-ethylthiomethylated calix[4]resorcarene, (characterized by 1H NMR and X-ray diffraction studies) in its monomeric state (established through partition experiments) in various solvents are for the first time reported in the area of resorcarene chemistry. Transfer Gibbs energies of from hexane (reference solvent) to other medium are calculated. Agreement between DeltatG degrees (referred to the pure solvents) and standard partition Gibbs energies, DeltapG degrees (solvent mutually saturated) is found. Cation-ligand interactions were investigated through 1H NMR (CD3CN and CD3OD) and conductometric titrations in acetonitrile and methanol. 1H NMR data revealed the sites of interaction of with the metal cation. The composition of the metal-ion complexes (Ag+ and Pb2+ in acetonitrile and Ag+ and Cu2+ in methanol) was established through conductometric titrations. Thus, complexes of 1:1 stoichiometry were formed between and Ag+ and Pb2+ in acetonitrile and Cu2+ in methanol. However, in moving from acetonitrile to methanol, the composition of the silver complex was altered. Thus, two metal cations are hosted by a unit of the ligand. As far as Cu2+ and in acetonitrile is concerned, conductance data suggest that metalates are formed in which up to four units of Cu2+ are taken up per unit of resorcarene. The contrasting behavior of with Cu2+ in acetonitrile relative to methanol is discussed. As far as mercury (II) is concerned, the unusual jump in conductance observed in the titration of Hg2+ with in acetonitrile and methanol after the formation of a multicharged complex (undefined composition) is attributed to the presence of highly charged smaller units (higher mobility) resulting from the departure of pendant arms from the resorcarene backbone. Isolation of these species followed by X-ray diffraction studies corroborated this statement. The thermodynamic characterization of metal-ion complexes of Ag+ and Pb2+ in acetonitrile and Cu2+ and Ag+ in methanol is reported. Final conclusions are given.
Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.
1997-01-01
The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.
Mosecker, Linda; Saeed-Akbari, Alireza
2013-06-01
Nitrogen in austenitic stainless steels and its effect on the stacking fault energy (SFE) has been the subject of intense discussions in the literature. Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions in these systems. Besides different types of models that are used from first-principle to thermodynamics-based approaches, one main reason is the general lack of experimentally measured SFE values for these steels. Moreover, in the respective studies, not only different alloying systems but also different domains of nitrogen contents were analyzed resulting in contrary conclusions on the effect of nitrogen on the SFE. This work gives a review on the current state of SFE calculation by computational thermodynamics for the Fe-Cr-Mn-N system. An assessment of the thermodynamic effective Gibbs free energy, [Formula: see text], model for the [Formula: see text] phase transformation considering existing data from different literature and commercial databases is given. Furthermore, we introduce the application of a non-constant composition-dependent interfacial energy, б γ / ε , required to consider the effect of nitrogen on SFE in these systems.
Mosecker, Linda; Saeed-Akbari, Alireza
2013-01-01
Nitrogen in austenitic stainless steels and its effect on the stacking fault energy (SFE) has been the subject of intense discussions in the literature. Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions in these systems. Besides different types of models that are used from first-principle to thermodynamics-based approaches, one main reason is the general lack of experimentally measured SFE values for these steels. Moreover, in the respective studies, not only different alloying systems but also different domains of nitrogen contents were analyzed resulting in contrary conclusions on the effect of nitrogen on the SFE. This work gives a review on the current state of SFE calculation by computational thermodynamics for the Fe–Cr–Mn–N system. An assessment of the thermodynamic effective Gibbs free energy, , model for the phase transformation considering existing data from different literature and commercial databases is given. Furthermore, we introduce the application of a non-constant composition-dependent interfacial energy, бγ/ε, required to consider the effect of nitrogen on SFE in these systems. PMID:27877573
Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage
NASA Astrophysics Data System (ADS)
Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay
2018-04-01
The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.
The existence and gas phase acidity of the HAlnF3n+1 superacids (n = 1-4)
NASA Astrophysics Data System (ADS)
Czapla, Marcin; Skurski, Piotr
2015-06-01
Novel strong superacids are proposed and investigated on the basis of ab initio calculations. The gas phase acidity of the HAlF4, HAl2F7, and HAl3F10 systems evaluated by the estimation of the Gibbs free energies of their deprotonation reactions were found significant and comparable to the corresponding value characterizing the HTaF6, whereas the strength of the HAl4F13 acid was predicted to exceed that of the HSbF6 acid (the strongest liquid superacid recognized). The deprotonation energies of the HAlnF3n+1 acids (n = 1-4) turned out to be closely related to the electronic stabilities of their corresponding (AlnF3n+1)- anions.
Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinn-Liang, E-mail: jinnliu@mail.nhcue.edu.tw; Eisenberg, Bob, E-mail: beisenbe@rush.edu
2014-12-14
A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part ofmore » the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10{sup 8}-fold range of Ca{sup 2+} concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study a variety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and charge/space competition of the channel.« less
Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.
1992-01-01
The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.
TEA: A Code Calculating Thermochemical Equilibrium Abundances
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
NASA Astrophysics Data System (ADS)
Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu
2016-05-01
Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)
TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but withmore » higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.« less
Saltas, V.; Chroneos, A.; Cooper, Michael William D.; ...
2016-01-01
In the present work, the defect properties of oxygen self-diffusion in PuO 2 are investigated over a wide temperature (300–1900 K) and pressure (0–10 GPa) range, by combining molecular dynamics simulations and thermodynamic calculations. Based on the well-established cBΩ thermodynamic model which connects the activation Gibbs free energy of diffusion with the bulk elastic and expansion properties, various point defect parameters such as activation enthalpy, activation entropy, and activation volume were calculated as a function of T and P. Molecular dynamics calculations provided the necessary bulk properties for the proper implementation of the thermodynamic model, in the lack of anymore » relevant experimental data. The estimated compressibility and the thermal expansion coefficient of activation volume are found to be more than one order of magnitude greater than the corresponding values of the bulk plutonia. As a result, the diffusion mechanism is discussed in the context of the temperature and pressure dependence of the activation volume.« less
El Seoud, Omar A; Pires, Paulo Augusto R; Abdel-Moghny, Thanaa; Bastos, Erick L
2007-09-01
A series of surface-active ionic liquids, RMeImCl, has been synthesized by the reaction of purified 1-methylimidazole and 1-chloroalkanes, RCl, R=C(10),C(12),C(14), and C(16), respectively. Adsorption and aggregation of these surfactants in water have been studied by surface tension measurement. Additionally, solution conductivity, electromotive force, fluorescence quenching of micelle-solubilized pyrene, and static light scattering have been employed to investigate micelle formation. The following changes resulted from an increase in the length of R: an increase of micelle aggregation number; a decrease of: minimum area/surfactant molecule at solution/air interface; critical micelle concentration, and degree of counter-ion dissociation. Theoretically-calculated aggregation numbers and those based on quenching of pyrene are in good agreement. Gibbs free energies of adsorption at solution/air interface, DeltaG(ads)(0), and micelle formation in water, DeltaG(mic)(0), were calculated, and compared to those of three surfactant series, alkylpyridinium chlorides, RPyCl, alkylbenzyldimethylammonium chlorides, RBzMe(2)Cl, and benzyl(3-acylaminoethyl)dimethylammonium chlorides, R(')AEtBzMe(2)Cl, respectively. Contributions to the above-mentioned Gibbs free energies from surfactant methylene groups (in the hydrophobic tail) and the head-group were calculated. For RMeImCl, the former energy is similar to that of other cationic surfactants. The corresponding free energy contribution of the head-group to DeltaG(mic)(0) showed the following order: RPyCl approximately RBzMe(2)Cl>RMeImCl>R(')AEtBzMe(2)Cl. The head-groups of the first two surfactant series are more hydrophobic than the imidazolium ring of RMeImCl, this should favor their aggregation. Micellization of RMeImCl, however, is driven by a relatively strong hydrogen-bonding between the chloride ion and the hydrogens in the imidazolium ring, in particular the relatively acidic H2. This interaction more than compensates for the relative hydrophilic character of the diazolium ring. As indicated by the corresponding DeltaG(mic)(0), micellization of R(')AEtBzMe(2)Cl is more favorable than that of RMeImCl because the CONH group of the former surfactant series forms hydrogen bonds to both the counter-ion and the neighboring molecules in the micelle.
Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing
NASA Astrophysics Data System (ADS)
Liu, Huachu; He, Yanlin; Li, Lin
2009-12-01
Firstly in this paper, the influence of H 2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H 2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr 2O 3, SiO 2 etc.) can be reduced by the effective Al in Zn bath.
Thermodynamic assessment of the U–Y–O system
Brese, R. G.; McMurray, J. W.; Shin, D.; ...
2015-02-03
We developed a CALPHAD assessment of the U-Y-O system. To represent the YO2 compound in the compound energy formalism (CEF) for U 1-yY yO 2± x, the lattice stability was calculated using density functional theory (DFT) while a partially ionic liquid sub-lattice model is used to describe the liquid phase. Moreover, a Gibbs function for the stoichiometric rhombohedral UY 6O 12 phase is proposed. Models representing the phases in the U-O and Y-O systems taken from the literature along with the phases that appear in the U-Y-O ternary are combined to form a unified assessment.
Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling
NASA Astrophysics Data System (ADS)
Balcerzak, T.; Szałowski, K.; Jaščur, M.
2018-04-01
Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.
Dielectric constant of ionic solutions: a field-theory approach.
Levy, Amir; Andelman, David; Orland, Henri
2012-06-01
We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.
High-temperature heat capacity of CdO-V2O5 oxides
NASA Astrophysics Data System (ADS)
Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.; Galiakhmetova, N. A.
2017-12-01
Vanadates Cd2V2O7 and CdV2O6 have been prepared from CdO i V2O5 by three-phase synthesis with subsequent burning at 823-1073 K and 823-853 K, respectively. The molar heat capacity of these oxide compounds has been measured by differential scanning calorimetry. The enthalpy change, the entropy change, and the reduced Gibbs energy are calculated using the experimental dependences C p = f( T). It is shown that there is a correlation between the specific heat capacity and the composition of CdO-V2O5 oxide system.
NASA Astrophysics Data System (ADS)
Oswal, S. L.; Dave, J. P.
1992-11-01
Viscosity measurements are reported for mixtures of ethyl ethanoate, ethyl propionate, ethyl butyrate, ethyl-2-bromopropionate, ethyl-3-bromopropionate, ethyl-2-bromobutyrate, and ethyl-4-bromobutyrate with n-hexane at 303.15 K. The viscosity data have been correlated with equations of Grunberg and Nissan, of McAllister, and of Auslaender. Furthermore, excess Gibbs energies of activation ΔG * E of viscous flow have been calculated with Eyring's theory of absolute reaction rates and values of ΔG * E for the present binary mixtures have been explained in terms of the dipole-dipole interaction in alkanoates and the intramolecular Br...O interaction in bromoalkanoates.
NASA Astrophysics Data System (ADS)
Oswal, S. L.; Patel, B. M.; Shah, H. R.; Oswal, P.
1994-07-01
Measurements of the viscosity η and the density ϱ are reported for 14 binary mixtures of methyl methacrylate (MMA) with hydrocarbons, haloalkanes, and alkylamines at 303.15 K. The viscosity data have been correlated with equations of Grunberg and Nissan, of McAllister, and of Auslaender. Furthermore, excess viscosity Δ In η and excess Gibbs energy of activation ΔG* E of viscous flow have been calculated and have been used to predict molecular interactions occurring in present binary mixtures. The results show the existence of specific interactions in MMA + aromatic hydrocarbons, MMA + haloalkanes, and MMA + primary amines.
On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.
Tóth, József
2003-06-01
It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.
Preferential Solvation of Silver (I) Bromate in Methanol-Dimethylsulfoxide Mixtures
NASA Astrophysics Data System (ADS)
Janardhanan, S.; Kalidas, C.
1984-06-01
The solubiltiy of silver bromate, the Gibbs transfer energy of Ag+ and BrO3- and the solvent transport number in methanol-dimethyl sulfoxide mixtures are reported. The solubility of silver bromate increases with addition of DMSO. The Gibbs energy of transfer of the silver ion (based on the ferrocene reference method) decreases, while that of the bromate ion becomes slightly negative with the addition of DMSO. The solvent transport number A passes through a maximum (⊿ = 1.0 at XDMSO = 0.65. From these results, it is concluded that the silver ion is preferentially solvated by DMSO whereas the bromate ion shows no preferential solvation.
Cerebella segmentation on MR images of pediatric patients with medulloblastoma
NASA Astrophysics Data System (ADS)
Shan, Zu Y.; Ji, Qing; Glass, John; Gajjar, Amar; Reddick, Wilburn E.
2005-04-01
In this study, an automated method has been developed to identify the cerebellum from T1-weighted MR brain images of patients with medulloblastoma. A new objective function that is similar to Gibbs free energy in classic physics was defined; and the brain structure delineation was viewed as a process of minimizing Gibbs free energy. We used a rigid-body registration and an active contour (snake) method to minimize the Gibbs free energy in this study. The method was applied to 20 patient data sets to generate cerebellum images and volumetric results. The generated cerebellum images were compared with two manually drawn results. Strong correlations were found between the automatically and manually generated volumetric results, the correlation coefficients with each of manual results were 0.971 and 0.974, respectively. The average Jaccard similarities with each of two manual results were 0.89 and 0.88, respectively. The average Kappa indexes with each of two manual results were 0.94 and 0.93, respectively. These results showed this method was both robust and accurate for cerebellum segmentation. The method may be applied to various research and clinical investigation in which cerebellum segmentation and quantitative MR measurement of cerebellum are needed.
Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P
2012-08-01
To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Li, Z J; Zell, M T; Munson, E J; Grant, D J
1999-03-01
The identification of the racemic species, as a racemic compound, a racemic conglomerate, or a racemic solid solution (pseudoracemate), is crucial for rationalizing the potential for resolution of racemates by crystallization. The melting points and enthalpies of fusion of a number of chiral drugs and their salts were measured by differential scanning calorimetry. Based on a thermodynamic cycle involving the solid and liquid phases of the enantiomers and racemic species, the enthalpy, entropy and Gibbs free energy of the racemic species were derived from the thermal data. The Gibbs free energy of formation, is always negative for a racemic compound, if it can exist, and the contribution from the entropy of mixing in the liquid state to the free energy of formation is the driving force for the process. For a racemic conglomerate, the entropy of mixing in the liquid state is close to the ideal value of R ln 2 (1.38 cal.mol-1. K-1). Pseudoracemates behave differently from the other two types of racemic species. When the melting points of the racemic species is about 30 K below that of the homochiral species, is approximately zero, indicating that the racemic compound and racemic conglomerate possess similar relative stabilities. The powder X-ray diffraction patterns and 13C solid-state nuclear magnetic resonance spectra are valuable for revealing structural differences between a racemic compound and a racemic conglomerate. Thermodynamic prediction, thermal analysis, and structural study are in excellent agreement for identifying the nature of the racemic species.
Donati, Ivan; Benegas, Julio C; Cesàro, Attilio; Paoletti, Sergio
2006-05-01
Polyuronates such as pectate and alginate are very well-known examples of biological polyelectrolytes undergoing, upon addition of divalent cations, an interchain association that acts as the junction of an eventually formed stable hydrogel. In the present paper, a thermodynamic model based on the counterion condensation theory has been developed to account for this cation-induced chain pairing of negatively charged polyelectrolytes. The strong interactions between cross-linking ions and uronate moieties in the specific binding site have been described in terms of chemical bonding, with complete charge annihilation between the two species. The chain-pairing process is depicted as progressively increasing with the concentration of cross-linking counterions and is thermodynamically defined by the fraction of each species. On these bases, the total Gibbs energy of the system has been expressed as the sum of the contributions of the Gibbs energy of the (single) chain stretches and of the (associated) dimers, weighted by their respective fractions 1 - theta and theta. In addition, the model assumes that the condensed divalent counterions exhibit an affinity free-energy for the chain, G(C)(aff,0), and the junction, G(D)(aff,0), respectively. Moreover, a specific Gibbs energy of chemical bonding, G(bond,0), has been introduced as the driving force for the formation of dimers. The model provides the mathematical formalism for calculating the fraction, theta, of chain dimers formed and the amount of ions condensed and bound onto the polyelectrolyte when two different types of counterions (of equal or different valence) are present. The effect of the parameter G(bond,0) has been investigated and, in particular, its difference from G(C,D)(aff,0) was found to be crucial in determining the distribution of the ions into territorial condensation and chemical bonding, respectively. Finally, the effect of the variation of the molar ratio between cross-linking ions and uronic groups in the specific binding sites, sigma0, was evaluated. In particular, a remarkable decrease in the amount of condensed counterions has been pointed out in the case of sigma0 = 1/3, with respect to the value of sigma0 = 1/4, characterizing the traditional "egg-box" structure, as a result of the drop of the charge density of the polyelectrolyte induced by complete charge annihilation.
Sellers, Michael S; Lísal, Martin; Brennan, John K
2016-03-21
We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (Tm). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point Tm = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur
2015-07-08
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz
2015-01-01
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430
Simple calculation of ab initio melting curves: Application to aluminum.
Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean
2015-03-01
We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.
NASA Astrophysics Data System (ADS)
Franczuk, Barbara; Danikiewicz, Witold
2018-03-01
Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction ( m/z 47), SN2 ( m/z 79), and E2 elimination - addition sequence of reactions ( m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results. [Figure not available: see fulltext.
Thermodynamic Data to 20,000 K For Monatomic Gases
NASA Technical Reports Server (NTRS)
Gordon, Sanford; McBride, Bonnie J.
1999-01-01
This report contains standard-state thermodynamic functions for 50 gaseous atomic elements plus deuterium and electron gas, 51 singly ionized positive ions, and 36 singly ionized negative ions. The data were generated by the NASA Lewis computer program PAC97, a modified version of PAC91 reported in McBride and Gordon. This report is being published primarily to document part of the data currently being used in several NASA Lewis computer programs. The data are presented in tabular and graphical format and are also represented in the form of least-squares coefficients. The tables give the following data as functions of temperature : heat capacity, enthalpy, entropy Gibbs energy, enthalpy of formation, and equilibrium constant. A brief discussion and a comparison of calculated results are given for several models for calculating ideal thermodynamic data for monatomic gases.
Polymer-induced phase separation and crystallization in immunoglobulin G solutions.
Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen
2008-05-28
We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Nielsen, Morten; Lundegaard, Claus; Worning, Peder; Hvid, Christina Sylvester; Lamberth, Kasper; Buus, Søren; Brunak, Søren; Lund, Ole
2004-06-12
Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design. We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of the TEPITOPE method.
Yip, Ngai Yin; Elimelech, Menachem
2012-05-01
The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society
Radchenko, Valery; Mastren, Tara; Meyer, Catherine A. L.; ...
2017-07-20
Actinium-225 is a potential Targeted Alpha Therapy (TAT) isotope. It can be generated with high energy (≥ 100 MeV) proton irradiation of thorium targets. The main challenge in the chemical recovery of 225Ac lies in the separation from thorium and many fission by-products most importantly radiolanthanides. We recently developed a separation strategy based on a combination of cation exchange and extraction chromatography to isolate and purify 225Ac. In this study, actinium and lanthanide equilibrium distribution coefficients and column elution behavior for both TODGA (N,N,N',N'-tetra- n-octyldiglycolamide) and TEHDGA (N,N,N',N'-tetrakis-2-ethylhexyldiglycolamide) were determined. Density functional theory (DFT) calculations were performed and were inmore » agreement with experimental observations providing the foundation for understanding of the selectivity for Ac and lanthanides on different DGA (diglycolamide) based resins. The results of Gibbs energy (ΔG aq) calculations confirm significantly higher selectivity of DGA based resins for Ln III over Ac III in the presence of nitrate. As a result, DFT calculations and experimental results reveal that Ac chemistry cannot be predicted from lanthanide behavior under comparable circumstances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Mastren, Tara; Meyer, Catherine A. L.
Actinium-225 is a potential Targeted Alpha Therapy (TAT) isotope. It can be generated with high energy (≥ 100 MeV) proton irradiation of thorium targets. The main challenge in the chemical recovery of 225Ac lies in the separation from thorium and many fission by-products most importantly radiolanthanides. We recently developed a separation strategy based on a combination of cation exchange and extraction chromatography to isolate and purify 225Ac. In this study, actinium and lanthanide equilibrium distribution coefficients and column elution behavior for both TODGA (N,N,N',N'-tetra- n-octyldiglycolamide) and TEHDGA (N,N,N',N'-tetrakis-2-ethylhexyldiglycolamide) were determined. Density functional theory (DFT) calculations were performed and were inmore » agreement with experimental observations providing the foundation for understanding of the selectivity for Ac and lanthanides on different DGA (diglycolamide) based resins. The results of Gibbs energy (ΔG aq) calculations confirm significantly higher selectivity of DGA based resins for Ln III over Ac III in the presence of nitrate. As a result, DFT calculations and experimental results reveal that Ac chemistry cannot be predicted from lanthanide behavior under comparable circumstances.« less
NASA Astrophysics Data System (ADS)
Diaz-Rodriguez, Sebastian; Bozada, Samantha M.; Phifer, Jeremy R.; Paluch, Andrew S.
2016-11-01
We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of 2.2± 0.2 log units (ranking 15 out of 62 entries), the correlation coefficient ( R) was 0.6± 0.1 (ranking 35), and 72± 6 % of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.
Quantum chemical approach to estimating the thermodynamics of metabolic reactions.
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-12
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
Maxwell’s equal area law for Lovelock thermodynamics
NASA Astrophysics Data System (ADS)
Xu, Hao; Xu, Zhen-Ming
We present the construction of Maxwell’s equal area law for the Guass-Bonnet AdS black holes in d = 5, 6 and third-order Lovelock AdS black holes in d = 7, 8. The equal area law can be used to find the number and location of the points of intersection in the plots of Gibbs free energy, so that we can get the thermodynamically preferred solution which corresponds to the first-order phase transition. We obtain the radius of the small and large black holes in the phase transition which share the same Gibbs free energy. The case with two critical points is explored in much more details. The latent heat is also studied.
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Skurski, Piotr
2018-04-01
Stability of BeBH3 and MgBH3 molecules and their (BeBH3)- and (MgBH3)- anions is investigated on the basis of correlated ab initio calculations. The electronic and thermodynamic stability of all species is confirmed by estimating the excess electron binding energies of the anions and by evaluating the Gibbs free energies for various fragmentation paths. The bonding effects in BeBH3 and MgBH3 have been identified as the result of alkaline earth metal ns2 lone-pair donation to the empty 2p boron orbital. Adiabatic and vertical electronic stabilities of the (BeBH3)- and (MgBH3)- anions were found to span 1.114-1.301 and 0.675-0.744 eV range, respectively.
Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems
NASA Astrophysics Data System (ADS)
Wang, Jian; Cui, Senlin; Rao, Weifeng
2018-07-01
A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.
Thermodynamic Optimization of the Ag-Bi-Cu-Ni Quaternary System: Part I, Binary Subsystems
NASA Astrophysics Data System (ADS)
Wang, Jian; Cui, Senlin; Rao, Weifeng
2018-05-01
A comprehensive literature review and thermodynamic optimization of the phase diagrams and thermodynamic properties of the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary systems are presented. CALculation of PHAse Diagrams (CALPHAD)-type thermodynamic optimization was carried out to reproduce all available and reliable experimental phase equilibrium and thermodynamic data. The modified quasichemical model was used to model the liquid solution. The compound energy formalism was utilized to describe the Gibbs energies of all terminal solid solutions and intermetallic compounds. A self-consistent thermodynamic database for the Ag-Bi, Ag-Cu, Ag-Ni, Bi-Cu, and Bi-Ni binary subsystems of the Ag-Bi-Cu-Ni quaternary system was developed. This database can be used as a guide for research and development of lead-free solders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.W.; Hwang, K.J.; Shim, W.G.
Regulations on the removal of trinitrotoluene (TNT) from wastewater have become increasingly more stringent, demanding faster, less expensive, and more efficient treatment. This study focuses on the adsorption equilibrium and kinetics of TNT on powered activated carbons (PAC). Three types of PACs (i.e., wood based, coal based, and coconut-shell based) were studied as functions of temperature and pH. Thermodynamic properties including Gibbs free energy, enthalpy, and entropy, were evaluated by applying the Van't Hoff equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorptionmore » kinetic studies were carried out in batch adsorber under important conditions such as PAC types, temperature, pH, and concentration. We found that fast and efficient removal of TNT dissolved in water can be successfully achieved by PAC adsorption.« less
Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar
2017-08-01
The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.
Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl
NASA Astrophysics Data System (ADS)
Popp, Robert K.; Frantz, John D.
1980-07-01
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.
Some aspects of multicomponent excess free energy models with subregular binaries
NASA Astrophysics Data System (ADS)
Cheng, Weiji; Ganguly, Jibamitra
1994-09-01
We have shown that two of the most commonly used multicomponent formulations of excess Gibbs free energy of mixing, those by WOHL (1946, 1953) and REDLICH and KISTER (1948), are formally equivalent if the binaries are constrained to have subregular properties, and also that other subregular multicomponent formulations developed in the mineralogical and geochemical literature are equivalent to, or higher order extensions of, these formulations. We have also presented a compact derivation of a multicomponent subregular solution leading to the same expression as derived by HELFFRICH and WOOD (1989). It is shown that Wohl's multicomponent formulation involves combination of binary excess free energies, which are calculated at compositions obtained by normal projection of the multicomponent composition onto the bounding binary joins, and is, thus, equivalent to the formulation developed by MUGGIANU et al. (1975). Finally, following the lead of HILLERT (1980), we have explored the limiting behavior of regular and subregular ternary solutions when a pair of components become energetically equivalent, and have, thus, derived an expression for calculating the ternary interaction parameter in a ternary solution from a knowledge of the properties of the bounding binaries, when one of these binaries is nearly ideal.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Duraes, L.; Campos, J.; Portugal, A.
1997-07-01
The method of predicting reaction path, using a thermochemical computer code, named THOR, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using a thermal equation of state (EoS). The used HL EoS is a new EoS developed in previous works. HL EoS is supported by a Boltzmann EoS, taking α =13.5 to the exponent of the intermolecular potential and θ=1.4 to the adimensional temperature. This code allows now the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, described, calculated and discussed - Ammonium Nitrate based explosives and Nitromethane - because they are very known explosives and their equivalence ratio is respectively near and greater than the stoicheiometry. Predictions of detonation properties of other condensed explosives, as a function of energy release, present results in good correlation with experimental values.
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Gibbs Ensemble Simulations of the Solvent Swelling of Polymer Films
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas, III; Jayaraman, Arthi
Solvent vapor annealing (SVA) is a useful technique to tune the morphology of block polymer, polymer blend, and polymer nanocomposite films. Despite SVA's utility, standardized SVA protocols have not been established, partly due to a lack of fundamental knowledge regarding the interplay between the polymer(s), solvent, substrate, and free-surface during solvent annealing and evaporation. An understanding of how to tune polymer film properties in a controllable manner through SVA processes is needed. Herein, the thermodynamic implications of the presence of solvent in the swollen polymer film is explored through two alternative Gibbs ensemble simulation methods that we have developed and extended: Gibbs ensemble molecular dynamics (GEMD) and hybrid Monte Carlo (MC)/molecular dynamics (MD). In this poster, we will describe these simulation methods and demonstrate their application to polystyrene films swollen by toluene and n-hexane. Polymer film swelling experiments, Gibbs ensemble molecular simulations, and polymer reference interaction site model (PRISM) theory are combined to calculate an effective Flory-Huggins χ (χeff) for polymer-solvent mixtures. The effects of solvent chemistry, solvent content, polymer molecular weight, and polymer architecture on χeff are examined, providing a platform to control and understand the thermodynamics of polymer film swelling.
NASA Astrophysics Data System (ADS)
Bagchi, Debarshee; Tsallis, Constantino
2017-04-01
The relaxation to equilibrium of two long-range-interacting Fermi-Pasta-Ulam-like models (β type) in thermal contact is numerically studied. These systems, with different sizes and energy densities, are coupled to each other by a few thermal contacts which are short-range harmonic springs. By using the kinetic definition of temperature, we compute the time evolution of temperature and energy density of the two systems. Eventually, for some time t >teq, the temperature and energy density of the coupled system equilibrate to values consistent with standard Boltzmann-Gibbs thermostatistics. The equilibration time teq depends on the system size N as teq ∼Nγ where γ ≃ 1.8. We compute the velocity distribution P (v) of the oscillators of the two systems during the relaxation process. We find that P (v) is non-Gaussian and is remarkably close to a q-Gaussian distribution for all times before thermal equilibrium is reached. During the relaxation process we observe q > 1 while close to t =teq the value of q converges to unity and P (v) approaches a Gaussian. Thus the relaxation phenomenon in long-ranged systems connected by a thermal contact can be generically described as a crossover from q-statistics to Boltzmann-Gibbs statistics.
A Method to Calculate the Surface Tension of a Cylindrical Droplet
ERIC Educational Resources Information Center
Wang, Xiaosong; Zhu, Ruzeng
2010-01-01
The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…
Coarse-Grained Models for Automated Fragmentation and Parametrization of Molecular Databases.
Fraaije, Johannes G E M; van Male, Jan; Becherer, Paul; Serral Gracià, Rubèn
2016-12-27
We calibrate coarse-grained interaction potentials suitable for screening large data sets in top-down fashion. Three new algorithms are introduced: (i) automated decomposition of molecules into coarse-grained units (fragmentation); (ii) Coarse-Grained Reference Interaction Site Model-Hypernetted Chain (CG RISM-HNC) as an intermediate proxy for dissipative particle dynamics (DPD); and (iii) a simple top-down coarse-grained interaction potential/model based on activity coefficient theories from engineering (using COSMO-RS). We find that the fragment distribution follows Zipf and Heaps scaling laws. The accuracy in Gibbs energy of mixing calculations is a few tenths of a kilocalorie per mole. As a final proof of principle, we use full coarse-grained sampling through DPD thermodynamics integration to calculate log P OW for 4627 compounds with an average error of 0.84 log unit. The computational speeds per calculation are a few seconds for CG RISM-HNC and a few minutes for DPD thermodynamic integration.
Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-wen
2017-04-01
Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.
Feng, Dong-xia; Nguyen, Anh V
2016-03-01
Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces.
NASA Astrophysics Data System (ADS)
Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.
2015-11-01
The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang
2018-05-01
The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.
On the Nature of Disorder in Solid 4He
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2010-02-01
We apply a modified Debye approach to calculate the Gibbs free energy for different structural phases and crystallite sizes in 4He. Atoms are assumed to interact via the Aziz potential. We have found that some intermediate (between hcp and bcc) phase predicted previously is more favorable than hcp at low temperatures and for small sizes. We show that it can exist in a wide pressure range up to 60 bar in 4He for crystallite sizes about 3,000 atoms. For larger sizes (10,000 atoms or more) this phase becomes unfavorable. In multidomain structures the intermediate phase competes with hcp and metastable fcc that can be a reason for disorder in solid 4He.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, Thomas J.; Jove Colon, Carlos F.
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data.more » Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO 2, water, and aqueous species such as Na + and Cl -. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of “links” to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare “key” or “reference” datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent links to the same elemental reference form in a thermodynamic database will result in an inconsistency in the database. Thus, in constructing a database, it is important to establish a set of reliable links (generally resulting in a set of primary reference data) and then correct all data adopted subsequently for consistency with that set. Recommended values of key data have not been constant through history. We review some of this history through the lens of major compilations and other influential reports, and note a number of problem areas. Finally, we illustrate the concepts developed in this paper by applying them to some key species of geochemical interest, including liquid water; quartz and aqueous silica; and gibbsite, corundum, and the aqueous aluminum ion.« less
NASA Astrophysics Data System (ADS)
Wolery, Thomas J.; Jové Colón, Carlos F.
2017-09-01
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data. Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO2, water, and aqueous species such as Na+ and Cl-. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15 K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of "links" to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare "key" or "reference" datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent links to the same elemental reference form in a thermodynamic database will result in an inconsistency in the database. Thus, in constructing a database, it is important to establish a set of reliable links (generally resulting in a set of primary reference data) and then correct all data adopted subsequently for consistency with that set. Recommended values of key data have not been constant through history. We review some of this history through the lens of major compilations and other influential reports, and note a number of problem areas. Finally, we illustrate the concepts developed in this paper by applying them to some key species of geochemical interest, including liquid water; quartz and aqueous silica; and gibbsite, corundum, and the aqueous aluminum ion.
Wolery, Thomas J.; Jove Colon, Carlos F.
2016-09-26
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data.more » Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO 2, water, and aqueous species such as Na + and Cl -. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of “links” to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare “key” or “reference” datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent links to the same elemental reference form in a thermodynamic database will result in an inconsistency in the database. Thus, in constructing a database, it is important to establish a set of reliable links (generally resulting in a set of primary reference data) and then correct all data adopted subsequently for consistency with that set. Recommended values of key data have not been constant through history. We review some of this history through the lens of major compilations and other influential reports, and note a number of problem areas. Finally, we illustrate the concepts developed in this paper by applying them to some key species of geochemical interest, including liquid water; quartz and aqueous silica; and gibbsite, corundum, and the aqueous aluminum ion.« less
Interfacial thermodynamics of water and six other liquid solvents.
Pascal, Tod A; Goddard, William A
2014-06-05
We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.
NASA Astrophysics Data System (ADS)
Narayana, C.; Greene, R. G.; Ruoff, A. L.
2008-07-01
Raman and x-ray diffraction studies were made on silane in the diamond anvil cell using three different gaskets, stainless steel, tungsten and rhenium. The structure existing between 10 and 27 GPa is well characterized by the monoclinic space group P21c (#14). While the Gibbs free energy of formation of silane is positive at one atmosphere, it is calculated from the equation of state of silane and its reactants that this becomes negative near 4 GPa and remains negative until 13 GPa and then becomes positive again. At about 27 GPa, where quasi-quantum mechanical calculations suggest there should be a transformation from 4-fold to 6-fold (or even higher), the sample turns black. The Raman modes seize to exist beyond 30 GPa after showing softening above 25 GPa. At higher pressures it turns silvery. The gaskets play a different role as will be discussed. The sample brought back from 70 GPa contains amorphous Si (with attached hydrogen) as well as crystalline silicon. The lowest free energy system at high pressure is the decomposed reactants as observed.
NASA Astrophysics Data System (ADS)
Taboada, Pablo; Gutiérrez-Pichel, Manuel; Mosquera, Víctor
2004-03-01
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drug clomipramine hydrochloride have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered aqueous solution of pH 3.0 and 5.5. Critical concentrations of aggregation of this drug were obtained from inflections on the plots of the sound velocity against drug concentration. Apparent molal adiabatic compressibilities of the aggregates formed by the drug, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. From the temperature dependence of the critical concentration and using the mass action model combined with the Phillips definition of the critical concentration the thermodynamic standard quantities: free Gibbs energy, enthalpy and entropy of aggregate formation were calculated. The critical concentration and energy involved in the aggregation process of this drug have been also evaluated experimentally using isothermal titration calorimetry at 298.15 K. The solvent-drug interactions have been discussed from compressibility and calorimetry data.
Caliskan, Necla; Kul, Ali Riza; Alkan, Salih; Sogut, Eda Gokirmak; Alacabey, Ihsan
2011-10-15
The removal of Zn(II) ions from aqueous solution was studied using natural and MnO(2) modified diatomite samples at different temperatures. The linear Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption equations were applied to describe the equilibrium isotherms. From the D-R model, the mean adsorption energy was calculated as >8 kJ mol(-1), indicating that the adsorption of Zn(II) onto diatomite and Mn-diatomite was physically carried out. In addition, the pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to determine the kinetic data. The experimental data were well fitted by the pseudo-second-order kinetic model. Thermodynamic parameters such as the enthalpy (ΔH(0)), Gibbs' free energy (ΔG(0)) and entropy (ΔS(0)) were calculated for natural and MnO(2) modified diatomite. These values showed that the adsorption of Zn(II) ions onto diatomite samples was controlled by a physical mechanism and occurred spontaneously. Copyright © 2011 Elsevier B.V. All rights reserved.
Reconstruction of low-index graphite surfaces
NASA Astrophysics Data System (ADS)
Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas
2016-07-01
The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.
NASA Technical Reports Server (NTRS)
Simmonds, A. L.; Miller, C. G., III; Nealy, J. E.
1976-01-01
Equilibrium thermodynamic properties for pure ammonia were generated for a range of temperature from 500 to 50,000 K and pressure from 0.01 to 40 MN/sq m and are presented in tabulated and graphical form. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, specific heat at constant pressure, specific heat at constant volume, isentropic exponent, and species mole fractions. These properties were calculated by the method which is based on minimization of the Gibbs free energy. The data presented herein are for an 18-species ammonia model. Heats of formation and spectroscopic constants used as input data are presented. Comparison of several thermodynamic properties calculated with the present program and a second computer code is performed for a range of pressure and for temperatures up to 30,000 K.
A DFT study of permanganate oxidation of toluene and its ortho-nitroderivatives.
Adamczyk, Paweł; Wijker, Reto S; Hofstetter, Thomas B; Paneth, Piotr
2014-02-01
Calculations of alternative oxidation pathways of toluene and its ortho-substituted nitro derivatives by permanganate anion have been performed. The competition between methyl group and ring oxidation has been addressed. Acceptable results have been obtained using IEFPCM/B3LYP/6-31+G(d,p) calculations with zero-point (ZPC) and thermal corrections, as validated by comparison with the experimental data. It has been shown that ring oxidation reactions proceed via relatively early transition states that become quite unsymmetrical for reactions involving ortho-nitrosubstituted derivatives. Transition states for the hydrogen atom abstraction reactions, on the other hand, are late. All favored reactions are characterized by the Gibbs free energy of activation, ΔG(≠), of about 25 kcal mol(-1). Methyl group oxidations are exothermic by about 20 kcal mol(-1) while ring oxidations are around thermoneutrality.
Scheil-Gulliver Constituent Diagrams
NASA Astrophysics Data System (ADS)
Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.
2017-06-01
During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.
Terdale, Santosh S; Dagade, Dilip H; Patil, Kesharsingh J
2007-12-06
Data on osmotic coefficients have been obtained for a binary aqueous solution of two drugs, namely, promazine hydrochloride (PZ) and chlorpromazine hydrochloride (CPZ) using a vapor pressure osmometer at 298.15 K. The observed critical micelle concentration (cmc) agrees excellently with the available literature data. The measurements are extended to aqueous ternary solutions containing fixed a concentration of alpha-cyclodextrin (alpha-CD) of 0.1 mol kg(-1) and varied concentrations (approximately 0.005-0.2 mol kg(-1)) of drugs at 298.15 K. It has been found that the cmc values increase by the addition of alpha-CD. The mean molal activity coefficients of the ions and the activity coefficient of alpha-CD in binary as well as ternary solutions were obtained, which have been further used to calculate the excess Gibbs free energies and transfer Gibbs free energies. The lowering of the activity coefficients of ions and of alpha-CD is attributed to the existence of host-guest (inclusion)-type complex equilibria. It is suggested that CPZ forms 2:1 and 1:1 complexed species with alpha-CD, while PZ forms only 1:1 complexed species. The salting constant (ks) values are determined at 298.15 K for promazine-alpha-CD and chlorpromazine-alpha-CD complexes, respectively, by following the method based on the application of the McMillan-Mayer theory of virial coefficients to transfer free energy data. It is noted that the presence of chlorine in the drug molecule imparts better complexing capacity, the effect of which gets attenuated as a result of hydrophobic interaction. The results are discussed from the point of view of associative equilibria before the cmc and complexed equilibria for binary and ternary solutions, respectively.
NASA Astrophysics Data System (ADS)
Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed
2016-07-01
Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.
NASA Astrophysics Data System (ADS)
Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi
2017-11-01
The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.
NASA Astrophysics Data System (ADS)
Maheshwari, Chinmay
Cocrystals have drawn a lot of research interest in the last decade due to their potential to favorably alter the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients. This dissertation focuses on the thermodynamic stability and solubility of pharmaceutical cocrystals. Specifically, the objectives are to; (i) investigate the influence of coformer properties such as solubility and ionization characteristics on cocrystal solubility and stability as a function of pH, (ii) to measure the thermodynamic solubility of metastable cocrystals, and study the solubility differences measured by kinetic and equilibrium methods, (iii) investigate the role of surfactants on the solubility and synthesis of cocrystals, (iv) investigate the solid state phase transformation of reactants to cocrystals and the factors that influence the reaction kinetics and, (v) provide models that enable the prediction of cocrystal formation by calculating the free energy of formation for a solid to solid transformation of reactants to cocrystals. Cocrystal solubilities were measured directly when cocrystals were thermodynamically stable, while solubilities were calculated from eutectic concentration measurements when cocrystals were of higher solubility than its components. Cocrystal solubility was highly dependent on coformer solubilities for gabapentin-lactam and lamotrigine cocrystals. It was found that melting point is not a good indicator of cocrystal solubility as solute-solvent interactions quantified by the activity coefficient play a huge role in the observed solubility. Similar to salts, cocrystals also exhibit pHmax, however the salts and cocrystals have different dependencies on the parameters that govern the value of pHmax. It is also shown that cocrystals could provide solubility advantage over salts as lamotrigine-nicotinamide cocrystal hydrate has about 6 fold higher solubility relative to lamotrigine-saccharin salt. In the case of mixtures of solid reactants, it was observed that cocrystals can form spontaneously when the reactants are in physical contact and that temperature, relative humidity, and disorder in the reactants caused by mechanical stress such as milling can enhance the reaction rates. Prediction of spontaneous cocrystal formation was investigated by developing models to calculate the Gibbs free energy of formation. Thermal behavior of cocrystal reactants was investigated by calorimetry and the interaction between the reactants is explained by investigating the heats of mixing in the melt. These principles are applied on cocrystals that are divided into two categories; (i) Where the cocrystal melting point is between that of its reactants and, (ii) where the cocrystal melting point is below that of its components. Generalized equations were developed that enable the calculation of Gibbs free energy of formation from fusion temperatures, enthalpy and entropy of fusion.
Xiong, Kan; Asher, Sanford A
2010-01-01
We used CD and UV resonance Raman spectroscopy to study the impact of alcohols on the conformational equilibria and relative Gibbs free energy landscapes along the Ramanchandran Ψ-coordinate of a mainly poly-ala peptide, AP of sequence AAAAA(AAARA)3A. 2,2,2-trifluroethanol (TFE) most stabilizes the α-helical-like conformations, followed by ethanol, methanol and pure water. The π-bulge conformation is stabilized more than the α-helix, while the 310-helix is destabilized due to the alcohol increased hydrophobicity. Turns are also stabilized by alcohols. We also found that while TFE induces more α-helices, it favors multiple, shorter helix segments. PMID:20225890
Generalized Gibbs distribution and energy localization in the semiclassical FPU problem
NASA Astrophysics Data System (ADS)
Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli
2011-03-01
We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.
Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-01-01
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603
DFT Studies of SN2 Dechlorination of Polychlorinated Biphenyls.
Krzemińska, Agnieszka; Paneth, Piotr
2016-06-21
Nucleophilic dechlorination of all 209 PCBs congeners by ethylene glycol anion has been studied theoretically at the DFT level. The obtained Gibbs free energies of activation are in the range 7-22 kcal/mol. The reaction Gibbs free energies indicate that all reactions are virtually irreversible. Due to geometric constrains these reactions undergo rather untypical attack with attacking oxygen atom being nearly perpendicular to the attacked C-Cl bond. The most prone to substitution are chlorine atoms that occupy ortho- (2, 2', 6, 6') positions. These results provide extensive information on the PEG/KOH dependent PCBs degradation. They can also be used in further developments of reaction class transition state theory (RC-TST) for description of complex reactive systems encountered for example in combustion processes.
Relative electronic and free energies of octane's unique conformations
NASA Astrophysics Data System (ADS)
Kirschner, Karl N.; Heiden, Wolfgang; Reith, Dirk
2017-06-01
This study reports the geometries and electronic energies of n-octane's unique conformations using perturbation methods that best mimic CCSD(T) results. In total, the fully optimised minima of n-butane (2 conformations), n-pentane (4 conformations), n-hexane (12 conformations) and n-octane (96 conformations) were investigated at several different theory levels and basis sets. We find that DF-MP2.5/aug-cc-pVTZ is in very good agreement with the more expensive CCSD(T) results. At this level, we can clearly confirm the 96 stable minima which were previously found using a reparameterised density functional theory (DFT). Excellent agreement was found between their DFT results and our DF-MP2.5 perturbation results. Subsequent Gibbs free energy calculations, using scaled MP2/aug-cc-pVTZ zero-point vibrational energy and frequencies, indicate a significant temperature dependency of the relative energies, with a change in the predicted global minimum. The results of this work will be important for future computational investigations of fuel-related octane reactions and for optimisation of molecular force fields (e.g. lipids).
Selvarani, C; Balachandran, V; Vishwanathan, K
2014-11-11
Quantum mechanical calculations of energies, geometries and vibrational wave numbers of 3-chloro-2,4,5,6-tetrafluoropyridine and 4-bromo-2,3,5,6-tetrafluoropyridine have been performed by DFT level of theory using B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p) as basis sets. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the FT-IR and FT-Raman spectra of 3-chloro-2,4,5,6-tetrafluoropyridine and 4-bromo-2,3,5,6-tetrafluoropyridine were also reported. Molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. Information about the size, shape, charge density distribution, and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential (ESP). Thermodynamic properties (heat capacity, entropy and enthalpy and Gibb's free energy) of the title compounds at different temperatures were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Uses reversible electrochemical cells near equilibrium to study basic thermodynamic concepts such as maximum work and free energy. Selects sealed, miniature, commercial cells to obtain accurate measurement of enthalpy, entropy, and Gibbs free energy. (MVL)
NASA Astrophysics Data System (ADS)
Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb
2018-06-01
In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.
Thermodynamic assessment of the U–La–O system
McMurray, J. W.; Shin, D.; Besmann, T. M.
2014-10-03
The CALPHAD methodology was used to develop a thermodynamic assessment of the U-La-O system. The solid solution and liquid phases are described with the compound energy formalism and the partially ionic two-sublattice liquid model respectively. A density functional theory (DFT) calculation for the lattice stability of the fictive lanthanum oxide fluorite structure compound is used to determine the Gibbs energies for the La containing end-members in the CEF model for U 1-yLa yO 2+x. Experimental thermodynamic and phase equilibria data were then used in optimizations to develop representations of the phases in the system that can be extended to includemore » other actinide and fission products to develop multi-component models. The models that comprise this assessment very well reproduce experimentally determined oxygen potentials and the observed phase relations for the U-La-O system.« less
NASA Astrophysics Data System (ADS)
Luo, Zhilong; Cui, Yingdan; Dong, Weibing; Xu, Qipeng; Zou, Gaoxing; Kang, Chao; Hou, Baohong; Chen, Song; Gong, Junbo
2017-12-01
Nitroguanidine (NQ) is a commonly used explosive, which has been widely used for both civilian and military explosive applications. However, the weak flowability and mechanical performance limit its application. In this work, mechanical performance and thermodynamic stability of NQ crystals were improved by controlling crystal morphologies in the crystallization process. Typical NQ crystals with multiple morphologies and single crystal form were obtained in the presence of additives during the cooling crystallization. The morphology controlled NQ crystals showed higher density, unimodal crystal size distribution and enhanced flowability. The additives showed the inhibitory effect on the nucleation of NQ crystals by in-situ FBRM and PVM determination, and the mechanism was analyzed by means of morphological prediction and molecular simulation. Furthermore, the morphology controlled NQ crystals suggested higher thermodynamic stability according to the calculation of entropy, enthalpy, Gibbs free energy and apparent activation energy on the basis of DSC results.
Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy.
Mehmood, Muhammad Aamer; Ye, Guangbin; Luo, Huibo; Liu, Chenguang; Malik, Sana; Afzal, Ifrah; Xu, Jianren; Ahmad, Muhammad Sajjad
2017-03-01
The aim of this work was to study the thermal degradation of grass (Cymbopogon schoenanthus) under an inert environment at three heating rates, including 10, 30, and 50°Cmin -1 in order to evaluate its bioenergy potential. Pyrolysis experiments were performed in a simultaneous Thermogravimetry-Differential Scanning Calorimetry analyzer. Thermal data were used to analyze kinetic parameters through isoconversional models of Flynn-Wall-Ozawa (FWO) and Kissenger-Akahira-Sunose (KSA) methods. The pre-exponential factors values have shown the reaction to follow first order kinetics. Activation energy values were shown to be 84-193 and 96-192kJmol -1 as calculated by KSA and FWO methods, respectively. Differences between activation energy and enthalpy of reaction values (∼5 to 6kJmol -1 ) showed product formation is favorable. The Gibb's free energy (173-177kJmol -1 ) and High Heating Value (15.00MJkg -1 ) have shown the considerable bioenergy potential of this low-cost biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
NASA Astrophysics Data System (ADS)
Lari, Hadi; Morsali, Ali; Heravi, Mohammad Momen
2018-05-01
Using density functional theory (DFT), noncovalent interactions and four mechanisms of covalent functionalization of melphalan anticancer drug onto γ-Fe2O3 nanoparticles have been studied. Quantum molecular descriptors of noncovalent configurations were investigated. It was specified that binding of melphalan onto γ-Fe2O3 nanoparticles is thermodynamically suitable. Hardness and the gap of energy between LUMO and HOMO of melphalan are higher than the noncovalent configurations, showing the reactivity of drug increases in the presence of γ-Fe2O3 nanoparticles. Melphalan can bond to γ-Fe2O3 nanoparticles through NH2 (k1 mechanism), OH (k2 mechanism), C=O (k3 mechanism) and Cl (k4 mechanism) groups. The activation energies, the activation enthalpies and the activation Gibbs free energies of these reactions were calculated. Thermodynamic data indicate that k3 mechanism is exothermic and spontaneous and can take place at room temperature. These results could be generalized to other similar drugs.
NASA Astrophysics Data System (ADS)
Vanden-Eijnden, Eric; Venturoli, Maddalena
2009-05-01
An improved and simplified version of the finite temperature string (FTS) method [W. E, W. Ren, and E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688 (2005)] is proposed. Like the original approach, the new method is a scheme to calculate the principal curves associated with the Boltzmann-Gibbs probability distribution of the system, i.e., the curves which are such that their intersection with the hyperplanes perpendicular to themselves coincides with the expected position of the system in these planes (where perpendicular is understood with respect to the appropriate metric). Unlike more standard paths such as the minimum energy path or the minimum free energy path, the location of the principal curve depends on global features of the energy or the free energy landscapes and thereby may remain appropriate in situations where the landscape is rough on the thermal energy scale and/or entropic effects related to the width of the reaction channels matter. Instead of using constrained sampling in hyperplanes as in the original FTS, the new method calculates the principal curve via sampling in the Voronoi tessellation whose generating points are the discretization points along this curve. As shown here, this modification results in greater algorithmic simplicity. As a by-product, it also gives the free energy associated with the Voronoi tessellation. The new method can be applied both in the original Cartesian space of the system or in a set of collective variables. We illustrate FTS on test-case examples and apply it to the study of conformational transitions of the nitrogen regulatory protein C receiver domain using an elastic network model and to the isomerization of solvated alanine dipeptide.
Free Energies of Formation Measurements on Solid-State Electrochemical Cells
ERIC Educational Resources Information Center
Rollino, J. A.; Aronson, S.
1972-01-01
A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)
Thermodynamics--A Practical Subject.
ERIC Educational Resources Information Center
Jones, Hugh G.
1984-01-01
Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)
Mesohysteresis model for ferromagnetic materials by minimization of the micromagnetic free energy
NASA Astrophysics Data System (ADS)
van den Berg, A.; Dupré, L.; Van de Wiele, B.; Crevecoeur, G.
2009-04-01
To study the connection between macroscopic hysteretic behavior and the microstructural properties, this paper presents and validates a new material dependent three-dimensional mesoscopic magnetic hysteresis model. In the presented mesoscopic description, the different micromagnetic energy terms are reformulated on the space scale of the magnetic domains. The sample is discretized in cubic cells, each with a local stress state, local bcc crystallographic axes, etc. The magnetization is assumed to align with one of the three crystallographic axes, in positive or negative sense, defining six volume fractions within each cell. The micromagnetic Gibbs free energy is described in terms of these volume fractions. Hysteresis loops are computed by minimizing the mesoscopic Gibbs free energy using a modified gradient search for a sequence of external applied fields. To validate the mesohysteresis model, we studied the magnetic memory properties. Numerical experiments reveal that (1) minor hysteresis loops are indeed closed and (2) the closed minor loops are erased from the memory.
Microbial Communities Model Parameter Calculation for TSPA/SR
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Jolley
2001-07-16
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a newmore » qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.« less
A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-06-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
A Gibbs point field model for the spatial pattern of coronary capillaries
NASA Astrophysics Data System (ADS)
Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W.
2006-09-01
We propose a Gibbs point field model for the pattern of coronary capillaries in transverse histologic sections from human hearts, based on the physiology of oxygen supply from capillaries to tissue. To specify the potential energy function of the Gibbs point field, we draw on an analogy between the equation of steady-state oxygen diffusion from an array of parallel capillaries to the surrounding tissue and Poisson's equation for the electrostatic potential of a two-dimensional distribution of identical point charges. The influence of factors other than diffusion is treated as a thermal disturbance. On this basis, we arrive at the well-known two-dimensional one-component plasma, a system of identical point charges exhibiting a weak (logarithmic) repulsive interaction that is completely characterized by a single dimensionless parameter. By variation of this parameter, the model is able to reproduce many characteristics of real capillary patterns.
A Gibbs sampler for motif detection in phylogenetically close sequences
NASA Astrophysics Data System (ADS)
Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric
2004-03-01
Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.
Phase equillibria and solidification behaviour in the vanillin- p-anisidine system
NASA Astrophysics Data System (ADS)
Singh, N. B.; Das, S. S.; Gupta, Preeti; Dwivedi, M. K.
2008-12-01
Phase diagram of the vanillin- p-anisidine system has been studied by the thaw melt method. Congruent melting-type phase diagram exhibiting two eutectic points was obtained. Vanillin and p-anisidine react in 1:1 M ratio and form N-(4-methoxy phenyl)-4-hydroxy-3-methoxy phenyl methanimine (NHM) and water. Heats of fusion of pure components and the eutectic mixtures ( E1 and E2) were obtained from DSC studies. Jackson's roughness parameters ( α) were calculated. Excess Gibbs free energy ( GE), excess entropy ( SE) and excess enthalpy ( HE) of mixing of pre-, post- and eutectic mixtures were also calculated by using activity coefficient data. Linear velocities of solidification of components and eutectic mixtures were determined at different undercoolings. The values of excess thermodynamic functions and linear velocity data have indicated the non-ideal nature of the eutectic mixtures. Interaction energies in the gaseous state, calculated from computer simulation, have also indicated that the eutectics are non-ideal mixtures. Microstructural studies of vanillin, p-anisidine and NHM show the formation of broken lamellar type structures. However, for the eutectic E1, an irregular type and for the eutectic E2, a lamellar type structures were obtained. The effect of impurity on the microstructures of eutectic mixtures was also studied.
NASA Astrophysics Data System (ADS)
Hou, Ling; Li, Wei-Dong; Wang, Fangwei; Eriksson, Olle; Wang, Bao-Tian
2017-12-01
We present a systematic investigation of the structural, magnetic, electronic, mechanical, and thermodynamic properties of CmO2 with the local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U approaches. The strong Coulomb repulsion and the spin-orbit coupling (SOC) effects on the lattice structures, electronic density of states, and band gaps are carefully studied, and compared with other A O2 (A =U , Np, Pu, and Am). The ferromagnetic configuration with half-metallic character is predicted to be energetically stable while a charge-transfer semiconductor is predicted for the antiferromagnetic configuration. The elastic constants and phonon spectra show that the fluorite structure is mechanically and dynamically stable. Based on the first-principles phonon density of states, the lattice vibrational energy is calculated using the quasiharmonic approximation. Then, the Gibbs free energy, thermal expansion coefficient, specific heat, and entropy are obtained and compared with experimental data. The mode Grüneisen parameters are presented to analyze the anharmonic properties. The Slack relation is applied to obtain the lattice thermal conductivity in temperature range of 300-1600 K. The phonon group velocities are also calculated to investigate the heat transfer. For all these properties, if available, we compare the results of CmO2 with other A O2 .
Piro, M. H. A.; Simunovic, S.
2016-03-17
Several global optimization methods are reviewed that attempt to ensure that the integral Gibbs energy of a closed isothermal isobaric system is a global minimum to satisfy the necessary and sufficient conditions for thermodynamic equilibrium. In particular, the integral Gibbs energy function of a multicomponent system containing non-ideal phases may be highly non-linear and non-convex, which makes finding a global minimum a challenge. Consequently, a poor numerical approach may lead one to the false belief of equilibrium. Furthermore, confirming that one reaches a global minimum and that this is achieved with satisfactory computational performance becomes increasingly more challenging in systemsmore » containing many chemical elements and a correspondingly large number of species and phases. Several numerical methods that have been used for this specific purpose are reviewed with a benchmark study of three of the more promising methods using five case studies of varying complexity. A modification of the conventional Branch and Bound method is presented that is well suited to a wide array of thermodynamic applications, including complex phases with many constituents and sublattices, and ionic phases that must adhere to charge neutrality constraints. Also, a novel method is presented that efficiently solves the system of linear equations that exploits the unique structure of the Hessian matrix, which reduces the calculation from a O(N 3) operation to a O(N) operation. As a result, this combined approach demonstrates efficiency, reliability and capabilities that are favorable for integration of thermodynamic computations into multi-physics codes with inherent performance considerations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, M. H. A.; Simunovic, S.
Several global optimization methods are reviewed that attempt to ensure that the integral Gibbs energy of a closed isothermal isobaric system is a global minimum to satisfy the necessary and sufficient conditions for thermodynamic equilibrium. In particular, the integral Gibbs energy function of a multicomponent system containing non-ideal phases may be highly non-linear and non-convex, which makes finding a global minimum a challenge. Consequently, a poor numerical approach may lead one to the false belief of equilibrium. Furthermore, confirming that one reaches a global minimum and that this is achieved with satisfactory computational performance becomes increasingly more challenging in systemsmore » containing many chemical elements and a correspondingly large number of species and phases. Several numerical methods that have been used for this specific purpose are reviewed with a benchmark study of three of the more promising methods using five case studies of varying complexity. A modification of the conventional Branch and Bound method is presented that is well suited to a wide array of thermodynamic applications, including complex phases with many constituents and sublattices, and ionic phases that must adhere to charge neutrality constraints. Also, a novel method is presented that efficiently solves the system of linear equations that exploits the unique structure of the Hessian matrix, which reduces the calculation from a O(N 3) operation to a O(N) operation. As a result, this combined approach demonstrates efficiency, reliability and capabilities that are favorable for integration of thermodynamic computations into multi-physics codes with inherent performance considerations.« less
NASA Astrophysics Data System (ADS)
Smirnova, N. N.; Markin, A. V.; Tsvetkova, L. Ya.; Kuchkina, N. V.; Yuzik-Klimova, E. Yu.; Shifrina, Z. B.
2016-05-01
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity C p ° , enthalpy H°( T), entropy S°( T), and Gibbs energy G°( T)- H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.
A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids
NASA Astrophysics Data System (ADS)
Cardozo, Karina H. M.; Vessecchi, Ricardo; Carvalho, Valdemir M.; Pinto, Ernani; Gates, Paul J.; Colepicolo, Pio; Galembeck, Sérgio E.; Lopes, Norberto P.
2008-06-01
In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the OC bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms.
NASA Astrophysics Data System (ADS)
Gasque, Laura; Álvarez-Idaboy, J. Raul; Flores-Álamo, Marcos; Guzmán-Méndez, Óscar; Campos-Cerón, Juan M.
2018-04-01
The condensation of 1‧-hydroxy-2‧-acetonaphthone with 1- or 2-naphthaldehyde produced the corresponding stable chalcones: C1 or C2. However, the condensation product of either naphthaldehyde with 2‧-hydroxy-1‧-acetonaphthone yielded chalcones that convert to flavanones- F1 and F2- upon recrystallization. Crystal structures for C1, F1 and F2 are described. Transition state theory estimated rate constants, based on the calculated DFT M052X/6-311 + G(d,p) Gibbs Free energies, show that the rate delimiting step is the cyclization of the chalconate in protic polar solvent. The thermodynamically preferred product is always the flavanone, therefore, the yielding of one or other product is kinetically controlled.
NASA Astrophysics Data System (ADS)
Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Structural and elastic properties of transition metal nitrides, XN (X = Co, Fe and Cu), are investigated through an effective inter-ionic potential method. The B3(ZnS) type ambient crystal structure of these compounds undergoes to B1(NaCl) type structure with pressure. Structural phase transition pressure in CoN, FeN and CuN was 35, 55 and 35 GPa, respectively, predicated by computing Gibbs' free energy (G) as a function of pressure and has good agreement with available theoretical results. The elastic properties were also estimated as a function of pressure. It is found that the elastic constants increased linearly with increasing pressure due to stronger hybridization, bonding and covalent properties of constituent elements of a compound.
Estimation hydrophilic-lipophilic balance number of surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id; Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta; Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com
Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination ofmore » HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.« less
Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M
2013-07-15
The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh
2016-09-01
Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.
Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces
NASA Astrophysics Data System (ADS)
Loffreda, David
2006-05-01
Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.
A theoretical study of the stability of anionic defects in cubic ZrO 2 at extreme conditions
Samanta, Amit
2016-02-19
Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO 2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formationmore » free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.« less
Thermodynamics of BTZ black holes in gravity’s rainbow
NASA Astrophysics Data System (ADS)
Alsaleh, Salwa
2017-05-01
In this paper, we deform the thermodynamics of a BTZ black hole from rainbow functions in gravity’s rainbow. The rainbow functions will be motivated from the results in loop quantum gravity and noncommutative geometry. It will be observed that the thermodynamics gets deformed due to these rainbow functions, indicating the existence of a remnant. However, the Gibbs free energy does not get deformed due to these rainbow functions, and so the critical behavior from Gibbs does not change by this deformation. This is because the deformation in the entropy cancels out the temperature deformation.
Entropy Analyses of Four Familiar Processes.
ERIC Educational Resources Information Center
Craig, Norman C.
1988-01-01
Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, Matthew O.; Cubillos, Patricio E.; Stemm, Madison; Foster, Andrew
2014-11-01
We present a new, open-source, Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. TEA uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. It initializes the radiative-transfer calculation in our Bayesian Atmospheric Radiative Transfer (BART) code. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA is written in Python and is available to the community via the open-source development site GitHub.com. We also present BART applied to eclipse depths of WASP-43b exoplanet, constraining atmospheric thermal and chemical parameters. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Thermodynamic Re-modeling of the Sb-Te System Using Associate and Ionic Models
NASA Astrophysics Data System (ADS)
Guo, Cuiping; Li, Changrong; Du, Zhenmin
2014-11-01
The Sb-Te system is re-modeled using the calculation of phase diagram (CALPHAD) technique. The liquid phase is modeled as (Sb, Sb2Te3, Te) using the associate model and as (Sb3+) p (Te2-,Te,Va) q using the ionic model. The solution phases rhom(Sb) and hex(Te) are described as substitutional solutions. Two compounds, delta and gamma, are treated as (Sb)0.4(Sb,Te)0.6 according to their homogeneity ranges, while the compound Sb2Te3 follows a strict stoichiometry. A set of self-consistent thermodynamic parameters is obtained. Using these thermodynamic parameters, the experimental Sb-Te phase diagram, mixing enthalpies of liquid at 911 K and 935 K, activities of Sb and Te in liquid at 911 K and 1023 K, and Gibbs energy of liquid at 911 K, is well reproduced by the calculations. And the calculated enthalpy of formation, enthalpy of fusion, and heat capacity of Sb2Te3 are also in fairly good agreement with all the available experimental data.
The phase diagram of water at negative pressures: virtual ices.
Conde, M M; Vega, C; Tribello, G A; Slater, B
2009-07-21
The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.
Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan
NASA Technical Reports Server (NTRS)
Kouvaris, Louis C.; Flasar, F. M.
1991-01-01
Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.
Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.
Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A
2018-05-15
Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.
Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure
Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...
2016-01-07
A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less
Salting out of methane by sodium chloride: A scaled particle theory study.
Graziano, Giuseppe
2008-08-28
The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.
Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.
Nejati, K; Hosseinian, A; Bekhradnia, A; Vessally, E; Edjlali, L
2017-06-01
It has been recently indicated that the Li-ion batteries may be replaced by Na-ion batteries because of their low safety, high cost, and low-temperature performance, and lack of the Li mineral reserves. Here, using density functional theory calculations, we studied the potential application of B 12 N 12 nanoclusters as anode in Na-ion batteries. Our calculations indicate that the adsorption energy of Na + and Na are about -23.4 and -1.4kcal/mol, respectively, and the pristine BN cage to improve suffers from a low cell voltage (∼0.92V) as an anode in Na-ion batteries. We presented a strategy to increase the cell voltage and performance of Na-ion batteries. We showed that encapsulation of different halides (X=F - , Cl - , or Br - ) into BN cage significantly increases the cell voltage. By increasing the atomic number of X, the Gibbs free energy change of cell becomes more negative and the cell voltage is increased up to 3.93V. The results are discussed based on the structural, energetic, frontier molecular orbital, charge transfer and electronic properties and compared with the performance of other nanostructured anodes. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluation of anthocyanins in Aronia melanocarpa/BSA binding by spectroscopic studies.
Wei, Jie; Xu, Dexin; Zhang, Xiao; Yang, Jing; Wang, Qiuyu
2018-05-02
The interaction between Anthocyanins in Aronia melanocarpa (AMA) and bovine serum albumin (BSA) were studied in this paper by multispectral technology, such as fluorescence quenching titration, circular dichroism (CD) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The results of the fluorescence titration revealed that AMA could strongly quench the intrinsic fluorescence of BSA by static quenching. The apparent binding constants K SV and number of binding sites n of AMA with BSA were obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated to be 18.45 kJ mol -1 > 0 and 149.72 J mol -1 K -1 > 0, respectively, which indicated that the interaction of AMA with BSA was driven mainly by hydrophobic forces. The binding process was a spontaneous process of Gibbs free energy change. Based on Förster's non-radiative energy transfer theory, the distance r between the donor (BSA) and the receptor (AMA) was calculated to be 3.88 nm. Their conformations were analyzed using infrared spectroscopy and CD. The results of multispectral technology showed that the binding of AMA to BSA induced the conformational change of BSA.
A Short Essay on the Uses of Free Energy
ERIC Educational Resources Information Center
Koutandos, Spyridon
2013-01-01
In this article we examine cases of more classical and less classical nature compared to results found by quantum mechanics and attribute a form of Free Energy discontinuity for each case within a boundary layer. The concept of a boundary layer is broadened as to include areas of first or second variations of the Gibbs free energy. It is…
Thermodynamic properties of rhamnolipid micellization and adsorption.
Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław
2014-07-01
of the surface tension, density, viscosity and conductivity of aqueous solutions of rhamnolipid at natural and controlled pH were made at 293 K. On the basis of the obtained results the critical micelle concentration of rhamnolipid and its Gibbs surface excess concentration at the water-air interface were determined. The maximal surface excess concentration was considered in the light of the size of rhamnolipid molecule. Next the Gibbs standard free energy of rhamnolipid adsorption at this interface was determined on the basis of the different approaches to this energy. The standard free energy of adsorption was also deduced on the basis of the surface tension of n-hexane and water-n-hexane interface tension. Standard free energy obtained in this way was close to those determined by using the Langmuir, Szyszkowski, Aronson and Rosen, Gu and Zhu as well as modified Gamboa and Olea equations. The standard free energy of rhamnolipid adsorption at the water-air interface was compared to its standard free energy of micellization which was determined from the Philips equation taking into account the degree of rhamnolipid dissociation in the micelles. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, D. N., E-mail: d.n.kagan@mtu-net.ru; Krechetova, G. A.; Shpil'rain, E. E.
A detailed procedural analysis is given and results of implementation of the new version of the effusion method for determining the Gibbs energy (thermodynamic activity) of binary and ternary systems of alkali metals Cs-Na, K-Na, Cs-K, and Cs-K-Na are presented. The activity is determined using partial pressures of the components measured according the effusion method by the intensity of their atomic beams. The pressure range used in the experiment is intermediate between the Knudsen and hydrodynamic effusion modes. A generalized version of the effusion method involves the pressure range beyond the limits of the applicability of the Hertz-Knudsen equation. Employmentmore » of this method provides the differential equation of chemical thermodynamics; solution of this equation makes it possible to construct the Gibbs energy in the range of temperatures 400 {<=} T {<=} 1200 K and concentrations 0 {<=} x{sub i} {<=} 1.« less
NASA Astrophysics Data System (ADS)
Manikandan, P.; Trinadh, V. V.; Bera, Suranjan; Narasimhan, T. S. Lakshmi; Joseph, M.
2016-07-01
Vaporisation studies over gallium rich biphasic regions (U3Ga5 + UGa2) and (UGa2 + UGa3) in the Usbnd Ga system were carried out by Knusen effusion mass spectrometry in the temperature ranges of 1208-1366 K and 1133-1338 K, respectively. Ga(g) was the species observed in the mass spectra of the equilibrium vapour over both phase regions. From temperature dependence measurements, pressure-temperature relations were deduced as: log (pGa/Pa) = (-18216 ± 239)/(T/K) + (12.88 ± 0.18) over (U3Ga5 + UGa2) and log (pGa/Pa) = (-16225 ± 124)/(T/K) + (11.78 ± 0.10) over (UGa2 + UGa3). From these data, Gibbs free energy changes for the reactions 3UGa2(s) = U3Ga5(s) + Ga(g) and UGa3(s) = UGa2(s) + Ga(g) were computed and subsequently Gibbs free energies of formation of U3Ga5(s) and UGa3(s) were deduced as ΔfGTo U3Ga5(s) (±5.5) = -352.4 + 0.133 T(K) (kJ mol-1) (1208-1366 K) and ΔfGTo UGa3(s) (±3.8) = -191.9 + 0.082 T(K) (kJ mol-1) (1133-1338 K). The Gibbs free energy of formation of U3Ga5(s) is being reported for the first time.
Thermodynamic properties of calcium-bismuth alloys determined by emf measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Boysen, DA; Bradwell, DJ
2012-01-15
The thermodynamic properties of Ca-Bi alloys were determined by electromotive force (emf) measurements to assess the suitability of Ca-Bi electrodes for electrochemical energy storage applications. Emf was measured at ambient pressure as a function of temperature between 723 K and 1173 K using a Ca(s)vertical bar CaF2(s)vertical bar Ca(in Bi) cell for twenty different Ca-Bi alloys spanning the entire range of composition from chi(Ca) = 0 to 1. Reported are the temperature-independent partial molar entropy and enthalpy of calcium for each Ca-Bi alloy. Also given are the measured activities of calcium, the excess partial molar Gibbs energy of bismuth estimatedmore » from the Gibbs-Duhem equation, and the integral change in Gibbs energy for each Ca-Bi alloy at 873 K, 973 K, and 1073 K. Calcium activities at 973 K were found to be nearly constant at a value a(Ca) = 1 x 10(-8) over the composition range chi(Ca) = 0.32-0.56, yielding an emf of similar to 0.77 V. Above chi(Ca) = 0.62 and coincident with Ca5Bi3 formation, the calcium activity approached unity. The Ca-Bi system was also characterized by differential scanning calorimetry over the entire range of composition. Based upon these data along with the emf measurements, a revised Ca-Bi binary phase diagram is proposed. (C) 2011 Elsevier Ltd. All rights reserved.« less
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Moriya, Yoshio; Hasegawa, Takeshi; Okada, Tetsuo; Ogawa, Nobuaki; Kawai, Erika; Abe, Kosuke; Ogasawara, Masataka; Kato, Sumio; Nakata, Shinichi
2006-11-15
Gibbs monolayers of lipophilic tetraphenylporphyrinatomanganese(III) and hydrophilic diacid of meso-tetrakis(4-sulfonatopheny)porphyrin adsorbed at the liquid-liquid interface have been analyzed by UV-visible external reflection (ER) and partial internal reflection (PIR) spectra measured at different angles of incidence. The angle-dependent ER and PIR spectra over the Brewster angles (thetaERB and thetaIRB) have readily been measured at the toluene/water interface. As preliminarily expected in our previous study, the present study has first proved that the reflection-absorbance of UV-visible PIR spectra quantitatively agrees with the theoretical calculations for the Gibbs monolayer over thetaIRB. In addition, it has also been proved that the absorbance of the PIR spectra is greatly enhanced in comparison to that of the ATR spectra. The enhancement is caused by an optical effect in the monolayer sandwiched between two phases of toluene and water that have different but refractive indices close to each other. This optical enhancement requires an optically perfect contact between the phases, which is difficult to prepare for a solid-solid contact. At the liquid/liquid interface, however, an ideal optical contact is easily realized, which makes the enhancement as much as the theoretical expectation. The PIR spectrometry will be recognized to be a new high-sensitive analytical tool to study Gibbs monolayer at the liquid/liquid interface.
NASA Astrophysics Data System (ADS)
Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.
2016-05-01
The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.
Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy
NASA Astrophysics Data System (ADS)
Jonah, D. A.
1986-07-01
Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.
ERIC Educational Resources Information Center
Hageseth, Gaylord T.
1982-01-01
Describes a project for students to collect and fit data to a theoretical mathematical model that describes the rate of isothermal seed germination, including activation energy for substrate and produce and the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. (Author/SK)
Calculation of the Ti(C y N1- y )-Ti4C2S2-MnS-austenite equilibrium in Ti-bearing steels
NASA Astrophysics Data System (ADS)
Liu, W. J.; Jonas, J. J.
1989-08-01
A thermodynamic model is presented for the equilibria among various precipitates (Ti(C y N1- y ), Ti4C2S2, and MnS) and austenite containing six alloying elements (C, Mn, N, S, Si, and Ti). This model is applied to four microalloyed steels with Ti levels of 0.05, 0.11, 0.18, and 0.25 pct. The calculations show that the Ti in these steels cannot be completely dissolved over the austenite temperature range. However, the compositions of the undissolved Ti carbonitrides differ significantly from pure TiN, as 10 to 40 pct of the nitrogen is replaced by carbon. An expression for the Gibbs energy for the formation of Ti4C2S2 in austenite is estimated. The present predictions are compared with those of the Hudd, Jones, and Kale (HJK) model; considerable differences are observed at temperatures below 1250°C.
Thermodynamic Modeling of the Ge-Nd Binary System
NASA Astrophysics Data System (ADS)
Liu, Miao; Li, Changrong; Du, Zhenmin; Guo, Cuiping; Niu, Chunju
The Ge-Nd has been critically assessed by means of the CALculation of PHAse Diagram (CALPHAD) technique. For the liquid phase, the associate model was used with the constituent species Ge, Nd, Ge3Nd5 and Ge1.6Nd in the Ge-Nd system. The terminal solid solution diamond-(Ge), dhcp-(Nd) and bcc_A2-(Nd) in the Ge-Nd system were described using the substitutional model, in which the excess Gibbs energy was formulated with the Redlich-Kister equation. The compounds with homogeneity ranges, α(Ge1.6Nd), β(Ge1.6Nd), (GeNd), (Ge4Nd5) and (Ge3Nd5) were modeled using two sublattices as α(Ge,Nd)1.6Nd, β(Ge,Nd)1.6Nd, (Ge,Nd)Nd, (Ge,Nd)4Nd5 and (Ge,Nd)3Nd5, respectively. A set of self-consistent thermodynamic parameters for each of the Ge-Nd binary systems was obtained. The calculation results agree well with the available experimental data from literatures.
A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-10-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Complexation of C60 fullerene with aromatic drugs.
Evstigneev, Maxim P; Buchelnikov, Anatoly S; Voronin, Dmitry P; Rubin, Yuriy V; Belous, Leonid F; Prylutskyy, Yuriy I; Ritter, Uwe
2013-02-25
The contributions of various physical factors to the energetics of complexation of aromatic drug molecules with C(60) fullerene are investigated in terms of the calculated magnitudes of equilibrium complexation constants and the components of the net Gibbs free energy. Models of complexation are developed taking into account the polydisperse nature of fullerene solutions in terms of the continuous or discrete (fractal) aggregation of C(60) molecules. Analysis of the energetics has shown that stabilization of the ligand-fullerene complexes in aqueous solution is mainly determined by intermolecular van der Waals interactions and, to lesser extent, by hydrophobic interactions. The results provide a physicochemical basis for a potentially new biotechnological application of fullerenes as modulators of biological activity of aromatic drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mosunov, A A; Kostiukov, V V; Evstigneev, M P
2012-01-01
The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.
Clustering of amines and hydrazines in atmospheric nucleation
NASA Astrophysics Data System (ADS)
Li, Siyang; Qu, Kun; Zhao, Hailiang; Ding, Lei; Du, Lin
2016-06-01
It has been proved that the presence of amines in the atmosphere can enhance aerosol formation. Hydrazine (HD) and its substituted derivatives, monomethylhydrazine (MMH) and unsymmetrical dimethylhydrazine (UDMH), which are organic derivatives of amine and ammonia, are common trace atmospheric species that may contribute to the growth of nucleation clusters. The structures of the hydrazine and amine clusters containing one or two common nucleation molecules (ammonia, water, methanol and sulfuric acid) have been optimized using density functional theory (DFT) methods. The clusters growth mechanism has been explored from the thermochemistry by calculating the Gibbs free energies of adding an ammonia, water, methanol or sulfuric acid molecule step by step at room temperature, respectively. The results show that hydrazine and its derivatives could enhance heteromolecular homogeneous nucleation in the earth's atmosphere.
FP-LAPW investigation of Al3(Sc1‑xTix) alloys properties in L12 and D022 structures
NASA Astrophysics Data System (ADS)
Khenioui, Youcef; Boulechfar, Rahima; Maazi, Noureddine; Ghemid, Sebti
2018-06-01
The ab-initio calculations based on the density functional theory (DFT) have been performed to study the structural, mechanical, electronic, thermal and thermodynamic properties of Al3Sc and Al3Ti binary compounds and their ternary mixture Al3(Sc1‑xTix) in L12 and D022 structures. The total energy calculations show that the L12 structure is the more stable one. The Al3Sc0.25Ti0.75 undergoes a martensitic transformation and the formation enthalpies and the lattice parameters decrease with increasing concentration x. The elastic constants are determined and the results show that all compounds are mechanically stable and the cubic cells are more easily deformed by shearing than by unidirectional compression. The elastic modulus indicates that the addition of Ti atoms to Al3Sc improves its ductility. The densities of states (DOSs) calculations show the strong spd hybridization which leads to the formation of a pseudo-gap near the Fermi level in ternary alloys. The densities of states at the Fermi level N(EF) confirm the phase stability. The quasi-harmonic Debye model is used to predict the thermal properties such as heat capacity, Debye temperature, Grüneisen parameter and thermal expansion coefficient of the considered alloys. The determination of Gibbs free mixing energy at different concentrations has been used to calculate the T-x diagram.
Impact of uncertainty in expected return estimation on stock price volatility
NASA Astrophysics Data System (ADS)
Kostanjcar, Zvonko; Jeren, Branko; Juretic, Zeljan
2012-11-01
We investigate the origin of volatility in financial markets by defining an analytical model for time evolution of stock share prices. The defined model is similar to the GARCH class of models, but can additionally exhibit bimodal behaviour in the supply-demand structure of the market. Moreover, it differs from existing Ising-type models. It turns out that the constructed model is a solution of a thermodynamic limit of a Gibbs probability measure when the number of traders and the number of stock shares approaches infinity. The energy functional of the Gibbs probability measure is derived from the Nash equilibrium of the underlying game.
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
NASA Astrophysics Data System (ADS)
Nakata, Hiroya; Fedorov, Dmitri G.; Zahariev, Federico; Schmidt, Michael W.; Kitaura, Kazuo; Gordon, Mark S.; Nakamura, Shinichiro
2015-03-01
Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.
NASA Astrophysics Data System (ADS)
Madanagopal, A.; Periandy, S.; Gayathri, P.; Ramalingam, S.; Xavier, S.
2017-01-01
The pharmaceutical compound; Phenacetin was investigated by analyzing FT-IR, FT-Raman and 1H &13C NMR spectra. The hybrid efficient computational calculations performed for computing physical and chemical parameters. The cause of pharmaceutical activity due to the substitutions; carboxylic, methyl and amine groups in appropriate positions on the pedestal compound was deeply investigated. Moreover, 13C NMR and 1H NMR chemical shifts correlated with TMS standard to explain the truth of compositional ratio of base and ligand groups. The bathochromic shift due to chromophores over the energy levels in UV-Visible region was strongly emphasized the Anti-inflammatory chemical properties. The chemical stability was pronounced by the strong kubo gap which showed the occurring of charge transformation within the molecule. The occurrence of the chemical reaction was feasibly interpreted by Gibbs free energy profile. The standard vibrational analysis stressed the active participation of composed ligand groups for the existence of the analgesic as well as antipyretic properties of the Phenacetin compound. The strong dipole interaction energy utilization for the transition among non-vanishing donor and acceptor for composition of the molecular structure was interpreted.
NASA Astrophysics Data System (ADS)
Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.
2015-05-01
The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.
Zurek, E; Ziegler, T
2001-07-02
Density Functional Theory (DFT) has been used to calculate the energies of over 30 different structures with the general formula (AlOMe)(n).(AlMe(3))(m) where n ranges from 6 to 13 and m ranges between 1 and 4, depending upon the structure of the parent (AlOMe)(n) cage. The way in which TMA (trimethylaluminum) bonds to MAO (methylaluminoxane) has been determined as well as the location of the acidic sites present in MAO caged structures. Topological arguments have been used to show that TMA does not bind to MAO cages where n = 12 or n > or = 14. The ADF energies in conjunction with frequency calculations based on molecular mechanics have been used to estimate the finite temperature enthalpies, entropies, and free energies of the TMA containing MAO structures. Using the Gibbs free energies found for pure MAO structures calculated in a previous work, in conjunction with the free energies of TMA containing MAO structures obtained in the present study, it was possible to determine the percent abundance of each TMA containing MAO within the temperature range of 198.15 K-598.15 K. We have found that very little TMA is actually bound to MAO. The Me/Al ratio on the MAO cages is determined as being approximately 1.00, 1.01, 1.02, and 1.03 at 198, 298, 398, and 598 K, respectively. Moreover, the percentage of Al found as TMA has been calculated as being 0.21%, 0.62%, 1.05%, and 1.76% and the average unit formulas of (AlOMe)(18.08).(TMA)(0.04), (AlOMe)(17.04).(TMA)(0.11), (AlOMe)(15.72).(TMA)(0.17), and (AlOMe)(14.62).(TMA)(0.26) have been determined at the aforementioned temperatures.
A Mechanical Analogue for Chemical Potential, Extent of Reaction, and the Gibbs Energy.
ERIC Educational Resources Information Center
Glass, Samuel V.; DeKock, Roger L.
1998-01-01
Presents an analogy that relates the one-dimensional mechanical equilibrium of a rigid block between two Hooke's law springs and the chemical equilibrium of two perfect gases using ordinary materials. (PVD)
NASA Astrophysics Data System (ADS)
Haldar, Amritendu; Biswas, Ritabrata
2018-06-01
We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.
Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.
Fournel, S; Marcos, B; Godbout, S; Heitz, M
2015-03-01
A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...
2017-01-04
In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.
Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Zhao, Shijun; Jin, Ke
2017-01-04
A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less
NASA Astrophysics Data System (ADS)
Guest, Will; Cashman, Neil; Plotkin, Steven
2009-03-01
Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and solution of the Poisson-Boltzmann equation. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.
Identifying Unstable Regions of Proteins Involved in Misfolding Diseases
NASA Astrophysics Data System (ADS)
Guest, Will; Cashman, Neil; Plotkin, Steven
2009-05-01
Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.
Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.
Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng
2015-12-01
As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.
Robie, R.A.; Wiggins, L.B.; Barton, P.B.; Hemingway, B.S.
1985-01-01
The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.
Hemingway, Bruch S.; Seal, Robert R.; Chou, I-Ming
2002-01-01
Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, S.K.; Naik, Y.P.; Parida, S.C.
Three ternary oxides LiAl{sub 5}O{sub 8}(s), LiAlO{sub 2}(s) and Li{sub 5}AlO{sub 4}(s) in the system Li-Al-O were prepared by solid-state reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO{sub 2}(g) over the three-phase mixtures {l_brace}LiAl{sub 5}O{sub 8}(s)+Li{sub 2}CO{sub 3}(s)+5Al{sub 2}O{sub 3}(s){r_brace}, {l_brace}LiAl{sub 5}O{sub 8}(s)+5LiAlO{sub 2}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} and {l_brace}LiAlO{sub 2}(s)+Li{sub 5}AlO{sub 4}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of thesemore » three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of {delta}{sub f}H{sup 0}(298.15 K), S{sup 0}(298.15 K) S{sup 0}(T), C{sub p}{sup 0}(T), H{sup 0}(T), {l_brace}H{sup 0}(T)-H{sup 0}(298.15 K){r_brace}, G{sup 0}(T), {delta}{sub f}H{sup 0}(T), {delta}{sub f}G{sup 0}(T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software. - Graphical abstract: Comparison of {delta}{sub f}G{sub m}{sup 0} of ternary oxides determined from KEQMS and solid-state galvanic cell techniques. (O) KEQMS, (9632;) solid-state galvanic cell and solid line: combined fit of both the experimental data.« less
NASA Astrophysics Data System (ADS)
Kang, Youn-Bae; Jung, In-Ho
2017-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe-Mn-Si-O system (MnO-Mn2O3-SiO2 and FeO-Fe2O3-MnO-Mn2O3-SiO2 systems) are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25°C) to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Slag (molten oxide) was modeled using the modified quasichemical model in the pair approximation. Olivine (Fe2SiO4-Mn2SiO4) was modeled using two-sublattice model in the framework of the compound energy formalism (CEF), while rhodonite (MnSiO3-FeSiO3) and braunite (Mn7SiO_{12} with excess Mn2O3) were modeled as simple Henrian solutions. It is shown that the already developed models and databases of two spinel phases (cubic- and tetragonal-(Fe, Mn)3O4) using CEF [Kang and Jung, J. Phys. Chem. Solids (2016), vol. 98, pp. 237-246] can successfully be integrated into a larger thermodynamic database to be used in practically important higher order system such as silicate. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.
NASA Astrophysics Data System (ADS)
Kysel, Ondrej; Budzák, Scaronimon; Medveď, Miroslav; Mach, Pavel
Geometry, thermodynamic, and electric properties of the pi-EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6-31G* and, partly, DFT-D/6-31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB-TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10-10 m and the corresponding BSSE corrected interaction energy is -51.3 kJ mol-1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2-TCNE and HMB-TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10-10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06-3.16 × 10-10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB-TCNE complex formation in gas phase are: DeltaH0 = -61.59 kJ mol-1, DeltaSc0 = -143 J mol-1 K-1, DeltaG0 = -18.97 kJ mol-1, and K = 2,100 dm3 mol-1. Experimental data, however, measured in CCl4 are significantly lower: DeltaH0 = -34 kJ mol-1, DeltaSc0 = -70.4 J mol-1 K-1, DeltaG0 = -13.01 kJ mol-1, and K = 190 dm3 mol-1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol-1 which is very close to our PCM value 6.5 kJ mol-1. MP2/6-31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6-31G* study supplemented by DFT-D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of pi-EDA complexes.
NASA Astrophysics Data System (ADS)
Roy, Swarup
2018-02-01
Interaction of greenly synthesized silver nanoparticles (SNP) and lysozyme (Lys) has been studied using spectroscopy. From UV-Vis study it is observed that a moderate association constant (Kapp) of 5.36 × 104 L/mol giving an indication of interaction. Fluorescence emission and time resolved study, confirm static mode of quenching phenomena and the binding constant (Kb) was 25.12, 3.98 and 1.99 × 103 L/mol at 298, 305 and 312 K respectively and the number of binding sites (n) was found to be ∼1. Using temperature dependent fluorimetric data, thermodynamic parameters calculated (Enthalpy change, ΔH = -143.95 kJ/mol, Entropy change, ΔS = -400.32 J/mol/K, Gibbs free energy change, ΔG = -24.66 kJ/mol at 298 K) and resulting insight indicative of weak force (van der Walls interaction & H-bonding) as key feature for the Lys-SNP interaction. By following Förster's non-radiative energy transfer (FRET) theory, average binding distance (r = 3.05 nm) was calculated and observed that nonradiative type energy transfer between SNP and Lys. What is more, circular dichroism (CD) spectra indicates presence of SNP does not display substantial alteration in the secondary structure of Lys. Hence, this results may be very useful for the well thought of essential aspects of binding between the Lys and SNP.
NASA Astrophysics Data System (ADS)
Drablia, S.; Boukhris, N.; Boulechfar, R.; Meradji, H.; Ghemid, S.; Ahmed, R.; Omran, S. Bin; El Haj Hassan, F.; Khenata, R.
2017-10-01
The alkaline earth metal chalcogenides are being intensively investigated because of their advanced technological applications, for example in photoluminescent devices. In this study, the structural, electronic, thermodynamic and thermal properties of the BaSe1-x Te x alloys at alloying composition x = 0, 0.25, 0.50, 0.75 and 1 are investigated. The full potential linearized augmented plane wave plus local orbital method designed within the density functional theory was used to perform the total energy calculations. In this research work the effect of the composition on the results of the parameters and bulk modulus as well as on the band gap energy is analyzed. From our results, we found a deviation of the obtained results for the lattice constants from Vegard’s law as well as a deviation of the value of the bulk modulus from the linear concentration dependence. We also carried out a microscopic analysis of the origin of the band gap energy bowing parameter. Furthermore, the thermodynamic stability of the considered alloys was explored through the measurement of the miscibility critical temperature. The quasi-harmonic Debye model, as implemented in the Gibbs code, was used to predict the thermal properties of the BaSe1-x Te x alloys, and these investigations comprise our first theoretical predictions concerning the BaSe1-x Te x alloys.
Hoppe, Andreas; Hoffmann, Sabrina; Holzhütter, Hermann-Georg
2007-01-01
Background In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions. Results To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of Escherichia coli (931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state. Conclusion Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered. PMID:17543097
Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi
2016-10-10
In proteins and peptides, d-aspartic acid (d-Asp) and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn) residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room or biological temperature. In the present study, we computationally investigated the mechanism of succinimide racemization catalyzed by dihydrogen phosphate ion, H₂PO₄ - , by B3LYP/6-31+G(d,p) density functional theory calculations, using a model compound in which an aminosuccinyl (Asu) residue is capped with acetyl (Ace) and NCH₃ (Nme) groups on the N- and C-termini, respectively (Ace-Asu-Nme). It was shown that an H₂PO₄ - ion can catalyze the enolization of the H α -C α -C=O portion of the Asu residue by acting as a proton-transfer mediator. The resulting complex between the enol form and H₂PO₄ - corresponds to a very flat intermediate region on the potential energy surface lying between the initial reactant complex and its mirror-image geometry. The calculated activation barrier (18.8 kcal·mol -1 after corrections for the zero-point energy and the Gibbs energy of hydration) for the enolization was consistent with the experimental activation energies of Asp racemization.
NASA Astrophysics Data System (ADS)
Dogan, A.; Arslan, H.; Dogan, T.
2015-06-01
Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.
A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.
Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W
2010-07-01
A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.
Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T
2015-10-01
This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.
A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.
Mignotte, Max
2010-06-01
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Lercher, Johannes A.
Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide amore » kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Quantum Gibbs Samplers: The Commuting Case
NASA Astrophysics Data System (ADS)
Kastoryano, Michael J.; Brandão, Fernando G. S. L.
2016-06-01
We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.
The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science.
Kaptay, George
2018-06-01
In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan
2016-11-01
We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.
Learning that Prepares for More Learning: Symbolic Mathematics in Physical Chemistry
ERIC Educational Resources Information Center
Zielinski, Theresa Julia
2004-01-01
The well-crafted templates are useful to learn the new concepts of chemistry. The templates focus on pressure-volume work, the Boltzmann distribution, the Gibbs free energy function, intermolecular potentials, the second virial coefficient and quantum mechanical tunneling.
Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maerzke, Katie A.; McGrath, M. J.; Kuo, I-F W.
2009-09-07
Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature thatmore » are significantly under- and overestimated, respectively. We present a comprehensive density functional theory study to asses the accuracy of two popular exchange correlation functionals on the structure and density of liquid water at ambient conditions This work was supported by the US Department of Energy Office of Basic Energy Science Chemical Sciences Program. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.« less
NASA Astrophysics Data System (ADS)
Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.
2016-09-01
The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.
Modeling of Autovariator Operation as Power Components Adjuster in Adaptive Machine Drives
NASA Astrophysics Data System (ADS)
Balakin, P. D.; Belkov, V. N.; Shtripling, L. O.
2018-01-01
Full application of the available power and stationary mode preservation for the power station (engine) operation of the transport machine under the conditions of variable external loading, are topical issues. The issues solution is possible by means of mechanical drives with the autovaried rate transfer function and nonholonomic constraint of the main driving mediums. Additional to the main motion, controlled motion of the driving mediums is formed by a variable part of the transformed power flow and is implemented by the integrated control loop, functioning only on the basis of the laws of motion. The mathematical model of the mechanical autovariator operation is developed using Gibbs function, acceleration energy; the study results are presented; on their basis, the design calculations of the autovariator driving mediums and constraints, including its automatic control loop, are possible.
NASA Astrophysics Data System (ADS)
Knani, S.; Aouaini, F.; Bahloul, N.; Khalfaoui, M.; Hachicha, M. A.; Ben Lamine, A.; Kechaou, N.
2014-04-01
Analytical expression for modeling water adsorption isotherms of food or agricultural products is developed using the statistical mechanics formalism. The model developed in this paper is further used to fit and interpret the isotherms of four varieties of Tunisian olive leaves called “Chemlali, Chemchali, Chetoui and Zarrazi”. The parameters involved in the model such as the number of adsorbed water molecules per site, n, the receptor sites density, NM, and the energetic parameters, a1 and a2, were determined by fitting the experimental adsorption isotherms at temperatures ranging from 303 to 323 K. We interpret the results of fitting. After that, the model is further applied to calculate thermodynamic functions which govern the adsorption mechanism such as entropy, the free enthalpy of Gibbs and the internal energy.
Entropy-driven loss of gas-phase Group 5 species from GOLD/3-5 compound semiconductor systems
NASA Astrophysics Data System (ADS)
Pugh, J. H.; Williams, R. S.
1986-02-01
Temperature dependent chemical interactions between Au and nine 3-5 compound semiconductors (3=A1, Ga, In and V=P, As, Sb) have been calculated using bulk thermodynamic properties. Enthalpic considerations alone are insufficient to predict metal/compound-semiconductor reactivities. The entropy of vaporization of the group 5 elements is shown to be an extremely important driving force for chemical reactions involving the 3-5's, since it enables several endothermic reactions to occur spontaneously under certain temperature and pressure conditions. Plots of either Gibb's free energies of reaction or equilibrium vapor pressure of the group 5 element versus temperature are used to predict critical reaction temperatures for each of the systems studied. These plots agree extremely well with previous experimental observations of thin film reactions of Au on GaAs.
Kovács, Attila
2002-06-17
Quantum chemical calculations at the B3P86/6-311G(d,p) level have been performed on potential intermediate molecules in the chemical vapor deposition (CVD) of GaN from the GaCl(3) + NH(3) system. The investigated molecules included the monomer (Cl(x)GaNH(x), x = 1-3) and oligomer species (Cl(2)GaNH(2))(n) with n = 1-3 and (ClGaNH)(n) with n = 1-4 as well as the respective chain dimers and trimers. The calculations revealed the importance of intramolecular Cl...H hydrogen bonding and dipole-dipole interactions in determining the conformational properties of the larger species. Except for the ClGaNH monomer, the Ga[bond]N bonding has a single bond character with a strong ionic contribution. Our thermodynamic study of the composition of the gaseous phase supported the predominance of the Cl(3)GaNH(3) complex under equilibrium conditions. Additionally, the calculated Gibbs free energies of various GaCl(3) + NH(3) reactions imply the favored formation of "saturated" chain and cyclic oligomers below 1000 K.
Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires
NASA Astrophysics Data System (ADS)
Ghasemi, Masoomeh; Johansson, Jonas
2017-04-01
Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As-Au-Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As-Au-Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor-liquid-solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: the key role of monomeric species.
Kalhor, Mahboubeh Poor; Chermette, Henry; Chambrey, Stéphane; Ballivet-Tkatchenko, Danielle
2011-02-14
The formation of dimethyl carbonate (DMC) from CO(2) and methanol with the dimer [n-Bu(2)Sn(OCH(3))(2)](2) was investigated by experimental kinetics in support of DFT calculations. Under the reaction conditions (357-423 K, 10-20 MPa), identical initial rates are observed with three different reacting mixtures, CO(2)/toluene, supercritical CO(2), and CO(2)/methanol, and are consistent with the formation of monomeric di-n-butyltin(iv) species. An intramolecular mechanism is, therefore, proposed with an Arrhenius activation energy amounting to 104 ± 10 kJ mol(-1) for DMC synthesis. DFT calculations on the [(CH(3))(2)Sn(OCH(3))(2)](2)/CO(2) system show that the exothermic insertion of CO(2) into the Sn-OCH(3) bond occurs by a concerted Lewis acid-base interaction involving the tin center and the oxygen atom of the methoxy ligand. The Gibbs energy diagrams highlight that, under the reaction conditions, the dimer-monomer equilibrium is significantly shifted towards monomeric species, in agreement with the experimental kinetics. Importantly, the two Sn-OCH(3) bonds are prompt to insert CO(2). These results provide new insight into the reaction mechanism and catalyst design to enhance the turnover numbers.
Platinum(0)-mediated C-O bond activation of ethers via an SN2 mechanism.
Ortuño, Manuel A; Jasim, Nasarella A; Whitwood, Adrian C; Lledós, Agustí; Perutz, Robin N
2016-11-29
A computational study of the C(methyl)-O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp 3 ) 2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an S N 2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(ii) product trans-[PtMe(OAr F )(PCyp 3 ) 2 ]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy 3 ) 2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η 3 -allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy 3 ) 2 (η 3 -allyl)][OC 5 NF 4 ]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.
The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.
Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele
2017-09-14
In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.
Shakourian-Fard, Mehdi; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S
2016-09-19
Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li(+) with pure carbonates and ethylene carbonate (EC)-based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06-2X/6-311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li-ion solvation in carbonates and EC-based mixtures. A strong local tetrahedral order involving four carbonates around the Li(+) was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li(+) ion with carbonates are negative and suggested the ion-carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li(+) interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO-EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li(+) ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO-EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li-ion batteries, which complies with experiments and other theoretical results. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, G. S.; Amend, J.; LaRowe, D.
2017-12-01
Chemolithoautotrophic microorganisms are important primary producers in hydrothermal environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical geochemical data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea hydrothermal venting systems around the world (326 geochemical data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea hydrothermal systems than in deep-sea hydrothermal settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea hydrothermal systems than in the other two types of hydrothermal systems. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic modeling carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.
Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi
2018-01-01
We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.
Conformational analysis, tautomerization, IR, Raman, and NMR studies of benzyl acetoacetate
NASA Astrophysics Data System (ADS)
Tayyari, Sayyed Faramarz; Naghavi, Farnaz; Pojhan, Sahar; McClurg, Ryan W.; Sammelson, Robert E.
2011-02-01
A complete conformational analysis of the keto and enol forms of benzyl acetoacetate (BAA), a β-dicarbonyl compound, was carried out by ab initio calculations, at the density functional theory (DFT) level. By inspection of all possible conformers and tautomers, 22 stable cis-enol, 28 stable trans-enol, and five keto conformers were obtained. Among all stable cis-enol forms only six of them are engaged in intramolecular hydrogen bond. The hydrogen bond strength of the most stable conformer of BAA is compared with that of acetylacetone (AA) and dimethyl oxaloacetate (DMOA). Harmonic vibrational frequencies of the most stable enol and keto forms and their deuterated analogues were also calculated and compared with the experimental data. According to the theoretical calculations, the hydrogen bond strength of the most stable enol conformer of BAA is 56.7 kJ/mol (calculated at the B3LYP/6-311++G ∗∗ level), about 10 kJ/mol less than that of AA. This weakening of hydrogen bond is consistent with the spectroscopic results. NMR studies indicate that BAA exists mainly as a keto tautomer in all considered solutions. The Gibbs energies for keto/enol tautomerization were calculated at the B3LYP level, with several basis sets, in both gas phase and CH 3CN solution (using PCM model), for the most stable enol and keto conformers.
2018-04-01
systems containing ionized gases. 2. Gibbs Method in the Integral Form As per the Gibbs general methodology , based on the concept of heterogeneous...ARL-TR-8348 ● APR 2018 US Army Research Laboratory The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1...ARL-TR-8348 ● APR 2018 US Army Research Laboratory The Gibbs Variational Method in Thermodynamics of Equilibrium Plasma: 1. General
Thermodynamic assessment of the Sn-Co lead-free solder system
NASA Astrophysics Data System (ADS)
Liu, Libin; Andersson, Cristina; Liu, Johan
2004-09-01
The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.
A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages.
Beheshtian, Javad; Bagheri, Zargham; Kamfiroozi, Mohammad; Ahmadi, Ali
2012-06-01
The stability, geometry and electronic structure of the title nanoclusters were compared by using density functional theory (DFT) calculations. Their electrical property analysis showed that the relative magnitude of the HOMO-LUMO gaps (eV) that are average values from the calculated results with five different DFT functionals is as follows: B12N12(7:02)>Al12N12(4.09)>B12P12(3.80)>Al12P12(3.39). Computing the standard enthalpy and the Gibbs free energy of formation, it was found that the B(12)N(12) structure is thermodynamically stable at 298 K and 1 atmosphere of pressure, while the Al(12)N(12) structure may be stable at low temperatures. Due to positive values of change of enthalpy and entropy of formation for both the B(12)P(12) and Al(12)P(12) clusters, it seems that their formation from the consisting atoms is not spontaneous at any temperature.
NASA Astrophysics Data System (ADS)
Ali, A.; Bidhuri, P.; Uzair, S.
2014-07-01
Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.
NASA Astrophysics Data System (ADS)
Shekaari, Hemayat; Mousavi, Sedighehnaz S.; Mansoori, Yagoub
2009-04-01
Osmotic coefficients, {φ}, electrical conductance data, Λ, and refractive indices, n D, of aqueous solutions of the ionic liquid, 1-pentyl-3-methylimidazolium chloride [PnMIm]Cl have been measured at T = (298.15, 308.15, 318.15, and 328.15) K. Measurements of osmotic coefficients were carried out by the vapor-pressure osmometry method (VPO). Osmotic coefficient values show that ion-solvent interactions are stronger at lower temperature. The osmotic coefficients were correlated to the Pitzer-ion interaction and modified NRTL (MNRTL) models. From these data, mean molal activity coefficients, γ±, and excess Gibbs free energies, G E, have been calculated. Electrical conductance data have been applied for determination of association constants, K a, and limiting molar conductances, Λ 0, using the low concentration chemical model (lcCM). Calculated ion-association constant, K a, values show that ion-association effects increase at high temperatures which is in agreement with osmotic coefficient results. Experimental results of refractive indices for the binary system are reported, and have been fitted by a polynomial expansion.
Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil.
Maszkowska, Joanna; Wagil, Marta; Mioduszewska, Katarzyna; Kumirska, Jolanta; Stepnowski, Piotr; Białk-Bielińska, Anna
2014-09-01
Although pharmaceutical compounds (PCs) are being used more and more widely, and studies have been carried out to assess their presence in the environment, knowledge of their fate and behavior, especially under different environmental conditions, is still limited. The principle objective of the present work, therefore, is to evaluate the adsorption behavior of three ionizable, polar compounds occurring in different forms: cationic (propranolol - PRO), anionic (sulfisoxazole - SSX) and neutral (sulfaguanidine - SGD) onto soil under various temperature conditions. The adsorption thermodynamics of these researched compounds were extensively investigated using parameters such as enthalpy change (ΔH°), Gibbs free energy change (ΔG°) as well as entropy change (ΔS°). These calculations reveal that sorption of PRO is exothermic, spontaneous and enthalpy driven, sorption of SGD is endothermic, spontaneous and entropy driven whereas sorption of SSX is endothermic, spontaneous only above the temperature of 303.15K and entropy driven. Furthermore, we submit that the calculated values yield valuable information regarding the sorption mechanism of PRO, SGD and SSX onto soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Debbasch, F.
2011-01-01
The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…
Making Difficult Things Easy and Easy Things Difficult.
ERIC Educational Resources Information Center
Campbell, J. Arthur; Bent, Henry A.
1982-01-01
Suggestions are offered to illustrate concepts and processes by using simple materials such as paper, paper clip, rubber band (bonding, entropy, endothermic processes). Also suggests using basic terminology: elementary ratios, percent, reaction chemistry for entropy function; equilibrium constants for Gibbs energies; and chemical mechanics for…
Quinone Photoreactivity: An Undergraduate Experiment in Photochemistry
ERIC Educational Resources Information Center
Vaughan, Pamela P.; Cochran, Michael; Haubrich, Nicole
2010-01-01
An experiment exploring the photochemical properties of quinones was developed. Their unique photochemistry and highly reactive nature make them an ideal class of compounds for examining structure-activity relationships. For several substituted quinones, photochemical reactivity was related to structure and ultimately to the Gibbs energy for…
Quantification of Microbial Phenotypes
Martínez, Verónica S.; Krömer, Jens O.
2016-01-01
Metabolite profiling technologies have improved to generate close to quantitative metabolomics data, which can be employed to quantitatively describe the metabolic phenotype of an organism. Here, we review the current technologies available for quantitative metabolomics, present their advantages and drawbacks, and the current challenges to generate fully quantitative metabolomics data. Metabolomics data can be integrated into metabolic networks using thermodynamic principles to constrain the directionality of reactions. Here we explain how to estimate Gibbs energy under physiological conditions, including examples of the estimations, and the different methods for thermodynamics-based network analysis. The fundamentals of the methods and how to perform the analyses are described. Finally, an example applying quantitative metabolomics to a yeast model by 13C fluxomics and thermodynamics-based network analysis is presented. The example shows that (1) these two methods are complementary to each other; and (2) there is a need to take into account Gibbs energy errors. Better estimations of metabolic phenotypes will be obtained when further constraints are included in the analysis. PMID:27941694
Haas, John L.; Robinson, Glipin R.; Hemingway, Bruch S.
1981-01-01
The standard thermodynamic properties of phases in the lime‐alumina‐silica‐ water system between 273.15 and 1800 K at 101.325 kPa (1 atm) were evalated from published experimental data. Phases included in the compilation are boehmite, diaspore, gibbsite, kaolinite, dickite, halloysite, andalusite, kyanite, sillimanite, Ca‐Al cliniopyroxene, anorthite, gehlenite, grossular, prehnite, zoisite, margarite, wollastonite, cyclowollastonite ( = pseudowollastonite), larnite, Ca olivine, hatrurite, and rankinite. The properties include heat capacity, entropy, relative enthalpy, and the Gibbs energy function of the phases and the enthalpies, Gibbs energies, and equilibrium constants for formation both from the elements and the oxides. Tabulated values are given at 50 K intervals with the 2‐sigma confidence limit at 250 K intervals. Summaries for each phase give the temperature‐ dependent functions for heat capacity, entropy, and relative enthalpy and the experimental data used in the final evaluation.
Phase transition thermodynamics of bisphenols.
Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F
2014-10-16
Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.
NASA Astrophysics Data System (ADS)
Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.
2012-07-01
Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .
On the thermodynamic framework of generalized coupled thermoelastic-viscoplastic-damage modeling
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.
1991-01-01
A complete potential based framework using internal state variables is put forth for the derivation of reversible and irreversible constitutive equations. In this framework, the existence of the total (integrated) form of either the (Helmholtz) free energy or the (Gibbs) complementary free energy are assumed a priori. Two options for describing the flow and evolutionary equations are described, wherein option one (the fully coupled form) is shown to be over restrictive while the second option (the decoupled form) provides significant flexibility. As a consequence of the decoupled form, a new operator, i.e., the Compliance operator, is defined which provides a link between the assumed Gibb's and complementary dissipation potential and ensures a number of desirable numerical features, for example the symmetry of the resulting consistent tangent stiffness matrix. An important conclusion reached, is that although many theories in the literature do not conform to the general potential framework outlined, it is still possible in some cases, by slight modifications of the used forms, to restore the complete potential structure.
The activity of calcium in calcium-metal-fluoride fluxes
NASA Astrophysics Data System (ADS)
Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo
1995-08-01
The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp; RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198; Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083
2015-03-28
Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluatedmore » for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.« less
Surov, Artem O; Volkova, Tatyana V; Churakov, Andrei V; Proshin, Alexey N; Terekhova, Irina V; Perlovich, German L
2017-11-15
The cocrystallization approach has been applied to modify the poor solubility profile of the biologically active 1,2,4-thiadiazole derivative (TDZ). Extensive cocrystal screening with a library of coformers resulted in formation of a new solid form of TDZ with vanillic acid in a 1:1 molar ratio. The cocrystalline phase was identified and characterized by thermal and diffraction analyses including single-crystal X-ray diffraction. The energies of intermolecular interactions in the crystal were calculated by solid-state DFT and PIXEL methods. Both calculation schemes show good consistency in terms of total energy of the intermolecular interactions and suggest that the cocrystal is mainly stabilized via hydrogen bonds, which provide ca. 44% of the lattice energy. Since the cocrystal contained the hydroxybenzoic acid derivative as a coformer, the solubility profile of the cocrystal was investigated at different pHs using eutectic concentrations of the components. Furthermore, the influence of the cocrystallization on the permeability performance of the 1,2,4-thiadiazole through an artificial regenerated cellulose membrane was also evaluated. In addition, the thermodynamic functions of the cocrystal formation were estimated from the solubility of the cocrystal and the corresponding solubility of the pure compounds at various temperatures. The cocrystal formation process was found to have a relatively small value of the driving force (-5.3kJ·mol -1 ). The most significant contribution to the Gibbs energy was provided by the exothermic enthalpy of formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Reflections on Gibbs: From Statistical Physics to the Amistad V3.0
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2014-07-01
This note is based upon a talk given at an APS meeting in celebration of the achievements of J. Willard Gibbs. J. Willard Gibbs, the younger, was the first American physical sciences theorist. He was one of the inventors of statistical physics. He introduced and developed the concepts of phase space, phase transitions, and thermodynamic surfaces in a remarkably correct and elegant manner. These three concepts form the basis of different areas of physics. The connection among these areas has been a subject of deep reflection from Gibbs' time to our own. This talk therefore celebrated Gibbs by describing modern ideas about how different parts of physics fit together. I finished with a more personal note. Our own J. Willard Gibbs had all his many achievements concentrated in science. His father, also J. Willard Gibbs, also a Professor at Yale, had one great non-academic achievement that remains unmatched in our day. I describe it.
El Bakouri, Ouissam; Garcia-Borràs, Marc; Girón, Rosa M.; Filippone, Salvatore
2018-01-01
Controlling the regioselectivity in the exohedral functionalization of fullerenes and endohedral metallofullerenes is essential to produce specific desired fullerene derivatives. In this work, using density functional theory (DFT) calculations, we show that the regioselectivity of the Diels–Alder (DA) cycloaddition of cyclopentadiene to 2S+1C60 changes from the usual [6,6] addition in the singlet ground state to the [5,6] attack in high spin states of C60. Changes in the aromaticity of the five- and six-membered rings when going from singlet to high spin C60 provide a rationale to understand this regioselectivity change. Experimentally, however, we find that the DA cycloaddition of isoindene to triplet C60 yields the usual [6,6] adduct. Further DFT calculations and computational analysis give an explanation to this unanticipated experimental result by showing the presence of an intersystem crossing close to the formed triplet biradical intermediate. PMID:29417103
FTIR study of hydrogen bonding interaction between fluorinated alcohol and unsaturated esters
NASA Astrophysics Data System (ADS)
Sheng, Xia; Jiang, Xiaotong; Zhao, Hailiang; Wan, Dongjin; Liu, Yongde; Ngwenya, Cleopatra Ashley; Du, Lin
2018-06-01
The 1:1 complexes of two unsaturated esters with 2,2,2-trifluoroethanol (TFE) were investigated experimentally and computationally. The experimental observations of the spectral shifts of the OH-stretching vibrational transitions were obtained at 113 cm-1 for TFE-methyl acrylate (MA) and 92 cm-1 for TFE-vinyl acetate (VA). There are three docking sites in the two unsaturated esters for the incoming TFE. The predicted red shifts of the OH-stretching vibrational transitions were found to be larger for the Osbnd H⋯Odbnd C hydrogen bonded conformer than those for the Osbnd H⋯π and Osbnd H⋯O ones. The binding energies further prove that the Osbnd H⋯Odbnd C hydrogen bonded conformers are the most stable ones. On the basis of the DFT calculations as well as previous works, the carbonyl group is the best docking site for TFE. Furthermore, the thermodynamic equilibrium constants of TFE-MA and TFE-VA were obtained at 0.28 and 0.15 by combining the experimental spectra data and the DFT calculations. Consequently, the Gibbs free energies of formation were determined to be 3.2 and 4.8 kJ mol-1 for TFE-MA and TFE-VA, respectively. The quantum theory of atoms in molecules (AIM) and generalized Kohn-Sham energy decomposition analysis (GKS-EDA) were carried out for further characterization of the hydrogen bonding interactions. GKS-EDA shows an "electrostatic" dominated hydrogen bonding character for the Osbnd H⋯Odbnd C hydrogen bonds.
Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.
1995-06-01
Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.
Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems
NASA Technical Reports Server (NTRS)
Shock, Everett L.; Mccollom, Thomas; Schulte, Mithell D.
1995-01-01
Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of reduced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.
PhyloGibbs-MP: Module Prediction and Discriminative Motif-Finding by Gibbs Sampling
Siddharthan, Rahul
2008-01-01
PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs) ab initio while simultaneously predicting binding sites in those modules—tasks that are usually done by two separate programs. PhyloGibbs-MP's performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that differentiate between two (or more) different groups of regulatory regions, that is, motifs that occur preferentially in one group over the others. While other “discriminative motif-finders” have been published in the literature, PhyloGibbs-MP's implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include significant performance and speed improvements, the ability to use “informative priors” on known transcription factors, and the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data. PMID:18769735
Towards solar energy storage in the photochromic dihydroazulene-vinylheptafulvene system.
Cacciarini, Martina; Skov, Anders B; Jevric, Martyn; Hansen, Anne S; Elm, Jonas; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Brøndsted Nielsen, Mogens
2015-05-11
One key challenge in the field of exploitation of solar energy is to store the energy and make it available on demand. One possibility is to use photochromic molecules that undergo light-induced isomerization to metastable isomers. Here we present efforts to develop solar thermal energy storage systems based on the dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch. New DHA derivatives with one electron-withdrawing cyano group at position 1 and one or two phenyl substituents in the five-membered ring were prepared by using different synthetic routes. In particular, a diastereoselective reductive removal of one cyano group from DHAs incorporating two cyano groups at position 1 turned out to be most effective. Quantum chemical calculations reveal that the structural modifications provide two benefits relative to DHAs with two cyano groups at position 1: 1) The DHA-VHF energy difference is increased (i.e., higher energy capacity of metastable VHF isomer); 2) the Gibbs free energy of activation is increased for the energy-releasing VHF to DHA back-reaction. In fact, experimentally, these new derivatives were so reluctant to undergo the back-reaction at room temperature that they practically behaved as DHA to VHF one-way switches. Although lifetimes of years are at first attractive, which offers the ultimate control of energy release, for a real device it must of course be possible to trigger the back-reaction, which calls for further iterations in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reduction of substituted p-Benzoquinones by Fe II near neutral pH
USDA-ARS?s Scientific Manuscript database
The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (DG) for the forward reaction is sensitive to dihydroxyaromatic struc...
NASA Astrophysics Data System (ADS)
Fakhar, Zeynab; Govender, Thavendran; Lamichhane, Gyanu; Maguire, Glenn E. M.; Kruger, Hendrik G.; Honarparvar, Bahareh
2017-01-01
Tuberculosis (TB) remains a major global health quandary. The peptidoglycan layer of mycobacterium tuberculosis (M.tb) consists of glycoproteins that are crosslinked by transpeptidases. Carbapenems are a subfamily of β-lactam antibiotics that inactivate the L,D-transpeptidase enzyme effectively (3 → 3 crosslinks). The mechanism of ring opening and thioester bond formation between the β-lactam core and the Cys354 active residue (for L,D-transpeptidase) during the acylation step is still the subject of considerable discussion. Herein, an acylation mechanism is proposed through four possible model transition states (TS), namely four membered-ring (TS-4, TS-4-His and TS-4-water) and six membered-ring (TS-6-water) transition states. The quantum chemical calculations for these TS models were performed with Density Functional Theory (DFT) using the B3LYP functional and the 6-31 + G(d) basis set. The calculated thermodynamic properties such as relative reaction energies (ΔEreaction), Gibbs free energies (ΔG), enthalpy energies (ΔH) and entropy contributions (ΔS) were reported at 298.15 K for the four considered pathways. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were calculated to evaluate and compare the chemical reactivities of the considered TS models. Natural bond orbital (NBO) analysis was performed to determine the effective intermolecular orbital interactions E(2) derived by the second perturbation theory. The chemical hardness (η) and softness (S) and Fukui indices (fk+, fk-) of these TS models were compared to confirm the feasibility and preference of the considered pathways. The outcome of this study will pave the way for an improved understanding of the LDT/carbapenem acylation reaction at a molecular level.
Epitaxial bain paths and metastable phases of tetragonal iron and manganese
NASA Astrophysics Data System (ADS)
Ma, Hong
2002-04-01
Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.
Freydank; Krasia; Tiddy; Patrickios
2000-05-01
A family of six near-monodisperse homopolymers of sodium methacrylate (Mn = 1100, 3200, 5500, 7200, 14100, and 21000) is characterized by linear salt gradient anion-exchange chromatography. Although the retention times depend on the initial and final salt concentrations of the gradient, they are almost independent of the molecular weight of poly(sodium methacrylate). This suggests that anion-exchange chromatography is incapable of resolving mixtures of a given polyelectrolyte to their components of various molecular weights, and it is therefore impossible to identify the polydispersity of such a sample using this method. The independence of the retention times from molecular weight is also predicted by a theory based on stoichiometric mass-action ion-exchange. Using this theory and our experimental retention times, the equilibrium anion-exchange constant and the corresponding Gibbs free energy of anion-exchange of the monomer repeat unit are calculated to be around 2.1 and -1.8 kJ/mol, respectively.
Hwang, Geelsu; Lee, Chang-Ha; Ahn, Ik-Sung; Mhin, Byung Jin
2010-07-15
The extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was applied to explain the hydrophobic interaction-mediated adhesion of Pseudomonas putida NCIB 9816-4 to soil. Soil particles are heterogeneous, and it is difficult to define consistent physico-chemical properties such as a contact angle and zeta potential. Hence, a silica gel and a silanized (3-aminopropyltriethoxysilane-coated) silica gel, which showed greater hydrophobicity than the unmodified silica gel, were used as model soils. Gibbs energies for the cell adhesion to the silica gels were calculated with the physico-chemical properties of the microbes and the silica gels and then plotted as a function of the separation distance. The extended DLVO theory successfully explained that the adhesion of P. putida NCIB 9816-4 to the silica gel, a model soil, was primarily caused by hydrophobic interaction. 2010 Elsevier B.V. All rights reserved.
Simulation of magnetoelastic response of iron nanowire loop
NASA Astrophysics Data System (ADS)
Huang, Junping; Peng, Xianghe; Wang, Zhongchang; Hu, Xianzhi
2018-03-01
We analyzed the magnetoelastic responses of one-dimensional iron nanowire loop systems with quantum statistical mechanics, treating the particles in the systems as identical bosons with an arbitrary integer spin. Under the assumptions adopted, we demonstrated that the Hamiltonian of the system can be separated into two parts, corresponding to two Ising subsystems, describing the particle spin and the particle displacement, respectively. Because the energy of the particle motion at atomic scale is quantized, there should be more the strict constraint on the particle displacement Ising subsystem. Making use of the existing results for Ising system, the partition function of the system was derived into two parts, corresponding respectively to the two Ising subsystems. Then the Gibbs distribution was obtained by statistical mechanics, and the description for the magnetoelastic response was derived. The magnetoelastic responses were predicted with the developed approach, and the comparison with the results calculated with VASP demonstrates the validity of the developed approach.
Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions
NASA Astrophysics Data System (ADS)
Pleşa Chicinaş, R.; Bedelean, H.; Stefan, R.; Măicăneanu, A.
2018-02-01
A montmorillonitic clay in raw and treated forms (size-fractionated, organoclay, Al pillared) was evaluated as adsorbent for cationic (toluidine blue - TB and malachite green - MG) and anionic (Congo red - CR) dyes. A thorough characterization using XRD, SEM-EDS, N2 adsorption, and FTIR of the considered samples was realized, all highlighting the structural changes after various treatments. UV-VIS analysis demonstrated the interaction between dyes and the adsorbent surface. The investigation of the effects of various experimental parameters using a batch adsorption technique showed that ON has a high adsorption potential for cationic dyes (33 and 39 mg/g in case of TB and MG, respectively). The kinetic study indicated that the adsorption process followed the pseudo-second-order model, while Freundlich isotherm showed a favorable adsorption. The calculated values of Gibbs free energy suggested also that the adsorption is spontaneous and is more favorable at higher temperatures.
NASA Technical Reports Server (NTRS)
Weaver, J. S.; Chipman, D. W.; Takahashi, T.
1979-01-01
Phase stability and elasticity data have been used to calculate the Gibbs free energy, enthalpy, and entropy changes at 298 K and 1 bar associated with the quartz-coesite and coesite-stishovite transformations in the system SiO2. For the quartz-coesite transformation, these changes disagree by a factor of two or three with those obtained by calorimetric techniques. The phase boundary for this transformation appears to be well determined by experiment; the discrepancy, therefore, suggests that the calorimetric data for coesite are in error. Although the calorimetric and phase stability data for the coesite-stishovite transformation yield the same transition pressure at 298 K, the phase-boundary slopes disagree by a factor of two. At present, it is not possible to determine which of the data are in error. Thus serious inconsistencies exist in the thermodynamic data for the polymorphic transformations of silica.
Razdan, Neil K; Koshy, David M; Prausnitz, John M
2017-11-07
A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.
Modeling dynamic beta-gamma polymorphic transition in Tin
NASA Astrophysics Data System (ADS)
Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration
2015-06-01
Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.
Possibility of the Nonenzymatic Browning (Maillard) Reaction in the ISM
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.; Shipar, M. Abul Haider
2008-04-01
The possibility of the occurrence of the nonenzymatic browning reaction in the gaseous phase in the interstellar medium has been investigated by using Density Functional Theory computations. Mechanisms for the reactions between formaldehyde ( Fald) + glycine ( Gly), Fald + NH 3 and Fald + methylamine ( MeAm) have been proposed, and the possibility of the formation of different compounds in the proposed mechanisms has been evaluated through calculating the Gibb's free energy changes for different steps of the reaction, by following the total mass balance. The Fald + Gly reaction under basic conditions is found as the most favorable for producing 1-methyl-amino methene or 1-methyl-amino methelene ( MAM). The reaction under acidic conditions is found to be the least favorable for producing MAM. The Fald + NH 3 reaction is found to be plausible for the production of MeAm, which can participate by reaction with Fald, resulting in the formation of MAM.
Theoretical analysis of the structural phase transformation in the ZnO under high pressure
NASA Astrophysics Data System (ADS)
Verma, Saligram; Jain, Arvind; Nagarch, R. K.; Shah, S.; Kaurav, Netram
2018-05-01
We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZnO compound. Gibb's free energy is obtained as a function of pressure by applying an effective inter ionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from ZnS structure (B3) to NaCl structure (B1) at 8.5 GPa. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.
Loy, Adrian Chun Minh; Gan, Darren Kin Wai; Yusup, Suzana; Chin, Bridgid Lai Fui; Lam, Man Kee; Shahbaz, Muhammad; Unrean, Pornkamol; Acda, Menandro N; Rianawati, Elisabeth
2018-08-01
The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different heating rates of 10, 20, 50 and 100 K/min. Four different iso conversional kinetic models such as Kissinger, Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were applied in this study to calculate the activation energy (E A ) and pre-exponential value (A) of the system. The E A of non-catalytic and catalytic pyrolysis was found to be in the range of 152-190 kJ/mol and 146-153 kJ/mol, respectively. The results showed that the catalytic pyrolysis of RH had resulted in a lower E A as compared to non-catalytic pyrolysis of RH and other biomass in literature. Furthermore, the high Gibb's free energy obtained in RH implied that it has the potential to serve as a source of bioenergy production. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.; Bouchaud, Jean-Philippe
2008-08-01
We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.
NASA Astrophysics Data System (ADS)
Chen, H. C.; Lai, S. K.
1992-03-01
The role of the Percus-Yevick hard-sphere bridge function in the modified hypernetted-chain integral equation is examined within the context of Lado's criterion [F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983)]. It is found that the commonly used Lado's criterion, which takes advantage of the analytical simplicity of the Percus-Yevick hard-sphere bridge function, is inadequate for determining an accurate static pair-correlation function. Following Rosenfeld [Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984)], we reconsider Lado's criterion in the so-called variational modified hypernetted-chain theory. The main idea is to construct a free-energy functional satisfying the virial-energy thermodynamic self-consistency. It turns out that the widely used Gibbs-Bogoliubov inequality is equivalent to this integral approach of Lado's criterion. Detailed comparison between the presently obtained structural and thermodynamic quantities for liquid alkali metals and those calculated also in the modified hypernetted-chain theory but with the one-component-plasma reference system leads us to a better understanding of the universality property of the bridge function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanoir, D.; Trouve, G.; Delfosse, L.
1998-09-01
Car manufacturers must eliminate automotive shredder residues (ASR). Two ways of incineration are of interest: at 850 C in municipal waste incinerators or at higher temperatures, above 1,100 C in cement plants. These processes reduce the mass and the volume of waste to be disposed of in landfills and energy recovery might be possible. Regulations govern the emission of gaseous effluents to control environmental risk. To determine gaseous effluents from a pilot scale or an industrial incineration plant, an artificial ASR was made by mixing three representative organic polymers present in the real ASR, namely polyvinylchloride, polyurethane and rubber. Thismore » mixture was incinerated at 850 and 1,100 C in laboratory experiments and the analyses of the principal gaseous effluents such as carbon oxides, nitrogen oxides, volatile organic compounds, hydrochloric and hydrocyanic acids and sulfur compounds are presented and discussed. Lastly, in order to simulate artificial ASR behavior, the composition of the combustion gases at equilibrium was calculated using a Gibbs energy minimization code.« less
Substitutional Growth of Methylammonium Lead Iodide Perovskites in Alcohols
Acik, Muge; Alam, Todd M.; Guo, Fangmin; ...
2017-09-29
Methylammonium lead iodide (MAPbI 3) perovskites are organic–inorganic semiconductors with long carrier diffusion lengths serving as the light-harvesting component in optoelectronics. Through a substitutional growth of MAPbI 3 catalyzed by polar protic alcohols, evidence is shown in this paper for their substrate- and annealing-free production and use of toxic solvents and high temperature is prevented. The resulting variable-sized crystals (≈100 nm–10 µm) are found to be tetragonally single-phased in alcohols and precipitated as powders that are metallic-lead-free. A comparatively low MAPbI 3 yield in toluene supports the role of alcohol polarity and the type of solvent (protic vs aprotic). Themore » theoretical calculations suggest that overall Gibbs free energy in alcohols is lowered due to their catalytic impact. Based on this alcohol-catalyzed approach, MAPbI 3 is obtained, which is chemically stable in air up to ≈1.5 months and thermally stable (≤300 °C). Finally, this method is amendable to large-scale manufacturing and ultimately can lead to energy-efficient, low-cost, and stable devices.« less
Linear relations in microbial reaction systems: a general overview of their origin, form, and use.
Noorman, H J; Heijnen, J J; Ch A M Luyben, K
1991-09-01
In microbial reaction systems, there are a number of linear relations among net conversion rates. These can be very useful in the analysis of experimental data. This article provides a general approach for the formation and application of the linear relations. Two type of system descriptions, one considering the biomass as a black box and the other based on metabolic pathways, are encountered. These are defined in a linear vector and matrix algebra framework. A correct a priori description can be obtained by three useful tests: the independency, consistency, and observability tests. The independency are different. The black box approach provides only conservations relations. They are derived from element, electrical charge, energy, and Gibbs energy balances. The metabolic approach provides, in addition to the conservation relations, metabolic and reaction relations. These result from component, energy, and Gibbs energy balances. Thus it is more attractive to use the metabolic description than the black box approach. A number of different types of linear relations given in the literature are reviewed. They are classified according to the different categories that result from the black box or the metabolic system description. Validation of hypotheses related to metabolic pathways can be supported by experimental validation of the linear metabolic relations. However, definite proof from biochemical evidence remains indispensable.
Applications of physics to economics and finance: Money, income, wealth, and the stock market
NASA Astrophysics Data System (ADS)
Dragulescu, Adrian Antoniu
Several problems arising in Economics and Finance are analyzed using concepts and quantitative methods from Physics. The dissertation is organized as follows: In the first chapter it is argued that in a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium probability distribution of money must follow the exponential Boltzmann-Gibbs law characterized by an effective temperature equal to the average amount of money per economic agent. The emergence of Boltzmann-Gibbs distribution is demonstrated through computer simulations of economic models. A thermal machine which extracts a monetary profit can be constructed between two economic systems with different temperatures. The role of debt and models with broken time-reversal symmetry for which the Boltzmann-Gibbs law does not hold, are discussed. In the second chapter, using data from several sources, it is found that the distribution of income is described for the great majority of population by an exponential distribution, whereas the high-end tail follows a power law. From the individual income distribution, the probability distribution of income for families with two earners is derived and it is shown that it also agrees well with the data. Data on wealth is presented and it is found that the distribution of wealth has a structure similar to the distribution of income. The Lorenz curve and Gini coefficient were calculated and are shown to be in good agreement with both income and wealth data sets. In the third chapter, the stock-market fluctuations at different time scales are investigated. A model where stock-price dynamics is governed by a geometrical (multiplicative) Brownian motion with stochastic variance is proposed. The corresponding Fokker-Planck equation can be solved exactly. Integrating out the variance, an analytic formula for the time-dependent probability distribution of stock price changes (returns) is found. The formula is in excellent agreement with the Dow-Jones index for the time lags from 1 to 250 trading days. For time lags longer than the relaxation time of variance, the probability distribution can be expressed in a scaling form using a Bessel function. The Dow-Jones data follow the scaling function for seven orders of magnitude.
The Fermi-Pasta-Ulam System as a Model for Glasses
NASA Astrophysics Data System (ADS)
Carati, A.; Maiocchi, A.; Galgani, L.; Amati, G.
2015-12-01
We show that the standard Fermi-Pasta-Ulam system, with a suitable choice for the interparticle potential, constitutes a model for glasses, and indeed an extremely simple and manageable one. Indeed, it allows one to describe the landscape of the minima of the potential energy and to deal concretely with any one of them, determining the spectrum of frequencies and the normal modes. A relevant role is played by the harmonic energy {E} relative to a given minimum, i.e., the expansion of the Hamiltonian about the minimum up to second order. Indeed we find that there exists an energy threshold in {E} such that below it the harmonic energy {E} appears to be an approximate integral of motion for the whole observation time. Consequently, the system remains trapped near the minimum, in what may be called a vitreous or glassy state. Instead, for larger values of {E} the system rather quickly relaxes to a final equilibrium state. Moreover we find that the vitreous states present peculiar statistical behaviors, still involving the harmonic energy {E}. Indeed, the vitreous states are described by a Gibbs distribution with an effective Hamiltonian close to {E} and with a suitable effective inverse temperature. The final equilibrium state presents instead statistical properties which are in very good agreement with the Gibbs distribution relative to the full Hamiltonian of the system.
Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K
NASA Astrophysics Data System (ADS)
Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K.
2015-04-01
In this study we mainly discuss the transfer Gibbs free energy Δ G {/t 0}( i) and Δ S {/t 0}( i)entropy of DL-alanine at 298.15 K and consequently the involved chemical transfer free energy (Δ G {/t,ch 0}( i)) and entropy ( TΔ S {/t,ch 0}( i)) in aqueous mixtures of dimethylsulfoxide are discussed to clarify the solvation chemistry of DL-alanine. For the evaluation of these energy terms, solubility of this amino acid has been measured by formol titrimetry at five equidistant temperatures i.e., from 288.15 to 308.15 K in different composition of this mixed solvent system. The various solvent parameters as well as thermodynamic parameters like molar volume, density, dipole moment and solvent diameter of this solvent system have also been reported here. The chemical effects of the transfer Gibbs energies (Δ G {/t,ch 0}( i)) and entropies of transfer ( TΔ S {/t,ch 0}( i)) have been obtained after elimination of cavity effect and dipole-dipole interaction effects from the total transfer energies. Here the chemical contribution of transfer energetics of DL-alanine is mainly guided by the composite effects of increased dispersion interaction, basicity effect and decreased acidity, hydrogen bonding effects, hydrophilic hydration and hydrophobic hydration of aqueous DMSO mixtures as compared to that of reference solvent, water.
Steudel, Ralf; Steudel, Yana
2013-02-25
The sodium-sulfur (NAS) battery is a candidate for energy storage and load leveling in power systems, by using the reversible reduction of elemental sulfur by sodium metal to give a liquid mixture of polysulfides (Na(2)S(n)) at approximately 320°C. We investigated a large number of reactions possibly occurring in such sodium polysulfide melts by using density functional calculations at the G3X(MP2)/B3LYP/6-31+G(2df,p) level of theory including polarizable continuum model (PCM) corrections for two polarizable phases, to obtain geometric and, for the first time, thermodynamic data for the liquid sodium-sulfur system. Novel reaction sequences for the electrochemical reduction of elemental sulfur are proposed on the basis of their Gibbs reaction energies. We suggest that the primary reduction product of S(8) is the radical anion S(8)(˙-), which decomposes at the operating temperature of NAS batteries exergonically to the radicals S(2)(˙-) and S(3)(˙-) together with the neutral species S(6) and S(5), respectively. In addition, S(8)(˙-) is predicted to disproportionate exergonically to S(8) and S(8)(2-) followed by the dissociation of the latter into two S(4)(˙-) radical ions. By recombination reactions of these radicals various polysulfide dianions can in principle be formed. However, polysulfide dianions larger than S(4)(2-) are thermally unstable at 320°C and smaller dianions as well as radical monoanions dominate in Na(2)S(n) (n=2-5) melts instead. The reverse reactions are predicted to take place when the NAS battery is charged. We show that ion pairs of the types NaS(2)˙, NaS(n)(-), and Na(2)S(n) can be expected at least for n=2 and 3 in NAS batteries, but are unlikely in aqueous sodium polysulfide except at high concentrations. The structures of such radicals and anions with up to nine sulfur atoms are reported, because they are predicted to play a key role in the electrochemical reduction process. A large number of isomerization, disproportionation, and sulfurization reactions of polysulfide mono- and dianions have been investigated in the gas phase and in a polarizable continuum, and numerous reaction enthalpies as well as Gibbs energies are reported. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.
Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom
2016-07-13
Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.
NASA Astrophysics Data System (ADS)
Huang, Ke; Keiser, Dennis D.; Sohn, Yongho
2013-02-01
U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 800 °C, 900 °C, and 1000 °C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct.
Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu
2016-01-14
The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.
Dependence of Ion Transport on the Electronegativity of the Constituting Atoms in Ionic Crystals.
Zhang, Qian; Kaghazchi, Payam
2017-04-19
Ion transport in electrode and electrolyte materials is a key process in Li-based batteries. In this work, we study the mechanism and activation energy of ion transport (Ea ) in rock-salt Li-based LiX (X=Cl, Br, and I) materials. It is found that Ea at low external voltages, where Li-X Schottky pairs are the most favorable defect types, is about 0.42 times the Gibbs energy of formation of LiX compound (ΔGf ). The value of 0.42 is the slope of the electronegativity of anions of binary Li-based materials as a function of ΔGf . At high voltages, where the Fermi level is located very close to the valence band maximum (VBM), electrons can be excited from the VB to Li vacancy-induced states close to the Fermi level. Under this condition, the formation of Li vacancies that are compensated by holes is energetically more favorable than that of Li-X Schottky pairs, and therefore, the activation energies are lower in the former case. The wide range of reported experimental values of activation energies lies between calculated values at low and high voltage regimes. This work motivates further studies on the relation between the activation energy for ionic conductivity in solid materials and the intrinsic ground-state properties of their free atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding SO2 Capture by Ionic Liquids.
Mondal, Anirban; Balasubramanian, Sundaram
2016-05-19
Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption.
Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A
2015-03-05
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.
2009-04-01
The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.
Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3.
Liang, Huiyun; Bourdon, Allen K; Chen, Liao Y; Phelix, Clyde F; Perry, George
2018-06-11
Fourteen glucose transporters (GLUTs) play essential roles in human physiology by facilitating glucose diffusion across the cell membrane. Due to its central role in the energy metabolism of the central nervous system, GLUT3 has been thoroughly investigated. However, the Gibbs free-energy gradient (what drives the facilitated diffusion of glucose) has not been mapped out along the transport path. Some fundamental questions remain. Here we present a molecular dynamics study of GLUT3 embedded in a lipid bilayer to quantify the free-energy profile along the entire transport path of attracting a β-d-glucose from the interstitium to the inside of GLUT3 and, from there, releasing it to the cytoplasm by Arrhenius thermal activation. From the free-energy profile, we elucidate the unique Michaelis-Menten characteristics of GLUT3, low K M and high V MAX , specifically suitable for neurons' high and constant demand of energy from their low-glucose environments. We compute GLUT3's binding free energy for β-d-glucose to be -4.6 kcal/mol in agreement with the experimental value of -4.4 kcal/mol ( K M = 1.4 mM). We also compute the hydration energy of β-d-glucose, -18.0 kcal/mol vs the experimental data, -17.8 kcal/mol. In this, we establish a dynamics-based connection from GLUT3's crystal structure to its cellular thermodynamics with quantitative accuracy. We predict equal Arrhenius barriers for glucose uptake and efflux through GLUT3 to be tested in future experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
Tian; Holt; Apfel
1997-03-01
The experimental results of droplet shape oscillations are reported and applied to the analysis of surface rheological properties of surfactant solutions. An acoustic levitation technique is used to suspend the test drop in air and excite it into quadrupole shape oscillations. The equilibrium surface tension, Gibbs elasticity, and surface dilatational viscosity are determined from the measurements of droplet static shape under different levitation sound pressure, oscillation frequency, and free damping constant. Aqueous solutions of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, and n-octyl beta-d-glucopyranoside are tested with this system. The concentrations of the solutions are below the critical micelle concentration. For these solutions it is found that the surface Gibbs elasticity approaches a maximum at a moderate concentration, and its value is less than that directly calculated from the state equation of a static liquid surface. The surface dilatational viscosity is found to be in a range around 0.1 cps.
Mioni, Roberto; Mioni, Giuseppe
2015-10-01
In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.
Structure, Stability, and Thermochemistry of the Fullerene Derivatives C64X6 (X = H, F, Cl)
NASA Astrophysics Data System (ADS)
Xu, Lei; Shao, Xueguang; Cai, Wensheng
2009-09-01
The geometrical structures, electronic properties, and stabilities of the unconventional fullerene derivatives C64X6 (X = H, F, Cl) have been systematically studied by the first-principle calculations based on the density functional theory. The fullerene derivatives 1911(2)-C64X6 generated from the pineapple-shaped C64X4 are predicted to possess the lowest energies. The other two X atoms are added to the carbon atoms with the highest local strain assessed by the pyramidalization angles. The calculations of the nucleus-independent chemical shifts suggest that the aromaticity of C64X6 affects the stability order of the derivative isomers. To address why C64H6 was not observed in the experimental study of Wang et al. (J. Am. Chem. Soc. 2006, 128, 6605) and if the halogenated derivatives C64X6 (X = F, Cl) can be synthesized, thermochemical analysis of the reaction C64X4 + X2 → C64X6 was also performed. The results indicate that the formation of C64H6 and C64Cl6 is not favored at high temperatures. The former may be a reason why C64H6 was not found in the experiment. In sharp contrast, the Gibbs free energy change to form C64F6 is found to be -23.29 kcal/mol at 2000 K, suggesting that this compound may be formed and detected in experiments. The NMR and IR spectra of 1911(2)-C64F6 are sequentially calculated and presented to facilitate future experimental identification.
XSEOS: An Open Software for Chemical Engineering Thermodynamics
ERIC Educational Resources Information Center
Castier, Marcelo
2008-01-01
An Excel add-in--XSEOS--that implements several excess Gibbs free energy models and equations of state has been developed for educational use. Several traditional and modern thermodynamic models are available in the package with a user-friendly interface. XSEOS has open code, is freely available, and should be useful for instructors and students…
"Old Dead Guys": Using Activity Breaks to Teach History
ERIC Educational Resources Information Center
Holles, Joseph H.
2009-01-01
The people and history of chemical engineering surround us: Gibbs free energy, Arrhenius Equation, and Reynolds number. Since these seminal figures appear in almost every classroom lecture, they provide an opportunity for a historically focused activity break. Each activity break provides the students with an image of the historical figure along…
Vapor-Liquid Equilibria Using the Gibbs Energy and the Common Tangent Plane Criterion
ERIC Educational Resources Information Center
Olaya, Maria del Mar; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio
2010-01-01
Phase thermodynamics is often perceived as a difficult subject with which many students never become fully comfortable. The Gibbsian geometrical framework can help students to gain a better understanding of phase equilibria. An exercise to interpret the vapor-liquid equilibrium of a binary azeotropic mixture, using the equilibrium condition based…
Nanotechnology Provides a New Perspective on Chemical Thermodynamics
ERIC Educational Resources Information Center
Haverkamp, Richard G.
2009-01-01
A small mechanical device, the atomic force microscope, measuring a force and the distance over which this force is applied, can be used on a single polysaccharide molecule to obtain the Gibbs energy of a conformational change within the polysaccharide. This well-defined conformational change within certain types of polysaccharide molecules is…
The thermodynamic properties of dumortierite Si3B[Al6.75[]0.25O17.25(OH)0.75
Hemingway, Bruce S.; Anovitz, Lawrence M.; Robie, Richard A.; McGee, James J.
1990-01-01
The enthalpy and Gibbs free energy of formation of dumortierite from the elements have been estimated from synthesis and decomposition data and are -9109 + 20 and -8568 + 20 kJ/mol, respectively, at 298.15 K and I bar
Infiltration Kinetics and Interfacial Bond Strength of Metal Matrix Composites
1992-07-01
and M. Kohyama [29] used X-ray and ultra violet photoelectron spectroscopy to monitor the in situ electronic structure changes of the alumina surface...in terms of Gibbs excess energy, G". Therefore, AGUa A- A GR Gx- (3) The procedure established to estimate GX" involves the use of the experimentally
USDA-ARS?s Scientific Manuscript database
Soil drought, that can be enhanced by global warming increases ammonia (NH3) volatilization. This laboratory study was conducted with two soils: Krome Gravelly Loam (KGL) from Florida and Warden Silt Loam (WSL) from Washington State and two fertilizers: Ammonium sulfate [(NH4)2SO4] or ammonium nitra...
Brovarets', O O; Hovorun, D M
2010-01-01
A novel physico-chemical mechanism of the Watson-Crick DNA base pair Gua.Cyt tautomerization Gua.Cyt*<---->Gua.Cyt<---->Gua*.Cyt (mutagenic tautomers of bases are marked by asterisks) have been revealed and realized in a pathway of single proton transfer through two mutual isoenergetic transition states with Gibbs free energy of activation 30.4 and 30.6 kcal/mol and they are ion pairs stabilized by three (N2H...N3, N1H...N4- and O6+H...N4-) and five (N2H...O2, N1H...O2, N1H...N3, O6+H...N4- and 06+H...N4-) H-bonds accordingly. Stable base pairs Gua-Cyt* and Gua*.Cyt which dissociate comparably easy into monomers have acceptable relative Gibbs energies--12.9 and 14.3 kcal/mol--for the explanation of the nature of the spontaneous transitions of DNA replication. Results are obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-31 1++G(d,p) level of theory in vacuum approach.
Thermodynamic properties and crystallization kinetics at high liquid undercooling
NASA Technical Reports Server (NTRS)
Fecht, Hans J.
1990-01-01
The heat capacities of liquid and crystalline Au-Pb-Sb alloys in the glass-forming composition range were measured with droplet emulsion and bulk samples. Based on the measured C(sub p) data, the entropy, enthalpy, and Gibbs free energy functions of the eutectic, solid mixture, and undercooled liquid were determined as a function of undercooling and compared with theoretical predictions. The results indicate an isentropic temperature at 313 + or - 5 K, which agrees well with experimental data for the glass transition. A kinetics analysis of the nucleation undercooling response suggests that the proper choice for the Gibbs free energy change during crystallization is most important in analyzing the nucleation kinetics. By classical nucleation theory, the prefactors obtained, based on a variety of theoretical predictions for the driving force, can differ by six orders of magnitude. If the nucleation rates are extrapolated to high undercooling, the extrapolations based on measured heat capacity data show agreement, whereas the predicted nucleation rates are inconsistent with results from drop tower experiments. The implications for microg experiments are discussed.
Comment on "Inference with minimal Gibbs free energy in information field theory".
Iatsenko, D; Stefanovska, A; McClintock, P V E
2012-03-01
Enßlin and Weig [Phys. Rev. E 82, 051112 (2010)] have introduced a "minimum Gibbs free energy" (MGFE) approach for estimation of the mean signal and signal uncertainty in Bayesian inference problems: it aims to combine the maximum a posteriori (MAP) and maximum entropy (ME) principles. We point out, however, that there are some important questions to be clarified before the new approach can be considered fully justified, and therefore able to be used with confidence. In particular, after obtaining a Gaussian approximation to the posterior in terms of the MGFE at some temperature T, this approximation should always be raised to the power of T to yield a reliable estimate. In addition, we show explicitly that MGFE indeed incorporates the MAP principle, as well as the MDI (minimum discrimination information) approach, but not the well-known ME principle of Jaynes [E.T. Jaynes, Phys. Rev. 106, 620 (1957)]. We also illuminate some related issues and resolve apparent discrepancies. Finally, we investigate the performance of MGFE estimation for different values of T, and we discuss the advantages and shortcomings of the approach.
On the fine structure of meteoritical taenite/tetrataenite and its interpretation
NASA Astrophysics Data System (ADS)
Albertsen, J. F.; Nielsen, H. P.; Buchwald, V. F.
1983-04-01
TEM, electron microprobe, and Moessbauer spectroscopy are used in investigating taenite fields from several meteorites. A delicate pattern of antiphase domains is revealed in the tetrataenite, as is the presence of low-Ni taenite at the antiphase boundaries in what was hitherto believed to be pure tetrataenite. The observations suggest that the 'cloudy taenite' (cloudy zone II) was formed by a magnetically induced spinodal decomposition of the metastable taenite during slow cooling below 400 C. It is thought likely that decompositin occurs when the Curie temperature of the alloy changes rapidly with composition, as it does in f.c.c. iron-nickel alloys containing approximately 28-43 percent Ni (wt pct). The large contribution to Gibbs free energy from magnetic ordering leads to inflections in the Gibbs free energy curve, making the alloy unstable with regard to decomposition, in this case into a magnetically and atomically ordered Ni-rich alloy plus a magnetically and atomically disordered Ni-poor alloy. The model accounts well for the structure and composition of the two phases in the cloudy taenite.
Dynamical predictive power of the generalized Gibbs ensemble revealed in a second quench.
Zhang, J M; Cui, F C; Hu, Jiangping
2012-04-01
We show that a quenched and relaxed completely integrable system is hardly distinguishable from the corresponding generalized Gibbs ensemble in a dynamical sense. To be specific, the response of the quenched and relaxed system to a second quench can be accurately reproduced by using the generalized Gibbs ensemble as a substitute. Remarkably, as demonstrated with the transverse Ising model and the hard-core bosons in one dimension, not only the steady values but even the transient, relaxation dynamics of the physical variables can be accurately reproduced by using the generalized Gibbs ensemble as a pseudoinitial state. This result is an important complement to the previously established result that a quenched and relaxed system is hardly distinguishable from the generalized Gibbs ensemble in a static sense. The relevance of the generalized Gibbs ensemble in the nonequilibrium dynamics of completely integrable systems is then greatly strengthened.
NASA Astrophysics Data System (ADS)
Khalili, Behzad; Rimaz, Mehdi
2017-06-01
In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.
Power limits for microbial life.
LaRowe, Douglas E; Amend, Jan P
2015-01-01
To better understand the origin, evolution, and extent of life, we seek to determine the minimum flux of energy needed for organisms to remain viable. Despite the difficulties associated with direct measurement of the power limits for life, it is possible to use existing data and models to constrain the minimum flux of energy required to sustain microorganisms. Here, a we apply a bioenergetic model to a well characterized marine sedimentary environment in order to quantify the amount of power organisms use in an ultralow-energy setting. In particular, we show a direct link between power consumption in this environment and the amount of biomass (cells cm(-3)) found in it. The power supply resulting from the aerobic degradation of particular organic carbon (POC) at IODP Site U1370 in the South Pacific Gyre is between ∼10(-12) and 10(-16) W cm(-3). The rates of POC degradation are calculated using a continuum model while Gibbs energies have been computed using geochemical data describing the sediment as a function of depth. Although laboratory-determined values of maintenance power do a poor job of representing the amount of biomass in U1370 sediments, the number of cells per cm(-3) can be well-captured using a maintenance power, 190 zW cell(-1), two orders of magnitude lower than the lowest value reported in the literature. In addition, we have combined cell counts and calculated power supplies to determine that, on average, the microorganisms at Site U1370 require 50-3500 zW cell(-1), with most values under ∼300 zW cell(-1). Furthermore, we carried out an analysis of the absolute minimum power requirement for a single cell to remain viable to be on the order of 1 zW cell(-1).
NASA Astrophysics Data System (ADS)
Hinuma, Yoyo; Hayashi, Hiroyuki; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu
2017-09-01
High-throughput first-principles calculations based on density functional theory (DFT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include C u2O , A g2O , MgO, ZnO, CdO, SnO, PbO, A l2O3 , G a2O3 , I n2O3 , L a2O3 , B i2O3 , Si O2 , Sn O2 , Pb O2 , Ti O2 , Zr O2 , Hf O2 , V2O5 , N b2O5 , T a2O5 , Mo O3 , and W O3 . Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root-mean-square errors (RMSEs) are both 0.07 eV. In contrast, all GGAs including those with Hubbard U and van der Waals corrections give 0.1 to 0.2 eV MEs and at least 0.11 eV RMSEs. Phonon contributions of solid phases to the formation enthalpies and Gibbs free energies are estimated to be small at less than ˜0.1 eV/atom within the quasiharmonic approximation. The same crystal structure appears as the lowest energy polymorph with different approximations in most of the investigated binary oxides. However, there are some systems where the choice of approximation significantly affects energy differences between polymorphs, or even the order of stability between phases. SCAN is the most reasonable regarding relative energies between polymorphs. The calculated transition pressure between polymorphs of ZnO and Sn O2 is closest to experimental values when PBED3, PBEsol (also PBED3+U and PBEsol+U for ZnO), and SCAN are employed. In summary, SCAN appears to be the best choice among the seven approximations based on the analysis of the energetics and crystal structure of binary oxides, while PBEsol is the best among the GGAs considered and shows a comparably good performance with SCAN for many cases. The use of PBEsol+U alongside PBEsol is also a reasonable choice, given that U corrections are required for several materials to qualitatively reproduce their electronic structures.
Constraining Habitable Environments on Mars by Quantifying Available Geochemical Energy
NASA Astrophysics Data System (ADS)
Tierney, L. L.; Jakosky, B. M.
2009-12-01
The search for life on Mars includes the availability of liquid water, access to biogenic elements and an energy source. In the past, when water was more abundant on Mars, a source of energy may have been the limiting factor for potential life. Energy, either from photosynthesis or chemosynthesis, is required in order to drive metabolism. Potential martian organisms most likely took advantage of chemosynthetic reactions at and below the surface. Terrestrial chemolithoautotrophs, for example, thrive off of chemical disequilibrium that exists in many environments and use inorganic redox (reduction-oxidation) reactions to drive metabolism and create cellular biomass. The chemical disequilibrium of six different martian environments were modeled in this study and analyzed incorporating a range of water and rock compositions, water:rock mass ratios, atmospheric fugacities, pH, and temperatures. All of these models can be applied to specific sites on Mars including environments similar to Meridiani Planum and Gusev Crater. Both a mass transfer geochemical model of groundwater-basalt interaction and a mixing model of groundwater-hydrothermal fluid interaction were used to estimate hypothetical martian fluid compositions that results from mixing over the entire reaction path. By determining the overall Gibbs free energy yields for redox reactions in the H-O-C-S-Fe-Mn system, the amount of geochemical energy that was available for potential chemolithoautotrophic microorganisms was quantified and the amount of biomass that could have been sustained was estimated. The quantity of biomass that can be formed and supported within a system depends on energy availability, thus sites that have higher levels and fluxes of energy have greater potential to support life. Results show that iron- and sulfur-oxidation reactions would have been the most favorable redox reactions in aqueous systems where groundwater and rock interacted at or near the surface. These types of reactions could have supported between 0.05 and 1.0 grams (dry weight) of biomass per mole of iron or sulfur. The hydrothermal environments would have had numerous redox reactions in the H-O-C-S-Fe-Mn system that could have provided sufficient metabolic energy for potential microorganisms. Methanotrophy, for example, provides the greatest amount of energy at ~760 kJ per mole of methane, which is equivalent to 0.6 grams (dry weight) of biomass. Additional results show that varying the amount of CO2 in the martian atmosphere or adjusting the water:rock ratios has little effect on the resulting Gibbs free energies. The martian values that are reported for available free energy in this study are similar to values that have been calculated for terrestrial systems in hydrothermal settings in which life is known to be abundant. In summary, the models indicate that martian aqueous environments were likely to have been habitable at a wide range of conditions when liquid water was more abundant and would have been able to supply a large amount of energy for potential organisms.
Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams
NASA Astrophysics Data System (ADS)
Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.
2018-04-01
Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.
Leal, Angela; Rojas, José L; Valencia-Islas, Norma A; Castellanos, Leonardo
2018-06-01
The new hypotrachynin A (1) and B (2) along with the known (+)-(9b-R)-usnic (3) and methylstictic acids (4) were isolated for the first time from Hypotrachyna caraccensis. Additionally, their potency and reactivity as DPPH• scavengers was determined by a kinetic study calculating their EC 50 and second-order rate constants (k 2 ). Considering 1-4 could be dermatological agents, their n-octanol-water partition coefficients and standard molar Gibbs free energies of transfer were calculated as estimation of their lipophilicity and skin penetration. Compounds 1, 3 and 4 were less potent than 2 (EC 50 = 3.3014; 1.7540; 2.6652 vs 0.7376) as DPPH• scavengers, in turn 4, was the most reactive with a comparable k 2 to the antioxidant BHT (k 2 = (232 ± 24) × 10 -2 vs (564 ± 12) × 10 -2 M -1 s -1 , respectively). Since 2 and 4 had an optimal lipophilicity and permeability for skin penetration, they might be developed as topical ingredients to prevent oxidative damage.
Inferring thermodynamic stability relationship of polymorphs from melting data.
Yu, L
1995-08-01
This study investigates the possibility of inferring the thermodynamic stability relationship of polymorphs from their melting data. Thermodynamic formulas are derived for calculating the Gibbs free energy difference (delta G) between two polymorphs and its temperature slope from mainly the temperatures and heats of melting. This information is then used to estimate delta G, thus relative stability, at other temperatures by extrapolation. Both linear and nonlinear extrapolations are considered. Extrapolating delta G to zero gives an estimation of the transition (or virtual transition) temperature, from which the presence of monotropy or enantiotropy is inferred. This procedure is analogous to the use of solubility data measured near the ambient temperature to estimate a transition point at higher temperature. For several systems examined, the two methods are in good agreement. The qualitative rule introduced this way for inferring the presence of monotropy or enantiotropy is approximately the same as The Heat of Fusion Rule introduced previously on a statistical mechanical basis. This method is applied to 96 pairs of polymorphs from the literature. In most cases, the result agrees with the previous determination. The deviation of the calculated transition temperatures from their previous values (n = 18) is 2% on average and 7% at maximum.
Surface tension estimation of high temperature melts of the binary alloys Ag-Au
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2017-11-01
Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.
Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M
2010-12-09
The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.
NASA Astrophysics Data System (ADS)
Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan
2017-10-01
A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.
Thermodynamic modeling of the Ge-La binary system
NASA Astrophysics Data System (ADS)
Liu, Miao; Li, Chang-rong; Du, Zhen-min; Guo, Cui-ping; Niu, Chun-ju
2012-08-01
The Ge-La binary system was critically assessed by means of the calculation of phase diagram (CALPHAD) technique. The associate model was used for the liquid phase containing the constituent species Ge, La, Ge3La5, and Ge1.7La. The terminal solid solution diamond-(Ge) with a small solubility of La was described using the substitutional model, in which the excess Gibbs energy was formulated with the Redlich-Kister equation. The compounds with homogeneity ranges, α(Ge1.7La), β(Ge1.7La), and (GeLa), were modeled using two sublattices as α(Ge,La)1.7La, β(Ge,La)1.7La, and (Ge,La)(Ge,La), respectively. The intermediate phases with no solubility ranges, Ge4La5, Ge3La4, Ge3La5, and GeLa3, were treated as stoichiometric compounds. The three allotropic modifications of La, dhcp-La, fcc-La, and bcc-La, were kept as pure element phases since no solubility of Ge in La was reported. A set of self-consistent thermodynamic parameters of the Ge-La binary system was obtained. The calculation results agree well with the available experimental data from literatures.
NASA Astrophysics Data System (ADS)
Sack, Richard O.
2000-11-01
An updated thermodynamic database for Ag 2S-Cu 2S-ZnS-Sb 2S 3-As 2S 3 sulfides and sulfosalts applicable to temperatures above 119°C is developed to calculate phase relations for polybasite-pearceite- and fahlore-bearing assemblages. It is based on pre-existing and new constraints on activity-composition, Ag-Cu and As-Sb partitioning, and other relations, and on experiments (200-300°C, evacuated silica tubes) conducted to define the stability of the polybasite-pearceite [(Ag 1- x,Cu x) 16(Sb 1- y,As y) 2S 11] + ZnS sphalerite assemblage with respect to assemblages containing (Ag,Cu) 2S sulfides coexisting with (Cu, Ag) 10Zn 2(Sb,As) 4S 13 fahlore sulfosalts. It was found that the thermodynamics of mixing of bcc- and hcp-(Ag,Cu) 2S solutions, which are fast-ion conductors, may be described by using site multiplicities of metals α Ag,Cu > 2 and temperature-dependent regular solution parameters. We obtained estimates for the Gibbs energies of formation for Ag 16Sb 2S 11 and Cu 16Sb 2S 11 polybasite endmembers from the simple sulfides (Ag 2S, Cu 2S, and Sb 2S 3) of -30.79 and -4.07 kJ/gfw at 200°C, and -32.04 and -0.59 kJ/gfw at 400°C, respectively, that are about one half kJ/gfw more positive and about 6 kJ/gfw more negative than those estimated by Harlov and Sack (1995b). The corresponding estimates for formation energies of Ag 10Zn 2Sb 4S 13 and Cu 10Zn 2Sb 4S 13 fahlores (-20.29 and -105.29 kJ/gfw at 200°C and -23.72 and -105.76 kJ/gfw at 400°C) are comparable to, and roughly 110 kJ/gfw more positive than, the corresponding estimates of Ebel and Sack (1994). We also determined that the Gibbs energies of the As-Sb exchange reactions: 1/4Ag 10Zn2Sb4S13+1/2Ag 16As2S11=1/2Ag 16Sb2S11+1/4Ag 10Zn2As4S13Sb-fahlorepearceitepolybasiteAs-fahlore and Ag3SbS3+1/2Ag 16As2S11=1/2Ag 16Sb2S11+Ag3AsS3pyrargyritepearceitepolybasiteproustite are, respectively, 8.75 and 0.40 kJ/gfw in the range 150-350°C, and these predictions are consistent with As-Sb partitioning relations observed in nature and produced in laboratory studies. Finally, we obtain estimates for the Gibbs energies of formation of Cu 10Fe 2Sb 4S 13 and Ag 10Fe 2Sb 4S 13 fahlores (-63.92 and +11.46 kJ/gfw at 200°C and -75.73 and -3.31 kJ/gfw at 400°C).
McDonald, Sarah K; Fleming, Karen G
2016-06-29
Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.
Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation
NASA Astrophysics Data System (ADS)
Lu, Z.; Faulkner, R. G.; Morgan, T. S.
2008-12-01
High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.
NASA Astrophysics Data System (ADS)
Sultana, Saima; Rafiuddin; Khan, Mohammad Zain; Umar, Khalid; Ahmed, Arham S.; Shahadat, Mohammad
2015-10-01
The present paper reports development of SnO2-SrO based nanocomposites using facile hydrothermal and sol-gel method. Nanocomposites were characterized on the basis of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Studies (EDS), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR), Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques. The materials were explored for the photocatalytic activity regarding the treatment of organic pollutants viz-azo-dye, pesticide and drug. In addition, a comparative study was performed in term of particle size using hydrothermal and sol-gel route. It was observed that hydrothermal route showed an improved particle size, which affects the photocatalytic activity, porosity and crystalline nature of the nanocomposite. Further, kinetic and thermodynamic parameters were also calculated for the photodegradation experiments. It was found that the rate of photodegradation reaction followed the pseudo-first order kinetics and the highest rate was observed for azo-dye while it was lowest for the drug. A negative values of the Gibbs free energy (ΔG) show that the photodegradation proceeds with a net decrease in free energy of the system. The results of photodegradation of dye, pesticide and drug indicate that nanocomposites of SnO2-SrO can be effectively applied for the treatment of organic pollutants.
Interfacial behavior of Myristic acid in mixtures with DMPC and Cholesterol
NASA Astrophysics Data System (ADS)
Khattari, Z.; Sayyed, M. I.; Qashou, S. I.; Fasfous, I.; Al-Abdullah, T.; Maghrabi, M.
2017-06-01
Binary mixture monolayers of Myristic acid (MA) with the same length of saturated acyl chain lipid viz 1,2-myristoyl-sn-glycero-3-phosphocholine (DMPC) and Cholesterol (Chol), were investigated under different experimental conditions using Langmuir monolayers (LMs). The interfacial pressure-area (π-A) isotherms, excess molecular area, excess free energy and fluorescence microscopy (FM) images were recorded at the air/water interface. Monolayers of both systems (e.g. MA/DMPC, MA/Chol) reach the closest acyl hydrophobic chain packing in the range 0.20 < xMA < 0.70. Thermodynamic analysis indicates miscibility of the binary mixtures when spread at the air/water interface with negative deviation from the ideal behavior. Morphological features of MA/DMPC systems were found to depend strongly on MA mole fraction and pressures by showing two extreme minima in Gibbs free energy of mixing, while MA/Chol systems showed only an effective condensing effect at xMA = 0.90. In the whole range of compositions studied here, the liquid-expanded (LE) to liquid-condensed (LC) phase transition occurs at increasing xAM as it accomplished by a huge increase in the inverse compressibility modulus. FM observations confirmed the phase-transition and condensing effects of both mixture monolayers as evidenced by Gibbs free energy of mixing in a limited range of compositions.
Ozaki, Shunsuke; Nakagawa, Yoshiaki; Shirai, Osamu; Kano, Kenji
2014-11-01
Thermodynamic analysis of the solubility of benzoylphenylurea (BPU) derivatives was conducted to investigate the relative importance of crystal packing and hydration for improving solubility with minor structural modification. The contribution of crystal packing to solubility was evaluated from the change in Gibbs energy on the transition from the crystalline to liquid state. Hydration Gibbs energy was estimated using a linear free-energy relationship between octanol-water partition coefficients and gas-water partition coefficients. The established solubility model satisfactorily explained the relative thermodynamic solubility of the model compounds and revealed that crystal packing and hydration equally controlled solubility of the structural analogs. All hydrophobic substituents were undesirable for solubility in terms of hydration, as expected. On the other hand, some of these hydrophobic substituents destabilized crystal packing and improved the solubility of the BPU derivatives when their impact on crystal packing exceeded their negative influence on hydration. The replacement of a single substituent could cause more than a 10-fold enhancement in thermodynamic solubility; this degree of improvement was comparable to that generally achieved by amorphous formulations. Detailed analysis of thermodynamic solubility will allow us to better understand the true substituent effect and design drug-like candidates efficiently. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Crystallization of glass-forming liquids: Specific surface energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelzer, Jürn W. P., E-mail: juern-w.schmelzer@uni-rostock.de; Abyzov, Alexander S.
2016-08-14
A generalization of the Stefan-Skapski-Turnbull relation for the melt-crystal specific interfacial energy is developed in terms of the generalized Gibbs approach extending its standard formulation to thermodynamic non-equilibrium states. With respect to crystal nucleation, this relation is required in order to determine the parameters of the critical crystal clusters being a prerequisite for the computation of the work of critical cluster formation. As one of its consequences, a relation for the dependence of the specific surface energy of critical clusters on temperature and pressure is derived applicable for small and moderate deviations from liquid-crystal macroscopic equilibrium states. Employing the Stefan-Skapski-Turnbullmore » relation, general expressions for the size and the work of formation of critical crystal clusters are formulated. The resulting expressions are much more complex as compared to the respective relations obtained via the classical Gibbs theory. Latter relations are retained as limiting cases of these more general expressions for moderate undercoolings. By this reason, the formulated, here, general relations for the specification of the critical cluster size and the work of critical cluster formation give a key for an appropriate interpretation of a variety of crystallization phenomena occurring at large undercoolings which cannot be understood in terms of the Gibbs’ classical treatment.« less
NASA Astrophysics Data System (ADS)
Zhang, Z.; Wang, J.
2017-12-01
Characterizing the behavior of oil molecules in nanopore is vital to the understanding of geochemistry of hydrocarbon-bearing fluid in ultra-tight source rocks, such as shale. The heterogeneous nature of hydrocarbon system of nanoscale complicates experimental studies of oil / shale interfacial interaction. Therefore, to gain mechanistic understanding of the interplay of oil molecules in rock nanopore, molecular dynamics simulations have been applied to study the interactions of polar and non-polar oil on both calcite and kerogen surfaces. The effect of surface wetting, oil polarity, and temperature on the Gibbs free energy of adsorption have been investigated. The free energy, entropy, and enthalpy profiles have been calculated using advanced molecular dynamics method: umbrella sampling. In agreement with experiment, 1) surface with adsorbed water layer significantly reduces the oil adsorption energy on kerogen and turns the calcite surface to highly oil-repellent; 2) polar oil has overall stronger adsorption free energy than that of non-polar oil on both non-wetted calcite and kerogen surface; 3) organic interface (e.g. kerogen) exhibits stronger adsorption of oil molecules compared to inorganic one (e.g. calcite). The finding of this study indicates that oil displacement in nanopores can be enhanced by promoting the water adsorption on surface and reducing the polarity of oil on both inorganic and organic interfaces.
Hybrid Gibbs Sampling and MCMC for CMB Analysis at Small Angular Scales
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Eriksen, H. K.; Wandelt, B. D.; Gorski, K. M.; Huey, G.; O'Dwyer, I. J.; Dickinson, C.; Banday, A. J.; Lawrence, C. R.
2008-01-01
A) Gibbs Sampling has now been validated as an efficient, statistically exact, and practically useful method for "low-L" (as demonstrated on WMAP temperature polarization data). B) We are extending Gibbs sampling to directly propagate uncertainties in both foreground and instrument models to total uncertainty in cosmological parameters for the entire range of angular scales relevant for Planck. C) Made possible by inclusion of foreground model parameters in Gibbs sampling and hybrid MCMC and Gibbs sampling for the low signal to noise (high-L) regime. D) Future items to be included in the Bayesian framework include: 1) Integration with Hybrid Likelihood (or posterior) code for cosmological parameters; 2) Include other uncertainties in instrumental systematics? (I.e. beam uncertainties, noise estimation, calibration errors, other).
Comparison of Boltzmann and Gibbs entropies for the analysis of single-chain phase transitions
NASA Astrophysics Data System (ADS)
Shakirov, T.; Zablotskiy, S.; Böker, A.; Ivanov, V.; Paul, W.
2017-03-01
In the last 10 years, flat histogram Monte Carlo simulations have contributed strongly to our understanding of the phase behavior of simple generic models of polymers. These simulations result in an estimate for the density of states of a model system. To connect this result with thermodynamics, one has to relate the density of states to the microcanonical entropy. In a series of publications, Dunkel, Hilbert and Hänggi argued that it would lead to a more consistent thermodynamic description of small systems, when one uses the Gibbs definition of entropy instead of the Boltzmann one. The latter is the logarithm of the density of states at a certain energy, the former is the logarithm of the integral of the density of states over all energies smaller than or equal to this energy. We will compare the predictions using these two definitions for two polymer models, a coarse-grained model of a flexible-semiflexible multiblock copolymer and a coarse-grained model of the protein poly-alanine. Additionally, it is important to note that while Monte Carlo techniques are normally concerned with the configurational energy only, the microcanonical ensemble is defined for the complete energy. We will show how taking the kinetic energy into account alters the predictions from the analysis. Finally, the microcanonical ensemble is supposed to represent a closed mechanical N-particle system. But due to Galilei invariance such a system has two additional conservation laws, in general: momentum and angular momentum. We will also show, how taking these conservation laws into account alters the results.
A formula for the entropy of the convolution of Gibbs probabilities on the circle
NASA Astrophysics Data System (ADS)
Lopes, Artur O.
2018-07-01
Consider the transformation , such that (mod 1), and where S 1 is the unitary circle. Suppose is Hölder continuous and positive, and moreover that, for any , we have that We say that ρ is a Gibbs probability for the Hölder continuous potential , if where is the Ruelle operator for . We call J the Jacobian of ρ. Suppose is the convolution of two Gibbs probabilities and associated, respectively, to and . We show that ν is also Gibbs and its Jacobian is given by . In this case, the entropy is given by the expression For a fixed we consider differentiable variations , , of on the Banach manifold of Gibbs probabilities, where , and we estimate the derivative of the entropy at t = 0. We also present an expression for the Jacobian of the convolution of a Gibbs probability ρ with the invariant probability with support on a periodic orbit of period two. This expression is based on the Jacobian of ρ and two Radon–Nidodym derivatives.
ERIC Educational Resources Information Center
Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John
2007-01-01
In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate (KHP) in the 0-65 [degree]C temperature range. From these data the solubility products (K[subscript sp]), the Gibbs free energies of solution ([Delta][subscript…
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2006-01-01
Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…
Heterogeneous Catalysis: On Bathroom Mirrors and Boiling Stones
ERIC Educational Resources Information Center
Philipse, Albert P.
2011-01-01
Though heterogeneous nucleation of liquid droplets on a smooth surface (such as a bathroom mirror) is a classical topic in nucleation theory, it is not well-known that this topic is actually a pedagogical example of heterogeneous catalysis: the one and only effect of the surface is to lower the activation Gibbs energy of droplet formation. In…
Exploring the Clapeyron Equation and the Phase Rule Using a Mechanical Drawing Toy
ERIC Educational Resources Information Center
Darvesh, Katherine V.
2013-01-01
The equilibrium between phases is a key concept from the introductory physical chemistry curriculum. Phase diagrams display which phase is the most stable at a given temperature and pressure. If more than one phase has the lowest Gibbs energy, then those phases are in equilibrium under those conditions. An activity designed to demonstrate the…
A Graphical Representation for the Fugacity of a Pure Substance
ERIC Educational Resources Information Center
Book, Neil L.; Sitton, Oliver C.
2010-01-01
The thermodynamic equations used to define and compute the fugacity of a pure substance are depicted as processes on a semi-logarithmic plot of pressure vs. molar Gibbs energy (PG diagram) with isotherms for the substance behaving as an ideal gas superimposed. The PG diagram clearly demonstrates the physical basis for the definitions and the…
Thermodynamical properties of liquid lanthanides-A variational approach
NASA Astrophysics Data System (ADS)
Patel, H. P.; Thakor, P. B.; Sonvane, Y. A.
2015-06-01
Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.
Thermodynamical properties of liquid lanthanides-A variational approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, H. P.; Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat; Thakor, P. B., E-mail: pbthakor@rediffmail.com
2015-06-24
Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.
NASA Astrophysics Data System (ADS)
Bonaiuti, Simona; Blodau, Christian; Knorr, Klaus-Holger
2017-04-01
In deep and permanently water saturated peat deposits, extremely low diffusive transport and concomitant build-up of metabolic end-products, i.e of dissolved inorganic carbon (DIC) and methane (CH4), have been found to slow-down anaerobic respiration and methanogenesis. Such accumulation of DIC and CH4 lowers the Gibbs free energy yield of terminal respiration and methanogenesis, which can inhibit the course of anaerobic metabolic processes. In particular, this affects terminal steps of the breakdown of organic carbon (C), such as methanogenesis, acetogenesis and fermentation processes, which occur near thermodynamic minimum energy thresholds. This effect is thus of critical importance for the long-term C sequestration, as the slow-down of decomposition ultimately regulates the long-term fate of C in deep peat deposits. The exact controls of this observed slow-down of organic matter mineralization are not yet fully understood. Moreover, altered patterns of water or gas transport due to predicted changes in climate may affect these controls in peat soils. Therefore, the aim of this study was to investigate how burial of peat leads to an inactivation of anaerobic decomposition and to investigate the effects of advective water transport and persistently anoxic conditions on anaerobic decomposition, temporal evolution of thermodynamic energy yields to methanogenesis and methanogenic pathways. To this end, we conducted a column experiment with homogenized, ombrotrophic peat over a period of 300 days at 20˚ C. We tested i) a control treatment under diffusive transport only, ii) an advective flow treatment with a flow of 10 mm d-1, and iv) an anoxic treatment to evaluate changes in decomposition in absence of oxygen in the unsaturated zone of the cores. A slow-down of anaerobic respiration and methanogenesis generally set in at larger depths after 150 days at CH4 concentrations of 0.6-0.9 mmol L-1 and DIC concentrations of 6-12 mmol L-1. This effect occurred at higher concentration levels and faster than previously observed. Advective water transport effectively extended the zone of methanogenesis down to 40 cm depth until inhibiting conditions were reached, although net turnover at greater depths was not affected. Strictly anoxic conditions in the unsaturated zone, where diffusive transport is high, had little effect on accelerating anaerobic decomposition. The slow-down of net production rates of CO2 and CH4 agreed well with the decline over time of Gibbs free energies available to methanogenesis, supporting a thermodynamic constraint on decomposition in deeper peat deposits. Keywords: Peatlands; Anaerobic decomposition; Methanogenesis; Production rates; Advection; Anoxia; Thermodynamic calculations.
Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies.
Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun
2016-07-13
Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.
NASA Astrophysics Data System (ADS)
Asim, Sadia; Mansha, Asim; Landgraf, Stephan; Grampp, Günter; Zahid, Muhammad; Bhatti, Haq Nawaz
2014-01-01
The exciplex emission spectra of N-ethylcarbazole with 1,2-dicyanobenzene (NEC/1,2-DCB), N-methylcarbazole with 1,2-dicyanobenzene (NMC/1,2-DCB), 1,3-dicyanobenzene (NMC/1,3-DCB), and 1,4-dicyanobenzene (NMC/1,4-DCB) are studied in tetrahydrofuran (THF) for the temperature range starting from 253 K to 334 K. Thermochromic shifts along with the spectral properties including change in peak intensities and the ratio of exciplex peak intensity to fluorophore peak intensity are studied. Effect of temperature on the energy of zero-zero transitions hνo‧, Huang-Rhys factor (S), Gauss broadening of vibronic level (σ) and the dominant high-frequency vibration (hνν) are also part of investigation. Enthalpy of exciplex formation (ΔHEX∗) calculated by the model proposed by A. Weller and the Gibb's energy of electron transfer (ΔGet∗) for all exciplex systems are also discussed in the present paper. All the exciplexes under study were observed to be dipolar in nature. The exciplex of the N-methylcarbazole/1,4-dicyanobenzene was found to be the most stable and the N-methylcarbazole/1,3-dicyanobenzene was the weakest exciplex system.
The thermal stability of the nanograin structure in a weak solute segregation system.
Tang, Fawei; Song, Xiaoyan; Wang, Haibin; Liu, Xuemei; Nie, Zuoren
2017-02-08
A hybrid model that combines first principles calculations and thermodynamic evaluation was developed to describe the thermal stability of a nanocrystalline solid solution with weak segregation. The dependence of the solute segregation behavior on the electronic structure, solute concentration, grain size and temperature was demonstrated, using the nanocrystalline Cu-Zn system as an example. The modeling results show that the segregation energy changes with the solute concentration in a form of nonmonotonic function. The change in the total Gibbs free energy indicates that at a constant solute concentration and a given temperature, a nanocrystalline structure can remain stable when the initial grain size is controlled in a critical range. In experiments, dense nanocrystalline Cu-Zn alloy bulk was prepared, and a series of annealing experiments were performed to examine the thermal stability of the nanograins. The experimental measurements confirmed the model predictions that with a certain solute concentration, a state of steady nanograin growth can be achieved at high temperatures when the initial grain size is controlled in a critical range. The present work proposes that in weak solute segregation systems, the nanograin structure can be kept thermally stable by adjusting the solute concentration and initial grain size.
Spectral Gap Estimates in Mean Field Spin Glasses
NASA Astrophysics Data System (ADS)
Ben Arous, Gérard; Jagannath, Aukosh
2018-05-01
We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.
MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soubiran, François; Militzer, Burkhard
2015-06-20
We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that amore » substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.« less
NASA Astrophysics Data System (ADS)
Dholariya, Hitesh R.; Patel, Ketan S.; Patel, Jiten C.; Patel, Kanuprasad D.
2013-05-01
A series of Cu(II) complexes containing dicoumarol derivatives and 1, 10-phenanthroline have been synthesized. Structural and spectroscopic properties of ligands were studied on the basis of mass spectra, NMR (1H and 13C) spectra, FT-IR spectrophotometry and elemental analysis, while physico-chemical, spectroscopic and thermal properties of mixed ligand complexes have been studied on the basis of infrared spectra, mass spectra, electronic spectra, powder X-ray diffraction, elemental analysis and thermogravimetric analysis. X-ray diffraction study suggested the suitable octahedral geometry for hexa-coordinated state. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been calculated using Freeman-Carroll method. Ferric-reducing antioxidant power (FRAP) of all complexes were measured. All the compounds were screened for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes and Bacillus subtilis, while antifungal activity against Candida albicans and Aspergillus niger have been carried out. Also compounds against Mycobacterium tuberculosis shows clear enhancement in the anti-tubercular activity upon copper complexation.
The Gibbs Phenomenon for Series of Orthogonal Polynomials
ERIC Educational Resources Information Center
Fay, T. H.; Kloppers, P. Hendrik
2006-01-01
This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width.
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2015-12-01
Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results. Theoretical guarantees for its performance are weak: even for tree structured graphs, the mixing time of Gibbs may be exponential in the number of variables. To help understand the behavior of Gibbs sampling, we introduce a new (hyper)graph property, called hierarchy width . We show that under suitable conditions on the weights, bounded hierarchy width ensures polynomial mixing time. Our study of hierarchy width is in part motivated by a class of factor graph templates, hierarchical templates , which have bounded hierarchy width-regardless of the data used to instantiate them. We demonstrate a rich application from natural language processing in which Gibbs sampling provably mixes rapidly and achieves accuracy that exceeds human volunteers.
Hydrogen bond docking site competition in methyl esters
NASA Astrophysics Data System (ADS)
Zhao, Hailiang; Tang, Shanshan; Du, Lin
2017-06-01
The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.
Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek
2005-03-18
The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.
An Interactive Image Segmentation Method in Hand Gesture Recognition
Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Noebe, Ronald D.; Seidman, David N.
2006-01-01
For a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations, the compositional pathways, as measured with atom-probe tomography, during early to later stage y'(LI2)-precipitation (R = 0.45-10 nm), aged at 873 K, are discussed in light of a multi-component coarsening model. Employing nondilute thermodynamics, detailed model analyses during quasistationary coarsening of the experimental data establish that the y/y' interfacial free-energy is 22- 23+/-7 mJ/sq m. Additionally, solute diffusivities are significantly slower than model estimates. Strong quantitative evidence indicates that an observed y'-supersaturation of Al results from the Gibbs-Thomson effect, providing the first experimental verification of this phenomenon. The Gibbs-Thomson relationship, for a ternary system, as well as differences in measured phase equilibria with CALPHAD assessments, are considered in great detail.
The iron-isotope fractionation dictated by the carboxylic functional: An ab-initio investigation
NASA Astrophysics Data System (ADS)
Ottonello, G.; Vetuschi Zuccolini, M.
2008-12-01
The ground-state geometries, electronic energies and vibrational properties of carboxylic complexes of iron were investigated both in vacuo and under the effect of a reaction field, to determine thermodynamic properties of iron-acetates and the role of the carboxylic functional on the isotopic imprinting of this metal in metalorganic complexation. The electronic energy, zero point corrections and thermal corrections of these substances at variational state were investigated at the DFT/B3LYP level of theory with different basis set expansions and the effect of the reaction field on the variational structures was investigated through the Polarized Continuun Model. Thermochemical cycle calculations, combined with solvation energy calculations and appropriate scaling from absolute to conventional properties allowed to compute the Gibbs free energy of formation from the elements of the investigated aqueous species and to select the best procedure to be applied in the successive vibrational analysis. The best compliance with the few existing thermodynamic data for these substances was obtained by coupling the gas phase calculations at DFT/B3LYP level with the [6-31G(d,p)]-[6-31G+(d,p)] (for cations and neutral molecules - anions; respectively) with solvation calculations adopting atomic radii optimized for the HF/6-31G(d) level of theory (UAHF). A vibrational analysis conducted on 54Fe, 56Fe, 57Fe and 58Fe gaseous isotopomers yielded reduced partition function ratios which increased not only with the nominal valence of the central cation, as expected, but, more importantly, with the extent of the complexation operated by the organic functional. Coupling thermodynamic data with separative effects it was shown that this last is controlled, as expected, by the relative bond strength of the complex in both aggregation states. Through the Integral Equation Formalism of the Polarized Continuum Model (IEFPCM) the effect of the ionic strength of the solution and of a T-dependent permittivity on the energy and separative effects of the solvated metalorganic complexes were analyzed in detail. The solvent effect in the standard state (hypothetical one-molal solution referred to infinite dilution; T = 298.15 K, P = 1 bar) is a limited reduction of the separative effects of all the isotopomeric couples. With an increase in T (and the concomitant decrease in the dielectric constant of the solvent) this effect diminishes progressively.
A generalized chemistry version of SPARK
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.
1988-01-01
An extension of the reacting H2-air computer code SPARK is presented, which enables the code to be used on any reacting flow problem. Routines are developed calculating in a general fashion, the reaction rates, and chemical Jacobians of any reacting system. In addition, an equilibrium routine is added so that the code will have frozen, finite rate, and equilibrium capabilities. The reaction rate for the species is determined from the law of mass action using Arrhenius expressions for the rate constants. The Jacobian routines are determined by numerically or analytically differentiating the law of mass action for each species. The equilibrium routine is based on a Gibbs free energy minimization routine. The routines are written in FORTRAN 77, with special consideration given to vectorization. Run times for the generalized routines are generally 20 percent slower than reaction specific routines. The numerical efficiency of the generalized analytical Jacobian, however, is nearly 300 percent better than the reaction specific numerical Jacobian used in SPARK.
NASA Astrophysics Data System (ADS)
He, Xinyi; Liu, Liping
2017-12-01
Based on the principle of Gibbs free energy minimization, the thermodynamic analysis on the CO2 conversion processes of dry reforming of methane for H2 and CO2 hydrogenation to dimethyl ether was carried out. The composition of the reaction system was determined on the basis of reaction mechanism. The effects of reaction temperature, pressure and raw material composition on the equilibrium conversion and the selectivity of products were analyzed. The results show that high temperature, low pressure, CO2/CH4 molar ratio of 1.0-1.5 and appropriate amount of oxygen are beneficial to the dry reforming of methane. For CO2 hydrogenation to dimethyl ether, low temperature, high pressure, the appropriate H2/CO2 and the proper CO addition in feed are favorable. The calculated results are compared with the relevant studies, indicating that industrial catalytic technology needs further improvement.
NASA Astrophysics Data System (ADS)
Isaeva, V. A.; Sharnin, V. A.
2018-02-01
Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.
NASA Astrophysics Data System (ADS)
Asfaram, A.; Fathi, M. R.; Khodadoust, S.; Naraki, M.
2014-06-01
The removal of dyes from industrial waste is very important from health and hygiene point of view and for environmental protection. In this work, efficiency and performance of garlic peel (GP) adsorbent for the removal of Direct Red 12B (DR12B) from wastewater was investigated. The influence of variables including pH, concentration of the dye and amount of adsorbent, particle size, contact time and temperature on the dye removal has been investigated. It was observed that the pseudo-second-order kinetic model fits better with good correlation coefficient and the equilibrium data fitted well with the Langmuir model. More than 99% removal efficiency was obtained within 25 min at adsorbent dose of 0.2 g per 50 ml for initial dye concentration of 50 mg L-1. Calculation of various thermodynamic parameters such as, Gibb's free energy, entropy and enthalpy of the on-going adsorption process indicate feasibility and endothermic nature of DR12B adsorption.
Hindered Csbnd N bond rotation in triazinyl dithiocarbamates
NASA Astrophysics Data System (ADS)
Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon
2018-01-01
The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng
2016-06-21
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayermore » MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.« less
The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.
Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J
2014-04-01
This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.
NASA Astrophysics Data System (ADS)
Saini, Balwinder; Kumar, Ashwani; Rani, Ruby; Bamezai, Rajinder K.
2016-07-01
The density, viscosity and speed of sound of pure p-anisaldehyde and some alkanols, for example, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methylpropan-1-ol, and the binary mixtures of p-anisaldehyde with these alkanols were measured over the entire composition range at 303.15 K. From the experimental data, various thermodynamic parameters such as excess molar volume ( V E), excess Gibbs free energy of activation (Δ G*E), and deviation parameters like viscosity (Δη), speed of sound (Δ u), isentropic compressibility (Δκs), are calculated. The excess as well as deviation parameters are fitted to Redlich—Kister equation. Additionally, the viscosity data for the systems has been used to correlate the application of empirical relation given by Grunberg and Nissan, Katti and Chaudhari, and Hind et al. The results are discussed in terms of specific interactions present in the mixtures.
Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.
Yakout, Sobhy M; Hassan, Hisham S
2014-07-01
Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.
Adsorption of Small Molecules at Water--Hexane and Water--Membrane Interfaces
NASA Astrophysics Data System (ADS)
Wilson, Michael A.
1996-03-01
The interaction of solutes with aqueous interfaces plays a significant role in a variety of physical processes, including general anesthesia and atmospheric chemistry. We present molecular dynamics results for the transfer of several small solutes across water liquid--vapor, water--hexane and water--GMO bilayer membrane interfaces. (A. Pohorille and M. A. Wilson, J. Chem. Phys. (in press, 1995).)^, (A. Pohorille, P. CIeplak, and M. A. Wilson, Chem. Phys. (in press, 1995).) The free energies of transferring small polar molecules across the interface exhibit fairly deep minima while those of nonpolar molecules do not. This is due to a balance between nonelectrostatic contributions --- primarily the work required to create a cavity large enough to accommodate the solute --- and the solute--solvent electrostatic interactions.^1 The surface excess of solute is calculated and compared with experimental results from the Gibbs adsorption isotherm. The interfacial solubilities correlate with measured anesthetic potencies of these compounds, implying that the binding sites for anesthetics are located near the water--membrane interface.
Banipal, Tarlok S; Kaur, Harjinder; Kaur, Amanpreet; Banipal, Parampaul K
2016-01-01
Citrate and tartarate based food preservatives can be used to enhance the emulsifying properties of sodium dodecylsulfate (SDS) based micellar system and thus making it appropriate for food applications. Exploration of interactions between the two species is the key constraint for execution of such ideas. In this work various micellar and thermodynamic parameters of SDS like critical micellar concentration (CMC), standard Gibbs free energy of micellization (ΔG(0)mic.) etc. have been calculated in different concentrations of disodium tartarate (DST) and trisodium citrate (TSC) in the temperature range (288.15-318.15)K from the conductivity and surface tension measurements. The parameters obtained from these studies reveal the competitive nature of both the additives with SDS for available positions at the air/water interface. TSC is found to be more effective additive in order to make SDS micellar system better for its potential applications as food emulsifier. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Bo; He, Fei; Zhou, Pan-Pan; Liu, Yue; Duan, Chang-Qing
2016-05-15
Copigmentation was investigated in model solutions between the anthocyanin malvidin-3-O-glucoside and three phenolic aldehydes (vanillic, syringic and coniferyl aldehydes) as a function of the pH and the pigment/copigment molar ratio. Tristimulus colorimetry was applied to evaluate the chromatic variations induced by copigmentation process. The results indicated that the greatest magnitude of copigmentation was obtained at pH 3.0 and molar ratio of 1:100, being significantly higher with coniferyl aldehyde, followed by syringic and vanillic aldehydes. The equilibrium constant (K) and Gibbs free energies (ΔG°) determined here show a spontaneous exothermic reaction. Theoretical calculations (ΔGbinding, ΔE) specified the relative arrangement of the pigment and copigment molecules within the complexes. In addition, an atoms in molecules (AIM) analysis was used to explore the main driving forces contributing to the formation of copigmentation complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.