Sample records for calculated marrow dose

  1. Comparison of non-invasive approaches to red marrow dosimetry for radiolabelled monoclonal antibodies.

    PubMed

    Plaizier, M A; Roos, J C; Teule, G J; van Dieren, E B; den Hollander, W; Haisma, H J; DeJager, R L; van Lingen, A

    1994-03-01

    Red marrow is usually the dose-limiting organ during radioimmunotherapy. Several non-invasive approaches to calculate the red marrow dose have been proposed. We compared four approaches to analyse the differences in calculated red marrow doses. The data were obtained from immunoscintigraphy of two antibodies with different red marrow kinetics [iodine-131-16.88 IgM and indium-111-OV-TL-3 F(ab')2]. The approaches are based on, respectively, homogeneously distributed activity in the body, a red marrow-blood activity concentration ratio of 0.3, scintigraphic quantification, and a combination of the second and third approaches. This fourth approach may be more adequate because of its independence from the chosen antibody. In addition, the influence of activity accumulation in liver, kidneys or cancellous bone on red marrow dose was studied. The calculated red marrow dose varied between 0.14 and 0.42 mGy/MBq for 111In-OV-TL-3 and between 0.13 and 0.68 mGy/MBq for 131I-16.88. If the radiopharmaceutical shows high affinity for cancellous bone or another organ situated near the red marrow, the activity in these organs must be included in dose calculations. This study shows a large variation in calculated red marrow dose and selection of the definitive non-invasive approach awaits validation.

  2. A STUDY OF PREDICTED BONE MARROW DISTRIBUTION ON CALCULATED MARROW DOSE FROM EXTERNAL RADIATION EXPOSURES USING TWO SETS OF IMAGE DATA FOR THE SAME INDIVIDUAL

    PubMed Central

    Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George

    2010-01-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219

  3. A study of predicted bone marrow distribution on calculated marrow dose from external radiation exposures using two sets of image data for the same individual.

    PubMed

    Caracappa, Peter F; Chao, T C Ephraim; Xu, X George

    2009-06-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.

  4. Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.

    PubMed

    Johnson, Perry B; Bahadori, Amir A; Eckerman, Keith F; Lee, Choonsik; Bolch, Wesley E

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  5. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM PHOTON IRRADIATION – AN UPDATE

    PubMed Central

    Johnson, Perry; Bahadori, Amir; Eckerman, Keith; Lee, Choonsik; Bolch, Wesley E.

    2014-01-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) are presented for two radiosensitive skeletal tissues – active and total shallow marrow – within 15 and 32 bones sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon microCT images of trabecular spongiosa taken from a 40-year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, as well as a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In the present study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma factors for active marrow, inactive marrow, trabecular bone, and spongiosa at higher energies are calculated using the DRF algorithm setting the electron absorbed fraction for self-irradiation to unity. By comparing kerma factors and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites PMID:21427484

  6. Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update

    NASA Astrophysics Data System (ADS)

    Johnson, Perry B.; Bahadori, Amir A.; Eckerman, Keith F.; Lee, Choonsik; Bolch, Wesley E.

    2011-04-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues—active and total shallow marrow—within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  7. Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs.

    PubMed

    Chang, Chih-Hsien; Chang, Ya-Jen; Lee, Te-Wei; Ting, Gann; Chang, Kwo-Ping

    2012-06-01

    The OLINDA/EXM computer code was created as a replacement for the widely used MIRDOSE3 code for radiation dosimetry in nuclear medicine. A dosimetric analysis with these codes was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) in colon carcinoma-bearing mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine ((188)Re-BMEDA) and (188)Re-liposome were obtained for estimation of absorbed doses in normal organs. Radiation dose estimates for normal tissues were calculated using the MIRDOSE3 and OLINDA/EXM programs for a colon carcinoma solid tumor mouse model. Mean absorbed doses derived from(188)Re-BMEDA and (188)Re-liposome in normal tissues were generally similar as calculated by MIRDOSE3 and OLINDA/EXM programs. One notable exception to this was red marrow, wherein MIRDOSE3 resulted in higher absorbed doses than OLINDA/EXM (1.53- and 1.60-fold for (188)Re-BMEDA and (188)Re-liposome, respectively). MIRDOSE3 and OLINDA have very similar residence times and organ doses. Bone marrow doses were estimated by designating cortical bone rather than bone marrow as a source organ. The bone marrow doses calculated by MIRDOSE3 are higher than those by OLINDA. If the bone marrow is designated as a source organ, the doses estimated by MIRDOSE3 and OLINDA programs will be very similar.

  8. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Watchman, Christopher J.; Bolch, Wesley E.; Aksnes, Anne-Kirsti; Ramdahl, Thomas; Flux, Glenn D.; Sgouros, George

    2012-05-01

    Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metastases of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histogram results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e. the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 to 20 Gy. The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the absorbed fraction method of dose calculation.

  9. Tumorigenic target cell regions in bone marrow studied by localized dosimetry of 239Pu, 241Am and 233U in the mouse femur.

    PubMed

    Lord, B I; Austin, A L; Ellender, M; Haines, J W; Harrison, J D

    2001-06-01

    To study the temporal change in microdistribution of plutonium-239, americium-241 and uranium-233 in the mouse distal femur and to compare and combine calculated radiation doses with those obtained previously for the femoral shaft. Also, to relate doses to relative risks of osteosarcoma and acute myeloid leukaemia. Computer-based image analysis of neutron-induced and alpha-track autoradiographs of sections of mouse femora was used to quantify the microdistribution of (239)Pu, (241)Am and (233)U from 1 to 448 days after intraperitoneal injection. Localized dose-rates and cumulative doses over this period were calculated for different regions of the marrow spaces in trabecular bone. The results were then combined with previous data for doses to the cortical marrow of the femoral shaft. A morphometric analysis of the distal femur was carried out. Initial deposition on endosteal surfaces and dose-rates near to the trabecular surfaces at 1 day were two to four times greater than corresponding results for cortical bone. Burial was most rapid for (233)U, about twice the rate in cortical bone. As in cortical bone, subsequent uptake into the marrow was seen for (239)Pu and (241)Am but not (233)U. Cumulative doses to 448 days for different regions of trabecular marrow were greater than corresponding values for cortical marrow for each radionuclide. Combined doses reflected the greater overall volume of cortical marrow. Cumulative radiation doses to the 10 microm thick band of marrow adjacent to all endosteal surfaces were in the ratio of approximately 7:3:1 for (239)Pu:(241)Am:(233)U. This ratio is not inconsistent with observed incidences of osteosarcoma induction by the three nuclides. Analysis of doses to different depths of marrow, however, showed that although ratios were probably not significantly different to that for a 10 microm depth, better correlations with osteosarcomagenic risk were obtained with 20-40 microm depths. For acute myeloid leukaemia, the closest relationship between relative risk and doses was obtained by considering only the central 5-10% of marrow, which gave a dose ratio of approximately 12:11:1 for (239)Pu:(241)Am:(233)U respectively.

  10. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  11. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal tissues calculated with the SPC and the PIRT method and AM and BE absorbed doses and AFs calculated with PIRT-based DRFs and with the SPC method. The results calculated with the two skeletal dosimetry methods agree well if one takes the differences between the two models properly into account. Additionally, the SPC method will be updated with larger µCT images of TB.

  12. Three-Dimensional Dose Calculation for Total Body Irradiation

    NASA Astrophysics Data System (ADS)

    Ito, Akira

    Bone Marrow Transplant (BMT) therapy has been a big success in the treatment of leukemia and other haematopoietic diseases 1 . Prior to BMT, total body irradiation (TBI) is given to the patient for the purpose of (1) killing leukemia cells in bone marrow, as well as in the whole body, and (2) producing immuno-suppressive status in the patient so that the donor's marrow cells will be transplanted without rejection. TBI employs a very large field photon beam to irradiate the whole body of the patient. A uniform dose distribution over the entire body is the treatment goal. To prevent the occurrence of a serious side effect (interstitial pneumonia), the lung dose should not exceed a certain level. This novel technique poses various new radiological physics problems. The accurate assessment of dose and dose distribution in the patient is essential. Physical and dosimetric problems associated with TBI are reviewed elsewhere 2,3 .

  13. Dosimetric evaluation of total marrow irradiation using 2 different planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalichowski, Adrian, E-mail: nalichoa@karmanos.org; Eagle, Don G.; Burmeister, Jay

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200 cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using themore » Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465 cGy for VoLO and 1284 and 1541 cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO's graphics processing unit (GPU)–based optimization and dose calculation algorithm also allowed much faster creation of TMI plans.« less

  14. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Tianwu; Han Dao; Liu Yang

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bonemore » sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the mineral bone as photon energy increases. The SAF values calculated in this study can also be used to determine the absorbed dose to the skeletal system of rats. The S-factors generated here will be useful in preclinical targeted radiotherapy experiments.« less

  15. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, Taiki; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Radiology, The University of Tokyo Hospital, Tokyo

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatmentmore » planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.« less

  16. Red marrow and blood dosimetry in 131I treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results

    NASA Astrophysics Data System (ADS)

    Giostra, A.; Richetta, E.; Pasquino, M.; Miranti, A.; Cutaia, C.; Brusasco, G.; Pellerito, R. E.; Stasi, M.

    2016-06-01

    Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher 131I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from 131I activity in the blood and the dose from 131I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher 131I activities to be safely used in-treatment.

  17. Reducing the number of CTs performed to monitor personalized dosimetry during peptide receptor radionuclide therapy (PRRT).

    PubMed

    Chicheportiche, Alexandre; Artoul, Faozi; Schwartz, Arnon; Grozinsky-Glasberg, Simona; Meirovitz, Amichay; Gross, David J; Godefroy, Jeremy

    2018-06-19

    Peptide receptor radionuclide therapy (PRRT) with [ 177 Lu]-DOTA-TATE is an effective treatment of neuroendocrine tumors (NETs). After each cycle of treatment, patient dosimetry evaluates the radiation dose to the risk organs, kidneys, and bone marrow, the most radiosensitive tissues. Absorbed doses are calculated from the radioactivity in the blood and from single photon emission computed tomography (SPECT) images corrected by computed tomography (CT) acquired after each course of treatment. The aim of this work is to assess whether the dosimetry along all treatment cycles can be calculated using a single CT. We hypothesize that the absorbed doses to the risk organs calculated with a single CT will be accurate enough to correctly manage the patients, i.e., whether or not to continue PRRT. Twenty-four patients diagnosed with metastatic NETs undergoing PRRT with [ 177 Lu]-DOTA-TATE were retrospectively included in this study. We compared radiation doses to the kidneys and bone marrow using two protocols. In the "classical" one, dosimetry is calculated based on a SPECT and a CT after each treatment cycle. In the new protocol, dosimetry is calculated based on a SPECT study after each cycle but with the first acquired CT for all cycles. The decision whether or not to stop PRRT because of unsafe absorbed dose to the risk organs would have been the same had the classical or the new protocol been used. The agreement between the cumulative doses to the kidneys and bone marrow obtained from the two protocols was excellent with Pearson's correlation coefficients r = 0.95 and r = 0.99 (P < 0.0001) and mean relative differences of 5.30 ± 6.20% and 0.48 ± 4.88%, respectively. Dosimetry calculations for a given patient can be done using a single CT registered to serial SPECTs. This new protocol reduces the need for a hybrid camera in the follow-up of patients receiving [ 177 Lu]-DOTA-TATE.

  18. Predictions of Leukemia Risks to Astronauts from Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Atwell, W.; Kim, M. Y.; George, K. A.; Ponomarev, A.; Nikjoo, H.; Wilson, J. W.

    2006-01-01

    Leukemias consisting of acute and chronic myeloid leukemia and acute lymphatic lymphomas represent the earliest cancers that appear after radiation exposure, have a high lethality fraction, and make up a significant fraction of the overall fatal cancer risk from radiation for adults. Several considerations impact the recommendation of a preferred model for the estimation of leukemia risks from solar particle events (SPE's): The BEIR VII report recommends several changes to the method of calculation of leukemia risk compared to the methods recommended by the NCRP Report No. 132 including the preference of a mixture model with additive and multiplicative components in BEIR VII compared to the additive transfer model recommended by NCRP Report No. 132. Proton fluences and doses vary considerably across marrow regions because of the characteristic spectra of primary solar protons making the use of an average dose suspect. Previous estimates of bone marrow doses from SPE's have used an average body-shielding distribution for marrow based on the computerized anatomical man model (CAM). We have developed an 82-point body-shielding distribution that faithfully reproduces the mean and variance of SPE doses in the active marrow regions (head and neck, chest, abdomen, pelvis and thighs) allowing for more accurate estimation of linear- and quadratic-dose components of the marrow response. SPE's have differential dose-rates and a pseudo-quadratic dose response term is possible in the peak-flux period of an event. Also, the mechanistic basis for leukemia risk continues to improve allowing for improved strategies in choosing dose-rate modulation factors and radiation quality descriptors. We make comparisons of the various choices of the components in leukemia risk estimates in formulating our preferred model. A major finding is that leukemia could be the dominant risk to astronauts for a major solar particle event.

  19. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM NEUTRON IRRADIATION

    PubMed Central

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2016-01-01

    Spongiosa in the adult human skeleton consists of three tissues - active marrow (AM), inactive marrow (IM), and trabecularized mineral bone (TB). Active marrow is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues laying within the first 50 μm the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent microCT imaging of a 40-year-old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton [Hough et al PMB (2011)]. This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fractions (SAF) values for protons originating in axial and appendicular bone sites [Jokisch et al PMB (submitted)]. These proton SAFs, bone masses, tissue compositions, and proton production cross-sections, were subsequently used to construct neutron dose response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, active marrow, total shallow marrow, and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged particle equilibrium (CPE) is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM50 DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article. PMID:21983525

  20. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David

    2014-05-15

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less

  1. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    PubMed Central

    Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.

    2014-01-01

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S.L.; Kerber, R.L.; Stevens, W.

    This paper discusses the dosimetry methodology used to estimate bone marrow dose and the results of dosimetry calculations for 6,507 subjects in an epidemiologic case. control study of leukemia among Utah residents. The estimated doses were used to determine if a higher incidence of leukemia among residents of Utah could have been attributed to exposure to radioactive fallout from above-ground nuclear weapons tests conducted at the Nevada Test Site. The objective of the dosimetry methodology was to estimate absorbed dose to active marrow specific to each case and each control subject. Data on the residence of each subject were availablemore » from records of the Church of Jesus Christ of Latter-day Saints. Deposition of fallout was determined from databases developed using historical measurements and exposure for each subject from each test was estimated using those data. Exposure was converted to dose by applying an age-dependent dose conversion factor and a factor for shielding. The median dose for all case and control subjects was 3.2 mGy. The maximum estimated mean dose for any case or control was 29 {plus_minus} 5.6 mGy (a resident of Washington County, UT). Uncertainties were estimated for each estimated dose. The results of the dosimetry calculations were applied in an epidemiological analysis.« less

  3. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.

    PubMed

    Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle

    2014-11-01

    To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.

  4. Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and Its Definite Dose Reduction Factor

    PubMed Central

    Nadi, Saba; Monfared, Ali Shabestani; Mozdarani, Hossein; Mahmodzade, Aziz; Pouramir, Mahdi

    2016-01-01

    Background: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation. In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to calculate the ratio of polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte (PCE/PCE+NCE) in order to show cell proliferation activity. Methods: Arbutin (50, 100, and 200 mg/kg) was intraperitoneally (ip)administered to NMRI mice two hours before gamma radiation at 2 and 4 gray (Gy). The frequency of micronuclei in 1000 PCEs (MnPCEs) and the ratio of PCE/PCE+NCE were calculated for each sample. Data were statistically evaluated using one-way ANOVA, Tukey HSD test, and t-test. Results: The findings indicated that gamma radiation at 2 and 4 Gy extremely increased the frequencies of MnPCE (P<0.001) while reducing PCE/PCE+NCE (P<0.001) compared to the control group. All three doses of arbutin before irradiation significantly reduced the frequencies of MnPCEs and increased the ratio of PCE/PCE+NCE in mice bone marrow compared to the non-drug-treated irradiated control (P<0.001). All three doses of arbutin had no toxicity effect on bone marrow cells. The calculated dose reduction factor (DRF) showed DRF=1.93 for 2Gy and DRF=2.22 for 4 Gy. Conclusion: Our results demonstrated that arbutin gives significant protection to rat bone against the clastogenic and cytotoxic effects of gamma irradiation. PMID:27217601

  5. Decrease in hematopoietic stem cell domains as a delayed effect of x-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, M.A.; Lamela, R.A.; Patt, H.M.

    Although the hematopoietic integrity of locally X-irradiated sites can be restored for a time even after fairly large doses, a secondary aplasia often occurs some months later. To gain further insight into this delayed effect within the framework of the stem cell regulatory domain hypothesis, we characterized the growth kinetics of spleen colony forming units (CFU-S) in WBB6FI-+/+ bone marrow transplanted into WBB6FI-W/WV mice in which one leg had been exposed to 10-30 Gy of X rays 4-5 months previously. Compared to unirradiated contralateral marrow, fewer CFU-S either reached the previously irradiated marrow or were seeded into sites that couldmore » support growth. The initial exponential growth of effectively seeded CFU-S was unchanged, but growth deceleration (inflection point) occurred at a lower level of CFU-S in marrow previously irradiated with 20-30 Gy. This change in the inflection point indicates a radiation dose-dependent decrease consistent with the decrease in bone marrow cellularity. The decrease in effective stem cell domains after 20 Gy was calculated to be about 35%. We interpret these results to reflect the highly localized nature of delayed radiation damage to the marrow microenvironment.« less

  6. Spontaneous hematologic recovery from bone marrow aplasia after accidental tenfold overdosage with radiophosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gmuer, J.; Bischof, B.; Coninx, S.

    1983-04-01

    Two patients with polycythemia vera received intravenously an accidental tenfold overdosage of radiophosphorus therapy (60 and 50 mCi 32P, respectively). In both patients, the occurrence of hemorrhagic complications 3 wk after the 32P medication led to detection of the error and referral to our hospital. Upon admission they showed an agranulocytosis, severe thrombocytopenia, and bone marrow aplasia. In both cases, spontaneous recovery of the hematopoiesis was observed from day 40 posttreatment onward. In one patient, a slow but ultimately complete normalization of blood counts and marrow morphology took place, whereas in the other, a mild thrombocytopenia persists. Nearly 5 yrmore » after the accidental overdosage, both patients are clinically well. Symptoms of polycythemia vera have not reappeared up to now. Attempts were made to evaluate the radiation dose absorbed by the bone marrow. In the first patient, the daily 32P excretion was determined from day 22 to day 60, whereas in the other patient a whole body count was performed on day 78 after administration. From these results, an approximate cumulative bone marrow dose of 10 Sv (1000 rem) could be calculated.« less

  7. Dosimetric comparison of helical tomotherapy treatment plans for total marrow irradiation created using GPU and CPU dose calculation engines.

    PubMed

    Nalichowski, Adrian; Burmeister, Jay

    2013-07-01

    To compare optimization characteristics, plan quality, and treatment delivery efficiency between total marrow irradiation (TMI) plans using the new TomoTherapy graphic processing unit (GPU) based dose engine and CPU/cluster based dose engine. Five TMI plans created on an anthropomorphic phantom were optimized and calculated with both dose engines. The planning treatment volume (PTV) included all the bones from head to mid femur except for upper extremities. Evaluated organs at risk (OAR) consisted of lung, liver, heart, kidneys, and brain. The following treatment parameters were used to generate the TMI plans: field widths of 2.5 and 5 cm, modulation factors of 2 and 2.5, and pitch of either 0.287 or 0.43. The optimization parameters were chosen based on the PTV and OAR priorities and the plans were optimized with a fixed number of iterations. The PTV constraint was selected to ensure that at least 95% of the PTV received the prescription dose. The plans were evaluated based on D80 and D50 (dose to 80% and 50% of the OAR volume, respectively) and hotspot volumes within the PTVs. Gamma indices (Γ) were also used to compare planar dose distributions between the two modalities. The optimization and dose calculation times were compared between the two systems. The treatment delivery times were also evaluated. The results showed very good dosimetric agreement between the GPU and CPU calculated plans for any of the evaluated planning parameters indicating that both systems converge on nearly identical plans. All D80 and D50 parameters varied by less than 3% of the prescription dose with an average difference of 0.8%. A gamma analysis Γ(3%, 3 mm) < 1 of the GPU plan resulted in over 90% of calculated voxels satisfying Γ < 1 criterion as compared to baseline CPU plan. The average number of voxels meeting the Γ < 1 criterion for all the plans was 97%. In terms of dose optimization/calculation efficiency, there was a 20-fold reduction in planning time with the new GPU system. The average optimization/dose calculation time utilizing the traditional CPU/cluster based system was 579 vs 26.8 min for the GPU based system. There was no difference in the calculated treatment delivery time per fraction. Beam-on time varied based on field width and pitch and ranged between 15 and 28 min. The TomoTherapy GPU based dose engine is capable of calculating TMI treatment plans with plan quality nearly identical to plans calculated using the traditional CPU/cluster based system, while significantly reducing the time required for optimization and dose calculation.

  8. Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.

    2006-12-01

    3D-microCT images of vertebral bodies from three different individuals have been segmented into trabecular bone, bone marrow and bone surface cells (BSC), and then introduced into the spongiosa voxels of the MAX06 and the FAX06 phantoms, in order to calculate the equivalent dose to the red bone marrow (RBM) and the BSC in the marrow cavities of trabecular bone with the EGSnrc Monte Carlo code from whole-body exposure to external photon radiation. The MAX06 and the FAX06 phantoms consist of about 150 million 1.2 mm cubic voxels each, a part of which are spongiosa voxels surrounded by cortical bone. In order to use the segmented 3D-microCT images for skeletal dosimetry, spongiosa voxels in the MAX06 and the FAX06 phantom were replaced at runtime by so-called micro matrices representing segmented trabecular bone, marrow and BSC in 17.65, 30 and 60 µm cubic voxels. The 3D-microCT image-based RBM and BSC equivalent doses for external exposure to photons presented here for the first time for complete human skeletons are in agreement with the results calculated with the three correction factor method and the fluence-to-dose response functions for the same phantoms taking into account the conceptual differences between the different methods. Additionally the microCT image-based results have been compared with corresponding data from earlier studies for other human phantoms. This article is dedicated to Prof. Dr Guenter Drexler from the Laboratório de Ciências Radiológicas, State University of Rio de Janeiro, on the occasion of his 70th birthday.

  9. Measures for curtailment of iatrogenic exposure. Guide to correct x-ray examinations (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misonoo, K.

    1973-08-01

    Of the coposure dose for humans from various radiation sources, introgenic exposure amounts to 1/2 to twice the natural radiation source. Although the mechanism of induction of malignant tumor by radiation is not clanified, it is evident that it is induced after receiving a dose above 100 rads. However, the presence of a threshold, under which it does not develop, is unknown. Tabulated were ICRP's calculations on the degree of risk of injury and the estimated values of genetic injury due to 1 rad. In order to estimate the harmful effect of exposure in x-ray diagnosis, the dose in themore » critical tissue of the human body and the types and the frequency of radiation examinations are important. The judgment of genetic injury is expressed by the genetically significant dose, which is calculated from the dose in the genital gland received by individuals. The impcrtant criterion for the judgment of physical injury is the mean annual dose per person in the marrow (mean dose in the red marrow). The dose in the genital organ is important as the dose related to the evaluation of the degree of genetic risk. The characteristics of iatrogenic exposure are partial and acute exposure and a high dose rate. Tabulated individually were the frequency of x-ray examinations, the mean dose in the genital organ according urce. The radiation dose during x-ray pelvimetry to 51 patients was estimated, and the cytogenetic response of peripheral lymphocytes was determined in 25 of their newborn babies. The calculations resulted in an average midline fetal dose of 1,035 and 1,860 mrads for the patients receiving 2 projections and more than 2 projections, respectively. There was no evidence of radioinduced chromosomal darnage in the newborn infants following x-ray exposure in utero. (auth)« less

  10. A practical method of I-131 thyroid cancer therapy dose optimization using estimated effective renal clearance.

    PubMed

    Howard, Brandon A; James, Olga G; Perkins, Jennifer M; Pagnanelli, Robert A; Borges-Neto, Salvador; Reiman, Robert E

    2017-01-01

    In thyroid cancer patients with renal impairment or other complicating factors, it is important to maximize I-131 therapy efficacy while minimizing bone marrow and lung damage. We developed a web-based calculator based on a modified Benua and Leeper method to calculate the maximum I-131 dose to reduce the risk of these toxicities, based on the effective renal clearance of I-123 as measured from two whole-body I-123 scans, performed at 0 and 24 h post-administration.

  11. Prediction of Normal Organ Absorbed Doses for [177Lu]Lu-PSMA-617 Using [44Sc]Sc-PSMA-617 Pharmacokinetics in Patients With Metastatic Castration Resistant Prostate Carcinoma.

    PubMed

    Khawar, Ambreen; Eppard, Elisabeth; Sinnes, Jean Phlippe; Roesch, Frank; Ahmadzadehfar, Hojjat; Kürpig, Stefan; Meisenheimer, Michael; Gaertner, Florian C; Essler, Markus; Bundschuh, Ralph A

    2018-04-23

    In vivo pharmacokinetic analysis of [Sc]Sc-PSMA-617 was used to determine the normal organ-absorbed doses that may result from therapeutic activity of [Lu]Lu-PSMA-617 and to predict the maximum permissible activity of [Lu]Lu-PSMA-617 for patients with metastatic castration-resistant prostate carcinoma. Pharmacokinetics of [Sc]Sc-PSMA-617 was evaluated in 5 patients with metastatic castration-resistant prostate carcinoma using dynamic PET/CT, followed by 3 static PET/CT acquisitions and blood sample collection over 19.5 hours, as well as urine sample collection at 2 time points. Total activity measured in source organs by PET imaging, as well as counts per milliliter measured in blood and urine samples, was decay corrected back to the time of injection using the half-life of Sc. Afterward, forward decay correction using the half-life of Lu was performed, extrapolating the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617. Source organs residence times and organ-absorbed doses for [Lu]Lu-PSMA-617 were calculated using OLINDA/EXM software. Bone marrow self-dose was determined with indirect blood-based method, and urinary bladder contents residence time was estimated by trapezoidal approximation. The maximum permissible activity of [Lu]Lu-PSMA-617 was calculated for each patient considering external beam radiotherapy toxicity limits for radiation absorbed doses to kidneys, bone marrow, salivary glands, and whole body. The predicted mean organ-absorbed doses were highest in the kidneys (0.44 mSv/MBq), followed by the salivary glands (0.23 mSv/MBq). The maximum permissible activity was highly variable among patients; limited by whole body-absorbed dose (1 patient), marrow-absorbed dose (1 patient), and kidney-absorbed dose (3 patients). [Sc]Sc-PSMA-617 PET/CT imaging is feasible and allows theoretical extrapolation of the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617, with the intent of predicting normal organ-absorbed doses and maximum permissible activity in patients scheduled for therapy with [Lu]Lu-PSMA-617.

  12. Organ Doses Associated with Partial-Body Irradiation with 2.5% Bone Marrow Sparing of the Non-Human Primate: A Retrospective Study.

    PubMed

    Prado, C; MacVittie, T J; Bennett, A W; Kazi, A; Farese, A M; Prado, K

    2017-12-01

    A partial-body irradiation model with approximately 2.5% bone marrow sparing (PBI/BM2.5) was established to determine the radiation dose-response relationships for the prolonged and delayed multi-organ effects of acute radiation exposure. Historically, doses reported to the entire body were assumed to be equal to the prescribed dose at some defined calculation point, and the dose-response relationship for multi-organ injury has been defined relative to the prescribed dose being delivered at this point, e.g., to a point at mid-depth at the level of the xiphoid of the non-human primate (NHP). In this retrospective-dose study, the true distribution of dose within the major organs of the NHP was evaluated, and these doses were related to that at the traditional dose-prescription point. Male rhesus macaques were exposed using the PBI/BM2.5 protocol to a prescribed dose of 10 Gy using 6-MV linear accelerator photons at a rate of 0.80 Gy/min. Point and organ doses were calculated for each NHP from computed tomography (CT) scans using heterogeneous density data. The prescribed dose of 10.0 Gy to a point at midline tissue assuming homogeneous media resulted in 10.28 Gy delivered to the prescription point when calculated using the heterogeneous CT volume of the NHP. Respective mean organ doses to the volumes of nine organs, including the heart, lung, bowel and kidney, were computed. With modern treatment planning systems, utilizing a three-dimensional reconstruction of the NHP's CT images to account for the variations in body shape and size, and using density corrections for each of the tissue types, bone, water, muscle and air, accurate determination of the differences in dose to the NHP can be achieved. Dose and volume statistics can be ascertained for any body structure or organ that has been defined using contouring tools in the planning system. Analysis of the dose delivered to critical organs relative to the total-body target dose will permit a more definitive analysis of organ-specific effects and their respective influence in multiple organ injury.

  13. Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan.

    PubMed

    Levin, S G; Young, R W; Stohler, R L

    1992-11-01

    This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.

  14. A reference skeletal dosimetry model for an adult male radionuclide therapy patient based on three-dimensional imaging and paired-image radiation transport

    NASA Astrophysics Data System (ADS)

    Shah, Amish P.

    The need for improved patient-specificity of skeletal dose estimates is widely recognized in radionuclide therapy. Current clinical models for marrow dose are based on skeletal mass estimates from a variety of sources and linear chord-length distributions that do not account for particle escape into cortical bone. To predict marrow dose, these clinical models use a scheme that requires separate calculations of cumulated activity and radionuclide S values. Selection of an appropriate S value is generally limited to one of only three sources, all of which use as input the trabecular microstructure of an individual measured 25 years ago, and the tissue mass derived from different individuals measured 75 years ago. Our study proposed a new modeling approach to marrow dosimetry---the Paired Image Radiation Transport (PIRT) model---that properly accounts for both the trabecular microstructure and the cortical macrostructure of each skeletal site in a reference male radionuclide patient. The PIRT model, as applied within EGSnrc, requires two sets of input geometry: (1) an infinite voxel array of segmented microimages of the spongiosa acquired via microCT; and (2) a segmented ex-vivo CT image of the bone site macrostructure defining both the spongiosa (marrow, endosteum, and trabeculae) and the cortical bone cortex. Our study also proposed revising reference skeletal dosimetry models for the adult male cancer patient. Skeletal site-specific radionuclide S values were obtained for a 66-year-old male reference patient. The derivation for total skeletal S values were unique in that the necessary skeletal mass and electron dosimetry calculations were formulated from the same source bone site over the entire skeleton. We conclude that paired-image radiation-transport techniques provide an adoptable method by which the intricate, anisotropic trabecular microstructure of the skeletal site; and the physical size and shape of the bone can be handled together, for improved compilation of reference radionuclide S values. We also conclude that this comprehensive model for the adult male cancer patient should be implemented for use in patient-specific calculations for radionuclide dosimetry of the skeleton.

  15. Red Marrow-Absorbed Dose for Non-Hodgkin Lymphoma Patients Treated with 177Lu-Lilotomab Satetraxetan, a Novel Anti-CD37 Antibody-Radionuclide Conjugate.

    PubMed

    Blakkisrud, Johan; Løndalen, Ayca; Dahle, Jostein; Turner, Simon; Holte, Harald; Kolstad, Arne; Stokke, Caroline

    2017-01-01

    Red marrow (RM) is often the primary organ at risk in radioimmunotherapy; irradiation of marrow may induce short- and long-term hematologic toxicity. 177 Lu-lilotomab satetraxetan is a novel anti-CD37 antibody-radionuclide conjugate currently in phase 1/2a. Two predosing regimens have been investigated, one with 40 mg of unlabeled lilotomab antibody (arm 1) and one without (arm 2). The aim of this work was to compare RM-absorbed doses for the two arms and to correlate absorbed doses with hematologic toxicity. Eight patients with relapsed CD37+ indolent B-cell non-Hodgkin lymphoma were included for RM dosimetry. Hybrid SPECT and CT images were used to estimate the activity concentration in the RM of L2-L4. Pharmacokinetic parameters were calculated after measurement of the 177 Lu-lilotomab satetraxetan concentration in blood samples. Adverse events were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The mean absorbed doses to RM were 0.9 mGy/MBq for arm 1 (lilotomab+) and 1.5 mGy/MBq for arm 2 (lilotomab-). There was a statistically significant difference between arms 1 and 2 (Student t test, P = 0.02). Total RM-absorbed doses ranged from 67 to 127 cGy in arm 1 and from 158 to 207 cGy in arm 2. For blood, the area under the curve was higher with lilotomab predosing than without (P = 0.001), whereas the volume of distribution and the clearance of 177 Lu-lilotomab satetraxetan was significantly lower (P = 0.01 and P = 0.03, respectively). Patients with grade 3/4 thrombocytopenia had received significantly higher radiation doses to RM than patients with grade 1/2 thrombocytopenia (P = 0.02). A surrogate, non-imaging-based, method underestimated the RM dose and did not show any correlation with toxicity. Predosing with lilotomab reduces the RM-absorbed dose for 177 Lu-lilotomab satetraxetan patients. The decrease in RM dose could be explained by the lower volume of distribution. Hematologic toxicity was more severe for patients receiving higher absorbed radiation doses, indicating that adverse events possibly can be predicted by the calculation of absorbed dose to RM from SPECT/CT images. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. SU-E-J-250: A Methodology for Active Bone Marrow Protection for Cervical Cancer Intensity-Modulated Radiotherapy Using 18F-FLT PET/CT Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) andmore » 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer.« less

  17. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy.

    PubMed

    Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P

    2015-12-01

    Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.

  18. SU-E-T-13: A Comparative Dosimetric Study On Radio-Dynamic Therapy for Pelvic Cancer Treatment: Strategies for Bone Marrow Dose and Volume Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C; Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Wang, B

    Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less

  19. A model for hematopoietic death in man from irradiation of bone marrow during radioimmunotherapy.

    PubMed

    Scott, B R; Dillehay, L E

    1990-11-01

    There are numerous institutions worldwide performing clinical trials of radioimmunotherapy (RIT) for cancer. For RIT, an exponentially decaying radionuclide is attached by using a chelating agent to a specific monoclonal or polyclonal tumour antibody (e.g. antiferritin IgG). The major limitation to RIT is toxicity to normal tissue in organs other than the one containing the tumour (e.g. bone marrow). The focus of this manuscript is on modelling the risk (or probability) of hematopoietic death in man for exponentially decaying patterns of high-energy beta irradiation (e.g. 90Y) of bone marrow by radioimmunoglobulin injected into the blood. The analytical solutions presented are only applicable to protocols for which significant uptake of radioactivity by the bone marrow does not occur, and only for high energy beta emitters. However, the generic equation used to obtain the analytical solutions is applicable to any continuous pattern of high energy beta irradiation. A model called the "normalized dose model" was used to generate calculated values for the LD50 as a function of the effective half-time for the radioimmunoglobulin in the blood. A less complicated empirical model was used to describe the calculated values. This model is presumed to be valid for effective half-times in blood of up to about 20 days. For longer effective half-times, the LD50 can be estimated using the normalized-dose model presented. In this manuscript, we also provide a modified Weibull model that allows estimation of the risk of hematopoietic death for single or multiple injections (in one cycle) of radioimmunoglobulin, for patients with normal susceptibility to irradiation and for patients with heightened susceptibility. With the modified Weibull model, the risk of hematopoietic death depends on the level of medical treatment provided to mitigate radiation injuries.

  20. Determination of the uncertainties in radiation doses from ingestion of strontium-90

    NASA Astrophysics Data System (ADS)

    Apostoaei, Andrei Iulian

    Quantification of the uncertainties in the internal dosimetry is important because it can impact the outcome of dose reconstruction, risk assessment or epidemiological studies. This research focused on determination of the uncertainties in the dose factors from a single ingestion of 90Sr by adults, and analyzed the changes with age and the effect of gender. The uncertainties in the estimated dose factors are a factor of 6 for the bone surface, 5 for the red bone marrow, 2.5 for bladder and stomach, 2.2 for the small intestine, 2.1 for the upper large intestine and 2.7 for the lower large intestine. For the rest of the organs the uncertainty is a factor of 3. Only four parameters of the biokinetic model showed an age-dependency within the adult age group: the fractional transfers of strontium from plasma to cortical and trabecular bone, and the removal rates from the cortical and trabecular bone, respectively. When age-dependent biokinetic parameters were used, the estimated dose-factors are very close to the dose factors obtained using age-independent kinetics (within 40%). Thus, the dose factors based on age-independent parameters should suffice for most practical purposes. The dose factors and the associated uncertainties were also calculated as a function of age-at-exposure and attained age. These age dependent curves can be used for estimating doses from continuous intakes, or doses delivered over a limited portion of time. In addition to the committed dose, an expected dose is also estimated in this work. The expected dose is calculated using the dose rate weighted by the probability of surviving up to the age when the dose-rate is delivered. For exposure at young ages the expected dose and the committed dose are similar, but the committed dose decreases to zero when exposure occurs close to age 70, while the expected dose has elevated values pass age 70. No gender differences were found for bone surface, for red bone marrow, and the large intestine. The doses to the soft tissues for females are larger by 20% than the doses for males, because of the differences in the whole-body mass between males and females.

  1. Effects of incomplete residential histories on studies of environmental exposure with application to childhood leukaemia and background radiation.

    PubMed

    Nikkilä, Atte; Kendall, Gerald; Raitanen, Jani; Spycher, Ben; Lohi, Olli; Auvinen, Anssi

    2018-06-22

    When evaluating environmental exposures, residential exposures are often most relevant. In most countries, it is impossible to establish full residential histories. In recent publications, childhood leukaemia and background radiation have been studied with and without full residential histories. This paper investigates the consequences of lacking such full data. Data from a nationwide Finnish Case-Control study of Childhood Leukaemia and gamma rays were analysed. This included 1093 children diagnosed with leukaemia in Finland in 1990-2011. Each case was matched by gender and year of birth to three controls. Full residential histories were available. The dose estimates were based on outdoor background radiation measurements. The indoor dose rates were obtained with a dwelling type specific conversion coefficient and the individual time-weighted mean red bone marrow dose rates were calculated using age-specific indoor occupancy and the age and gender of the child. Radiation from Chernobyl fallout was included and a 2-year latency period assumed. The median separation between successive dwellings was 3.4 km and median difference in red bone marrow dose 2.9 nSv/h. The Pearson correlation between the indoor red bone marrow dose rates of successive dwellings was 0.62 (95% CI 0.60, 0.64). The odds ratio for a 10 nSv/h increase in dose rate with full residential histories was 1.01 (95% CI 0.97, 1.05). Similar odds ratios were calculated with dose rates based on only the first dwelling (1.02, 95% CI 0.99, 1.05) and only the last dwelling (1.00, 95% CI 0.98, 1.03) and for subjects who had lived only in a single dwelling (1.05, 95% CI 0.98, 1.10). Knowledge of full residential histories would always be the option of choice. However, due to the strong correlation between exposure estimates in successive dwellings and the uncertainty about the most relevant exposure period, estimation of overall exposure level from a single address is also informative. Error in dose estimation is likely to cause some degree of classical measurement error resulting in bias towards the null. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer.

    PubMed

    Elias, A D; Ayash, L; Anderson, K C; Hunt, M; Wheeler, C; Schwartz, G; Tepler, I; Mazanet, R; Lynch, C; Pap, S

    1992-06-01

    High-dose therapy with autologous marrow support results in durable complete remissions in selected patients with relapsed lymphoma and leukemia who cannot be cured with conventional dose therapy. However, substantial morbidity and mortality result from the 3- to 6-week period of marrow aplasia until the reinfused marrow recovers adequate hematopoietic function. Hematopoietic growth factors, particularly used after chemotherapy, can increase the number of peripheral blood progenitor cells (PBPCs) present in systemic circulation. The reinfusion of PBPCs with marrow has recently been reported to reduce the time to recovery of adequate marrow function. This study was designed to determine whether granulocyte-macrophage colony-stimulating factor (GM-CSF)-mobilized PBPCs alone (without marrow) would result in rapid and reliable hematopoietic reconstitution. Sixteen patients with metastatic breast cancer were treated with four cycles of doxorubicin, 5-fluorouracil, and methotrexate (AFM induction). Patients responding after the first two cycles were administered GM-CSF after the third and fourth cycles to recruit PBPCs for collection by two leukapheresis per cycle. These PBPCs were reinfused as the sole source of hematopoietic support after high doses of cyclophosphamide, thiotepa, and carboplatin. No marrow or hematopoietic cytokines were used after progenitor cell reinfusion. Granulocytes greater than or equal to 500/microL was observed on a median of day 14 (range, 8 to 57). Transfusion independence of platelets greater than or equal to 20,000/microL occurred on a median day of 12 (range, 8 to 134). However, three patients required the use of a reserve marrow for slow platelet engraftment. In retrospect, these patients were characterized by poor baseline bone marrow cellularity and poor platelet recovery after AFM induction therapy. When compared with 29 historical control patients who had received the same high-dose intensification chemotherapy using autologous marrow support, time to engraftment, antibiotic days, transfusion requirements, and lengths of hospital stay were all significantly improved for the patients receiving PBPCs. Thus, autologous PBPCs can be efficiently collected during mobilization by chemotherapy and GM-CSF and are an attractive alternative to marrow for hematopoietic support after high-dose therapy. The enhanced speed of recovery may reduce the morbidity, mortality, and cost of high-dose treatment. Furthermore, PBPC support may enhance the effectiveness of high-dose therapy by facilitating multiple courses of therapy.

  3. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM50 DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article available at http://stacks.iop.org/0031-9155/56/6873/mmedia.

  4. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation.

    PubMed

    Bahadori, Amir A; Johnson, Perry; Jokisch, Derek W; Eckerman, Keith F; Bolch, Wesley E

    2011-11-07

    Spongiosa in the adult human skeleton consists of three tissues-active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM(50)), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM(50) targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM(50) and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM(50) DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM(50) DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article available at http://stacks.iop.org/0031-9155/56/6873/mmedia.

  5. Dosimetry of {sup 210}Po in humans, caribou, and wolves in northern Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.A.

    1994-06-01

    Effective doses from {sup 210}Po intake with caribou meat were determined for human residents in Baker Lake and Snowdrift in the Northwest Territories of Canada and compared to doses calculated from reported {sup 210}Po tissue activities in Alaskan and British residents. Effective doses were calculated to separate body tissues, using ICRP 60 human weighting factors and the ICRP 30 metabolic model for {sup 210}Po. Baker Lake and Alaskan effective doses were similar at 0.4 mSv y{sup {minus}1} and slightly higher than Snowdrift doses (0.3 mSv y{sup {minus}1}). Alaskan tissue activities indicated higher effective doses to liver, bone surfaces and redmore » marrow and lower doses to spleen than the {sup 210}Po metabolic model (ICRP 1979a) predicts. Effective doses to Baker Lake and Snowdrift caribou and wolves, calculated from tissue activities, ranged from 7-20 mSv y{sup {minus}1} using human weighting factors for comparison to human doses only. Effective doses to northern Canadians and wildlife were, respectively, 7-11% and 1.8-5 times an estimated human background of 4 mSv y{sup {minus}} from all sources. 51 refs., 2 figs., 9 tabs.« less

  6. Electron absorbed fractions of energy and S-values in an adult human skeleton based on µCT images of trabecular bone

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Richardson, R. B.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; Lira, C. A. B. de O.; Robson Brown, K.

    2011-03-01

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on µCT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 µm thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters 14C, 59Fe, 131I, 89Sr, 32P and 90Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 µm endosteum and the previously recommended 10 µm endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by ~20% when the beta emitters are in marrow.

  7. Validation of calculation algorithms for organ doses in CT by measurements on a 5 year old paediatric phantom

    NASA Astrophysics Data System (ADS)

    Dabin, Jérémie; Mencarelli, Alessandra; McMillan, Dayton; Romanyukha, Anna; Struelens, Lara; Lee, Choonsik

    2016-06-01

    Many organ dose calculation tools for computed tomography (CT) scans rely on the assumptions: (1) organ doses estimated for one CT scanner can be converted into organ doses for another CT scanner using the ratio of the Computed Tomography Dose Index (CTDI) between two CT scanners; and (2) helical scans can be approximated as the summation of axial slices covering the same scan range. The current study aims to validate experimentally these two assumptions. We performed organ dose measurements in a 5 year-old physical anthropomorphic phantom for five different CT scanners from four manufacturers. Absorbed doses to 22 organs were measured using thermoluminescent dosimeters for head-to-torso scans. We then compared the measured organ doses with the values calculated from the National Cancer Institute dosimetry system for CT (NCICT) computer program, developed at the National Cancer Institute. Whereas the measured organ doses showed significant variability (coefficient of variation (CoV) up to 53% at 80 kV) across different scanner models, the CoV of organ doses normalised to CTDIvol substantially decreased (12% CoV on average at 80 kV). For most organs, the difference between measured and simulated organ doses was within  ±20% except for the bone marrow, breasts and ovaries. The discrepancies were further explained by additional Monte Carlo calculations of organ doses using a voxel phantom developed from CT images of the physical phantom. The results demonstrate that organ doses calculated for one CT scanner can be used to assess organ doses from other CT scanners with 20% uncertainty (k  =  1), for the scan settings considered in the study.

  8. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  9. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  10. Effects of low-doses of Bacillus spp. from permafrost on differentiation of bone marrow cells.

    PubMed

    Kalyonova, L F; Novikova, M A; Kostolomova, E G

    2015-01-01

    The effects of a new microorganism species (Bacillus spp., strain M3) isolated from permafrost specimens from Central Yakutia (Mamontova Mountain) on the bone marrow hemopoiesis were studied on laboratory mice. Analysis of the count and immunophenotype of bone marrow cells indicated that even in low doses (1000-5000 microbial cells) these microorganisms modulated hemopoiesis and lymphopoiesis activity. The percentage of early hemopoietic precursors (CD117(+)CD34(-)) increased, intensity of lymphocyte precursor proliferation and differentiation (CD25(+)CD44(-)) decreased, and the percentage of lymphocytes released from the bone marrow (CD25(+)CD44(+)) increased on day 21 after injection of the bacteria. These changes in activity of hemopoiesis were associated with changes in the level of regulatory T lymphocytes (reduced expression of TCRαβ) and were most likely compensatory. The possibility of modulating hemopoiesis activity in the bone marrow by low doses of one microorganism strain isolated from the permafrost could be useful for evaluating the effects of other low dose bacteria on the bone marrow hemopoiesis.

  11. Leukemia and other cancers following radiation treatment of pelvic disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.G.

    1977-04-01

    Follow-up studies of patients treated for cancer of the cervix with radiotherapy have shown such women to be at little or no increased risk of leukemia subsequent to the radiation exposure. However, women exposed to lower doses of radiation in the pelvic area, in the induction of an artificial menopause, appear to show increased risks of both leukemia and cancers of those sites directly in the radiation field. The studies of these two types of radiation exposure are reviewed. The findings may possibly be reconciled with each other on the basis of the distribution of radiation dose to the bonemore » marrow. Irradiation for cancer of the cervix delivers radiation doses to a small portion of the marrow which are probably lethal for most marrow cells. The mean dose to cells distant from the cervix may be too small to produce a detectable increase in leukemia incidence. The lower and more uniformly distributed radiation dose used to induce an artificial menopause will be less lethal for marrow cells and may consequently deliver a higher ''effective'' marrow dose to surviving cells, resulting in an increased leukemia risk.« less

  12. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  13. Prenatal tolerance induction: relationship between cell dose, marrow T-cells, chimerism, and tolerance.

    PubMed

    Chen, Jeng-Chang; Chang, Ming-Ling; Huang, Shiu-Feng; Chang, Pei-Yeh; Muench, Marcus O; Fu, Ren-Huei; Ou, Liang-Shiou; Kuo, Ming-Ling

    2008-01-01

    It was reported that the dose of self-antigens can determine the consequence of deletional tolerance and donor T cells are critical for tolerance induction in mixed chimeras. This study aimed at assessing the effect of cell doses and marrow T cells on engraftment and tolerance induction after prenatal bone marrow transplantation. Intraperitoneal cell transplantation was performed in FVB/N (H-2K(q)) mice at gestational day 14 with escalating doses of adult C57BL/6 (H-2K(b)) marrows. Peripheral chimerism was examined postnatally by flow cytometry and tolerance was tested by skin transplantation. Transplantation of light-density marrow cells showed a dose response. High-level chimerism emerged with a threshold dose of 5.0 x 10(6) and host leukocytes could be nearly replaced at a dose of 7.5-10.0 x 10(6). High-dose transplants conferred a steady long-lasting donor-specific tolerance but were accompanied by >50% incidence of graft-versus-host disease. Depletion of marrow T cells lessened graft-versus-host disease to the detriment of engraftment. With low-level chimerism, tolerance was a graded phenomenon dependent upon the level of chimerism. Durable chimerism within 6 months required a threshold of > or = 2% chimerism at 1 month of age and predicted a 50% chance of long-term tolerance, whereas transient chimerism (<2%) only caused hyporesponsiveness to the donor. Tolerance induction did not succeed without peripheral chimerism even if a large amount of injected donor cells persisted in the peritoneum. Neither did an increase in cell doses or donor T-cell contents benefit skin graft survivals unless it had substantially improved peripheral chimerism. Thus, peripheral chimerism level can be a simple and straightforward test to predict the degree of prenatal immune tolerance.

  14. GONADAL AND BONE MARROW DOSE IN MEDICAL DIAGNOSTIC RADIOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, K.A.; Mahfouz, M.M.; Mahmoud, M.E.

    1961-08-01

    Measurements were made of the active mean bone marrow, integral bone marrow, gonadal, and maximum skin doses from diagnostic x-ray procedures used in Cairo University Hospitals. The active mean marrow dose in cervical, dorsal, and lumbar spine diagnostic exposures were: found to be somewhat smaller than those reported by some western couatries. One of the most striking results of the survey was the relatively high values of the urinary tract cases investigated diagnostically; owing to the high incidence of urinary tract Schistosomiasis. The gonadal dose delivered to males and females was found to be almosi negligible for all diagnostic investigationsmore » of the spine, except for the lumbo-dorsal region which was within the range 50 to 500 mrads. It was also found that the gonadal dose was significant in investigations of the lower gastrointestinal tract, gall bladder, and urinary tract. (P.C.H.)« less

  15. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient radiopharmaceutical for the treatment of bone metastases than 153Sm and 89Sr, if the diffusion of 219Rn to the bone marrow is insignificant.

  16. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides

    PubMed Central

    Schuchardt, Christiane; Kulkarni, Harshad R.; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P.; Beer, Ambros J.

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25−29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1–3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably. PMID:27611841

  17. Investigating the Effect of Ligand Amount and Injected Therapeutic Activity: A Simulation Study for 177Lu-Labeled PSMA-Targeting Peptides.

    PubMed

    Kletting, Peter; Schuchardt, Christiane; Kulkarni, Harshad R; Shahinfar, Mostafa; Singh, Aviral; Glatting, Gerhard; Baum, Richard P; Beer, Ambros J

    2016-01-01

    In molecular radiotherapy with 177Lu-labeled prostate specific membrane antigen (PSMA) peptides, kidney and/or salivary glands doses limit the activity which can be administered. The aim of this work was to investigate the effect of the ligand amount and injected activity on the tumor-to-normal tissue biologically effective dose (BED) ratio for 177Lu-labeled PSMA peptides. For this retrospective study, a recently developed physiologically based pharmacokinetic model was adapted for PSMA targeting peptides. General physiological parameters were taken from the literature. Individual parameters were fitted to planar gamma camera measurements (177Lu-PSMA I&T) of five patients with metastasizing prostate cancer. Based on the estimated parameters, the pharmacokinetics of tumor, salivary glands, kidneys, total body and red marrow was simulated and time-integrated activity coefficients were calculated for different peptide amounts. Based on these simulations, the absorbed doses and BEDs for normal tissue and tumor were calculated for all activities leading to a maximal tolerable kidney BED of 10 Gy2.5/cycle, a maximal salivary gland absorbed dose of 7.5 Gy/cycle and a maximal red marrow BED of 0.25 Gy15/cycle. The fits yielded coefficients of determination > 0.85, acceptable relative standard errors and low parameter correlations. All estimated parameters were in a physiologically reasonable range. The amounts (for 25-29 nmol) and pertaining activities leading to a maximal tumor dose, considering the defined maximal tolerable doses to organs of risk, were calculated to be 272±253 nmol (452±420 μg) and 7.3±5.1 GBq. Using the actually injected amount (235±155 μg) and the same maximal tolerable doses, the potential improvement for the tumor BED was 1-3 fold. The results suggest that currently given amounts for therapy are in the appropriate order of magnitude for many lesions. However, for lesions with high binding site density or lower perfusion, optimizing the peptide amount and activity might improve the tumor-to-kidney and tumor-to-salivary glands BED ratio considerably.

  18. Cytogenetic damage analysis in mice chronically exposed to low-dose internal tritium beta-particle radiation.

    PubMed

    Roch-Lefèvre, Sandrine; Grégoire, Eric; Martin-Bodiot, Cécile; Flegal, Matthew; Fréneau, Amélie; Blimkie, Melinda; Bannister, Laura; Wyatt, Heather; Barquinero, Joan-Francesc; Roy, Laurence; Benadjaoud, Mohamed; Priest, Nick; Jourdain, Jean-René; Klokov, Dmitry

    2018-06-08

    The aim of this study was to carry out a comprehensive examination of potential genotoxic effects of low doses of tritium delivered chronically to mice and to compare these effects to the ones resulting from equivalent doses of gamma-irradiation. Mice were chronically exposed for one or eight months to either tritiated water (HTO) or organically bound tritium (OBT) in drinking water at concentrations of 10 kBq/L, 1 MBq/L or 20 MBq/L. Dose rates of internal β-particle resulting from such tritium treatments were calculated and matching external gamma-exposures were carried out. We measured cytogenetic damage in bone marrow and in peripheral blood lymphocytes (PBLs) and the cumulative tritium doses (0.009 - 181 mGy) were used to evaluate the dose-response of OBT in PBLs, as well as its relative biological effectiveness (RBE). Neither tritium, nor gamma exposures produced genotoxic effects in bone marrow. However, significant increases in chromosome damage rates in PBLs were found as a result of chronic OBT exposures at 1 and 20 M Bq/L, but not at 10 kBq/L. When compared to an external acute gamma-exposure ex vivo , the RBE of OBT for chromosome aberrations induction was evaluated to be significantly higher than 1 at cumulative tritium doses below 10 mGy. Although found non-existent at 10 kBq/L (the WHO limit), the genotoxic potential of low doses of tritium (>10 kBq/L), mainly OBT, may be higher than currently assumed.

  19. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  20. Dosimetric Comparison of Bone Marrow-Sparing Intensity-Modulated Radiotherapy Versus Conventional Techniques for Treatment of Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun

    2008-08-01

    Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less

  1. Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, Keith F; Bolch, W E; Zankl, M

    2007-01-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbedmore » energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose response functions. This paper outlines the development of such response functions for photons.« less

  2. Patient dose analysis in total body irradiation through in vivo dosimetry.

    PubMed

    Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J

    2012-10-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol.

  3. Patient dose analysis in total body irradiation through in vivo dosimetry

    PubMed Central

    Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Bhuvaneshwari, N.; Velmurugan, J.

    2012-01-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453

  4. Quality of harvest and role of cell dose in unrelated bone marrow transplantation: an Italian Bone Marrow Donor Registry-Gruppo Italiano Trapianto di Midollo Osseo Study.

    PubMed

    Fagioli, Franca; Quarello, Paola; Pollichieni, Simona; Lamparelli, Teresa; Berger, Massimo; Benedetti, Fabio; Barat, Veronica; Marciano, Renato; Rambaldi, Alessandro; Bacigalupo, Andrea; Sacchi, Nicoletta

    2014-01-01

    In this study, we investigated the factors affecting cell dose harvest and the role of cell dose on outcome. We analysed data from a cohort of 703 patients who underwent unrelated bone marrow transplantation facilitated by IBMDR in GITMO centers between 2002 and 2008. The median-infused cell doses is 3.7 × 10(8)/kg, the correlation between the nucleated cells requested from transplant centers and those harvested by collection centers was adequate. A harvested/requested cells ratio lower than 0.5 was observed only in 3% of harvests. A volume of harvested marrow higher than the median value of 1270 ml was related to a significant lower infused cell dose (χ(2): 44.4; P < 0.001). No patient- or donor-related variables significantly influenced the cell dose except for the recipient younger age (χ(2): 95.7; P < 0.001) and non-malignant diseases (χ(2): 33.8; P < 0.001). The cell dose resulted an independent predictor factor for a better outcome in patients affected by non-malignant disease (P = 0.05) while early disease malignant patients receiving a lower cell dose showed a higher risk of relapse (P = 0.05).

  5. [{sup 18}F]FDG-PET Standard Uptake Value as a Metabolic Predictor of Bone Marrow Response to Radiation: Impact on Acute and Late Hematological Toxicity in Cervical Cancer Patients Treated With Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elicin, Olgun; Callaway, Sharon; Prior, John O.

    2014-12-01

    Purpose: To quantify the relationship between bone marrow (BM) response to radiation and radiation dose by using {sup 18}F-labeled fluorodeoxyglucose positron emission tomography [{sup 18}F]FDG-PET standard uptake values (SUV) and to correlate these findings with hematological toxicity (HT) in cervical cancer (CC) patients treated with chemoradiation therapy (CRT). Methods and Materials: Seventeen women with a diagnosis of CC were treated with standard doses of CRT. All patients underwent pre- and post-therapy [{sup 18}F]FDG-PET/computed tomography (CT). Hemograms were obtained before and during treatment and 3 months after treatment and at last follow-up. Pelvic bone was autosegmented as total bone marrow (BM{sub TOT}).more » Active bone marrow (BM{sub ACT}) was contoured based on SUV greater than the mean SUV of BM{sub TOT}. The volumes (V) of each region receiving 10, 20, 30, and 40 Gy (V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40}, respectively) were calculated. Metabolic volume histograms and voxel SUV map response graphs were created. Relative changes in SUV before and after therapy were calculated by separating SUV voxels into radiation therapy dose ranges of 5 Gy. The relationships among SUV decrease, radiation dose, and HT were investigated using multiple regression models. Results: Mean relative pre-post-therapy SUV reductions in BM{sub TOT} and BM{sub ACT} were 27% and 38%, respectively. BM{sub ACT} volume was significantly reduced after treatment (from 651.5 to 231.6 cm{sup 3}, respectively; P<.0001). BM{sub ACT} V{sub 30} was significantly correlated with a reduction in BM{sub ACT} SUV (R{sup 2}, 0.14; P<.001). The reduction in BM{sub ACT} SUV significantly correlated with reduction in white blood cells (WBCs) at 3 months post-treatment (R{sup 2}, 0.27; P=.04) and at last follow-up (R{sup 2}, 0.25; P=.04). Different dosimetric parameters of BM{sub TOT} and BM{sub ACT} correlated with long-term hematological outcome. Conclusions: The volumes of BM{sub TOT} and BM{sub ACT} that are exposed to even relatively low doses of radiation are associated with a decrease in WBC counts following CRT. The loss in proliferative BM SUV uptake translates into low WBC nadirs after treatment. These results suggest the potential of intensity modulated radiation therapy to spare BM{sub TOT} to reduce long-term hematological toxicity.« less

  6. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    PubMed

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  7. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  8. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling.

    PubMed

    Priest, N D; Hunt, B W

    1979-05-01

    Values of the annual limit of intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0-32 micron yr-1), different amounts of plutonium retained in the marrow (0-60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 muCi and 136 muCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively.

  9. Busulfan Injection

    MedlinePlus

    ... marrow and cancer cells in preparation for a bone marrow transplant. Busulfan is in a class of medications called ... days (for a total of 16 doses) before bone marrow transplant.Busulfan injection may cause seizures during therapy with ...

  10. Alpha imaging confirmed efficient targeting of CD45-positive cells after astatine-211 (211At)-radioimmunotherapy for hematopoietic cell transplantation

    PubMed Central

    Frost, Sofia H.L.; Miller, Brian W.; Bäck, Tom A.; Santos, Erlinda B.; Hamlin, Donald K.; Knoblaugh, Sue E.; Frayo, Shani L.; Kenoyer, Aimee L.; Storb, Rainer; Press, Oliver W.; Wilbur, D. Scott; Pagel, John M.; Sandmaier, Brenda M.

    2015-01-01

    Alpha-radioimmunotherapy targeting CD45 may substitute for total body irradiation in hematopoietic cell transplantation (HCT) preparative regimens for lymphoma. Our goal was to optimize the anti-CD45 monoclonal antibody (MAb; CA12.10C12) protein dose for astatine-211 (211At)-radioimmunotherapy, extending the analysis to include intra-organ 211At activity distribution and α-imaging-based small-scale dosimetry, along with immunohistochemical staining. Methods Eight normal dogs were injected with either 0.75 (n=5) or 1.00 mg/kg (n=3) of 211At-B10-CA12.10C12 (11.5–27.6 MBq/kg). Two were euthanized and necropsied 19–22 hours post injection (p.i.), and six received autologous HCT three days after 211At-radioimmunotherapy, following lymph node and bone marrow biopsies at 2–4 and/or 19 hours p.i. Blood was sampled to study toxicity and clearance; CD45 targeting was evaluated by flow cytometry. 211At localization and small-scale dosimetry were assessed using two α-imaging systems: α-camera and iQID. Results Uptake of 211At was highest in spleen (0.31–0.61 %IA/g), lymph nodes (0.02–0.16 %IA/g), liver (0.11–0.12 %IA/g), and marrow (0.06–0.08 %IA/g). Lymphocytes in blood and marrow were efficiently targeted using either MAb dose. Lymph nodes remained unsaturated, but displayed targeted 211At localization in T lymphocyte-rich areas. Absorbed doses to blood, marrow, and lymph nodes were estimated at 3.1, 2.4, and 3.4 Gy/166 MBq, respectively. All transplanted dogs experienced transient hepatic toxicity. Liver enzyme levels were temporarily elevated in 5 of 6 dogs; 1 treated with 1.00 mg MAb/kg developed ascites and was euthanized 136 days after HCT. Conclusion 211At-anti-CD45 radioimmunotherapy with 0.75 mg MAb/kg efficiently targeted blood and marrow without severe toxicity. Dosimetry calculations and observed radiation-induced effects indicated that sufficient 211At-B10-CA12.10C12 localization was achieved for efficient conditioning for HCT. PMID:26338894

  11. High-dose etoposide (VP-16)-containing preparatory regimens in allogeneic and autologous bone marrow transplantation for hematologic malignancies.

    PubMed

    Blume, K G; Forman, S J

    1992-12-01

    High-dose etoposide has been added to total body irradiation, cyclophosphamide, carmustine, or busulfan in preparatory regimens for allogeneic or autologous bone marrow transplantation for patients with leukemia, Hodgkin's disease, lymphoma, or multiple myeloma. The treatment results are encouraging, indicating that etoposide may be a valuable addition to the previously established regimens. Etoposide should be incorporated into collaborative, prospective trials to define its ultimate role in bone marrow transplantation.

  12. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological induction of bone cancer. In addition, new data are presented on the location of bone-marrow stem cells within the marrow cavities of trabecular bone of the pelvis. All results presented in this work may be applied to occupational exposures, but their greatest utility lies in dose assessments for alpha-emitters in molecular radiotherapy.

  13. TU-AB-BRA-01: Abdominal Synthetic CT Generation in Support of Liver SBRT Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredfeldt, JS; Liu, L; Feng, M

    2016-06-15

    Purpose: To demonstrate and validate a technique for generating MRI-derived synthetic CT volumes (MRCTs) in support of adaptive liver SBRT. Methods: Under IRB approval, ten hepatocellular carcinoma patients were scanned using a single MR sequence (T1 Dixon-VIBE), yielding inherently-registered water, fat, and T1-weighted images. Air-containing voxels were identified by intensity thresholding. The envelope of the anterior vertebral bodies was segmented from the fat image by fitting a shape model to vertebral body candidate voxels, then using level sets to expand the contour outward. Fuzzy-C-Means (FCM) was then used to classify each non-air voxel in the image as fat, water, bone,more » or marrow. Bone and marrow only were classified within the vertebral body envelope. The MRCT was created by integrating the product of the FCM class probability with the assigned class density for each voxel. The resulting MRCTs were deformably aligned with planning CTs and 2-ARC SBRT VMAT plans were optimized on the MRCT density maps. Fluence was copied onto the CT density grids and dose recalculated. Results: The MRCTs faithfully reproduced most of the features visible in the corresponding CT image volumes, with exceptions of ribs and posterior spinous processes. The liver, vertebral bodies, kidneys, spleen and cord all had median HU differences of less than 75 between MRCT and CT images. PTV D99% values had an average 0.2% difference (standard deviation: 0.46%) between calculations on MRCT and CT density grids. The maximum difference in dose to 0.1cc of the PTV was 0.25% (std:0.49%). OAR dose differences were similarly small (mean:0.03Gy, std:0.26Gy). The largest normal tissue complication percentage (NTCP) difference was 1.48% (mean:0.06%, std:0.54%). Conclusions: MRCTs from a single abdominal imaging sequence are promising for use in SBRT dose calculation. Future work will focus on extending models to better define bones in the upper abdomen. Supported by NIHR01EB016079 and NIH1L30CA199594-01.« less

  14. Multi-institutional Feasibility Study of a Fast Patient Localization Method in Total Marrow Irradiation With Helical Tomotherapy: A Global Health Initiative by the International Consortium of Total Marrow Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yutaka; Vagge, Stefano; Agostinelli, Stefano

    2015-01-01

    Purpose: To develop, characterize, and implement a fast patient localization method for total marrow irradiation. Methods and Materials: Topographic images were acquired using megavoltage computed tomography (MVCT) detector data by delivering static orthogonal beams while the couch traversed through the gantry. Geometric and detector response corrections were performed to generate a megavoltage topogram (MVtopo). We also generated kilovoltage topograms (kVtopo) from the projection data of 3-dimensional CT images to reproduce the same geometry as helical tomotherapy. The MVtopo imaging dose and the optimal image acquisition parameters were investigated. A multi-institutional phantom study was performed to verify the image registration uncertainty. Forty-fivemore » MVtopo images were acquired and analyzed with in-house image registration software. Results: The smallest jaw size (front and backup jaws of 0) provided the best image contrast and longitudinal resolution. Couch velocity did not affect the image quality or geometric accuracy. The MVtopo dose was less than the MVCT dose. The image registration uncertainty from the multi-institutional study was within 2.8 mm. In patient localization, the differences in calculated couch shift between the registration with MVtopo-kVtopo and MVCT-kVCT images in lateral, cranial–caudal, and vertical directions were 2.2 ± 1.7 mm, 2.6 ± 1.4 mm, and 2.7 ± 1.1 mm, respectively. The imaging time in MVtopo acquisition at the couch speed of 3 cm/s was <1 minute, compared with ≥15 minutes in MVCT for all patients. Conclusion: Whole-body MVtopo imaging could be an effective alternative to time-consuming MVCT for total marrow irradiation patient localization.« less

  15. Effects of Low-Dose Total-Body Irradiation on Canine Bone Marrow Function and Canine Lymphoma

    DTIC Science & Technology

    1981-11-01

    SCIENTIFIC REPORT Effects of low-dose total-body irradiation on canine bone marrow function and canine lymphoma cc ca D. E. Cowal! 7. J. MacVittie G... CANINE BONE MARROW FUNCTION AND CANINE LYMPHOMA 6. PERFORMING O1G. REPORT NUMBER 7. AUTHO1R(s) 8. CONTRACT OR GRANT NUMBER(s) Dt E. Cowall*, T. J...ott it e r .f00 !(1414011V byt block tumbv,) canine , I’M, bone marrow, GM-CFC 20 A US TR AC y t (𔃺t 104#0 00 ,r ,. @#PS#0 It Ml 0 le~ 9 ncj0 dd0 19

  16. Using [{sup 18}F]Fluorothymidine Imaged With Positron Emission Tomography to Quantify and Reduce Hematologic Toxicity Due to Chemoradiation Therapy for Pelvic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Sarah M., E-mail: sarah-mcguire@uiowa.edu; Bhatia, Sudershan K.; Sun, Wenqing

    Purpose: The purpose of the present prospective clinical trial was to determine the efficacy of [{sup 18}F]fluorothymidine (FLT)-identified active bone marrow sparing for pelvic cancer patients by correlating the FLT uptake change during and after chemoradiation therapy with hematologic toxicity. Methods and Materials: Simulation FLT positron emission tomography (PET) images were used to spare pelvic bone marrow using intensity modulated radiation therapy (IMRT BMS) for 32 patients with pelvic cancer. FLT PET scans taken during chemoradiation therapy after 1 and 2 weeks and 30 days and 1 year after completion of chemoradiation therapy were used to evaluate the acute and chronic dose responsemore » of pelvic bone marrow. Complete blood counts were recorded at each imaging point to correlate the FLT uptake change with systemic hematologic toxicity. Results: IMRT BMS plans significantly reduced the dose to the pelvic regions identified with FLT uptake compared with control IMRT plans (P<.001, paired t test). Radiation doses of 4 Gy caused an ∼50% decrease in FLT uptake in the pelvic bone marrow after either 1 or 2 weeks of chemoradiation therapy. Additionally, subjects with more FLT-identified bone marrow exposed to ≥4 Gy after 1 week developed grade 2 leukopenia sooner than subjects with less marrow exposed to ≥4 Gy (P<.05, Cox regression analysis). Apparent bone marrow recovery at 30 days after therapy was not maintained 1 year after chemotherapy. The FLT uptake in the pelvic bone marrow regions that received >35 Gy was 18.8% ± 1.8% greater at 30 days after therapy than at 1 year after therapy. The white blood cell, platelet, lymphocyte, and neutrophil counts at 1 year after therapy were all lower than the pretherapy levels (P<.05, paired t test). Conclusions: IMRT BMS plans reduced the dose to FLT-identified pelvic bone marrow for pelvic cancer patients. However, reducing hematologic toxicity is challenging owing to the acute radiation sensitivity (∼4 Gy) and chronic suppression of activity in bone marrow receiving radiation doses >35 Gy, as measured by the FLT uptake change correlated with the complete blood cell counts.« less

  17. Transient engraftment of syngeneic bone marrow after conditioning with high-dose cyclophosphamide and thoracoabdominal irradiation in a patient with aplastic anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsue, K.; Niki, T.; Shiobara, S.

    1990-01-01

    We describe the clinical course of a 16 year old girl with aplastic anemia who was treated by syngeneic bone marrow transplantation. Engraftment was not obtained by simple infusion of bone marrow without immunosuppression. The patient received a high-dose cyclophosphamide and thoracoabdominal irradiation, followed by second marrow transplantation from the same donor. Incomplete but significant hematologic recovery was observed; however, marrow failure recurred 5 months after transplantation. Since donor and recipient pairs were genotypically identical, graft failure could not be attributed to immunological reactivity of recipient cells to donor non-HLA antigens. This case report implies that graft failure in somemore » cases of aplastic anemia might be mediated by inhibitory cells resistant to cyclophosphamide and irradiation.« less

  18. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  19. Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.

    2007-01-01

    Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.

  20. Synthetic CT for MRI-based liver stereotactic body radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Lianli; Feng, Mary; Cao, Yue; Balter, James M.

    2017-04-01

    A technique for generating MRI-derived synthetic CT volumes (MRCTs) is demonstrated in support of adaptive liver stereotactic body radiation therapy (SBRT). Under IRB approval, 16 subjects with hepatocellular carcinoma were scanned using a single MR pulse sequence (T1 Dixon). Air-containing voxels were identified by intensity thresholding on T1-weighted, water and fat images. The envelope of the anterior vertebral bodies was segmented from the fat image and fuzzy-C-means (FCM) was used to classify each non-air voxel as mid-density, lower-density, bone, or marrow in the abdomen, with only bone and marrow classified within the vertebral body envelope. MRCT volumes were created by integrating the product of the FCM class probability with its assigned class density for each voxel. MRCTs were deformably aligned with corresponding planning CTs and 2-ARC-SBRT-VMAT plans were optimized on MRCTs. Fluence was copied onto the CT density grids, dose recalculated, and compared. The liver, vertebral bodies, kidneys, spleen and cord had median Hounsfield unit differences of less than 60. Median target dose metrics were all within 0.1 Gy with maximum differences less than 0.5 Gy. OAR dose differences were similarly small (median: 0.03 Gy, std:0.26 Gy). Results demonstrate that MRCTs derived from a single abdominal imaging sequence are promising for use in SBRT dose calculation.

  1. Patient-specific dosimetry calculations using mathematic models of different anatomic sizes during therapy with 111In-DTPA-D-Phe1-octreotide infusions after catheterization of the hepatic artery.

    PubMed

    Kontogeorgakos, Dimitrios K; Dimitriou, Panagiotis A; Limouris, Georgios S; Vlahos, Lambros J

    2006-09-01

    The aim of the study was to provide dosimetric data on intrahepatic (111)In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe(1)-octreotide therapy for neuroendocrine tumors with overexpression of somatostatin receptors. A dosimetric protocol was designed to estimate the absorbed dose to the tumor and healthy tissue in a course of 48 treatments for 12 patients, who received a mean activity of 5.4 +/- 1.7 GBq per session. The patient-specific dosimetry calculations, based on quantitative biplanar whole-body scintigrams, were performed using a Monte Carlo simulation program for 3 male and 3 female mathematic models of different anatomic sizes. Thirty minutes and 2, 6, 24, and 48 h after the radionuclide infusion, blood-sample data were collected for estimation of the red marrow radiation burden. The mean absorbed doses per administered activity (mGy/MBq) by the critical organs liver, spleen, kidneys, bladder wall, and bone marrow were 0.14 +/- 0.04, 1.4 +/- 0.6, 0.41 +/- 0.08, 0.094 +/- 0.013, and (3.5 +/- 0.8) x 10(-3), respectively; the tumor absorbed dose ranged from 2.2 to 19.6 mGy/MBq, strongly depending on the lesion size and tissue type. The results of the present study quantitatively confirm the therapeutic efficacy of transhepatic administration; the tumor-to-healthy-tissue uptake ratio was enhanced, compared with the results after antecubital infusions. Planning of treatment was also optimized by use of the patient-specific dosimetric protocol.

  2. Computer model to simulate ionizing radiation effects correlates with experimental data

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Exposure to radiation from high energy protons and particles with ionizing properties is a major challenge for long-term space missions. The specific effect of such radiation on hematopoietic cells is still not fully understood. A number of experiments have been conducted on ground and in space. Those experiments on one hand, measure the extent of damage on blood markers. On the other hand, they intend to quantify the correlation between dose and energy from the radiation particles, with their ability to impair the hematopoietic stem and progenitor function. We present a computer model based on a neural network that intends to assess the relationship between dose, energy and number of hits on a particular cell, to the damage incurred to the human marrow cells. Calibration of the network is performed with the existing experimental data available in bibliography. Different sources of ionizing radiation at different doses (0-90 cGy) and along different patterns of a long-term exposure scenarios are simulated. Results are shown for a continuous variation of doses and are compared with specific data available in the literature. Some predictions are inferred for long-term scenarios of spaceflight, and the risk of jeopardizing a mission due to a major disfunction of the bone marrow is calculated. The method has proved successful in reproducing specific experimental data. We also discuss the significance and validity of the predicted ionizing radiation effects in situations such as long-term missions for a continuous range of dose.

  3. Proposed biokinetic model for phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne

    2014-06-04

    This paper reviews data related to the biokinetics of phosphorus in the human body and proposes a biokinetic model for systemic phosphorus for use in updated International Commission on Radiological Protection (ICRP) guidance on occupational intake of radionuclides. Compared with the ICRP s current occupational model for phosphorus (Publication 68, 1994) the proposed model provides a more realistic description of the paths of movement of phosphorus in the body and improved consistency with experimental, medical, and environmental data on the time-dependent distribution and retention of phosphorus following uptake to blood. For acute uptake of 32P to blood, the proposed modelmore » yields roughly a 50% decrease in dose estimates for bone surface and red marrow and a 6-fold increase in estimates for liver and kidney compared with the biokinetic model of Publication 68 (applying Publication 68 dosimetric models in both sets of calculations). For acute uptake of 33P to blood, the proposed model yields roughly a 50% increase in dose estimates for bone surface and red marrow and a 7-fold increase in estimates for liver and kidney compared with the model of Publication 68.« less

  4. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    PubMed

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  5. Comparative dosimetric evaluation of nanotargeted (188)Re-(DXR)-liposome for internal radiotherapy.

    PubMed

    Chang, Chih-Hsien; Stabin, Michael G; Chang, Ya-Jen; Chen, Liang-Cheng; Chen, Min-Hua; Chang, Tsui-Jung; Lee, Te-Wei; Ting, Gann

    2008-12-01

    A dosimetric analysis was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) and radiochemotherapeutic drugs [(188)Re-doxorubicin (DXR)-liposomes] in internal radiotherapy for colon carcinoma, as evaluated in mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), (188)Re-liposome, and (188)Re-DXR-liposome were obtained for the estimation of absorbed doses in tumors and normal organs. Two colon carcinoma mouse models were employed: subcutaneous growing solid tumor and malignant ascites pervading tumor models. Radiation-dose estimates for normal tissues and tumors were calculated by using the OLINDA/EXM program. An evaluation of a recommended maximum administered activity (MAA) for the nanotargeted drugs was also made. Mean absorbed doses derived from (188)Re-liposome and (188)Re-DXR-liposome in normal tissues were generally similar to those from (188)Re-BMEDA in intraperitoneal and intravenous administration. Tissue-absorbed dose in the liver was 0.24-0.40 and 0.17-0.26 (mGy/MBq) and in red marrow was 0.033-0.050 and 0.038-0.046 (mGy/MBq), respectively, for (188)Re-liposome and (188)Re-DXR-liposome. Tumor-absorbed doses for the nanotargeted (188)Re-liposome and (188)Re-DXR-liposome were higher than those of (188)Re-BMEDA for both routes of administration (4-26-fold). Dose to red marrow defined the recommended MAA. Our results suggest that radionuclide and chemoradiotherapeutic passive targeting delivery, using nanoliposomes as the carrier, is feasible and promising in systemic-targeted radionuclide therapy.

  6. Reconstruction of Internal Doses for the Alpha-Risk Case-Control Study of Lung Cancer and Leukaemia Among European Nuclear Workers.

    PubMed

    Bingham, Derek; Bérard, Philippe; Birchall, Alan; Bull, Richard; Cardis, Elisabeth; Challeton-de Vathaire, Cécile; Grellier, James; Hurtgen, Christian; Puncher, Matthew; Riddell, Anthony; Thierry-Chef, Isabelle

    2017-05-01

    The Alpha-Risk study required the reconstruction of doses to lung and red bone marrow for lung cancer and leukaemia cases and their matched controls from cohorts of nuclear workers in the UK, France and Belgium. The dosimetrists and epidemiologists agreed requirements regarding the bioassay data, biokinetic and dosimetric models and dose assessment software to be used and doses to be reported. The best values to use for uncertainties on the monitoring data, setting of exposure regimes and characteristics of the exposure material, including lung solubility, were the responsibility of the dosimetrist responsible for each cohort. Among 1721 subjects, the median absorbed dose to the lung from alpha radiations was 2.1 mGy, with a maximum dose of 316 mGy. The lung doses calculated reflect the higher levels of exposure seen among workers in the early years of the nuclear industry compared to today. © Crown copyright 2016.

  7. Quantities for assessing high photon doses to the body: a calculational approach.

    PubMed

    Eakins, Jonathan S; Ainsbury, Elizabeth A

    2018-06-01

    Tissue reactions are the most clinically significant consequences of high-dose exposures to ionising radiation. However, currently there is no universally recognized dose quantity that can be used to assess and report generalised risks to individuals following whole body exposures in the high-dose range. In this work, a number of potential dose quantities are presented and discussed, with mathematical modelling techniques employed to compare them and explore when their differences are most or least manifest. The results are interpreted to propose the average (D GRB ) of the absorbed doses to the stomach, small intestine, red bone marrow, and brain as the optimum quantity for informing assessments of risk. A second, maximally conservative dose quantity (D Max ) is also suggested, which places limits on any under-estimates resulting from the adoption of D GRB . The primary aim of this work is to spark debate, with further work required to refine the final choice of quantity or quantities most appropriate for the full range of different potential exposure scenarios.

  8. Re-186 and Sm-153 dosimetry based on scintigraphic imaging data in skeletal metastasis palliative treatment and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Andreou, M.; Lagopati, N.; Lyra, M.

    2011-09-01

    Optimum treatment planning of patients suffering from painful skeletal metastases requires accurate calculations concerning absorbed dose in metastatic lesions and critical organs, such as red marrow. Delivering high doses to tumor cells while limiting radiation dose to normal tissue, is the key for successful palliation treatment. The aim of this study is to compare the dosimetric calculations, obtained by Monte Carlo (MC) simulation and the MIRDOSE model, in therapeutic schemes of skeleton metastatic lesions, with Rhenium-186 (Sn) -HEDP and Samarium-153 -EDTMP. A bolus injection of 1295 MBq (35mCi) Re-186- HEDP was infused in 11 patients with multiple skeletal metastases. The administered dose for the 8 patients who received Sm-153 was 1 mCi /kg. Planar scintigraphic images for the two groups of patients were obtained, 24 h, 48 h and 72 h post injection, by an Elscint Apex SPX gamma camera. The images were processed, utilizing ROI quantitative methods, to determine residence times and radionuclide uptakes. Dosimetric calculations were performed using the patient specific scintigraphic data by the MIRDOSE3 code of MIRD. Also, MCNPX was employed, simulating the distribution of the radioisotope in the ROI and calculating the absorbed doses in the metastatic lesion, and in critical organs. Summarizing, there is a good agreement between the results, derived from the two pathways, the patient specific and the mathematical, with a deviation of less than 9% for planar scintigraphic data compared to MC, for both radiopharmaceuticals.

  9. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakeman, T; Wang, I; Podgorsak, M

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CTmore » data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less

  10. SU-F-R-55: Early Detection of Treatment Induced Bone Marrow Injury During Chemoradiation Therapy Using Quantitative CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Song, Y; Erickson, B

    Purpose: Acute hematologic toxicity associated with bone marrow injury is a common complication of chemoradiation therapy (CRT) for pelvic malignancies. In this work, we investigate the feasibility of using quantitative CT to detect bone marrow injury during CRT. Methods: Daily CTs were acquired during routine CT-guided radiation therapy using a CT-on-rails for 15 cervical cancer patients. All patients treated with a radiation dose of 45.0 to 50.4 Gy in 1.8 Gy/fraction along with chemotherapy. For each patient, the contours of bone marrow were generated in L4, L5 and sacrum on the first daily CT and then populated to other dailymore » CTs by rigid registration using MIM (MIM Software Inc., Cleveland, OH) with manual editing if possible. A series of CT texture parameters, including Hunsfield Unit (HU) histogram, mean HU, entropy, energy, in bone marrow contours were calculated using MATLAB on each daily CT and were correlated with the completed blood counts (CBC) collected weekly for each patient. The correlations were analyzed with Pearson correlation tests. Results: For all patient data analyzed, mean HU in bone marrow decreased during CRT delivery. From the first to the last fraction the average mean HU reduction is 58.1 ± 13.6 HU (P<0.01). This decrease can be observed as early as after first 5 fractions and is strongly associated with the changes of most CBC quantities, such as the reductions of white and blood cell counts (r=0.97, P=0.001). The reduction of HU is spatially varied. Conclusion: Chemoradiation induced bone marrow injury can be detected during the delivery of CRT using quantitative CT. Chemoradiation results in reductions in mean HU, which are strongly associated with the change in the pretrial blood cell counts. Early detection of bone marrow injury with commonly available CT opens a door to improve bone marrow sparing, reducing risk of hematologic toxicity.« less

  11. Estimation of Second Primary Cancer Risk After Treatment with Radioactive Iodine for Differentiated Thyroid Carcinoma.

    PubMed

    Corrêa, Nilton Lavatori; de Sá, Lidia Vasconcellos; de Mello, Rossana Corbo Ramalho

    2017-02-01

    An increase in the incidence of second primary cancers is the late effect of greatest concern that could occur in differentiated thyroid carcinoma (DTC) patients treated with radioactive iodine (RAI). The decision to treat a patient with RAI should therefore incorporate a careful risk-benefit analysis. The objective of this work was to adapt the risk-estimation models developed by the Biological Effects of Ionizing Radiation Committee to local epidemiological characteristics in order to assess the carcinogenesis risk from radiation in a population of Brazilian DTC patients treated with RAI. Absorbed radiation doses in critical organs were also estimated to determine whether they exceeded the thresholds for deterministic effects. A total of 416 DTC patients treated with RAI were retrospectively studied. Four organs were selected for absorbed dose estimation and subsequent calculation of carcinogenic risk: the kidney, stomach, salivary glands, and bone marrow. Absorbed doses were calculated by dose factors (absorbed dose per unit activity administered) previously established and based on standard human models. The lifetime attributable risk (LAR) of incidence of cancer as a function of age, sex, and organ-specific dose was estimated, relating it to the activity of RAI administered in the initial treatment. The salivary glands received the greatest absorbed doses of radiation, followed by the stomach, kidney, and bone marrow. None of these, however, surpassed the threshold for deterministic effects for a single administration of RAI. Younger patients received the same level of absorbed dose in the critical organs as older patients did. The lifetime attributable risk for stomach cancer incidence was by far the highest, followed in descending order by salivary-gland cancer, leukemia, and kidney cancer. RAI in a single administration is safe in terms of deterministic effects because even high-administered activities do not result in absorbed doses that exceed the thresholds for significant tissue reactions. The Biological Effects of Ionizing Radiation Committee mathematical models are a practical method of quantifying the risks of a second primary cancer, demonstrating a marked decrease in risk for younger patients with the administration of lower RAI activities and suggesting that only the smallest activities necessary to promote an effective ablation should be administered in low-risk DTC patients.

  12. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheiss, Timothy E.; Wong, Jeffrey; Liu, An

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribsmore » and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.« less

  13. Bone marrow produces sufficient alloreactive natural killer (NK) cells in vivo to cure mice from subcutaneously and intravascularly injected 4T1 breast cancer.

    PubMed

    van Gelder, Michel; Vanclée, Ariane; van Elssen, Catharina H M J; Hupperets, Pierre; Wieten, Lotte; Bos, Gerard M

    2017-02-01

    Administration of 5 million alloreactive natural killer (NK) cells after low-dose chemo-irradiation cured mice of 4T1 breast cancer, supposedly dose dependent. We now explored the efficacy of bone marrow as alternative in vivo source of NK cells for anti-breast cancer treatment, as methods for in vitro clinical scale NK cell expansion are still in developmental phases. Progression-free survival (PFS) after treatment with different doses of spleen-derived alloreactive NK cells to 4T1-bearing Balb/c mice was measured to determine a dose-response relation. The potential of bone marrow as source of alloreactive NK cells was explored using MHC-mismatched mice as recipients of 4T1. Chemo-irradiation consisted of 2× 2 Gy total body irradiation and 200 mg/kg cyclophosphamide. Antibody-mediated in vivo NK cell depletion was applied to demonstrate the NK cell's role. Administration of 2.5 instead of 5 million alloreactive NK cells significantly reduced PFS, evidencing dose responsiveness. Compared to MHC-matched receivers of subcutaneous 4T1, fewer MHC-mismatched mice developed tumors, which was due to NK cell alloreactivity because in vivo NK cell depletion facilitated tumor growth. Application of low-dose chemo-irradiation increased plasma levels of NK cell-activating cytokines, NK cell activity and enhanced NK cell-dependent elimination of subcutaneous tumors. Intravenously injected 4T1 was eliminated by alloreactive NK cells in MHC-mismatched recipients without the need for chemo-irradiation. Bone marrow is a suitable source of sufficient alloreactive NK cells for the cure of 4T1 breast cancer. These results prompt clinical exploration of bone marrow transplantation from NK-alloreactive MHC-mismatched donors in patients with metastasized breast cancer.

  14. α-Imaging Confirmed Efficient Targeting of CD₄₅-Positive Cells After ²¹¹At-Radioimmunotherapy for Hematopoietic Cell Transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Sophia; Miller, Brian W.; Back, Tom

    Alpha-radioimmunotherapy (α-RIT) targeting CD45 may substitute for total body irradiation in hematopoietic cell transplantation (HCT) preparative regimens for lymphoma. Our goal was to optimize the anti-CD45 monoclonal antibody (MAb; CA12.10C12) protein dose for astatine-²¹¹(²¹¹At)-RIT, extending the analysis to include intra-organ ²¹¹At activity distribution and α-imaging-based small-scale dosimetry, along with imunohistochemical staining. Methods: Eight normal dogs were injected with either 0.75 (n=5) or 1.00 mg/kg (n=3) of ²¹¹At-B10-CA12.10C12 (11.5–27.6 MBq/kg). Two were euthanized and necropsied 19–22 hours postinjection (p.i.), and six received autologous HCT three days after ²¹¹At-RIT, following lymph node and bone marrow biopsies at 2–4 and/or 19 hours p.i.more » Blood was sampled to study toxicity and clearance; CD45 targeting was evaluated by flow cytometry. ²¹¹At localization and small scale dosimetry were assessed using two α-imaging : α-camera and iQID. Results: Uptake of ²¹¹At was highest in spleen (0.31–0.61 %IA/g), lymph nodes (0.02–0.16 %IA/g), liver (0.11–0.12 %IA/g), and marrow (0.06–0.08 %IA/g). Lymphocytes in blood and marrow were efficiently targeted using either MAb dose. Lymph nodes remained unsaturated, but displayed targeted ²¹¹At localization in T lymphocyte-rich areas. Absorbed doses to blood, marrow, and lymph nodes were estimated at 3.9, 3.0, and 4.2 Gy/210 MBq, respectively. All transplanted dogs experienced transient hepatic toxicity. Liver enzyme levels were temporarily elevated in 5 of 6 dogs; 1 treated with 1.00 mg MAb/kg developed ascites and was euthanized 136 days after HCT. Conclusion: ²¹¹At-anti-CD45 RIT with 0.75 mg MAb/kg efficiently targeted blood and marrow without severe toxicity. Dosimetry calculations and observed radiation-induced effects indicated that sufficient ²¹¹At-B10-CA12.10C12 localization was achieved for efficient conditioning for HCT.« less

  15. Radiation protocols determine acute graft-versus-host disease incidence after allogeneic bone marrow transplantation in murine models.

    PubMed

    Schwarte, Sebastian; Bremer, Michael; Fruehauf, Joerg; Sorge, Yanina; Skubich, Susanne; Hoffmann, Matthias W

    2007-09-01

    Effects of radiation sources used for total body irradiation (TBI) on Graft-versus-Host Disease (GvHD) induction were examined. In a T cell receptor (TCR) transgenic mouse model, single fraction TBI was performed with different radiation devices ((60)Cobalt; (137)Cesium; 6 MV linear accelerator), dose rates (0.85; 1.5; 2.9; 5 Gy/min) and total doses before allogeneic bone marrow transplantation (BMT). Recipients were observed for 120 days. Different tissues were examined histologically. Acute GvHD was induced by a dose rate of 0.85 Gy/min ((60)Cobalt) and a total dose of 9 Gy and injection of 5 x 10(5) lymph node cells plus 5 x 10(6) bone marrow cells. Similar results were obtained using 6 MV linear accelerator- (linac-) photons with a dose rate of 1.5 Gy/min and 0.85 Gy/min, a total dose of 9.5 Gy and injection of same cell numbers. TBI with (137)Cesium (dose rate: 2.5 Gy/min) did not lead reproducibly to lethal acute GvHD. Experimental TBI in murine models may induce different immunological responses, depending on total energy, total single dose and dose rate. GvHD might also be induced by TBI with low dose rates.

  16. The radiation dosimetry of intrathecally administered radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stabin, M.G.; Evans, J.F.

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energymore » deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.« less

  17. Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation.

    PubMed

    Harrison, J D; Muirhead, C R

    2003-01-01

    To compare quantitative estimates of lifetime cancer risk in humans for exposures to internally deposited radionuclides and external radiation. To assess the possibility that risks from radionuclide exposures may be underestimated. Risk estimates following internal exposures can be made for a small number of alpha-particle-emitting nuclides. (1) Lung cancer in underground miners exposed by inhalation to radon-222 gas and its short-lived progeny. Studies of residential (222)Rn exposure are generally consistent with predictions from the miner studies. (2) Liver cancer and leukaemia in patients given intravascular injections of Thorotrast, a thorium-232 oxide preparation that concentrates in liver, spleen and bone marrow. (3) Bone cancer in patients given injections of radium-224, and in workers exposed occupationally to (226)Ra and (228)Ra, mainly by ingestion. (4) Lung cancer in Mayak workers exposed to plutonium-239, mainly by inhalation. Liver and bone cancers were also seen, but the dosimetry is not yet sufficiently good enough to provide quantitative estimates of risks. Comparisons can be made between risk estimates for radiation-induced cancer derived for radionuclide exposure and those derived for the A-bomb survivors, exposed mainly to low-LET (linear energy transfer) external radiation. Data from animal studies, using dogs and rodents, allow comparisons of cancer induction by a range of alpha- and beta-/gamma-emitting radionuclides. They provide information on relative biological effectiveness (RBE), dose-response relationships, dose-rate effects and the location of target cells for different malignancies. For lung and liver cancer, the estimated values of risk per Sv for internal exposure, assuming an RBE for alpha-particles of 20, are reasonably consistent with estimates for external exposure to low-LET radiation. This also applies to bone cancer when risk is calculated on the basis of average bone dose, but consideration of dose to target cells on bone surfaces suggests a low RBE for alpha-particles. Similarly, for leukaemia, the comparison of risks from alpha-irradiation ((232)Th and progeny) and external radiation suggest a low alpha RBE; this conclusion is supported by animal data. Risk estimates for internal exposure are dependent on the assumptions made in calculating dose. Account is taken of the distribution of radionuclides within tissues and the distribution of target cells for cancer induction. For the lungs and liver, the available human and animal data provide support for current assumptions. However, for bone cancer and leukaemia, it may be that changes are required. Bone cancer risk may be best assessed by calculating dose to a 50 micro m layer of marrow adjacent to endosteal (inner) bone surfaces rather than to a single 10 micro m cell layer as currently assumed. Target cells for leukaemia may be concentrated towards the centre of marrow cavities so that the risk of leukaemia from bone-seeking radionuclides, particularly alpha emitters, may be overestimated by the current assumption of uniform distribution of target cells throughout red bone marrow. The lifetime risk estimates considered here for exposure to internally deposited radionuclides and to external radiation are subject to uncertainties, arising from the dosimetric assumptions made, from the quality of cancer incidence and mortality data and from aspects of risk modelling; including variations in baseline rates between populations for some cancer types. Bearing in mind such uncertainties, comparisons of risk estimates for internal emitters and external radiation show good agreement for lung and liver cancers. For leukaemia, the available data suggest that the assumption of an alpha-particle RBE of 20 can result in overestimates of risk. For bone cancer, it also appears that current assumptions will overestimate risks from alpha-particle-emitting nuclides, particularly at low doses.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mead, H; St. Jude Children’s Research Hospital, Memphis, TN; Brady, S

    Purpose: To discover if a previously published methodology for estimating patient-specific organ dose in a pediatric population (5–55kg) is translatable to the adult sized patient population (> 55 kg). Methods: An adult male anthropomorphic phantom was scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations in the chest and abdominopelvic regions to determine absolute organ dose. Organ-dose-to-SSDE correlation factors were developed by dividing individual phantom organ doses by SSDE of the phantom; where SSDE was calculated at the center of the scan volume of the chest and abdomen/pelvis separately. Organ dose correlation factors developedmore » in phantom were multiplied by 28 chest and 22 abdominopelvic patient SSDE values to estimate organ dose. The median patient weight from the CT examinations was 68.9 kg (range 57–87 kg) and median age was 17 years (range 13–28 years). Calculated organ dose estimates were compared to published Monte Carlo simulated patient and phantom results. Results: Organ-dose-to-SSDE correlation was determined for a total of 23 organs in the chest and abdominopelvic regions. For organs fully covered by the scan volume, correlation in the chest (median 1.3; range 1.1–1.5) and abdominopelvic (median 0.9; range 0.7–1.0) was 1.0 ± 10%. For organs that extended beyond the scan volume (i.e. skin bone marrow and bone surface) correlation was determined to be a median of 0.3 (range 0.1–0.4). Calculated patient organ dose using patient SSDE agreed to better than 6% (chest) and 15% (abdominopelvic) to published values. Conclusion: This study demonstrated that our previous published methodology for calculating organ dose using patient-specific SSDE for the chest and abdominopelvic regions is translatable to adult sized patients for organs fully covered by the scan volume.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gymore » followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vostrotin, Vadim; Birchall, Alan; Zhdanov, Alexey

    The distribution of calculated internal doses was determined for 8043 Mayak Production Associate (Mayak PA) workers according to the epidemiological cohorts and groups of raw data used as well as the type of industrial compounds of inhaled aerosols. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185585 mGy, with a median value of 31 mGy and a maximum of 8980 mGy maximum. The ranges of relative standard uncertainty were: from 40 to 2200% for accumulated lung dose,more » from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-18% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to lognormal. The accumulated internal plutonium dose to systemic organs was close to a log-triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow, calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.8 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.« less

  1. Chlorozotocin

    PubMed Central

    Panasci, Lawrence C.; Green, Dianna; Schein, Philip S.

    1979-01-01

    Chlorozotocin is a chloroethyl nitrosourea with a glucose carrier that has curative activity for the murine L1210 leukemia, but is nonmyelosuppressive in mice. To determine the mechanism for this unique property of reduced bone marrow toxicity, comparative studies were conducted with chlorozotocin and CCNU, a myelotoxic chloroethyl nitrosourea. Suspensions of L1210 leukemia and murine bone marrow cells were incubated for 2 h with 0.1 mM [14C]-chloroethyl chlorozotocin or CCNU. Chlorozotocin demonstrated a fourfold increased covalent binding of the chloroethyl group to L1210 nuclei when compared to equimolar CCNU. Chlorozotocin alkylation of L1210 cells resulted in the binding of 57 pmol of [14C]ethyl group/mg of DNA, which represented a 2.3-fold increased alkylation when compared to CCNU. In marked contrast, the binding of the chloroethyl group to bone marrow nuclei was equivalent for both drugs. In addition, chlorozotocin alkylation of murine bone marrow DNA, 45 pmol of [14C]ethyl group/mg of DNA, was equivalent to that of CCNU. The ratio of L1210:bone marrow DNA alkylation was 1.3 for chlorozotocin compared to 0.6 for CCNU. The intracellular carbamoylation of L1210 and bone marrow protein by CCNU was 400- to 600-fold greater than that produced by chlorozotocin. After a 2-h exposure to 0.1, 0.05, or 0.01 mM drug, both chlorozotocin and CCNU produced a reduction in the cloning efficiency of L1210 cells that was dose dependent. However, chlorozotocin was significantly more cytotoxic than CCNU at all three molar concentrations (P < 0.01). Chlorozotocin, 0.1 mM, reduced L1210 DNA synthesis to 1% of control by 48 h, in contrast to 16% with equimolar CCNU (P < 0.01). In mice bearing 105 L1210 cells, chlorozotocin produced its optimal antitumor activity (332% increased life span [ILS]) at doses of 48-64 μmol/kg, with >50% indefinite survivors. In contrast, CCNU at the same molar doses resulted in only a 191% ILS; a CCNU dose of 128 μmol/kg was required for comparable optimal L1210 antitumor activity, 413% ILS. On a molar basis, the dose of chlorozotocin that produced optimal in vivo L1210 antitumor activity was one-third to one-half that of CCNU. Chlorozotocin, unlike CCNU, produced no murine bone marrow toxicity at its optimal therapeutic dose. This unique combination of antitumor activity without myelosuppression can be correlated with the advantageous ratio of L1210:bone marrow in vitro DNA alkylation by chlorozotocin (1.3) as compared to equimolar CCNU (0.6). PMID:158033

  2. TU-F-CAMPUS-T-05: Replacement Computational Phantoms to Estimate Dose in Out-Of-Field Organs and Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, K; Oregon Health and Science University, Portland, Oregon; Tannous, J

    Purpose: To estimate the absorbed dose in organs and tissues at risk for radiogenic cancer for children receiving photon radiotherapy for localized brain tumors (LBTs) by supplementing their missing body anatomies with those of replacement computational phantoms. Applied beyond the extent of the RT Images collected by computed tomography simulation, these phantoms included RT Image and RT Structure Set objects that encompassed sufficient extents and contours for dosimetric calculations. Method: Nine children, aged 2 to 14 years, who received three-dimensional conformal radiotherapy for low-grade LBTs, were randomly selected for this study under Institutional-Review-Board protocol. Because the extents of their RTmore » Images were cranial only, they were matched for size and sex with patients from a previous study with larger extents and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the patients’ data and those of the replacement computational phantoms using commercial software. In-field dose was calculated with a clinically-commissioned treatment planning system, and out-of-field dose was estimated with an analytical model. Results: Averaged over all nine children and normalized for a therapeutic dose of 54 Gy prescribed to the PTV, where the PTV is the GTV, the highest mean organ doses were 3.27, 2.41, 1.07, 1.02, 0.24, and 0.24 Gy in the non-tumor remainder, red bone marrow, thyroid, skin, breasts, and lungs, respectively. The mean organ doses ranged by a factor of 3 between the smallest and largest children. Conclusion: For children receiving photon radiotherapy for LBTs, we found their doses in organs at risk for second cancer to be non-negligible, especially in the non-tumor remainder, red bone marrow, thyroid, skin, breasts, and lungs. This study demonstrated the feasibility for patient dosimetry studies to augment missing patient anatomy by applying size- and sex-matched replacement computational phantoms with pre-contoured organs. Funding is in part by the Fogarty International Center award K01TW008409, and the Portland Chapter of the Achievement Rewards for College Scientists. The content is solely the responsibility of the authors, and does not necessarily represent the official views of the sponsors. The authors declare no conflict of interest.« less

  3. Electronic compensation technique to deliver a total body dose

    NASA Astrophysics Data System (ADS)

    Lakeman, Tara E.

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  4. Long-term accumulation and microdistribution of uranium in the bone and marrow of beagle dog.

    PubMed

    Arruda-Neto, J D T; Manso Guevara, M V; Nogueira, G P; Taricano, I D; Saiki, M; Zamboni, C B; Bonamin, L V; Camargo, S P; Cestari, A C; Deppman, A; Garcia, F; Gouveia, A N; Guzman, F; Helene, O A M; Jorge, S A C; Likhachev, V P; Martins, M N; Mesa, J; Rodriguez, O; Vanin, V R

    2004-08-01

    The accumulation and microdistribution of uranium in the bone and marrow of Beagle dogs were determined by both neutron activation and neutron-fission analysis. The experiment started immediately after the weaning period, lasting till maturity. Two animal groups were fed daily with uranyl nitrate at concentrations of 20 and 100 microg g(-1) food. Of the two measuring techniques, uranium accumulated along the marrow as much as in the bone, contrary to the results obtained with single, acute doses. The role played by this finding for the evaluation of radiobiological long-term risks is discussed. It was demonstrated, by means of a biokinetical approach, that the long-term accumulation of uranium in bone and marrow could be described by a piling up of single dose daily incorporation.

  5. Radioimmunotherapy with monoclonal antibodies. A new horizon in nuclear medicine therapy?

    PubMed

    Sautter-Bihl, M L; Bihl, H

    1994-08-01

    Radioimmunotherapy (RIT) with labeled tumor-associated monoclonal antibodies (MAbs) is a promising concept in oncology, which essentially consists of biological targeting of ionising radiation to tumors. Some encouraging clinical results have been achieved with RIT. However, there are severe problems associated with both understanding the mechanisms and predicting the effectiveness of RIT. This paper reviews the results of some major clinical trials, especially in malignant lymphomas and in some solid tumors. Furthermore, problems with RIT are described such as the significance of dose inhomogeneity and dose-rate effects, the appropriate dose calculation method, the toxicity of RIT and the development of HAMAs. It is suggested that newer technologies including chimeric antibodies, multiple-step targeting protocols, bone marrow transplantation, parallel application of external radiation, heat or bioreductive drugs will enable RIT to make an essential contribution to strategies for combating cancer.

  6. Acute Exposure to High Dose γ-Radiation Results in Transient Activation of Bone Lining Cells

    PubMed Central

    Turner, Russell T.; Iwaniec, Urszula T.; Wong, Carmen P.; Lindenmaier, Laurence B.; Wagner, Lindsay A.; Branscum, Adam J.; Menn, Scott A.; Taylor, James; Zhang, Ye; Wu, Honglu; Sibonga, Jean D.

    2014-01-01

    The present studies investigated the cellular mechanisms for the detrimental effects of high dose whole body γ-irradiation on bone. In addition, radioadaptation and bone marrow transplantation were assessed as interventions to mitigate the skeletal complications of irradiation. Increased trabecular thickness and separation and reduced fractional cancellous bone volume, connectivity density, and trabecular number were detected in proximal tibia and lumbar vertebra 14 days following γ-irradiation with 6 Gy. To establish the cellular mechanism for the architectural changes, vertebrae were analyzed by histomorphometry 1, 3, and 14 days following irradiation. Marrow cell density decreased within 1 day (67% reduction, p<0.0001), reached a minimum value after 3 days (86% reduction, p<0.0001), and partially rebounded by 14 days (30% reduction, p=0.0025) following irradiation. In contrast, osteoblast-lined bone perimeter was increased by 290% (1 day, p=0.04), 1230% (3 days, p<0.0001), and 530% (14 days, p=0.003), respectively. There was a strong association between radiation-induced marrow cell death and activation of bone lining cells to express the osteoblast phenotype (Pearson correlation −0.85, p<0.0001). An increase (p=0.004) in osteoclast-lined bone perimeter was also detected with irradiation. A priming dose of γ-radiation (0.5 mGy), previously shown to reduce mortality, had minimal effect on the cellular responses to radiation and did not prevent detrimental changes in bone architecture. Bone marrow transplantation normalized marrow cell density, bone turnover, and most indices of bone architecture following irradiation. In summary, radiation-induced death of marrow cells is associated with 1) a transient increase in bone formation due, at least in part, to activation of bone lining cells, and 2) an increase in bone resorption due to increased osteoclast perimeter. Bone marrow transplantation is effective in mitigating the detrimental effects of acute exposure to high dose whole body γ-radiation on bone turnover. PMID:23954507

  7. Hematologic effects of subcutaneous administration of recombinant human granulocyte colony-stimulating factor (filgrastim) in healthy alpacas.

    PubMed

    McKenzie, Erica C; Tornquist, Susan J; Gorman, M Elena; Cebra, Christopher K; Payton, Mark E

    2008-06-01

    To determine the effects of SC administration of filgrastim on cell counts in venous blood and bone marrow of healthy adult alpacas. 10 healthy alpacas. Alpacas were randomly assigned to receive treatment with filgrastim (5 microg/kg, SC; n=5) or an equivalent volume of physiologic saline (0.9% NaCl) solution (5) once a day for 3 days. Blood samples were obtained via jugular venipuncture 1 day prior to treatment and once a day for 5 days commencing 24 hours after the first dose was administered. Complete blood counts were performed for each blood sample. Bone marrow aspirates were obtained from the sternum of each alpaca 48 hours before the first treatment was administered and 72 hours after the third treatment was administered. Myeloid-to-erythroid cell (M:E) ratio was determined via cytologic evaluation of bone marrow aspirates. In filgrastim-treated alpacas, substantial increases in counts of WBCs and neutrophils were detected within 24 hours after the first dose was administered. Band cell count and percentage significantly increased 24 hours after the second dose. Counts of WBCs, neutrophils, and band cells remained high 48 hours after the third dose. Red blood cell counts and PCV were unaffected. The M:E ratio also increased significantly after treatment with filgrastim. Filgrastim induced rapid and substantial increases in numbers of circulating neutrophils and M:E ratios of bone marrow in healthy alpacas. Therefore, filgrastim may be useful in the treatment of camelids with impaired bone marrow function.

  8. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells.

    PubMed

    Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Mousavi, Seyedeh Maryam; Mahmoudzadeh, Aziz; Akhlaghpoor, Shahram

    2007-01-01

    The radioprotective effect of hawthorn (Crataegus microphylla) fruit extract against genotoxicity induced by gamma irradiation has been investigated in mouse bone marrow cells. A single intraperitoneal (ip) administration of hawthorn extract at doses of 25, 50, 100 and 200 mg/kg 1h prior to gamma irradiation (2 Gy) reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs). All four doses of hawthorn extract significantly reduced the frequencies of MnPCEs and increased the PCE/PCE+NCE ratio (polychromatic erythrocyte/ polychromatic erythrocyte + normochromatic erythrocyte) in mice bone marrow compared with the non drug-treated irradiated control (p < 0.02-0.00001). The maximum reduction in MnPCEs was observed in mice treated with extract at a dose of 200 mg/kg. Administration of amifostine at dose 100 mg/kg and hawthorn at dose 200 mg/kg reduced the frequency of MnPCE almost 4.8 and 5.7 fold; respectively, after being exposed to 2 Gy of gamma rays, compare with the irradiated control group. Crataegus extract exhibited concentration-dependent activity on 1,1-diphenyl 2-picrylhydrazyl free radical showing that Crataegus contained high amounts of phenolic compounds and the HPLC analysis determined that it contained chlorogenic acid, epicatechin and hyperoside. It appeared that hawthorn extract with antioxidant activity reduced the genotoxicity induced by gamma irradiation in bone marrow cells.

  9. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time.

    PubMed

    Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher

    2016-03-01

    We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.

  10. Amodiaquine induced agranulocytosis: inhibition of colony growth in bone marrow by antimalarial agents.

    PubMed Central

    Rhodes, E G; Ball, J; Franklin, I M

    1986-01-01

    Bone marrow was cultured in vitro for colonies of granulocytes and macrophages five months after a patient had recovered from amodiaquine induced agranulocytosis. The addition of amodiaquine, chloroquine, and sulfadoxine to the culture was followed by a dose dependent inhibition of colony growth in the patient's marrow but not in normal control bone marrow. Colony growth was, however, unaffected by proguanil, pyrimethamine, and quinine. These findings show that in vitro marrow culture may have important predictive value in some cases of drug induced agranulocytosis. PMID:3082409

  11. Preliminary dosimetric evaluation of (166)Ho-TTHMP for human based on biodistribution data in rats.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza; Tajik, Mojtaba; Ghannadi-Maragheh, Mohammad

    2014-12-01

    In this work, the absorbed dose to each organ of human for (166)Ho-TTHMP was evaluated based on biodistribution studies in rats by a RADAR method and was compared with (166)Ho-DOTMP as the only clinically used Ho-166 bone marrow ablative agent. The highest absorbed dose for this complex is observed in red marrow with 0.922mGy/MBq. The results show that (166)Ho-TTHMP has considerable characteristics compared to (166)Ho-DOTMP and can be a good candidate for bone marrow ablation in patients with multiple myeloma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dosimetric analysis of 177Lu-DOTA-rituximab in patients with relapsed/refractory non-Hodgkin's lymphoma.

    PubMed

    Yadav, Madhav P; Singla, Suhas; Thakral, Parul; Ballal, Sanjana; Bal, Chandrasekhar

    2016-07-01

    Radioimmunotherapy targeting CD20 receptors in lymphoma using radiolabeled chimeric antibodies may lead to better therapeutic responses than cold anti-CD20 antibodies. This study aimed to assess the biodistribution and present reasonable estimates of normal organ doses, including red marrow using Lu-DOTA-rituximab. Patients with relapsed/refractory CD20+ B-cell non-Hodgkin's lymphoma were recruited into this prospective study. In-house labeling of Lu-DOTA-rituximab was performed and administered after quality assurance. Rituximab (375 mg/m), followed by 50 mCi (1850 MBq) of Lu-DOTA-rituximab was administered as a slow intravenous infusion and emission images were acquired. Regions of interest were drawn for kidney, liver, heart, bladder, spleen, and tumor lesions on both anterior and posterior images. Internal dose estimation was performed using OLINDA v1.0 software. The mean age of the 10 patients (eight men and two women) was 52±13 years. The uptake of radiolabeled antibody was visualized within 30 min of administration in the liver, kidneys, heart, spleen, and bladder. The coefficient of determination (R) was greater than 0.95 for organs and the whole body in all patients. The effective half-life of radioimmunoconjugate was 100±28 h (42-126 h). The critical organ in our study was the red marrow. The average total body dose, effective dose, and effective dose equivalent calculated in all 10 patients were 0.13±0.02, 0.15±0.03, and 0.22±0.04 mGy/MBq, respectively. There may be considerable interindividual differences in absorbed doses of organs and generalization or extrapolation of doses in the clinical setting at present is not feasible with Lu-DOTA-rituximab in non-Hodgkin's lymphoma patients. Patient-specific dosimetry is thus recommended to eliminate the variations and reduce the possibility of dose-limiting toxicity.

  13. Hematologic Toxicity in RTOG 0418: A Phase 2 Study of Postoperative IMRT for Gynecologic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klopp, Ann H., E-mail: aklopp@mdanderson.org; Moughan, Jennifer; Portelance, Lorraine

    2013-05-01

    Purpose: Intensity modulated radiation therapy (IMRT), compared with conventional 4-field treatment, can reduce the volume of bone marrow irradiated. Pelvic bone marrow sparing has produced a clinically significant reduction in hematologic toxicity (HT). This analysis investigated HT in Radiation Therapy Oncology Group (RTOG) 0418, a prospective study to test the feasibility of delivering postoperative IMRT for cervical and endometrial cancer in a multiinstitutional setting. Methods and Materials: Patients in the RTOG 0418 study were treated with postoperative IMRT to 50.4 Gy to the pelvic lymphatics and vagina. Endometrial cancer patients received IMRT alone, whereas patients with cervical cancer received IMRTmore » and weekly cisplatin (40 mg/m{sup 2}). Pelvic bone marrow was defined within the treatment field by using a computed tomography density-based autocontouring algorithm. The volume of bone marrow receiving 10, 20, 30, and 40 Gy and the median dose to bone marrow were correlated with HT, graded by Common Terminology Criteria for Adverse Events, version 3.0, criteria. Results: Eighty-three patients were eligible for analysis (43 with endometrial cancer and 40 with cervical cancer). Patients with cervical cancer treated with weekly cisplatin and pelvic IMRT had grades 1-5 HT (23%, 33%, 25%, 0%, and 0% of patients, respectively). Among patients with cervical cancer, 83% received 5 or more cycles of cisplatin, and 90% received at least 4 cycles of cisplatin. The median percentage volume of bone marrow receiving 10, 20, 30, and 40 Gy in all 83 patients, respectively, was 96%, 84%, 61%, and 37%. Among cervical cancer patients with a V40 >37%, 75% had grade 2 or higher HT compared with 40% of patients with a V40 less than or equal to 37% (P =.025). Cervical cancer patients with a median bone marrow dose of >34.2 Gy also had higher rates of grade ≥2 HT than did those with a dose of ≤34.2 Gy (74% vs 43%, P=.049). Conclusions: Pelvic IMRT with weekly cisplatin is associated with low rates of HT and high rates of weekly cisplatin use. The volume of bone marrow receiving 40 Gy and the median dose to bone marrow correlated with higher rates of grade ≥2 toxicity among patients receiving weekly cisplatin (cervical cancer patients). Evaluation and limitation of the volume of bone marrow treated with pelvic IMRT is warranted in patients receiving concurrent chemotherapy.« less

  14. Repeated high-dose chemotherapy followed by purged autologous bone marrow transplantation as consolidation therapy in metastatic neuroblastoma.

    PubMed

    Hartmann, O; Benhamou, E; Beaujean, F; Kalifa, C; Lejars, O; Patte, C; Behard, C; Flamant, F; Thyss, A; Deville, A

    1987-08-01

    Among 62 children over 1 year of age at diagnosis, who were treated for stage IV neuroblastoma, 33 entered complete remission (CR) or good partial remission (GPR) after conventional therapy and received high-dose chemotherapy (HDC) with in vitro purged autologous bone marrow transplantation (ABMT) as consolidation therapy. The HDC was a combination of carmustine (BCNU), teniposide (VM-26), and melphalan. Thirty-three patients received one course of this regimen, and 18 received two courses. At present, 16 of the 33 grafted patients are alive in continuous CR, with a median follow-up of 28 months. Toxicity of this regimen was tolerable, principally marked by bone marrow depression and gastrointestinal (GI) tract complications. Four complication-related deaths were observed. Relapse post-ABMT occurred most often in the bone marrow. Under this treatment, actuarial disease-free survival is improved compared with that observed under conventional therapy.

  15. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakeman, T; Wang, IZ; Roswell Park Cancer Institute, Buffalo, NY

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were createdmore » retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less

  16. Implementation of a Lateral TBI protocol in a Mexican Cancer Center

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko; Sosa, Modesto A.

    2008-08-01

    The development of a Lateral Total Body Irradiation protocol to be implemented at a High Specialty Medical Unit in Mexico as preparatory regimen for bone marrow transplant and treatment of several lymphomas is presented. This protocol was developed following AAPM specifications and has been validated for application at a cancer care center in United States. This protocol fundamentally focuses on patient care, avoiding instability and discomfort that may be encountered by other treatment regimes. In vivo dose verification with TLD-100 chips for each anatomical region of interest was utilized. TLD-100 chips were calibrated using a 6 MV photon beam for 10-120 cGy. Experimental results show TLD measurements with an error less than 1%. Standard deviations for calculated and measured doses for seven patients have been obtained. Data gathered for different levels of compensation indicate that a 3% measured tolerance level is acceptable. TLD point-dose measurements have been used to verify the dose beyond partial transmission lung blocks. Dose measurements beyond the lung block showed variation about 50% respects to prescribe dose. Midplane doses to the other anatomical sites were less than 2.5% respect of the prescribed dose.

  17. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617.

    PubMed

    Kratochwil, Clemens; Schmidt, Karl; Afshar-Oromieh, Ali; Bruchertseifer, Frank; Rathke, Hendrik; Morgenstern, Alfred; Haberkorn, Uwe; Giesel, Frederik L

    2018-01-01

    PSMA-617 is a small molecule targeting the prostate-specific membrane antigen (PSMA). In this work, we estimate the radiation dosimetry for this ligand labeled with the alpha-emitter 213 Bi. Three patients with metastatic prostate cancer underwent PET scans 0.1 h, 1 h, 2 h, 3 h, 4 h and 5 h after injection of 68 Ga-PSMA-617. Source organs were kidneys, liver, spleen, salivary glands, bladder, red marrow and representative tumor lesions. The imaging nuclide 68 Ga was extrapolated to the half-life of 213 Bi. The residence times of 213 Bi were forwarded to the instable daughter nuclides. OLINDA was used for dosimetry calculation. Results are discussed in comparison to literature data for 225 Ac-PSMA-617. Assuming a relative biological effectiveness of 5 for alpha radiation, the dosimetry estimate revealed equivalent doses of mean 8.1 Sv RBE5 /GBq for salivary glands, 8.1 Sv RBE5 /GBq for kidneys and 0.52 Sv RBE5 /GBq for red marrow. Liver (1.2 Sv RBE5 /GBq), spleen (1.4 Sv RBE5 /GBq), bladder (0.28 Sv RBE5 /GBq) and other organs (0.26 Sv RBE5 /GBq) were not dose-limiting. The effective dose is 0.56 Sv RBE5 /GBq. Tumor lesions were in the range 3.2-9.0 Sv RBE5 /GBq (median 7.6 Sv RBE5 /GBq). Kidneys would limit the cumulative treatment activity to 3.7 GBq; red marrow might limit the maximum single fraction to 2 GBq. Despite promising results, the therapeutic index was inferior compared to 225 Ac-PSMA-617. Dosimetry of 213 Bi-PSMA-617 is in a range traditionally considered reasonable for clinical application. Nevertheless, compared to 225 Ac-PSMA-617, it suffers from higher perfusion-dependent off-target radiation and a longer biological half-life of PSMA-617 in dose-limiting organs than the physical half-life of 213 Bi, rendering this nuclide as a second choice radiolabel for targeted alpha therapy of prostate cancer.

  18. High-dose total-body irradiation and autologous marrow reconstitution in dogs: dose-rate-related acute toxicity and fractionation-dependent long-term survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeg, H.J.; Storb, R.; Weiden, P.L.

    1981-11-01

    Beagle dogs treated by total-body irradiation (TBI) were given autologous marrow grafts in order to avoid death from marrow toxicity. Acute and delayed non-marrow toxicities of high single-dose (27 dogs) and fractionated TBI (20 dogs) delivered at 0.05 or 0.1 Gy/min were compared. Fractionated TBI was given in increments of 2 Gy every 6 hr for three increments per day. Acute toxicity and early mortality (<1 month) at identical total irradiation doses were comparable for dogs given fractionated or single-dose TBI. With single-dose TBI, 14, 16, and 18 Gy, respectively, given at 0.05 Gy/min, 0/5, 5/5, and 2/2 dogs diedmore » from acute toxicity; with 10, 12, and 14 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 5/5 dogs died acutely. With fractionated TBI, 14 and 16 Gy, respectively, given at 0.1 Gy/min, 1/5, 4/5, and 2/2 dogs died auctely. Early deaths were due to radiation enteritis with or without associated septicemia (29 dogs; less than or equal to Day 10). Three dogs given 10 Gy of TBI at 0.1 Gy/min died from bacterial pneumonia; one (Day 18) had been given fractionated and two (Days 14, 22) single-dose TBI. Fifteen dogs survived beyond 1 month; eight of these had single-dose TBI (10-14 Gy) and all died within 7 months of irradiation from a syndrome consisting of hepatic damage, pancreatic fibrosis, malnutrition, wasting, and anemia. Seven of the 15 had fractionated TBI, and only one (14 Gy) died on Day 33 from hepatic failure, whereas 6 (10-14 Gy) are alive and well 250 to 500 days after irradiation. In conclusion, fractionated TBI did not offer advantages over single-dose TBI with regard to acute toxicity and early mortality; rather, these were dependent upon the total dose of TBI. The total acutely tolerated dose was dependent upon the exposure rate; however, only dogs given fractionated TBI became healthy long-term survivors.« less

  19. Estimation of radiation cancer risk in CT-KUB

    NASA Astrophysics Data System (ADS)

    Karim, M. K. A.; Hashim, S.; Bakar, K. A.; Bradley, D. A.; Ang, W. C.; Bahrudin, N. A.; Mhareb, M. H. A.

    2017-08-01

    The increased demand for computed tomography (CT) in radiological scanning examinations raises the question of a potential health impact from the associated radiation exposures. Focusing on CT kidney-ureter-bladder (CT-KUB) procedures, this work was aimed at determining organ equivalent dose using a commercial CT dose calculator and providing an estimate of cancer risks. The study, which included 64 patients (32 males and 32 females, mean age 55.5 years and age range 30-80 years), involved use of a calibrated CT scanner (Siemens-Somatom Emotion 16-slice). The CT exposures parameter including tube potential, pitch factor, tube current, volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded and analyzed using CT-EXPO (Version 2.3.1, Germany). Patient organ doses, including for stomach, liver, colon, bladder, red bone marrow, prostate and ovaries were calculated and converted into cancer risks using age- and sex-specific data published in the Biological Effects of Ionizing Radiation (BEIR) VII report. With a median value scan range of 36.1 cm, the CTDIvol, DLP, and effective dose were found to be 10.7 mGy, 390.3 mGy cm and 6.2 mSv, respectively. The mean cancer risks for males and females were estimated to be respectively 25 and 46 out of 100,000 procedures with effective doses between 4.2 mSv and 10.1 mSv. Given the increased cancer risks from current CT-KUB procedures compared to conventional examinations, we propose that the low dose protocols for unenhanced CT procedures be taken into consideration before establishing imaging protocols for CT-KUB.

  20. (18)F-FDG dynamic PET/CT in patients with multiple myeloma: patterns of tracer uptake and correlation with bone marrow plasma cell infiltration rate.

    PubMed

    Sachpekidis, Christos; Mai, Elias K; Goldschmidt, Hartmut; Hillengass, Jens; Hose, Dirk; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-06-01

    The value of F-FDG PET in the diagnostic approach of multiple myeloma (MM) remains incompletely elicited. Little is known about the kinetics of F-FDG in the bone marrow and extramedullary sites in MM. This study aimed to evaluate quantitative data on kinetics and distribution patterns of F-FDG in MM patients with regard to pelvic bone marrow plasma cell infiltration. The study included 40 patients with primary MM. Dynamic PET/CT scanning of the lower lumbar spine and pelvis was performed after the administration of F-FDG. Whole-body PET/CT studies were performed. Sites of focal increased tracer uptake were considered as highly suggestive of myelomatous involvement after taking into account the patient history and CT findings. Bone marrow of the os ilium without pathologic tracer accumulation served as reference. The evaluation of dynamic PET/CT studies was based in addition to the conventional visual (qualitative) assessment, on semiquantitative (SUV) calculations, as well as on absolute quantitative estimations after application of a 2-tissue compartment model and a noncompartmental approach. F-FDG quantitative information and corresponding distribution patterns were correlated with pelvic bone marrow plasma cell infiltration. Fifty-two myelomatous lesions were detected in the pelvis. All parameters in suspected MM lesions ranged in significantly higher levels than in reference tissue (P < 0.01). Correlative analyses revealed that bone marrow plasma cell infiltration rate correlated significantly with SUVaverage, SUVmax, and the parameters K1, influx, and fractal dimension of F-FDG in reference bone marrow (P < 0.01). In addition, whole-body static PET/CT imaging demonstrated 4 patterns of tracer uptake; these are as follows: negative, focal, diffuse, and mixed (focal/diffuse) tracer uptake. Patients with a mixed pattern of radiotracer uptake had the highest mean plasma cell infiltration rate in their bone marrow, whereas those with negative PET/CT scans demonstrated the lowest bone marrow plasma cell infiltration. In total, 265 focal myeloma-indicative F-FDG-avid lesions were detected, 129 of which correlated with low-dose CT osteolytic findings. No significant correlation between the number of focal lesions detected in PET/CT and bone marrow infiltration was detected. The F-FDG kinetic parameters K1, influx, and fractal dimension as well as SUVaverage from reference tissue correlated significantly with bone marrow malignant plasma cell infiltration rate. Patients with negative PET/CT demonstrated the lowest bone marrow infiltration by malignant plasma cells, whereas those with a mixed pattern of tracer uptake had the highest infiltration.

  1. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  2. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degowin, R.L.; Lass, S.L.

    Our studies show that the induction of a chronic inflammatory lesion in the left hind legs of mice by administration of 5000 rad produced distinct abnormalities of the hematopoietic system. A peripheral neutrophilia accompanied reduced numbers of total nucleated cells, stem cells, stromal cells, erythroblasts, and lymphocytes in the unirradiated femoral marrow, and the spleen was enlarged. Mice with these hematopoietic abnormalities promptly succumbed with bone marrow failure to a sublethal dose of total body irradiation (600 rad TB). Acute inflammation associated with a sterile abscess also impaired survival after 600 rad TB. Hematopoietic abnormalities resembling those in mice withmore » inflammation had been reported in mice bearing a solid extramedullary tumor of sarcoma-180. Concomitant studies showed that bone marrow failure and impaired survival after 600 rad TB administered to mice bearing sarcoma-180 occurred at the same time as that in mice with chronic inflammation. We concluded that chronic inflammation or tumor produced similar abnormalities in the bone marrow and spleen that led to markedly impaired survival and death from bone marrow failure after a sublethal dose of total body irradiation. Although the extramedullary hematopoiesis in the enlarged spleen indicated that its microenvironment supported hematopoiesis, whereas that in marrow was reduced, it was insufficient to compensate for a total body deficit of functional stem cells.« less

  4. Dosimetric study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques - 3D CRT, IMRT and VMAT. Study protocol.

    NASA Astrophysics Data System (ADS)

    Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian

    2016-03-01

    Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.

  5. Bone Marrow Lipids in Rats Exposed to Total-Body Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Fred; Cress, Edgar A.

    1963-05-01

    ABS>Thin-layer chromatography was used to demonstrate that bone marrow lipids of rats were primarily triglycerides; gas-liquid chromatography of the fraction revealed that palmitic and oleic acids account for more than 80% of the fatty acids. Minor lipid components present in the control and irradiated marrow are glyceryl ethers, cholesterol, fatty acids, and phospholipids. Cholesterol esters were not found. Total-body irradiation (800 r) increases the femur marrow triglyceride fraction approximately six times by 1 week after irradiation, and it remains elevated for many weeks. The relationship between dose and increase in marrow triglycerides appears to fit the equation y = bxmore » a. The water and lipid content of bone marrow bear a reciprocal relation to each other, while both water and residue are significantly reduced in the irradiated femur marrow.« less

  6. An image-based skeletal model for the ICRP reference adult male—specific absorbed fractions for neutron-generated recoil protons

    NASA Astrophysics Data System (ADS)

    Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.

    2011-11-01

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  7. [Optimizing staff radiation protection in radiology by minimizing the effective dose].

    PubMed

    von Boetticher, H; Lachmund, J; Hoffmann, W; Luska, G

    2006-03-01

    In the present study the optimization of radiation protection devices is achieved by minimizing the effective dose of the staff members since the stochastic radiation effects correlate to the effective dose. Radiation exposure dosimetry was performed with TLD measurements using one Alderson Phantom in the patient position and a second phantom in the typical position of the personnel. Various types of protective clothing as well as fixed shields were considered in the calculations. It was shown that the doses of the unshielded organs (thyroid, parts of the active bone marrow) contribute significantly to the effective dose of the staff. Therefore, there is no linear relationship between the shielding factors for protective garments and the effective dose. An additional thyroid protection collar reduces the effective dose by a factor of 1.7 - 3.0. X-ray protective clothing with a 0.35 mm lead equivalent and an additional thyroid protection collar provides better protection against radiation than an apron with a 0.5 mm lead equivalent but no collar. The use of thyroid protection collars is an effective preventive measure against exceeding occupational organ dose limits, and a thyroid shield also considerably reduces the effective dose. Therefore, thyroid protection collars should be a required component of anti-X protection.

  8. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  9. RADRUE METHOD FOR RECONSTRUCTION OF EXTERNAL PHOTON DOSES TO CHERNOBYL LIQUIDATORS IN EPIDEMIOLOGICAL STUDIES

    PubMed Central

    Kryuchkov, Victor; Chumak, Vadim; Maceika, Evaldas; Anspaugh, Lynn R.; Cardis, Elisabeth; Bakhanova, Elena; Golovanov, Ivan; Drozdovitch, Vladimir; Luckyanov, Nickolas; Kesminiene, Ausrele; Voillequé, Paul; Bouville, André

    2010-01-01

    Between 1986 and 1990, several hundred thousand workers, called “liquidators” or “clean-up workers”, took part in decontamination and recovery activities within the 30-km zone around the Chernobyl nuclear power plant in Ukraine, where a major accident occurred in April 1986. The Chernobyl liquidators were mainly exposed to external ionizing radiation levels that depended primarily on their work locations and the time after the accident when the work was performed. Because individual doses were often monitored inadequately or were not monitored at all for the majority of liquidators, a new method of photon (i.e. gamma and x-rays) dose assessment, called “RADRUE” (Realistic Analytical Dose Reconstruction with Uncertainty Estimation) was developed to obtain unbiased and reasonably accurate estimates for use in three epidemiologic studies of hematological malignancies and thyroid cancer among liquidators. The RADRUE program implements a time-and-motion dose reconstruction method that is flexible and conceptually easy to understand. It includes a large exposure rate database and interpolation and extrapolation techniques to calculate exposure rates at places where liquidators lived and worked within ~70 km of the destroyed reactor. The RADRUE technique relies on data collected from subjects’ interviews conducted by trained interviewers, and on expert dosimetrists to interpret the information and provide supplementary information, when necessary, based upon their own Chernobyl experience. The RADRUE technique was used to estimate doses from external irradiation, as well as uncertainties, to the bone-marrow for 929 subjects and to the thyroid gland for 530 subjects enrolled in epidemiologic studies. Individual bone-marrow dose estimates were found to range from less than one μGy to 3,300 mGy, with an arithmetic mean of 71 mGy. Individual thyroid dose estimates were lower and ranged from 20 μGy to 507 mGy, with an arithmetic mean of 29 mGy. The uncertainties, expressed in terms of geometric standard deviations, ranged from 1.1 to 5.8, with an arithmetic mean of 1.9. PMID:19741357

  10. Acute Toxicity Study of Zerumbone-Loaded Nanostructured Lipid Carrier on BALB/c Mice Model

    PubMed Central

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; Othman, Hemn Hassan; Chartrand, Max Stanley; Namvar, Farideh; Abdul Samad, Nozlena; Andas, Reena Joys; Ng, Kuan Beng; How, Chee Wun

    2014-01-01

    Zerumbone- (ZER-) loaded nanostructure lipid carrier (NLC) (ZER-NLC) prepared for its antileukemia effect in vitro was evaluated for its toxicological effects by observing changes in the liver, kidney, spleen, lung, heart, and brain tissues, serum biochemical parameters, total haemogram, and bone marrow stem cells. The acute toxicity study for ZER-NLC was conducted by orally treating BALB/c mice with a single dose with either water, olive oil, ZER, NLC, or ZER-NLC for 14 days. The animals were observed for clinical and behavioral abnormalities, toxicological symptoms, feed consumption, and gross appearance. The liver, kidney, heart, lung, spleen, and brain tissues were assessed histologically. Total haemogram was counted by hemocytometry and microhematocrit reader. Bone marrow examination in terms of cellular morphology was done by Wright staining with bone marrow smear. Furthermore, serum biochemical parameters were determined spectrophotometrically. Grossly all treated mice, their investigated tissues, serum biochemical parameters, total haemogram, and bone marrow were normal. At oral doses of 100 and 200 mg/kg ZER-NLC there was no sign of toxicity or mortality in BALB/c mice. This study suggests that the 50% lethal dose (LD50) of ZER-NLC is higher than 200 mg/kg, thus, safe by oral administration. PMID:25276798

  11. Acute toxicity study of zerumbone-loaded nanostructured lipid carrier on BALB/c mice model.

    PubMed

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; Othman, Hemn Hassan; Chartrand, Max Stanley; Namvar, Farideh; Yeap, Swee Keong; Abdul Samad, Nozlena; Andas, Reena Joys; Muhammad Nadzri, Nabilah; Anasamy, Theebaa; Ng, Kuan Beng; How, Chee Wun

    2014-01-01

    Zerumbone- (ZER-) loaded nanostructure lipid carrier (NLC) (ZER-NLC) prepared for its antileukemia effect in vitro was evaluated for its toxicological effects by observing changes in the liver, kidney, spleen, lung, heart, and brain tissues, serum biochemical parameters, total haemogram, and bone marrow stem cells. The acute toxicity study for ZER-NLC was conducted by orally treating BALB/c mice with a single dose with either water, olive oil, ZER, NLC, or ZER-NLC for 14 days. The animals were observed for clinical and behavioral abnormalities, toxicological symptoms, feed consumption, and gross appearance. The liver, kidney, heart, lung, spleen, and brain tissues were assessed histologically. Total haemogram was counted by hemocytometry and microhematocrit reader. Bone marrow examination in terms of cellular morphology was done by Wright staining with bone marrow smear. Furthermore, serum biochemical parameters were determined spectrophotometrically. Grossly all treated mice, their investigated tissues, serum biochemical parameters, total haemogram, and bone marrow were normal. At oral doses of 100 and 200 mg/kg ZER-NLC there was no sign of toxicity or mortality in BALB/c mice. This study suggests that the 50% lethal dose (LD50) of ZER-NLC is higher than 200 mg/kg, thus, safe by oral administration.

  12. Changes in compartments of hemospoietic and stromal marrow progenitor cells after continuous low dose gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E.; Starostin, V.

    The low dose continuous gamma-irradiation chosen corresponded with that affected the organisms onboard a spacecraft (Mitrikas, Tsetlin, 2000). F1 (CBAxC57Bl/6) male and female mice were used at 3 4 months of age. Experimental mice were- irradiated during 10 days to a total dose of 15 mGy (Co60 gamma-sources, mean dose rate of 1.5-2.0 mGy/day). Another group of intact mice served as control. Younger and advanced hemopoietic progenitors measured at day 11 (i.e. CFU -S-11) and day 7 (i.e. CFU-S-7), respectively, after transplantation of test donor cells were assayed by the method of Till and McCulloch (1961). Stromal changes were evaluated by estimation of in vitro fibroblastic colony-forming units (CFU -F ) content and by the ability of ectopically grafted (under renal capsule) stroma to regenerate the new bone marrow organ. CFU-S-11 number increased of 40% as compared with control and almost 2-fold higher than that of CFU-S-7. The CFU-F content increased almost of 3-fold. Size of ectopic marrow transplants was estimated at day 70 following grafting by counting myelokariocyte and CFU -S number that repopulated the newly formed bone marrow organ. It was found more than 2-fold increase of myelokariocytes in transplants produced by marrow stroma of irradiated donors. CFU -S contents in transplants increased strikingly in comparison to control level. CFU-S-7 and CFU-S-11 increased of 7.5- and of 3.7-fold, respectively, i.e. the rate of advanced CFU - S predominated. It should be noted a good correlation between number of stromal progenitor cells (CFU-F) and ectopic transplant sizes evaluated as myelokaryocyte counts when irradiated donors used. In the same time, if sizes of transplants was measured as CFU-S-7 and CFU - S-11 numbers, their increases were more pronounced. Therefore, continuous low dose gamma- irradiation augments significantly both hemopoietic and stromal progenitor cell number in bone marrow. Additionally, the ratio of distinct CFU -S subpopulations changes. Stromal cells acquire the ability to form much greater hemopoietic territories and seems to create the microenvironments of another quality with stimulatory effects on CFU - S proliferation.

  13. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.

    2003-05-01

    The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.

  14. Treatment planning for internal emitter therapy: Methods, applications and clinical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sgouros, G.

    1999-01-01

    Treatment planning involves three basic steps: (1) a procedure must be devised that will provide the most relevant information, (2) the procedure must be applied and (3) the resulting information must be translated into a definition of the optimum implementation. There are varying degrees of treatment planning that may be implemented in internal emitter therapy. As in chemotherapy, the information from a Phase 1 study may be used to treat patients based upon body surface area. If treatment planning is included on a patient-specific basis, a pretherapy, trace-labeled, administration of the radiopharmaceutical is generally required. The data collected following themore » tracer dose may range from time-activity curves of blood and whole-body for use in blood, marrow or total body absorbed dose estimation to patient imaging for three-dimensional internal emitter dosimetry. The most ambitious approach requires a three-dimensional set of images representing radionuclide distribution (SPECT or PET) and a corresponding set of images representing anatomy (CT or MRI). The absorbed dose (or dose-rate) distribution may be obtained by convolution of a point kernel with the radioactivity distribution or by direct Monte Carlo calculation. A critical requirement for both techniques is the development of an overall structure that makes it possible, in a routine manner, to input the images, to identify the structures of interest and to display the results of the dose calculations in a clinically relevant manner. 52 refs., 4 figs., 1 tab.« less

  15. Pilot Study: Unique Response of Bone Tissue During an Investigation of Radio-Adaptive Effects in Mice

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Iwaniec, U.; Wu, H.

    2011-01-01

    PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal tibia, High Dose radiation increased the osteoclast-covered bone perimeters, the density of adipocytes in bone marrow, and the area of bone marrow occupied by fat cells -- while in the LV2, adipocytes were rare and not stimulated by High Dose radiation. In an unexpected response, High Dose radiation dramatically increased (10-fold) osteoblast-covered bone perimeter in the LV2.

  16. Marrow Ablative and Immunosuppressive Effects of I-131-anti-CD45 Antibody in Congenic and H2-Mismatched Murine Transplant Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D. C.; Martin, P J.; Nourigat, C.

    1998-12-01

    Targeted hematopoietic irradiation delivered by I-131-anti-CD45 antibody has been combined with conventional marrow transplant preparative regimens in an effort to decrease relapse. Before increasing the proportion of therapy delivered by radiolabeled antibody, the myeloablative and immunosuppressive effects of such low dose rate irradiation must be quantitated. We have examined the ability of I-131-anti-CD45 antibody to facilitate engraftment in Ly5-congenic and H2-mismatched murine marrow transplant models. Recipient B6-Ly5-a mice were treated with 30F11 antibody labeled with 0.1 to 1.5 mCi I-131 and/or total body irradiation (TBI), followed by T-cell-depleted marrow from Ly5-b-congenic (C57BL/6) or H2-mismatched (BALB/c) donors. Engraftment was achieved readilymore » in the Ly5-congenic setting, with greater than 80% donor granulocytes and T cells after 0.5 mCi I-131 (estimated 17 Gy to marrow) or 8 Gy TBI. A higher TBI dose (14 Gy) was required to achieve engraftment of H2-mismatched mar row, and engraftment occurred in only 3 of 11 mice receiving 1.5 mCi I-131 delivered by anti-CD45 antibody. Engraftment of H2-mismatched marrow was achieved in 22 of 23 animals receiving 0.75 mCi I-131 delivered by anti-CD45 antibody combined with 8 Gy TBI. Thus, targeted radiation delivered via I-131-anti-CD45 antibody can enable engraftment of congenic marrow and can partially replace TBI when transplanting T-cell-depleted H2-mismatched marrow.« less

  17. RADIATION DOSES AND CANCER RISKS IN THE MARSHALL ISLANDS ASSOCIATED WITH EXPOSURE TO RADIOACTIVE FALLOUT FROM BIKINI AND ENEWETAK NUCLEAR WEAPONS TESTS: SUMMARY

    PubMed Central

    Simon, Steven L.; Bouville, André; Land, Charles E.; Beck, Harold L.

    2014-01-01

    Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946–1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m−2) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people. PMID:20622547

  18. Radiation doses and cancer risks in the Marshall Islands associated with exposure to radioactive fallout from Bikini and Enewetak nuclear weapons tests: summary.

    PubMed

    Simon, Steven L; Bouville, André; Land, Charles E; Beck, Harold L

    2010-08-01

    Nuclear weapons testing conducted at Bikini and Enewetak Atolls during 1946-1958 resulted in exposures of the resident population of the present-day Republic of the Marshall Islands to radioactive fallout. This paper summarizes the results of a thorough and systematic reconstruction of radiation doses to that population, by year, age at exposure, and atoll of residence, and the related cancer risks. Detailed methods and results are presented in a series of companion papers in this volume. From our analysis, we concluded that 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in measurable fallout deposition on one or more of the inhabited atolls of the Marshall Islands. In this work, we estimated deposition densities (kBq m(-2)) of all important dose-contributing radionuclides at each of the 32 atolls and separate reef islands of the Marshall Islands. Quantitative deposition estimates were made for 63 radionuclides from each test at each atoll. Those estimates along with reported measurements of exposure rates at various times after fallout were used to estimate radiation absorbed doses to the red bone marrow, thyroid gland, stomach wall, and colon wall of atoll residents from both external and internal exposure. Annual doses were estimated for six age groups ranging from newborns to adults. We found that the total deposition of 137Cs, external dose, internal organ doses, and cancer risks followed the same geographic pattern with the large population of the southern atolls receiving the lowest doses. Permanent residents of the southern atolls who were of adult age at the beginning of the testing period received external doses ranging from 5 to 12 mGy on average; the external doses to adults at the mid-latitude atolls ranged from 22 to 59 mGy on average, while the residents of the northern atolls received external doses in the hundreds to over 1,000 mGy. Internal doses varied significantly by age at exposure, location, and organ. Except for internal doses to the thyroid gland, external exposure was generally the major contributor to organ doses, particularly for red bone marrow and stomach wall. Internal doses to the stomach wall and red bone marrow were similar in magnitude, about 1 mGy to 7 mGy for permanent residents of the southern and mid-latitude atolls. However, adult residents of Utrik and Rongelap Island, which are part of the northern atolls, received much higher internal doses because of intakes of short-lived radionuclides leading to doses from 20 mGy to more than 500 mGy to red bone marrow and stomach wall. In general, internal doses to the colon wall were four to ten times greater than those to the red bone marrow and internal doses to the thyroid gland were 20 to 30 times greater than to the red bone marrow. Adult internal thyroid doses for the Utrik community and for the Rongelap Island community were about 760 mGy and 7,600 mGy, respectively. The highest doses were to the thyroid glands of young children exposed on Rongelap at the time of the Castle Bravo test of 1 March 1954 and were about three times higher than for adults. Internal doses from chronic intakes, related to residual activities of long-lived radionuclides in the environment, were, in general, low in comparison with acute exposure resulting from the intakes of radionuclides immediately or soon after the deposition of fallout. The annual doses and the population sizes at each atoll in each year were used to develop estimates of cancer risks for the permanent residents of all atolls that were inhabited during the testing period as well as for the Marshallese population groups that were relocated prior to the testing or after it had begun. About 170 excess cancers (radiation-related cases) are projected to occur among more than 25,000 Marshallese, half of whom were born before 1948. All but about 65 of those cancers are estimated to have already been expressed. The 170 excess cancers are in comparison to about 10,600 cancers that would spontaneously arise, unrelated to radioactive fallout, among the same cohort of Marshallese people.

  19. Failure of antimony trioxide to induce micronuclei or chromosomal aberrations in rat bone-marrow after sub-chronic oral dosing.

    PubMed

    Kirkland, David; Whitwell, James; Deyo, James; Serex, Tessa

    2007-03-05

    Antimony trioxide (Sb2O3, CAS 1309-64-4) is widely used as a flame retardant synergist in a number of household products, as a fining agent in glass manufacture, and as a catalyst in the manufacture of various types of polyester plastics. It does not induce point mutations in bacteria or mammalian cells, but is able to induce chromosomal aberrations (CA) in cultured cells in vitro. Although no CA or micronuclei (MN) have been induced after acute oral dosing of mice, repeated oral dosing for 14 or 21 days resulted in increased CA in one report, but did not result in increased MN in another. In order to further investigate its in vivo genotoxicity, Sb2O3 was dosed orally to groups of rats for 21 days at 250, 500 and 1000 mg/kg day. There were no clinical signs of toxicity in the Sb2O3-exposed animals except for some reductions in body-weight gain in the top dose group. Toxicokinetic measurements in a separate study confirmed bone-marrow exposure, and at higher levels than would have been achieved by single oral dosing. Large numbers of cells were scored for CA (600 metaphases/sex group) and MN (12,000 PCE/sex group) but frequencies of CA or MN in Sb2O3-treated rats were very similar to controls, and not biologically or statistically different, at all doses. These results provide further indication that Sb2O3 is not genotoxic to the bone marrow of rodents after 21 days of oral administration at high doses close to the maximum tolerated dose.

  20. Skeletal dosimetry for external exposure to photons based on µCT images of spongiosa from different bone sites

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.

    2007-11-01

    Micro computed tomography (µCT) images of human spongiosa have recently been used for skeletal dosimetry with respect to external exposure to photon radiation. In this previous investigation, the calculation of equivalent dose to the red bone marrow (RBM) and to the bone surface cells (BSC) was based on five different clusters of micro matrices derived from µCT images of vertebrae, and the BSC equivalent dose for 10 µm thickness of the BSC layer was determined using an extrapolation method. The purpose of this study is to extend the earlier investigation by using µCT images from eight different bone sites and by introducing an algorithm for the direct calculation of the BSC equivalent dose with sub-micro voxel resolution. The results show that for given trabecular bone volume fractions (TBVFs) the whole-body RBM equivalent dose does not depend on bone site-specific properties or imaging parameters. However, this study demonstrates that apart from the TBVF and the BSC layer thickness, the BSC equivalent dose additionally depends on a so-called trabecular bone structure (TBS) effect, i.e. that the contribution of photo-electrons released in trabecular bone to the BSC equivalent dose also depends on the bone site-specific structure of the trabeculae. For a given bone site, the TBS effect is also a function of the thickness of the BSC layer, and it could be shown that this effect would disappear almost completely, should the BSC layer thickness be raised from 10 to 50 µm, according to new radiobiological findings.

  1. Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow. PMID:23176540

  2. SU-E-T-600: In Vivo Dosimetry for Total Body and Total Marrow Irradiations with Optically Stimulated Luminescence Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedbala, M; Save, C; Cygler, J

    Purpose: To evaluate the feasibility of using optically stimulated luminescence dosimeters (OSLDs) for in-vivo dosimetry of patients undergoing Total Body and Total Marrow Irradiations (TBI and TMI). Methods: TBI treatments of 12 Gy were delivered in 6 BID fractions with the patient on a moving couch under a static 10 MV beam (Synergy, Elekta). TMI treatments of 18 Gy in 9 BID fractions were planned and delivered using a 6 MV TomoTherapy unit (Accuray). To provide a uniform dose to the entire patient length, the treatment was split into 2 adjacent fields junctioned in the thigh region. Our standard clinicalmore » practice involves in vivo dosimetry with MOSFETs for each TBI fraction and TLDs for at least one fraction of the TMI treatment for dose verification. In this study we also used OSLDs. Individual calibration coefficients were obtained for the OSLDs based on irradiations in a solid water phantom to the dose of 50 cGy from Elekta Synergy 10 MV (TBI) and 6 MV (TMI) beams. Calibration coefficients were calculated based on the OSLDs readings taken 2 hrs post-irradiation. For in vivo dosimetry OSLDs were placed alongside MOSFETs for TBI patients and in approximately the same locations as the TLDs for TMI patients. OSLDs were read 2 hours post treatment and compared to the MOSFET and TLD results. Results: OSLD measured doses agreed within 5% with MOSFET and TLD results, with the exception of the junction region in the TMI patient due to very high dose gradient and difficulty of precise and reproducible detector placement. Conclusion: OSLDs are useful for in vivo dosimetry of TBI and TMI patients. The quick post-treatment readout is an advantage over TLDs, allowing the results to be obtained between BID fractions, while wireless detectors are advantageous over MOSFETs for treatments involving a moving couch.« less

  3. [44Sc]Sc-PSMA-617 Biodistribution and Dosimetry in Patients With Metastatic Castration-Resistant Prostate Carcinoma.

    PubMed

    Khawar, Ambreen; Eppard, Elisabeth; Sinnes, Jean Phlippe; Roesch, Frank; Ahmadzadehfar, Hojjat; Kürpig, Stefan; Meisenheimer, Michael; Gaertner, Florian C; Essler, Markus; Bundschuh, Ralph A

    2018-05-01

    [Sc]Sc-PSMA-617 with 3.9-hour half-life, in vitro and in vivo characteristics similar to [Lu]Lu-PSMA-617 and possibility of delayed imaging after 24 hours or later, implies it to be advantageous than [ Ga]Ga-PSMA-617 for pretherapeutic dosimetric assessment for [Lu]Lu-PSMA-617 in metastatic castration-resistant prostate carcinoma (mCRPC) patients. In this study, we investigated biodistribution and radiation exposure to normal organs with [Sc]Sc-PSMA-617 in mCRPC patients. Five mCRPC patients (mean age, 69 years) enrolled for [Lu]Lu-PSMA-617 therapy were injected with 40-62 MBq [Sc]Sc-PSMA-617 intravenously; Siemens Biograph 2 PET/CT system was used to acquire dynamic PET data (30 minutes) in list mode over the abdomen, followed by the collection of static PET/CT images (skull to mid-thigh) at 45 minutes, 2 and approximately 20 hours postinjection. Time-dependent changes in percentage activity in source organs (kidneys, bladder, salivary glands, small intestine, liver, spleen, and whole body) were determined. Bone marrow and urinary bladder contents residence time were also calculated. Source organs residence time, organ-absorbed doses, and effective doses were determined using OLINDA/EXM software. Physiological tracer uptake was seen in kidneys, liver, spleen, small intestine, urinary bladder, and salivary glands and in metastases. Kidneys with highest radiation absorbed dose of 3.19E-01 mSv/MBq were the critical organs, followed by urinary bladder wall (2.24E-01 mSv/MBq, spleen [1.85E-01], salivary glands [1.11E-01], and liver [1.07E-01] mSv/MBq). Red marrow dose was found to be 3.31E-02 mSv/MBq. The mean effective dose of 3.89E-02 mSv/MBq and effective dose of 1.95 mSv was estimated from 50 MBq (treatment planning dose) of [Sc]Sc-PSMA-617. [Sc]Sc-PSMA-617 is found to be a very promising radiopharmaceutical that can be used for pre [Lu]Lu-PSMA-617 therapeutic dosimetric assessment.

  4. [Toxicological assessment on safety of water and 70% ethanolic extracts of nearly ripe fruit of Evodia rutaecarpa].

    PubMed

    Yang, Xiu-Wei

    2008-06-01

    To study the acute toxicity and mutagenic risk of the water extracts (ERWE) and 70% ethanol extracts (EREE) from the nearly ripe fruit of Evodia rutaecarpa, and provide experimental basis for safety evaluation of ones. The ERWE and EREE were prepared from the nearly ripe fruit of E. rutaecarpa by reflux extraction with H2O and 70% ethanol aqueous solution for three times, respectively. According to the terms from "technical standards for test & toxicological assessment of health food" issued by Healthy Ministry of PRC, acute toxicity, and Ames, mouse marrow cell micronucleus and mouse sperm aberration test were performed. Acute toxicity test of ERWE and EREE in mice was studied by the method of Horn to give the median lethal dose (LD50). Forty healthy Kunming strain male and female mice were used and their body weights ranged from 17-22 g. All of them were distributed randomly to 4 different dose groups which each had 10 mice. The ERWE or EREE was administered at the doses of 1.00, 2.15, 4.64 and 10.00 g x kg(-1), respectively, via intragastrical route. The number of animals poisoned and died in each group were noted daily for 7 consecutive days. The Ames test was carried out using the Salmonella typhimurium strain TA97, TA98, TA100 and TA102. In the sperm abnormalities test, 25 healthy adult male Kunming strain mice with a body weights ranged from 25-35 g were distributed randomly to 5 different groups (1 positive control, 1 negative control and 3 treated groups) which each had 5 mice. A single dose of 60 g x kg(-1) of cyclophosphamide was intragastrically administered to mice in a positive control group, and the mice in the negative control group were administered with the same volume of distilled water. In the treated groups, the ERWE or EREE was intragastrically administered at the doses of 1.25, 250 and 5.00 g x kg(-1), respectively, via the same route with the positive control group. The administration was carried out once daily for 5 consecutive days. The sperm suspension was prepared from caudal epididymis of male mice at 35th day after treatment with different doses of the extract. The suspension was stained with Eosin-Y and air-dried smears were prepared. One thousand sperms per animal were analysed for abnormal shapes and the rates of sperm aberration was calculated. In the mouse bone marrow micronucleus assay, 50 healthy adult male and female Kunming mice, weighing 25 to 30 g, were randomly assigned to five groups (1 positive control, 1 negative control and 3 treated groups) which each had 10 mice, five males and five females. The mice were intragastrically administered twice at intervals of 24 h with the ERWE or EREE at doses of 1.25, 2.50 and 5.00 g x kg(-1) in the positive control group. A single dose of 60 g x kg(-1) of cyclophosphamide in a positive control group and the same volume of distilled water in a negative control groups were intragastrically administered, respectively. Mouse bone marrow was obtained from 10 animals for each group at 6 h after the last dose administration. Smears were stained with Giemsa and analysed for the presence of mouse bone marrow micronucleus from 1 000 cells. The oral acute toxicity study in mice revealed that the LD50 of the both ERWE and EREE was more than 10.0 g x kg(-1). The mice with both the poisoned sign or died had not been observed after intragastrical administration of ERWE or EREE at the doses of 1.00, 2.15, 4.64 and 10.00 g x kg(-1). The results of genotoxicity tests were all negative, including Ames, mouse marrow cell micronucleus and mouse sperm aberration test. In the all assay in vivo, the mice showed a normally progressive increase in body weight from the start to the end of the experiment. The oral LD50 of the ERWE and EREE in mice was more than 10.0 g x kg(-1) belonging to non-toxicity on the acute toxicity rating criteria. The both ERWE and EREE showed no genotoxicity in the experimental condition.

  5. Human exposure to large solar particle events in space

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Curtis, S. B.

    1992-01-01

    Whenever energetic solar protons produced by solar particle events traverse bulk matter, they undergo various nuclear and atomic collision processes which significantly alter the physical characteristics and biologically important properties of their transported radiation fields. These physical interactions and their effect on the resulting radiation field within matter are described within the context of a recently developed deterministic, coupled neutron-proton space radiation transport computer code (BRYNTRN). Using this computer code, estimates of human exposure in interplanetary space, behind nominal (2 g/sq cm) and storm shelter (20 g/sq cm) thicknesses of aluminum shielding, are made for the large solar proton event of August 1972. Included in these calculations are estimates of cumulative exposures to the skin, ocular lens, and bone marrow as a function of time during the event. Risk assessment in terms of absorbed dose and dose equivalent is discussed for these organs. Also presented are estimates of organ exposures for hypothetical, worst-case flare scenarios. The rate of dose equivalent accumulation places this situation in an interesting region of dose rate between the very low values of usual concern in terrestrial radiation environments and the high-dose-rate values prevalent in radiation therapy.

  6. SU-E-CAMPUS-I-05: Internal Dosimetric Calculations for Several Imaging Radiopharmaceuticals in Preclinical Studies and Quantitative Assessment of the Mouse Size Impact On Them. Realistic Monte Carlo Simulations Based On the 4D-MOBY Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostou, T; Papadimitroulas, P; Kagadis, GC

    2014-06-15

    Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less

  7. The Acute Gastrointestinal Syndrome in High-Dose Irradiated Mice

    PubMed Central

    Booth, Catherine; Tudor, Gregory; Tudor, Julie; Katz, Barry P; MacVittie, Thomas

    2012-01-01

    The most detailed reports of the response of the gastrointestinal system to high dose acute radiation have focused mainly on understanding the histopathology. However, to enable medical countermeasure assessment under the animal rule criteria, it is necessary to have a robust model in which the relationship between radiation dose and intestinal radiation syndrome incidence, timing and severity are established and correlated with histopathology. Although many mortality studies have been published, they have used a variety of mouse strains, ages, radiation sources and husbandry conditions, all of which influence the dose response. Further, it is clear that the level of bone marrow irradiation and supportive care can influence endpoints. In order to create robust baseline data we have generated dose response data in adult male mice, maintained under identical conditions, and exposed to either total or partial-body irradiation. Partial-body irradiation includes both extensive (40%) and minimal (5%) bone marrow sparing models, the latter designed to correlate with an established primate model and allow assessment of effects of any medical countermeasure on all three major radiation syndromes (intestinal, bone marrow and lung) in the surviving mice. Lethal dose (LD30, LD50 and LD70) data are described in the various models, along with the impact of enteric flora and response to supportive care. Correlation with diarrhea severity and histopathology are also described. This data can be used to aid the design of good laboratory practice (GLP) compliant Animal Rule studies that are reflective of the conditions following accidental radiation exposure. PMID:23091876

  8. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Rui; Bernard, Damian; Turian, Julius

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less

  9. Toxicity of hydroxyurea in rats and dogs.

    PubMed

    Morton, Daniel; Reed, Lori; Huang, Wenhu; Marcek, John M; Austin-LaFrance, Robert; Northcott, Carrie A; Schelling, Scott H; Enerson, Bradley E; Tomlinson, Lindsay

    2015-06-01

    The toxicity of hydroxyurea, a treatment for specific neoplasms, sickle-cell disease, polycythemia, and thrombocytosis that kills cells in mitosis, was assessed in repeat-dose, oral gavage studies in rats and dogs and a cardiovascular study in telemetered dogs. Hydroxyurea produced hematopoietic, lymphoid, cardiovascular, and gastrointestinal toxicity with steep dose response curves. In rats dosed for 10 days, 50 mg/kg/day was tolerated; 500 mg/kg/day produced decreased body weight gain; decreased circulating leukocytes, erythrocytes, and platelets; decreased cellularity of thymus, lymph nodes, and bone marrow; and epithelial degeneration and/or dysplasia of the stomach and small intestine; 1,500 mg/kg/day resulted in deaths on day 5. In dogs, a single dose at ≥ 250 mg/kg caused prostration leading to unscheduled euthanasia. Dogs administered 50 mg/kg/day for 1 month had decreased circulating leukocytes, erythrocytes, and platelets; increased bone marrow cellularity with decreased maturing granulocytes; increased creatinine kinase activity; and increased iron pigment in bone marrow and hepatic sinusoidal cells. In telemetered dogs, doses ≥ 15 mg/kg decreased systolic blood pressure (BP); 50 mg/kg increased diastolic BP, heart rate, and change in blood pressure over time (+dP/dt), and decreased QT and PR intervals and maximum left ventricular systolic and end diastolic pressures with measures returning to control levels within 24 hr. © 2014 by The Author(s).

  10. A physical anthropomorphic phantom of a one year old child with real-time dosimetry

    NASA Astrophysics Data System (ADS)

    Bower, Mark William

    A physical heterogeneous phantom has been created with epoxy resin based tissue substitutes. The phantom is based on the Cristy and Eckerman mathematical phantom which in turn is a modification of the Medical Internal Radiation Dose (MIRD) model of a one-year-old child as presented by the Society of Nuclear Medicine. The Cristy and Eckerman mathematical phantom, and the physical phantom, are comprised of three different tissue types: bone, lung tissue and soft tissue. The bone tissue substitute is a homogenous mixture of bone tissues: active marrow, inactive marrow, trabecular bone, and cortical bone. Soft tissue organs are represented by a homogeneous soft tissue substitute at a particular location. Point doses were measured within the phantom with a Metal Oxide Semiconductor Field Effect Transistor (MOSFET)- based Patient Dose Verification System modified from the original radiotherapy application. The system features multiple dosimeters that are used to monitor entrance or exit skin doses and intracavity doses in the phantom in real-time. Two different MOSFET devices were evaluated: the typical therapy MOSFET and a developmental MOSFET device that has an oxide layer twice as thick as the therapy MOSFET thus making it of higher sensitivity. The average sensitivity (free-in-air, including backscatter) of the 'high-sensitivity' MOSFET dosimeters ranged from 1.15×105 mV per C kg-1 (29.7 mV/R) to 1.38×105 mV per C kg-1 (35.7 mV/R) depending on the energy of the x-ray field. The integrated physical phantom was utilized to obtain point measurements of the absorbed dose from diagnostic x-ray examinations. Organ doses were calculated based on these point dose measurements. The phantom dosimetry system functioned well providing real-time measurement of the dose to particular organs. The system was less reliable at low doses where the main contribution to the dose was from scattered radiation. The system also was of limited utility for determining the absorbed dose in larger systems such as the skeleton. The point dose method of estimating the organ dose to large disperse organs such as this are of questionable accuracy since only a limited number of points are measured in a field with potentially large exposure variations. The MOSFET system was simple to use and considerably faster than traditional thermoluminescent dosimetry. The one-year-old simulated phantom with the real-time MOSFET dosimeters provides a method to easily evaluate the risk to a previously understudied population from diagnostic radiographic procedures.

  11. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1°C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T2, since T2 increases linearly in fat during heating. T2-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T2. Calibration of T2-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T2 and temperature with a thermocouple. A positive T2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T2-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  12. Bone Marrow Sparing in Intensity Modulated Proton Therapy for Cervical Cancer: Efficacy and Robustness under Range and Setup Uncertainties

    PubMed Central

    Dinges, Eric; Felderman, Nicole; McGuire, Sarah; Gross, Brandie; Bhatia, Sudershan; Mott, Sarah; Buatti, John; Wang, Dongxu

    2015-01-01

    Background and Purpose This study evaluates the potential efficacy and robustness of functional bone marrow sparing (BMS) using intensity-modulated proton therapy (IMPT) for cervical cancer, with the goal of reducing hematologic toxicity. Material and Methods IMPT plans with prescription dose of 45 Gy were generated for ten patients who have received BMS intensity-modulated x-ray therapy (IMRT). Functional bone marrow was identified by 18F-flourothymidine positron emission tomography. IMPT plans were designed to minimize the volume of functional bone marrow receiving 5–40 Gy while maintaining similar target coverage and healthy organ sparing as IMRT. IMPT robustness was analyzed with ±3% range uncertainty errors and/or ±3mm translational setup errors in all three principal dimensions. Results In the static scenario, the median dose volume reductions for functional bone marrow by IMPT were: 32% for V5GY, 47% for V10Gy, 54% for V20Gy, and 57% for V40Gy, all with p<0.01 compared to IMRT. With assumed errors, even the worst-case reductions by IMPT were: 23% for V5Gy, 37% for V10Gy, 41% for V20Gy, and 39% for V40Gy, all with p<0.01. Conclusions The potential sparing of functional bone marrow by IMPT for cervical cancer is significant and robust under realistic systematic range uncertainties and clinically relevant setup errors. PMID:25981130

  13. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original computed tomography simulations.

  14. Hematological Toxicity After Robotic Stereotactic Body Radiosurgery for Treatment of Metastatic Gynecologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunos, Charles A., E-mail: charles.kunos@UHhospitals.org; Debernardo, Robert; Radivoyevitch, Tomas

    Purpose: To evaluate hematological toxicity after robotic stereotactic body radiosurgery (SBRT) for treatment of women with metastatic abdominopelvic gynecologic malignancies. Methods and Materials: A total of 61 women with stage IV gynecologic malignancies treated with abdominopelvic SBRT were analyzed after ablative radiation (2400 cGy/3 divided consecutive daily doses) delivered by a robotic-armed Cyberknife SBRT system. Abdominopelvic bone marrow was identified using computed tomography-guided contouring. Fatigue and hematologic toxicities were graded by retrospective assignment of common toxicity criteria for adverse events (version 4.0). Bone marrow volume receiving 1000 cGy (V10) was tested for association with post-therapy (median 32 days [25%-75% quartile,more » 28-45 days]) white- or red-cell counts, hemoglobin levels, and platelet counts as marrow toxicity surrogates. Results: In all, 61 women undergoing abdominopelvic SBRT had a median bone marrow V10 of 2% (25%-75% quartile: 0%-8%). Fifty-seven (93%) of 61 women had received at least 1 pre-SBRT marrow-taxing chemotherapy regimen for metastatic disease. Bone marrow V10 did not associate with hematological adverse events. In all, 15 grade 2 (25%) and 2 grade 3 (3%) fatigue symptoms were self-reported among the 61 women within the first 10 days post-therapy, with fatigue resolved spontaneously in all 17 women by 30 days post-therapy. Neutropenia was not observed. Three (5%) women had a grade 1 drop in hemoglobin level to <10.0 g/dL. Single grade 1, 2, and 3 thrombocytopenias were documented in 3 women. Conclusions: Abdominopelvic SBRT provided ablative radiation dose to cancer targets without increased bone marrow toxicity. Abdominopelvic SBRT for metastatic gynecologic malignancies warrants further study.« less

  15. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storb, R.; Raff, R.F.; Graham, T.

    1993-03-20

    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing [sup 60]Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionatedmore » total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs.« less

  16. Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement.

    PubMed

    Li, Wei Bo; Gerstmann, Udo; Giussani, Augusto; Oeh, Uwe; Paretzke, Herwig G

    2008-02-01

    The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 ((210)Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of (210)Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of (210)Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 x 10(-8) (1.4 x 10(-7)) Sv Bq(-1), 2.0 x 10(-7) (9.6 x 10(-7)) Sv Bq(-1) over 10 days, 5.2 x 10(-7) (2.0 x 10(-6)) Sv Bq(-1) over 30 days and 1.0 x 10(-6) (3.0 x 10(-6)) Sv Bq(-1) over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of (210)Po are 1.1 x 10(-3) (1.0 x 10(-4)) on day 1, 2.0 x 10(-3) (1.9 x 10(-4)) on day 10, 1.3 x 10(-3) (1.7 x 10(-4)) on day 30 and 3.6 x 10(-4) (8.3 x 10(-5)) Bq d(-1) on day 100, respectively. The resulting committed effective doses range from 2.1 x 10(-3) to 1.7 x 10(-2) mSv by an assumption of ingestion and from 5.5 x 10(-2) to 4.5 x 10(-1) mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of (210)Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2-8.5 microg, depending on the modality of intake and on different assumptions about blood absorption.

  17. Cyclic, low-dose total body irradiation for metastatic neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Angio, G.J.; Evans, A.E.

    1983-12-01

    Total body irradiation (TBI) can be thought of as a systemic anticancer agent. It therefore might best be given like an adjuvant drug, i.e., in tolerable doses, cyclically. The therapeutic ratio between normal bone marrow stem cells and suitably sensitive cancer cells should be widened by these means. Fourteen children with advanced (Stage IV) neuroblastomas were given 100-150 rad TBI in 50 rad daily fractions along with each three-week cycle of standard triple-agent chemotherapy (vincristine, DTIC, cyclophosphamide). Two patients died of toxicity and one is still undergoing therapy. Four of the remaining 12 survive free of disease for 12+ tomore » 31+ months. The regimen is well tolerated, but prolonged, pronounced bone marrow depression, especially thrombocytopenia, commonly occurs after doses of 300-450 rad.« less

  18. Should the standard dimethyl sulfoxide concentration be reduced? Results of a European Group for Blood and Marrow Transplantation prospective noninterventional study on usage and side effects of dimethyl sulfoxide.

    PubMed

    Morris, Curly; de Wreede, Liesbeth; Scholten, Marijke; Brand, Ronald; van Biezen, Anja; Sureda, Anna; Dickmeiss, Ebbe; Trneny, Marek; Apperley, Jane; Chiusolo, Patrizia; van Imhoff, Gustaaf W; Lenhoff, Stig; Martinelli, Giovanni; Hentrich, Marcus; Pabst, Thomas; Onida, Francesco; Quinn, Michael; Kroger, Nicolaus; de Witte, Theo; Ruutu, Tapani

    2014-10-01

    Dimethyl sulfoxide (DMSO) is essential for the preservation of liquid nitrogen-frozen stem cells, but is associated with toxicity in the transplant recipient. In this prospective noninterventional study, we describe the use of DMSO in 64 European Blood and Marrow Transplant Group centers undertaking autologous transplantation on patients with myeloma and lymphoma and analyze side effects after return of DMSO-preserved stem cells. While the majority of centers continue to use 10% DMSO, a significant proportion either use lower concentrations, mostly 5 or 7.5%, or wash cells before infusion (some for selected patients only). In contrast, the median dose of DMSO given (20 mL) was much less than the upper limit set by the same institutions (70 mL). In an accompanying statistical analysis of side effects noted after return of DMSO-preserved stem cells, we show that patients in the highest quartile receiving DMSO (mL and mL/kg body weight) had significantly more side effects attributed to DMSO, although this effect was not observed if DMSO was calculated as mL/min. Dividing the myeloma and lymphoma patients each into two equal groups by age we were able to confirm this result in all but young myeloma patients in whom an inversion of the odds ratio was seen, possibly related to the higher dose of melphalan received by young myeloma patients. We suggest better standardization of preservation method with reduced DMSO concentration and attention to the dose of DMSO received by patients could help reduce the toxicity and morbidity of the transplant procedure. © 2014 AABB.

  19. Coadministration of puerarin (low dose) and zinc attenuates bone loss and suppresses bone marrow adiposity in ovariectomized rats.

    PubMed

    Liu, Hao; Li, Wei; Ge, Xiyuan; Jia, Shengnan; Li, Binbin

    2016-12-01

    Puerarin is a phytoestrogen that shows osteogenic effects. Meanwhile, zinc stimulates bone formation and inhibits bone resorption. The study aims to investigate the effects of coadministration of puerarin (low dose) and zinc on bone formation in ovariectomized rats. Co-administration or use alone of puerarin (low dose) and/or zinc were gavaged in OVX rats. The estrogen-like effects were detected by the uterus weight, the histologic observation and the IGF-1 protein expression. The osteogenic effects were determined by bone histomorphometric and mechanical parameters, osteogenic and adipogenic blood markers, and so on. The results showed that oral administration of puerarin (low dose) plus zinc didn't significantly increase uterus weight. The glandular epithelial of endometrium had no proliferation and no protein expression of IGF-1. Moreover, co-administration attenuated bone loss and biomechanical decrease more than single use of puerarin or zinc (p<0.05). Next, combined administration of puerarin and zinc promoted the serological level of osteocalcin, bone marrow stromal cell (BMSC) proliferation, and the expression of alkaline phosphatase (ALP), and suppressed the serological level of adiponectin and adiposity in bone marrow (BM). In conclusion, co-administrated puerarin (low dose) and zinc can partially reverse OVX-induced bone loss and suppress the adiposity of BM in rats, which shed light on the potential use of puerarin and zinc in the treatment of osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Occupational and diagnostic exposure to ionizing radiation and leukemia risk among German uranium miners.

    PubMed

    Möhner, Matthias; Gellissen, Johannes; Marsh, James W; Gregoratto, Demetrio

    2010-09-01

    Lung cancer is a well-known effect of radon exposure in uranium mines. However, little is known about the induction of leukemia by radiation exposure in mines. Moreover, miners usually have occupational medical checkup programs that include chest x-ray examinations. Therefore, the aim of the present study was to re-examine leukemia risk among miners, taking into account exposure to x rays for diagnostic purposes. The data used were from a previously analyzed individually matched case-control study of former uranium miners in East Germany with 377 cases and 980 controls. Additionally, data on x-ray examinations were taken from medical records for most of the subjects. Finally, the absorbed dose to red bone marrow was calculated considering both occupational and diagnostic exposures. Using conditional logistic regression models, a moderately but not statistically significant elevated risk was seen in the dose category above 200 mGy for the combined dose from both sources [odds ratio (OR) = 1.33, 90% confidence interval (CI): (0.82-2.14)]. Ignoring the dose accumulated in the recent 20 y, the risk in the highest dose category (>105 mGy) was higher [OR = 1.77, 90% CI: (1.06-2.95)]. Ignoring diagnostic exposure yielded similar results. For the highest dose category (absorbed dose lagged by 20 y) the risk was more than doubled [OR = 2.64, 90% CI: (1.60-4.35)].

  2. Radiation-induced hemopoietic death in mice as a function of photon energy and dose rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gengozian, N.; Taylor, T.; Jameson, H.

    1986-03-01

    Radiation-induced hemopoietic death was measured in mice exposed to photons of four different energies: 250-kVp X rays, /sup 60/Co gamma rays (1.25 MeV), and 6- and 25-MV photons from a linear accelerator. For each radiation source, the lethal dose which killed 50% of the population in 30 days (LD50/30) associated with the hemopoietic syndrome was determined in groups of mice exposed to graded doses from 600 to 1150 cGy at dose rates of 20, 40, and 80 cGy/min. The calculated LD50/30 values for 25 and 6 MV were significantly different from each other at all exposure rates while no differencemore » was observed between 6 MV and /sup 60/Co. Using /sup 60/Co gamma rays as the standard, the relative biologic effectiveness was as follows: 250 kVp greater than 25 MV greater than 6 MV = /sup 60/Co. The data suggest that there may be a greater damage to tissue within the marrow cavities following exposure to very high megavoltage radiation, a factor which must be considered with the increasing utilization of linear accelerators in the clinic and laboratory.« less

  3. Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.

    PubMed

    Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A

    1988-02-01

    A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to the limitations of the theoretical analysis.

  4. Severe Bone Marrow Suppression Accompanying Pulmonary Infection and Hemorrhage of the Digestive Tract Associated with Leflunomide and Low-dose Methotrexate Combination Therapy

    PubMed Central

    Qu, Caihong; Lu, Ying; Liu, Weimin

    2017-01-01

    A 60-year-old male patient developed hyperpyrexia, cough, expectoration with blood-stained sputum, mouth ulcers, and suppurative tonsillitis after receiving 35 days of combination treatment with leflunomide (LEF) and low-dose methotrexate (MTX) for active rheumatoid arthritis. On admission, routine blood tests showed severe thrombocytopenia, agranulocytosis, and decreased hemoglobin concentration compared with the relatively normal results of 1 month previously during the first hospitalization. Chest radiography revealed inflammation in both lungs, and a fecal occult blood test was positive. Given this presentation, severe bone marrow suppression accompanying pulmonary infection and hemorrhage of the digestive tract associated with LEF and MTX combination therapy was diagnosed. After 28 days of symptomatic treatment, the patient's complications subsided gradually. This case highlighted that bone marrow suppression associated with MTX and LEF combination therapy could be very serious, even at a normal dose or especially at the beginning of treatment. MTX and LEF combination therapy should be used with caution or be limited in those with a history of pulmonary disease, hemorrhage of the digestive tract, or other relevant diseases. PMID:28405135

  5. An Association between BK Virus Replication in Bone Marrow and Cytopenia in Kidney-Transplant Recipients

    PubMed Central

    Pambrun, Emilie; Mengelle, Catherine; Fillola, Geneviève; Laharrague, Patrick; Esposito, Laure; Cardeau-Desangles, Isabelle; Del Bello, Arnaud; Izopet, Jacques; Rostaing, Lionel; Kamar, Nassim

    2014-01-01

    The human polyomavirus BK (BKV) is associated with severe complications, such as ureteric stenosis and polyomavirus-associated nephropathy (PVAN), which often occur in kidney-transplant patients. However, it is unknown if BKV can replicate within bone marrow. The aim of this study was to search for BKV replication within the bone marrow of kidney-transplant patients presenting with a hematological disorder. Seventy-two kidney-transplant patients underwent bone-marrow aspiration for cytopenia. At least one virus was detected in the bone marrow of 25/72 patients (35%), that is, parvovirus B19 alone (n = 8), parvovirus plus Epstein-Barr virus (EBV) (n = 3), cytomegalovirus (n = 4), EBV (n = 2), BKV alone (n = 7), and BKV plus EBV (n = 1). Three of the eight patients who had BKV replication within the bone marrow had no detectable BKV replication in the blood. Neutropenia was observed in all patients with BKV replication in the bone marrow, and blockade of granulocyte maturation was observed. Hematological disorders disappeared in all patients after doses of immunosuppressants were reduced. In conclusion, an association between BKV replication in bone marrow and hematological disorders, especially neutropenia, was observed. Further studies are needed to confirm these findings. PMID:24868448

  6. Autologous bone marrow transplantation in relapsed adult acute leukemia.

    PubMed

    Dicke, K A; Zander, A R; Spitzer, G; Verma, D S; Peters, L J; Vellekoop, L; Thomson, S; Stewart, D; Hester, J P; McCredie, K B

    1979-01-01

    From March, 1976 to February, 1979, 28 cases of adult acute leukemia of which 24 were evaluable were treated in irreversible relapse with high dose chemotherapy (piperazinedione) and supra-lethal total body irradiation (TBI) in conjunction with autologous bone marrow transplantation (ABMT). The marrow cells grafted were collected and stored in liquid nitrogen at the time of remission. In 12 patients the marrow cells were fractionated using discontinuous albumin gradients in an attempt to separate normal cells from residual leukemic cells. Twelve patients achieved complete remission (CR); in 9 additional patients signs of engraftment were evident but death occurred before achievement of CR. Seven of 12 AML patients, which were treated with bone marrow transplantation as first treatment of their relapse, achieved CR. Four of 5 patients with ALL, whose bone marrows were collected during first remission, reached CR. The median CR duration was 4+ months and the median survival of the patients reaching CR was 6+ months. Autologous bone marrow transplantation offers a good chance of CR (66%), when marrow is collected during first remission and used as first treatment for AML in third relapse and ALL in second relapse.

  7. Autologous bone marrow transplantation in relapsed adult acute leukemia.

    PubMed

    Dicke, K A; Zander, A R; Spitzer, G; Verma, D S; Peters, L; Vellekoop, L; Thomson, S; Stewart, D; McCredie, K B

    1980-01-01

    From March, 1976 to February, 1979, 28 cases of adult acute leukemia of which 24 were evaluable were treated in irreversible relapse with high dose chemotherapy (piperazinedione) and supra-lethal total body irradiation (TBI) in conjunction with autologous bone marrow transplantation (ABMT). The marrow cells grafted were collected and stored in liquid nitrogen at the time of remission. In 12 patients the marrow cells were fractionated using discontinuous albumin gradients in an attempt to separate normal cells from residual leukemic cells. Twelve patients achieved complete remission (CR); in 9 additional patients signs of engraftment were evident but death occurred before achievement of CR. Seven of 12 AML patients, which were treated with bone marrow transplantation as first treatment of their relapse, achieved CR. Four of 5 patients with ALL, whose bone marrows were collected during first remission, reached CR. The median CR duration was 4+ months and the median survival of the patients reaching CR was 6+ months. Autologous bone marrow transplantation offers a good chance of CR (66%) when marrow is collected during first remission and used as first treatment for AML in third relapse and ALL in second relapse.

  8. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, Wesley

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less

  9. Hemopoietic progenitor cell function after HLA-identical sibling bone marrow transplantation: influence of chronic graft-versus-host disease.

    PubMed

    Atkinson, K; Norrie, S; Chan, P; Zehnwirth, B; Downs, K; Biggs, J

    1986-05-01

    We examined hemopoietic reconstitution during the first 12 months post-transplant in 31 patients given high-dose cyclophosphamide, total body irradiation and an HLA-identical sibling marrow transplant for hematological malignancy. Unexpectedly, we found marrow CFU-gm and marrow CFU-e cells to be denser than normal throughout the first year post-transplant. While functionally adequate neutrophil and platelet counts were achieved in the first six weeks post-transplant, there were defects in hemopoietic progenitor cell function during the first year post-transplant. Although we could detect no influence from acute graft-versus-host disease (GVHD), chronic GVHD adversely affected the growth of both myeloid and erythroid blood progenitor cells.

  10. Cytogenetic toxicity of vincristine.

    PubMed

    Choudhury, R C; Das, B; Misra, S; Jagdale, M B

    2000-01-01

    The anticancer drugs vincristine sulphate (VCR) and cyclophosphamide (CTX) were tested for their cytogenetic effects in the bone marrow cells of Swiss mice. The end points investigated were chromosomal aberrations and mitotic index at 24 hours posttreatment and micronuclei (MN) at 30 hours posttreatment in bone marrow cells of male and female mice after a single intraperitoneal exposure. The doses tested were VCR 0.25, 0.5, and 1.0 mg/kg and CTX 40 mg/kg b.w. of mice. Significant percentages of chromosomal aberrations and significant numbers of micronuclei per thousand polychromatic erythrocytes (PCEs) that were induced were recorded from bone marrow of each of the VCR-treated groups of mice. There were no significant differences between the percentages of dividing cells in the VCR-treated group and the vehicle control groups of mice. Peculiarly, in the chromosomal aberration study, the male mice were found to be more responsive to VCR than the females, and the aberrations per hundred metaphases were found to be decreased when the dose of VCR was increased. The percentage of dividing cells was also higher with the lowest dose of VCR tested. However, there was a dose-dependent, but nonlinear, increase in MN per thousand PCEs. The results were compared with the already available fragmentary and self-contradictory data on the genotoxicity of VCR in mice and in other mammalian test systems.

  11. Long-term sequelae of autologous bone marrow or peripheral stem cell transplantation for lymphoid malignancies.

    PubMed

    Vose, J M; Kennedy, B C; Bierman, P J; Kessinger, A; Armitage, J O

    1992-02-01

    The study was made to evaluate the long-term physical and psychosocial changes after high-dose therapy and autologous bone marrow or peripheral stem transplantation for recurrent lymphoid malignancies. Patients who had undergone high dose therapy and autologous bone marrow or peripheral stem cell transplantation for recurrent lymphoid malignancies at least 1 year previously were contacted by phone interview regarding their status after the transplant. The patients' comments were confirmed by checking medical records when possible. Fifty patients who had undergone transplantation at the University of Nebraska Medical Center at least 1 year before the interview were available for interview and willing to answer questions. After transplant, many patients noticed temporary changes in their appearance, which usually returned to normal within 1 year. Few patients reported remarkable cardiovascular, gastrointestinal, or pulmonary changes after transplantation. However, up to one-third of the patients reported changes in sexual function or desire. The most common infectious problem after transplant was Herpes zoster, which occurred in 25% of the patients. Overall, the patients had a positive outlook after high-dose therapy and transplantation, with most being able to return to work and enjoy a normal life style. Ninety-six percent of the patients stated that they would be willing to undergo high-dose therapy and transplantation again under the same circumstances.

  12. The treatment of solid tumors by alpha emitters released from 224Ra-loaded sources—internal dosimetry analysis

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.

    2010-02-01

    Diffusing alpha-emitters radiation therapy (DART) is a proposed new form of brachytherapy, allowing the treatment of solid tumors by alpha particles. DART utilizes implantable sources carrying small activities of radium-224, which continually release into the tumor radon-220, polonium-216 and lead-212 atoms, while radium-224 itself remains fixed to the source. The released atoms disperse inside the tumor by diffusive and convective processes, creating, through their alpha emissions, a high-dose region measuring several mm in diameter about each source. The efficacy of DART has been demonstrated in preclinical studies on mice-borne squamous cell carcinoma and lung tumors and the method is now being developed toward clinical trials. This work studies DART safety with respect to the dose delivered to distant organs as a result of lead-212 leakage from the tumor through the blood, relying on a biokinetic calculation coupled to internal dose assessments. It is found that the dose-limiting organs are the kidneys and red bone marrow. Assuming a typical source spacing of ~5 mm and a typical radium-224 activity density of 0.4-0.8 MBq g-1 of tumor tissue, it is predicted that tumors weighing up to several hundred grams may be treated without reaching the tolerance dose in any organ.

  13. Predicting astronaut radiation doses from major solar particle events using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Tehrani, Nazila H.

    1998-06-01

    Space radiation is an important issue for manned space flight. For long missions outside of the Earth's magnetosphere, there are two major sources of exposure. Large Solar Particle Events (SPEs) consisting of numerous energetic protons and other heavy ions emitted by the Sun, and the Galactic Cosmic Rays (GCRs) that constitute an isotropic radiation field of low flux and high energy. In deep-space missions both SPEs and GCRs can be hazardous to the space crew. SPEs can provide an acute dose, which is a large dose over a short period of time. The acute doses from a large SPE that could be received by an astronaut with shielding as thick as a spacesuit maybe as large as 500 cGy. GCRs will not provide acute doses, but may increase the lifetime risk of cancer from prolonged exposures in a range of 40-50 cSv/yr. In this research, we are using artificial intelligence to model the dose-time profiles during a major solar particle event. Artificial neural networks are reliable approximators for nonlinear functions. In this study we design a dynamic network. This network has the ability to update its dose predictions as new input dose data is received while the event is occurring. To accomplish this temporal behavior of the system we use an innovative Sliding Time-Delay Neural Network (STDNN). By using a STDNN one can predict doses received from large SPEs while the event is happening. The parametric fits and actual calculated doses for the skin, eye and bone marrow are used. The parametric data set obtained by fitting the Weibull functional forms to the calculated dose points has been divided into two subsets. The STDNN has been trained using some of these parametric events. The other subset of parametric data and the actual doses are used for testing with the resulting weights and biases of the first set. This is done to show that the network can generalize. Results of this testing indicate that the STDNN is capable of predicting doses from events that it has not seen before.

  14. Dose Escalation of Total Marrow Irradiation With Concurrent Chemotherapy in Patients With Advanced Acute Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Jeffrey Y.C., E-mail: jwong@coh.org; Forman, Stephen; Somlo, George

    2013-01-01

    Purpose: We have demonstrated that toxicities are acceptable with total marrow irradiation (TMI) at 16 Gy without chemotherapy or TMI at 12 Gy and the reduced intensity regimen of fludarabine/melphalan in patients undergoing hematopoietic cell transplantation (HCT). This article reports results of a study of TMI combined with higher intensity chemotherapy regimens in 2 phase I trials in patients with advanced acute myelogenous leukemia or acute lymphoblastic leukemia (AML/ALL) who would do poorly on standard intent-to-cure HCT regimens. Methods and Materials: Trial 1 consisted of TMI on Days -10 to -6, etoposide (VP16) on Day -5 (60 mg/kg), and cyclophosphamidemore » (CY) on Day -3 (100 mg/kg). TMI dose was 12 (n=3 patients), 13.5 (n=3 patients), and 15 (n=6 patients) Gy at 1.5 Gy twice daily. Trial 2 consisted of busulfan (BU) on Days -12 to -8 (800 {mu}M min), TMI on Days -8 to -4, and VP16 on Day -3 (30 mg/kg). TMI dose was 12 (n=18) and 13.5 (n=2) Gy at 1.5 Gy twice daily. Results: Trial 1 had 12 patients with a median age of 33 years. Six patients had induction failures (IF), and 6 had first relapses (1RL), 9 with leukemia blast involvement of bone marrow ranging from 10%-98%, 5 with circulating blasts (24%-85%), and 2 with chloromas. No dose-limiting toxicities were observed. Eleven patients achieved complete remission at Day 30. With a median follow-up of 14.75 months, 5 patients remained in complete remission from 13.5-37.7 months. Trial 2 had 20 patients with a median age of 41 years. Thirteen patients had IF, and 5 had 1RL, 2 in second relapse, 19 with marrow blasts (3%-100%) and 13 with peripheral blasts (6%-63%). Grade 4 dose-limiting toxicities were seen at 13.5 Gy (stomatitis and hepatotoxicity). Stomatitis was the most frequent toxicity in both trials. Conclusions: TMI dose escalation to 15 Gy is possible when combined with CY/VP16 and is associated with acceptable toxicities and encouraging outcomes. TMI dose escalation is not possible with BU/VP16 due to dose-limiting toxicities. Future efforts will focus on whether further dose escalation with CY/VP16 is safe, with the goal of improving disease control in this high-risk population.« less

  15. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation.

    PubMed

    Barrett, A; Depledge, M H; Powles, R L

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to less than 0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  16. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes.

    PubMed

    Torello, Cristiane O; de Souza Queiroz, Julia; Oliveira, Sueli C; Queiroz, Mary L S

    2010-12-01

    In this study we demonstrated that the oral administration of β-1,3-glucan (Imunoglucan®) protects mice from a lethal dose of Listeria monocytogenes (LM) when administered prophylactically for 10 days at the doses of 150 and 300 mg/kg, with survival rates up to 40%. These doses also prevented the myelosuppression and the splenomegaly caused by a sublethal infection with LM, due to increased numbers of granulocyte-macrophage progenitors (CFU-GM) in the bone marrow. Investigation of the production of colony-stimulating factors revealed an increased colony-stimulating activity (CSA) in the serum of infected mice pre-treated with Imunoglucan®. The treatment also restored the reduced ability of stromal cells to display myeloid progenitors in long-term bone marrow cultures (LTBMC) and up-regulated IL-6 and IL-1α production by these cells in the infected mice, which was consistent with higher number of non-adherent cells. Additional studies to investigate the levels of interferon-gamma (INF-γ) in the supernatant of splenocyte cultures demonstrated a further increase in the level of this cytokine in infected-treated mice, compared to infected controls. In all cases, no differences were observed between the responses of the two optimal biologically effective doses. In contrast, no significant changes were produced by the treatment with the 50mg/kg dose. In addition, no changes were observed in normal mice treated with the three doses used. All together our results suggest that orally given Imunoglucan® indirectly modulates immune activity and probably disengages Listeria induced suppression of these responses by inducing a higher reserve of myeloid progenitors in the bone marrow in consequence of biologically active cytokine release (CSFs, IL-1α, IL-6, and INF-γ). Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Radium-226 dose to a boy from playing on mill tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, C.W.; Lucas, H.F.; Lloyd, R.D.

    Two boys born in September 1949 played on uranium mill tailings from about ages 8 to 12. One of these boys was diagnosed as having leukemia at age 15.5. The 226Ra body burden of the survivor was measured at age 38. The whole-body 226Ra content measured by counting in vivo was 0 {plus minus} 17 Bq and independently by Rn breath analysis as 4.3 {plus minus} 2.1 Bq. At the same time, a control subject with no known exposure to 226Ra, matched in age, height, and weight, was also measured. The whole-body content was estimated as 4 {plus minus} 15more » Bq and independently by Rn breath analysis as 5.5 {plus minus} 3.7 Bq. The body burden of the control subject was not significantly different from that of the exposed person. The radiation dose to the marrow-free skeleton assuming a constant 226Ra:Ca ratio since birth was 0.49 and 1.33 mGy at ages 14 and 38, respectively. The radiation dose to the marrow-free skeleton assuming 226Ra intake only between ages 8 to 12 was 1.4 and 2.8 mGy at ages 14 and 38, respectively. The best estimate is the mean of these two estimates: 0.9 and 2.1 mGy at ages 14 and 38, respectively. The alpha-particle dose to the red marrow from 226Ra and its decay products was 0.05 mGy at age 14 and 0.10 mGy at age 38. Since no excess was found for the radium dial painters whose doses were much higher, the induction of leukemia by doses of this magnitude would seem quite unlikely.« less

  18. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  19. Bismuth 213-labeled anti-CD45 radioimmunoconjugate to condition dogs for nonmyeloablative allogeneic marrow grafts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandmaier, B M.; Bethge, W A.; Wilbur, D. Scott

    To lower treatment-related mortality and toxicity of conventional marrow transplantation, a nonmyeloablative regimen using 200 cGy total-body irradiation (TBI) and mycophenolate mofetil (MMF) combined with cyclosporine (CSP) for postgrafting immunosuppression was developed. To circumvent possible toxic effects of external- beam gamma irradiation, strategies for targeted radiation therapy were investigated. We tested whether the short-lived (46 minutes) alpha-emitter Bi-213 conjugated to an anti-CD45 monoclonal antibody (mAb) could replace 200 cGy TBI and selectively target hematopoietic tissues in a canine model of nonmyeloablative DLA-identical marrow transplantation. Biodistribution studies using iodine 123-labeled anti-CD45 mAb showed uptake in blood, marrow, lymph nodes, spleen, andmore » liver. In a dose-escalation study, 7 dogs treated with the Bi-213-anti-CD45 conjugate (Bi-213 dose, 0.1-5.9 mCi/kg[3.7-218 MBq/kg]) without marrow grafts had no toxic effects other than a mild, reversible suppression of blood counts. On the basis of these studies, 3 dogs were treated with 0.5 mg/kg Bi-213-labeled anti-CD45 mAb (Bi-213 doses, 3.6, 4.6, and 8.8 mCi/kg[133, 170, and 326 MBq/kg]) given in 6 injections 3 and 2 days before grafting of marrow from DLA-identical littermates. The dogs also received MMF (10 mg/kg subcutaneously twice daily the day of transplantation until day 27 afterward) and CSP (15 mg/kg orally twice daily the day before transplantation until 35 days afterward). Therapy was well tolerated except for transient elevations in levels of transaminases in 3 dogs, followed by, in one dog, ascites. All dogs achieved prompt engraftment and stable mixed hematopoietic chimerism, with donor contributions ranging from 30% to 70% after more than 27 weeks of follow-up. These results form the basis for additional studies in animals and the design of clinical trials using Bi-213 as a nonmyeloablative conditioning regimen with minimal toxicity.« less

  20. SU-E-T-619: Planning 131I Thyroid Treatments for Patients Requiring Hemodialysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroud, D

    Purpose: Treatment of 131I thyroid cancer patients who also require regular hemodialysis (HD) treatments requires consideration of the administered activity and the HD schedule. In this work the red bone marrow is considered the dose limiting organ and the treatment plan optimized the HD schedule with the amount of radioactivity administered. Methods: The ‘Safe’ dose was considered to be 2 Gy (200 rad) to the red bone marrow.1 131Iodine doses of 50 mCi to 100 mCi were modeled and found to require a range of HD schedules. In order to achieve the safe dose to the red marrow, more aggressivemore » HD schedules are required. 100 mCi required an aggressive HD treatment of every 24 hours for at least one week to achieve the ‘safe’ dose and an exposure appropriate for release from the hospital. A more normal schedule of HD beginning at 18 hours then every 48 hours allowed for up to 60 mCi administered dose allowed for a safe dose and expected release after less than one week.2In addition room was equipped with video cameras cameras for monitoring the patient and their vital signs from an adjacent room during HD. In this way the dialysis nurses were able to monitor the patient closely from an adjoining room. Results: Two HD patients were administered adjusted doses of about 50 mCi. The medical and nursing staff were exposed to no more than 4 mR for the entire treatment. The residual Iodine in the patient appeared to be normal after 4 to 6 days when the patient was released. Conclusion: With careful treatment planning 131Iodine treatments can be performed safely for patients needing HD and treatments appear to be as effective as those for patients with normal renal function.« less

  1. Bone marrow necrosis in a patient with acute promyelocytic leukemia during re-induction therapy with arsenic trioxide.

    PubMed

    Ishitsuka, Kenji; Shirahashi, Akihiko; Iwao, Yasuhiro; Shishime, Mikiko; Takamatsu, Yasushi; Takatsuka, Yoshifusa; Utsunomiya, Atae; Suzumiya, Junji; Hara, Syuji; Tamura, Kazuo

    2004-04-01

    Arsenic trioxide (As2O3) therapy at a daily dose of 0.15 mg/kg was given to a 60-yr-old Japanese male with refractory acute promyelocytic leukemia. White blood cell (WBC) of 6.6 x 10(3)/microl increased to 134 x 10(3)/microl following the administration of As2O3. Daily hydroxyurea (HU), and 6-mercaptopurine (6-MP) were added on days 7 and 19, respectively. Both HU and 6-MP were discontinued on day 28, when WBC declined to 54.0 x 10(3)/microl. He developed unexplained fever and profound cytopenia requiring multiple blood products transfusions. Bone marrow examination on day 42 revealed massive necrosis. Pharmacokinetics confirmed a mean maximum plasma arsenic concentration (Cpmax) and a half-life time (t1/2) of 6.9 microm and 3.2 h, respectively, in the therapeutic range. This is the first case of bone marrow necrosis after standard-dose As2O3 therapy.

  2. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    PubMed

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  3. [SUBSTANTIATION OF DOSE LIMITS FOR A NEW NORMATIVE DOCUMENT ON RADIATION SAFETY OF LONG-DURATION SPACE MISSIONS AT ORBIT ALTITUDES OF UP TO 500 KM].

    PubMed

    Ushakov, I B; Grigoriev, Yu G; Shafirkin, A V; Shurshakov, V A

    2016-01-01

    Review of the data of experimental radiobiology and epidemiological follow-up of large groups of people subjected to radiation exposures on Earth has been undertaken to substantiate dose limits for critical organs of cosmonauts in order to ensure good performance and vitality while on long-duration orbital missions. The career dose limits for cosmonauts and astronauts established earlier in the USSR and USA amounted to nothing more but banning the risk of cancer death increase to 3%. To apply more rigorous criteria of delayed radiation risks, the Russian limits for cosmonauts were revised to substantiate a 4-fold reduction of the average tissue equivalent dose maximum to 1 Sv. The total of cancer and non-cancer radiation risks over lifetime and probable reduction of mean life expectancy (MLE) were calculated using the model of radiation-induced mortality for mammals and taken as the main damage to health. The established dose limit is equal to the career dose for nuclear industry personnel set forth by Russian standard document NRB 99/2009. For better agreement of admissible threshold doses to critical human organs (bone marrow, lens and skin) in the revised radiation limits for long-duration space missions and radiation safety limits on Earth, reduction of dose limits for the critical organs were substantiated additionally; these limits comply with those for planned over-exposure on Earth in document NRB 99/2009.

  4. Reconstruction of paediatric organ doses from axial CT scans performed in the 1990s - range of doses as input to uncertainty estimates.

    PubMed

    Olerud, Hilde M; Toft, Benthe; Flatabø, Silje; Jahnen, Andreas; Lee, Choonsik; Thierry-Chef, Isabelle

    2016-09-01

    To assess the range of doses in paediatric CT scans conducted in the 1990s in Norway as input to an international epidemiology study: the EPI-CT study, http://epi-ct.iarc.fr/ . National Cancer Institute dosimetry system for Computed Tomography (NCICT) program based on pre-calculated organ dose conversion coefficients was used to convert CT Dose Index to organ doses in paediatric CT in the 1990s. Protocols reported from local hospitals in a previous Norwegian CT survey were used as input, presuming these were used without optimization for paediatric patients. Large variations in doses between different scanner models and local scan parameter settings are demonstrated. Small children will receive a factor of 2-3 times higher doses compared with adults if the protocols are not optimized for them. For common CT examinations, the doses to the active bone marrow, breast tissue and brain may have exceeded 30 mGy, 60 mGy and 100 mGy respectively, for the youngest children in the 1990s. The doses children received from non-optimised CT examinations during the 1990s are of such magnitude that they may provide statistically significant effects in the EPI-CT study, but probably do not reflect current practice. • Some organ doses from paediatric CT in the 1990s may have exceeded 100 mGy. • Small children may have received doses 2-3 times higher compared with adults. • Different scanner models varied by a factor of 2-3 in dose to patients. • Different local scan parameter settings gave dose variations of a factor 2-3. • Modern CTs and age-adjusted protocols will give much lower paediatric doses.

  5. The dosimetric impact of including the patient table in CT dose estimates

    NASA Astrophysics Data System (ADS)

    Nowik, Patrik; Bujila, Robert; Kull, Love; Andersson, Jonas; Poludniowski, Gavin

    2017-12-01

    The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5% compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8%. Effective doses from SPR acquired with the x-ray tube stationary at 6 o’clock (posterior-anterior) were overestimated by 14-23% when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15%. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.

  6. Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210

    PubMed Central

    Scott, Bobby R.

    2007-01-01

    The incident in London during November 2006 involving a lethal intake by Mr. Alexander Litvinenko of the highly-radioactive, alpha-particles-emitting polonium-210 (Po-210) isotope, presumably via ingestion, sparked renewed interest in the area of Po-210 toxicity to humans. This paper is the result of assembling and interpreting existing Po-210 data within the context of what is considered a reliable risk model (hazard-function [HF] model) for characterizing the risk of death from deterministic effects of high alpha radiation doses and dose rates to body organs. The HF model was developed to address radiation exposure scenarios involving combined exposures to alpha, beta, and gamma radiations and can be used in circumstances where only one type of radiation is involved. Under a plausible but not yet validated set of assumptions and using available megabecquerel (Po-210) to gray dose-conversion factors, acute lethality risk vs. dose curves were developed for circumstances of ingestion exposure to Po-210 by humans. Initial risk calculations were carried out for a reference adult male human (a hypothetical 70-kg person). Results were then modified for application to all ages (except the in utero child) via the use of systemic Po-210 burden. Because of the unavailability of acute lethality data derived from human ingestions of high levels of Po-210, plausibility of risk calculations were evaluated based on data from studies of Po-210 injections in animals. The animal data, although limited, were found to be consistent with the theoretical risk calculations. Key findings are as follows: (1) ingestion (or inhalation) of a few tents of a milligram of Po-210 will likely be fatal to all exposed persons. (2) Lethal intakes are expected to involve fatal damage to the bone marrow which is likely to be compounded by damage caused by higher doses to other organs including the kidneys and liver. (3) Lethal intakes are expected to cause severe damage to the kidney, spleen, stomach, small and large intestines, lymph nodes, skin, and testes (males) in addition to the fatal damage to bone marrow. (4) The time distribution of deaths is expected to depend on the level of radioactivity ingested or inhaled, with deaths occurring within about a month after very high levels of radioactivity intake (e.g., systemic burdens > 1 MBq/kg-body-mass) and occurring over longer periods, possibly up to or exceeding a year for lower but lethal intakes (systemic burdens from 0.1 to 1.0 MBq/kg-body-mass). Below a systemic burden estimate of 0.02 MBq/kg-body-mass, deaths from deterministic effects are not expected to occur but the risk of cancer and for life shortening could be significant. New, funded experimental and modeling/theoretical research is needed to improve on these estimates. PMID:18648599

  7. Predicting severe hematologic toxicity from extended-field chemoradiation of para-aortic nodal metastases from cervical cancer.

    PubMed

    Yan, Kevin; Ramirez, Ezequiel; Xie, Xian-Jin; Gu, Xuejun; Xi, Yin; Albuquerque, Kevin

    The purpose of this study was to determine factors predictive for severe hematologic toxicity (HT) in cervical cancer patients with para-aortic lymph node metastasis treated with concurrent cisplatin chemoradiation to an extended field (EFCRT). Thirty-eight patients with cervical cancer and para-aortic lymph node metastasis who underwent EFCRT were analyzed. Active bone marrow was defined as the region within irradiated total bone marrow (BM TOT ) with a standard uptake value on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography greater than the mean standard uptake value for BM TOT . Serial weekly blood counts from the beginning to the end of radiation treatment were evaluated for HT using Common Terminology Criteria for Adverse Events, version 4.0. Nineteen patients had grade 3 or higher hematologic toxicity (HT3+), not including lymphocyte toxicity. Obese patients (n = 12) were less likely to get HT3+ (P = .03) despite getting equivalent doses of chemotherapy. Volumes of BM TOT and active bone marrow receiving doses of 20, 30, and 45 Gy and body mass index significantly predicted HT3+. Patients who had HT3+ had prolonged treatment time (62 vs 53 days, P < .001). For patients receiving EFCRT, bone marrow irradiation parameters and patient body mass index were associated with HT3+. A simplified nomogram has been created to predict HT3+ in these patients, allowing the potential to explore bone marrow-sparing delivery techniques. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  8. Comparison of direct and indirect radiation effects on osteoclast formation from progenitor cells derived from different hemopoietic sources.

    PubMed

    Scheven, B A; Wassenaar, A M; Kawilarang-de Haas, E W; Nijweide, P J

    1987-07-01

    Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.

  9. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer.

    PubMed

    Schweitzer, Andrew D; Revskaya, Ekaterina; Chu, Peter; Pazo, Valeria; Friedman, Matthew; Nosanchuk, Joshua D; Cahill, Sean; Frases, Susana; Casadevall, Arturo; Dadachova, Ekaterina

    2010-12-01

    Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's "self-sieving" ability, protecting it against ionizing radiation. The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of (188)Re-labeled 6D2 melanin-binding antibody. Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. WE-EF-207-05: Monte Carlo Dosimetry for a Dedicated Cone-Beam CT Head Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A; Zbijewski, W; Xu, J

    Purpose: Cone-Beam CT (CBCT) is an attractive platform for point-of-care imaging of traumatic brain injury and intracranial hemorrhage. This work implements and evaluates a fast Monte-Carlo (MC) dose estimation engine for development of a dedicated head CBCT scanner, optimization of acquisition protocols, geometry, bowtie filter designs, and patient-specific dosimetry. Methods: Dose scoring with a GPU-based MC CBCT simulator was validated on an imaging bench using a modified 16 cm CTDI phantom with 7 ion chamber shafts along the central ray for 80–100 kVp (+2 mm Al, +0.2 mm Cu). Dose distributions were computed in a segmented CBCT reconstruction of anmore » anthropomorphic head phantom with 4×10{sup 5} tracked photons per scan (5 min runtime). Circular orbits with angular span ranging from short scan (180° + fan angle) to full rotation (360°) were considered for fixed total mAs per scan. Two aluminum filters were investigated: aggressive bowtie, and moderate bowtie (matched to 16 cm and 32 cm water cylinder, respectively). Results: MC dose estimates showed strong agreement with measurements (RMSE<0.001 mGy/mAs). A moderate (aggressive) bowtie reduced the dose, per total mAs, by 20% (30%) at the center of the head, by 40% (50%) at the eye lens, and by 70% (80%) at the posterior skin entrance. For the no bowtie configuration, a short scan reduced the eye lens dose by 62% (from 0.08 mGy/mAs to 0.03 mGy/mAs) compared to full scan, although the dose to spinal bone marrow increased by 40%. For both bowties, the short scan resulted in a similar 40% increase in bone marrow dose, but the reduction in the eye lens was more pronounced: 70% (90%) for the moderate (aggressive) bowtie. Conclusions: Dose maps obtained with validated MC simulation demonstrated dose reduction in sensitive structures (eye lens and bone marrow) through combination of short-scan trajectories and bowtie filters. Xiaohui Wang and David Foos are employees of Carestream Health.« less

  11. Patterns of patient specific dosimetry in total body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akino, Yuichi; Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871; McMullen, Kevin P.

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at ourmore » institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10%. However, some large differences greater than 35% were also found at several points. For one case, the knee received double the prescribed dose. When the dose differences for multiple fractions were averaged, compliance ({+-}10%) between the prescription and measured dose was improved compared to the dose difference of the first single fraction, for example, as at umbilicus, which improved from 83.9% to 98.5%. Conclusions: Actual dose measurement analysis of TBI patients revealed a potentially wide variance from the calculated dose. Based from their IVD method for TBI using Cobalt-60 irradiator and moving table, {+-}10% over entire body is hard to achieve. However, it can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments.« less

  12. The CardiAMP Heart Failure trial: A randomized controlled pivotal trial of high-dose autologous bone marrow mononuclear cells using the CardiAMP cell therapy system in patients with post-myocardial infarction heart failure: Trial rationale and study design.

    PubMed

    Raval, Amish N; Cook, Thomas D; Duckers, Henricus J; Johnston, Peter V; Traverse, Jay H; Abraham, William T; Altman, Peter A; Pepine, Carl J

    2018-07-01

    Heart failure following myocardial infarction is a common, disabling, and deadly condition. Direct injection of autologous bone marrow mononuclear cells into the myocardium may result in improved functional recovery, relieve symptoms, and improve other cardiovascular outcomes. CardiAMP-HF is a randomized, double-blind, sham-controlled, pivotal trial designed to investigate the safety and efficacy of autologous bone marrow mononuclear cells treatment for patients with medically refractory and symptomatic ischemic cardiomyopathy. The primary end point is change in 6-minute walk distance adjusted for major adverse cardiovascular events at 12 months following treatment. Particularly novel aspects of this trial include a cell potency assay to screen subjects who have bone marrow cell characteristics that suggest a favorable response to treatment, a point-of-care treatment method, a high target dose of 200 million cells, and an efficient transcatheter intramyocardial delivery method that is associated with high cell retention. This novel approach may lead to a new treatment for those with ischemic heart disease suffering from medically refractory heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate.

    PubMed

    Dobrovolsky, Vasily N; Pacheco-Martinez, M Monserrat; McDaniel, L Patrice; Pearce, Mason G; Ding, Wei

    2016-01-01

    Acrylamide (ACR) and glycidyl methacrylate (GMA) are structurally related compounds used for making polymers with various properties. Both chemicals can be present in food either as a byproduct of processing or a constituent of packaging. We performed a comprehensive evaluation of ACR and GMA genotoxicity in Fisher 344 rats using repeated gavage administrations. Clastogenicity was measured by scoring micronucleated (MN) erythrocytes from peripheral blood, DNA damage in liver, bone marrow and kidneys was measured using the Comet assay, and gene mutation was measured using the red blood cell (RBC) and reticulocyte Pig-a assay. A limited histopathology evaluation was performed in order to determine levels of cytotoxicity. Doses of up to 20 mg/kg/day of ACR and up to 250 mg/kg/day of GMA were used. ACR treatment resulted in DNA damage in the liver, but not in the bone marrow. While ACR was not a clastogen, it was a weak (equivocal) mutagen in the cells of bone marrow. GMA caused DNA damage in the cells of bone marrow, liver and kidney, and induced MN reticulocytes and Pig-a mutant RBCs in a dose-dependent manner. Collectively, our data suggest that both compounds are in vivo genotoxins, but the genotoxicity of ACR is tissue specific. Published by Elsevier Ltd.

  14. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Reilly, S; Maynard, M; Marshall, E

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletalmore » regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)« less

  15. Evaluation of the genotoxicity of alpha-amanitin in mice bone marrow cells.

    PubMed

    Marciniak, B; Łopaczyńska, D; Ferenc, T

    2017-10-01

    Alpha-amanitin is a known cytotoxic substance found in some mushroom species including Amanita phalloides. Its main mechanism of action is to block the transcription, which can lead to cell death. Lack of reports on the genotoxicity of this toxin was an inspiration for undertaking this experiment. Genotoxic effect of α-amanitin on balb/c mice bone marrow cells was tested using: comet assay and chromosomal aberration test. The tested substance was given once by intraperitoneal administration to animals at doses: 0.1 mg/kg, 0.15 mg/kg and 0.25 mg/kg (LD 50 ) body weight with 48 h exposure. The comet assay demonstrated a statistically significant increase in DNA damage for all the investigated α-amanitin doses compared to the negative control (p < 0.0001). The exposure to 0.15 and 0.25 mg/kg doses of α-amanitin also generated a statistically significant increase in the frequency of chromosomal aberrations in bone marrow cells of mice compared to the negative control (p < 0.05). The genotoxic effect induced by α-amanitin in mammalian cells can result in genome instability and its functional consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Protective effect of hawthorn extract against genotoxicity induced by cyclophosphamide in mouse bone marrow cells.

    PubMed

    Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Abadi, Atefeh Jahan

    2008-01-01

    The preventive effect of hawthorn (Crataegus microphylla) fruit extract was investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were orally (gavages) pretreated with solutions of hawthorn extract which was prepared at five different doses (25, 50, 100, 200 and 400mg/kg b.w.) for seven consecutive days. Mice were injected intraperitoneally on the seventh day with cyclophosphamide (50mg/kg b.w.) and killed after 24h for the evaluation of micronucleated polychromatic erythrocytes (MnPCEs) and the ratio of PCE/(PCE+NCE) (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte). All of five doses of extract significantly reduced MnPCEs induced by cyclophosphamide (P<0.0001). Hawthorn extract at dose 100mg/kg b.w. reduced MnPCEs 2.5 time and also completely normalized PCE/(PCE+NCE) ratio. Hawthorn extract exhibited concentration-dependent antioxidant activity on 1,1-diphenyl-2-picryl hydrazyl free radical. Hawthorn contains high amounts of phenolic compounds; the HPLC analysis showed that it contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by cyclophosphamide in mouse bone marrow cells. Copyright © 2007 Elsevier B.V. All rights reserved.

  17. A database for estimating organ dose for coronary angiography and brain perfusion CT scans for arbitrary spectra and angular tube current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos

    Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less

  18. [Progesterone Promotes Human Bone Marrow Mesenchymal Stem Cells to Synthesize Fibronectin via ERK Pathway].

    PubMed

    Wu, Zhen-Yong; Chen, Jing-Li; Huang, Shu; Zhang, Hui; Wang, Fang; Wang, Yan; Bi, Xiao-Yun; Guo, Zi-Kuan

    2015-12-01

    To investigate whether the progesterone can promote fibronection (FN) synthesis by human bone marrow mesenchymal stem cells (MSCs) and to explore the potential underlying mechanism. The human bone marrow MSCs were cultured in a serum-free medium with progesterone for 72 hours, the MTT test was performed to observe the proliferation status and adhension ability of the treated cells. Western blot was used to detect the content of FN in MSDs with GAPDH as the internal reference, the phosphorylation of ERK1/2, as well as the FN content in MSC treated by PD98059, a specific inhibitor of ERK1/2. The progesterone at a range of certain doses not effect on the proliferation of human bone marrow MSCs. Progesterone (25 µg/L) treatment enhanced the FN expression and adherent ability of marrow MSCs. Progesterone could induce prompt phosphorylation of ERK 1/2 and its promoting effects on FN synthesis was reversed by PD98059. The progesterone can promote FN synthesis by human bone marrow MSCs via ERK 1/2 pathway, and it might be used to culture MSCs in serum-free medium.

  19. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner

    PubMed Central

    Wang, Jinyong; Liu, Yangang; Li, Zeyang; Wang, Zhongde; Tan, Li Xuan; Ryu, Myung-Jeom; Meline, Benjamin; Du, Juan; Young, Ken H.; Ranheim, Erik; Chang, Qiang

    2011-01-01

    Both monoallelic and biallelic oncogenic NRAS mutations are identified in human leukemias, suggesting a dose-dependent role of oncogenic NRAS in leukemogenesis. Here, we use a hypomorphic oncogenic Nras allele and a normal oncogenic Nras allele (Nras G12Dhypo and Nras G12D, respectively) to create a gene dose gradient ranging from 25% to 200% of endogenous Nras G12D/+. Mice expressing Nras G12Dhypo/G12Dhypo develop normally and are tumor-free, whereas early embryonic expression of Nras G12D/+ is lethal. Somatic expression of Nras G12D/G12D but not Nras G12D/+ leads to hyperactivation of ERK, excessive proliferation of myeloid progenitors, and consequently an acute myeloproliferative disease. Using a bone marrow transplant model, we previously showed that ∼ 95% of animals receiving Nras G12D/+ bone marrow cells develop chronic myelomonocytic leukemia (CMML), while ∼ 8% of recipients develop acute T-cell lymphoblastic leukemia/lymphoma [TALL] (TALL-het). Here we demonstrate that 100% of recipients transplanted with Nras G12D/G12D bone marrow cells develop TALL (TALL-homo). Although both TALL-het and -homo tumors acquire Notch1 mutations and are sensitive to a γ-secretase inhibitor, endogenous Nras G12D/+ signaling promotes TALL through distinct genetic mechanism(s) from Nras G12D/G12D. Our data indicate that the tumor transformation potential of endogenous oncogenic Nras is both dose- and cell type-dependent. PMID:21586752

  20. SU-E-J-125: A Novel IMRT Planning Technique to Spare Sacral Bone Marrow in Pelvic Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, S; Bhatia, S; Sun, W

    Purpose: Develop an IMRT planning technique that can preferentially spare sacral bone marrow for pelvic cancer patients. Methods: Six pelvic cancer patients (two each with anal, cervical, and rectal cancer) were enrolled in an IRB approved protocol to obtain FLT PET images at simulation, during, and post chemoradiation therapy. Initially, conventional IMRT plans were created to maintain target coverage and reduce dose to OARs such as bladder, bowel, rectum, and femoral heads. Simulation FLT PET images were used to create IMRT plans to spare bone marrow identified as regions with SUV of 2 or greater (IMRT-BMS) within the pelvic bonesmore » from top of L3 to 5mm below the greater trochanter without compromising PTV coverage or OAR sparing when compared to the initial IMRT plan. IMRT-BMS plans used 8–10 beam angles that surrounded the subject. These plans were used for treatment. Retrospectively, the same simulation FLT PET images were used to create IMRT plans that spared bone marrow located in the sacral pelvic bone region (IMRT-FAN) also without compromising PTV coverage or OAR sparing. IMRT-FAN plans used 16 beam angles every 12° anteriorly from 90° – 270°. Optimization objectives for the sacral bone marrow avoidance region were weighted to reduce ≥V10. Results: IMRT-FAN reduced dose to the sacral bone marrow for all six subjects. The average V5, V10, V20, and V30 differences from the IMRT-BMS plan were −2.2 ± 1.7%, −11.4 ± 3.6%, −17.6 ± 5.1%, and −19.1 ± 8.1% respectively. Average PTV coverage change was 0.5% ± 0.8% from the conventional IMRT plan. Conclusion: An IMRT planning technique that uses beams from the anterior and lateral directions reduced the volume of sacral bone marrow that receives ≤10Gy while maintaining PTV coverage and OAR sparing. Additionally, the volume of sacral bone marrow that received 20 or 30 Gy was also reduced.« less

  1. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive 52 deterioration of cancellous microarchitecture following exposure to ionizing radiation.

  2. Hematologic Nadirs During Chemoradiation for Anal Cancer: Temporal Characterization and Dosimetric Predictors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Andrew Y.; Golden, Daniel W.; Bazan, Jose G.

    Purpose: Pelvic bone marrow (BM) constraints may offer a means to reduce the toxicity commonly associated with chemoradiation for anal cancer. We conducted a bi-institutional analysis of dose-volume metrics in a time-sensitive fashion to devise practical metrics to minimize hematologic toxicity. Methods and Materials: Fifty-six anal cancer patients from 2 institutions received definitive radiation therapy (median primary dose of 54 Gy) using intensity modulated radiation therapy (IMRT, n=49) or 3-dimensional (3D) conformal therapy (n=7) with concurrent 5-fluorouracil (5-FU) and mitomycin C. Weekly blood counts were retrospectively plotted to characterize the time course of cytopenias. Dose-volume parameters were correlated with blood countsmore » at a standardized time point to identify predictors of initial blood count nadirs. Results: Leukocytes, neutrophils, and platelets reached a nadir at week 3 of treatment. Smaller volumes of the pelvic BM correlated most strongly with lower week 3 blood counts, more so than age, sex, body mass index (BMI), or dose metrics. Patients who had ≥750 cc of pelvic BM spared from doses of ≥30 Gy had 0% grade 3+ leukopenia or neutropenia at week 3. Higher V40 Gy to the lower pelvic BM (LP V40) also correlated with cytopenia. Patients with an LP V40 >23% had higher rates of grade 3+ leukopenia (29% vs 4%, P=.02), grade 3+ neutropenia (33% vs 8%, P=.04), and grade 2+ thrombocytopenia (32% vs 7%, P=.04) at week 3. On multivariate analysis, pelvic BM volume and LP V40 remained associated with leukocyte count, and all marrow subsite volumes remained associated with neutrophil counts at week 3 (P<.1). Conclusions: Larger pelvic BM volumes correlate with less severe leukocyte and neutrophil nadirs, suggesting that larger total “marrow reserve” can mitigate cytopenias. Sparing a critical marrow reserve and limiting the V40 Gy to the lower pelvis may reduce the risk of hematologic toxicity.« less

  3. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J; Bernard, D; Liao, Y

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcsmore » with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.« less

  4. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with {sup 131}I-metaiodobenzylguanidine with implications for the activity to administer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakidetza.net; Flux, Glenn; Genollá, José

    2015-07-15

    Purpose: The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with {sup 131}I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. Methods: Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. Results: Dosimetricmore » data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6–1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. Conclusions: The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.« less

  5. Potential of Proton Therapy to Reduce Acute Hematologic Toxicity in Concurrent Chemoradiation Therapy for Esophageal Cancer.

    PubMed

    Warren, Samantha; Hurt, Christopher N; Crosby, Thomas; Partridge, Mike; Hawkins, Maria A

    2017-11-01

    Radiation therapy dose escalation using a simultaneous integrated boost (SIB) is predicted to improve local tumor control in esophageal cancer; however, any increase in acute hematologic toxicity (HT) could limit the predicted improvement in patient outcomes. Proton therapy has been shown to significantly reduce HT in lung cancer patients receiving concurrent chemotherapy. Therefore, we investigated the potential of bone marrow sparing with protons for esophageal tumors. Twenty-one patients with mid-esophageal cancer who had undergone conformal radiation therapy (3D50) were selected. Two surrogates for bone marrow were created by outlining the thoracic bones (bone) and only the body of the thoracic vertebrae (TV) in Eclipse. The percentage of overlap of the TV with the planning treatment volume was recorded for each patient. Additional plans were created retrospectively, including a volumetric modulated arc therapy (VMAT) plan with the same dose as for 3D50; a VMAT SIB plan with a dose prescription of 62.5 Gy to the high-risk subregion within the planning treatment volume; a reoptimized TV-sparing VMAT plan; and a proton therapy plan with the same SIB dose prescription. The bone and TV dose metrics were recorded and compared across all plans and variations with respect to PTV and percentage of overlap for each patient. The 3D50 plans showed the highest bone mean dose and TV percentage of volume receiving ≥30 Gy (V 30Gy ) for each patient. The VMAT plans irradiated a larger bone V 10Gy than did the 3D50 plans. The reoptimized VMAT62.5 VT plans showed improved sparing of the TV volume, but only the proton plans showed significant sparing for bone V 10Gy and bone mean dose, especially for patients with a larger PTV. The results of the present study have shown that proton therapy can reduced bone marrow toxicity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Liu, Qian; Zeng, Shaoqun; Luo, Qingming

    2008-07-01

    The voxel-based visible Chinese human (VCH) adult male phantom has offered a high-quality test bed for realistic Monte Carlo modeling in radiological dosimetry simulations. The phantom has been updated in recent effort by adding newly segmented organs, revising walled and smaller structures as well as recalibrating skeletal marrow distributions. The organ absorbed dose against external proton exposure was calculated at a voxel resolution of 2 × 2 × 2 mm3 using the MCNPX code for incident energies from 20 MeV to 10 GeV and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO), respectively. The effective dose on the VCH phantom was derived in compliance with the evaluation scheme for the reference male proposed in the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Algorithm transitions from the revised radiation and tissue weighting factors are accountable for approximately 90% and 10% of effective dose discrepancies in proton dosimetry, respectively. Results are tabulated in terms of fluence-to-dose conversion coefficients for practical use and are compared with data from other models available in the literature. Anatomical variations between various computational phantoms lead to dose discrepancies ranging from a negligible level to 100% or more at proton energies below 200 MeV, corresponding to the spatial geometric locations of individual organs within the body. Doses show better agreement at higher energies and the deviations are mostly within 20%, to which the organ volume and mass differences should be of primary responsibility. The impact of body size on dose distributions was assessed by dosimetry of a scaled-up VCH phantom that was resized in accordance with the height and total mass of the ICRP reference man. The organ dose decreases with the directionally uniform enlargement of voxels. Potential pathways to improve the VCH phantom have also been briefly addressed. This work pertains to VCH-based systematic multi-particle dose investigations and will contribute to comparative dosimetry studies of ICRP standardized voxel phantoms in the near future.

  7. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week old C57BL6/J mice were exposed to high LET (56 Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3 - 4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 micron pixel size) and marrow cell redox assessed using membrane permeable, free radical sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT PCR. Interestingly, 3 - 4 days post exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF FM Diacetate or CM H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower(24%) relative to sham irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down regulate iNOS by 0.54 - 0.58 fold. Thus, both low and high doses of heavy ion irradiation cause time dependent, adaptive changes in redox state within marrow cells but only high doses (50, 200cGy) inhibit osteoblastogenesis and cause cancellous bone loss. We conclude space radiation has the potential to cause persistent damage to bone marrow derived stem and progenitor cells for osteoblasts despite adaptive changes in cellular redox state.

  8. Bone marrow cytology in Hiroshima atomic bomb survivors 5 years following exposure (in Japanese and English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterle, S.N.; Finch, S.C.

    1978-11-01

    Bone marrow aspiration smears obtained from 35 individuals, 5 years following expsoure to the Hiroshima atomic bomb, were intensively evaluated for radiation related cytologic abnormalities. No definite radiaton related changes were observed, but some findings were very suggestive. The most interesting of these was the occurrence of internuclear bridges joining erythroid precursors in the marrow smears of seven (20%) of the heavily exposed survivors. Although not specific it is likely that this lesion is indicative of residual stem cell damage and some degree of ineffectual erythropoiesis. The bone marrow morphologic lesions may be good markers of residual radiation damage butmore » they are too infrequent in their occurrence to be of value as a biologic dosimeter. The findings in this study also suggest that a gradual disappearance of radiation induced late bone marrow changes continues for periods of 3 to 5 years or more following high dose acute radiation exposure.« less

  9. Stem Cell Therapy to Improve Burn Wound Healing

    DTIC Science & Technology

    2017-03-01

    Aim(s) • Perform Phase 1 Trial of Allogeneic MSCs in Burns • Perform Phase 2 Trial of Allogeneic MSCs in Burns • Collect Tissue Repository for...for safety/dose studies CY15 Goal – Continue Phase 1 and, Start Tissue Repository  Continue donors recruitment, screening and Bone Marrow Aspiration...1 Trial and Collect Tissue Repository  Continue donors recruitment, screening and Bone Marrow Aspiration as needed.  Continue patients screening

  10. Long-Term Bone Marrow Suppression During Postoperative Chemotherapy in Rectal Cancer Patients After Preoperative Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Neil B.; Sidhu, Manpreet K.; Baby, Rekha

    Purpose/Objective(s): To quantify ensuing bone marrow (BM) suppression during postoperative chemotherapy resulting from preoperative chemoradiation (CRT) therapy for rectal cancer. Methods and Materials: We retrospectively evaluated 35 patients treated with preoperative CRT followed by postoperative 5-Fluorouracil and oxaliplatin (OxF) chemotherapy for locally advanced rectal cancer. The pelvic bone marrow (PBM) was divided into ilium (IBM), lower pelvis (LPBM), and lumbosacrum (LSBM). Dose volume histograms (DVH) measured the mean doses and percentage of BM volume receiving between 5-40 Gy (i.e.: PBM-V5, LPBM-V5). The Wilcoxon signed rank tests evaluated the differences in absolute hematologic nadirs during neoadjuvant vs. adjuvant treatment. Logistic regressionsmore » evaluated the association between dosimetric parameters and ≥ grade 3 hematologic toxicity (HT3) and hematologic event (HE) defined as ≥ grade 2 HT and a dose reduction in OxF. Receiver Operator Characteristic (ROC) curves were constructed to determine optimal threshold values leading to HT3. Results: During OxF chemotherapy, 40.0% (n=14) and 48% (n=17) of rectal cancer patients experienced HT3 and HE, respectively. On multivariable logistic regression, increasing pelvic mean dose (PMD) and lower pelvis mean dose (LPMD) along with increasing PBM-V (25-40), LPBM-V25, and LPBM-V40 were significantly associated with HT3 and/or HE during postoperative chemotherapy. Exceeding ≥36.6 Gy to the PMD and ≥32.6 Gy to the LPMD strongly correlated with causing HT3 during postoperative chemotherapy. Conclusions: Neoadjuvant RT for rectal cancer has lasting effects on the pelvic BM, which are demonstrable during adjuvant OxF. Sparing of the BM during preoperative CRT can aid in reducing significant hematologic adverse events and aid in tolerance of postoperative chemotherapy.« less

  11. Long-Term Bone Marrow Suppression During Postoperative Chemotherapy in Rectal Cancer Patients After Preoperative Chemoradiation Therapy.

    PubMed

    Newman, Neil B; Sidhu, Manpreet K; Baby, Rekha; Moss, Rebecca A; Nissenblatt, Michael J; Chen, Ting; Lu, Shou-En; Jabbour, Salma K

    2016-04-01

    To quantify ensuing bone marrow (BM) suppression during postoperative chemotherapy resulting from preoperative chemoradiation (CRT) therapy for rectal cancer. We retrospectively evaluated 35 patients treated with preoperative CRT followed by postoperative 5-Fluorouracil and oxaliplatin (OxF) chemotherapy for locally advanced rectal cancer. The pelvic bone marrow (PBM) was divided into ilium (IBM), lower pelvis (LPBM), and lumbosacrum (LSBM). Dose volume histograms (DVH) measured the mean doses and percentage of BM volume receiving between 5-40 Gy (i.e.: PBM-V5, LPBM-V5). The Wilcoxon signed rank tests evaluated the differences in absolute hematologic nadirs during neoadjuvant vs. adjuvant treatment. Logistic regressions evaluated the association between dosimetric parameters and ≥ grade 3 hematologic toxicity (HT3) and hematologic event (HE) defined as ≥ grade 2 HT and a dose reduction in OxF. Receiver Operator Characteristic (ROC) curves were constructed to determine optimal threshold values leading to HT3. During OxF chemotherapy, 40.0% (n=14) and 48% (n=17) of rectal cancer patients experienced HT3 and HE, respectively. On multivariable logistic regression, increasing pelvic mean dose (PMD) and lower pelvis mean dose (LPMD) along with increasing PBM-V (25-40), LPBM-V25, and LPBM-V40 were significantly associated with HT3 and/or HE during postoperative chemotherapy. Exceeding ≥36.6 Gy to the PMD and ≥32.6 Gy to the LPMD strongly correlated with causing HT3 during postoperative chemotherapy. Neoadjuvant RT for rectal cancer has lasting effects on the pelvic BM, which are demonstrable during adjuvant OxF. Sparing of the BM during preoperative CRT can aid in reducing significant hematologic adverse events and aid in tolerance of postoperative chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation.

    PubMed

    Sini, Carla; Fiorino, Claudio; Perna, Lucia; Noris Chiorda, Barbara; Deantoni, Chiara Lucrezia; Bianchi, Marco; Sacco, Vincenzo; Briganti, Alberto; Montorsi, Francesco; Calandrino, Riccardo; Di Muzio, Nadia; Cozzarini, Cesare

    2016-01-01

    To prospectively identify clinical/dosimetric predictors of acute/late hematologic toxicity (HT) in chemo-naÏve patients treated with whole-pelvis radiotherapy (WPRT) for prostate cancer. Data of 121 patients treated with adjuvant/salvage WPRT were analyzed (static-field IMRT n=19; VMAT/Rapidarc n=57; Tomotherapy n=45). Pelvic bone marrow (BM) was delineated as ilium (IL), lumbosacral, lower and whole pelvis (WP), and the relative DVHs were calculated. HT was graded both according to CTCAE v4.03 and as variation in percentage relative to baseline. Logistic regression was used to analyze association between HT and clinical/DVHs factors. Significant differences (p<0.005) in the DVH of BM volumes between different techniques were found: Tomotherapy was associated with larger volumes receiving low doses (3-20 Gy) and smaller receiving 40-50 Gy. Lower baseline absolute values of WBC, neutrophils and lymphocytes (ALC) predicted acute/late HT (p ⩽ 0.001). Higher BM V40 was associated with higher risk of acute Grade3 (OR=1.018) or late Grade2 lymphopenia (OR=1.005). Two models predicting lymphopenia were developed, both including baseline ALC, and BM WP-V40 (AUC=0.73) and IL-V40+smoking (AUC=0.904) for acute/late respectively. Specific regions of pelvic BM predicting acute/late lymphopenia, a risk factor for viral infections, were identified. The 2-variable models including specific constraints to BM may help reduce HT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Development of skeletal system for mesh-type ICRP reference adult phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  14. Biokinetics and dosimetry in patients of 99mTc-EDDA/HYNIC-Tyr3-octreotide prepared from lyophilized kits.

    PubMed

    González-Vázquez, Armando; Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Gutiérrez-García, Zohar

    2006-07-01

    99mTc-EDDA/HYNIC-Tyr3-octreotide (99mTc-HYNIC-TOC) has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. The aim of this study was to establish a biokinetic model for 99mTc-HYNIC-TOC prepared from lyophilized kits, and to evaluate its dosimetry as a tumor imaging agent in patients with histologically confirmed neuroendocrine tumors. Whole-body images from eight patients were acquired at 5, 60, 90, 180 min and 24 h after 99mTc-HYNIC-TOC administration obtained from instant freeze-dried kit formulations with radiochemical purities >95%. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all eight scans and the count per minute (cpm) of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99mTc-HYNIC-TOC time-activity curves in each organ, to adjust a biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed an average tumor/blood (heart) ratio of 4.3+/-0.7 in receptor-positive tumors at 1 h. The mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv.

  15. Strategies to eradicate minimal residual disease in small cell lung cancer: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

    PubMed

    Krug, L M; Grant, S C; Miller, V A; Ng, K K; Kris, M G

    1999-10-01

    In the last 25 years, treatment for small cell lung cancer (SCLC) has improved with advances in chemotherapy and radiotherapy. Standard chemotherapy regimens can yield 80% to 90% response rates and some cures when combined with thoracic irradiation in limited-stage patients. Nonetheless, small cell lung cancer has a high relapse rate due to drug resistance; this has resulted in poor survival for most patients. Attacking this problem requires a unique approach to eliminate resistant disease remaining after induction therapy. This review will focus on three potential strategies: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

  16. [Effect of the Industrial Nanoparticles TiO 2 , SiO 2 and ZnO on Cell Viability and Gene Expression in Red Bone Marrow of Mus Musculus].

    PubMed

    Zarria-Romero, Jacquelyne; Osorio, Ana; Pino, José; Shiga, Betty; Vivas-Ruiz, Dan

    2017-01-01

    To evaluate the effect of ZnO, TiO2 and SiO2 nanoparticles on cell viability and expression of the interleukin 7, interleukin 3, and granulocyte-macrophage colony stimulating factor (GM-CSF) genes in Mus musculus. Red bone marrow was extracted from five Balb/c mice for the analysis of cell viability using the MTT test. The mice were divided into two groups of five each: one group was inoculated intraperitoneally with 0.5, 1.0, 2.5, 5.0, and 10 mg/kg of ZnO and SiO2 nanoparticles, respectively, and the other group was inoculated with 5.0, 10.0, 15.0, 20.0, and 25 mg/kg of TiO2 nanoparticles, respectively. Thirty hours later, RNA was extracted from the red bone marrow of the mice in both groups for gene expression analysis using quantitative PCR and RT-PCR. ZnO and SiO2 nanoparticles reduced cell viability in a dose-dependent manner by 37% and 26%, respectively, starting at a dose of 1 mg/kg. TiO2 nanoparticles at 5 mg/kg and 10 mg/kg reduced the gene expression of interleukins 7 and 3 by 55.3% and 70.2%, respectively, and SiO2 nanoparticles caused the greatest decrease (91%) in the expression of GM-CSF. ZnO nanoparticles reduced the expression of GM-CSF starting at doses of 20 mg/kg and 25 mg/kg. ZnO, SiO2 and TiO2 nanoparticles affect cell viability and gene expression in the mouse bone marrow.

  17. Patient doses in the healing arts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Determinations of radiation doses to patients from x-ray procedures and radiopharmaceuticals are detailed in this chapter. Instructions are given for estimating doses from x-ray procedures. For selected pediatric procedures, the methodology developed by the Food and Drug Administration is presented. The effect of testicular and ovarian shielding is illustrated in tabular form. Estimates of the Genetically Significant Dose (GSD) and mean annual bone marrow dose from diagnostic x-ray examinations are presented for the US populations (1990). This chapter also provides tables of patient doses from selected nuclear medicine procedures and estimates of fetal doses from {sup 131}I.

  18. [Effects of recombinant human alpha-2b and gamma interferons on bone marrow megakaryocyte progenitors (CFU-Meg) from patients with chronic myelocytic leukemia].

    PubMed

    Tanabe, Y; Dan, K; Kuriya, S; Nomura, T

    1989-10-01

    The effects of recombinant human interferon (IFN) alpha-2b and gamma on the bone marrow megakaryocyte progenitors (CFU-Meg) were compared between eight patients in the chronic phase of Ph1-positive chronic myelocytic leukemia (CML) and five hematologically normal patients. CFU-Meg was assayed in plasma clot culture added with phytohemagglutinin-stimulated leukocyte-conditioned medium as a source of colony stimulating activity. The average count of CFU-Meg colonies formed from the bone marrow of CML patients was 5.5 times that of normal controls. Spontaneous CFU-Meg colonies were grown in seven of eight CML patients, but in none of five controls. Colony formation by CFU-Meg in CML as well as normal bone marrow was suppressed by the two preparations of IFN in a dose dependent fashion. Their suppressive influence on colonies from CFU-Meg was comparable between CML and normal bone marrow at lower concentrations, but was less marked for CML than normal bone marrow at higher concentrations. The formation of CFU-Meg colonies from CML bone marrow was more severely suppressed by IFN-gamma than IFN-alpha-2b. Depletion of either T lymphocytes or adherent cells from the CML bone marrow cells diminished the suppressive effects of IFN-gamma, but had no influence on the effects of IFN-alpha-2b.

  19. Development and characterization of a lung-protective method of bone marrow transplantation in the mouse.

    PubMed

    Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M

    2010-05-31

    Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired.

  20. Mutagenicity of diagnostic and therapeutical doses of radiopharmaceutical iodine-131 in Wistar rats.

    PubMed

    Düsman, Elisângela; Berti, Alessandra Paim; Mariucci, Rosinete Gonçalves; Lopes, Nilson Benedito; Vicentini, Veronica Elisa Pimenta

    2011-11-01

    Iodine-131 ((131)I) is a radioisotope used for the diagnosis and treatment of thyroidal disorders such as hyperthyroidism and cancer. During its decay, (131)I emits beta particles and gamma rays; its physical half-life is 8 days, and it is accumulated preferentially in the thyroid tissue. This study aimed to evaluate the cytotoxicity and mutagenicity of diagnostic and therapeutic doses of (131)I using bone marrow cells of rats treated in vivo in a test system with a single dose by gavage. Concentrations of 5, 25, 50 and 250 μCi in 1 ml of water were used, and after 24 h, the animals were killed. Also, a concentration of 25 μCi/ml of water was used, and the animals were killed after 5 days. The results showed that no concentration of (131)I was cytotoxic and that all concentrations were mutagenic. As a result, there was no statistically significant difference detected by the χ(2) test in the induction of chromosomal aberrations between the different doses. Thus, the present study demonstrated a significant increase in chromosomal aberration in bone marrow cells exposed to (131)I regardless of the dose or the treatment time.

  1. Dosimetry for radiobiological studies of the human hematopoietic system

    NASA Technical Reports Server (NTRS)

    Beck, W. L.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    A system for estimating individual bone marrow doses in therapeutic radiation exposures of leukemia patients was studied. These measurements are used to make dose response correlations and to study the effect of dose protraction on peripheral blood cell levels. Three irradiators designed to produce a uniform field of high energy gamma radiation for total body exposures of large animals and man are also used for radiobiological studies.

  2. In vivo postirradiation protection by a vitamin E analog, alpha-TMG.

    PubMed

    Satyamitra, Merriline; Uma Devi, P; Murase, Hironobu; Kagiya, V T

    2003-12-01

    The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.

  3. In-vivo genotoxicity of the alkaloid drug pilocarpine nitrate in bone marrow cells and male germ cells of mice.

    PubMed

    Hegde, M J; Sujatha, T V

    1995-10-01

    Pilocarpine nitrate, an alkaloid drug of plant origin induces spindle disfunction in bone marrow cells of mice. Further studies were carried out to investigate its mutagenic effects in somatic and germ cells of mice by assessing chromosome aberrations at mitotic metaphase and as micronuclei in bone marrow cells and sperm-shape abnormality in cauda epididymides. The dose and time yield effects of the drug were investigated. The statistically significant results that were obtained for both chromosomal aberrations and micronucleus test but not for the sperm-shape abnormality test, indicated the genotoxicity of this compound in somatic cells but not in germ cells.

  4. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  5. Regulatory mechanisms of eosinopoiesis. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottolenghi, A.; Bernheim, F.

    1979-01-01

    Studies were performed with whole-body and partial-body x-irradiation of mice to examine regenerative response of major hematopoietic sites and peripheral pools. Doses from 150 to 600 r were given with various forms of shielding. From consistent results, the author concluded that the shielded marrow was responding to a specific eosinophilic stimulus possibly originating in the irradiated areas with a time course independent of the regenerative pattern of the other nucleated elements of the marrow. (PCS)

  6. Genotoxicity of nimesulide in murine bone marrow cells.

    PubMed

    Khan, P K; Amod, K; Haque, M; Nath, A

    2003-01-01

    The genotoxic potentiality of nimesulide was evaluated in vivo in murine bone marrow cells. The human equivalent prophylactic dose of nimesulide (5 mg/kg body wt/day) was given to animals orally, once daily for seven consecutive days. Metaphase chromosome analyses revealed the significant increase in the incidence of chromosomal aberrations with preference to structural over the numerical ones. It therefore suggested the clastogenic effect of the nimesulide. The molecular mechanism of mutagenesis is yet to be determined.

  7. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.

    PubMed

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-10-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30-35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.

  8. Preparation and dosimetry evaluation of a carrier- free 90Y labeled DOTMP as a Promising Agent for Bone marrow ablation.

    PubMed

    Salek, Nafise; Vosoghi, Sara; Arani, Simindokht Shirvani; Samani, Ali Bahrami; Mehrabi, Mohsen; Maraghe, Mohammad Ghannadi

    2018-04-12

    Skeletal uptake of 90Y-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonate (DOTMP) is used to deliver high doses of this radiopharmaceutical to the bone marrow. In this research, carrier-free (c.f.) 90Y was obtained from an electrochemical 90Sr/90Y generator. The c.f. 90Y was mixed with 300 µL of DOTMP (20 mg/mL) and incubated under stirring conditions at room temperature for 45 min. The [90Y]Y-DOTMP that was obtained under optimized reaction conditions had the high radiochemical purities (>98%). Moreover, the radiolabeled complex exhibited excellent stability at room temperature, as well as in human serum. The biodistribution studies in rats showed the favorable selective skeletal uptake with rapid clearance from the blood, albeit with insignificant accumulation of activity in other non-target organs for the radiolabeled complex. Also the present work has utilized the Monte Carlo codes MCNP-4C to simulate the depth dose profile for 90Y in a mice femur bone and compared with that produced by 153Sm and 177Lu. The results show that the absorbed dose produced by 90Y in the bone marrow is higher than 153Sm and 177Lu per 1MBq of the injected activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Evaluation of the mutagenic effect of the iodinated contrast medium Urografina® 292 using the micronucleus test in mouse bone marrow cells.

    PubMed

    Belle, Mônica B B; Leffa, Daniela D; Mazzorana, Daliane; De Andrade, Vanessa M

    2013-01-01

    Contrast media (CM) are frequently used in diagnostic radiology and in radiotherapy as a diagnostic tool and in treatment planning. Previous studies have demonstrated that these compounds induce chromosomal aberrations. This study evaluates the mutagenic effects induced by the contrast medium Urografina® 292 (meglumine amidotrizoate and sodium-ionic dimmer) in bone marrow cells (BMC) of mice in vivo. Micronuclei assay was performed in BMC of CF-1 mice injected with CM 1.5 and 3.0 mL/kg intravenous doses and 1.0, 2.0, 3.0 mL/kg intraperitoneal doses. The animals were beheaded 24 h after treatment by cervical dislocation, and femur BMC from each animal were used in the micronucleus test. The group treated with the highest intravenous injection of Urografina® 292 (3.0 mL/kg) presented an increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in relation at the control group (P<0.05). The results obtained after intraperitoneal administration of CM showed that all doses (1.0 mL/kg, 2.0 mL/kg and 3.0 mL/kg) increased the frequency of MNPCEs, being significantly different from the negative control (P< 0.01). The present results suggest that iodinated contrast media Urografina® 292 may cause a significant increase of cytogenetic damage in bone marrow cells of mice.

  10. Distribution and dosimetry of In-111 labeled leukocytes and platelets in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, D.A.; Finston, R.A.; Smith, S.I.

    1981-06-01

    The distribution of In-111 labeled leukocytes and platelets was studied by whole body gamma camera imaging in patients. Images were made approximately one hour and 24 hours after IV injection, and stored in digital form in computer memory. Estimates of the quantitative organ distribution were made from the geometric mean of the anterior and posterior region of interest counts after suitable background subtraction. Nearly quantitative retention of cell activity was observed with little or no excretion seen in either gut or kidneys. Mixed leukocytes distributed in spleen, liver and bone marrow in decreasing order of concentration, similar at both times,more » with a transient lung uptake noted at the one hour time only. The dose from 0.5 mCi In-111-WBC's was: liver, 1.4 rad; spleen, 8.5 rad; marrow, 2.3 rad. Lymphocytes had similar distribution with the addition of inguinal and cervical lymph nodes. The dose from 0.5 mCi In-111-lymphocytes was: liver, 0.8 rad; spleen, 6.7 rad; marrow and lymphatic tissue, 1.4 rad. Platelets distributed primarily in the blood pool with most of the remainder concentrating in the spleen, with a small amount in the penis. The dose from 0.5 mCi of In-111-platelets was: liver, 3.2 rad; spleen, 8.6 rad; and whole body, 0.3 rad.« less

  11. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry.

    PubMed

    Kramer, R; Khoury, H J; Vieira, J W; Loureiro, E C M; Lima, V J M; Lima, F R A; Hoff, G

    2004-12-07

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  12. Assessment of radiation-induced secondary cancer risk in the Brazilian population from left-sided breast-3D-CRT using MCNPX.

    PubMed

    Mendes, Bruno Melo; Trindade, Bruno Machado; Fonseca, Telma Cristina Ferreira; de Campos, Tarcisio Passos Ribeiro

    2017-12-01

    The aim of this work was to simulate a 6MV conventional breast 3D conformational radiation therapy (3D-CRT) with physical wedges (50 Gy/25#) in the left breast, calculate the mean absorbed dose in the body organs using robust models and computational tools and estimate the secondary cancer-incidence risk to the Brazilian population. The VW female phantom was used in the simulations. Planning target volume (PTV) was defined in the left breast. The 6MV parallel-opposed fields breast-radiotherapy (RT) protocol was simulated with MCNPx code. The absorbed doses were evaluated in all the organs. The secondary cancer-incidence risk induced by radiotherapy was calculated for different age groups according to the BEIR VII methodology. RT quality indexes indicated that the protocol was properly simulated. Significant absorbed dose values in red bone marrow, RBM (0.8 Gy) and stomach (0.6 Gy) were observed. The contralateral breast presented the highest risk of incidence of a secondary cancer followed by leukaemia, lung and stomach. The risk of a secondary cancer-incidence by breast-RT, for the Brazilian population, ranged between 2.2-1.7% and 0.6-0.4%. RBM and stomach, usually not considered as OAR, presented high second cancer incidence risks of 0.5-0.3% and 0.4-0.1%, respectively. This study may be helpful for breast-RT risk/benefit assessment. Advances in knowledge: MCNPX-dosimetry was able to provide the scatter radiation and dose for all body organs in conventional breast-RT. It was found a relevant risk up to 2.2% of induced-cancer from breast-RT, considering the whole thorax organs and Brazilian cancer-incidence.

  13. Investigation of genotoxic effect of taxol plus radiation on mice bone marrow cells.

    PubMed

    Ozkan, Lütfi; Egeli, Unal; Tunca, Berrin; Aydemir, Nilüfer; Ceçener, Gülşah; Akpinar, Gürler; Ergül, Emel; Cimen, Ciğdem; Ozuysal, Sema; Kahraman-Cetintaş, Sibel; Engin, Kayihan; Ahmed, Mansoor M

    2002-01-01

    In this study, we investigated the genotoxic effect of taxol, radiation, or taxol plus radiation on highly proliferative normal tissue-bone marrow cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered bolus intravenously through the tail vein. Radiation was given by using a linear accelerator. There were four treatment categories, which had a total of 34 groups. Each group consisted of five animals. The first was the control category that had one group (n = 5). The second treatment category was taxol alone, which had three groups as per taxol dose alone (n = 15). The third treatment category was radiation alone, which had three groups as per the radiation dose (n = 15). The fourth treatment category was taxol plus radiation, which had 27 groups as per combined radiation dose plus taxol dose concentration and as per pre-treatment timing sequence of taxol before radiation (n = 135). Mice were sacrificed 24 h after taxol or radiation or combined administration using ether anesthesia. The cells were then dropped on two labeled slides, flamed, air dried, and stained in 7% Giemsa; 20-30 well-spread mitotic metaphases were analyzed for each animal; the cells with chromosome breaks, acentric fragments, and rearrangements were evaluated on x1,000 magnification with light microscope (Zeiss axioplan). The mitotic index was determined by counting the number of mitotic cells among 1,000 cells per animal. Differences between groups were evaluated with Student's t-test statistically. Taxol caused a dose-dependent increase in chromosomal aberrations (P = 0.027). Similarly, radiation caused a dose-dependent increase in chromosomal aberrations (P = 0.003) and decreased mitotic index (P = 0.002). In combination, there were a small enhancements at the 40 mg/kg taxol dose level and at 0.25 and 0.5 Gy radiation doses in the 48 h group. However, an increase in chromosomal aberrations was observed after 48 hours of taxol exposure when compared 12 or 24 h of taxol exposure (P = 0.001 and P = 0.019). These findings suggest that taxol at the high doses with low dose radiation caused radiosensitizing effect in bone marrow cells. Forty-eight-hour pretreatment of taxol exposure followed by radiation caused significant induction of chromosomal aberrations and a reduction of mitotic index when compared to other taxol timing sequence. Copyright 2002 Wiley-Liss, Inc.

  14. Total marrow irradiation using Helical TomoTherapy

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, Lourdes Maria

    Clinical dose response data of human tumours are limited or restricted to a radiation dose range determined by the level of toxicity to the normal tissues. This is the case for the most common disseminated plasma cell neoplasm, multiple myeloma, where the maximum dose deliverable to the entire bony skeleton using a standard total body irradiation (TBI) technique is limited to about 12 Gy. This study is part of scientific background of a phase I/II dose escalation clinical trial for multiple myeloma using image-guided intensity modulated radiotherapy (IG-IMRT) to deliver high dose to the entire volume of bone marrow with Helical TomoTherapy (HT). This relatively new technology can deliver highly conformal dose distributions to complex target shapes while reducing the dose to critical normal tissues. In this study tools for comparing and predicting the effectiveness of different approaches to total marrow irradiation (TMI) using HT were provided. The expected dose response for plasma cell neoplasms was computed and a radiobiological evaluation of different treatment cohorts in a dose escalating study was performed. Normal tissue complication probability (NTCP) and tumour control probability (TCP) models were applied to an actual TMI treatment plan for a patient and the implications of using different longitudinal field widths were assessed. The optimum dose was ˜39 Gy for which a predicted tumour control of 95% (+/-3%) was obtained, with a predicted 3% (0, 8%) occurrence of radiation pneumonitis. Tissue sparing was seen by using smaller field widths only in the organs of the head. This suggests it would be beneficial to use the small fields in the head only since using small fields for the whole treatment would lead to long treatment times. In TMI it may be necessary to junction two longitudinally adjacent treatment volumes to form a contiguous planning target volume PTV. For instance, this is the case when a different SUP-INF spatial resolution is required or when the PTV length exceeds the bed travel distance. In this work, the dosimetric challenges associated with junctioning longitudinally adjacent PTVs with HT were analyzed and the feasibility of PTV junctioning was demonstrated. The benefits of spatially dividing or splitting the treatment into a few sub-treatments along the longitudinal direction were also investigated.

  15. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: A pilot study

    PubMed Central

    Prasad, Kameshwar; Mohanty, Sujata; Bhatia, Rohit; Srivastava, M.V.P.; Garg, Ajay; Srivastava, Achal; Goyal, Vinay; Tripathi, Manjari; Kumar, Amit; Bal, Chandrashekar; Vij, Aarti; Mishra, Nalini Kant

    2012-01-01

    Background & objectives: Bone marrow mononuclear cell therapy has emerged as one of the option for the treatment of Stroke. Several preclinical studies have shown that the treatment with mononuclear cell (MNCs) can reduce the infarct size and improve the functional outcome. We evaluated the feasibility, safety and clinical outcome of administering bone marrow mononuclear cell (MNCs) intravenously to patients with subacute ischaemic stroke. Methods: In a non-randomized phase-I clinical study, 11 consecutive, eligible and consenting patients, aged 30-70 yr with ischaemic stroke involving anterior circulation within 7 to 30 days of onset of stroke were included. Bone marrow was aspirated from iliac crest and the harvested mononuclear cells were infused into antecubital vein. Outcomes measured for safety included immediate reactions after cell infusion and evidence of tumour formation at one year in whole body PET scan. Patients were followed at week 1, 4-6, 24 and 52 to determine clinical progress using National Institute of Health Stroke Scale (NIHSS), Barthel Index (BI), modified Rankin Scale (mRS), MRI, EEG and PET. Feasibility outcomes included target-dose feasibility. Favourable clinical outcome was defined as mRS score of 2 or less or BI score of 75 to 100 at six months after stem cell therapy. Results: Between September 2006 and April 2007, 11 patients were infused with bone-marrow mononuclear cells (mean 80 million with CD-34+ mean 0.92 million). Protocol was target-dose feasible in 9 patients (82%). FDG-PET scan at 24 and 52 wk in nine patients did not reveal evidence of tumour formation. Seven patients had favourable clinical outcome. Interpretation & conclusions: Intravenous bone marrow mononuclear cell therapy appears feasible and safe in patients with subacute ischaemic stroke. Further, a randomized controlled trial to examine its efficacy is being conducted. PMID:22960888

  16. Successful pregnancy after total body irradiation and bone marrow transplantation for acute leukaemia.

    PubMed

    Giri, N; Vowels, M R; Barr, A L; Mameghan, H

    1992-07-01

    We report successful pregnancies in two young women (aged 24 and 20 years) following allogeneic bone marrow transplantation (BMT) for acute non-lymphoblastic leukaemia. Conditioning therapy consisted of cyclophosphamide (120 mg/kg) and total body irradiation (TBI, 12 Gy) in 2 Gy fractions once daily for 6 days or twice daily for 3 days. Graft-versus-host disease prophylaxis was with methotrexate alone. Both women were amenorrhoeic after BMT and gonadal testing indicated hypergonadotrophic hypogonadism. Both women had normal pregnancies (2 years and 5 years after BMT) resulting in normal healthy infants. Previously successful pregnancy has been reported after TBI in three women in whom the TBI dose was less than 8 Gy. Our cases illustrate that normal outcome of pregnancy is possible at even higher doses of TBI.

  17. Anemia and neutropenic fever with high dose diazoxide treatment in a case with hyperinsulinism due to Munchausen by proxy.

    PubMed

    Ozon, A; Demirbilek, H; Ertugrul, A; Unal, S; Gumruk, F; Kandemir, N

    2010-07-01

    The etiology of hyperinsulinemic hypoglycemia in adolescents is similar to that of adults. Patients resistant to medical treatment may undergo pancreatectomy. Diazoxide is the mainstay of medical treatment. Rarely bone marrow suppression is reported due to diazoxide. An adolescent with severe hyperinsulinemic hypoglycemia was referred for pancreatectomy after she was treated with high doses of diazoxide, octreotide and glucose. She developed anemia and febrile neutropenia in the course of diazoxide treatment that resolved with cessation of medication. The cause of the hyperinsulinemia proved to be classical Munchausen by proxy. This is the first report of bone marrow suppression involving erythroid series by diazoxide. Follow-up of blood count may be considered in patients on high dosages since anemia may be dose dependent. Munchausen by proxy poses a serious threat to children with significant morbidity and mortality. Awareness and a high index of suspicion in clinical settings with unusual causes are the mainstay for the diagnosis.

  18. Hematopoietic stimulation by porphyrin photosensitizers (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Levy, Julia G.; Hunt, David W. C.; Mitchell, David W.; Jamieson, Catriona H. M.

    1992-06-01

    The effects of the photosensitizers, PhotofrinTM and benozoporphyrin derivative monoacid ring A (BPD) on a variety of hematopoietic cell functions have been studied, both in the presence and absence of light activation. A marked increase in hematopoiesis was observed in the bone marrow and spleens of DBA/2 mice administered high dose Photofrin but not BPD. This was manifested in an increased relative spleen weight, nucleated spleen cell number and circulating white blood cell concentration 7 days following Photofrin injection. We have shown that BPD and light doses just below phototoxic ranges stimulate the growth of human colony forming committed myeloid progenitors as well as pluripotent stem cells grown in long term marrow culture. Studies on the effect of BPD on the function of T lymphocytes in the absence of light has also demonstrated a stimulatory effect. The dose range in which this is observed is considerably broader than that observed with light activation. The mechanisms involved in this stimulatory effect have been studied and are discussed.

  19. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.

  20. Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue

    DOE PAGES

    Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel; ...

    2015-03-03

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ( 137Cs, 0.8 Gy/min) or heavy ions ( 56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) ormore » accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand ( Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/ Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). Finally, we conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of specific genes expressed within marrow and mineralized tissue related to bone resorption, including select cytokines that lead to osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive deterioration of cancellous microarchitecture following exposure to ionizing radiation.« less

  1. Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwood, Joshua S.; Shahnazari, Mohammad; Chicana, Betsabel

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically active, cancellous bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16 week), male C57BL/6J mice were exposed to either 2 Gy gamma rays ( 137Cs, 0.8 Gy/min) or heavy ions ( 56Fe, 600MeV, 0.50–1.1 Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is ≥10 Gy) ormore » accumulates over long-duration interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4 h—7 days later. Gamma irradiation caused a prompt (2.6-fold within 4 h) and persistent (peaking at 4.1-fold within 1 day) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappa-B ligand ( Rankl), within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3 days of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (eg, monocyte chemotactic protein-1 increased by 11.9-fold, and tumor necrosis factor-alpha increased by 1.7-fold over controls). The ratio, Rankl/ Opg, in marrow increased by 1.8-fold, a net pro-resorption balance. In the marrow, expression of the antioxidant transcription factor, Nfe2l2, strongly correlated with expression levels of Nfatc1, Csf1, Tnf, and Rankl. Radiation exposure increased a serum marker of bone resorption (tartrate-resistant acid phosphatase) and led to cancellous bone loss (16% decrement after 1 week). Finally, we conclude that total body irradiation (gamma or heavy-ion) caused temporal elevations in the concentrations of specific genes expressed within marrow and mineralized tissue related to bone resorption, including select cytokines that lead to osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive deterioration of cancellous microarchitecture following exposure to ionizing radiation.« less

  2. Selective Shielding of Bone Marrow: An Approach to Protecting Humans from External Gamma Radiation.

    PubMed

    Waterman, Gideon; Kase, Kenneth; Orion, Itzhak; Broisman, Andrey; Milstein, Oren

    2017-09-01

    The current feasibility of protecting emergency responders through bone marrow selective shielding is highlighted in the recent OECD/NEA report on severe accident management. Until recently, there was no effective personal protection from externally penetrating gamma radiation. In Chernobyl, first-responders wore makeshift lead sheeting, whereas in Fukushima protective equipment from gamma radiation was not available. Older protective solutions that use thin layers of shielding over large body surfaces are ineffective for energetic gamma radiation. Acute exposures may result in Acute Radiation Syndrome where the survival-limiting factor up to 10 Gy uniform, homogeneous exposure is irreversible bone marrow damage. Protracted, lower exposures may result in malignancies of which bone marrow is especially susceptible, being compounded by leukemia's short latency time. This highlights the importance of shielding bone marrow for preventing both deterministic and stochastic effects. Due to the extraordinary regenerative potential of hematopoietic stem cells, to effectively prevent the deterministic effects of bone marrow exposure, it is sufficient to protect only a small fraction of this tissue. This biological principle allows for a new class of equipment providing unprecedented attenuation of radiation to select marrow-rich regions, deferring the hematopoietic sub-syndrome of Acute Radiation Syndrome to much higher doses. As approximately half of the body's active bone marrow resides within the pelvis region, shielding this area holds great promise for preventing the deterministic effects of bone marrow exposure and concomitantly reducing stochastic effects. The efficacy of a device that selectively shields this region and other radiosensitive organs in the abdominal area is shown here.

  3. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very crucial in understanding the radiation risks of the patients undergoing computed tomography. Finally, nuclear medicine simulations were performed by calculating specific absorbed fractions for multiple target-source organ pairs via Monte Carlo simulations. Specific absorbed fractions were calculated for both photon and electron so that they can be used to calculated radionuclide S-values. All of the results were tabulated for future uses and example dose assessment was performed for selected nuclides administered in nuclear medicine.

  4. Biological effectiveness of nuclear fragments produced by high-energy protons interacting in tissues near the bone- soft tissue interface

    NASA Astrophysics Data System (ADS)

    Shavers, Mark Randall

    1999-12-01

    High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.

  5. Radon and leukemia in the Danish study: another source of dose.

    PubMed

    Harley, Naomi H; Robbins, Edith S

    2009-10-01

    An epidemiologic study of childhood leukemia in Denmark (2,400 cases; 6,697 controls) from 1968 to 1994 suggested a weak, but statistically significant, association of residential radon exposure and acute childhood lymphoblastic leukemia (ALL). The Danish study estimated a relative risk (RR) = 1.56 (95% CI, 1.05-2.30) for a cumulative exposure of 1,000 Bq m-3 y. For an exposure duration of 10 y their RR corresponds to a radon concentration of 100 Bq m-3. There are two dose pathways of interest where alpha particles could damage potential stem cells for ALL. One is the alpha dose to bone marrow, and two is the dose to bronchial mucosa where an abundance of circulating lymphocytes is found. Compared with an exposure of about 1 mSv y-1 from natural external background, radon and decay products contribute an additional 10 to 60% to the bone marrow equivalent dose. The other pathway for exposure of T (or B) lymphocytes is within the tracheobronchial epithelium (BE). Inhaled radon decay products deposit on the relatively small area of airway surfaces and deliver a significant dose to the nearby basal or mucous cells implicated in human lung cancer. Lymphocytes are co-located with basal cells and are half as abundant. Using a 10-y exposure to 100 Bq m-3, our dose estimates suggest that the equivalent dose to these lymphocytes could approach 1 Sv. The relatively high dose estimate to lymphocytes circulating through the BE, potential precursor cells for ALL, provides a dose pathway for an association.

  6. Imaging findings in a child with calcineurin inhibitor-induced pain syndrome after bone marrow transplant for beta thalassemia major.

    PubMed

    Ayyala, Rama S; Arnold, Staci D; Bhatia, Monica; Dastgir, Jahannaz

    2016-10-01

    Calcineurin inhibitor-induced pain syndrome is an entity recognized in patients on immunosuppressive therapy after transplantation. Diagnosis is characterized by onset of pain beginning in the setting of an elevated calcineurin-inhibitor trough level. Reducing the medication dose relieves symptoms. Imaging findings can be nonspecific, including bone marrow edema and periosteal reaction. We present the unique case of calcineurin inhibitor-induced pain syndrome in a child and review the imaging findings.

  7. Risk of Subsequent Leukemia After a Solid Tumor in Childhood: Impact of Bone Marrow Radiation Therapy and Chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allodji, Rodrigue S., E-mail: rodrigue.allodji@gustaveroussy.fr; Gustave Roussy, Villejuif; Paris Sud University, Orsay

    Purpose: To investigate the roles of radiation therapy and chemotherapy in the occurrence of subsequent leukemia after childhood cancer. Methods and Materials: We analyzed data from a case-control study with 35 cases and 140 controls. The active bone marrow (ABM) was segmented into 19 compartments, and the radiation dose was estimated in each. The chemotherapy drug doses were also estimated to enable adjustments. Models capable of accounting for radiation dose heterogeneity were implemented for analysis. Results: Univariate analysis showed a significant trend in the increase of secondary leukemia risk with radiation dose, after accounting for dose heterogeneity (P=.046). This trendmore » became nonsignificant after adjustment for doses of epipodophyllotoxins, alkylating agents, and platinum compounds and the first cancer on multivariate analysis (P=.388). The role of the radiation dose appeared to be dwarfed, mostly by the alkylating agents (odds ratio 6.9, 95% confidence interval 1.9-25.0). Among the patients who have received >16 Gy to the ABM, the radiogenic risk of secondary leukemia was about 4 times greater in the subgroup with no alkylating agents than in the subgroup receiving ≥10 g/m{sup 2}. Conclusions: Notwithstanding the limitations resulting from the size of our study population and the quite systematic co-treatment with chemotherapy, the use of detailed information on the radiation dose distribution to ABM enabled consideration of the role of radiation therapy in secondary leukemia induction after childhood cancer.« less

  8. Role of Radiation Dose in the Risk of Secondary Leukemia After a Solid Tumor in Childhood Treated Between 1980 and 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard, Aurore; Haddy, Nadia; Le Deley, Marie-Cecile

    2010-12-01

    Purpose: The purpose of this study was to estimate the risk of secondary leukemia as a function of radiation dose, taking into account heterogeneous radiation dose distribution. Methods and Materials: We analyzed a case-control study that investigated the risk of secondary leukemia and myelodysplasia after a solid tumor in childhood; it included 61 patients with leukemia matched with 196 controls. Complete clinical, chemotherapy, and radiotherapy histories were recorded for each patient in the study. Average radiation dose to each of seven bone marrow components for each patient was incorporated into the models, and corresponding risks were summed up. Conditional maximummore » likelihood methods were used to estimate risk parameters. Results: Whatever the model, we failed to evidence a role for the radiation dose to active bone marrow in the risk of later leukemia, myelodysplasia, or myeloproliferative syndrome, when adjusting for epipodophyllotoxin and anthracycline doses. This result was confirmed when fitting models that included total dose of radiation delivered during radiotherapy, when fitting models taking into account dose per fraction, and when restricting the analysis to acute myeloid leukemia. Conclusions: In contrast to results found in similar studies that included children treated before the use of epipodophyllotoxins, this study failed to show a role for radiotherapy in the risk of secondary leukemia after childhood cancer in children treated between 1980 and 1999. This discrepancy was probably due to a competitive mechanism between these two carcinogens.« less

  9. [Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].

    PubMed

    Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I

    2017-01-01

    Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.

  10. Internal dose assessment of 210Po using biokinetic modeling and urinary excretion measurement

    PubMed Central

    Gerstmann, Udo; Giussani, Augusto; Oeh, Uwe; Paretzke, Herwig G.

    2007-01-01

    The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 (210Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of 210Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of 210Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 × 10−8 (1.4 × 10−7) Sv Bq−1, 2.0 × 10−7 (9.6 × 10−7) Sv Bq−1 over 10 days, 5.2 × 10−7 (2.0 × 10−6) Sv Bq−1 over 30 days and 1.0 × 10−6 (3.0 × 10−6) Sv Bq−1 over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of 210Po are 1.1 × 10−3 (1.0 × 10−4) on day 1, 2.0 × 10−3 (1.9 × 10−4) on day 10, 1.3 × 10−3 (1.7 × 10−4) on day 30 and 3.6 × 10−4 (8.3 × 10−5) Bq d−1 on day 100, respectively. The resulting committed effective doses range from 2.1 × 10−3 to 1.7 × 10−2 mSv by an assumption of ingestion and from 5.5 × 10−2 to 4.5 × 10−1 mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of 210Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2–8.5 μg, depending on the modality of intake and on different assumptions about blood absorption. PMID:17899149

  11. Clinical management of aplastic anemia

    PubMed Central

    DeZern, Amy E; Brodsky, Robert A

    2011-01-01

    Acquired aplastic anemia is a potentially fatal bone marrow failure disorder that is characterized by pancytopenia and a hypocellular bone marrow. Hematopoietic stem-cell transplantation or bone marrow transplantation (BMT) is the treatment of choice for young patients who have a matched sibling donor. Immunosuppression with either anti-thymocyte globulin and cyclosporine or high-dose cyclophosphamide is an effective therapy for patients who are not suitable BMT candidates owing to age or lack of a suitable donor. Results of BMT from unrelated and mismatched donors are improving, but presently this treatment option is best reserved for those patients who do not respond, relapse or develop secondary clonal disorders following immunosuppressive therapy. Efforts are currently underway to both improve immunosuppressive regimens and to expand the application of BMT. PMID:21495931

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defresne, M.P.; Greimers, R.; Lenaerts, P.

    A split-dose regimen of whole-body irradiation (4 X 175 rad at weekly intervals) induced thymic lymphomas in C57BL/Ka mice after a latent period of 3-9 months. Meanwhile, preleukemia cells arose in the thymus and bone marrow and persisted until the onset of lymphomas. Simultaneously, thymic lymphopoiesis was impaired; thymocyte numbers were subnormal and thymic nurse cells disappeared in a progressive but irreversible fashion. The depletion of these lymphoepithelial complexes, which are normally involved in the early steps of thymic lymphopoiesis, was related to altered prothymocyte activity in bone marrow and to damaged thymic microenvironment, perhaps as a consequence of themore » presence of preleukemia cells. The grafting of normal bone marrow cells after irradiation prevented the development of lymphomas. However, marrow reconstitution did not inhibit the induction of preleukemia cells. They disappeared from the thymus during the second part of the latent period. At the same time, thymic lymphopoiesis was restored; thymocytes and nurse cell numbers returned to normal as a consequence of the proliferation of grafted marrow-derived cells within the thymus. The results thus demonstrated an intimate relationship between preleukemia cells and an alteration of thymic lymphopoiesis, which particularly involved the nurse cell microenvironment. Some preleukemia cells in marrow-reconstituted, irradiated mice derived from the unirradiated marrow inoculate. Thus these cells acquired neoplastic potential through a factor present in the irradiated tissues. The nature of this indirect mechanism was briefly discussed.« less

  13. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    PubMed

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-07

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. © 2016 by The American Society of Hematology.

  14. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2.

    PubMed

    Egashira, Kazuhiro; Sumita, Yoshinori; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation facilitates the clinical use of rhBMP-2 as an alternative strategy for bone engineering.

  15. Bone marrow concentrate promotes bone regeneration with a suboptimal-dose of rhBMP-2

    PubMed Central

    Egashira, Kazuhiro; Zhong, Weijian; I, Takashi; Ohba, Seigo; Nagai, Kazuhiro; Asahina, Izumi

    2018-01-01

    Bone marrow concentrate (BMC), which is enriched in mononuclear cells (MNCs) and platelets, has recently attracted the attention of clinicians as a new optional means for bone engineering. We previously reported that the osteoinductive effect of bone morphogenetic protein-2 (BMP-2) could be enhanced synergistically by co-transplantation of peripheral blood (PB)-derived platelet-rich plasma (PRP). This study aims to investigate whether BMC can effectively promote bone formation induced by low-dose BMP-2, thereby reducing the undesirable side-effects of BMP-2, compared to PRP. Human BMC was obtained from bone marrow aspirates using an automated blood separator. The BMC was then seeded onto β-TCP granules pre-adsorbed with a suboptimal-dose (minimum concentration to induce bone formation at 2 weeks in mice) of recombinant human (rh) BMP-2. These specimens were transplanted subcutaneously to the dorsal skin of immunodeficient-mice and the induction of ectopic bone formation was assessed 2 and 4 weeks post-transplantation. Transplantations of five other groups [PB, PRP, platelet-poor plasma (PPP), bone marrow aspirate (BM), and BM-PPP] were employed as experimental controls. Then, to clarify the effects on vertical bone augmentation, specimens from the six groups were transplanted for on-lay placement on the craniums of mice. The results indicated that BMC, which contained an approximately 2.5-fold increase in the number of MNCs compared to PRP, could accelerate ectopic bone formation until 2 weeks post-transplantation. On the cranium, the BMC group promoted bone augmentation with a suboptimal-dose of rhBMP-2 compared to other groups. Particularly in the BMC specimens harvested at 4 weeks, we observed newly formed bone surrounding the TCP granules at sites far from the calvarial bone. In conclusion, the addition of BMC could reduce the amount of rhBMP-2 by one-half via its synergistic effect on early-phase osteoinduction. We propose here that BMC transplantation facilitates the clinical use of rhBMP-2 as an alternative strategy for bone engineering. PMID:29346436

  16. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less

  17. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    PubMed Central

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth K.

    2017-01-01

    Space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized that ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-weeks old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 MeV/n) or high-LET 56Fe ions (600 MeV/n) using either low (5 or 10 cGy) or high (50 or 200 cGy) doses at NASA’s Space Radiation Lab. Five weeks or one year after irradiation, tissues were harvested and analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed by RT-PCR during the proliferative or mineralizing phase of growth, and differentiation was analyzed by imaging mineralized nodules. As expected, a high dose (200 cGy), but not lower doses, of either 56Fe or protons caused a loss of cancellous bone volume/total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; 56Fe (200 cGy) inhibited osteoblastogenesis by more than 90% (5 weeks and 1 year post-IR). After 5 weeks, irradiation (protons or 56Fe) caused few changes in gene expression levels during osteoblastogenesis, although a high dose 56Fe (200 cGy) increased Catalase and Gadd45. The addition of exogenous superoxide dismutase (SOD) protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET (137Cs γ) when irradiated in vitro, but had limited protective effects on high-LET 56Fe-exposed cells. In sum, either protons or 56Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET 56Fe increased redox-related gene expression, albeit to a limited extent, and inhibited osteoblastogenesis. Doses below 50 cGy did not elicit widespread responses in any parameter measured. We conclude that high-LET irradiation at 200 cGy impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss. PMID:28994728

  18. Analysis of dose-incidence relationships for marrow failure in different species, in terms of radiosensitivity of tissue-rescuing units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendry, J.H.; Roberts, S.A.

    1990-05-01

    The analysis of 68 published sets of dose-incidence data for marrow failure in different species, using a double-log mortality function, indicates: (a) There is more heterogeneity, i.e. greater sums-of-squares per degree of freedom, within the data sets for mouse than for larger species (monkey, dog, sheep, goat, pig). (b) For mice the curves for acute doses are characterized by a D0 of about 100 cGy for tissue-rescuing units (or target cells), which are depleted at most to about 3 x 10(-4) at LD50. (c) Larger species are much less tolerant to target-cell depletion, the corresponding level being consistently in themore » range of 10(-2)-10(-3) at LD50. Also, the D0 is often lower (approximately 55 cGy), which is compatible in the dog with such a value for hemopoietic progenitor cells. (d) With larger species there is an unexpected reduction in heterogeneity when the dose rate is lower, which gives a D0 lower than expected and a higher extrapolate. It is concluded that the position and slope of the dose-incidence curves are compatible with interpretations based primarily on target-cell number and survival characteristics, modified by additional heterogeneity factors.« less

  19. Diet-Induced Obesity Alters Vincristine Pharmacokinetics in Blood and Tissues of Mice

    PubMed Central

    Behan, James W.; Avramis, Vassilios I.; Yun, Jason P.; Louie, Stan G.; Mittelman, Steven D.

    2010-01-01

    Obesity is associated with poorer outcome from many cancers, including leukemia. One possible contributor to this could be suboptimal chemotherapy dosing in obese patients. We have previously found that vincristine (VCR) is less effective in obese compared to non-obese mice with leukemia, despite weight-based dosing. In the present study, we administered 3H-VCR to obese and control mice to determine whether obesity would cause suboptimal VCR exposure. Blood VCR concentrations were fitted with a 3-compartment model using pharmacokinetic analysis (two-stage PK) in 3 subsets of VCR concentrations vs. time method. Tissue and blood VCR concentrations were also analyzed using non-compartmental modeling. Blood VCR concentrations showed a triexponential decay and tended to be slightly higher in the obese mice at all time-points. However, the t½β and t½γ were shorter in the obese mice (9.7 vs. 44.5 minutes and 60.3 vs. 85.6 hours, respectively), resulting in a lower AUC0→∞ (13,099 vs. 15,384 ng/ml*hr). Had the dose of VCR been “capped”, as is done in clinical practice, the AUC0→∞ would have been 36% lower in the obese mice than the controls. Tissue disposition of VCR revealed a biexponential decay from spleen, liver, and adipose. Interestingly, VCR slowly accumulated in the bone marrow of control mice, but had a slow decay from the marrow in the obese mice. Thus, obesity alters VCR PK, causing a lower overall exposure in circulation and bone marrow. Given the high prevalence of obesity, additional PK studies should be performed in obese subjects to optimize chemotherapy dosing regimens. PMID:20083201

  20. Diet-induced obesity alters vincristine pharmacokinetics in blood and tissues of mice.

    PubMed

    Behan, James W; Avramis, Vassilios I; Yun, Jason P; Louie, Stan G; Mittelman, Steven D

    2010-05-01

    Obesity is associated with poorer outcome from many cancers, including leukemia. One possible contributor to this could be suboptimal chemotherapy dosing in obese patients. We have previously found that vincristine (VCR) is less effective in obese compared to non-obese mice with leukemia, despite weight-based dosing. In the present study, we administered (3)H-VCR to obese and control mice to determine whether obesity would cause suboptimal VCR exposure. Blood VCR concentrations were fitted with a three-compartment model using pharmacokinetic analysis (two-stage PK) in three subsets of VCR concentrations vs. time method. Tissue and blood VCR concentrations were also analyzed using non-compartmental modeling. Blood VCR concentrations showed a triexponential decay and tended to be slightly higher in the obese mice at all time-points. However, the t(1/2,beta) and t(1/2,gamma) were shorter in the obese mice (9.7 min vs. 44.5 min and 60.3h vs. 85.6h, respectively), resulting in a lower AUC(0-infinity) (13,099 ng/m Lh vs. 15,384 ng/mL h). Had the dose of VCR been "capped", as is done in clinical practice, the AUC(0-infinity) would have been 36% lower in the obese mice than the controls. Tissue disposition of VCR revealed a biexponential decay from spleen, liver, and adipose. Interestingly, VCR slowly accumulated in the bone marrow of control mice, but had a slow decay from the marrow in the obese mice. Thus, obesity alters VCR PK, causing a lower overall exposure in circulation and bone marrow. Given the high prevalence of obesity, additional PK studies should be performed in obese subjects to optimize chemotherapy dosing regimens. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells

    PubMed Central

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-01-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30–35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect. PMID:23961094

  2. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  3. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Biodistribution after Intravenous Dosing in Rats

    PubMed Central

    Beekman, Christopher R.; Matta, Murali K.; Thomas, Christopher D.; Mohammad, Adil; Stewart, Sharron; Xu, Lin; Chockalingam, Ashok; Shea, Katherine; Sun, Dajun; Jiang, Wenlei; Patel, Vikram; Rouse, Rodney

    2017-01-01

    Relative biodistribution of FDA-approved innovator and generic sodium ferric gluconate (SFG) drug products was investigated to identify differences in tissue distribution of iron after intravenous dosing to rats. Three equal cohorts of 42 male Sprague-Dawley rats were created with each cohort receiving one of three treatments: (1) the innovator SFG product dosed intravenously at a concentration of 40 mg/kg; (2) the generic SFG product dosed intravenously at a concentration of 40 mg/kg; (3) saline dosed intravenously at equivalent volume to SFG products. Sampling time points were 15 min, 1 h, 8 h, 1 week, two weeks, four weeks, and six weeks post-treatment. Six rats from each group were sacrificed at each time point. Serum, femoral bone marrow, lungs, brain, heart, kidneys, liver, and spleen were harvested and evaluated for total iron concentration by ICP-MS. The ICP-MS analytical method was validated with linearity, range, accuracy, and precision. Results were determined for mean iron concentrations (µg/g) and mean total iron (whole tissue) content (µg/tissue) for each tissue of all groups at each time point. A percent of total distribution to each tissue was calculated for both products. At any given time point, the overall percent iron concentration distribution did not vary between the two SFG drugs by more than 7% in any tissue. Overall, this study demonstrated similar tissue biodistribution for the two SFG products in the examined tissues. PMID:29283393

  4. Effect of tocopherol-monoglucoside (TMG), a water-soluble glycosylated derivate of vitamin E, on hematopoietic recovery in irradiated mice.

    PubMed

    Cherdyntseva, Nadezda; Shishkina, Anna; Butorin, Ivan; Murase, Hironobu; Gervas, Polina; Kagiya, Tsutomu V

    2005-03-01

    A preparation of alpha-tocopherol monoglucoside (TMG) administered i.p. at a dose of 600 mg/kg immediately after whole body gamma irradiation was examined for its radioprotective efficacy towards bone marrow and peripheral blood nucleated cells. When mice received X-rays at a dose of 5,6 Gy, a marked decrease in bone marrow karyocytes and a reduction of peripheral leukocytes within the early post-irradiated period were observed. However these changes were attenuated in TMG-treated mice. Significant protection of blood lymphocytes was found for the TMG group of mice. The return to normal value of the reduced blood leukocyte count starting from the 8th day was more rapid in TMG-treated mice than in untreated irradiated mice. TMG administration was found to enhance hematopoietic recovery, as measured by the exceeded nucleated bone marrow cell count due to elevated amount of both lymphoid and granulocytic elements in the TMG-group, in comparison with that of both control irradiated and non-irradiated animals. These findings indicate that the radioprotective effect of TMG is apparently realized through its influence on hematopoietic system.

  5. Alterations in bone marrow and blood mononuclear cell polyamine and methylglyoxal bis(guanylhydrazone) levels: phase I evaluation of alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) treatment of human hematological malignancies.

    PubMed

    Maddox, A M; Freireich, E J; Keating, M J; Haddox, M K

    1988-03-01

    Nine patients with hematological malignancies were treated with difluoromethylornithine and methylglyoxal bis(guanylhydrazone). The number of circulating blast cells decreased in all of the patients treated with DFMO and MGBG for longer than 1 wk. Morphological evidence of myeloid maturation was evident in four patients with leukemia and the circulating M Protein decreased in one patient with multiple myeloma. The polyamine content of the mononuclear cells in both the peripheral blood and bone marrow was transiently increased after the initial MGBG dose. During administration of DFMO decreases were achieved in the peripheral blood mononuclear cell putrescine levels in 7 patients, spermidine levels in 5 patients, and spermine levels in 4 patients. Alterations in bone marrow mononuclear cell polyamine levels were similar to those which occurred in the peripheral cells. An average of 9 days of DFMO treatment was required to lower mononuclear cell polyamine levels. Three of the 4 evaluable patients receiving multiple MGBG doses had an increased mononuclear cell content of MGBG after DFMO pretreatment. Enhancement of cellular MGBG levels was not directly correlated to the degree of cellular polyamine depletion.

  6. Accelerated hematopoietic toxicity by high energy (56)Fe radiation.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J

    2012-03-01

    There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.

  7. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats.

    PubMed

    Yanagida, M; Ide, Y; Imai, A; Toriyama, M; Aoki, T; Harada, K; Izumi, H; Uzumaki, H; Kusaka, M; Tokiwa, T

    1997-12-01

    Pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) injected at a suprapharmacologic dose (100 microg/kg) daily for 5 d in normal rats caused marked increases in marrow megakaryocytes and platelet counts at 6-8 d followed by gradual decreases to control levels at 10-20 d. Interestingly, in addition to the expected thrombopoiesis, PEG-rHuMGDF was associated with myelofibrosis with a predominance of reticulin fibres at day 10 followed by complete normalization by day 20. At 6-8 d, the levels of transforming growth factor-beta1 (TGF-beta1) in the extracellular fluid of the marrow, the platelet poor plasma, and the platelet extract were increased 23-, 7- and 2-fold, respectively. The elevated levels of TGF-beta1 were gradually reduced to baseline levels at 13-20 d in accordance with the normalization of myelofibrosis and thrombopoiesis. An ultrastructural analysis showed that large fragments of megakaryocytes were deposited in the marrow parenchyma of PEG-rHuMGDF-treated rats at day 6. PEG-rHuMGDF administration at pharmacologic doses (1 and 10 microg/kg) did not induce the deposition of reticulin fibres in the marrow. These findings suggest that TGF-beta1 leaked from megakaryocytes is involved in the development of the PEG-rHuMGDF-induced myelofibrosis and that this is a reversible process related to the regulation of the excess production of platelets.

  8. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  9. Methods of space radiation dose analysis with applications to manned space systems

    NASA Technical Reports Server (NTRS)

    Langley, R. W.; Billings, M. P.

    1972-01-01

    The full potential of state-of-the-art space radiation dose analysis for manned missions has not been exploited. Point doses have been overemphasized, and the critical dose to the bone marrow has been only crudely approximated, despite the existence of detailed man models and computer codes for dose integration in complex geometries. The method presented makes it practical to account for the geometrical detail of the astronaut as well as the vehicle. Discussed are the major assumptions involved and the concept of applying the results of detailed proton dose analysis to the real-time interpretation of on-board dosimetric measurements.

  10. The healing effect of bone marrow-derived stem cells in acute radiation syndrome.

    PubMed

    Mortazavi, Seyed Mohammad Javad; Shekoohi-Shooli, Fatemeh; Aghamir, Seyed Mahmood Reza; Mehrabani, Davood; Dehghanian, Amirreza; Zare, Shahrokh; Mosleh-Shirazi, Mohammad Amin

    2016-01-01

    To determine the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on regeneration of bone marrow and intestinal tissue and survival rate in experimental mice with acute radiation syndrome (ARS). Forty mice were randomly divided into two equal groups of A receiving no BMSC transplantation and B receiving BMSCs. BMSCs were isolated from the bone marrow and cultured in DMEM media. Both groups were irradiated with 10 Gy (dose rate 0.28 Gy/ min) (60)CO during 35 minutes with a field size of 35×35 for all the body area. Twenty-four hours after γ irradiation, 150×10(3) cells of passage 5 in 150 µl medium were injected intravenously into the tail. Animals were euthanized one and two weeks after cell transplantation. They were evaluated histologically for any changes in bone marrow and intestinal tissues. The survival rate in mice were also determined. A significant increase for bone marrow cell count and survival rate were observed in group B in comparison to group A. Histological findings denoted to a healing in sample tissues. BMSCs could significantly reduce the side effects of ARS and increase the survival rate and healing in injured tissue. As such their transplantation may open a window in treatment of patients with ARS.

  11. Single dose of filgrastim (rhG-CSF) increases the number of hematopoietic progenitors in the peripheral blood of adult volunteers.

    PubMed

    Schwinger, W; Mache, C; Urban, C; Beaufort, F; Töglhofer, W

    1993-06-01

    Hematopoietic progenitor cell levels were monitored in the peripheral blood of ten healthy adults receiving a single dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF). The objective was to determine the time and number of progenitor cells released into the peripheral blood, induced by a single dose of 15 micrograms/kg rhG-CSF administered intravenously. In all cases the absolute number of circulating progenitor cells including granulocyte-macrophage and erythroid lineages increased up to 12-fold (median 9.4-fold) 4 days after treatment. These findings were based on flow cytometric quantification of CD34+ cells and on progenitor assays. The relative distribution of granulocyte/macrophage and erythroid progenitors remained unchanged. rhG-CSF was well tolerated; mild to moderate bone pain was the most common side-effect and was noted in 6 of 10 subjects. Thus a single dose of rhG-CSF is effective in mobilizing progenitor cells into the peripheral blood in healthy adults. If these progenitors are capable of reconstituting bone marrow, peripheral progenitor cell separation following rhG-CSF administration could be a reasonable alternative to conventional bone marrow harvest in healthy adults.

  12. Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05.

    PubMed

    Miranda, Carolina C B O; Dekker, Robert F H; Serpeloni, Juliana M; Fonseca, Eveline A I; Cólus, Ilce M S; Barbosa, Aneli M

    2008-03-01

    Biopolymers such as exopolysaccharides (EPS) are produced by microbial species and possess unusual properties known to modify biological responses, among them are antimutagenicity and immunomodulation. Botryosphaeran, a newly described fungal (1-->3; 1-->6)-beta-d-glucan produced by Botryosphaeria rhodina MAMB-05, was administered by gavage to mice at three doses (7.5, 15 and 30mg/kgb.w.per day) over 15 days, and found to be non-genotoxic by the micronucleus test in peripheral blood and bone marrow. Botryosphaeran administered at doses of 15 and 30mg EPS/kgb.w. decreased significantly (p<0.001) the clastogenic effect of cyclophosphamide-induced micronucleus formation resulting in a reduction of the frequency of micronucleated cells of 78 and 82% in polychromatic erythrocytes of bone marrow, and reticulocytes in peripheral blood, respectively. The protective effect was dose-dependent, and strong anticlastogenic activity was exerted at low EPS doses. Variance analysis (ANOVA) showed no significant differences (p<0.05) among the median body weights of the groups of mice treated with botryosphaeran during experiments evaluating genotoxic and protective activities of botryosphaeran. This is the first report on the biological activity attributed to botryosphaeran.

  13. The biodistribution and dosimetry of {sup 117m}Sn DTPA with special emphasis on active marrow absorbed doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, J.; Atkins, H.

    1999-01-01

    {sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consistedmore » of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.« less

  14. The protective effect of calcium against genotoxicity of lead acetate administration on bone marrow and spermatocyte cells of mice in vivo.

    PubMed

    Aboul-Ela, Ezzat I

    2002-04-26

    The protective effect of calcium given orally by gavage with two doses (40 and 80mg/kg body weight) was evaluated against clastogenecity induced by lead acetate with two concentrations (200 and 400mg/kg diet) on bone marrow and spermatocyte cells of mice in vivo. The parameter screened was percentage of chromosomal aberrations with and without gaps and sperm abnormalities. Statistical analyses indicated the protection efficacy of calcium with the high dose rather than the other in both types of mouse cells. The observation from the laboratory tests, dealing that lead acetate can be considered as an environmental genotoxic material. We recommended that it must be administered of calcium (as calcium chloride) as a protective agent to reduce the genotoxic effect of lead in the somatic and germ cells.

  15. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.M.; Zsebo, K.M.; Inoue, H.

    1987-04-01

    Osmotic pumps containing Escherichia coli-derived recombinant human granulocyte colony-stimulating factor (rhG-CSF) were attached to indwelling jugular vein catheters and implanted subcutaneously into Golden Syrian hamsters. Within 3 days, peripheral granulocyte counts had increased > 10-fold with a concomitant 4-fold increase in total leukocytes. Microscopic examination of Wright-Giemsa-stained blood smears from rhG-CSF hamsters showed that only the neutrophil subpopulation of granulocytes had increased. After subcutaneous injection at /sup 35/S-labeled rhG-CSF doses of up to 10 ..mu..g x kg/sup -1/ x day/sup -1/ only granulocyte counts were affected. However, at higher dose levels, a transient thrombocytopenia was noted. Erythrocyte and lymphocyte/monocyte countsmore » remained unaffected by rhG-CSF over the entire dose range studied. Total leukocyte counts increased 3-fold within 12 hr after a single s.c. injection of rhG-CSF. This early effect was associated with an increase in the total number of colony-forming cells and the percent of active cycling cells in the marrow. A sustained elevation of peripheral leukocyte and marrow progenitor counts was observed following seven daily s.c. injections of rhG-CSF. The ability of rhG-CSF to increase the production and release of granulocytes from the marrow may underlie the beneficial effect it produced on the restoration of peripheral leukocyte counts in hamsters made leukopenic by treatment with 5-fluorouracil.« less

  16. Comparison of cytogenetic effects in bone marrow of mice after the flight on the biosatellite "BION-M1" and the ground-based radiobiological experiment

    NASA Astrophysics Data System (ADS)

    Dorozhkina, Olga; Vorozhtsova, Svetlana; Ivanov, Alexander

    2016-07-01

    During space flight, the astronauts are exposed to radiation exposure at low doses with low dose rates, so one of the actual areas of Radiobiology is research of action of ionizing radiation in low and ultra-low doses. Violation of the chromosome apparatus of living biosystems, ranging from viruses and bacteria to humans, is the most reliable evidence of exposure to ionizing radiation. In this regard, the study of cytogenetic damage in the cells of humans and animals is central to space radiobiology (Fedorenko B.S., 2006). In experiment "BION - M1" by anaphase method was determined level of chromosomal aberrations in bone marrow cells of tibia of mice. Flight duration biosatellite "BION - M1" (Sychev V.N. et al., 2014) was 30 days in Earth orbit. Euthanasia of experimental animals was carried out after 12 hours from the moment of landing satellite by method of cervical dislocation. The level of chromosomal aberrations in vivarium-housed control mice was 1,75 ± 0,6% and 1,8 ± 0,45%, while the mitotic index 1,46 ± 0,09% and 1,53 ± 0,05%. The content of animals in the experiment with onboard equipment led to some increase in aberrant mitosis (2,3 ± 0,4%) and reduction of the mitotic index (1,37 ± 0,02%). In the flight experiment "BION-M1" was a statistically significant increase in level of chromosome aberrations (29,7 ± 4,18%) and a decrease in the mitotic index (0,74 ± 0,07%). According to VA Shurshakova (2014), the radiation dose to mice ranged from 32 to 72 mGy and relate to a range of small doses (ICRP, 2012). In this connection we conducted a series of experiments in the ground conditions, the aim of which was the study of earliest effects of ionizing radiation in vivo in mice irradiated with low doses of γ-irradiation of 10 to 200 mGy in the first 24 hours after exposure, i.e. within the first post-radiation exposure cell cycle. Studies were carried out on adult female mice outbred ICR (CD-1) - SPF category at the age of 4-4.5 months with an average body mass of 31 g. Experimental animals were totally irradiated from one side by gamma rays ^{60}Co on the device Rokus-M MTC JINR at doses of 10, 25, 50, 75, 100, 200 mGy with a dose rate of 6.916 mGy/min. Animals were euthanized by cervical dislocation in 21-22 hours after irradiation. Irradiation animals 75 mg caused a statistically significant increase in level aberrant mitosis to 22.1 ± 3.8% compared to vivarium-housed control group (1 ± 0,4%). The number of nucleated cells in the femur bone marrow progressively decreased upon irradiation at doses from 10 to 50 cGy, but at a dose of 75 cGy of radiation was a slight increase in index. Thus, these data indicate that radiation can be a major cause of changes in the bone marrow of mice exposed to biosatellite.

  17. The X-ray attenuation characteristics and density of human calcaneal marrow do not change significantly during adulthood

    NASA Technical Reports Server (NTRS)

    Les, C. M.; Whalen, R. T.; Beaupre, G. S.; Yan, C. H.; Cleek, T. M.; Wills, J. S.

    2002-01-01

    Changes in the material characteristics of bone marrow with aging can be a significant source of error in measurements of bone density when using X-ray and ultrasound imaging modalities. In the context of computed tomography, dual-energy computed techniques have been used to correct for changes in marrow composition. However, dual-energy quantitative computed tomography (DE-QCT) protocols, while increasing the accuracy of the measurement, reduce the precision and increase the radiation dose to the patient in comparison to single-energy quantitative computed tomography (SE-QCT) protocols. If the attenuation properties of the marrow for a particular bone can be shown to be relatively constant with age, it should be possible to use single-energy techniques without experiencing errors caused by unknown marrow composition. Marrow was extracted by centrifugation from 10 mm thick frontal sections of 34 adult cadaver calcanei (28 males, 6 females, ages 17-65 years). The density and energy-dependent linear X-ray attenuation coefficient of each marrow sample were determined. For purposes of comparing our results, we then computed an effective CT number at two GE CT/i scan voltages (80 and 120 kVp) for each specimen. The coefficients of variation for the density, CT number at 80 kVp and CT number at 120 kVp were each less than 1%, and the parameters did not change significantly with age (p > 0.2, r2 < 0.02, power > 0.8 where the minimum acceptable r2 = 0.216). We could demonstrate no significant gender-associated differences in these relationships. These data suggest that calcaneal bone marrow X-ray attenuation properties and marrow density are essentially constant from the third through sixth decades of life.

  18. Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro

    PubMed Central

    Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau

    2009-01-01

    Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117

  19. Evaluation of Cameroonian plants towards experimental bone regeneration.

    PubMed

    Ngueguim, Florence Tsofack; Khan, Mohd Parvez; Donfack, Jean Hubert; Siddiqui, Jawed Akhtar; Tewari, Deepshikha; Nagar, Geet K; Tiwari, Satish C; Theophile, Dimo; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-05-07

    Elephantopus mollis, Spilanthes africana, Urena lobata, Momordica multiflora, Asystasia gangetica and Brillantaisia ovariensis are used in Cameroonian traditional medicine for the treatment of bone diseases and fracture repair. The aim of this study was to evaluate the effect of ethanolic extracts of six Cameroonian medicinal plants on bone regeneration following bone and marrow injury. Ethanol extract of Cameroonian medicinal plants were administered (each extract at 250, 500 and 750mg/kg doses) orally to adult female Sprague-Dawley rats having a drill hole injury (0.8mm) in the femur diaphysis. Vehicle (gum-acacia in distilled water) was given to the control group. After 12 days of treatment, animals were euthanized and femur bones collected. Confocal microscopy of fractured bone was performed to evaluate bone regeneration (calcein labeling). Only active plant extracts were used for further experiments. Thus, callus was analyzed by microcomputed tomography. Osteogenic effects of the extracts were evaluated by assessing mineralized nodules formation of bone marrow stromal cells and osteoblast recruitment at drill hole site by immunohistochemistry. Ethanolic extract of the leaves and twigs of Elephantopus mollis (EM) and whole plant of Spilanthes africana (SA) dose-dependently stimulated bone regeneration at the drill hole site. EM at 250 and 750mg/kg doses and SA at 750mg/kg dose significantly increased mineral deposition compared to controls. Both extracts at 500 and 750mg/kg doses improved microarchitecture of the regenerating bone evident from increased bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular separation and structure model index. EM and SA extracts increased the formation of mineralized nodules from the bone marrow stromal cells. In addition, EM and SA extracts increased osteoblast recruitment at the drill hole site evident from increased Runx-2 positive cells following their treatments compared to control. Ethanolic extracts of EM and SA accelerate fracture repair in rats via stimulatory effects on osteoblast differentiation and mineralization, thereby justifying their traditional use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Microarray profiling of diaphyseal bone of rats suffering from hypervitaminosis A.

    PubMed

    Lind, Thomas; Hu, Lijuan; Lind, P Monica; Sugars, Rachael; Andersson, Göran; Jacobson, Annica; Melhus, Håkan

    2012-03-01

    Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young male rats high doses of vitamin A and performed microarray analysis of diaphyseal bone with and without marrow after 1 week, i.e., just before the first fractures appeared. Of the differentially expressed genes in cortical bone, including marrow, 98% were upregulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene ontology (GO) analysis revealed that only samples containing bone marrow were associated with a GO term, which principally represented extracellular matrix. This is consistent with the histological findings of increased endosteal/marrow osteoblast number. Fourteen genes, including Cyp26b1, which is known to be upregulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule osteoadherin was upregulated. Further analysis of the major gene-expression changes revealed apparent augmented Wnt signaling in the sample containing bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was found only in samples containing bone marrow. Together, these results highlight the importance of compartment-specific analysis of bone and corroborate previous observations of compartment-specific effects of vitamin A, with reduced activity in cortical bone but increased activity in the endosteal/marrow compartment. We specifically identify potential key osteoblast-, Wnt signaling-, and hypoxia-associated genes in the processes leading to spontaneous fractures.

  1. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Yousefnia, Hassan; Geramifar, Parham; Jalilian, Amir Reza

    2015-10-01

    (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.

  2. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  3. Critical Dose of Internal Organs Internal Exposure - 13471

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoryan, G.; Amirjanyan, A.; Grigoryan, N.

    2013-07-01

    The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on themore » critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different radionuclides that have intake into the organism or absorbed into blood. Transport of different radionuclides between compartments is assumed to follow first order kinetics provided the concentration in red blood cells (RBCs) stays below a nonlinear threshold concentration. When the concentration in RBCs exceeds that threshold, the transfer rate from diffusible plasma to RBCs is assumed to decrease as the concentration in RBCs increases. For the calculations used capabilities AMBER by using the traces of radionuclides in the body. Model for the transfer of radionuclides in the body has been built on the basis of existing models at AMBER for lead. (authors)« less

  4. Growth of erythroid burst-forming units (BFU-E) in cultures of canine bone marrow and peripheral blood cells: effect of serum from irradiated dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreja, L.; Baltschukat, K.; Nothdurft, W.

    1988-08-01

    Erythroid burst-forming units (BFU-E) from canine bone marrow and peripheral blood could be grown in methylcellulose in the presence of an appropriate batch of fetal calf serum (FCS), transferrin, and erythropoietin (Epo). However, improved colony formation (size and number of bursts) was obtained when serum from total body irradiated dogs was present in the culture. This serum, obtained from dogs at day 9 after total body irradiation with a dose of 3.9 Gy, reduced markedly the Epo requirement of BFU-E. Furthermore, it allowed the omission of FCS from the culture medium if cholesterol and bovine serum albumin (BSA) were usedmore » as FCS substitutes. BFU-E concentrations were found to be rather different in the peripheral blood and in bone marrow samples from different sites (i.e., iliac crest, sternum, and humerus) of normal beagles. The studies further show that canine bone marrow BFU-E can be cryopreserved in liquid nitrogen.« less

  5. Absence of mutagenicity effects of Psidium cattleyanum Sabine (Myrtaceae) extract on peripheral blood and bone marrow cells of mice.

    PubMed

    Costa, T D A; Vieira, S; Andrade, S F; Maistro, E L

    2008-07-29

    Cattley guava (Psidium cattleyanum Sabine) is a native fruit of Brazil that is popular both as a sweet food and for its reputed therapeutic properties. We examined whether it could damage DNA using the alkaline single-cell gel electrophoresis (comet assay) and the micronucleus test in leukocytes and in bone marrow cells of mice. P. cattleyanum leaf extract was tested at concentrations of 1000, 1500 and 2000 mg/kg. N-nitroso-N-ethylurea was used as a positive control. Peripheral blood leukocytes were collected 4 and 24 h after the treatments for the comet assay, and bone marrow cells were collected after 24 and 48 h for the micronucleus test. Unlike N-nitroso-N-ethylurea, P. cattleyanum extract failed to induce a significant increase in cell DNA damage, in micronucleated cell frequency, and in bone marrow toxicity. The lack of mutagenicity and cytotoxicity with high doses of this plant extract means that it can be safely used in traditional medicine.

  6. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hoursmore » before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the harmful effects of LDR radiation.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweitzer, Andrew D.; Howard Hughes Medical Institute-Medical Fellows Program, Chevy Chase, MD; The Mount Sinai School of Medicine, New York, NY

    Purpose: Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's 'self-sieving' ability, protecting it against ionizing radiation. Methods and Materials: The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plainmore » silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of {sup 188}Re-labeled 6D2 melanin-binding antibody. Results: Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. Conclusions: MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin.« less

  8. A Phase Ib/II Dose-finding Study to Assess the Safety and Efficacy of LDE225 + INC424 in Patients With MF

    ClinicalTrials.gov

    2017-07-24

    Primary Myelofibrosis; Thrombocythemia, Essential; Thrombocytosis; Myeloproliferative Disorders; Bone Marrow Diseases; Hematologic Diseases; Blood Coagulation Disorders; Blood Platelet Disorders; Hemorrhagic Disorders

  9. Clinical applications of advanced rotational radiation therapy

    NASA Astrophysics Data System (ADS)

    Nalichowski, Adrian

    Purpose: With a fast adoption of emerging technologies, it is critical to fully test and understand its limits and capabilities. In this work we investigate new graphic processing unit (GPU) based treatment planning algorithm and its applications in helical tomotherapy dose delivery. We explore the limits of the system by applying it to challenging clinical cases of total marrow irradiation (TMI) and stereotactic radiosurgery (SRS). We also analyze the feasibility of alternative fractionation schemes for total body irradiation (TBI) and TMI based on reported historical data on lung dose and interstitial pneumonitis (IP) incidence rates. Methods and Materials: An anthropomorphic phantom was used to create TMI plans using the new GPU based treatment planning system and the existing CPU cluster based system. Optimization parameters were selected based on clinically used values for field width, modulation factor and pitch. Treatment plans were also created on Eclipse treatment planning system (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery on IX treatment unit. A retrospective review was performed of 42 publications that reported IP rates along with lung dose, fractionation regimen, dose rate and chemotherapy. The analysis consisted of nearly thirty two hundred patients and 34 unique radiation regimens. Multivariate logistic regression was performed to determine parameters associated with IP and establish does response function. Results: The results showed very good dosimetric agreement between the GPU and CPU calculated plans. The results from SBRT study show that GPU planning system can maintain 90% target coverage while meeting all the constraints of RTOG 0631 protocol. Beam on time for Tomotherapy and flattening filter free RapidArc was much faster than for Vero or Cyberknife. Retrospective data analysis showed that lung dose and Cyclophosphomide (Cy) are both predictors of IP in TBI/TMI treatments. The dose rate was not found to be an independent risk factor for IP. The model failed to establish accurate dose response function, but the discrete data indicated a radiation dose threshold of 7.6Gy (EQD2_repair) and 120 mg/kg of Cy below which no IP cases were reported. Conclusion: The TomoTherapy GPU based dose engine is capable of calculating TMI treatment plans with plan quality nearly identical to plans calculated using the traditional CPU/cluster based system, while significantly reducing the time required for optimization and dose calculation. The new system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing when compared to Eclipse treatment planning system for VMAT delivery. The machine optimization parameters tested for TMI cases provide a comprehensive overview of the capabilities of the treatment planning station and associated helical delivery system. The new system also proved to be dosimetrically compatible with other leading modalities for treatments of small and complicated target volumes and was even superior when treatment delivery times were compared. These finding demonstrate that the advanced treatment planning and delivery system from TomoTherapy is well suitable for treatments of complicated cases such as TMI and SRS and it's often dosimetrically and/or logistically superior to other modalities. The new planning system can easily meet the constraint of threshold lung dose established in this study. The results presented here on the capabilities of Tomotherapy and on the identified lung dose threshold provide an opportunity to explore alternative fractionation schemes without sacrificing target coverage or lung toxicity. (Abstract shortened by ProQuest.).

  10. INDUCTION OF IMMUNOLOGIC TOLERANCE IN OLDER NEW ZEALAND MICE REPOPULATED WITH YOUNG SPLEEN, BONE MARROW, OR THYMUS

    PubMed Central

    Staples, Parker J.; Steinberg, Alfred D.; Talal, Norman

    1970-01-01

    Newborn, 7–9 day, and 16–18 day old NZB and B/W mice were, unlike older New Zealand mice, rendered tolerant to single doses of 8–10 mg of soluble BGG. After challenge, this tolerance was of short duration and escape occurred rapidly. Age-matched and similarly treated C3H, Balb/c and C57Bl mice did not escape from tolerance. Partial tolerance could be maintained by repeated injections of BGG. Biofiltration ruled out hyperphagocytosis as an explanation for this resistance to tolerance. Tolerance could be induced in older B/W mice if they were thymectomized, irradiated, and repopulated with young (12–15 day), but not old (2–3 month), spleen or bone marrow cells. Old bone marrow cells gave a non-tolerant response even when combined with young thymic grafts. Young bone marrow gave a tolerant response which was followed by the expected rapid escape only if a young thymus graft was also present. Escape was retarded if old thymus, or old irradiated thymus, was combined with young bone marrow. These results are best explained by abnormalities of both lymphoid precursors and thymic regulation. PMID:4192570

  11. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  12. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... If a test at one dose level of at least 2,000 mg/kg body weight using a single treatment, or as two... considered necessary. For studies of a longer duration, the limit dose is 2,000 mg/kg/body weight/day for treatment up to 14 days, and 1,000 mg/kg/body weight/day for treatment longer than 14 days. Expected human...

  13. 40 CFR 799.9538 - TSCA mammalian bone marrow chromosomal aberration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... If a test at one dose level of at least 2,000 mg/kg body weight using a single treatment, or as two... considered necessary. For studies of a longer duration, the limit dose is 2,000 mg/kg/body weight/day for treatment up to 14 days, and 1,000 mg/kg/body weight/day for treatment longer than 14 days. Expected human...

  14. Successful pregnancy following very high-dose total body irradiation (1575 cGy) and bone marrow transplantation in a woman with acute myeloid leukemia.

    PubMed

    Wang, W S; Tzeng, C H; Hsieh, R K; Chiou, T J; Liu, J H; Yen, C C; Chen, P M

    1998-02-01

    A 22-year-old woman had a normal full-term delivery 6 years after a successful allogeneic bone marrow transplantation (BMT) for acute myeloid leukemia (AML). Conditioning therapy consisted of cyclophosphamide (120 mg/kg) and total body irradiation (TBI) to a total of 1575 cGy in seven fractions (225 cGy x 7, at a dose rate of 3.5 cGy/min). Graft-versus-host disease prophylaxis was with methotrexate and cyclosporin A. Grade I acute GVHD developed after BMT but there was no chronic GVHD. She became amenorrhoeic after BMT and serial gonadal testing indicated hypergonadotrophic hypogonadism. She became pregnant and delivered a full-term, healthy baby 6 years after BMT. Successful pregnancy after TBI of more than 1200 cGy is extremely rare. This case, to the best of our knowledge, is the second patient who received a higher dose of TBI (1575 cGy) to have a successful pregnancy. This and previous reports indicate that normal pregnancy is possible after BMT with TBI in excess of 1200 cGy.

  15. p53-Based Strategy for Protection of Bone Marrow From Y-90 Ibritumomab Tiuxetan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hang, E-mail: suh3@uthscsa.edu; Ganapathy, Suthakar; Li, Xiaolei

    Purpose: The main drawbacks of radioimmunotherapy have been severe hematological toxicity and potential development of myelodysplastic syndrome and secondary leukemia. Activation of p53 follows a major pathway by which normal tissues respond to DNA-damaging agents, such as chemotherapy and radiation therapy, that result in injuries and pathological consequences. This pathway is separate from the tumor suppressor pathway of p53. We have previously reported that use of low-dose arsenic (LDA) temporarily and reversibly suppresses p53 activation, thereby ameliorating normal tissue toxicity from exposure to 5-fluorouracil and X rays. We have also demonstrated that LDA-mediated protection requires functional p53 and thus ismore » selective to normal tissues, as essentially every cancer cell has dysfunctional p53. Here we tested the protective efficacy of LDA for bone marrow tissue against radioimmunotherapy through animal experiments. Methods and Materials: Mice were subjected to LDA pretreatment for 3 days, followed by treatment with Y-90 ibritumomab tiuxetan. Both dose course (10, 25, 50, 100, and 200 μCi) and time course (6, 24, and 72 hours and 1 and 2 weeks) experiments were performed. The response of bone marrow cells to LDA was determined by examining the expression of NFκB, Glut1, and Glut3. Staining with hematoxylin and eosin, γ-H2AX, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to examine morphology, DNA damage response, and apoptotic cell populations. Results: Elevated levels of NFκB, Glut1, and Glut3 were observed in bone marrow cells after LDA treatment. Bone marrow damage levels induced by Y-90 ibritumomab tiuxetan were greatly reduced by LDA pretreatment. Consistent with this observation, significantly less DNA damage and fewer apoptotic cells were accumulated after Y-90 ibritumomab tiuxetan treatment in LDA-pretreated mice. Furthermore, in the mouse xenograft model implanted with human Karpas-422 lymphoma cells, LDA pretreatment did not have any detectable effect on either tumor growth or Y-90 ibritumomab tiuxetan (200 μCi)-induced tumor suppression. Conclusions: LDA pretreatment protected bone marrow without compromising tumor control caused by Y-90 ibritumomab tiuxetan.« less

  16. NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system.

    PubMed

    Li, Chengcheng; Luo, Yi; Shao, Lijian; Meng, Aimin; Zhou, Daohong

    2018-01-01

    Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2 - / - and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2 - / - mice were investigated in vitro. In addition, we exposed NOS2 - / - mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2 - / - mice in response to IR exposure in vitro. Exposure of WT mice and NOS2 - / - mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2 - / - mice. These data suggest that IR induces BM suppression in a NOS2-independent manner.

  17. Sustained trilineage recovery and disappearance of abnormal chromosome clone in a patient with myelodysplastic syndrome following combination therapy with cytokines (granulocyte colony-stimulating factor and erythropoietin) and high-dose methylprednisolone.

    PubMed

    Imai, Y; Fukuoka, T; Nakatani, A; Ohsaka, A; Takahashi, A

    1996-04-01

    We report a case of hypoplastic myelodyplastic syndrome (MDS) (refractory anemia (RA)) in which sustained trilineage haematological response and persistent disappearance of an abnormal chromosome clone were achieved after treatment with combination therapy of cytokines (granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo)) and methylprednisolone (mPSL) pulse dose. The patient's haematological recovery was rapid and maintained even after cessation of the therapy. In addition, the predominant chromosome clone 13q- in bone marrow cells disappeared in the fourth week. The patient's improved bone marrow haemopoiesis and disappearance of the abnormal chromosome has continued to the present, 13 months after treatment. The occurrence of both trilineage response and abnormal chromosome disappearance in MDS patients treated with cytokine(s) or steroids is rare. Combination therapy might therefore be advantageous in MDS.

  18. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Elicited soybean (Glycine max) extract effect on improving levels of Ter-119+Cd59+ in a mouse model fed a high fat-fructose diet

    NASA Astrophysics Data System (ADS)

    Safitri, Yunita Diyah; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    People who have unbalanced lifestyles and habits such as consuming high fat and sugar foods, as well as the lack of physical activity, have an increased risk of obesity and related metabolic diseases. The condition of obesity occurs due to an excess of nutrients which leads to low-grade inflammation. Inflammation induced by obesity causes unstable bone marrow homeostasis which is associated with proliferation and differentiation of Hematopoietic Stem Cells (HSCs). This study aimed to observe the erythroid progenitor (TER-119) and complement regulator (CD59) on bone marrow cells in mouse models fed a high fat-fructose diet (HFFD). This research was conducted by modeling obese mice using high fat and fructose food for 20 weeks, and then treating them with elicited soybean extract (ESE) for four weeks with several doses: low dose (78 mg/kgBB), moderate dose (104 mg/kgBB) and high dose (130 mg/kgBB). Cell TER119+CD59+ expression decreased in the HFFD group compared to the normal group. In the low, moderate and high dose group, TER119+CD59+ expression significantly increased compared to the HFFD group. These results demonstrate that soybean elicited extract can improve the hematopoietic system by increasing TER119+CD59+ expression in a high fat and fructose diet mouse model.

  20. Effects of Testosterone on Erythropoiesis in a Female Mouse Model of Anemia of Inflammation

    PubMed Central

    Schmidt, Paul J.; Fleming, Mark D.; Bhasin, Shalender

    2016-01-01

    The anemia of inflammation is a common problem in inflammatory and autoimmune diseases. We characterized a mouse model of anemia of chronic inflammation induced by repeated injections of low doses of heat-killed Brucella abortus (HKBA), and determined the effects of T administration on erythropoiesis in this model. Female C57BL/6NCrl mice were injected weekly with HKBA for 10 wk. Weekly injections of T or vehicle oil were started 4 wk later. Control mice were injected with saline and vehicle oil in parallel. HKBA-injected mice had significantly lower hemoglobin, hematocrit, mean corpuscular volume, reticulocyte hemoglobin, transferrin saturation (TSAT), and tissue nonheme iron in liver and spleen, enlarged spleen, and up-regulated hepatic expression of inflammatory markers, serum amyloid A1, and TNFα, but down-regulated IL-6, bone morphogenic protein 6, and hepcidin compared with saline controls. HKBA also reduced serum hepcidin and increased serum erythropoietin. Bone marrow erythroid precursors were substantially reduced in HKBA-injected mice. Cotreatment with T increased the percentage of late-stage erythroid precursors in the bone marrow relative to HKBA-injected and saline controls and reversed HKBA-induced suppression of hemoglobin and hematocrit. T also normalized serum erythropoietin, TSAT, and reticulocyte hemoglobin without correcting the expression of the hepatic inflammation markers. Conclusions are that low-dose HKBA induces moderate anemia characterized by chronic inflammation, decreased iron stores, and suppression of erythroid precursors in the bone marrow. T administration reverses HKBA-induced anemia by stimulating erythropoiesis, which is associated with a shift toward accelerated maturation of erythroid precursors in the bone marrow. PMID:27074351

  1. Improvement of anemia in W/WV mice by recombinant human erythropoietin (rHuEPO) mediated through EPO receptors with lowered affinity.

    PubMed

    Kabaya, K; Akiyama, H; Nishi, N; Misaizu, T; Okada, Y; Kawagishi, M; Amano, K; Kusaka, M; Seki, M; Uzumaki, H

    1995-01-01

    We studied the effects of recombinant human erythropoietin (rHuEPO) on anemic W/WV mice which manifested severe anemia accompanied by mutation of the W gene encoding tyrosine kinase type receptor (c-kit gene) of bone marrow hematopoietic cells. Nine-week-old male W/WV mice or normal littermates (+/+) were used. Since serum EPO concentration in W/WV mice increased in proportion to severity of anemia, EPO production in the kidneys of these animals was found to be regulated normally. Hematocrit in +/+ mice increased and a maximal response was also obtained with 2,000 IU/kg of rHuEPO. On the other hand, hematocrit in W/WV mice increased in a dose-responsive manner by administration with 2,000 and 10,000 IU/kg, showing different responses to rHuEPO in these two types of mice. The responsiveness of W/WV mice to rHuEPO was low in terms of increases in erythroblastic precursor cells (CFU-E), and immature cells in the bone marrow. Scatchard analysis of the specific binding of 125I-rHuEPO against bone marrow cells revealed that the different responsiveness to rHuEPO between W/WV and +/+ mice may be correlated with differences in affinity of EPO receptor of bone marrow cells in these mice. From these results, a high dose of rHuEPO is capable of improving the anemia in W/WV mice that had EPO receptors with lowered affinity, indicating the possible effectiveness of rHuEPO in anemic patients with EPO receptor abnormality.

  2. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Globus, Ruth K.

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron /more » protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one month after irradiation (IR). At four months post-IR, these animals were comparable to sham-treated controls with regards to the abovementioned structural parameters. Irradation at 1 or 10 cGy did not result in any significant changes in bone structural parameters. (3) Irradiation of 16-wk old male mice with high doses of 56Fe or proton (50 or 200cGy), but not at low doses (5 or 10cGy), showed a similar loss of cancellous BV/TV and trabecular number at five weeks post-IR. (4) Age-related bone loss overtook acute radiation-induced decrements in bone structure within four months post-IR with 100 cGy gamma and 12 months post-IR with 200 cGy iron. Transgenic mice globally overexpressing human catalase gene in mitochondria did not exhibit cancellous bone loss as assessed at four month post-IR with 10 cGy proton, 50 cGy iron, or in combination. (5) The cellular and molecular mechanisms responsible for loss of bone with radiation are mediated primarily through increased osteoclastogenesis. Our data provide evidence that there are increases in gene expression of TNF alpha and MCP1 in the bone marrow cells 24 hours post-IR and of osteoclastogenic differentiation factor RANKL by day 3. These cytokines in the marrow may stimulate mature osteoclasts or drive osteoclastogenesis from precursors. (6) Osteoblastogenesis from marrow progenitors evaluated ex vivo decreased following whole body 56Fe irradiation at a dose threshold between 20 and 50 cGy whereas osteoclastogenesis ex vivo increased with doses as low as 10cGy two days post-IR of mice. However, the latter finding was not observed in more than a single experiment. (7) Gamma irradiation of cells in vitro requires relatively high doses (200cGy) to disturb normal osteoblastogenesis and osteoclastogenesis as evidenced by decrements in mineralized nodule formation, osteoclast counts, and expression of osteoblast related genes such as runx2, col1a1. (8) We also investigated the effect of antioxidants on osteoblastogenesis following low dose in vitro gamma irradiation (15cGy) on day four bone marrow stromal cell cultures. Superoxide dismutase (SOD) was added to the cell culture medium for 2 or 3 days post-irradiation and cell colonies were counted on days 7 and 10. SOD treatment increased cell growth as measured by DNA content and colony forming units (CFU) in both irradiated cells and 0 cGy control groups. However, low dose radiation of 15cGy abolished SOD stimulatory effects on cell growth and CFU number. These results suggest that exogenous SOD increases osteoblast cell growth and colony formation and that low-dose radiation (15cGy) can interfere with the antioxidant effects. In summary, our findings indicate that acute, whole body irradiation at high doses (50-200 cGy) results in prompt tissue degradation and bone loss. Lower doses (<50 cGy) do not cause bone structural deterioration but may deplete stem/progenitor cell pools in the bone marrow.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A.

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. Themore » CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (CF{sub SSDE}{sup organ}) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.« less

  4. Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity.

    PubMed

    Garske-Román, Ulrike; Sandström, Mattias; Fröss Baron, Katarzyna; Lundin, Lars; Hellman, Per; Welin, Staffan; Johansson, Silvia; Khan, Tanweera; Lundqvist, Hans; Eriksson, Barbro; Sundin, Anders; Granberg, Dan

    2018-06-01

    Peptide receptor radionuclide therapy in patients with neuroendocrine tumours has yielded promising results. This prospective study investigated the feasibility of dosimetry of the kidneys and bone marrow during therapy and its impact on efficacy and outcome. The study group comprised 200 consecutive patients with metastasized somatostatin receptor-positive neuroendocrine tumours progressing on standard therapy or not suitable for other therapeutic options. A treatment cycle consisted of 7.4 GBq 177 Lu-DOTA-octreotate with co-infusion of a mixed amino acid solution, and cycles were repeated until the absorbed dose to the kidneys reached 23 Gy or there were other reasons for stopping therapy. The Ki-67 index was ≤2% in 47 patients (23.5%), 3-20% in 121 (60.5%) and >20% in 16 (8%). In 123 patients (61.5%) the absorbed dose to the kidneys reached 23 Gy with three to nine cycles during first-line therapy; in no patient was a dose to the bone marrow of 2 Gy reached. The best responses (according to RECIST 1.1) were a complete response (CR) in 1 patient (0.5%), a partial response (PR) in 47 (23.5%), stable disease (SD) in 135 (67.5%) and progressive disease (PD) in 7 (3.5%). Median progression-free survival was 27 months (95% CI 22-30 months) in all patients, 33 months in those in whom the absorbed dose to the kidneys reached 23 Gy and 15 months in those in whom it did not. Median overall survival (OS) was 43 months (95% CI 39-53 months) in all patients, 54 months in those in whom the absorbed dose to the kidneys reached 23 Gy and 25 months in those in whom it did not. Median OS was 60 months in patients with a best response of PR or CR, 42 months in those with SD and 16 months in those with PD. Three patients (1.5%) developed acute leukaemia, 1 patient (0.5%) chronic leukaemia (unconfirmed) and 30 patients (15%) grade 3 or 4 bone marrow toxicity. Eight patients (4%) developed grade 2 kidney toxicity and one patient (0.5%) grade 4 kidney toxicity. Dosimetry-based therapy with 177 Lu-DOTA-octreotate is feasible. Patients in whom the absorbed dose to the kidneys reached 23 Gy had a longer OS than those in whom it did not. Patients with CR/PR had a longer OS than those with SD. Bone marrow dosimetry did not predict toxicity.

  5. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia.

    PubMed

    Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E

    2015-09-01

    Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically significant increase in their absolute number in the MSC group compared to their diluent controls. Investigation of behavior in another cohort of animals showed that delayed administration of a high-dose of bone marrow-derived MSCs, at one week after neonatal rat hypoxia-ischemia, improved motor function on the cylinder test. Thus, delayed therapy with a high- or low-dose of adult MSCs, at one week after injury, is effective in restoring the loss of striatal medium-spiny projection neurons after neonatal rat hypoxia-ischemia and a high-dose of MSCs improved motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Stimulation of myelopoiesis in Listeria monocytogenes-infected mice by an aggregated polymer isolated from Aspergillus oryzae.

    PubMed

    de Melo, A; Justo, G Z; de Souza Queiroz, M L

    2001-01-01

    In this work, we investigated the effects of the proteic aggregated polymer of magnesium ammonium phospholinoleate-palmitoleate anhydride (MAPA) isolated from Aspergillus oryzae on the growth and differentiation of bone marrow granulocyte-macrophage progenitor cells (CFU-GM) in Listeriamonocytogenes-infected mice. A significant reduction in the CFU-GM number was observed in the initial phase of infection with a sublethal dose of Listeria. Treatment of mice with 0.5, 2.0 and 5.0 mg/kg MAPA for 7 days prior to infection significantly stimulated myelopoiesis in a dose-dependent manner. Moreover, treatment with 0.5 and 5.0 mg/kg MAPA resulted in 30% and 40% cures of mice lethally infected with Listeria, respectively. MAPA added directly to the culture dishes hardly affected colony formation by bone marrow cells, suggesting an indirect effect ofthis compound on myelopoiesis in vivo. In summary, the data show that MAPA can modulate the CFU-GM generation and antibacterial resistance in listeriosis. As the ability of hematopoietic tissues to produce phagocytes is of particular significance to mediate resistance to Listeria, the promotion of bone marrow CFU-GM by MAPA may contribute to a rapid restoration of phagocyte numbers in infected sites, thus mitigating the course of infection.

  7. Dose-intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients.

    PubMed

    Xicoy, Blanca; Ribera, Josep-Maria; Müller, Markus; García, Olga; Hoffmann, Christian; Oriol, Albert; Hentrich, Marcus; Grande, Carlos; Wasmuth, Jan-Christian; Esteve, Jordi; van Lunzen, Jan; Del Potro, Eloy; Knechten, Heribert; Brunet, Salut; Mayr, Christoph; Escoda, Lourdes; Schommers, Philipp; Alonso, Natalia; Vall-Llovera, Ferran; Pérez, Montserrat; Morgades, Mireia; González, José; Fernández, Angeles; Thoden, Jan; Gökbuget, Nicola; Hoelzer, Dieter; Fätkenheuer, Gerd; Wyen, Christoph

    2014-10-01

    The results of intensive immunochemotherapy were analyzed in human immunodeficiency virus (HIV)-related Burkitt lymphoma/leukemia (BLL) in two cohorts (Spain and Germany). Alternating cycles of chemotherapy were administered, with dose reductions for patients over 55 years. Eighty percent of patients achieved remission, 11% died during induction, 9% failed and 7% died in remission. Four-year overall survival (OS) and progression-free survival (PFS) probabilities were 72% (95% confidence interval [CI]: 62-82%) and 71% (95% CI: 61-81%). CD4 T-cell count < 200/μL and bone marrow involvement were associated with poor OS (hazard ratio [HR] 3.2 [1.2-8.3] and HR 2.7 [1.1-6.6]) and PFS (HR 3.5 [1.3-9.1] and HR 2.4 [1-5.7]), bone marrow involvement with poor disease-free survival (DFS) (HR 14.4 [1.7-119.7] and Eastern Cooperative Oncology Group (ECOG) score > 2 (odds ratio [OR] 11.9 [1.4-99.9]) with induction death. In HIV-related BLL, intensive immunochemotherapy was feasible and effective, but toxic. Prognostic factors were performance status, CD4 T-cell count and bone marrow involvement.

  8. Investigation of flurbiprofen genotoxicity and cytotoxicity in rat bone marrow cells.

    PubMed

    Timocin, Taygun; Ila, Hasan B

    2015-01-01

    This study was performed to investigate cytogenetic effects of NSAID flurbiprofen which was used as active ingredient in some analgesic, antipyretic and anti-inflammatory drugs. Genotoxic effect of flurbiprofen was investigated using in vivo chromosome aberration (CA) test and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) test. Also, oxidative stress potential of flurbiprofen was determined by measuring total oxidant and antioxidant level which occurred with flurbiprofen treatment in rat peripheral blood. For these purposes, rats were treated with three concentrations of flurbiprofen (29.25, 58.50 and 117 mg/kg, body weight) in single dose at two different treatment periods (12 and 24 h). According to the results, flurbiprofen did not affect chromosome aberrations in rat bone marrow cells with CA test. In RAPD-PCR test, polymorphic bands were unaffected. Also, test substance did not change total oxidant and antioxidant status (except for 58.50 and 117 mg/kg, 12 h) and therefore it did not lead to significant increase on oxidative stress (again except 58.50 and 117 mg/kg, 12 h). However, flurbiprofen reduced to mitotic indexes and these reductions were dose-dependent for 12 h treatment. In summary, flurbiprofen did not show significant genotoxic effect. But it caused cytotoxicity in rat bone marrow cells.

  9. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation

    PubMed Central

    Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.

    2009-01-01

    The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433

  10. Association Between Bone Marrow Dosimetric Parameters and Acute Hematologic Toxicity in Anal Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mell, Loren K.; Schomas, David A.; Salama, Joseph K.

    Purpose: To test the hypothesis that the volume of pelvic bone marrow (PBM) receiving 10 and 20 Gy or more (PBM-V{sub 10} and PBM-V{sub 20}) is associated with acute hematologic toxicity (HT) in anal cancer patients treated with concurrent chemoradiotherapy. Methods and Materials: We analyzed 48 consecutive anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiation therapy. The median radiation dose to gross tumor and regional lymph nodes was 50.4 and 45 Gy, respectively. Pelvic bone marrow was defined as the region extending from the iliac crests to the ischial tuberosities, including the os coxae, lumbosacral spine, and proximalmore » femora. Endpoints included the white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin, and platelet count nadirs. Regression models with multiple independent predictors were used to test associations between dosimetric parameters and HT. Results: Twenty patients (42%) had Stage T3-4 disease; 15 patients (31%) were node positive. Overall, 27 (56%), 24 (50%), 4 (8%), and 13 (27%) experienced acute Grade 3-4 leukopenia, neutropenia, anemia, and thrombocytopenia, respectively. On multiple regression analysis, increased PBM-V{sub 5}, V{sub 10}, V{sub 15}, and V{sub 20} were significantly associated with decreased WBC and ANC nadirs, as were female gender, decreased body mass index, and increased lumbosacral bone marrow V{sub 10}, V{sub 15}, and V{sub 20} (p < 0.05 for each association). Lymph node positivity was significantly associated with a decreased WBC nadir on multiple regression analysis (p < 0.05). Conclusion: This analysis supports the hypothesis that increased low-dose radiation to PBM is associated with acute HT during chemoradiotherapy for anal cancer. Techniques to limit bone marrow irradiation may reduce HT in anal cancer patients.« less

  11. Prediction of iodine-131 biokinetics and radiation doses from therapy on the basis of tracer studies: an important question for therapy planning in nuclear medicine.

    PubMed

    Willegaignon, José; Pelissoni, Rogério A; Lima, Beatriz C G D; Sapienza, Marcelo T; Coura-Filho, George B; Buchpiguel, Carlos A

    2016-05-01

    This study aimed to present a comparison of iodine-131 (I) biokinetics and radiation doses to red-marrow (rm) and whole-body (wb), following the administration of tracer and therapeutic activities, as a means of confirming whether I clearance and radiation doses for therapy procedures can be predicted by tracer activities. Eleven differentiated thyroid cancer patients were followed after receiving tracer and therapeutic I activity. Whole-body I clearance was estimated using radiation detectors and OLINDA/EXM software was used to calculate radiation doses to rm and wb. Tracer I activity of 86 (±14) MBq and therapeutic activity of 8.04 (±1.18) GBq were administered to patients, thereby producing an average wb I effective half-time and residence time of, respectively, 13.51 (±4.05) and 23.13 (±5.98) h for tracer activities and 13.32 (±3.38) and 19.63 (±4.77) h for therapy. Radiation doses to rm and wb were, respectively, 0.0467 (±0.0208) and 0.0589 (±0.0207) mGy/MBq in tracer studies and 0.0396 (±0.0169) and 0.0500 (±0.0163) mGy/MBq in therapy. Although the differences were not considered statistically significant between averages, those between the values of effective half-times (P=0.906), residence times (P=0.145), and radiation doses to rm (P=0.393) and to wb (P=0.272), from tracer and therapy procedures, large differences of up to 80% in wb I clearance, and up to 50% in radiation doses were observed when patients were analyzed individually, thus impacting on the total amount of I activity calculated to be safe for application in individual therapy. I biokinetics and radiation doses to rm and wb in therapy procedures are well predicted by diagnostic activities when average values of a group of patients are compared. Nonetheless, when patients are analyzed individually, significant differences may be encountered, thus implying that nuclear medicine therapy-planning requires due consideration of changes in individual patient-body status from initial tracer to final therapy procedures to thus provide appropriate adjustments in therapeutic activities.

  12. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E I; Shagina, N B; Degteva, M O

    2011-08-01

    The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorptionmore » was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year -1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.« less

  13. Incorporation of additional radionuclides and the external exposure pathway into the BECAMP (Basic Environmental Compliance and Monitoring Program) radiological assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Yook C.; Rodean, H.C.; Anspaugh, L.R.

    The Nevada Applied Ecology Group (NAEG) Model of transport and dose for transuranic radionuclides was modified and expanded for the analysis of radionuclides other than pure alpha-emitters. Doses from internal and external exposures were estimated for the inventories and soil distributions of the individual radionuclides quantified in Areas 2 and 4 of the Nevada Test Site (NTS). We found that the dose equivalents via inhalation to liver, lungs, bone marrow, and bone surface from the plutonium isotopes and /sup 241/Am, those via ingestion to bone marrow and bone surfaces from /sup 90/Sr, and those via ingestion to all the targetmore » organs from /sup 137/Cs were the highest from internal exposures. The effective dose equivalents from /sup 137/Cs, /sup 152/Eu, and /sup 154/Eu were the highest from the external exposures. The /sup 60/Co, /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu dose estimates for external exposures greatly exceeded those for internal exposures. The /sup 60/Co, /sup 90/Sr, and /sup 137/Cs dose equivalents from internal exposures were underestimated due to the adoption of some of the foodchain parameter values originally selected for /sup 239/Pu. Nonetheless, the ingestion pathway contributed significantly to the dose estimates for /sup 90/Sr and /sup 137/Cs, but contributed very much less than external exposures to the dose estimates for /sup 60/Co. Therefore, the use of more appropriate values would not alter the identification of important radionuclides, pathways, target organs, and exposure modes in this analysis. 19 refs., 13 figs., 12 tabs.« less

  14. Radiation damage aspects of the chernobyl accident

    NASA Astrophysics Data System (ADS)

    Parmentier, N.; Nenot, J. C.

    During the night of 25 to 26 April 1986, the most severe nuclear accident occurred at the Chernobyl power station, about 150km north of Kiev, in the Ukraine. It resulted in the irradiation of 237 workers at dose levels justifying medical care. The most severe cases (115) were hospitalized in Moscow, with 20 patients with doses higher than 6 Gy. In most cases, the treatment was classical, based on transfusion of red cells and platelets, and heavy supportive therapy. For 19 patients with severe aplasia, transplantations of bone marrow (13) or foetal liver (6) were decided. Of these patients only one survived, which justifies the statement from U.S.S.R. physicians: after an accident the indications of grafting are limited and its risks may not justify its use. Most of the complications were related to radiation burns which involved 56 victims and resulted in fatal outcomes in at least 19 patients. The population was evacuated from a 30 km zone around the site; based on direct measurements and calculations, the collective dose was evaluated at 1.6 × 10 4 man Sv, with an individual average lower than 250 mSv. The European part of U.S.S.R. with 75 million persons is supposed to have received a collective dose likely to increase the natural mortality by less than 0.1%. The numbers with cancer in the Northern Hemisphere might increase by 0.004% over the next 50 years.

  15. INTERNAL EXPOSURE TO URANIUM IN A POOLED COHORT OF GASEOUS DIFFUSION PLANT WORKERS

    PubMed Central

    Anderson, Jeri L.; Apostoaei, A. Iulian; Yiin, James H.; Fleming, Donald A.; Tseng, Chih-Yu; Chen, Pi-Hsueh

    2015-01-01

    Intakes and absorbed organ doses were estimated for 29 303 workers employed at three former US gaseous diffusion plants as part of a study of cause-specific mortality and cancer incidence in uranium enrichment workers. Uranium urinalysis data (>600 000 urine samples) were available for 58 % of the pooled cohort. Facility records provided uranium gravimetric and radioactivity concentration data and allowed estimation of enrichment levels of uranium to which workers may have been exposed. Urine data were generally recorded with facility department numbers, which were also available in study subjects’ work histories. Bioassay data were imputed for study subjects with no recorded sample results (33 % of pooled cohort) by assigning department average urine uranium concentration. Gravimetric data were converted to 24-h uranium activity excretion using department average specific activities. Intakes and organ doses were calculated assuming chronic exposure by inhalation to a 5-µm activity median aerodynamic diameter aerosol of soluble uranium. Median intakes varied between 0.31 and 0.74 Bq d−1 for the three facilities. Median organ doses for the three facilities varied between 0.019 and 0.051, 0.68 and 1.8, 0.078 and 0.22, 0.28 and 0.74, and 0.094 and 0.25 mGy for lung, bone surface, red bone marrow, kidneys, and liver, respectively. Estimated intakes and organ doses for study subjects with imputed bioassay data were similar in magnitude. PMID:26113578

  16. [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity.

    PubMed

    Zanzonico, Pat; Koehne, Guenther; Gallardo, Humilidad F; Doubrovin, Mikhail; Doubrovina, Ekaterina; Finn, Ronald; Blasberg, Ronald G; Riviere, Isabelle; O'Reilly, Richard J; Sadelain, Michel; Larson, Steven M

    2006-09-01

    Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [(131)I]-2'-fluoro-2'-deoxy-1-beta-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular (131)I (even at tracer levels), the nucleus absorbed dose (D ( n )) and dose-dependent immune functionality were evaluated for NIT(+) T cells labeled ex vivo in [(131)I]FIAU-containing medium. Based on in vitro kinetic studies of [(131)I]FIAU uptake by NIT(+) T cells, D ( n ) was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [(131)I]FIAU-labeled cells was assayed against (51)Cr-labeled target cells [B-lymphoblastoid cells (BLCLs)] in a standard 4-h release assay. At median nuclear absorbed doses up to 830 cGy, a (51)Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies.

  17. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity.

    PubMed

    Kitamoto, Sachiko; Matsuyama, Ryoko; Uematsu, Yasuaki; Ogata, Keiko; Ota, Mika; Yamada, Toru; Miyata, Kaori; Funabashi, Hitoshi; Saito, Koichi

    2015-07-01

    The in vivo rodent alkaline comet assay (comet assay) is a promising technique to evaluate DNA damage in vivo. However, there is no agreement on a method to evaluate DNA damage in organs where cytotoxicity is observed. As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the comet assay, we examined DNA damage in the liver, stomach, and bone marrow of rats given three oral doses of N-methyl-N-nitrosourea (MNU) up to the maximum tolerated dose based on systemic toxicity. MNU significantly increased the % tail DNA in all the organs. Histopathological analysis showed no cytotoxic effect on the liver, indicating clearly that MNU has a genotoxic potential in the liver. In the stomach, however, the cytotoxic effects were very severe at systemically non-toxic doses. Low-dose MNU significantly increased the % tail DNA even at a non-cytotoxic dose, indicating that MNU has a genotoxic potential also in the stomach. Part of the DNA damage at cytotoxic doses was considered to be a secondary effect of severe cell damage. In the bone marrow, both the % tail DNA and incidence of micronucleated polychromatic erythrocytes significantly increased at non-hematotoxic doses, which were different from the non-cytotoxic doses for liver and stomach. These findings indicate that an optimal dose for detecting DNA damage may vary among organs and that careful attention is required to select an optimum dose for the comet assay based on systemic toxicity such as mortality and clinical observations. The present study shows that when serious cytotoxicity is suggested by increased % hedgehogs in the comet assay, histopathological examination should be included for the evaluation of a positive response. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally found in the umbilical cord and bone marrow as hematopoietic cells, a subset of mesenchymal stem cells, endothelial progenitor cells, endothelial cells of blood vessels, etc. [Beutler et al. 2000 ] Potential mechanisms responsible for radiation-acquired marrow cell failure include direct toxicity , direct damage of hematopoietic multipotential cells or cellular or humoral immune suppression of the marrow multipotential cells. [ Beutler et al. 2000] Methods: These studies were conducted at several different research institutions and laboratories listed as follows: Kazan All-Union Scientific Research Veterinary, Biotechnology Centre of Russian Academy of Science (North Osetia), Institute Belarussian Scientific and Research Institute for Radiobiology in Gomel, the St. Petersburg Veterinary Institute, the Advanced Medical Technology and Systems Inc., Ontario, Canada. The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. A critically important volume of purified Radiation Toxins (RT) was isolated from larger mammalian irradiated animals. Subsequently the RT were characterized chemically and biologically. The experimental design of later studies compared relative toxicity, potential for development of acute radiation hematopoietic syndrome, and potential cloning disorder of multipotential hematopoietic progenitors and their derivative and lethality after intravenous or intramuscular injections of SRD containing Hematopoietic Radiation Toxins. These experiments have employed a wide variety of experimental animals. The animals were irradiated in RUM-17, Puma, and Panorama devices. The dose varied from 0.7Gy to 100Gy. The methods of immune depletion, immuno-lympho plasmasabsorption, as well as direct extraction, were used to refine and purify the specific Radiation Toxins from the central lymph of animals with Hematopoietic forms of Radiation Toxins. Experiments include administration of Hematopoietic Radiation Toxins (SRD-4) to radiation naive animals in doses 0.1 mg/kg; 0,5 mg/kg; 1 mg/kg; 2 mg/kg; 3 mg/kg up to 30 mg/kg. Results: After I/V or I/M administration of Hematotoxic Radiation Toxins to radiation -naive animals the induction of specific clinical signs was observed- including thrombocytopenia, lymphocytosis followed by lymphocytopenia, granulocytopenia , aplastic anemia, and the clinical manifestations- ecchymosis, hemorrhage and coagulopathy. These observed clinical signs mimic the acute/hematopoietic acute radiation syndrome. Conclusions: Administration of Hematopoietic Radiation Toxins (SRD-4) to radiation naive animals in doses 0.1 mg/kg;0,5 mg/kg; 1 mg/kg; 2 mg/kg; 3 mg/kg up to 30 mg/kg produced specific toxic reactions with the development of signs and symptoms consistent with the hematological form of Acute Radiation Syndromes. Administration of high doses of Hematopoietic Radiation Toxins developed a clinical picture identical to severe Acute Radiation Exposure Syndrome and induces Toxic Multiple Organ Failure (TMOF) and Toxic Multiple Organ Involvement (TMOI) {i.e. pneumonitis, renal failure, renal hypo-perfusion, acute tubular necrosis, hepatic failure, etc.} essentially as which occurs as an acute consequence of radiation toxemia. Aplastic anemia is an important clinical and pathological process which develops after animals receive high doses of both radiation and administered radiation toxins.

  19. Osteonecrosis of the hip in patients with aplastic anemia.

    PubMed Central

    Park, Jeongmi; Jun, Jeongsu; Kim, Yongsik; Lee, Jongwook; Kim, Chunchu; Hahn, Seongtae

    2002-01-01

    The incidence and clinical and magnetic resonance imaging features of osteonecrosis of the hip were evaluated in patients with aplastic anemia. Two hundred and forty-one patients with aplastic anemia were examined using MR imaging of bone marrow during the five years from 1994 to 1998. Osteonecrosis of the hip was observed on MR imaging in nineteen (15 males and 4 females, mean age 35 yr) of the 241 patients. It was present in both hips in 14 patients, and there were five cases with unilateral occurrence, with a total of 33 involved hips. All except for five hips with associated bone marrow edema revealed increased fatty marrow conversion in the proximal femoral metaphysis. In nine patients, osteonecrosis was detected without any pain. Five patients already had osteonecrosis before any medication was administered. Twelve patients received antilymphocyte globulin, and seven patients received a low dose of steroids before the MR diagnosis of osteonecrosis. Osteonecrosis of the hip frequently develops in patients with aplastic anemia (7.9%), associated with fatty marrow conversion of the proximal femoral metaphysis. PMID:12483006

  20. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    PubMed Central

    de Carvalho, Felipe Gonçalves; de Freitas, Gabriel Rodriguez

    2016-01-01

    Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field. PMID:27698671

  1. Safety, Pharmacokinetics and Dosimetry of a Long-Acting Radiolabeled Somatostatin Analogue 177Lu-DOTA-EB-TATE in Patients with Advanced Metastatic Neuroendocrine Tumors.

    PubMed

    Zhang, Jingjing; Wang, Hao; Jacobson Weiss, Orit; Cheng, Yuejuan; Niu, Gang; Li, Fang; Bai, Chunmei; Zhu, Zhaohui; Chen, Xiaoyuan

    2018-04-13

    Radiolabeled somatostatin analogue therapy has become an established treatment method for patients with well to moderately differentiated unresectable or metastatic neuroendocrine tumors (NETs). The most frequently used somatostatin analogues in clinical practice are octreotide and octreotate. However, both peptides showed suboptimal retention within tumors. The aim of this first-in-human study is to explore the safety and dosimetry of a long-acting radiolabeled somatostatin analogue, lutetium-177-1, 4, 7, 10-tetra-azacyclododecane-1, 4, 7, 10-tetraacetic acid-Evans blue-octreotate ( 177 Lu-DOTA-EB-TATE). Methods: Eight patients (6 males and 2 females; age range, 27-61 y) with advanced metastatic neuroendocrine tumors were recruited. Five patients received a single dose 0.35-0.70 GBq (9.5-18.9 mCi) of 177 Lu-DOTA-EB-TATE and underwent serial whole body planar and single-photon emission computed tomography-computed tomography (SPECT-CT) scans at 2, 24, 72, 120 and 168 h after injection. The other 3 patients received intravenous injection of 0.28-0.41 GBq (7.5-11.1 mCi) of 177 Lu-DOTATATE for the same imaging acquisition procedures at 1, 3, 4, 24 and 72 h after injection. The dosimetry was calculated using the OLINDA/EXM 1.1 software. Results: Administration of 177 Lu-DOTA-EB-TATE was well tolerated, with no adverse symptoms being noticed or reported in any of the patients. Compared with 177 Lu-DOTATATE, 177 Lu-DOTA-EB-TATE showed extended circulation in the blood and achieved 7.9-fold increase of tumor dose delivery. The total body effective doses were 0.205 ± 0.161 mSv/MBq for 177 Lu-DOTA-EB-TATE and 0.174 ± 0.072 mSv/MBq for 177 Lu-DOTATATE. Significant dose delivery increases to the kidneys and bone marrow were also observed in patients receiving 177 Lu-DOTA-EB-TATE than those receiving 177 Lu-DOTATATE (3.2 and 18.2-fold, respectively). Conclusion: By introducing an albumin binding moiety, 177 Lu-DOTA-EB-TATE showed remarkably higher uptake and retention in NET tumors as well as significantly increased accumulation in the kidneys and red marrow. It has great potential to be used in PRRT for NET tumors with lower dose and less frequency of administration. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. In vivo competitive studies between normal and common gamma chain-defective bone marrow cells: implications for gene therapy.

    PubMed

    Otsu, M; Sugamura, K; Candotti, F

    2000-09-20

    Corrective gene transfer into hematopoietic stem cells (HSCs) is being investigated as therapy for X-linked severe combined immunodeficiency (XSCID) and it is hoped that selective advantage of gene-corrected HSCs will help in achieving full immune reconstitution after treatment. Lines of evidence from the results of allogeneic bone marrow transplantation in patients with XSCID support this hypothesis that, however, has not been rigorously tested in an experimental system. We studied the competition kinetics between normal and XSCID bone marrow (BM) cells using a murine bone marrow transplantation (BMT) model. For easy chimerism determination, we used genetic marking with retrovirus-mediated expression of the enhanced green fluorescent protein (EGFP). We found that XSCID BM cells were able to compete with normal BM cells for engraftment of myeloid lineages in a dose-dependent manner, whereas we observed selective repopulation of T, B, and NK cells deriving from normal BM cells. This was true despite the evidence of competitive engraftment of XSCID lineage marker-negative/c-Kit-positive (Lin-/c-Kit+) cells in the bone marrow of treated animals. From these results we extrapolate that genetic correction of XSCID HSCs will result in selective advantage of gene-corrected lymphoid lineages with consequent restoration of lymphocyte populations and high probability of clinical benefit.

  3. Cyclophosphamide conditioning in patients with severe aplastic anaemia given unrelated marrow transplantation: a phase 1-2 dose de-escalation study.

    PubMed

    Anderlini, Paolo; Wu, Juan; Gersten, Iris; Ewell, Marian; Tolar, Jakob; Antin, Joseph H; Adams, Roberta; Arai, Sally; Eames, Gretchen; Horwitz, Mitchell E; McCarty, John; Nakamura, Ryotaro; Pulsipher, Michael A; Rowley, Scott; Leifer, Eric; Carter, Shelly L; DiFronzo, Nancy L; Horowitz, Mary M; Confer, Dennis; Deeg, H Joachim; Eapen, Mary

    2015-09-01

    The optimum preparative regimen for unrelated donor marrow transplantation in patients with severe aplastic anaemia remains to be established. We investigated whether the combination of fludarabine, anti-thymocyte globulin, and total body irradiation (TBI) would enable reduction of the cyclophosphamide dose to less than 200 mg/kg while maintaining engraftment and having a survival similar to or better than that with standard regimens using a cyclophosphamide dose of 200 mg/kg (known to be associated with significant organ toxicity) for unrelated donor transplantation for severe aplastic anaemia. We have previously shown that cyclophosphamide at 150 mg/kg resulted in excess toxicity and its omission (0 mg/kg) resulted in unacceptable graft failure (three of three patients had secondary graft failure). Here we report results for the 50 mg/kg and 100 mg/kg cohorts. In a multicentre phase 1-2 study, patients (aged ≤65 years) with severe aplastic anaemia, adequate organ function, and an unrelated adult marrow donor HLA matched at the allele level for HLA A, B, C, and DRB1 or mismatched at a single HLA locus received bone marrow grafts from unrelated donors. All patients received anti-thymocyte globulin (rabbit derived 3 mg/kg per day, intravenously, on days -4 to -2, or equine derived 30 mg/kg per day, intravenously, on days -4 to -2), fludarabine (30 mg/m(2) per day, intravenously, on days -5 to -2), and TBI (2 Gy). Cyclophosphamide dosing started at 150 mg/kg and was de-escalated in steps of 50 mg/kg (to 100 mg/kg, 50 mg/kg, and 0 mg/kg). The primary endpoint was the selection of the optimum cyclophosphamide dose based on assessments of graft failure (primary or secondary), toxicity, and early death during 100 days of follow-up after the transplant; this is the planned final analysis for the primary endpoint. This trial is registered with ClinicalTrials.gov, number NCT00326417. 96 patients had bone marrow transplant. At day 100, 35 (92%) of 38 patients were engrafted and alive in the cyclophosphamide 50 mg/kg cohort and 35 (85%) of 41 in the 100 mg/kg cohort. Cyclophosphamide 50 mg/kg and 100 mg/kg resulted in posterior means for fatality without graft failure of 0·7% (credible interval 0-3·3) and 1·4% (0-4·9), respectively. Three patients (8%) had graft failure with cyclophosphamide 50 mg/kg and six (15%) with cyclophosphamide 100 mg/kg. Four (11%) patients had major regimen-related toxicity with cyclophosphamide 50 mg/kg and nine (22%) with cyclophosphamide 100 mg/kg. The most common organ toxicity was pulmonary (grade 3 or 4 dyspnoea or hypoxia including mechanical ventilation), and occurred in three (8%) and four (10%) patients given cyclophosphamide 50 mg/kg and 100 mg/kg, respectively. Cyclophosphamide at 50 mg/kg and 100 mg/kg with TBI 2 Gy, fludarabine, and anti-thymocyte globulin results in effective conditioning and few early deaths after unrelated donor transplantation for severe aplastic anaemia. These doses of cyclophosphamide provide a framework for further regimen optimisation strategies. US National Heart, Lung, and Blood Institute and National Cancer Institute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation.

    PubMed

    Zhao, Ke; Lou, Rui; Huang, Fen; Peng, Yanwen; Jiang, Zujun; Huang, Ke; Wu, Xiuli; Zhang, Yu; Fan, Zhiping; Zhou, Hongsheng; Liu, Can; Xiao, Yang; Sun, Jing; Li, Yangqiu; Xiang, Peng; Liu, Qifa

    2015-01-01

    Refractory acute graft-versus-host disease (aGVHD) is a major cause of death after allogeneic hematopoietic stem cell transplantation. This study evaluated the immunomodulation effects of mesenchymal stromal cells (MSCs) from bone marrow of a third-party donor for refractory aGVHD. Forty-seven patients with refractory aGVHD were enrolled: 28 patients receiving MSC and 19 patients without MSC treatment. MSCs were given at a median dose of 1 × 10(6) cells/kg weekly until patients got complete response or received 8 doses of MSCs. After 125 doses of MSCs were administered, with a median of 4 doses (range, 2 to 8) per patient, overall response rate was 75% in the MSC group compared with 42.1% in the non-MSC group (P = .023). The incidence of cytomegalovirus, Epstein-Barr virus infections, and tumor relapse was not different between the 2 groups during aGVHD treatment and follow-up. The incidence and severity of chronic GVHD in the MSC group were lower than those in the non-MSC group (P = .045 and P = .005). The ratio of CD3(+)CD4(+)/CD3(+)CD8(+) T cells, the frequencies of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), and the levels of signal joint T cell-receptor excision DNA circles (sjTRECs) after MSCs treatment were higher than those pretreatment. MSC-treated patients exhibited higher Tregs frequencies and sjTRECs levels than those in the non-MSC group at 8 and 12 weeks after treatment. MSCs derived from bone marrow of a third-party donor are effective to refractory aGVHD. It might reduce the incidence and severity of chronic GVHD in aGVHD patients by improving thymic function and induction of Tregs but not increase the risks of infections and tumor relapse. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival.

    PubMed

    Wambi, Chris O; Sanzari, Jenine K; Sayers, Carly M; Nuth, Manunya; Zhou, Zhaozong; Davis, James; Finnberg, Niklas; Lewis-Wambi, Joan S; Ware, Jeffrey H; El-Deiry, Wafik S; Kennedy, Ann R

    2009-08-01

    Abstract Dietary antioxidants have radioprotective effects after gamma-radiation exposure that limit hematopoietic cell depletion and improve animal survival. The purpose of this study was to determine whether a dietary supplement consisting of l-selenomethionine, vitamin C, vitamin E succinate, alpha-lipoic acid and N-acetyl cysteine could improve survival of mice after proton total-body irradiation (TBI). Antioxidants significantly increased 30-day survival of mice only when given after irradiation at a dose less than the calculated LD(50/30); for these data, the dose-modifying factor (DMF) was 1.6. Pretreatment of animals with antioxidants resulted in significantly higher serum total white blood cell, polymorphonuclear cell and lymphocyte cell counts at 4 h after 1 Gy but not 7.2 Gy proton TBI. Antioxidants significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGFbeta1 and increased bone marrow cell counts and spleen mass after TBI. Maintenance of the antioxidant diet resulted in improved recovery of peripheral leukocytes and platelets after sublethal and potentially lethal TBI. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival after proton TBI.

  6. Genotoxic assessment of Rubus imperialis (Rosaceae) extract in vivo and its potential chemoprevention against cyclophosphamide-induced DNA damage.

    PubMed

    Alves, Ana Beatriz Costa Rodrigues; dos Santos, Rafaella Souza; Calil, Susana de Santana; Niero, Rivaldo; Lopes, Jhonny da Silva; Perazzo, Fábio F; Rosa, Paulo César Pires; Andrade, Sérgio Faloni; Cechinel-Filho, Valdir; Maistro, Edson Luis

    2014-05-14

    Rubus imperialis Cham. Schl. (Rosaceae) is frequently used in traditional medicine as hypoglycemic, antinociceptive and antiviral remedy. Swiss albino mice were distributed in eight groups for acute treatment with Rubus imperialis extract (24 h). The extract doses selected were 50, 250 and 500 mg/kg b.w. administered by gavage alone or plus to CPA (50 mg/kg b.w.) administered by intraperitoneal injection. Control groups were treated in a similar way. Analyses were performed using the comet assay, on leukocytes (collected 4 and 24h after treatment) and liver (collected 24 h after treatment), and using the micronucleus test (MN) in bone marrow cells. Cytotoxicity was assessed by scoring 200 consecutive polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). The main compounds identified in the Rubus imperialis extract were saponins and steroidal compounds, with niga-ichigoside and tormentic acid being the major compounds. Tested doses of Rubus imperialis extract showed no genotoxic effects on leukocytes from peripheral blood or liver cells by the comet assay. However, the MN test showed an increase in the frequency of micronucleated cells at the two higher doses tested, indicating that this extract has clastogenic/aneugenic effects on bone marrow cells at higher doses. On the other hand, for all cells evaluated, the three tested doses of the Rubus imperialis extract promoted inhibition of DNA damage induced by CPA. Despite the chemoprevention observed, the clastogenicity/aneugenicity observed suggested caution about either continuous or high-dose usage of Rubus imperialis aerial parts extract by humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  8. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  9. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells.

    PubMed

    Chinnasamy, N; Fairbairn, L J; Laher, J; Willington, M A; Rafferty, J A

    1998-08-07

    The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.

  10. Assessing potential radiological harm to fukushima recovery workers.

    PubMed

    Scott, Bobby R

    2011-01-01

    A radiological emergency exists at the Fukushima Daiichi (Fukushima I) nuclear power plant in Japan as a result of the March 11, 2011 magnitude 9.0 earthquake and the massive tsunami that arrived later. News media misinformation related to the emergency triggered enormous social fear worldwide of the radioactivity that is being released from damaged fuel rods. The heroic recovery workers are a major concern because they are being exposed to mostly gamma radiation during their work shifts and life-threatening damage to the radiosensitive bone marrow could occur over time. This paper presents a way in which the bone marrow equivalent dose (in millisieverts), as estimated per work shift, could be used along with the hazard function model previously developed for radiological risk assessment to repeatedly check for potential life-threatening harm (hematopoietic system damage) to workers. Three categories of radiation hazard indication are proposed: 1, life-threatening damage unlikely; 2, life-threatening damage possible; 3, life-threatening damage likely. Categories 2 and 3 would be avoided if the whole body effective dose did not exceed the annual effective dose limit of 250 mSv. For down-wind populations, hormetic effects (activated natural protective processes) are much more likely than are deleterious effects.

  11. High-Dose Chemotherapy, Total-Body Irradiation, and Autologous Stem Cell Transplantation or Bone Marrow Transplantation in Treating Patients With Hematologic Cancer or Solid Tumors

    ClinicalTrials.gov

    2013-05-07

    Breast Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  12. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Katz, Barry P; Carnathan, Gilbert W; MacVittie, Thomas J; Lenden, Keith; Orschell, Christie M

    2014-01-01

    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation.

  13. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation.

    PubMed

    Fang, Dongdong; Shang, Sixia; Liu, Younan; Bakkar, Mohammed; Sumita, Yoshinori; Seuntjens, Jan; Tran, Simon D

    2018-02-01

    Injections of bone marrow (BM) cell extract, known as 'BM soup', were previously reported to mitigate ionizing radiation (IR) injury to salivary glands (SGs). However, the optimal starting time and frequency to maintain BM soup therapeutic efficacy remains unknown. This study tested the optimal starting time and frequency of BM soup injections in mice radiated with either a single dose or a fractionated dose. First, BM soup treatment was started at 1, 3 or 7 weeks post-IR; positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Second, BM soup-treated mice received injections at different frequencies (1, 2, 3 and 5 weekly injections). Third, a 'fractionated-dose radiation' model to injure mouse SGs was developed (5 Gy × 5 days) and compared with the single high dose radiation model. All mice (n = 65) were followed for 16 weeks post-IR. The results showed that starting injections of BM soup between 1 and 3 weeks mitigated the effect of IR-induced injury to SGs and improved the restoration of salivary function. Although the therapeutic effect of BM soup lessens after 8 weeks, it can be sustained by increasing the frequency of weekly injections. Moreover, both single-dose and fractionated-dose radiation models are efficient and comparable in inducing SG injury and BM soup treatments are effective in restoring salivary function in both radiation models. In conclusion, starting injections of BM soup within 3 weeks post-radiation, with 5 weekly injections, maintains 90-100% of saliva flow in radiated mice. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-03-04

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.

  15. Sex differences in the pharmacokinetics of recombinant human granulocyte colony-stimulating factor in the rat.

    PubMed

    Tanaka, H; Kaneko, T

    1991-01-01

    The pharmacokinetics of recombinant human granulocyte colony-stimulating factor (rhG-CSF) were studied in male and female rats. The serum concentration of rhG-CSF after iv and sc administration to male and female Sprague-Dawley rats at a dose of 5 and 100 micrograms/kg was investigated by a sandwich enzyme-linked immunosorbent assay. After iv administration, AUC and half-lives of rhG-CSF in female rats were smaller than those for male rats. The volume of distribution of rhG-CSF in female rats was not significantly different from that in male rats. After sc administration, AUC, mean residence time, and half-lives of elimination phase in female rats were smaller than those for male rats. The in vitro biological activities of rhG-CSF were investigated using [3H]thymidine uptake assay in cultures of bone marrow cells obtained from male and female rat femur. Female rat bone marrow cells showed a similar dose-response profile to rhG-CSF to that of male rat bone marrow cells. The effect of rhG-CSF administration in rats was a specific activity on the neutrophil lineage with an increase of neutrophils in peripheral blood. The in vivo effects of rhG-CSF after iv and sc administration to male and female rats at 5 and 100 micrograms/kg doses were determined. After 100 micrograms/kg administration, the neutrophil count in female rats was similar to that in male rats in the early period; however, the neutrophil count in female rats was lower than that in male rats 24 hr after administration.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. The influence of antiorthostatic unloading and long gamma-irradiation on rat bone marrow (MSCs)

    NASA Astrophysics Data System (ADS)

    Roe, Maria; Bobyleva, Polina; Shtemberg, Andrey; Buravkova, Ludmila

    With the prospect of long interplanetary spaceflight becoming a real possibility there are some important questions that need to be answered regarding the combined effects of microgravity and long gamma-irradiation.The aim of this study was to evaluate the effects of synchronous antiorthostatic unloading and fractional gamma-irradiation on the functional characteristics of rat bone marrow multipotent stromal cells (MSCs).This experiment was carried out following all rules laid out by the Commission on Bioethics at the SSC RF - IBMP RAS. In this experiment the Wistar rats were kept in an unloaded position for a duration of 30 days. They were also subjected to 6 doses of gamma-radiation on the “GOBO-60” with a source of (137) Cs. The dose rate set to 1 meter 50 sGr / H (Total dose of 3 Gr).The study revealed a significant reduction in the number of colonies (CFU-F) in all cultures from the experimental groups when compared to the control groups. The most significant reduction was observed in the group, which had been subject to combined unloading, and radiation. This result was confirmed by examination of cell cultures during 10 days of growth.We found that the CD45 expression was increased in the groups exposed to radiation. At the same time a reduction in the expression of CD90 was observed during combination of radiation and unloading we found.The experimental groups also differed from the control group showing smaller lipid inclusions and decreased expression of alkaline phosphates in the MSCs. This experiment concluded that the bone marrow MSCs after a combination of unloading and multiple radiation sessions, showed a decrease in proliferation and differentiation potential which could reduce the adaption and reparative capacity of the organism.

  17. Pediatric 131I-MIBG Therapy for Neuroblastoma: Whole-Body 131I-MIBG Clearance, Radiation Doses to Patients, Family Caregivers, Medical Staff, and Radiation Safety Measures.

    PubMed

    Willegaignon, José; Crema, Karin Paola; Oliveira, Nathaliê Canhameiro; Pelissoni, Rogério Alexandre; Coura-Filho, George Barberio; Sapienza, Marcelo Tatit; Buchpiguel, Carlos Alberto

    2018-06-19

    I-metaiodobenzylguanidine (I-MIBG) has been used in the diagnosis and therapy of neuroblastoma in adult and pediatric patients for many years. In this study, we evaluated whole-body I-MIBG clearance and radiation doses received by patients, family caregivers, and medical staff to establish appropriate radiation safety measures to be used in therapy applications. Research was focused on 23 children and adolescents with metastatic neuroblastoma, with ages ranging from 1.8 to 13 years, being treated with I-MIBG. Based on measured external dose rates from patients, dosimetric data to patients, family members, and others were calculated. The mean ± SD I-MIBG activity administered was 8.55 ± 1.69 GBq. Percent whole-body retention rates of I-MIBG at 24, 48, and 72 hours after administration were 48% ± 7%, 23% ± 7%, and 12% ± 6%, with a whole-body I-MIBG effective half-life of 23 ± 5 hours for all patients. The mean doses for patients were 0.234 ± 0.096 mGy·MBq to red-marrow and 0.251 ± 0.101 mGy·MBq to whole body. The maximum potential radiation doses transmitted by patients to others at 1.0 m was estimated to be 11.9 ± 3.4 mSv, with 97% of this dose occurring over 120 hours after therapy administration. Measured mean dose received by the 22 family caregivers was 1.88 ± 1.85 mSv, and that received by the 19 pediatric physicians was 43 ± 51 μSv. In this study, we evaluated the whole-body clearance of I-MIBG in 23 pediatric patients, and the radiation doses received by family caregivers and medical staff during these therapy procedures, thus facilitating the establishment of radiation safety measures to be applied in pediatric therapy.

  18. 90Yttrium Ibritumomab Tiuxetan Therapy in Allogeneic Transplantation in B-cell Lymphoma with Extensive Marrow involvement and Chronic Lymphocytic Leukemia: Utility of Pre-transplantation Biodistribution

    PubMed Central

    Matesan, Manuela; Rajendran, Joseph; Press, Oliver W.; Maloney, David G.; Storb, Rainer F.; Cassaday, Ryan D.; Pagel, John M.; Oliveira, George; Gopal, Ajay K.

    2014-01-01

    Biodistribution data to-date using 111In- ibritumomab tiuxetan has been initially obtained in patients with <25% lymphomatous bone marrow involvement and adequate hematopoietic synthetic function. In this article we present the results of an analysis of the biodistribution data obtained from a cohort of patients with extensive bone marrow involvement, baseline cytopenias, and chronic lymphocytic leukemia (CLL). Thirty nine patients with diagnosis of B-cell lymphoma or CLL expressing the CD20 antigen, who had failed at least one prior regimen, and had evidence of persistent disease were included in this analysis, however only 38 of these completed the treatment. Semiquantitative analysis of the biodistribution was performed using regions of interest (ROI) over the liver, lungs, kidneys, spleen and sacrum. The observed interpatient variability including higher liver uptake in 4 patients is discussed. No severe solid organs toxicity was observed at the maximum administered activity of 1184 MBq (32 mCi) 90Yibritumomab tiuxetan. After accounting for differences in marrow involvement, patients with CLL exhibit comparable biodistributions to those with B-NHL. We found that the estimated sacral marrow uptake on 48 hour images in patients with bone marrow involvement may be an indicator of bone marrow involvement. There was no correlation between tumor visualization and response to treatment. These data suggest that the imaging step is not critical when the administered activity is below 1184 MBq (32 mCi). However our analysis confirms that the semiquantitative imaging data can be used to identify patients at risk for liver toxicity when higher doses of 90Y- ibritumomab tiuxetan are used. Patients with CLL can have excellent targeting of disease by 111Inibritumomab tiuxetan, indicating potential efficacy in this patient population. PMID:25076159

  19. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  20. TH-AB-207A-06: The Use of Realistic Phantoms to Predict CT Dose to Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, D; Kost, S; Fraser, N

    Purpose: To predict pediatric patient dose from diagnostic CT scans using Monte Carlo simulation of realistic reference phantoms of various ages, weights, and heights. Methods: A series of deformable pediatric reference phantoms using Non-Uniform Rational B-Splines (NURBS) was developed for a large range of ages, percentiles, and reference anatomy. Individual bones were modeled using age-dependent factors, and red marrow was modeled as functions of age and spatial distribution based on Cristy1. Organ and effective doses for the phantom series were calculated using Monte Carlo simulation of chest, abdominopelvic, and chest-abdomen-pelvis CT exams. Non-linear regression was performed to determine the relationshipmore » between dose-length-product (DLP)-normalized organ and effective doses and phantom diameter. Patient-specific voxel computational phantoms were also created by manual segmentation of previously acquired CT images for 40 pediatric patients (0.7 to 17 years). Organ and effective doses were determined by Monte Carlo simulation of these patient-specific phantoms. Each patient was matched to the closest pediatric reference phantom based primarily on age and diameter for all major organs within the torso. Results: A total of 80 NURBS phantoms were created ranging from newborn to 15 years with height/weight percentiles from 10 to 90%. Organ and effective dose normalized by DLP correlated strongly with exponentially decreasing average phantom diameter (R{sup 2} > 0.95 for most organs). A similar relationship was determined for the patient-specific voxel phantoms. Differences between patient-phantom matched organ-dose values ranged from 0.37 to 2.39 mGy (2.87% to 22.1%). Conclusion: Dose estimation using NURBS-based pediatric reference phantoms offers the ability to predict patient dose before and after CT examinations, and physicians and scientists can use this information in their analysis of dose prescriptions for particular subjects and study types. This may lead to practices that minimize radiation dose while still achieving high quality images and, ultimately, improved patient care. NIH/NCI 1 R01 CA155400-01A1.« less

  1. Sequential promotion of normal and leukemic hemopoiesis by recombinant human granulocyte colony-stimulating factor during the course of myelodysplastic syndrome.

    PubMed

    Ueda, T; Kawai, Y; Sugiyama, T; Takeuchi, N; Yoshida, A; Iwasaki, H; Wano, Y; Tsutani, H; Kamada, N; Nakamura, T

    1993-12-01

    A 48-year-old man developed refractory anemia with excess of blasts in transformation. Complete response was achieved by low-dose ara-C therapy, but he relapsed 15 months later, with pancytopenia and 13.0% myeloblasts in normocellular marrow. He was treated unsuccessfully with prednisolone, metenolone, and 1-alpha-hydroxyvitamin D3 for 8 weeks. He then developed life-threatening pneumonia and was treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF Filgrastim; 125 micrograms/day s.c.). The pneumonia resolved and, interestingly, he achieved a partial response, with normal blood cell counts and only a few dysmyelopoietic cells in the marrow. However, thrombocytopenia progressed when rhG-CSF administration was tapered. When the dose was increased again, leukemic blasts were found to proliferate. When rhG-CSF was discontinued, blasts rapidly decreased in the peripheral blood. Chromosomal analysis revealed a complex abnormality during the first relapse, a normal 46,XY karyotype during the partial response, and recurrence of the same complex abnormality during leukemic transformation. The stimulation index of marrow mononuclear cells cultured with rhG-CSF increased with disease progression. These findings suggest that rhG-CSF initially stimulated the selective proliferation of normal hemopoietic cells, but the evolution or selection of a leukemic clone responsive to rhG-CSF appears to have occurred subsequently.

  2. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  3. In Vivo Tracking of Mesechymal Stem Cells Using Fluorescent Nanoparticles in an Osteochondral Repair Model

    PubMed Central

    Lee, Jong Min; Kim, Byung-Soo; Lee, Haeshin; Im, Gun-Il

    2012-01-01

    We devised and tested an in vivo system to monitor the migration of mesenchymal stem cells (MSCs) within the marrow cavity. In vitro studies confirmed that platelet-derived growth factor (PDGF)-AA had the most potent chemotactic effect of the tested factors, and possessed the greatest number of receptors in MSCs. MSCs were labeled with fluorescent nanoparticles and injected into the marrow cavity of nude rats through osteochondral defects created in the distal femur. The defects were sealed with HCF (heparin-conjugated fibrin) or PDGF-AA-loaded HCF. In the HCF-only group, the nanoparticle-labeled MSCs dispersed outside the marrow cavity within 3 days after injection. In the PDGF-AA-loaded HCF group, the labeled cells moved time-dependently for 14 days toward the osteochondral defect. HCF-PDGF in low dose (LD; 8.5 ng/µl) was more effective than HCF-PDGF in high dose (HD; 17 ng/µl) in recruiting the MSCs to the osteochondral defect. After 21 days, the defects treated with PDGF and transforming growth factor (TGF)-β1-loaded HCF showed excellent cartilage repair compared with other groups. Further studies confirmed that this in vivo osteochondral MSCs tracking system (IOMTS) worked for other chemoattractants (chemokine (C-C motif) ligand 2 (CCL2) and PDGF-BB). IOMTS can provide a useful tool to examine the effect of growth factors or chemokines on endogenous cartilage repair. PMID:22491215

  4. Growth in children following irradiation for bone marrow transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushhouse, S.; Ramsay, N.K.; Pescovitz, O.H.

    Longitudinal height data from 46 pediatric bone marrow transplant (BMT) patients, including 18 with aplastic anemia (AA), 19 with acute nonlymphoblastic leukemia (ANLL), and 9 with acute lymphoblastic leukemia (ALL), were analyzed to assess growth posttransplantation. Patients were prepared for BMT with high-dose cyclophosphamide followed by 7.5 Gy single-dose irradiation; AA patients received total lymphoid irradiation (TLI), and leukemia patients received total body irradiation (TBI). AA patients demonstrated reduced height posttransplant as reflected in a negative mean standard deviation score. The observed reduction was statistically significant only at 3 years following transplant. In contrast, leukemia patients showed a significant lossmore » in relative height that was first visible at 1 year post-BMT and continued until at least 4 years post-BMT. Mean growth velocities in the leukemia patients were significantly below median for the 3 years following transplant. With a median follow-up of 4 years, antithymocyte globulin plus steroids in combination with methotrexate as graft vs. host prophylaxis was associated with less severe growth suppression than methotrexate alone, while there were no significant associations between growth during the first 2 years following transplant and prepubertal status at transplant (as defined by age), graft vs. host disease, thyroid or gonadal function, or previous therapies received by the leukemia patients. Children undergoing marrow transplantation, particularly those receiving TBI, are at significant risk of subsequent growth suppression.« less

  5. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation.

    PubMed

    Ashizuka, Shuichi; Peranteau, William H; Hayashi, Satoshi; Flake, Alan W

    2006-03-01

    In utero hematopoietic cell transplantation (IUHCT) is a non-ablative approach that achieves mixed allogeneic chimerism and donor-specific tolerance. However, clinical application of IUHCT has been limited by minimal engraftment. We have previously demonstrated in the murine model that low-level allogeneic chimerism achieved by IUHCT can be enhanced to near-complete donor chimerism by postnatal minimally myeloablative total body irradiation (TBI) followed by same-donor bone marrow transplantation. Because of concerns of toxicity related to even low-dose TBI in early life, we wondered if a potentially less toxic strategy utilizing a single myelosuppressive agent, Busulfan (BU), would provide similar enhancement of engraftment. In this study, mixed chimerism was created by IUHCT in a fully allogeneic strain combination. After birth, chimeric mice were conditioned with BU followed by transplantation of bone marrow cells congenic to the prenatal donor. We demonstrate that: 1) low-level chimerism after IUHCT can be converted to high-level chimerism by this protocol; 2) enhancement of chimerism is BU dose-dependent; and 3) BU reduces the proliferative potential of hematopoietic progenitor cells thus conferring a competitive advantage to the non-BU-treated postnatal donor cells. This study confirms the potential of IUHCT for facilitation of minimally toxic postnatal regimens to achieve therapeutic levels of allogeneic engraftment.

  6. Effects of molgramostim, filgrastim and lenograstim in the treatment of myelokathexis.

    PubMed

    Černelč, Peter; Andoljšek, Dušan; Mlakar, Uroš; Pretnar, Jože; Modic, Mojca; Zupan, Irena P; Zver, Samo

    2000-01-01

    Myelokathexis is a very rare form of chronic hereditary neutropenia resulting from impaired neutrophil releasing mechanism in the bone marrow. The recombinant human granulocyte-macrophage (molgramostim) and granulocyte (filgrastim, lenograstim) colony stimulating factors release the mature granulocytes from the bone marrow. We describe a 43-year-old woman suffering from myelokathexis, with the absolute neutrophil count ranging between 0.03 and 1.35 × 10 9 /L. In the period before the introduction of cytokines, the patient had more than 80 major infectious episodes. Since 1991, infections in this patient have been treated with cytokines, given in conjunction with antibiotics. Initially, she received molgramostim in a daily dose of 5 μg/kg subcutaneously, which stimulated the release of granulocytes from her bone marrow, thereby allowing successful treatment of infection. After the development of hypersensitivity, molgramostim was substituted with filgrastim. Finally, lenograstim was given a trial. With all three cytokines, the patient's neutrophil count always attained normal values already 4 hours after subcutaneous application of the drug in a dose of 5 μg/kg, the highest neutrophil levels were measured at 24 hours post-injection, and the neutrophil count was again close to the baseline value 72 hours after the treatment. A slight neutropenia was present 48 hours after the application of filgrastim. We believe that all three cytokines are equally effective in increasing the neutrophil count in venous blood of patients with myelokathexis.

  7. Genetic effects in children exposed in prenatal period to ionizing radiation after the Chornobyl nuclear power plant accident.

    PubMed

    Stepanova, Ye I; Vdovenko, V Yu; Misharina, Zh A; Kolos, V I; Mischenko, L P

    2016-12-01

    To study the genetic effects in children exposed to radiation in utero as a result of the Chornobyl nuclear power plant accident accounting the total radiation doses and equivalent radiation doses to the red bone marrow. Incidence of minor developmental anomalies was studied in children exposed to radiation in utero (study group) and in the control group (1144 subjects surveyed in total). Cytogenetic tests using the method of differential G-banding of chromosomes were conducted in 60 children of both study and control groups (10-12-year-olds) and repeatedly in 39 adolescents (15-17-year-olds). A direct correlation was found between the number of minor developmental anomalies and fetal dose of radiation, and a reverse one with fetal gestational age at the time of radiation exposure. Incidence of chromosomal damage in somatic cells of 10-12-year-old children exposed prenatally was associated with radiation dose to the red bone marrow. The repeated testing has revealed that an increased level of chromosomal aberrations was preserved in a third of adolescents. The persons exposed to ionizing radiation at prenatal period should be attributed to the group of carcinogenic risk due to persisting increased levels of chromosome damage. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  8. Lipid metabolism abnormalities in alcohol-treated rabbits: a morphometric and haematologic study comparing high and low alcohol doses.

    PubMed

    Ikemura, Satoshi; Yamamoto, Takuaki; Motomura, Goro; Iwasaki, Kenyu; Yamaguchi, Ryosuke; Zhao, Garida; Iwamoto, Yukihide

    2011-08-01

    The pathogenesis of alcohol-induced osteonecrosis remains unclear. The purpose of the present study was to evaluate the morphological changes in bone marrow fat cells and the changes in the serum lipid levels in alcohol-treated rabbits. Fifteen rabbits were randomly assigned into three groups: Four rabbits intragastrically received low-dose alcohol (LDA) (15 ml/kg per day) containing 15% ethanol for 4 weeks, five rabbits received high-dose alcohol (HDA) (30 ml/kg per day) for 4 weeks and six rabbits received physiologic saline for 4 weeks as a control group. Six weeks after the initial alcohol administration, all rabbits were sacrificed. The mean size of the bone marrow fat cells in rabbits treated with HDA was significantly larger than that in the control group (P = 0.0001). Haematologically, the levels of triglycerides and free fatty acids in the rabbits treated with both low-dose and HDA were significantly higher than those in the control group (P = 0.001 for both comparisons). The results of this study are that there are lipid metabolism abnormalities, both morphologically and haematologically, after alcohol administration. Also these findings were more apparent in rabbits treated with HDA than those treated with LDA. © 2011 The Authors. International Journal of Experimental Pathology © 2011 International Journal of Experimental Pathology.

  9. Benzene metabolite levels in blood and bone marrow of B6C3F{sub 1} mice after low-level exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R.

    1995-12-01

    Studies at the Inhalation Toxicology Research Institute (ITRI) have explored the species-specific uptake and metabolism of benzene. Results have shown that metabolism is dependent on both dose and route of administration. Of particular interest were shifts in the major metabolic pathways as a function of exposure concentration. In these studies, B6C3F{sub 1} mice were exposed to increasing levels of benzene by either gavage or inhalation. As benzene internal dose increased, the relative amounts of muconic acid and hydroquinone decreased. In contrast, the relative amount of catechol increased with increasing exposure. These results show that the relative levels of toxic metabolitesmore » are a function of exposure level. Based on these results and assuming a linear relationship between exposure concentration and levels of bone marrow metabolites, it would be difficult to detect an elevation of any phenolic metabolites above background after occupational exposures to the OSHA Permissible Exposure Limit of 1 ppm benzene.« less

  10. Dimethyl Sulfoxide (DMSO) Produces Widespread Apoptosis in the Developing Central Nervous System

    PubMed Central

    Hanslick, Jennifer L.; Lau, Karen; Noguchi, Kevin K.; Olney, John W.; Zorumski, Charles F.; Mennerick, Steven; Farber, Nuri B.

    2009-01-01

    Dimethyl sulfoxide (DMSO) is a solvent that is routinely used as a cryopreservative in allogous bone marrow and organ transplantion. We exposed C57Bl/6 mice of varying postnatal ages (P0–P30) to DMSO in order to study whether DMSO could produce apoptotic degeneration in the developing CNS. DMSO produced widespread apoptosis in the developing mouse brain at all ages tested. Damage was greatest at P7. Significant elevations above the background rate of apoptosis occurred at the lowest dose tested, 0.3 ml/kg. In an in vitro rat hippocampal culture preparation, DMSO produced neuronal loss at concentrations of 0.5% and 1.0%. The ability of DMSO to damage neurons in dissociated cultures indicates that the toxicity likely results from a direct cellular effect. Because children, who undergo bone marrow transplantation, are routinely exposed to DMSO at doses higher than 0.3 ml/kg, there is concern that DMSO might be producing similar damage in human children. PMID:19100327

  11. Three further triterpenoid saponins from Gleditsia caspica fruits and protective effect of the total saponin fraction on cyclophosphamide-induced genotoxicity in mice.

    PubMed

    Melek, Farouk R; Aly, Fawzia A; Kassem, Iman A A; Abo-Zeid, Mona A M; Farghaly, Ayman A; Hassan, Zeinab M

    2015-01-01

    Three triterpenoidal saponins were isolated from the saponin fraction derived from a Gleditsia caspica Desf. methanolic fruit extract. The isolated saponins were identified as gleditsiosides B, C, and Q based on spectral data. The saponin-containing fraction was evaluated in vivo for genotoxic and antigenotoxic activities. The fraction caused no DNA damage in Swiss albino male mice treated with a dose of 45 mg/kg body weight for 24 h, although it significantly inhibited the number of chromosomal aberrations induced by cyclophosphamide (CP) in bone marrow and germ cells when applied before or after CP administration. The inhibitory indices in chromosomal aberrations were 59% and 41% for bone marrow and 48% and 43% for germ cells, respectively. In addition, the saponin fraction was found to reduce the viability of the human tumor cell line MCF-7 in a dose-dependent manner with an extrapolated IC50 value in the range of 220 μg/mL.

  12. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-D chord-based transport techniques.

    PubMed

    Hunt, J G; Watchman, C J; Bolch, W E

    2007-01-01

    Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D microCT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo--VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques.

  13. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells.

    PubMed

    Harrison, D E

    1983-05-01

    It is possible that erythropoietic stem cells do not age. This would mean that stem cells from old donors can function as well as those from young or fetal donors. The competitive repopulation assay has been used to test long-term stem cell function by directly comparing how well competing stem cells repopulate a recipient and produce differentiated cell types. C57BL/6J (B6) mice were used as donors, while recipients and competitors were WBB6F1 hybrids with genetically distinguishable hemoglobin. Lethally irradiated young WBB6F1 recipients were given a mixture of 2.5 X 10(6) cells from B6 old marrow, young marrow, or fetal liver donors; each recipient also received a standard dose of 1 X 10(6) marrow cells from a pool of young WBB6F1 competitors. Surprisingly, the old marrow cells competed the best in repopulating the recipients. This pattern was maintained even after recovery from sublethal irradiation, a treatment that severely stresses stem cells. This stress was demonstrated when sublethal irradiation caused a 20-fold decline in repopulating ability measured using hemoglobin markers, and a 3- to 7-fold decline using chromosome markers. Stem cells from old marrow competed better than young or fetal cells in similar experiments using immunologically crippled recipients or using unirradiated W/Wv recipients that are immunologically intact. In both types of recipients, the advantage of old marrow cells again persisted after recovery from sublethal irradiation. Other genotypes were tested, and marrow cells from old B6CBAF1 donors competed better than those from young donors of that genotype. However, marrow cells from young CBA donors completed better than those from old CBA donors. These results support the hypothesis that stem cells do not age, and suggest that regulatory changes with age promote rapid stem cell repopulation in B6 and B6CBAF1 mice, but inhibit it in CBA mice.

  14. A Phase I Study of Reduced-Intensity Conditioning and Allogeneic Stem Cell Transplantation Followed by Dose Escalation of Targeted Consolidation Immunotherapy with Gemtuzumab Ozogamicin in Children and Adolescents with CD33+ Acute Myeloid Leukemia.

    PubMed

    Zahler, Stacey; Bhatia, Monica; Ricci, Angela; Roy, Sumith; Morris, Erin; Harrison, Lauren; van de Ven, Carmella; Fabricatore, Sandra; Wolownik, Karen; Cooney-Qualter, Erin; Baxter-Lowe, Lee Ann; Luisi, Paul; Militano, Olga; Kletzel, Morris; Cairo, Mitchell S

    2016-04-01

    Myeloablative conditioning and allogeneic hematopoietic stem cell transplant (alloHSCT) in children with acute myeloid leukemia (AML) in first complete remission (CR1) may be associated with significant acute toxicity and late effects. Reduced-intensity conditioning (RIC) and alloHSCT in children is safe, feasible, and may be associated with less adverse effects. Gemtuzumab ozogamicin (GO) induces a response in 30% of patients with CD33+ relapsed/refractory AML. The dose of GO is significantly lower when combined with chemotherapy. We examined the feasibility and toxicity of RIC alloHSCT followed by GO targeted immunotherapy in children with CD33+ AML in CR1/CR2. Conditioning consisted of fludarabine 30 mg/m2 × 6 days, busulfan 3.2 to 4 mg/kg × 2 days ± rabbit antithymocyte globulin 2 mg/kg × 4 days followed by alloHSCT from matched related/unrelated donors. GO was administered ≥60 days after alloHSCT in 2 doses (8 weeks apart), following a dose-escalation design (4.5, 6, 7.5, and 9 mg/m2). Fourteen patients with average risk AML received RIC alloHSCT and post-GO consolidation: median age 13.5 years at transplant (range, 1 to 21), male-to-female 8:6, and disease status at alloHSCT 11 CR1 and 3 CR2. Eleven patients received alloHSCT from 5-6/6 HLA-matched family donors: 8 received peripheral blood stem cells, 2 received bone marrow, and 1 received related cord blood transplantation. Three patients received an unrelated allograft (two 4-5/6 and one 9/10) from unrelated cord blood unit and bone marrow, respectively. Neutrophil and platelet engraftment was observed in all assessable patients (100%), achieved at median 15.5 days (range, 7 to 31) and 21 days (range, 10 to 52), respectively. Three patients received GO at dose level 1 (4.5 mg/m2 per dose), 5 at dose level 2 (6 mg/m2 per dose), 3 at dose level 3 (7.5 mg/m2 per dose), and 3 at dose level 4 (9 mg/m2 per dose). Three of 14 patients received only 1 dose of GO after alloHSCT. One patient experienced grade III transaminitis, which resolved; no grade IV transaminitis, no grade III/IV hyperbilirubinemia, or sinusoidal obstructive syndrome were observed. The second dose of GO was given at median of 143 days (range, 120 to 209) after alloHSCT. Probability of grades II to IV acute and chronic graft-versus-host disease were 21% and 33.5%, respectively. Probability of overall survival after RIC alloHSCT and GO consolidation at 1 and 5 years was 78% and 61%, respectively. Probability of 5-year event-free survival after RIC alloHSCT and GO consolidation in patients in CR1 was 78%. No dose-limiting toxicities probably or directly related to GO were observed in this cohort. This preliminary data demonstrate that RIC followed by alloHSCT and consolidation with GO appears to be safe in children and adolescents with CD33+ AML in CR1/CR2. A phase II trial is currently underway investigating this approach with a GO dose of 9 mg/m2 per dose. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  15. Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis.

    PubMed

    Deshpande, Sagar S; Gallagher, Kathleen K; Donneys, Alexis; Nelson, Noah S; Guys, Nicholas P; Felice, Peter A; Page, Erin E; Sun, Hongli; Krebsbach, Paul H; Buchman, Steven R

    2015-03-01

    Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.

  16. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C; Dorey, Frederick; Kellems, Rodney E; Blackburn, Michael R; Kohn, Donald B

    2008-06-15

    Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose-dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy.

  17. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  18. The effects of the CXCR2 antagonist, MK-7123, on bone marrow functions in healthy subjects.

    PubMed

    Hastrup, Nina; Khalilieh, Sauzanne; Dale, David C; Hanson, Lars G; Magnusson, Peter; Tzontcheva, Anjela; Tseng, Jack; Huyck, Susan; Rosenberg, Elizabeth; Krogsgaard, Kim

    2015-04-01

    The CXCR2 antagonist MK-7123 causes dose-dependent reductions in absolute neutrophil counts (ANC) and decreases neutrophil tissue responses, but its effects on bone marrow functions are not yet known. We conducted a double-blind, randomized study in 18 healthy subjects comparing the effects of either MK-7123 (30mg, po, daily for 28days) or placebo on peripheral blood counts and bone marrow myeloid cell populations. MK-7123 caused a reversible decrease (approximately 50%) in the ANC as demonstrated on days 1 and 28, the first and last days of the treatment period. Bone marrow aspirate smears and biopsy imprints did not differ in the proportion of mature neutrophils in pretreatment, day 28, day 56 or placebo samples. There were no treatment effects on biopsy or aspirate clot cellularity, myeloid to erythroid or myeloid post-mitotic to mitotic ratios; flow-cytometric analyses of aspirate cells; or bone marrow fat to cell balance as assessed by MRI. MK-7123 was generally well tolerated with neutropenia being the most common adverse event; however, there were no clinical symptoms associated with decreased ANCs. These findings indicate that the CXCR2 antagonist MK-7123 causes rapidly reversible decrease in the ANC without measurable myelosuppressive effects. The results support the development of CXCR2 antagonists as potentially useful anti-inflammatory agents, primarily interrupting neutrophil trafficking. Copyright © 2015. Published by Elsevier Ltd.

  19. Bone-marrow densitometry: Assessment of marrow space of human vertebrae by single energy high resolution-quantitative computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña, Jaime A.; Damm, Timo; Bastgen, Jan

    Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. Themore » methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm{sup 3} corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive localization and densitometric assessment of marrow fat with residual accuracy errors sufficient to study disorders and therapies known to affect bone marrow composition. Additionally, the methods can be used to correct BMD for fat induced bias. Application and testing in vivo and in longitudinal studies are warranted to determine the clinical performance and value of these methods.« less

  20. Tolerance to Vascularized Composite Allografts in Canine Mixed Hematopoietic Chimeras

    PubMed Central

    Mathes, David W.; Hwang, Billanna; Graves, Scott S.; Edwards, James; Chang, Jeff; Storer, Barry E.; Butts-Miwongtum, Tiffany; Sale, George E.; Nash, Richard A.; Storb, Rainer.

    2012-01-01

    Background Mixed donor-host chimerism, established through hematopoietic cell transplantation (HCT), is a highly reproducible strategy for the induction of tolerance towards solid organs. Here, we ask whether a nonmyeloablative conditioning regimen establishing mixed donor-host chimerism leads to tolerance of highly antigenic vascularized composite allografts. Methods Stable mixed chimerism was established in dogs given a sublethal dose (1–2 Gy) total body irradiation before and a short course of immunosuppression after dog leukocyte antigen-identical marrow transplantation. Vascularized composite allografts from marrow donors were performed after a median of 36 (range 4-54) months after HCT. Results All marrow recipients maintained mixed donor-host hematopoietic chimerism and accepted composite tissue grafts for periods ranging between 52 and 90 weeks; in turn, marrow donors rejected vascularized composite allografts from their respective marrow recipients within 18–29 days. Biopsies of muscle and skin of vascularized composite allografts from mixed chimeras showed few infiltrating cells compared to extensive infiltrates in biopsies of vascularized composite allografts from marrow donors. Elevated levels of CD3+ FoxP3+ T-regulatory cells were found in skin and muscle of vascularized composite allografts of mixed chimeras compared to normal tissues. In mixed chimeras, increased numbers of T-regulatory cells were found in draining compared to non-draining lymph nodes of vascularized composite allografts. Conclusion These data suggest that nonmyeloablative HCT may form the basis for future clinical applications of solid organ transplantation and that T-regulatory cells may function towards maintenance of the vascularized composite allograft. PMID:22082819

  1. Evaluation of Beta-Absorbed Fractions in a Mouse Model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William H.; Hartmann-Siantar, Christine; Fisher, Darrell R.

    2005-08-01

    Several short-lived, high-energy beta emitters are being proposed as the radionuclide components for molecular-targeted potential cancer therapeutic agents. The laboratory mice used to determine the efficacy of these new agents have organs that are relatively small compared to the ranges of these high-energy particles. The dosimetry model developed by Hui et al. was extended to provide realistic beta-dose estimates for organs in mice that received therapeutic radiopharmaceuticals containing 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177 Lu. Major organs in this model included the liver, spleen, kidneys, lungs, heart, stomach, small and large bowel, thyroid, pancreas, bone, marrow, carcass, and amore » 0.025-g tumor. The study as reported in this paper verifies their results for 90Y and extends them by using their organ geometry factors combined with newly calculated organ self-absorbed fractions from PEREGRINE and MCNP. PEREGRINE and MCNP agree to within 8% for the worst-case organ with average differences (averaged over all organs) decreasing from 5% for 90Y to 1% for 177Lu. When used with typical biodistribution data, the three different models predict doses that are in agreement to within 5% for the worst-case organ. The beta-absorbed fractions and cross-organ-deposited energy provided in this paper can be used by researchers to predict mouse-organ doses and should contribute to an improved understanding of the relationship between dose and radiation toxicity in mouse models where use of these isotopes is favorable.« less

  2. Exposure of cats to low doses of FeLV: seroconversion as the sole parameter of infection

    PubMed Central

    Major, Andrea; Cattori, Valentino; Boenzli, Eva; Riond, Barbara; Ossent, Peter; Meli, Marina Luisa; Hofmann-Lehmann, Regina; Lutz, Hans

    2009-01-01

    In felids, feline leukemia virus (FeLV) infection results in a variety of outcomes that range from abortive (virus readily eliminated and never detectable) to progressive infection (persistent viremia and viral shedding). Recently, a novel outcome was postulated for low FeLV infectious doses. Naïve cats exposed to faeces of persistently infected cats seroconverted, indicating infection, but remained negative for provirus and p27 antigen in blood. FeLV provirus was found in some tissues but not in the bone marrow, infection of which is usually considered a necessary stage for disease progression. To investigate the impact of low FeLV doses on young cats and to test the hypothesis that low dose exposure may lead to an unknown pathogenesis of infection without involvement of the bone marrow, 21 cats were infected oronasally with variable viral doses. Blood p27, proviral and viral loads were followed until week 20 post-infection. Tissue proviral loads were determined as well. The immune response was monitored by measuring FeLV whole virus and p45 antibodies; and feline oncornavirus-associated cell membrane antigen (FOCMA) assay. One cat showed regressive infection (transient antigenemia, persistent provirus-positivity, and seroconversion) with provirus only found in some organs at sacrifice. In 7 of the 20 remaining cats FOCMA assay positivity was the only sign of infection, while all other tests were negative. Overall, the results show that FeLV low dose exposure can result in seroconversion during a presumed abortive infection. Therefore, commonly used detection methods do not detect all FeLV-infected animals, possibly leading to an underestimation of the prevalence of infection. PMID:19861115

  3. Skeletal dosimetry: A hyperboloid representation of the bone-marrow interface to reduce voxel effects in three-dimensional images of trabecular bone

    NASA Astrophysics Data System (ADS)

    Rajon, Didier Alain

    Radiation damage to the hematopoietic bone marrow is clearly defined as the limiting factor to the development of internal emitter therapies. Current dosimetry models rely on chord-length distributions measured through the complex microstructure of the trabecular bone regions of the skeleton in which most of the active marrow is located. Recently, Nuclear Magnetic Resonance (NMR) has been used to obtain high-resolution three-dimensional (3D) images of small trabecular bone samples. These images have been coupled with computer programs to estimate dosimetric parameters such as chord-length distributions, and energy depositions by monoenergetic electrons. This new technique is based on the assumption that each voxel of the image is assigned either to bone tissue or to marrow tissue after application of a threshold value. Previous studies showed that this assumption had important consequences on the outcome of the computer calculations. Both the chord-length distribution measurements and the energy deposition calculations are subject to voxel effects that are responsible for large discrepancies when applied to mathematical models of trabecular bone. The work presented in this dissertation proposes first a quantitative study of the voxel effects. Consensus is that the voxelized representation of surfaces should not be used as direct input to dosimetry computer programs. Instead we need a new technique to transform the interfaces into smooth surfaces. The Marching Cube (MC) algorithm was used and adapted to do this transformation. The initial image was used to generate a continuous gray-level field throughout the image. The interface between bone and marrow was then simulated by the iso-gray-level surface that corresponds to a predetermined threshold value. Calculations were then performed using this new representation. Excellent results were obtained for both the chord-length distribution and the energy deposition measurements. Voxel effects were reduced to an acceptable level and the discrepancies found when using the voxelized representation of the interface were reduced to a few percent. We conclude that this new model should be used every time one performs dosimetry estimates using NMR images of trabecular bone samples.

  4. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Salas-Ramirez, Maikol; Tran-Gia, Johannes; Kesenheimer, Christian; Weng, Andreas Max; Kosmala, Aleksander; Heidemeier, Anke; Köstler, Herbert; Lassmann, Michael

    2018-01-01

    Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry. First, a highly accelerated two-point Dixon MRI sequence for fat-water separation was validated in a 3T system against the magnetic resonance spectroscopy (MRS) gold standard. The validation was performed in a fat-water phantom composed of 11 vials with different fat fractions between 0% and 100%, and subsequently repeated in the lumbar vertebrae of three healthy volunteers. Finally, a retrospective study was performed by analyzing the fat fraction in five lumbar vertebrae of 44 patients scanned with the two-point Dixon sequence. The two-point Dixon phantom acquisition showed a good agreement (maximum difference  =  2.9%) between the nominal fat fraction and MRS. In the volunteers, a statistical analysis showed a non-significant difference (p  =  0.19) between MRI and MRS. In the patients, gender-specific linear fits for female and male data indicated that the age-dependent marrow conversion (red  →  yellow marrow) is slower in males (0.3% per year) than in females (0.5% per year). Lastly, the fat fraction values showed a considerable variability in patients of similar ages and the same gender. Two-point Dixon MRI enables a non-invasive and spatially resolved quantification of the fat fraction in bone marrow. Our study provides important evidence on the differences in marrow conversion between females and males. In addition, differences were observed in the cellularity values of the International Commission on Radiological Protection (ICRP) reference man (0.7) and the median values obtained in our patient group. These observations lead to the conclusion that the fat fraction in bone marrow should be considered as a patient-specific variable in clinical dosimetry procedures.

  5. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET

    PubMed Central

    Tang, Tien T.; Rendon, David A.; Zawaski, Janice A.; Afshar, Solmaz F.; Kaffes, Caterina K.; Sabek, Omaima M.

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied using non-invasive imaging modalities. PMID:28052129

  6. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    PubMed

    Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied using non-invasive imaging modalities.

  7. Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy.

    PubMed

    Salas-Ramirez, Maikol; Tran-Gia, Johannes; Kesenheimer, Christian; Weng, Andreas Max; Kosmala, Aleksander; Heidemeier, Anke; Köstler, Herbert; Lassmann, Michael

    2018-01-16

    Absorbed dose to active bone marrow is a predictor of hematological toxicity in molecular radiotherapy. Due to the complex composition of bone marrow tissue, the necessity to improve the personalized dosimetry has led to the application of non-conventional imaging methods in nuclear medicine. The aim of this study is to apply magnetic resonance imaging (MRI) for quantification of the fat fraction in lumbar vertebrae and to analyze its implications for bone marrow dosimetry. First, a highly accelerated two-point Dixon MRI sequence for fat-water separation was validated in a 3T system against the magnetic resonance spectroscopy (MRS) gold standard. The validation was performed in a fat-water phantom composed of 11 vials with different fat fractions between 0% and 100%, and subsequently repeated in the lumbar vertebrae of three healthy volunteers. Finally, a retrospective study was performed by analyzing the fat fraction in five lumbar vertebrae of 44 patients scanned with the two-point Dixon sequence. The two-point Dixon phantom acquisition showed a good agreement (maximum difference  =  2.9%) between the nominal fat fraction and MRS. In the volunteers, a statistical analysis showed a non-significant difference (p  =  0.19) between MRI and MRS. In the patients, gender-specific linear fits for female and male data indicated that the age-dependent marrow conversion (red  →  yellow marrow) is slower in males (0.3% per year) than in females (0.5% per year). Lastly, the fat fraction values showed a considerable variability in patients of similar ages and the same gender. Two-point Dixon MRI enables a non-invasive and spatially resolved quantification of the fat fraction in bone marrow. Our study provides important evidence on the differences in marrow conversion between females and males. In addition, differences were observed in the cellularity values of the International Commission on Radiological Protection (ICRP) reference man (0.7) and the median values obtained in our patient group. These observations lead to the conclusion that the fat fraction in bone marrow should be considered as a patient-specific variable in clinical dosimetry procedures.

  8. Enhanced Healing of Segmental Bone Defects by Modulation of the Mechanical Environment

    DTIC Science & Technology

    2012-10-01

    5.5 µg BMP-2, it was largely disorganized, woven bone with non-osseous soft tissue interspersed. The highest 4 dose (11 µg) of BMP-2, in contrast...various doses of BMP-2. Top row: 16x magnification Bottom row: 100x magnification N= new cortex M= marrow T=trabecular bone F= fibrous tissue ...areas of cartilagenous tissue (figure 5) it was clear that substantial areas of cartilage remained in the defects treated with 5.5 µg BMP-2. These may

  9. Energy deposition at the bone-tissue interface from nuclear fragments produced by high-energy nucleons

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Hajnal, Ferenc; Wilson, John W.

    1990-01-01

    The transport of nuclear fragmentation recoils produced by high-energy nucleons in the region of the bone-tissue interface is considered. Results for the different flux and absorbed dose for recoils produced by 1 GeV protons are presented in a bidirectional transport model. The energy deposition in marrow cavities is seen to be enhanced by recoils produced in bone. Approximate analytic formulae for absorbed dose near the interface region are also presented for a simplified range-energy model.

  10. Behavior of autologous indium-114m-labeled lymphocytes in patients with lymphoid cell malignancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, D.; Cowan, R.A.; Sharma, H.L.

    1988-04-01

    It has been shown that radioactive material can be localized to lymphocyte traffic areas using radiolabeled autologous lymphocytes and that /sup 114m/In deposited in such a way in rats produces a lymphopoenia by establishing a selective internal irradiation of circulating lymphocytes. The study reported here was undertaken to investigate the feasibility of using this technique in patients with lymphoid cell malignancy. Up to 22.7 MBq was administered to seven patients with active non-Hodgkin's lymphoma involving the spleen and the behavior of the radioactive material was followed over subsequent months. Estimates of the activity in peripheral blood, bone marrow, excreta samples,more » and of the variation in the whole-body distribution were obtained. The administered radioactive material cleared rapidly from the blood, 85% being removed within the first 30 min. There was an almost immediate uptake of most of this by the spleen and liver with less than 5% of administered activity accumulating in the bone marrow. After 48 hr, the whole-body distribution changed only slowly and there was a regular decrease of the activity in the spleen. Excretion of radioactive material occurred via both the urine and feces and amounted to less than 1% of administered activity per day. This pharmacokinetic data was used to calculate radiation absorbed doses to various organs for a standard man. It is concluded that this represents a feasible technique for the targeting of radioactive material for the treatment of lymphoid malignancy.« less

  11. Pharmacokinetics of Genetically Engineered Antibody Forms Using Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Nai-Kong V.; Modak, Shakeel; Lin, Yukang

    2004-08-31

    In the last grant period we have focused on multi-step targeting methodologies (MST), as a method for delivery of high dose to the tumor, with low dose to the bone marrow. We have explored uptake in colorectal, pancreatic and prostate cancer, using an special preparation, developed in collaboration with NeoRex A high tumor/bone marrow ratio is clearly achieved with MST, but with a cost, namely the higher dose to normal kidney. For this reason, we have in particular, (a) looked dosimetry for both tumor and normal organ, and especially renal dosimetry, which appears to be the target organ, for Y-90.more » (b) In parallel with this we have explored the dosimetry of very high dose rate radionuclides, including Holmium-166. (c) In addition, with NaiKong Cheung, we have developed a new MST construct based on the anti-GD2 targeting 5F11; (d) we have successfully completed development of s-factor tables for mice. In summary, renal dosimetry is dominated by about 4-5% of the injected dose being held long-term in the renal cortex, probably in the proximal tubule, due to the universal uptake of small proteins. This appears to be a function of a biotynlated protein binding of the strept-avidin construct, to HSP70. This cortical uptake has caused us to reconsider renal dosimetry as a whole, with the smaller mass of the cortex, rather than the whole kidney, as the target organ. These insights into dosimetry will be of great importance as MST, becomes more common in clinical practice.« less

  12. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia.

    PubMed

    Perl, Alexander E; Kasner, Margaret T; Tsai, Donald E; Vogl, Dan T; Loren, Alison W; Schuster, Stephen J; Porter, David L; Stadtmauer, Edward A; Goldstein, Steven C; Frey, Noelle V; Nasta, Sunita D; Hexner, Elizabeth O; Dierov, Jamil K; Swider, Cezary R; Bagg, Adam; Gewirtz, Alan M; Carroll, Martin; Luger, Selina M

    2009-11-01

    Inhibiting mammalian target of rapamycin (mTOR) signaling in acute myelogenous leukemia (AML) blasts and leukemic stem cells may enhance their sensitivity to cytotoxic agents. We sought to determine the safety and describe the toxicity of this approach by adding the mTOR inhibitor, sirolimus (rapamycin), to intensive AML induction chemotherapy. We performed a phase I dose escalation study of sirolimus with the chemotherapy regimen MEC (mitoxantrone, etoposide, and cytarabine) in patients with relapsed, refractory, or untreated secondary AML. Twenty-nine subjects received sirolimus and MEC across five dose levels. Dose-limiting toxicities were irreversible marrow aplasia and multiorgan failure. The maximum tolerated dose (MTD) of sirolimus was determined to be a 12 mg loading dose on day 1 followed by 4 mg/d on days 2 to 7, concurrent with MEC chemotherapy. Complete or partial remissions occurred in 6 (22%) of the 27 subjects who completed chemotherapy, including 3 (25%) of the 12 subjects treated at the MTD. At the MTD, measured rapamycin trough levels were within the therapeutic range for solid organ transplantation. However, direct measurement of the mTOR target p70 S6 kinase phosphorylation in marrow blasts from these subjects only showed definite target inhibition in one of five evaluable samples. Sirolimus and MEC is an active and feasible regimen. However, as administered in this study, the synergy between MEC and sirolimus was not confirmed. Future studies are planned with different schedules to clarify the clinical and biochemical effects of sirolimus in AML and to determine whether target inhibition predicts chemotherapy response.

  13. Lung damage following bone marrow transplantation. II. The contribution of cyclophosphamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varekamp, A.E.; de Vries, A.J.; Zurcher, C.

    1987-10-01

    The effect of high-dose cyclophosphamide (Cy), either alone or in combination with irradiation, upon the development of interstitial pneumonitis (IP) after bone marrow transplantation (BMT) was investigated in a Brown Norway rat model. The parameters that were examined included ventilation rate, mortality, and histopathology. No damage to the lungs was observed in rats given Cy alone in supralethal dosages plus BMT, and mortality resulted from severe aplasia of hemopoietic and lymphoid tissues with multifocal hemorrhages, secondary infections, and sepsis. Two separate periods of mortality were observed within the first 180 days following whole thorax irradiation with a high dose ratemore » (HDR; 0.8 Gy/min) or a low dose rate (LDR; 0.05 Gy/min). The addition of Cy prior to irradiation resulted in an increased mortality in the first period (before day 100) in all experimental groups. The influence of Cy on mortality at 180 days however, was different for the HDR and LDR experiments. The LD50-180 after HDR irradiation, dose range 8 to 18 Gy, was not significantly altered by the addition of Cy (100 mg/kg) 1 day prior to irradiation, whereas Cy (100 mg/kg) 1 day prior to LDR irradiation, dose range: 16 to 24 Gy, caused an enhancement of radiation damage with a decrease of the LD50-180 by 1.33 Gy. The dose modification factor (DMF) was 1.07. This enhancement was no longer significant after splitting up the dose of Cy in two dosages of 50 mg/kg given on 2 consecutive days prior to irradiation with a LDR. The extrapolation of the data in this rat model to available dose-response curves on IP after BMT and radiation pneumonitis in humans, implied that non-infectious IP is a radiation pneumonitis that is only slightly enhanced by Cy.« less

  14. Alkaline comet assay in liver and stomach, and micronucleus assay in bone marrow, from rats treated with 2-acetylaminofluorene, azidothymidine, cisplatin, or isobutyraldehyde.

    PubMed

    Kraynak, A R; Barnum, J E; Cunningham, C L; Ng, A; Ykoruk, B A; Bennet, B; Stoffregen, D; Merschman, M; Freeland, E; Galloway, S M

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) initiative international validation study of the in vivo rat alkaline comet assay (comet assay), we examined the ability of the assay to determine the genotoxicity of 2-acetylaminofluorene (AAF), azidothymidine (AZT), cisplatin (CPN), and isobutyraldehyde (IBA) in liver and glandular stomach of male Sprague-Dawley rats. Rats were given oral doses of test compound or control once daily for three days. High dose levels were approximately maximum tolerated doses and were based on preliminary range-finding studies. Tissues were harvested 3h after the final dose (48h after the initial dose). A bone marrow micronucleus assay (MN) was also conducted on the rats treated with AZT, CPN, and IBA. Acute toxic effects of treatment were determined primarily through histomorphologic analysis of liver and stomach but also by body weight and serum liver enzyme changes. The comet assay was conducted on fresh tissue preparations but frozen samples from two studies were also assayed. Statistically significant dose-related differences in comet % DNA in tail were found in liver and stomach for the genotoxin AZT and in liver for the genotoxin CPN, but not in liver or stomach for the non-genotoxin IBA. Statistically significant differences in % DNA in tail were measured in liver for the low and mid dose of the genotoxin AAF, but not the high dose. The comet assays of frozen liver suspensions from CPN- and AAF-treated rats yielded comparable results to the assays of fresh preparations. There were no indications of significant toxicity induced by any treatment. The micronucleus assay was positive for CPN and AZT and negative for IBA. In conclusion, the in vivo comet assay is capable of detecting genotoxic effects of a variety of chemicals and may fill an important role in the genotoxicity test battery. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As amore » reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.« less

  16. Assessment of PCXMC for patients with different body size in chest and abdominal x ray examinations: a Monte Carlo simulation study.

    PubMed

    Borrego, David; Lowe, Erin M; Kitahara, Cari M; Lee, Choonsik

    2018-03-21

    A PC Program for x ray Monte Carlo (PCXMC) has been used to calculate organ doses in patient dosimetry and for the exposure assessment in epidemiological studies of radiogenic health related risks. This study compared the dosimetry from using the built-in stylized phantoms in the PCXMC to that of a newer hybrid phantom library with improved anatomical realism. We simulated chest and abdominal x ray projections for 146 unique body size computational phantoms, 77 males and 69 females, with different combinations of height (125-180 cm) and weight (20-140 kg) using the built-in stylized phantoms in the PCXMC version 2.0.1.4 and the hybrid phantom library using the Monte Carlo N-particle eXtended transport code 2.7 (MCNPX). Unfortunately, it was not possible to incorporate the hybrid phantom library into the PCXMC. We compared 14 organ doses, including dose to the active bone marrow, to evaluate differences between the built-in stylized phantoms in the PCXMC and the hybrid phantoms (Cristy and Eckerman 1987 Technical Report ORNL/TM-8381/V1, Oak Ridge National Laboratory, Eckerman and Ryman 1993 Technical Report 12 Oak Ridge, TN, Geyer et al 2014 Phys. Med. Biol. 59 5225-42). On average, organ doses calculated using the built-in stylized phantoms in the PCXMC were greater when compared to the hybrid phantoms. This is most prominent in AP abdominal exams by an average factor of 2.4-, 2.8-, and 2.8-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. For chest exams, organ doses are greater by an average factor of 1.1-, 1.4-, and 1.2-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. The PCXMX, due to its ease of use, is often selected to support dosimetry in epidemiological studies; however, it uses simplified models of the human anatomy that fail to account for variations in body morphometry for increasing weight. For epidemiological studies that use PCXMC dosimetry, associations between radiation-related disease risks and organ doses may be underestimated, and to a greater degree in pediatric, especially obese pediatric, compared to adult patients.

  17. Assessment of PCXMC for patients with different body size in chest and abdominal x ray examinations: a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Borrego, David; Lowe, Erin M.; Kitahara, Cari M.; Lee, Choonsik

    2018-03-01

    A PC Program for x ray Monte Carlo (PCXMC) has been used to calculate organ doses in patient dosimetry and for the exposure assessment in epidemiological studies of radiogenic health related risks. This study compared the dosimetry from using the built-in stylized phantoms in the PCXMC to that of a newer hybrid phantom library with improved anatomical realism. We simulated chest and abdominal x ray projections for 146 unique body size computational phantoms, 77 males and 69 females, with different combinations of height (125–180 cm) and weight (20–140 kg) using the built-in stylized phantoms in the PCXMC version 2.0.1.4 and the hybrid phantom library using the Monte Carlo N-particle eXtended transport code 2.7 (MCNPX). Unfortunately, it was not possible to incorporate the hybrid phantom library into the PCXMC. We compared 14 organ doses, including dose to the active bone marrow, to evaluate differences between the built-in stylized phantoms in the PCXMC and the hybrid phantoms (Cristy and Eckerman 1987 Technical Report ORNL/TM-8381/V1, Oak Ridge National Laboratory, Eckerman and Ryman 1993 Technical Report 12 Oak Ridge, TN, Geyer et al 2014 Phys. Med. Biol. 59 5225–42). On average, organ doses calculated using the built-in stylized phantoms in the PCXMC were greater when compared to the hybrid phantoms. This is most prominent in AP abdominal exams by an average factor of 2.4-, 2.8-, and 2.8-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. For chest exams, organ doses are greater by an average factor of 1.1-, 1.4-, and 1.2-fold for the 10-year-old, 15-year-old, and adult phantoms, respectively. The PCXMX, due to its ease of use, is often selected to support dosimetry in epidemiological studies; however, it uses simplified models of the human anatomy that fail to account for variations in body morphometry for increasing weight. For epidemiological studies that use PCXMC dosimetry, associations between radiation-related disease risks and organ doses may be underestimated, and to a greater degree in pediatric, especially obese pediatric, compared to adult patients.

  18. Development of Medical Technology for Contingency Response to Marrow Toxic Agents

    DTIC Science & Technology

    2014-01-31

    Agents October 01, 2013 through December 31, 2013 11 of 20 o S1203: A Randomized Phase III Study of Standard Cytarabine plus Daunorubicin (7+3...Therapy or Idarubicin with High Dose Cytarabine (IA) versus IA with Vorinostat (IA+V) in Younger Patients with Previously Untreated Acute Myeloid

  19. Development of Medical Technology for Contingency Response to Marrow Toxic Agents

    DTIC Science & Technology

    2013-10-30

    under the following clinical trial protocol: o S1203: A Randomized Phase III Study of Standard Cytarabine plus Daunorubicin (7+3) Therapy or Idarubicin...with High Dose Cytarabine (IA) versus IA with Vorinostat (IA+V) in Younger Patients with Previously Untreated Acute Myeloid Leukemia (AML) o

  20. Mortality among military participants at the 1957 PLUMBBOB nuclear weapons test series and from leukemia among participants at the SMOKY test.

    PubMed

    Caldwell, Glyn G; Zack, Matthew M; Mumma, Michael T; Falk, Henry; Heath, Clark W; Till, John E; Chen, Heidi; Boice, John D

    2016-09-01

    Health effects following low doses of ionizing radiation are uncertain. Military veterans at the Nevada test site (NTS) during the SMOKY atmospheric nuclear weapons test in 1957 were reported to be at increased risk for leukemia in 1979, but this increase was not evaluated with respect to radiation dose. The SMOKY test was one of 30 tests in 1957 within the PLUMBBOB test series. These early studies led to public laws where atomic veterans could qualify for compensation for presumptive radiogenic diseases. A retrospective cohort study was conducted of 12219 veterans at the PLUMBBOB test series, including 3020 at the SMOKY nuclear test. Mortality follow-up was through 2010 and observed causes of death were compared with expected causes based on general population rates. Radiation dose to red bone marrow was based on individual dose reconstructions, and Cox proportional hazards models were used to evaluate dose response for all leukemias other than chronic lymphocytic leukemia (non-CLL leukemia). Vital status was determined for 95.3% of the 12 219 veterans. The dose to red bone marrow was low (mean 3.2 mGy, maximum 500 mGy). Military participants at the PLUMBBOB nuclear test series remained relatively healthy after 53 years and died at a lower rate than the general population. In contrast, and in comparison with national rates, the SMOKY participants showed significant increases in all causes of death, respiratory cancer, leukemia, nephritis and nephrosis, and accidents, possibly related in part to lifestyle factors common to enlisted men who made up 81% of the SMOKY cohort. Compared with national rates, a statistically significant excess of non-CLL leukemia was observed among SMOKY participants (Standardized Mortality Ratio  =  1.89, 95% 1.24-2.75, n  =  27) but not among PLUMBBOB participants after excluding SMOKY (SMR  =  0.87, 95% 0.64-1.51, n  =  47). Leukemia risk, initially reported to be significantly increased among SMOKY participants, remained elevated, but this risk diminished over time. Despite an intense dose reconstruction, the risk for leukemia was not found to increase with increasing levels of radiation dose to the red bone marrow. Based on a linear model, the estimated excess relative risk per mGy is  -0.05 (95% CI -0.14, 0.04). An explanation for the observed excess of leukemia remains unresolved but conceivably could be related to chance due to small numbers, subtle biases in the study design and/or high tobacco use among enlisted men. Larger studies should elucidate further the possible relationship between fallout radiation, leukemia and cancer among atomic veterans.

  1. Mortality among Military Participants at the 1957 PLUMBBOB Nuclear Weapons Test Series and on Leukemia among Participants at the SMOKY Test

    PubMed Central

    Caldwell, Glyn G.; Zack, Matthew M.; Mumma, Michael T.; Falk, Henry; Heath, Clark W.; Till, John E.; Chen, Heidi; Boice, John D.

    2016-01-01

    Health effects following low doses of ionizing radiation are uncertain. Military veterans at the Nevada Test Site (NTS) during the SMOKY atmospheric nuclear weapons test in 1957 were reported to be at increased risk for leukemia in 1979, but this increase was not evaluated with respect to radiation dose. The SMOKY test was one of 30 tests in 1957 within the PLUMBBOB test series. These early studies led to public laws where atomic veterans could qualify for compensation for presumptive radiogenic diseases. A retrospective cohort study was conducted of 12,219 veterans at PLUMBBOB test series, including 3,020 at the SMOKY nuclear test. Mortality follow-up was through 2010 and observed causes of death were compared with expected causes based on general population rates. Radiation dose to red bone marrow was based on individual dose reconstructions, and Cox proportional hazards models were used to evaluate dose response for all leukemias other than chronic lymphocytic leukemia (non-CLL leukemia). Vital status was determined for 95.3% of the 12,219 veterans. The dose to red bone marrow was low (mean 3.2 mGy, maximum 500 mGy). Military participants at the PLUMBBOB nuclear test series remained relatively healthy after 53 years and died at a lower rate than the general population. In contrast, and in comparison with national rates, the SMOKY participants showed significant increases in all causes of death, respiratory cancer, leukemia, nephritis and nephrosis, and accidents, possibly related in part to lifestyle factors common to enlisted men who made up 81% of the SMOKY cohort. Compared with national rates, a statistically significant excess of non-CLL leukemia was observed among SMOKY participants (Standardized Mortality Ratio=1.89, 95% 1.24–2.75, n=27) but not among PLUMBBOB participants after excluding SMOKY (SMR=0.87, 95% 0.64–1.51, n=47). Leukemia risk, initially reported to be significantly increased among SMOKY participants, remained elevated, but this risk diminished over time. Despite an intense dose reconstruction, the risk for leukemia was not found to increase with increasing levels of radiation dose to the red bone marrow. Based on a linear model, the estimated excess relative risk per mGy is −0.05 (95% CI −0.14, 0.04). An explanation for the observed excess of leukemia remains unresolved but conceivably could be related to chance due to small numbers, subtle biases in the study design and/or high tobacco use among enlisted men. Larger studies should elucidate further the possible relationship between fallout radiation, leukemia and cancer among atomic veterans. PMID:27355245

  2. Value of molecular monitoring during the treatment of chronic myeloid leukemia: a Cancer and Leukemia Group B study.

    PubMed

    Stock, W; Westbrook, C A; Peterson, B; Arthur, D C; Szatrowski, T P; Silver, R T; Sher, D A; Wu, D; Le Beau, M M; Schiffer, C A; Bloomfield, C D

    1997-01-01

    Disappearance of the Philadelphia chromosome during treatment for chronic myeloid leukemia (CML) has become an important therapeutic end point. To determine the additional value of molecular monitoring during treatment for CML, we performed a prospective, sequential analysis using quantitative Southern blot monitoring of BCR gene rearrangements of blood and marrow samples from Cancer and Leukemia Group B (CALGB) study 8761. Sixty-four previously untreated adults with chronic-phase CML who were enrolled onto CALGB 8761, a molecular-monitoring companion study to a treatment study for adults with chronic-phase CML (CALGB 9013). Treatment consisted of repetitive cycles of interferon alfa and low-dose subcutaneous cytarabine. Blood and marrow Southern blot quantitation of BCR gene rearrangements was compared with marrow cytogenetic analysis before the initiation of treatment and of specified points during therapy. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis was performed to detect residual disease in patients who achieved a complete response by Southern blot or cytogenetic analysis. Quantitative molecular monitoring by Southern blot analysis of blood samples was found to be equivalent to marrow monitoring at all time points. Twelve of 62 (19%) follow-up samples studied by Southern blot analysis had a complete loss of BCR gene rearrangement in matched marrow and blood specimens. Southern blot monitoring of blood samples was also found to be highly correlated to marrow cytogenetic evaluation at all points, although there were four discordant cases in which Southern blot analysis of blood showed no BCR gene rearrangement, yet demonstrated from 12% to 20% Philadelphia chromosome-positive metaphase cells in the marrow. RT-PCR analysis detected residual disease in five of six patients in whom no malignant cells were detected using Southern blot or cytogenetic analyses. Quantitative Southern blot analysis of blood samples may be substituted for bone marrow to monitor the response to therapy in CML and results in the need for fewer bone marrow examinations. To avoid overestimating the degree of response, marrow cytogenetic analysis should be performed when patients achieve a complete response by Southern blot monitoring. This approach provides a rational, cost-effective strategy to monitor the effect of treatment of individual patients, as well as to analyze large clinical trials in CML.

  3. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    NASA Technical Reports Server (NTRS)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle fabrication and after growth factor release. At an optimal TGF-beta1 dosage of 1.0 ng/ml after 3 days, the released TGF-beta1 enhanced the proliferation and osteoblastic differentiation of marrow stromal cells over 21 days of culture, with increased total cell number, alkaline phosphatase activity, and osteocalcin production. CONCLUSIONS: PLGA/PEG blend microparticles can serve as delivery vehicles for controlled release of TGF-beta1, and the released growth factor enhances marrow stromal cell proliferation and osteoblastic differentiation in vitro. CLINICAL RELEVANCE: Controlled release of TGF-beta1 from PLGA/PEG microparticles is representative of emerging tissue engineering technologies that may modulate cellular responses to encourage bone regeneration at a skeletal defect site.

  4. Whole abdomen radiation for minimal residual epithelial ovarian carcinoma after surgical resection and maximal first-line chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, J.M.; Russell, A.H.; Greer, B.E.

    1988-02-01

    Ten patients with Stage III epithelial ovarian received whole abdomen radiation therapy after extensive courses of chemotherapy and second or third laparotomies. All patients had less than 2-mm diameter residual disease. The major side effect was bone marrow suppression which led to decreased dose or field size in four patients. Five patients have recurred and three of these have died. Further treatment after recurrence was compromised by bone marrow suppression. While 40-50% of selected patients may respond to this approach, numerous alternatives are being explored that would not handicap further treatment to the same degree and may have equal responsemore » rates.« less

  5. The triterpenoid RTA 408 is a robust mitigator of hematopoietic acute radiation syndrome in mice.

    PubMed

    Goldman, Devorah C; Alexeev, Vitali; Lash, Elizabeth; Guha, Chandan; Rodeck, Ulrich; Fleming, William H

    2015-03-01

    Bone marrow suppression due to exposure to ionizing radiation is a significant clinical problem associated with radiation therapy as well as with nonmedical radiation exposure. Currently, there are no small molecule agents available that can enhance hematopoietic regeneration after radiation exposure. Here, we report on the effective mitigation of acute hematopoietic radiation syndrome in mice by the synthetic triterpenoid, RTA 408. The administration of a brief course of RTA 408 treatment, beginning 24 h after lethal doses of radiation to bone marrow, significantly increased overall survival. Importantly, treatment with RTA 408 led to the full recovery of steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA 408-mitigated mice showed lineage-balanced, long-term, multilineage potential in serial transplantation assays, indicative of their normal self-renewal activity. The potency of RTA 408 in mitigating radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in treating both therapy-related and unanticipated radiation exposure.

  6. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions.

  7. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestronk, A.; Drachman, D.B.; Teoh, R.

    1983-08-01

    A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used tomore » repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis.« less

  8. Allogeneic bone marrow transplantation for children with acute lymphoblastic leukemia in second remission or relapse.

    PubMed

    Lin, K H; Jou, S T; Chen, R L; Lin, D T; Lui, L T; Lin, K S

    1994-01-01

    Most children with acute lymphoblastic leukemia (ALL) are successfully treated by chemotherapy. For those patients, who relapse on therapy, bone marrow transplantation (BMT) is considered most appropriate after a subsequent remission is achieved. Three boys with ALL aged from 9 to 13 years met these criteria and received BMT from their HLA-compatible sisters after marrow ablation with total body irradiation 12 Gy plus high dose cytosine arabinoside 3 gm/m2/12h x 12 doses and graft-versus-host disease (GVHD) prophylaxis with cyclosporine plus short course methotrexate from March 10, 1989 to May 23, 1992. Filgrastim (rhG-CSF) was used to hasten the recovery of granulocyte in one patient. All three patients got full engraftment and two had grade 1 acute GVHD. None of them developed chronic GVHD. Two patients have disease-free survival over 51 and 12 months respectively post BMT without further chemotherapy. One patient died of recurrent refractory leukemia 5 months after BMT. The toxicity of this conditioning regimen included photophobia, conjunctivitis and erythematous skin rashes. One patient who received filgrastim from day 1 to 21 developed severe bone pain. However, this patient had faster recovery of granulocyte count than the other two patients. The preliminary results of this work favors BMT for children with recurrent ALL whose ultimate survival is usually poor when treated with chemotherapy. Further efforts are necessary to investigate new methods for reducing leukemic relapse in ALL patients undergoing BMT.

  9. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of (60)Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration.

    PubMed

    Bala, Madhu; Gupta, Manish; Saini, Manu; Abdin, M Z; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body (60)Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain 'A' mice demonstrated that SBL-1 treatment before (60)Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration.

  10. Evaluation of micronuclei induction capacity and mutagenicity of organochlorine and organophosphate pesticides.

    PubMed

    Yaduvanshi, Santosh K; Srivastava, Nalini; Marotta, Francesco; Jain, Shalini; Yadav, Hariom

    2012-09-01

    The genotoxic and mutagenic effects of two commonly used organochlorine pesticides, lindane (LND) and endosulfan (ENS), and two commonly used organophosphate pesticides, chlorpyrifos (CPF) and monocrotophos (MCP) were assessed using in vivo mouse bone marrow micronucleus test and in vitro Ames Salmonella/ microsome mutagenicity test. The results showed that these pesticides alone or in combination, induced significantly high frequency of micronuclei (MN) formation that increased with concentration of pesticides. All these four pesticides produced significant increase in the frequencies of micronucleated-polychromatic erythrocytes (MN-PCE) and decrease infrequencies of PCE in dose-dependent manner. The results indicate the suppression of proliferative activity of the bone marrow and increase in the extent of cell death. ENS and MCP showed mutagenic potential in Salmonella/ microsome assay. ENS induced mutagenic and nontoxic response only in TA98 tester strain of S.typhimurium at the dose of 500 μg/plate and in the absence of metabolic activation. MCP showed weak mutagenic and nontoxic effect only in TA100 tester strain at the dose of 5000 μg/plate in both assays, with or without metabolic activation when compared with negative control. MCP was toxic in TA98 tester strain at the dose of 5000 μg/plate in absence of metabolic activation while reduction in toxicity was seen on addition of S9 mixture. The study clearly showed the genotoxic potential of all these four pesticides and mutagenic response of endosulfan and monocrotophos.

  11. Evaluation of the Pharmacokinetics and Efficacy of a Busulfan Test Dose in Adult Patients Undergoing Myeloablative Hematopoietic Cell Transplantation.

    PubMed

    Weil, Elizabeth; Zook, Felicia; Oxencis, Carolyn; Canadeo, Angela; Urmanski, Angela; Waggoner, Mindy; Eastwood, Daniel; Pasquini, Marcelo; Hamadani, Mehdi; Hari, Parameswaran

    2017-06-01

    Owing to interpatient variability in busulfan exposure, therapeutic monitoring of busulfan is often used in myeloablative allogeneic transplantation to ensure that patients are near the optimal steady-state goal of 900 ng/mL. One challenge in therapeutic monitoring of busulfan is the brief course of busulfan treatment, requiring prompt analysis and dose adjustments as needed. Pharmacokinetic evaluation of a busulfan test dose before the start of the conditioning regimen would allow for all conditioning regimen doses to be given at the calculated optimized dose. An observational study was completed to evaluate the effects of a busulfan test dose of 0.9 mg/kg administered before the start of a myeloablative intravenous busulfan-based conditioning regimen. Sixty adult patients who received a busulfan conditioning regimen were reviewed, including 30 patients prior to the implementation of the busulfan test dose (pretest dose group) and 30 patients who received the busulfan test dose (posttest dose group). The primary objective was a pharmacokinetic evaluation of the percentage of patients who achieved the desired steady-state goal using the test dose strategy. The safety and efficacy of the busulfan test dose were evaluated as well. The average busulfan steady-state level after the first dose of the conditioning regimen was significantly lower in the pre-test dose group compared with the post-test dose group (660 ng/mL versus 879.9 ng/mL; P < 0.001). Compared with the post-test dose group, significantly fewer patients in the pre-test dose group were within 10% of the busulfan steady-state goal (10% versus 73.3%; P < 0.001) or within 5% of the goal (0% versus 53%; P < 0.001). Requirements for parenteral nutrition and/or patient-controlled analgesia owing to mucositis and rates of veno-occlusive disease were not significantly different between the pre-test dose group and the post-test dose group. The rates of disease relapse, mortality, and acute graft-versus-host disease were similar in the two groups. A pretransplantation busulfan test dose of 0.9 mg/kg improved the patients' ability to reach therapeutic busulfan target levels after the first conditioning dose and resulted in fewer adjustments during conditioning. The use of a busulfan test dose did not significantly increase patients' risk of mucositis or other safety outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia);more » reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.« less

  13. Denosumab is effective in the treatment of bone marrow oedema syndrome.

    PubMed

    Rolvien, Tim; Schmidt, Tobias; Butscheidt, Sebastian; Amling, Michael; Barvencik, Florian

    2017-04-01

    Bone marrow oedema (BMO) syndrome describes a painful condition with increase of interstitial fluid within bone and is often lately diagnosed due to unspecific symptoms. The underlying causes are diverse while it is widely assumed that in cases of BMO local bone resorption is increased. Denosumab, a human monoclonal antibody that binds to the receptor activator of nuclear factor kappa-B ligand (RANKL) inhibits osteoclastic bone resorption and is commonly administered in the treatment of osteoporosis. Besides one previous case report, its clinical effectiveness in the treatment of bone marrow oedema has not been elucidated. We treated 14 patients with primary (idiopathic) bone marrow oedema of the lower extremity with single dose denosumab application. Mean time between onset of pain and therapy was 155days. MRI scans were performed for initial diagnosis, and 6-12 weeks after denosumab injection. Vitamin D and calcium homeostasis were strived to be balanced before initiation of therapy. Furthermore bone status was analysed using Dual-energy X-ray absorptiometry (DXA) and extended bone turnover serum markers. After 6-12 weeks, BMO dissolved partly or completely in 93%, while a complete recovery was observed in 50% of the individuals. Visual analogue scale (VAS) evaluation revealed a significant decrease in pain level. Furthermore, bone turnover decreased significantly after treatment. No adverse reactions were reported. In conclusion, our retrospective analysis shows that denosumab is highly effective in the treatment of bone marrow oedema and therefore represents an alternative treatment option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Distribution of Proliferating Bone Marrow in Adult Cancer Patients Determined Using FLT-PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayman, James A., E-mail: hayman@umich.ed; University of Michigan Health Systems, Ann Arbor, MI; Callahan, Jason W.

    2011-03-01

    Purpose: Given that proliferating hematopoietic stem cells are especially radiosensitive, the bone marrow is a potential organ at risk, particularly with the use of concurrent chemotherapy and radiotherapy. Existing data on bone marrow distribution have been determined from the weight and visual appearance of the marrow in cadavers. {sup 18}F-fluoro-L-deoxythymidine concentrates in bone marrow, and we used its intensity on positron emission tomography imaging to quantify the location of the proliferating bone marrow. Methods and Materials: The {sup 18}F-fluoro-L-deoxythymidine positron emission/computed tomography scans performed at the Peter MacCallum Cancer Centre between 2006 and 2009 on adult cancer patients were analyzed.more » At a minimum, the scans included the mid-skull through the proximal femurs. A software program developed at our institution was used to calculate the percentage of administered activity in 11 separately defined bony regions. Results: The study population consisted of 13 patients, 6 of whom were men. Their median age was 61 years. Of the 13 patients, 9 had lung cancer, 2 had colon cancer, and 1 each had melanoma and leiomyosarcoma; 6 had received previous, but not recent, chemotherapy. The mean percentage of proliferating bone marrow by anatomic site was 2.9% {+-} 2.1% at the skull, 1.9% {+-} 1.2% at the proximal humeri, 2.9% {+-} 1.3% at the sternum, 8.8% {+-} 4.7% at the ribs and clavicles, 3.8% {+-} 0.9% at the scapulas, 4.3% {+-} 1.6% at the cervical spine, 19.9% {+-} 2.6% at the thoracic spine, 16.6% {+-} 2.2% at the lumbar spine, 9.2% {+-} 2.3% at the sacrum, 25.3% {+-} 4.9% at the pelvis, and 4.5% {+-} 2.5% at the proximal femurs. Conclusion: Our modern estimates of bone marrow distribution in actual cancer patients using molecular imaging of the proliferating marrow provide updated data for optimizing normal tissue sparing during external beam radiotherapy planning.« less

  15. Maintenance of Host Leukocytes in Peripheral Immune Compartments Following Lethal Irradiation and Bone Marrow Reconstitution: Implications for Graft Versus Host Disease

    PubMed Central

    Staley, Elizabeth M.; Tanner, Scott M.; Daft, Joseph G.; Stanus, Andrea L.; Martin, Steven M.; Lorenz, Robin G.

    2013-01-01

    Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. Expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later timepoints or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a “successful” bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. PMID:23334064

  16. Maintenance of host leukocytes in peripheral immune compartments following lethal irradiation and bone marrow reconstitution: implications for graft versus host disease.

    PubMed

    Staley, Elizabeth M; Tanner, Scott M; Daft, Joseph G; Stanus, Andrea L; Martin, Steven M; Lorenz, Robin G

    2013-03-01

    Bone marrow reconstitution is utilized as a tool for disease treatment and as a research technique to elucidate the function of bone marrow derived cells. Clinically successful engraftment is indicated by the development of a functioning immune repertoire. In research, reconstitution is considered successful if >85% of splenic leukocytes are of donor origins. Previous work suggests that splenic reconstitution may not be indicative of reconstitution in the mucosa. We sought to evaluate mucosal reconstitution in animals following a standard bone marrow eradication and reconstitution technique. Bone marrow was harvested from adult B6.SJL donor mice (CD45.1) and injected via either the retro-orbital or intraperitoneal route into lethally irradiated B6 (CD45.2) adult or neonatal recipients respectively. The expression of CD45 by flow cytometry was used to calculate reconstitution with respect to immune compartment and cell type. In reconstituted adult animals 93.2±1.5% of splenic leukocytes expressed the donor CD45.1 antigen thus meeting the standard definition of reconstitution, however only 58.6±13.6% of intestinal lamina propria lymphocytes and 52.4±16.0% of intestinal intraepithelial lymphocytes were of donor origin, confirming splenic reconstitution fails to represent peripheral immune reconstitution. T-cells in the gastrointestinal tract are the most poorly reconstituted, while B-cells appear to be almost universally replaced by donor cells. The inadequate mucosal reconstitution was not corrected by evaluating later time points or by performing the bone marrow transfer during the neonatal period. This demonstration that substantial host T-cells remain in the intestinal mucosa after a "successful" bone marrow transplantation should cause a re-evaluation of data from research bone marrow chimera experiments, as well as the mechanisms for complications after clinical bone marrow transplantation. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. [Preliminary establishment of transplanted human chronic myeloid leukemia model in nude mice].

    PubMed

    Li, Xian-Min; Ding, Xin; Zhang, Long-Zhen; Cen, Jian-Nong; Chen, Zi-Xing

    2011-12-01

    Chronic myeloid leukemia (CML) is a malignant clonal disease derived from hematopoietic stem cells. CML stem cells were thought to be the root which could lead disease development and ultimately rapid change. However, a stable animal model for studying the characteristics of CML stem cells is currently lacking. This study was aimed to establish a transplanted human CML nude-mice model to further explore the biological behavior of CML stem cells in vivo, and to enrich CML stem cells in nude mice by series transplantation. The 4 - 6 weeks old BALB/c nude mice pretreated by splenectomy (S), cytoxan intraperitoneal injection (C) and sublethal irradiation (I) were transplanted intravenously with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase. Alternatively, 4 - 6 weeks old BALB/c nude mice pretreated by lethal irradiation were transplanted intravenously with 5 × 10(6) homologous bone marrow cells of BALB/c nude mice together with (5 - 7) × 10(7) of bone marrow mononuclear cells from CML patients in chronic phase simultaneously. The leukemic cells engrafted and infiltrated in organs and bone marrow of the mice were tracked by reverse transcription-polymerase chain reaction (RT-PCR), plastic-embedded biopsy and flow cytometry. The results of these two methods were compared. The results showed that human CML cells engrafted and infiltrating into the bone marrow of two nude mice pretreated with SCI could be detected. In spite of the low successful rate, results suggested the feasibility of this method by using BALB/c nude mice as a human CML animal model. In contrast, in nude mice pretreated by the lethal dose irradiation, CML cells in the bone marrow could not be found. It is concluded that human bone marrow CML cells can results in leukemia in nude mice pretreated by SCI. Thus this study provides a new strategy for establishment of CML animal models which deserves further elaboration.

  18. Megakaryocyte expansion and macrophage infiltration in bone marrow of rats subchronically treated with MNX, N-nitroso environmental degradation product of munitions compound RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine).

    PubMed

    Ramasahayam, Sindhura; Jaligama, Sridhar; Atwa, Sahar M; Salley, Joshua T; Thongdy, Marissa; Blaylock, Benny L; Meyer, Sharon A

    2017-08-01

    Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), environmental degradation product of munitions hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), causes seizures in rats with acute oral exposure like parent RDX. Our previous studies have additionally reported hematotoxicity with acute MNX exposure manifested as myelosuppression, anemia and splenic hemosiderosis. This study explored whether MNX administered subchronically continued to target bone marrow to elicit peripheral blood cytopenia. Female Sprague-Dawley rats were gavaged daily for 4 or 6 weeks with 47 mg kg -1  day -1 MNX (¼ LD 50 ) or vehicle (5% dimethyl sulfoxide in corn oil) and hematological and clinical chemistry parameters, spleen weights, spleen and bone marrow histopathology and immunohistochemistry with ED1 anti-CD68 macrophage marker were evaluated 24 h after the last dose. Unexpectedly, no decrease in blood erythroid parameters was seen with subchronic MNX and convulsions and tremors ceased after 2 weeks of treatment. Toxicological effects observed were MNX-induced increases in blood granulocyte and platelet counts and in bone marrow megakaryocyte and ED1 + -macrophage density. MNX was without effect on bone marrow cellularity and picrosirius red stained/collagen fiber deposition. Spleen weight increased modestly with extramedullary hematopoiesis evident, but hemosiderin and relative red and white pulp areas were unaffected. Collectively, this study demonstrated that erythroid effects characteristic of acute MNX exposure were not evident with subchronic exposure. However, megakaryocyte proliferation in bone marrow coincident with thrombocytosis after subchronic MNX exposure suggested continued hematotoxicity, but with a qualitatively different outcome. Granulocytosis and increased bone marrow macrophages implicated an inflammatory component in MNX hematotoxicity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    NASA Astrophysics Data System (ADS)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  20. SURVIVAL EFFICACY OF THE PEGYLATED G-CSFS MAXY-G34 AND NEULASTA IN A MOUSE MODEL OF LETHAL H-ARS, AND RESIDUAL BONE MARROW DAMAGE IN TREATED SURVIVORS

    PubMed Central

    Chua, Hui Lin; Plett, P. Artur; Sampson, Carol H.; Katz, Barry P.; Carnathan, Gilbert W.; MacVittie, Thomas J.; Lenden, Keith; Orschell, Christie M.

    2013-01-01

    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24hr post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg−1 of either PEG-G-CSF effected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+ cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD, but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation. PMID:24276547

  1. Biodistribution of Yttrium-90-Labeled Anti-CD45 Antibody in a Nonhuman Primate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, Eneida; Hamlin, Donald K.; Fisher, Darrell R.

    2005-01-15

    Radioimmunotherapy may improve the outcome of hematopoietic cell transplantation for hematologic malignancies by delivering targeted radiation to hematopoietic organs while relatively sparing nontarget organs. We evaluated the organ localization of yttrium-90-labeled anti-CD45 (90Y-anti-CD45) antibody in macaques, a model that had previously predicted iodine-131-labeled anti-CD-45 (131I-anti-CD45) antibody biodistribution in humans. Experimental Design: Twelve Macaca nemestrina primates received anti-CD45 antibody labeled with 1 to 2 mCi of 90Y followed by serial blood sampling and marrow and lymph node biopsies, and necropsy. The content of 90Y per gram of tissue was determined by liquid scintillation spectrometry. Time-activity curves were constructed using average isotopemore » concentrations in each tissue at measured time points to yield the fractional residence time and estimate radiation absorbed doses for each organ per unit of administered activity. The biodistribution of 90Y-anti-CD45 antibody was then compared with that previously obtained with 131I-anti-CD45 antibody in macaques. Results: The spleen received 2,120, marrow 1,060, and lymph nodes 315 cGy/mCi of 90Y injected. The liver and lungs were the nontarget organs receiving the highest radiation absorbed doses (440 and 285 cGy/mCi, respectively). Ytrrium-90-labeled anti-CD45 antibody delivered 2.5- and 3.7-fold more radiation to marrow than to liver and lungs, respectively. The ratios previously observed with 131I-antiCD45 antibody were 2.5-and 2.2-fold more radiation to marrow than to liver and lungs, respectively. Conclusions: This study shows that 90Y-anti-CD45 antibody can deliver relatively selective radiation to hematopoietic tissues, with similar ratios of radiation delivered to target versus nontarget organs, as compared with the 131I immunoconjugate in the same animal model.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, T.S.; Robertson, J.M.; Anscher, M.S.

    Radiation-induced liver disease (RILD), often called radiation hepatitis, is a syndrome characterized by the development of anicteric ascites approximately 2 weeks to 4 months after hepatic irradiation. There has been a renewed interest in hepatic irradiation because of two significant advances in cancer treatment; three dimensional radiation therapy treatment planning and bone marrow transplantation using total body irradiation. RILD resulting from liver radiation can usually be distinguished clinically from the resulting from the preparative regime associated with bone marrow transplantation. However, both syndromes demonstrate the same pathological lesion; veno-occlusive disease. Recent evidence suggests that elevated transforming growth factor {beta} levelsmore » may play a role in the development of veno-occlusive disease. Three dimensional treatment planning offers the potential to determine the radiation dose and volume dependence of RILD, permitting the safe delivery of high doses of radiation to parts of the liver. The chief therapy for RILD is diuretics, although some advocate steroids of severe cases. The characteristics of RILD permit the development of a grading system modeled after the NCI Acute Common Toxicity Criteria, which incorporates standard criteria of hepatic dysfunction. 64 refs., 5 figs., 1 tab.« less

  3. THE EFFECTS OF INTRAVENOUS INJECTIONS OF DICHLOROETHYLSULFIDE IN RABBITS, WITH SPECIAL REFERENCE TO ITS LEUCOTOXIC ACTION

    PubMed Central

    Pappenheimer, Alwin M.; Vance, Morgan

    1920-01-01

    1. The lethal dose of dichloroethylsulfide (distilled from a German yellow cross shell), when injected intravenously into rabbits is from 0.005 to 0.01 gm. per kilo. 2. Rabbits dying within 24 hours showed extensive hemorrhages, and edema of the lungs. 3. Severe lesions of the intestinal tract were present in about one-third of the rabbits. 4. Dichloroethylsulfide injected intravenously is specifically poisonous for the hematopoietic tissues. Severe lesions are caused in the bone marrow, and the number of circulating leucocytes is markedly deminished. In animals surviving the injection regeneration occurs. The granular cells of the bone marrow seem to be more sensitive than the lymphoid cells and the erythrocytes. 5. The effect upon the blood and hematopoietic tissues is not due to the admixture of nitrobenzene or chlorobenzene in the shell filling. Injection of these substances in animals in amounts many times greater than the total dose of dichloroethylsulfide used produced no changes in the blood picture, and the subsequent injection of dichloroethylsulfide free from these solvents produced a typical reaction. PMID:19868389

  4. Chronic High Dose Alcohol Induces Osteopenia via Activation of mTOR Signaling in Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Liu, Yao; Kou, Xiaoxing; Chen, Chider; Yu, Wenjing; Su, Yingying; Kim, Yong; Shi, Songtao; Liu, Yi

    2016-08-01

    Chronic consumption of excessive alcohol results in reduced bone mass, impaired bone structure, and increased risk of bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are not fully understood. Here, we show that high dose chronic alcohol consumption reduces osteogenic differentiation and enhances adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), leading to osteopenia in a mouse model. Mechanistically, impaired osteo/adipogenic lineage differentiation of BMMSCs is due to activation of a phosphatidylinositide 3-kinase/AKT/mammalian target of rapamycin (mTOR) signaling cascade, resulting in downregulation of runt-related transcription factor 2 and upregulation of peroxisome proliferator-activated receptor gamma via activation of p70 ribosomal protein S6 kinase. Blockage of the mTOR pathway by rapamycin treatment ameliorates alcohol-induced osteopenia by rescuing impaired osteo/adipogenic lineage differentiation of BMMSCs. In this study, we identify a previously unknown mechanism by which alcohol impairs BMMSC lineage differentiation and reveal a potential rapamycin-based drug therapy for alcohol-induced osteoporosis. Stem Cells 2016;34:2157-2168. © 2016 AlphaMed Press.

  5. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    PubMed Central

    Moore, Bria M.; Brady, Samuel L.; Mirro, Amy E.; Kaufman, Robert A.

    2014-01-01

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ ) were then multiplied by patient-specific SSDE to estimate patient organ dose. The \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. Individual\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ , was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ ) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE. PMID:24989395

  6. Systemically Transplanted Bone Marrow-derived Cells Contribute to Dental Pulp Regeneration in a Chimeric Mouse Model.

    PubMed

    Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei

    2016-02-01

    Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun

    1993-01-01

    To investigate the effects of ovariectomy and the simultaneous administration of prostaglandin E2 (PGE2) on rat tibial shaft cortical bone histomorphometry, thirty-five 3 month-old female Sprague-Dawley rats were either ovariectomized (OVX), or sham ovariectomy (sham-OVX). The OVX rats were divided into three groups and treated with 0, 1 and 6 mg PGE2/kg/day for 90 days. The double fluorescent labeled undecalcified tibial shaft cross sections (proximal to the tibiofibular junction) of all the subjects were used for histomorphometry analysis. No differences in cross-sectional area and cortical bone area were found between sham-OVX and OVX controls, but OVX increased marrow area, intracortical porosity area and endocortical eroded perimeter. Periosteal and endocortical bone formation rates decreased with aging yet OVX prevented these changes. These OVX-induced increases in marrow area and endocortical eroded perimeter were prevented by 1 mg PGE2/kg/day treatment and added bone to periosteal and endocortical surfaces and to the marrow cavity. At the 6 mg/kg/day dose level, PGE2-treated OVX rats increased total tissue area, cortical bone area, marrow trabmular bone area, minimal cortical width and intracortical porosity area, and decreased marrow area compared to basal, sham-OVX and OVX controls. In addition, periosteal bone formation was elevated in the 6 mg PGE2/kg/day-treated OVX rats compared to OVX controls. Endocortical eroded perimeter increased from basal and sham-OVX control levels, but decreased from OVX control levels in the 6 mg PGE2/kg/day-treated OVX rats. Our study confirmed that ovariectomy does not cause osteopenia in tibial shaft cortical bone in rats, but it does stimulate endocortical bone resorption and enlarges marrow area. The new findings from the present study demonstrate that PGE2 prevents the OVX-induced increases in endocortical bone resorption and marrow area and adds additional bone to periosteal and endocortical surfaces and to marrow cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.

  8. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study.

    PubMed

    Seymour, John F; Ma, Shuo; Brander, Danielle M; Choi, Michael Y; Barrientos, Jacqueline; Davids, Matthew S; Anderson, Mary Ann; Beaven, Anne W; Rosen, Steven T; Tam, Constantine S; Prine, Betty; Agarwal, Suresh K; Munasinghe, Wijith; Zhu, Ming; Lash, L Leanne; Desai, Monali; Cerri, Elisa; Verdugo, Maria; Kim, Su Young; Humerickhouse, Rod A; Gordon, Gary B; Kipps, Thomas J; Roberts, Andrew W

    2017-02-01

    Selective BCL2 inhibition with venetoclax has substantial activity in patients with relapsed or refractory chronic lymphocytic leukaemia. Combination therapy with rituximab enhanced activity in preclinical models. The aim of this study was to assess the safety, pharmacokinetics, and activity of venetoclax in combination with rituximab. Adult patients with relapsed or refractory chronic lymphocytic leukaemia (according to the 2008 Modified International Workshop on CLL guidelines) or small lymphocytic lymphoma were eligible for this phase 1b, dose-escalation trial. The primary outcomes were to assess the safety profile, to determine the maximum tolerated dose, and to establish the recommended phase 2 dose of venetoclax when given in combination with rituximab. Secondary outcomes were to assess the pharmacokinetic profile and analyse efficacy, including overall response, duration of response, and time to tumour progression. Minimal residual disease was a protocol-specified exploratory objective. Central review of the endpoints was not done. Venetoclax was dosed daily using a stepwise escalation to target doses (200-600 mg) and then monthly rituximab commenced (375 mg/m 2 in month 1 and 500 mg/m 2 in months 2-6). Adverse events were graded according to the National Cancer Institute Common Terminology Criteria for adverse events version 4.0. Protocol-guided drug cessation was allowed for patients who achieved complete response (including complete response with incomplete marrow recovery) or negative bone marrow minimal residual disease. Analyses were done per protocol for all patients who commenced drug and included all patients who received at least one dose of venetoclax. Data were pooled across dose cohorts. Patients are still receiving therapy and follow-up is ongoing. The trial is registered at ClinicalTrials.gov, number NCT01682616. Between Aug 6, 2012, and May 28, 2014, we enrolled 49 patients. Common grade 1-2 toxicities included upper respiratory tract infections (in 28 [57%] of 49 patients), diarrhoea (27 [55%]), and nausea (25 [51%]). Grade 3-4 adverse events occurred in 37 (76%) of 49 patients; most common were neutropenia (26 [53%]), thrombocytopenia (eight [16%]), anaemia (seven [14%]), febrile neutropenia (six [12%]), and leucopenia (six [12%]). The most common serious adverse events were pyrexia (six [12%]), febrile neutropenia (five [10%]), lower respiratory tract infection, and pneumonia (each three [6%]). Clinical tumour lysis syndrome occurred in two patients (resulting in one death) who initiated venetoclax at 50 mg. After enhancing tumour lysis syndrome prophylaxis measures and commencing venetoclax at 20 mg, clinical tumour lysis syndrome did not occur. The maximum tolerated dose was not identified; the recommended phase 2 dose of venetoclax in combination with rituximab was 400 mg. Overall, 42 (86%) of 49 patients achieved a response, including a complete response in 25 (51%) of 49 patients. 2 year estimates for progression-free survival and ongoing response were 82% (95% CI 66-91) and 89% (95% CI 72-96), respectively. Negative marrow minimal residual disease was attained in 20 (80%) of 25 complete responders and 28 (57%) of 49 patients overall. 13 responders ceased all therapy; among these all 11 minimal residual disease-negative responders remain progression-free off therapy. Two with minimal residual disease-positive complete response progressed after 24 months off therapy and re-attained response after re-initiation of venetoclax. A substantial proportion of patients achieved an overall response with the combination of venetoclax and rituximab including 25 (51%) of 49 patients who achieved a complete response and 28 (57%) of 49 patients who achieved negative marrow minimal residual disease with acceptable safety. The depth and durability of responses observed with the combination offers an attractive potential treatment option for patients with relapsed or refractory chronic lymphocytic leukaemia and could allow some patients to maintain response after discontinuing therapy, a strategy that warrants further investigation in randomised studies. AbbVie Inc and Genentech Inc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study

    PubMed Central

    Seymour, John F; Ma, Shuo; Brander, Danielle M; Choi, Michael Y; Barrientos, Jacqueline; Davids, Matthew S; Anderson, Mary Ann; Beaven, Anne W; Rosen, Steven T; Tam, Constantine S; Prine, Betty; Agarwal, Suresh K; Munasinghe, Wijith; Zhu, Ming; Lash, L Leanne; Desai, Monali; Cerri, Elisa; Verdugo, Maria; Kim, Su Young; Humerickhouse, Rod A; Gordon, Gary B; Kipps, Thomas J; Roberts, Andrew W

    2017-01-01

    Summary Background Selective BCL2 inhibition with venetoclax has substantial activity in patients with relapsed or refractory chronic lymphocytic leukaemia. Combination therapy with rituximab enhanced activity in preclinical models. The aim of this study was to assess the safety, pharmacokinetics, and activity of venetoclax in combination with rituximab. Methods Adult patients with relapsed or refractory chronic lymphocytic leukaemia (according to the 2008 Modified International Workshop on CLL guidelines) or small lymphocytic lymphoma were eligible for this phase 1b, dose-escalation trial. The primary outcomes were to assess the safety profile, to determine the maximum tolerated dose, and to establish the recommended phase 2 dose of venetoclax when given in combination with rituximab. Secondary outcomes were to assess the pharmacokinetic profile and analyse efficacy, including overall response, duration of response, and time to tumour progression. Minimal residual disease was a protocol-specified exploratory objective. Central review of the endpoints was not done. Venetoclax was dosed daily using a stepwise escalation to target doses (200–600 mg) and then monthly rituximab commenced (375 mg/m2 in month 1 and 500 mg/m2 in months 2–6). Adverse events were graded according to the National Cancer Institute Common Terminology Criteria for adverse events version 4.0. Protocol-guided drug cessation was allowed for patients who achieved complete response (including complete response with incomplete marrow recovery) or negative bone marrow minimal residual disease. Analyses were done per protocol for all patients who commenced drug and included all patients who received at least one dose of venetoclax. Data were pooled across dose cohorts. Patients are still receiving therapy and follow-up is ongoing. The trial is registered at ClinicalTrials.gov, number NCT01682616. Findings Between Aug 6, 2012, and May 28, 2014, we enrolled 49 patients. Common grade 1–2 toxicities included upper respiratory tract infections (in 28 [57%] of 49 patients), diarrhoea (27 [55%]), and nausea (25 [51%]). Grade 3–4 adverse events occurred in 37 (76%) of 49 patients; most common were neutropenia (26 [53%]), thrombocytopenia (eight [16%]), anaemia (seven [14%]), febrile neutropenia (six [12%]), and leucopenia (six [12%]). The most common serious adverse events were pyrexia (six [12%]), febrile neutropenia (five [10%]), lower respiratory tract infection, and pneumonia (each three [6%]). Clinical tumour lysis syndrome occurred in two patients (resulting in one death) who initiated venetoclax at 50 mg. After enhancing tumour lysis syndrome prophylaxis measures and commencing venetoclax at 20 mg, clinical tumour lysis syndrome did not occur. The maximum tolerated dose was not identified; the recommended phase 2 dose of venetoclax in combination with rituximab was 400 mg. Overall, 42 (86%) of 49 patients achieved a response, including a complete response in 25 (51%) of 49 patients. 2 year estimates for progression-free survival and ongoing response were 82% (95% CI 66–91) and 89% (95% CI 72–96), respectively. Negative marrow minimal residual disease was attained in 20 (80%) of 25 complete responders and 28 (57%) of 49 patients overall. 13 responders ceased all therapy; among these all 11 minimal residual disease-negative responders remain progression-free off therapy. Two with minimal residual disease-positive complete response progressed after 24 months off therapy and re-attained response after re-initiation of venetoclax. Interpretation A substantial proportion of patients achieved an overall response with the combination of venetoclax and rituximab including 25 (51%) of 49 patients who achieved a complete response and 28 (57%) of 49 patients who achieved negative marrow minimal residual disease with acceptable safety. The depth and durability of responses observed with the combination offers an attractive potential treatment option for patients with relapsed or refractory chronic lymphocytic leukaemia and could allow some patients to maintain response after discontinuing therapy, a strategy that warrants further investigation in randomised studies. PMID:28089635

  10. The Johns Hopkins RTR Consortium: A Collaborative Approach to Advance Translational Science and Standardize Clinical Monitoring of Restorative Transplantation

    DTIC Science & Technology

    2016-10-01

    non-myeloablative conditioning plus bone marrow infusion (BMI) and intermediate dose tacrolimus (10-15 ng/ml) for 30 days only. Group VIII received the...induction regimen, BMI and CTLA4-Ig and a short-term dose of tacrolimus (30 days ). In all groups, graft rejection was monitored by clinical...long-term graft survival (>230 days ). In the current reporting period (Aim 2 and Aim 3), 3/3 animals in group IV and 4/5 animals in Group V achieved

  11. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  12. SU-F-J-127: Multi-Institutional Evaluation of Setup, Organ Deformation, Precision Dosimetry in Total Marrow Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuro, D; Hui, S

    Purpose: Totals Marrow Irradiation (TMI) is a highly focused radiation delivery to the human skeleton structure therefore requiring a high amount of precision and accuracy for a quality treatment. Not much is known on how the patient position varies across multiple treatment fractions and how that positioning impacts the dose delivery. Currently TMI is studied as an international collaboration with multiple centers around the world; however, many of these centers used different pretreatment techniques. The goal of this work is to measure the accuracy of patient positioning, its impact on dose delivery and compare the impact of each technique formore » multiple institutions. Methods: Using Tomotherapy pretreatment MVCTs and the planning KVCTs measurements are made of the 3D setup uncertainties of the TMI treatment. Then, using the dose and plan files of the treatment impact of patient position on dose can be measured. Measurement of organ deformation and center of mass change were done using the Velocity AI program from Varian. We are looking at four the boney targets (skull, spine, pelvis, and femur) and three key sensitive tissues (eyes, lungs, kidneys). Results: Position measurements have been made for 3 different institutions using 3 different pre-treatment techniques. Comparing the translation motion we can observe the greatest change in the Y and Z direction of patient set up. For intra-fractional motion the shoulder and clavicle represent the greatest potential for motion and therefore most likely to have a dose change. Conclusion: All centers use different techniques for their treatment and this study shows that these techniques do not produce the same pretreatment results. We hope to expand this study further. Currently we have 3 centers participating in this study with more centers joining every day.« less

  13. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test

    PubMed Central

    Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo e

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties. PMID:26335560

  14. Semimechanistic Bone Marrow Exhaustion Pharmacokinetic/Pharmacodynamic Model for Chemotherapy-Induced Cumulative Neutropenia.

    PubMed

    Henrich, Andrea; Joerger, Markus; Kraff, Stefanie; Jaehde, Ulrich; Huisinga, Wilhelm; Kloft, Charlotte; Parra-Guillen, Zinnia Patricia

    2017-08-01

    Paclitaxel is a commonly used cytotoxic anticancer drug with potentially life-threatening toxicity at therapeutic doses and high interindividual pharmacokinetic variability. Thus, drug and effect monitoring is indicated to control dose-limiting neutropenia. Joerger et al. (2016) developed a dose individualization algorithm based on a pharmacokinetic (PK)/pharmacodynamic (PD) model describing paclitaxel and neutrophil concentrations. Furthermore, the algorithm was prospectively compared in a clinical trial against standard dosing (Central European Society for Anticancer Drug Research Study of Paclitaxel Therapeutic Drug Monitoring; 365 patients, 720 cycles) but did not substantially improve neutropenia. This might be caused by misspecifications in the PK/PD model underlying the algorithm, especially without consideration of the observed cumulative pattern of neutropenia or the platinum-based combination therapy, both impacting neutropenia. This work aimed to externally evaluate the original PK/PD model for potential misspecifications and to refine the PK/PD model while considering the cumulative neutropenia pattern and the combination therapy. An underprediction was observed for the PK (658 samples), the PK parameters, and these parameters were re-estimated using the original estimates as prior information. Neutrophil concentrations (3274 samples) were overpredicted by the PK/PD model, especially for later treatment cycles when the cumulative pattern aggravated neutropenia. Three different modeling approaches (two from the literature and one newly developed) were investigated. The newly developed model, which implemented the bone marrow hypothesis semiphysiologically, was superior. This model further included an additive effect for toxicity of carboplatin combination therapy. Overall, a physiologically plausible PK/PD model was developed that can be used for dose adaptation simulations and prospective studies to further improve paclitaxel/carboplatin combination therapy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Ethanol extract of Peperomia pellucida (Piperaceae) promotes fracture healing by an anabolic effect on osteoblasts.

    PubMed

    Ngueguim, Florence Tsofack; Khan, Mohd Parvez; Donfack, Jean Hubert; Tewari, Deepshikha; Dimo, Theophile; Kamtchouing, Pierre; Maurya, Rakesh; Chattopadhyay, Naibedya

    2013-06-21

    The whole plant or some part of Peperomia pellucida (L.) HBK is used in some parts of Cameroon as a treatment for fracture healing. To evaluate the effect of ethanolic extracts of Peperomia pellucida (L.), a Cameroonian medicinal plant on bone regeneration following bone and marrow injury, and determine the mode of action. Ethanol extract of Peperomia pellucida was administered at 100 and 200mg/kg doses orally to adult female Sprague-Dawley rats having a drill hole injury (0.8mm) in the femur diaphysis. Vehicle (gum-acacia in distilled water) was given to the control group. After 12 days of treatment, animals were euthanized and femur bones collected. Confocal microscopy of calcein labeling at the drill hole site was performed to evaluate bone regeneration. 3-D microarchitecture of drill hole site was analyzed by micorocomputed tomography. Osteogenic effects of the extract were evaluated by assessing mineralized nodule formation of bone marrow stromal cells and expression of osteogenic genes (mRNA level of type-1 collagen, bone morphogenetic protein-2 and osteocalcin genes) in the femur. Ethanol extract from Peperomia Pellucida (L.) dose-dependently induced bone regeneration at the fracture site. At 200mg/kg dose, the extract significantly increased mineral deposition compared to controls. The extract also improved microarchitecture of the regenerating bone evident from increased bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular separation and structure model index. In addition, the extract increased the formation of mineralized nodules from the bone marrow stromal cells. Furthermore, the extract induced the expression of osteogenic genes in the femur including type 1 collagen, osteocalcin and BMP-2, compared to control. Ethanolic extract of P. pellucid (L.) accelerates fracture repair in rats via stimulatory effects on osteoblast differentiation and mineralization, thereby justifying its traditional use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. DAMAGE AND REPAIR OF THE GASTROINTESTINAL TRACT AFTER SUPRALETHAL RADIATION. EXPERIENCE WITH DOGS RECEIVING 1800 TO 2400 ROENTGENS OF WHOLE-BODY GAMMA RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, E.B.; Ferrebee, J.W.; Thomas, E.D.

    1963-01-01

    Fifty-five young dogs were exposed to Co/sup 60/ gamma radiation. After whole-body exposures of 1,800 to 2,400 r they were given supportive therapy: fluids, antibiotics, and fresh blood, and intravenous infusions of homologous or antologous marrow. Four with functioning grafts of homologous marrow are alive and well 15, 18, 19, and 29 months following exposure. Survival in the others ranged from 3 days to 7 months. No clinically significant gastrointestinal lesion attributable to radiation damage was recognized at autopsy in animals that survived 3 or more weeks. Regeneration of intestinal mucosa was observed in all but one. Repair was prompt,more » virtually complete by the ninth day post-radiation. The pancreas was abnormal in six dogs with acute hemorrhagic pancreatitis in one and atrophy and exocrine deficiency in five. Disturbance of gastrointestinal function and structure increased with radiation dosage and radiation dose rate. At 1800 r, given in successive daily doses of 600 r at 2 to 7 r per minute, vomiting and diarrhea were absent. With 1800 r given continuously vomiting and diarrhea occurred and were progressively more severe and more early in occurrence as dose rate was increased from 2 to 5 to 18 r per minute. Dehydration and collapse in 3 or 4 days were frequent following 2000 to 2400 r given continuoualy at 12 to 18 r per minute. Anorexia and weight loss occurred in all irradiated dogs a few days after exposure. After regaining appetite and weight, survivors with homologous marrow grafts experienced in the fourth or fifth week a recurrence of anorexia and weight loss that was presumably due to graft versus host reaction. Histologic change assignable to this reaction was not recognized at autopsy. (auth)« less

  17. WE-DE-BRA-09: Fast Megavoltage CT Imaging with Rapid Scan Time and Low Imaging Dose in Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; University of Tokyo Hospital, Tokyo; University of Minnesota, Minneapolis, MN

    Purpose: Megavoltage computed tomography (MVCT) imaging has been widely used for daily patient setup with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, owing to slow couch speed. The purpose of this study was to develop an MVCT imaging method allowing faster couch speeds, and to assess its accuracy for image guidance for HT. Methods: Three cadavers (mimicking closest physiological and physical system of patients) were scanned four times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm. The MVCT images weremore » registered with kilovoltage CT images, and the registration errors were compared with the errors with conventional filtered back projection (FBP) algorithm. Moreover, the fast MVCT imaging was tested in three cases of total marrow irradiation as a clinical trial. Results: Three-dimensional registration errors of the MVCT images reconstructed with the IR algorithm were significantly smaller (p < 0.05) than the errors of images reconstructed with the FBP algorithm at fast couch speeds (3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, a limited number of conventional MVCT (1.2 mm/s) and fast MVCT (3 mm/s) reveals acceptable reduced imaging time and dose able to use for anatomical registration. Conclusion: Fast MVCT with IR algorithm maybe clinically feasible alternative for rapid 3D patient localization. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area.« less

  18. 3 Tesla (1) H MR spectroscopy of hip bone marrow in a healthy population, assessment of normal fat content values and influence of age and sex.

    PubMed

    Pansini, Vittorio; Monnet, Aurélien; Salleron, Julia; Hardouin, Pierre; Cortet, Bernard; Cotten, Anne

    2014-02-01

    To evaluate in a healthy population normal spectroscopic fat content (FC) values of the hip bone marrow and to assess the influence of age and sex on bone marrow conversion. Eighty volunteers (40 men; 40 women; ages: 20-60 years; divided into four consecutive groups) underwent acetabulum, femoral head, femoral neck, greater trochanter, and diaphysis localized (1) H MR spectroscopy. FC values of each anatomical site were obtained according to the following formula: Fat content = CH2 /(CH2  + Water)*100. To assess bone marrow conversion, a spectroscopic conversion index (SCI) was calculated as FC neck/FC greater trochanter. FC values showed a gradient as follows: greater trochanter > femoral head > femoral neck > diaphysis > acetabulum in every age group both in men and in women. SCI increased with age both in men and women, showing lower values in women for every age group. We obtained normal spectroscopic FC values from different areas of the hip, according to age and sex. These values may be used as reference values to evaluate, by the means of (1) H MR spectroscopy, pathological conditions affecting hip bone marrow. Copyright © 2013 Wiley Periodicals, Inc.

  19. Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Donzelli, Mattia; Bräuer-Krisch, Elke; Oelfke, Uwe; Wilkens, Jan J.; Bartzsch, Stefan

    2018-02-01

    Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.

  20. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  1. Human parvovirus B19 infection during the inactive stage of systemic lupus erythematosus.

    PubMed

    Suzuki, Takashiro; Saito, Shinichiro; Hirabayashi, Yasuhiko; Harigae, Hideo; Ishii, Tomonori; Kodera, Takao; Fujii, Hiroshi; Munakata, Yasuhiko; Sasaki, Takeshi

    2003-06-01

    A 42-year-old woman with systemic lupus erythematosus (SLE) had an episode of fever, arthralgia and anemia. In order to treat the suspected activation of SLE, the daily dose of steroid was increased, however, the anemia progressed and pancytopenia developed. Both IgM anti-B19 antibodies to human parvovirus B19 (B19) and B19 DNA were positive, and bone marrow analysis revealed pure red cell aplasia with giant proerythroblasts. High dose gamma globulin was administered and the daily dose of steroid was tapered, resulting in the improvement of her condition. B19 infection should be ruled out in cases with reactivation of autoimmune diseases.

  2. Effect of inactivated viral vaccines (human) on frequency of micronuclei in bone marrow erythrocytes of mice.

    PubMed

    Rao, L V; Polasa, H

    1991-07-01

    Cytogenetic effects of the two inactivated viral vaccines (polio and antirabies) were studied in adult male mice by the micronucleus test. Polio salk vaccine did not induce micronuclei formation at both human (0.5 ml) and 1/5th human doses. Antirabies vaccine induced micronuclei in poly and total erythrocytes only at human dose of 2 ml. Beta-propiolactone (BPL) induced micronuclei at higher dose of 5.7 mg, but not at 0.57 mg (approximate concentration present in 2 ml of rabies vaccine). The P/N ratio was not affected in vaccinated and BPL inoculated animals. Antirabies vaccine induced micronuclei percentage was more than the BPL value.

  3. [Systemic lupus erythematosus and anaemia].

    PubMed

    Falcão, S; Barros, R; Mateus, M; Nero, P; de Matos, A Alves; Pimentão, J Bravo; Ribeiro, I; Weigert, A; Branco, J C

    2007-01-01

    The authors report the case of a 48-years-old Caucasian women, with a previous diagnosis of systemic lupus erythematosus characterized by asthenia, fever, skin rash, alopecia, Raynaud's phenomenon, arthritis, pericardial effusion, interstitial pulmonary involvement, diffuse proliferative glomerulonephritis with crescents and anemia. The presence of severe anemia refractory to high doses of glucocorticoids (1 mg/ /Kg/day), iron therapy and blood transfusions, associated with a low reticulocyte count determined the execution of a bone marrow aspiration, biopsy and immunophenotyping, which were compatible with the diagnosis of Myelodysplastic Syndrome. The treatment with erythropoietin (5.000U 3x/week) and cyclophosphamide pulses (1 gr/m(2) month) induced complete regression of morphologic bone marrow changes and anemia. The main causes of anemia in lupus patients are discussed.

  4. Targeted imaging of gastrin-releasing peptide receptors with 99mTc-EDDA/HYNIC-[Lys3]-bombesin: biokinetics and dosimetry in women.

    PubMed

    Santos-Cuevas, Clara L; Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Pichardo-Romero, Pablo A

    2008-08-01

    The gastrin-releasing peptide receptor (GRP-R) is expressed in several normal human tissues and is overexpressed in various human tumors including breast, prostate, small-cell lung cancer and pancreatic cancer. Recently, 99mTc-EDDA/HYNIC-[Lys]-bombesin (99mTc-HYNIC-BN) was reported as a radiopharmaceutical with high stability in human serum, specific cell GRP-R binding and rapid cell internalization. The aim of this study was to determine the biokinetics and dosimetry of 99mTc-HYNIC-BN and the feasibility of using this radiopharmaceutical to image GRP-R in four early breast cancer patients and seven healthy women. Whole-body images were acquired at 20, 90, 180 min, and 24 h after 99mTc-HYNIC-BN administration. The same regions of interest were drawn around source organs on each time frame and regions of interest were converted to activity (conjugate view counting method). The image sequence was used to extrapolate 99mTc-HYNIC-BN time-activity curves in each organ to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. 99mTc-HYNIC-BN had a rapid blood clearance with mainly renal excretion. No statistically significant differences (P>0.05) in the radiation-absorbed doses among cancer patients and healthy women were observed. The average equivalent doses (n=11) were 24.8+/-8.8 mSv (kidneys), 7.3+/-1.8 mSv (lungs), 6.5+/-4.0 mSv (breast), 2.0+/-0.3 mSv (pancreas), 1.6+/-0.3 mSv (liver), 1.2+/-0.2 mSv (ovaries), and 1.0+/-0.2 mSv (red marrow). The effective dose was 3.3+/-0.6 mSv. The images showed well-differentiated concentration of 99mTc-HYNIC-BN in cancer mammary tissue. All the absorbed doses were comparable with those known for most of the 99mTc studies. 99mTc-HYNIC-BN shows high tumor uptake in breasts with malignant tumors so it is a promising imaging radiopharmaceutical to target site-specific early breast cancer. The results obtained warrant a further clinical study to determine specificity/sensibility of 99mTc-HYNIC-BN.

  5. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System

    NASA Technical Reports Server (NTRS)

    Alwood, Joshua S.; Tran, Luan H.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Kumar, Akhilesh; Hilton, Diane; Tahimic, Candice G. T.; Globus, Ruth

    2017-01-01

    Exposure to space radiation may pose a risk to skeletal health during subsequent aging. Irradiation acutely stimulates bone remodeling in mice, although the long-term influence of space radiation on bone-forming potential (osteoblastogenesis) and possible adaptive mechanisms are not well understood. We hypothesized exposure to ionizing radiation impairs osteoblastogenesis in an ion-type specific manner, with low doses capable of modulating expression of redox-related genes. 16-week old, male, C57BL6/J mice were exposed to low linear-energy-transfer (LET) protons (150 mega electron volts per nucleon) or high-LET (sup 56) Fe ions (600 mega electron volts per nucleon) using either low (5 or 10 centigrays) or high (50 or 200 centigrays) doses at NASAs Space Radiation Lab at Brookhaven National Lab (NSRL/BNL). Tissues were harvested 5 weeks or 1 year after irradiation and bones were analyzed by microcomputed tomography for cancellous microarchitecture and cortical geometry. Marrow-derived, adherent cells were grown under osteoblastogenic culture conditions. Cell lysates were analyzed for select groups by RT-PCR (Reverse Transcription-Polymerase Chain Reaction) during the proliferative phase or the mineralizing phase, and differentiation was analyzed by imaging mineralized nodules (percentage surface area). Representative genes were selected for expression analyses, including cell proliferation (PCNA, Cdk2, p21, p53), differentiation (Runx2, Alpl, Bglap), oxidative metabolism (Catalase, GPX, MnSOD, CuZnSOD, iNos, Foxo1), DNA-damage repair (Gadd45), or apoptosis (Caspase 3). As expected, a high dose (200 centigrays), but not low doses, of either (sup 56) Fe or protons caused a loss of cancellous bone volume per total volume. Marrow cells produced mineralized nodules ex vivo regardless of radiation type or dose; (sup 56) Fe (200 centigrays) inhibited median nodule area by more than 90 percent at 5 weeks and 1 year post-irradiation, compared to controls. At 5 weeks post exposure, irradiation with protons or (sup 56) Fe caused few changes in gene expression levels during osteoblastogenesis, although a high dose of (sup 56) Fe (200 centigrays) increased levels of Catalase and Gadd45. In addition, supplementing cell culture media with SOD protected marrow-derived osteoprogenitors from the damaging effects of exposure to low-LET ((sup 137) Cs gamma) if irradiated in vitro, but had limited protective effects on high-LET (sup 56) Fe-exposed cells. In sum, exposure of mice to either protons or (sup 56) Fe at a relatively high dose (200 cGy) caused persistent bone loss, whereas only high-LET (sup 56) Fe increased expression of redox-related genes and inhibited osteoblastogenesis, albeit to a limited extent. We conclude that high-LET irradiation impaired osteoblastogenesis and regulated steady-state gene expression of select redox-related genes during osteoblastogenesis, which may contribute to persistent bone loss.

  6. Assessment of the genotoxic/clastogenic potential of coumarin derivative 6,7-dihydroxycoumarin (aesculetin) in multiple mouse organs.

    PubMed

    Marques, Eduardo de Souza; Salles, Daiane Bernardoni; Maistro, Edson Luis

    2015-01-01

    6,7-Dihydroxycoumarin (6,7-HC) (aesculetin) is a natural and synthetic coumarin derivative of great interest for use by humans due to their potent antioxidant properties. Considering that there are no reports that assess the in vivo genetic toxicity of 6,7-HC, the aim of the present study was to investigate its genotoxic potential in terms of DNA damage in peripheral blood, liver, bone marrow and testicular cells of Swiss albino mice by the comet assay, and its clastogenic/aneugenic potential in bone marrow cells using the micronucleus test. In addition, the ability of 6,7-HC to modulate the genotoxic effects induced by doxorubicin (DXR) was also preliminarily evaluated. Cytotoxicity was assessed by scoring polychromatic (PCE) and normochromatic (NCE) erythrocytes' ratio. The test compound was administered orally at doses of 25, 50 and 500 mg kg -1 isolated and also simultaneously to DXR (80 mg kg -1 ). The results showed that 6,7-HC did not induce significant DNA damage in any of the analyzed cells, and also did not show any significant increase in micronucleated PCE at the three tested doses. The PCE/NCE ratio indicated no cytotoxicity. Moreover, the extent of DNA damage induced by DXR decreased significantly only in peripheral blood and testicular cells, and only at the lowest dose of 6,7-HC.

  7. Lomustine Nanoparticles Enable Both Bone Marrow Sparing and High Brain Drug Levels - A Strategy for Brain Cancer Treatments.

    PubMed

    Fisusi, Funmilola A; Siew, Adeline; Chooi, Kar Wai; Okubanjo, Omotunde; Garrett, Natalie; Lalatsa, Katerina; Serrano, Dolores; Summers, Ian; Moger, Julian; Stapleton, Paul; Satchi-Fainaro, Ronit; Schätzlein, Andreas G; Uchegbu, Ijeoma F

    2016-05-01

    The blood brain barrier compromises glioblastoma chemotherapy. However high blood concentrations of lipophilic, alkylating drugs result in brain uptake, but cause myelosuppression. We hypothesised that nanoparticles could achieve therapeutic brain concentrations without dose-limiting myelosuppression. Mice were dosed with either intravenous lomustine Molecular Envelope Technology (MET) nanoparticles (13 mg kg(-1)) or ethanolic lomustine (6.5 mg kg(-1)) and tissues analysed. Efficacy was assessed in an orthotopic U-87 MG glioblastoma model, following intravenous MET lomustine (daily 13 mg kg(-1)) or ethanolic lomustine (daily 1.2 mg kg(-1) - the highest repeated dose possible). Myelosuppression and MET particle macrophage uptake were also investigated. The MET formulation resulted in modest brain targeting (brain/ bone AUC0-4h ratios for MET and ethanolic lomustine = 0.90 and 0.53 respectively and brain/ liver AUC0-4h ratios for MET and ethanolic lomustine = 0.24 and 0.15 respectively). The MET formulation significantly increased mice (U-87 MG tumours) survival times; with MET lomustine, ethanolic lomustine and untreated mean survival times of 33.2, 22.5 and 21.3 days respectively and there were no material treatment-related differences in blood and femoral cell counts. Macrophage uptake is slower for MET nanoparticles than for liposomes. Particulate drug formulations improved brain tumour therapy without major bone marrow toxicity.

  8. Toxicity of synthetic flavorings, nature identical and artificial, to hematopoietic tissue cells of rodents.

    PubMed

    Sales, I M S; Silva, J M; Moura, E S R; Alves, F D S; Silva, F C C; Sousa, J M C; Peron, A P

    2018-05-01

    The goal of this study was to analyze cytotoxicity, genotoxicity and mutagenicity to bone marrow cells of mice of nature identical synthetic flavorings, passion fruit and strawberry, and artificial synthetic flavorings, vanilla, chocolate, tutti-frutti and cookie, at doses 0.5; 1.0; 2.0; 5.0 and 10.0 mL/kg. The additives were given to the animals by gavage in a single daily application for seven days. Data were subjected to analysis of variance (ANOVA) followed by post Tukey's post hoc test, p <0.05. Animals treated with 2.0; 5.0 and 10.0 mL/Kg of flavorings chocolate, strawberry and cookie, and 5.0 and 10.0 mL/Kg of flavorings vanilla and passion fruit died on the fifth and sixth day of the experiment, respectively. The doses 0.5 and 1.0 mL/Kg of the six additives significantly reduced erythropoiesis in the examined tissue. Also, treatments 0.5 and 1.0 mL/Kg of chocolate, and 1.0 mL/Kg of strawberry and biscuit induced the formation of micronuclei in the bone marrow erythrocytes, at a significant frequency. Therefore, under the study conditions, the six microingredients analyzed were cytotoxic and genotoxic, and additives strawberry, chocolate and cookie were also mutagenic in at least one of the evaluated doses.

  9. Dragon's blood Croton palanostigma induces genotoxic effects in mice.

    PubMed

    Maistro, Edson Luis; Ganthous, Giulia; Machado, Marina da Silva; Zermiani, Tailyn; Andrade, Sérgio Faloni de; Rosa, Paulo Cesar Pires; Perazzo, Fabio Ferreira

    2013-05-20

    Dragon's blood is a dark-red sap produced by species from the genus Croton (Euphorbiaceae), which has been used as a famous traditional medicine since ancient times in many countries, with scarce data about its safe use in humans. In this research, we studied genotoxicity and clastogenicity of Croton palanostigma sap using the comet assay and micronucleus test in cells of mice submitted to acute treatment. HPLC analysis was performed to identify the main components of the sap. The sap was administered by oral gavage at doses of 300 mg/kg, 1,000 mg/kg and 2,000 mg/kg. For the analysis, the comet assay was performed on the leukocytes and liver cells collected 24h after treatment, and the micronucleus test (MN) on bone marrow cells. Cytotoxicity was assessed by scoring 200 consecutive polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). The alkaloid taspine was the main compound indentified in the crude sap of Croton palanostigma. The results of the genotoxicity assessment show that all sap doses tested produced genotoxic effects in leukocytes and liver cells and also produced clastogenic/aneugenic effects in bone marrow cells of mice at the two higher doses tested. The PCE/NCE ratio indicated no cytotoxicity. The data obtained suggest caution in the use of Croton palanostigma sap by humans considering its risk of carcinogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Development of a database of organ doses for paediatric and young adult CT scans in the United Kingdom

    PubMed Central

    Kim, K. P.; Berrington de González, A.; Pearce, M. S.; Salotti, J. A.; Parker, L.; McHugh, K.; Craft, A. W.; Lee, C.

    2012-01-01

    Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240 000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries. PMID:22228685

  11. Development of a database of organ doses for paediatric and young adult CT scans in the United Kingdom.

    PubMed

    Kim, K P; Berrington de González, A; Pearce, M S; Salotti, J A; Parker, L; McHugh, K; Craft, A W; Lee, C

    2012-07-01

    Despite great potential benefits, there are concerns about the possible harm from medical imaging including the risk of radiation-related cancer. There are particular concerns about computed tomography (CT) scans in children because both radiation dose and sensitivity to radiation for children are typically higher than for adults undergoing equivalent procedures. As direct empirical data on the cancer risks from CT scans are lacking, the authors are conducting a retrospective cohort study of over 240,000 children in the UK who underwent CT scans. The main objective of the study is to quantify the magnitude of the cancer risk in relation to the radiation dose from CT scans. In this paper, the methods used to estimate typical organ-specific doses delivered by CT scans to children are described. An organ dose database from Monte Carlo radiation transport-based computer simulations using a series of computational human phantoms from newborn to adults for both male and female was established. Organ doses vary with patient size and sex, examination types and CT technical settings. Therefore, information on patient age, sex and examination type from electronic radiology information systems and technical settings obtained from two national surveys in the UK were used to estimate radiation dose. Absorbed doses to the brain, thyroid, breast and red bone marrow were calculated for reference male and female individuals with the ages of newborns, 1, 5, 10, 15 and 20 y for a total of 17 different scan types in the pre- and post-2001 time periods. In general, estimated organ doses were slightly higher for females than males which might be attributed to the smaller body size of the females. The younger children received higher doses in pre-2001 period when adult CT settings were typically used for children. Paediatric-specific adjustments were assumed to be used more frequently after 2001, since then radiation doses to children have often been smaller than those to adults. The database here is the first detailed organ-specific paediatric CT scan database for the UK. As well as forming the basis for the UK study, the results and description of the methods will also serve as a key resource for paediatric CT scan studies currently underway in other countries.

  12. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  13. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier.

    PubMed

    Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana

    2018-02-13

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.

  14. Sea Buckthorn Leaf Extract Protects Jejunum and Bone Marrow of 60Cobalt-Gamma-Irradiated Mice by Regulating Apoptosis and Tissue Regeneration

    PubMed Central

    Gupta, Manish; Saini, Manu; Abdin, M. Z.; Prasad, Jagdish

    2015-01-01

    A single dose (30 mg/kg body weight) of standardized sea buckthorn leaf extract (SBL-1), administered 30 min before whole body 60Co-gamma-irradiation (lethal dose, 10 Gy), protected >90% of mice population. The purpose of this study was to investigate the mechanism of action of SBL-1 on jejunum and bone marrow, quantify key bioactive compounds, and analyze chemical composition of SBL-1. Study with 9-week-old inbred male Swiss albino Strain ‘A' mice demonstrated that SBL-1 treatment before 60Co-gamma-irradiation (10 Gy) significantly (p < 0.05) countered radiation induced decreases in jejunum crypts (1.27-fold), villi number (1.41-fold), villus height (1.25-fold), villus cellularity (2.27-fold), cryptal Paneth cells (1.89-fold), and Bcl2 level (1.54-fold). It countered radiation induced increases in cryptal apoptotic cells (1.64-fold) and Bax levels (1.88-fold). It also countered radiation (2 Gy and 3 Gy) induced bone marrow apoptosis (1.59-fold and 1.85-fold) and micronuclei frequency (1.72-fold and 2.6-fold). SBL-1 rendered radiation protection by promoting cryptal stem cells proliferation, by regulating apoptosis, and by countering radiation induced chromosomal damage. Quercetin, Ellagic acid, Gallic acid, high contents polyphenols, tannins, and thiols detected in SBL-1 may have contributed to radiation protection by neutralization of radiation induced oxidative species, supporting stem cell proliferation and tissue regeneration. PMID:26421051

  15. Antioxidant and antiradical properties of esculin, and its effect in a model of epirubicin-induced bone marrow toxicity.

    PubMed

    Biljali, Sefedin; Hadjimitova, Vera A; Topashka-Ancheva, Margarita N; Momekova, Denitsa B; Traykov, Trayko T; Karaivanova, Margarita H

    2012-01-01

    To evaluate the effect of esculin, a plant coumarin glucoside, on free radicals and against epirubicin-induced toxicity on bone marrow cells. Antioxidant activity was assessed by a luminol-dependent chemiluminescence method or NBT test in a xanthine-xanthine oxidase system, and two iron-dependent lipid peroxidation systems. In vivo experiments were carried out in epirubicin-treated mice, alone or in a combination with esculin. Genotoxicity of the anthracycline drug was assessed by cytogenetic analysis and an autoradiographic assay. Esculin inactivated superoxide anion radicals in both systems we used. It exerted SOD-mimetic effect and reduced the level of superoxide radicals generated in a xanthine-xanthine oxidase system by 30%. Esculin also showed an antioxidant effect in a model of Fe2+-induced lipid peroxidation. Cytogenetic analysis showed that epirubicin had a marked influence on the structure of metaphase chromosomes of normal bone marrow cells. Inclusion of esculin in the treatment protocol failed to ameliorate the epirubicin-induced antiproliferative effects and genotoxicity in bone marrow cells. In this study the ability of the coumarin glucoside esculin to scavenge superoxide radicals and to decrease Fe-induced lipid peroxidation was documented. However, despite the registered antioxidant effects the tested compound failed to exert cytoprotection in models of anthracycline-induced genotoxicity in bone marrow cells. The results of this study warrant for more precise further evaluation of esculin, employing different test systems and end-points and a wider range of doses to more precisely appraise its potential role as a chemoprotective/resque agent.

  16. Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation.

    PubMed

    Wong, Jeffrey Y C; Rosenthal, Joseph; Liu, An; Schultheiss, Timothy; Forman, Stephen; Somlo, George

    2009-01-01

    Total-body irradiation (TBI) has an important role in patients undergoing hematopoietic cell transplantation (HCT), but is associated with significant toxicities. Targeted TBI using helical tomotherapy results in reduced doses to normal organs, which predicts for reduced toxicities compared with standard TBI. Thirteen patients with multiple myeloma were treated in an autologous tandem transplantation Phase I trial with high-dose melphalan, followed 6 weeks later by total-marrow irradiation (TMI) to skeletal bone. Dose levels were 10, 12, 14, and 16 Gy at 2 Gy daily/twice daily. In a separate allogeneic HCT trial, 8 patients (5 with acute myelogenous leukemia, 1 with acute lymphoblastic leukemia, 1 with non-Hodgkin's lymphoma, and 1 with multiple myeloma) were treated with TMI plus total lymphoid irradiation plus splenic radiotherapy to 12 Gy (1.5 Gy twice daily) combined with fludarabine/melphalan. For the 13 patients in the tandem autologous HCT trial, median age was 54 years (range, 42-66 years). Median organ doses were 15-65% that of the gross target volume dose. Primarily Grades 1-2 acute toxicities were observed. Six patients reported no vomiting; 9 patients, no mucositis; 6 patients, no fatigue; and 8 patients, no diarrhea. For the 8 patients in the allogeneic HCT trial, median age was 52 years (range, 24-61 years). Grades 2-3 nausea, vomiting, mucositis, and diarrhea were observed. In both trials, no Grade 4 nonhematologic toxicity was observed, and all patients underwent successful engraftment. This study shows that TMI using helical tomotherapy is clinically feasible. The reduced acute toxicities observed compare favorably with those seen with standard TBI. Initial results are encouraging and warrant further evaluation as a method to dose escalate with acceptable toxicity or to offer TBI-containing regimens to patients unable to tolerate standard approaches.

  17. Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.

    Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to themore » thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.« less

  18. The prolonged gastrointestinal syndrome in rhesus macaques: the relationship between gastrointestinal, hematopoietic, and delayed multi-organ sequelae following acute, potentially lethal, partial-body irradiation.

    PubMed

    MacVittie, Thomas J; Bennett, Alexander; Booth, Catherine; Garofalo, Michael; Tudor, Gregory; Ward, Amanda; Shea-Donohue, Terez; Gelfond, Daniel; McFarland, Emylee; Jackson, William; Lu, Wei; Farese, Ann M

    2012-10-01

    The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min(-1) to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for efficacy and interaction during the concomitant evolution of acute and delayed key organ-specific subsyndromes.

  19. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.

    1990-12-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease inmore » bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation.« less

  20. Positioning accuracy during VMAT of gynecologic malignancies and the resulting dosimetric impact by a 6-degree-of-freedom couch in combination with daily kilovoltage cone beam computed tomography.

    PubMed

    Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing

    2015-04-26

    To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.

  1. The accuracy of the out-of-field dose calculations using a model based algorithm in a commercial treatment planning system

    NASA Astrophysics Data System (ADS)

    Wang, Lilie; Ding, George X.

    2014-07-01

    The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.

  2. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin

    2013-10-01

    To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less

  3. The influence of the dose calculation resolution of VMAT plans on the calculated dose for eye lens and optic pathway.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Jung-In; Carlson, Joel; Kim, Jin Ho

    2017-03-01

    To investigate the effect of dose calculation grid on calculated dose-volumetric parameters for eye lenses and optic pathways. A total of 30 patients treated using the volumetric modulated arc therapy (VMAT) technique, were retrospectively selected. For each patient, dose distributions were calculated with calculation grids ranging from 1 to 5 mm at 1 mm intervals. Identical structures were used for VMAT planning. The changes in dose-volumetric parameters according to the size of the calculation grid were investigated. Compared to dose calculation with 1 mm grid, the maximum doses to the eye lens with calculation grids of 2, 3, 4 and 5 mm increased by 0.2 ± 0.2 Gy, 0.5 ± 0.5 Gy, 0.9 ± 0.8 Gy and 1.7 ± 1.5 Gy on average, respectively. The Spearman's correlation coefficient between dose gradients near structures vs. the differences between the calculated doses with 1 mm grid and those with 5 mm grid, were 0.380 (p < 0.001). For the accurate calculation of dose distributions, as well as efficiency, using a grid size of 2 mm appears to be the most appropriate choice.

  4. What's all the fuss about? facts and figures about bone marrow failure and conditions.

    PubMed

    Mukherjee, Sudipto; Sekeres, Mikkael A

    2012-12-01

    The epidemiology of bone marrow failure conditions is not well understood. Although several population-based studies conducted in the last two decades have generated a wealth of information, it is still very challenging to interpret disease incidence and prevalence, particularly due to changes in disease classification, misdiagnosis of patients, frequent underreporting and use of different referent populations to calculate rates. Despite these limitations, the available epidemiologic data have revealed significant ethnic, geographic and clinical differences in disease biology that have implications for prevention and treatment strategies. With advances made in targeted therapies facilitated by identification of molecular biomarkers and increased use of curative bone marrow transplantation approach, the natural history of these disease entities is already changing. The epidemiology of these diseases seems to be the next frontier as knowledge gained about the risk factors and pathobiologic correlates could significantly help in designing patient-specific therapies with improved outcomes.

  5. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) but did not follow results from skeletal models based upon assumptions of an infinite expanse of trabecular spongiosa.

  6. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C; Schultheiss, T

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less

  7. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume. PMID:20622550

  8. Therapeutic and neurotoxic effects of 2-chlorodeoxyadenosine in adults with acute myeloid leukemia.

    PubMed

    Vahdat, L; Wong, E T; Wile, M J; Rosenblum, M; Foley, K M; Warrell, R P

    1994-11-15

    Despite expectations that 2-chlorodeoxyadenosine (2-CdA) would prove active primarily in lymphoproliferative diseases, early reports suggested unexpected high activity of this drug in heavily pretreated children with acute myeloblastic leukemia (AML) at a maximally tolerated dose of 8.9 mg/m2/day for 5 days. In view of these findings, we conducted an escalating dose trial of 2-CdA in adult patients with relapsed or resistant AML. Thirty-six patients who had received extensive prior therapy were treated at 9 dose levels of 2-CdA at daily doses ranging from 5 to 21 mg/m2 for 5 days. 2-CdA eliminated leukemic blasts from the peripheral blood in 32 of 36 cases; however, bone marrow hypoplasia was seen only at daily dose levels > or = 15 mg/m2. We observed a total of 3 complete remissions: 1 at the 15 mg/m2/d dose level and 2 at the 21 mg/m2/d dose level; these responses persisted for 3, 2, and 3 months, respectively. Although prolonged myelosuppression would have been dose-limiting at 21 mg/m2/d for 5 days, the most important adverse effect was the development of a sensorimotor peripheral neuropathy. This reaction, whose onset was substantially delayed after completion of drug treatment, was observed in 2 of 5 patients at the 19 mg/m2/d level and in 4 of 4 evaluable patients at the 21 mg/m2/d level. Pathologically, this process was characterized by axonal degeneration and secondary demyelination. Other side effects included reactivation of a posttransplant Epstein-Barr virus-related lymphoma in 1 patient and tumor lysis syndrome. We conclude that the maximally tolerable dose of 2-CdA in adult patients (17 mg/m2/d for 5 days) in approximately twofold in excess of that previously reported in children and that the limiting toxic effect is a degenerative neuropathic disorder. We confirm that this drug has definite activity in AML, but the magnitude of this effect needs to be determined in larger numbers of patients who have received less extensive therapy. This agent deserves further evaluation in patients with both AML and acute lymphoblastic leukemia at these higher doses and perhaps as part of a preparative regimen for patients undergoing bone marrow transplantation.

  9. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aerts-Kaya, Fatima S.F.; Visser, Trudi P.; Arshad, Shazia

    Purpose: 5-Androstene-3{beta},17{beta}-diol (5-AED) stimulates recovery of hematopoiesis after exposure to radiation. To elucidate its cellular targets, the effects of 5-AED alone and in combination with (pegylated) granulocyte colony-stimulating factor and thrombopoietin (TPO) on immature hematopoietic progenitor cells were evaluated following total body irradiation. Methods and Materials: BALB/c mice were exposed to radiation delivered as a single or as a fractionated dose, and recovery of bone marrow progenitors and peripheral blood parameters was assessed. Results: BALB/c mice treated with 5-AED displayed accelerated multilineage blood cell recovery and elevated bone marrow (BM) cellularity and numbers of progenitor cells. The spleen colony-forming unitmore » (CFU-S) assay, representing the life-saving short-term repopulating cells in BM of irradiated donor mice revealed that combined treatment with 5-AED plus TPO resulted in a 20.1-fold increase in CFU-S relative to that of placebo controls, and a 3.7 and 3.1-fold increase in comparison to 5-AED and TPO, whereas no effect was seen of Peg-G-CSF with or without 5-AED. Contrary to TPO, 5-AED also stimulated reconstitution of the more immature marrow repopulating (MRA) cells. Conclusions: 5-AED potently counteracts the hematopoietic effects of radiation-induced myelosuppression and promotes multilineage reconstitution by stimulating immature bone marrow cells in a pattern distinct from, but synergistic with TPO.« less

  11. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. SU-F-T-441: Dose Calculation Accuracy in CT Images Reconstructed with Artifact Reduction Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C; Chan, S; Lee, F

    Purpose: Accuracy of radiotherapy dose calculation in patients with surgical implants is complicated by two factors. First is the accuracy of CT number, second is the dose calculation accuracy. We compared measured dose with dose calculated on CT images reconstructed with FBP and an artifact reduction algorithm (OMAR, Philips) for a phantom with high density inserts. Dose calculation were done with Varian AAA and AcurosXB. Methods: A phantom was constructed with solid water in which 2 titanium or stainless steel rods could be inserted. The phantom was scanned with the Philips Brillance Big Bore CT. Image reconstruction was done withmore » FBP and OMAR. Two 6 MV single field photon plans were constructed for each phantom. Radiochromic films were placed at different locations to measure the dose deposited. One plan has normal incidence on the titanium/steel rods. In the second plan, the beam is at almost glancing incidence on the metal rods. Measurements were then compared with dose calculated with AAA and AcurosXB. Results: The use of OMAR images slightly improved the dose calculation accuracy. The agreement between measured and calculated dose was best with AXB and image reconstructed with OMAR. Dose calculated on titanium phantom has better agreement with measurement. Large discrepancies were seen at points directly above and below the high density inserts. Both AAA and AXB underestimated the dose directly above the metal surface, while overestimated the dose below the metal surface. Doses measured downstream of metal were all within 3% of calculated values. Conclusion: When doing treatment planning for patients with metal implants, care must be taken to acquire correct CT images to improve dose calculation accuracy. Moreover, great discrepancies in measured and calculated dose were observed at metal/tissue interface. Care must be taken in estimating the dose in critical structures that come into contact with metals.« less

  13. Dose specification for radiation therapy: dose to water or dose to medium?

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, Jinsheng

    2011-05-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y M; Bush, K; Han, B

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less

  15. Assessment of alveolar bone marrow fat content using 15 T MRI.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L

    2018-03-01

    Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quantification of bone marrow water and lipid composition in anterior cruciate ligament-injured and osteoarthritic knees using three-dimensional magnetic resonance spectroscopic imaging.

    PubMed

    Tufts, Lauren S; Shet, Keerthi; Liang, Fei; Majumdar, Sharmila; Li, Xiaojuan

    2016-06-01

    To quantitatively evaluate longitudinal changes in water and lipid in knee bone marrow with and without bone marrow edema-like lesions (BMELs) in subjects with acutely ruptured anterior cruciate ligaments (ACLs) or osteoarthritis (OA) using three-dimensional magnetic resonance spectroscopic imaging (3D MRSI). Ten ACL and 10 OA subjects who presented with BMEL and seven BMEL-free controls were scanned at 3T. All ACL and OA subjects had one-year follow-up scans. 3D MRSI was acquired in BMEL and adjacent bone marrow, and water content (WC) and unsaturated lipid index (UI) were calculated in each region of interest. At baseline, ACL BMEL WC was significantly higher than ACL non-BMEL, OA BMEL, and control WC; ACL non-BMEL WC, ACL BMEL UI, and OA BMEL WC were significantly higher than control. ACL BMEL WC decreased significantly one year post-reconstruction; UI decreased non-significantly (p=0.09). No significant changes in OA BMEL or ACL and OA non-BMEL WC and UI were observed. 3D MRSI is a powerful method of quantitatively assessing the biochemical composition of bone marrow in OA and ACL-injured knees, which may serve as imaging markers to improve comprehension of primary and secondary OA pathology. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The time of administration of 3'-azido-3'-deoxythymidine (AZT) determines its host toxicity with possible relevance to AZT chemotherapy.

    PubMed Central

    Zhang, R; Lu, Z; Diasio, C R; Liu, T; Soong, S J

    1993-01-01

    3'-Azido-3'-deoxythymidine (AZT) is the drug most widely used in the treatment of AIDS. Its major drug-related toxicity is bone marrow suppression, which limits the dose of AZT that can be used. It is essential that AZT be phosphorylated for antiviral effect. We have recently demonstrated that thymidine kinase (TK), the initial enzyme in AZT anabolism, follows a circadian pattern in rat bone marrow. The present study was undertaken to determine whether AZT toxicity is related to the time of its administration and whether the variation in toxicity is correlated with the circadian variation in TK activity. Male Sprague-Dawley rats were housed under standardized conditions of light and dark (lights on 0600 to 1800 and lights off 1800 to 0600) for 4 weeks. The animals were randomly divided into seven groups; six groups were administered AZT by intraperitoneal injection at the same dose of 750 mg/kg of body weight at various times (0400, 0800, 1200, 1600, 2000, and 2400), and one group was used as a control. AZT-related toxic effects, including bone marrow toxicity, differed significantly among the treatment groups, depending on the time of AZT administration (by analysis of variance and Cosinor analysis, P < 0.001). The least toxicity was observed in rats receiving AZT at 1600 (10 h after light onset [10 HALO], in late sleep span) and the greatest toxicity was observed in those injected at 0400 (22 HALO, in late activity span). To verify these results, we administered AZT by intraperitoneal injection at an approximately 50% lethal dose (1,500 mg/kg) to two groups of rats, one at 1200 (6 HALO, in the middle of the sleep span) and the other at 2400 (18 HALO, in the middle of the activity span). AZT lethality was significantly higher in rats receiving AZT at 2400 (18 HALO, in the middle of the activity span). Further statistical analysis demonstrated that the variation in AZT toxicity was correlated with the circadian variation in TK activity in bone marrow of the same species (peak activity at 0400 [22 HALO, in late activity span] and trough activity at 1600 [10 HALO, in late sleep span]), suggesting that the circadian variation in TK activity may be the biochemical basis for the observed circadian variation in AZT toxicity. These results may be useful in the design of improved AZT chemotherapeutic regimens. PMID:8239582

  18. Methotrexate for rheumatoid arthritis patients who are on hemodialysis.

    PubMed

    Al-Hasani, Hasanein; Roussou, Euthalia

    2011-12-01

    Methotrexate (MTX) can be toxic to patients suffering from end stage renal disease (ESRD) on hemodialysis even at low doses. This increase in toxicity is more notable in terms of bone marrow suppression in the form of pancytopenia. Many methods of elimination including dialysis itself have been proven ineffective, and alternate treatments with anti-TNF alpha blockers can be considered.

  19. A GEIL flow cytometry consensus proposal for quantification of plasma cells: application to differential diagnosis between MGUS and myeloma.

    PubMed

    Frébet, Elise; Abraham, Julie; Geneviève, Franck; Lepelley, Pascale; Daliphard, Sylvie; Bardet, Valérie; Amsellem, Sophie; Guy, Julien; Mullier, Francois; Durrieu, Francoise; Venon, Marie-Dominique; Leleu, Xavier; Jaccard, Arnaud; Faucher, Jean-Luc; Béné, Marie C; Feuillard, Jean

    2011-05-01

    Flow cytometry is the sole available technique for quantification of tumor plasma-cells in plasma-cell disorders, but so far, no consensus technique has been proposed. Here, we report on a standardized, simple, robust five color flow cytometry protocol developed to characterize and quantify bone marrow tumor plasma-cells, validated in a multicenter manner. CD36 was used to exclude red blood cell debris and erythroblasts, CD38 and CD138 to detect plasma-cells, immunoglobulin light chains, CD45, CD56, CD19, and CD117 + CD34 to simultaneously characterize abnormal plasma-cells and quantify bone marrow precursors. This approach was applied in nine centers to 229 cases, including 25 controls. Tumor plasma-cells were detected in 96.8% of cases, all exhibiting an immunoglobulin peak over 1g/L. Calculation of a plasma-cells/precursors (PC/P) ratio allowed quantification of the plasma-cell burden independently from bone marrow hemodilution. The PC/P ratio yielded the best results in terms of sensitivity (81%) and specificity (84%) for differential diagnosis between MGUS and myeloma, when compared with other criteria. Combination of both the PC/P ratio and percentage of abnormal plasma-cells allowed the best differential diagnosis, but these criteria were discordant in 25% cases. Indirect calculation of CD19 negative PC/R ratio gave the best results in terms of sensitivity (87%). This standardized multiparameter flow cytometric approach allows for the detection and quantification of bone marrow tumor plasma-cell infiltration in nearly all cases of MGUS and myeloma, independently of debris and hemodilution. This approach may also prove useful for the detection of minimal residual disease. Copyright © 2010 International Clinical Cytometry Society.

  20. Anti-inflammatory activity of 6-hydroxy-2,7-dimethoxy-1,4-henanthraquinone from tuberous roots of yam (Dioscorea batatas) through inhibition of prostaglandin D₂ and leukotriene C₄ production in mouse bone marrow-derived mast cells.

    PubMed

    Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook

    2011-09-01

    6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.

  1. Therapeutic use of recombinant human G-CSF (RHG-CSF) in a canine model of sublethal and lethal whole-body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macvittie, T.J.; Monroy, R.L.; Patchen, M.L.

    The short biologic half-life of the peripheral neutrophil (PMN) requires an active granulopoietic response to replenish functional PMSs and to remain a competent host defence in irradiated animals. Recombinant human G-CSF (rhG-CSF) was studied for its ability to modulate hemopoiesis in normal dogs as well as to decrease therapeutically the severity and duration of neutropenia in sublethally and lethally irradiated dogs. For the normal dog, subcutaneous administration of rhG-CSF induced neutrophilia within hours after the first injection; total PMSs continued to increase (with plateau phases) to mean peak values of 1000 per cent of baseline at the end of themore » treatment period (12-14 days). Bone-marrow-derived granulocyte-macrophage colony-forming cells (GM-CFC) increased significantly during treatment. For a sublethal 200 cGy dose, treatment with rhG-CSF for 14 consecutive days decreased the severity and shortened the duration of neutropenia and thrombocytopenia. The radiation-induced lethality of 60 per cent after a dose of 350 cGy was associated with marrow-derived GM-CFC survival of 1 per cent.« less

  2. Protective effects of total saponins from stem and leaf of Panax ginseng against cyclophosphamide-induced genotoxicity and apoptosis in mouse bone marrow cells and peripheral lymphocyte cells.

    PubMed

    Zhang, Qiu Hua; Wu, Chun Fu; Duan, Lian; Yang, Jing Yu

    2008-01-01

    Cyclophosphamide (CP), commonly used anti-cancer, induces oxidative stress and is cytotoxic to normal cells. It is very important to choice the protective agent combined CP to reduce the side effects in cancer treatment. Ginsenosides are biological active constituents of Panax ginseng C.A. Meyer that acts as the tonic agent for the cancer patients to reduce the side effects in the clinic application. Because CP is a pro-oxidant agent and induces oxidative stress by the generation of free radicals to decrease the activities of anti-oxidant enzymes, the protective effects of the total saponins from stem and leaf of P. ginseng C.A. Meyer (TSPG) act as an anti-oxidant agent against the decreased anti-oxidant enzymes, the genotoxicity and apoptosis induced by CP was carried out. The alkaline single cell gel electrophoresis was employed to detect DNA damage; flow cytometry assay and AO/EB staining assay were employed to measure cell apoptosis; the enzymatic anti-oxidants (T-SOD, CAT and GPx) and non-enzymatic anti-oxidant (GSH) were measured by the various colorimetric methods. CP induced the significant DNA damage in mouse peripheral lymphocytes in time- and dose-dependent manners, inhibited the activities of T-SOD, GPx and CAT, and decreased the contents of GSH in mouse blood, triggered bone marrow cell apoptosis at 6 and 12h. TSPG significantly reduced CP-induced DNA damages in bone marrow cells and peripheral lymphocyte cells, antagonized CP-induced reduction of T-SOD, GPx, CAT activities and the GSH contents, decreased the bone marrow cell apoptosis induced by CP. TSPG, significantly reduced the genotoxicity of CP in bone marrow cells and peripheral lymphocyte cells, and decreased the apoptotic cell number induced by CP in bone marrow cells. The effects of TSPG on T-SOD, GPx, CAT activities and GSH contents might partially contribute to its protective effects on CP-induced cell toxicities.

  3. Biomedical effects of protons with different levels of LET

    NASA Astrophysics Data System (ADS)

    Bulinina, Taisia; Vorozhtsova, Svetlana; Abrosimova, Alla; Ivanov, Alexander; Molokanov, Alexander

    Protons compose 80% of space radiation, thus, if the average energy of protons is 45 MeV, then there is a proton range much differing on the LET level available. In this regard, the study of protons radiobiological effects with different levels of LET is relevant. On the basis of the JINR Phasotron we designed the special device allowing to irradiate experimental animals - mice at the various regions of proton beam differing more than 3 times on the level of LET. The experiments were carried out on outbred CD-1 females mice and C57Bl6 males. Animals were irradiated at two points of the depth dose distribution - at the entrance of the proton beam and at the modified Bragg peak, extended with a ridge filter. Total irradiation of mice was conducted by a proton beam with energy of 171 MeV at doses of 1.0, 2.5 and 5.0 Gy at the JINR Phasotron beam, is used for the treatment of patients. LET of 171 MeV protons was 0.49 keV/mkm, the dose rate was 0.37 Gy/min. Range of energy at the modified Bragg peak is 0-30 MeV. Dose rate was 0.8 Gy/min. Average value of LET at the modified Bragg peak was 1.6 keV/mkm. In the modified Bragg peak the contribution to the absorbed dose of protons with low-LET radiation was about 67%, with LET 25-50 keV/mkm was 23% and with high -LET (50-100 keV/mkm) was 10%. For comparison irradiation of 60Co γ-rays was conducted on the device for remote radiation therapy Rokus-M MTC JINR in the same doses. The average dose of (60) Co gammaγ-rays with LET of 0.3 keV/mkm was 1 Gy/min. The experiments showed that after 24 hours of both proton irradiation with a high level of LET, and with 171 MeV proton beam in the object, a clear dose-dependent loss of bone marrow hematopoiesis is observed, the depth of destruction after irradiation by protons with a high level of increased from 1.14 to 1.36 with increasing doses of irradiation from 1.0 to 5.0 Gy. Restoration of bone marrow cellularity by the 8th day after exposure also was reduced in mice irradiated by protons with a high level of LET. After irradiation at a dose of 5.0 Gy with a high level of LET we noted deeper defeat of the cytogenetic apparatus of bone marrow cells and slow elimination of chromosomal aberrations in comparison with protons at the entrance of the object and gammaγ-rays (60) Co. The distinction in the defeat and the restoration of the number of white blood cells in the peripheral blood, thymus and spleen had a more complicated character. The obtained results showed that the striking effects of protons with a high level of LET radiation are significantly higher in comparison with other groups: mice irradiated by protons with LET 0.49 keV/mkm and gammaγ-rays (60) Co with LET 0.3 keV/mkm.

  4. HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strenge, D.L.; Peloquin, R.A.

    The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure modemore » are also printed if requested.« less

  5. The Impact of Monte Carlo Dose Calculations on Intensity-Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Siebers, J. V.; Keall, P. J.; Mohan, R.

    The effect of dose calculation accuracy for IMRT was studied by comparing different dose calculation algorithms. A head and neck IMRT plan was optimized using a superposition dose calculation algorithm. Dose was re-computed for the optimized plan using both Monte Carlo and pencil beam dose calculation algorithms to generate patient and phantom dose distributions. Tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP) were computed to estimate the plan outcome. For the treatment plan studied, Monte Carlo best reproduces phantom dose measurements, the TCP was slightly lower than the superposition and pencil beam results, and the NTCP values differed little.

  6. Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice

    PubMed Central

    Wang, Yingying; Chang, Jianhui; Li, Xin; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong

    2017-01-01

    During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs. PMID:29232383

  7. Determination of the spatial resolution required for the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 007) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping calculation, of iodine in cow`s milk; the third scoping calculation, which added additional pathways; the fifth calculation, which addressed the uncertainty of the dose estimates at a point; and the sixth calculation, which extrapolated the doses throughout the atmospheric transport domain. A projectionmore » of dose to representative individuals throughout the proposed HEDR atmospheric transport domain was prepared on the basis of the HEDR source term. Addressed in this calculation were the contributions to iodine-131 thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from-Feeding Regime 1 as described in scoping calculation 001.« less

  8. Intractable bone marrow edema syndrome of the hip.

    PubMed

    Gao, Fuqiang; Sun, Wei; Li, Zirong; Guo, Wanshou; Kush, Nepali; Ozaki, Koji

    2015-04-01

    There is a need for an effective and noninvasive treatment for intractable bone marrow edema syndrome of the hip. Forty-six patients with intractable bone marrow edema syndrome of the hip were retrospectively studied to compare the short-term clinical effects of treatment with high-energy extracorporeal shock wave therapy vs femoral head core decompression. The postoperative visual analog scale score decreased significantly more in the extracorporeal shock wave therapy group compared with the femoral head core decompression group (P<.05). For unilateral lesions, postoperative Harris Hip Scores for all hips in the extracorporeal shock wave therapy group were more significantly improved than Harris Hip Scores for all hips in the femoral head core decompression group (P<.05). Patients who underwent extracorporeal shock wave therapy also resumed daily activities significantly earlier. Average overall operative time was similar in both groups. Symptoms disappeared significantly sooner in the extracorporeal shock wave therapy group in patients with both unilateral (P<.01) and bilateral lesions (P<.05). Hospital costs were significantly lower with extracorporeal shock wave therapy compared with femoral head core decompression. The intraoperative fluoroscopy radiation dose was lower in extracorporeal shock wave therapy than in femoral head core decompression for both unilateral (P<.05) and bilateral lesions (P<.01). On magnetic resonance imaging (MRI), bone marrow edema improved in all patients during the follow-up period. After extracorporeal shock wave therapy, all patients remained pain-free and had normal findings on posttreatment radiographs and MRI scans. Extracorporeal shock wave therapy appears to be a valid, reliable, and noninvasive tool for rapidly resolving intractable bone marrow edema syndrome of the hip, and it has a low complication rate and relatively low cost compared with other conservative and surgical treatment approaches. Copyright 2015, SLACK Incorporated.

  9. Regulation of osteoclastogenesis by gap junction communication.

    PubMed

    Matemba, Stephen F; Lie, Anita; Ransjö, Maria

    2006-10-01

    Receptor activator of NF-kappaB ligand (RANKL) is crucial in osteoclastogenesis but signaling events involved in osteoclast differentiation are far from complete and other signals may play a role in osteoclastogenesis. A more direct pathway for cellular crosstalk is provided by gap junction intercellular channel, which allows adjacent cells to exchange second messengers, ions, and cellular metabolites. Here we have investigated the role of gap junction communication in osteoclastogenesis in mouse bone marrow cultures. Immunoreactive sites for the gap junction protein connexin 43 (Cx43) were detected in the marrow stromal cells and in mature osteoclasts. Carbenoxolone (CBX) functionally blocked gap junction communication as demonstrated by a scrape loading Lucifer Yellow dye transfer technique. CBX caused a dose-dependent inhibition (significant > or = 90 microM) of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells formed in 7- to 8-day marrow cultures stimulated by parathyroid hormone (PTH; 10 nM) or forskolin (FSK; 1 microM). Furthermore, CBX (100 microM) significantly inhibited prostaglandin E2 (PGE2; 10 microM) and 1,25(OH)2-vitamin D3 stimulated osteoclast differentiation in the mouse bone marrow cultures. Consequently, quantitative real-time polymerase chain reaction (PCR) analysis demonstrated that CBX downregulated the expression of osteoclast phenotypic markers, but without having any significant effects on RANK, RANKL, and osteoprotegerin (OPG) mRNA expression. However, the results demonstrated that CBX significantly inhibits RANKL-stimulated (100 ng/ml) osteoclastogenesis in the mouse bone marrow cultures. Taken together, our results suggests that gap junctional diffusion of messenger molecules interacts with signaling pathways downstream RANKL in osteoclast differentiation. Further studies are required to define the precise mechanisms and molecular targets involved. Copyright 2006 Wiley-Liss, Inc.

  10. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    PubMed

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less

  12. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, R.M.; Kimler, B.F.; Evans, R.G.

    1987-08-01

    Ataxia telangiectasia (AT) is a genetic disorder with a predisposition to malignancy. Cells from patients with AT demonstrate an increased sensitivity to ionizing radiation which creates a problem when these patients require treatment for their malignant disease. An eleven-year-old boy with a previous diagnosis of AT was seen in consultation following partial resection of medulloblastoma in the posterior fossa. To estimate how much the conventional radiation dose might have to be reduced, we compared the radiosensitivity of bone marrow myeloid progenitor cells from this patient to that of cells from the marrow of normal individuals, using colony formation in anmore » agar culture assay system as the endpoint (CFU-Cs). Neither radiation dose-survival curve exhibited a shoulder--each displayed an extrapolation number of 0.99. The survival curve of normal cells displayed a steep slope with a D0 of 0.98 Gy (0.83-1.19 Gy, 95% confidence limits); the slope for the AT cells was considerably steeper with a value for D0 of 0.32 Gy (0.29-0.35 Gy). The ratio of D0's indicated that these AT cells were approximately 3X more radiosensitive than normal cells. Based on this, the daily dose was reduced from 1.8 to 0.6 Gy and the radiation was restricted to 25 treatments to the posterior fossa rather than the conventional cranio-spinal treatment. An additional 5 treatments at 1.0 Gy per day were given to the whole brain. The patient's skin responded to these reduced fraction sizes and doses to a similar degree as normal patients' skin following a standard schedule and the patient is doing well nine months after initiation of treatment.« less

  13. Optimizing Therapeutic Effect of Aurora B Inhibition in Acute Myeloid Leukemia with AZD2811 Nanoparticles.

    PubMed

    Floc'h, Nicolas; Ashton, Susan; Taylor, Paula; Trueman, Dawn; Harris, Emily; Odedra, Rajesh; Maratea, Kim; Derbyshire, Nicola; Caddy, Jacqueline; Jacobs, Vivien N; Hattersley, Maureen; Wen, Shenghua; Curtis, Nicola J; Pilling, James E; Pease, Elizabeth J; Barry, Simon T

    2017-06-01

    Barasertib (AZD1152), a highly potent and selective aurora kinase B inhibitor, gave promising clinical activity in elderly acute myeloid leukemia (AML) patients. However, clinical utility was limited by the requirement for a 7-day infusion. Here we assessed the potential of a nanoparticle formulation of the selective Aurora kinase B inhibitor AZD2811 (formerly known as AZD1152-hQPA) in preclinical models of AML. When administered to HL-60 tumor xenografts at a single dose between 25 and 98.7 mg/kg, AZD2811 nanoparticle treatment delivered profound inhibition of tumor growth, exceeding the activity of AZD1152. The improved antitumor activity was associated with increased phospho-histone H3 inhibition, polyploidy, and tumor cell apoptosis. Moreover, AZD2811 nanoparticles increased antitumor activity when combined with cytosine arabinoside. By modifying dose of AZD2811 nanoparticle, therapeutic benefit in a range of preclinical models was further optimized. At high-dose, antitumor activity was seen in a range of models including the MOLM-13 disseminated model. At these higher doses, a transient reduction in bone marrow cellularity was observed demonstrating the potential for the formulation to target residual disease in the bone marrow, a key consideration when treating AML. Collectively, these data establish that AZD2811 nanoparticles have activity in preclinical models of AML. Targeting Aurora B kinase with AZD2811 nanoparticles is a novel approach to deliver a cell-cycle inhibitor in AML, and have potential to improve on the clinical activity seen with cell-cycle agents in this disease. Mol Cancer Ther; 16(6); 1031-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Preferential Elimination of Older Erythrocytes in Circulation and Depressed Bone Marrow Erythropoietic Activity Contribute to Cadmium Induced Anemia in Mice

    PubMed Central

    Chatterjee, Sreoshi; Saxena, Rajiv K.

    2015-01-01

    Feeding cadmium chloride (50 or 1000 ppm CdCl2 in drinking water, ad libitum) to C57BL/6 mice resulted in a significant and sustained fall in blood erythrocyte count and hemoglobin levels that started 4 and 3 weeks after the start of 50 and 1000 ppm cadmium doses respectively. A transient yet significant reticulocytosis occurred during the first 4 weeks of cadmium treatment. Using the recently developed double in vivo biotinylation (DIB) technique, turnover of erythrocyte cohorts of different age groups was simultaneously monitored in control and cadmium treated mice. A significant accumulation of younger erythrocytes and a concomitant decline in the relative proportions of older erythrocytes in circulation was observed in both 50 and 1000 ppm cadmium groups indicating that older erythrocytes were preferentially eliminated in cadmium induced anemia. A significant increase in the erythropoietin levels in plasma was seen in mice exposed to 1000 ppm cadmium. Levels of inflammatory cytokines (IL1A, IL6, TNFα, IFNγ) were however not significantly altered in cadmium treated mice. A significant increase in cellular levels of reactive oxygen species (ROS) was observed in older erythrocytes in circulation but not in younger erythrocytes. Erythropoietic activity in the bone marrows and spleens of cadmium treated mice was examined by monitoring the relative proportion of cells belonging to the erythroid line of differentiation in these organs. Erythroid cells in bone marrow declined markedly (about 30%) in mice in the 1000 ppm cadmium group but the decline was not significant in the 50 ppm cadmium group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were enumerated flow cytometrically by double staining with anti-Ter119 and anti-transferrin receptor (CD71) monoclonal antibodies. Decline of erythroid cells was essentially confined to pro-erythroblast and erythroblast-A, along with a concurrent increase in the splenic erythroid population indicating a stress response. In short cadmium exposure causes preferential clearance of older erythrocytes from circulation along with a depressed erythropoietic activity at higher doses. PMID:26161863

  15. Monoclonal antibody-purged bone marrow transplantation therapy for multiple myeloma.

    PubMed

    Anderson, K C; Andersen, J; Soiffer, R; Freedman, A S; Rabinowe, S N; Robertson, M J; Spector, N; Blake, K; Murray, C; Freeman, A

    1993-10-15

    Forty patients with plasma cell dyscrasias underwent high-dose chemoradiotherapy and either anti-B-cell monoclonal antibody (MoAb)-treated autologous, anti-T-cell MoAb-treated HLA-matched sibling allogeneic or syngeneic bone marrow transplantation (BMT). The majority of patients had advanced Durie-Salmon stage myeloma at diagnosis, all were pretreated with chemotherapy, and 17 had received prior radiotherapy. At the time of BMT, all patients demonstrated good performance status with Karnofsky score of 80% or greater and had less than 10% marrow tumor cells; 34 patients had residual monoclonal marrow plasma cells and 38 patients had paraprotein. Following high-dose chemoradiotherapy, there were 18 complete responses (CR), 18 partial responses, one non-responder, and three toxic deaths. Granulocytes greater than 500/microL and untransfused platelets greater than 20,000/microL were noted at a median of 23 (range, 12 to 46) and 25 (range, 10 to 175) days posttransplant (PT), respectively, in 24 of the 26 patients who underwent autografting. In the 14 patients who received allogeneic or syngeneic grafts, granulocytes greater than 500/microL and untransfused platelets greater than 20,000/microL were noted at a median of 19 (range, 12 to 24) and 16 (range, 5 to 32) days PT, respectively. With 24 months median follow-up for survival after autologous BMT, 16 of 26 patients are alive free from progression at 2+ to 55+ months PT; of these, 5 patients remain in CR at 6+ to 55+ months PT. With 24 months median follow-up for survival after allogeneic and syngeneic BMT, 8 of 14 patients are alive free from progression at 8+ to 34+ months PT; of these, 5 patients remain in CR at 8+ to 34+ months PT. This therapy has achieved high response rates and prolonged progression-free survival in some patients and proven to have acceptable toxicity. However, relapses post-BMT, coupled with slow engraftment post-BMT in heavily pretreated patients, suggest that such treatment strategies should be used earlier in the disease course. To define the role of BMT in the treatment of myeloma, its efficacy should be compared with that of conventional chemotherapy in a randomized trial.

  16. Irradiation of FDG-PET–Defined Active Bone Marrow Subregions and Acute Hematologic Toxicity in Anal Cancer Patients Undergoing Chemoradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Brent S., E-mail: bsrose@lroc.harvard.edu; Jee, Kyung-Wook; Niemierko, Andrzej

    Purpose: Irradiation of pelvic bone marrow (BM) has been correlated with hematologic toxicity (HT) in patients undergoing chemoradiation for anal cancer. We hypothesized that irradiation of hematologically active bone marrow (ABM) subregions defined by fluorodeoxyglucose (FDG) positron emission tomography (PET) is a principal cause of radiation-associated HT. Methods and Materials: The cohort included 45 patients with nonmetastatic anal cancer who underwent FDG-PET imaging prior to definitive chemoradiation with mitomycin-C and 5-fluorouracil. Total bone marrow (TBM) was defined as the external contour of the pelvic bones from the top of lumbar 5 (L5) to the bottom of the ischial tuberosity. Standardizedmore » uptake values (SUV) for all voxels within the TBM were quantified and normalized by comparison to normal liver SUV. Subvolumes of the TBM that exhibited the highest and lowest 50% of the SUVs were designated ABM{sub 50} and IBM{sub 50}, respectively. The primary endpoint was the absolute neutrophil count (ANC) nadir during or within 2 weeks of completion of treatment. Multivariate linear modeling was used to analyze the correlation between the equivalent uniform doses (EUD) with an a value of 0.5, 1 (equivalent to mean dose), 3, 7, and 12 to the BM structures and the ANC. Results: Mean ± SD ANC nadir was 0.77 × 10{sup 9}/L (±0.66 × 10{sup 9}/L). Grades 3 and 4 ANC toxicity occurred in 26.7% and 44.4% of patients, respectively. The EUD a parameter of 0.5 was optimal for all BM models indicating high radiation sensitivity. EUD of TBM and ABM{sub 50} and IBM{sub 50} were all significantly associated with ANC nadir. However, model performance for ABM{sub 50} was not superior to that of the TBM and IBM{sub 50} models. Conclusions: Irradiation of pelvic BM was associated with HT. However, FDG-PET–defined ABM models failed to improve model performance compared to the TBM model.« less

  17. Fat Composition Changes in Bone Marrow During Chemotherapy and Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmona, Ruben; Pritz, Jakub; Bydder, Mark

    Purpose: To quantify changes in bone marrow fat fraction and determine associations with peripheral blood cell counts. Methods and Materials: In this prospective study, 19 patients received either highly myelotoxic treatment (radiation therapy plus cisplatin, 5-fluorouracil mitomycin C [FU/MMC], or cisplatin/5-FU/cetuximab) or less myelotoxic treatment (capecitabine-radiation therapy or no concurrent chemotherapy). Patients underwent MR imaging and venipuncture at baseline, midtreatment, and posttreatment visits. We performed mixed effects modeling of the mean proton density fat fraction (PDFF[%]) by linear time, treatment, and vertebral column region (lumbar [L]4-sacral [S]2 vs thoracic [T]10-L3 vs cervical[C]3-T9), while controlling for cumulative mean dose and other confounders. Spearmanmore » rank correlations were performed by white blood cell (WBC) counts versus the differences in PDFF(%) before and after treatment. Results: Cumulative mean dose was associated with a 0.43% per Gy (P=.004) increase in PDFF(%). In the highly myelotoxic group, we observed significant changes in PDFF(%) per visit within L4-S2 (10.1%, P<.001) and within T10-L3 (3.93%, P=.01), relative to the reference C3-T9. In the less myelotoxic group, we did not observe significant changes in PDFF(%) per visit according to region. Within L4-S2, we observed a significant difference between treatment groups in the change in PDFF(%) per visit (5.36%, P=.04). Rank correlations of the inverse log differences in WBC versus the differences in PDFF(%) overall and within T10-S2 ranged from 0.69 to 0.78 (P<.05). Rank correlations of the inverse log differences in absolute neutrophil counts versus the differences in PDFF(%) overall and within L4-S2 ranged from 0.79 to 0.81 (P<.05). Conclusions: Magnetic resonance imaging fat quantification is sensitive to marrow composition changes that result from chemoradiation therapy. These changes are associated with peripheral blood cell counts. This study supports a rationale for bone marrow-sparing treatment planning to reduce the risk of hematologic toxicity.« less

  18. Accelerated hematopoietic recovery with angiotensin-(1-7) after total body radiation.

    PubMed

    Rodgers, Kathleen E; Espinoza, Theresa; Roda, Norma; Meeks, Christopher J; Hill, Colin; Louie, Stan G; Dizerega, Gere S

    2012-06-01

    Angiotensin (1-7) [A(1-7)] is a component of the renin angiotensin system (RAS) that stimulates hematopoietic recovery after myelosuppression. In a Phase I/IIa clinical trial, thrombocytopenia after chemotherapy was reduced by A(1-7). In this study, the ability of A(1-7) to improve recovery after total body irradiation (TBI) is shown with specific attention to radiation-induced hematopoietic injury. Mice were exposed to TBI (doses of 2-7 Gray [Gy]) of cesium 137 gamma rays, followed by treatment with A(1-7), typical doses were 100-1000 μg/kg given once or once daily for a specified number of days depending on the study. Animals are injected subcutaneously via the nape of the neck with 0.1 ml drug in saline. The recovery of blood and bone marrow cells was determined. Effects of TBI and A(1-7) on survival and bleeding time was also evaluated. Daily administration of A(1-7) after radiation exposure improved survival (from 60% to 92-97%) and reduced bleeding time at day 30 after TBI. Further, A(1-7) increased early mixed progenitors (3- to 5-fold), megakaryocyte (2- to 3-fold), myeloid (3- to 6-fold) and erythroid (2- to 5-fold) progenitors in the bone marrow and reduced radiation-induced thrombocytopenia (RIT) (up to 2-fold). Reduction in the number of treatments to 3 per week also improved bone marrow recovery and reduced RIT. As emergency responder and healthcare systems in case of nuclear accident or/and terrorist attack may be overwhelmed, the consequence of delayed initiation of treatment was ascertained. Treatment with A(1-7) can be delayed up to 5 days and still be effective in the reduction of RIT or acceleration of bone marrow recovery. The data presented in this paper indicate that A(1-7) reduces the consequences of critical radiation exposure and can be initiated well after initial exposure with maximal effects on early responding hematopoietic progenitors when treatment is initiated 2 days after exposure and 5 days after exposure for the later responding progenitors and reduced thrombocytopenia. There was some effect of A(1-7) even when given days after radiation exposure.

  19. Identification of potential target genes and related regulatory transcription factors in spontaneous hairline fracture induced by hypervitaminosis A.

    PubMed

    Peng, Chuangang; Yang, Qi; Wei, Bo; Liu, Yong; Li, Yuxiang; Gu, Dawei; Yin, Guochao; Wang, Bo; Xu, Dehui; Zhang, Xuebing; Kong, Daliang

    2017-07-01

    The aim was to research the molecular changes of bone cells induced by excessive dose of vitamin A, and analyze molecular mechanism underlying spontaneous fracture. The gene expression profile of GSE29859, including 4 cortical bone marrow samples with excessive doses of Vitamin A and 4 control cortical bone marrow samples, was obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DGEs) between cortical bone marrow samples and control samples were screened out and pathway enrichment analysis was undertaken. Based on the MSigDB database, the potential regulatory transcription factors (TFs) were identified. A total of 373 DEGs including 342 up- and 31 down-regulated genes were identified. These DEGs were significantly enriched in pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism. Finally, the most significant regulatory TFs were obtained, including E2F Transcription Factor 1 (E2F1), GA Binding Protein Transcription Factor (GABP), Nuclear Factor, Erythroid 2-Like 2 (NRF2) and ELK1, Member of ETS Oncogene Family (ELK1). Key TFs including E2F1, GABP, NRF2 and ELK1 and their targets genes such as Ube2d3, Uba1, Phb2 and Tomm22 may play potential key roles in spontaneous fracture induced by hypervitaminosis A. The pathways of protein processing in endoplasmic reticulum, ubiquitin mediated proteolysis and glycerophospholipid metabolism may be key mechanisms involved in spontaneous fracture induced by hypervitaminosis A. Our findings will provide new insights for the target selection in clinical application to prevent spontaneous fracture induced by hypervitaminosis A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Bhattacharya, Sudin

    2015-07-01

    Chemotherapy is an integral part of modern day treatment regimen but anticancer drugs fail to demarcate between cancerous and normal cells thereby causing severe form of systemic toxicity. Among which pulmonary toxicity is a dreadful complication developed in cancer patients upon cyclophosphamide (CP) therapy. Oxidative stress, fibrosis, and apoptosis are the major patho-mechanisms involved in CP-induced pulmonary toxicity. In the present study, we have synthesized Nano-Se, nanotechnology-based new form of elemental selenium which has significantly lower toxicity and acceptable bioavailability. In order to meet the need of effective drugs against CP-induced adverse effects, nano selenium (Nano-Se) was tested for its possible protective efficacy on CP-induced pulmonary toxicity and bone marrow toxicity. CP intoxication resulted in structural and functional lung impairment which was revealed by massive histopathological changes. Lung injury was associated with oxidative stress/lipid peroxidation as evident by increased in reactive oxygen species, nitric oxide level, and malondialdehyde (MDA) formation with decreased in level of antioxidants such as reduced glutathione, glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. Furthermore, CP at a dose of 25 mg/kg b.w. increased pulmonary DNA damage ('comet tail') and triggered DNA fragmentation and apoptosis in mouse bone marrow cells. On the other hand, Nano-Se at a dose of 2 mg Se/kg b.w., significantly inhibited CP-induced DNA damage in bronchoalveolar lavage cells, and decreased the apoptosis and percentage of DNA fragmentation in bone marrow cells and also antagonized the reduction of the activities of antioxidant enzymes and the increase level of MDA. Thus, our results suggest that Nano-Se in pre- and co-administration may serve as a promising preventive strategy against CP-induced pulmonary toxicity.

  1. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  2. Lack of micronucleus induction activity of ethyl tertiary-butyl ether in the bone marrow of F344 rats by sub-chronic drinking-water treatment, inhalation exposure, or acute intraperitoneal injection.

    PubMed

    Noguchi, Tadashi; Kamigaito, Tomoyuki; Katagiri, Taku; Kondou, Hitomi; Yamazaki, Kazunori; Aiso, Shigetoshi; Nishizawa, Tomoshi; Nagano, Kasuke; Fukushima, Shoji

    2013-01-01

    Ethyl tertiary-butyl ether (ETBE) is an oxygenated gasoline additive synthesized from ethanol and isobutene that is used to reduce CO2 emissions. To support the Kyoto Protocol, the production of ETBE has undergone a marked increase. Previous reports have indicated that exposure to ETBE or methyl tertiary-butyl ether resulted in liver and kidney tumors in rats and/or mice. These reports raise concern about the effects of human exposure being brought about by the increased use of ETBE. The present study was conducted to evaluate the genotoxicity of ETBE using micronucleus induction of polychromatic erythrocytes in the bone marrow of male and female rats treated with ETBE in the drinking-water at concentrations of 0, 1,600, 4,000 or 10,000 ppm or exposed to ETBE vapor at 0, 500, 1,500 or 5,000 ppm for 13 weeks. There were no significant increases in micronucleus induction in either the drinking water-administered or inhalation-administered groups at any concentration of ETBE; although, in both groups red blood cells and hemoglobin concentration were slightly reduced in the peripheral blood in rats administered the highest concentration of ETBE. In addition, two consecutive daily intraperitoneal injections of ETBE at doses of 0, 250, 500 or 1,000 mg/kg did not increase the frequency of micronucleated bone marrow cells in either sex; all rats receiving intraperitoneal injections of ETBE at a dose of 2,000 mg/kg died after treatment day 1. These data suggest that ETBE is not genotoxic in vivo.

  3. Efficacy of Combined Therapy with Liposome-Encapsulated Meglumine Antimoniate and Allopurinol in Treatment of Canine Visceral Leishmaniasis

    PubMed Central

    da Silva, Sydnei M.; Amorim, Izabela F. G.; Ribeiro, Raul R.; Azevedo, Erly G.; Demicheli, Cynthia; Melo, Maria N.; Tafuri, Wagner L.; Gontijo, Nelder F.; Michalick, Marilene S. M.

    2012-01-01

    An innovative liposomal formulation of meglumine antimoniate (LMA) was recently reported to promote both long-term parasite suppression and reduction of infectivity to sand flies in dogs with visceral leishmaniasis. However, 5 months after treatment, parasites were still found in the bone marrow of all treated dogs. In order to improve treatment with LMA, the present study aimed to evaluate its efficacy in combination with allopurinol. Mongrel dogs naturally infected with Leishmania infantum were treated with six doses of LMA (6.5 mg Sb/kg of body weight/dose) given at 4-day intervals, plus allopurinol (20 mg/kg/24 h per os) for 140 days. Comparison was made with groups treated with LMA, allopurinol, empty liposomes plus allopurinol, empty liposomes, and saline. Dogs remained without treatment from day 140 to 200 after the start of treatment. The drug combination promoted both clinical improvement of dogs and significant reduction in the parasitic load in bone marrow and spleen on days 140 and 200 compared to these parameters in the pretreatment period. This is in contrast with the other protocols, which did not result in significant reduction of the bone marrow parasite load on day 200. Strikingly, the combined treatment, in contrast to the other regimens, induced negative quantitative PCR (qPCR) results in the liver of 100% of the dogs. Both xenodiagnosis and skin parasite determination by qPCR indicated that the drug combination was effective in blocking the transmission of skin parasites to sand flies. Based on all of the parasitological tests performed on day 200, 50% of the animals that received the combined treatment were considered cured. PMID:22411610

  4. Influence of Water with Modified Isotope Structure on Development of Radiation Damage in Experimental Animals

    NASA Astrophysics Data System (ADS)

    Rakov, D. V.; Fedorenko, B. S.; Sinyak, Yu. E.

    begin table htbp begin center begin tabular p 442pt hline As the duration of space missions increases the problem of durability of space crews and their resistivity to space flight factors becomes more important The purpose of the present work was to study the radioprotective effects of lowered deuterium content water in experimental animals after repeated exposures to low doses of gamma radiation Both male and female adult mice of NAAoN57Al6 F1 and BALB c lines were exposed to 0 25 0 5 and 1 0 Gy of 60 Co gamma rays by multiple fractions The dose rate was 0 32 Gy min Starting from one month prior to the first irradiation fraction till the end of the experiment the animals were only supplied with lowered deuterium content water ad libitum The control group of mice consumed tap water only The mice were sacrificed by means of cervical dislocation within one month after finishing the last irradiation fraction The following parameters were registered the weight of body thymus and spleen number of leucocytes blood formula number of caryocytes in femur bone marrow cytogenetic lesions in nucleated bone marrow cells The water with lowered deuterium content was produced by means of electrolysis with a special device in the Institute for Biomedical Problems par A long-term consumption of water with lowered deuterium content by irradiated mice was found to result in lower levels of depletion of peripheral blood leucocytes and bone marrow cells in a decrease in the yield of cytogenetic aberrations and in a less intensive reduction of the mass

  5. Fludarabine, cytarabine, and attenuated-dose idarubicin (m-FLAI) combination therapy for elderly acute myeloid leukemia patients.

    PubMed

    Kim, Inho; Koh, Youngil; Yoon, Sung-Soo; Park, Seonyang; Kim, Byoung Kook; Kim, Dae-Young; Lee, Jung-Hee; Lee, Kyoo-Hyung; Cheong, June-Won; Lee, Hong-Kee; Kim, Sung-Hyun; Kim, Hyuk; Joo, Young Don; Lee, Sang-Min; Won, Jong-Ho; Park, Sung-Kyu; Hong, Dae-Sik; Kim, Se-Hyung; Sohn, Sang Kyun; Kim, Chul-Soo; Park, Eunkyung; Kim, Min Kyoung; Park, Moo Rim; Lee, Je-Hwan; Min, Yoo Hong

    2013-01-01

    We performed a phase II trial to evaluate the efficacy and safety of the modified fludarabine, cytarabine, and attenuated-dose idarubicin (m-FLAI) regimen in elderly acute myeloid leukemia (AML) patients. Elderly (≥60 years) AML patients who had not previously received chemotherapy were enrolled in the study. Patients received two consecutive cycles of m-FLAI chemotherapy as an induction. The m-FLAI regimen comprised fludarabine (25 mg/m(2) , days 1-4), cytarabine (1,000 mg/m(2) , days 1-4), and attenuated-dose idarubicin (5 mg/m(2) , days 1-3). The primary end point was complete remission (CR) rate. Secondary end points were overall survival (OS), event-free survival (EFS), and treatment-related mortality (TRM). There were 108 patients (median age 68.4 years, M:F = 64:44) enrolled in the study. CR was achieved in 56.5% of patients, and the TRM rate was 21.3%. Median OS and median EFS were 10.2 and 6.6 months, respectively. The mortality at 30 and 60 days was 15 and 21%, respectively. Performance status and comorbidity did not have prognostic value in this patient cohort. Bone marrow expression of CD117 was associated with increased EFS and OS. m-FLAI is an effective induction regimen for previously untreated AML in elderly patients. In addition, bone-marrow CD117 expression is an independent favorable prognostic factor in elderly AML patients. (ClinicalTrials.gov number, NCT01247493). Copyright © 2012 Wiley Periodicals, Inc.

  6. Preclinical Characterization of G1T28: A Novel CDK4/6 Inhibitor for Reduction of Chemotherapy-Induced Myelosuppression.

    PubMed

    Bisi, John E; Sorrentino, Jessica A; Roberts, Patrick J; Tavares, Francis X; Strum, Jay C

    2016-05-01

    Chemotherapy-induced myelosuppression continues to represent the major dose-limiting toxicity of cytotoxic chemotherapy, which can be manifested as neutropenia, lymphopenia, anemia, and thrombocytopenia. As such, myelosuppression is the source of many of the adverse side effects of cancer treatment including infection, sepsis, bleeding, and fatigue, thus resulting in the need for hospitalizations, hematopoietic growth factor support, and transfusions (red blood cells and/or platelets). Moreover, clinical concerns raised by myelosuppression commonly lead to chemotherapy dose reductions, therefore limiting therapeutic dose intensity, and reducing the antitumor effectiveness of the treatment. Currently, the only course of treatment for myelosuppression is growth factor support which is suboptimal. These treatments are lineage specific, do not protect the bone marrow from the chemotherapy-inducing cytotoxic effects, and the safety and toxicity of each agent is extremely specific. Here, we describe the preclinical development of G1T28, a novel potent and selective CDK4/6 inhibitor that transiently and reversibly regulates the proliferation of murine and canine bone marrow hematopoietic stem and progenitor cells and provides multilineage protection from the hematologic toxicity of chemotherapy. Furthermore, G1T28 does not decrease the efficacy of cytotoxic chemotherapy on RB1-deficient tumors. G1T28 is currently in clinical development for the reduction of chemotherapy-induced myelosuppression in first- and second-line treatment of small-cell lung cancer. Mol Cancer Ther; 15(5); 783-93. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Calculation of Organ Doses for a Large Number of Patients Undergoing CT Examinations.

    PubMed

    Bahadori, Amir; Miglioretti, Diana; Kruger, Randell; Flynn, Michael; Weinmann, Sheila; Smith-Bindman, Rebecca; Lee, Choonsik

    2015-10-01

    The objective of our study was to develop an automated calculation method to provide organ dose assessment for a large cohort of pediatric and adult patients undergoing CT examinations. We adopted two dose libraries that were previously published: the volume CT dose index-normalized organ dose library and the tube current-exposure time product (100 mAs)-normalized weighted CT dose index library. We developed an algorithm to calculate organ doses using the two dose libraries and the CT parameters available from DICOM data. We calculated organ doses for pediatric (n = 2499) and adult (n = 2043) CT examinations randomly selected from four health care systems in the United States and compared the adult organ doses with the values calculated from the ImPACT calculator. The median brain dose was 20 mGy (pediatric) and 24 mGy (adult), and the brain dose was greater than 40 mGy for 11% (pediatric) and 18% (adult) of the head CT studies. Both the National Cancer Institute (NCI) and ImPACT methods provided similar organ doses (median discrepancy < 20%) for all organs except the organs located close to the scanning boundaries. The visual comparisons of scanning coverage and phantom anatomies revealed that the NCI method, which is based on realistic computational phantoms, provides more accurate organ doses than the ImPACT method. The automated organ dose calculation method developed in this study reduces the time needed to calculate doses for a large number of patients. We have successfully used this method for a variety of CT-related studies including retrospective epidemiologic studies and CT dose trend analysis studies.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, P; Lins, L Nadler

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT ormore » IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.« less

  9. Considerations for applying VARSKIN mod 2 to skin dose calculations averaged over 10 cm2.

    PubMed

    Durham, James S

    2004-02-01

    VARSKIN Mod 2 is a DOS-based computer program that calculates the dose to skin from beta and gamma contamination either directly on skin or on material in contact with skin. The default area for calculating the dose is 1 cm2. Recently, the U.S. Nuclear Regulatory Commission issued new guidelines for calculating shallow dose equivalent from skin contamination that requires the dose be averaged over 10 cm2. VARSKIN Mod 2 was not filly designed to calculate beta or gamma dose estimates averaged over 10 cm2, even though the program allows the user to calculate doses averaged over 10 cm2. This article explains why VARSKIN Mod 2 overestimates the beta dose when applied to 10 cm2 areas, describes a manual method for correcting the overestimate, and explains how to perform reasonable gamma dose calculations averaged over 10 cm2. The article also describes upgrades underway in Varskin 3.

  10. Radiation-induced impairment of osseous healing: Quantitative studies usine a standard drilling defect in rat femur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, M.; Kummermehr, J.; Trott, K.R.

    1995-07-01

    The femora of adult Wistar rats were locally irradiated with single doses of X rays and 1 day later were wounded by a standardized drilling defect that extended through the diaphyseal cortex into the marrow cavity. Healing of the lesion was followed over 30 weeks to assess the time course of osseous closure. In unirradiated bones healing was complete by week 7. Irradiation with doses up to 15 Gy imparted a dose-dependent delay in the formation of primary callus and its subsequent replacement by more mature bone, while after higher doses healing doses healing remained permanently comprised or even suppressed.more » Using histomorphometry, osseous closure was also measured quantitatively for healing periods of 7, 10, 16 and 30 weeks and the data were expressed as the percentage of responders with {ge}40% fractional closure. the resulting dose-response curves were steep, displaying a large threshold dose and ED{sub 50} values between 16.8 to 17.5 Gy (7 to 16 weeks) and 19.4 Gy (30 weeks), respectively. 35 refs., 4 figs., 2 tabs.« less

  11. Acute toxicity, twenty-eight days repeated dose toxicity and genotoxicity of vanadyl trehalose in kunming mice.

    PubMed

    Jiang, Pingzhe; Ni, Zaizhong; Wang, Bin; Ma, Baicheng; Duan, Huikun; Li, Xiaodan; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Liu, Qiqi; Xing, Shuguang; Li, Minggang

    2017-04-01

    A new trend has been developed using vanadium and organic ligands to form novel compounds in order to improve the beneficial actions and reduce the toxicity of vanadium compounds. In present study, vanadyl trehalose was explored the oral acute toxicity, 28 days repeated dose toxicity and genotoxicity in Kunming mice. The Median Lethal Dose (LD 50 ) of vanadyl trehalose was revealed to be 1000 mg/kg body weight in fasted Kunming mice. Stomach and intestine were demonstrated to be the main target organs of vanadyl trehalose through 28 days repeated dose toxicity study. And vanadyl trehalose also showed particular genotoxicity through mouse bone marrow micronucleus and mouse sperm malformation assay. In brief, vanadyl trehalose presented certain, but finite toxicity, which may provide experimental basis for the clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  13. Combined Administration of Recombinant Human Megakaryocyte Growth and Development Factor and Granulocyte Colony-Stimulating Factor Enhances Multilineage Hematopoietic Reconstitution in Nonhuman Primates after Radiation-Induced Marrow Aplasia

    DTIC Science & Technology

    1996-05-01

    dose would yield an equivalent or better biological activity. Neupogen ® ( Filgrastim ), r-metHuG-CSF, was produced in E. coli as a...recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoi- etic recovery after otherwise lethal total body

  14. The impact of donor characteristics on the immune cell composition of mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests.

    PubMed

    Wang, Yu-Tong; Zhao, Xiang-Yu; Zhao, Xiao-Su; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    The association of donor characteristics with immune cell composition in allografts remains poorly understood. In this retrospective study, the effects of donor characteristics on immune cell composition in allografts were investigated. The correlations of donor characteristics with the immune cell composition in mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests of 390 healthy donors (male, 240; female, 150; median age, 40 years old) were analyzed. The median doses of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD3+CD4-CD8- T cells, and monocytes in mixture allografts were 160.57 × 10(6), 89.29 × 10(6), 56.16 × 10(6), 10.87 × 10(6), and 137.94 × 10(6)/kg, respectively. Multivariate analysis showed that younger donor age was associated with a higher dose of CD3+ T cells (p = 0.006), CD3+CD8+ T cells (p < 0.001), CD3+CD4-CD8- T cells (p = 0.004), and monocytes (p = 0.014), as well as a higher ratio of CD3+CD4-CD8- T cells/CD3+ T cells (p < 0.001) in the mixture allografts. A negative association of donor weight with CD3+ T cells (p < 0.001), CD4+ T cells (p = 0.002), CD8+ T cells (p < 0.001), and CD3+CD4-CD8- T cells (p = 0.044) was observed. The count of peripheral blood lymphocyte pre-peripheral blood apheresis was correlated with the yield of CD3+ T cells (p < 0.001) and CD4+ T cells (p = 0.001). The peripheral blood monocyte count before marrow harvest predicted the monocyte dose (p = 0.002). The results suggested that older and overweight donors should not be chosen. The monocyte and lymphocyte counts before harvest could predict the yield of immune cells in allografts. © 2015 AABB.

  15. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation.

    PubMed

    Li, Wei; Wang, Guanjun; Cui, Jiuwei; Xue, Lu; Cai, Lu

    2004-11-01

    The aim of this study was to investigate the stimulating effect of low-dose radiation (LDR) on bone marrow hematopoietic progenitor cell (HPC) proliferation and peripheral blood mobilization. Mice were exposed to 25- to 100-mGy x-rays. Bone marrow and peripheral blood HPCs (BFU-E, CFU-GM, and c-kit+ cells) were measured, and GM-CSF, G-CSF, and IL-3 protein and mRNA expression were detected using ELISA, slot blot hybridization, and Northern blot methods. To functionally evaluate LDR-stimulated and -mobilized HPCs, repopulation of peripheral blood cells in lethally irradiated recipients after transplantation of LDR-treated donor HPCs was examined by WBC counts, animal survival, and colony-forming units in the recipient spleens (CFUs-S). 75-mGy x-rays induced a maximal stimulation for bone marrow HPC proliferation (CFU-GM and BFU-E formation) 48 hours postirradiation, along with a significant increase in HPC mobilization into peripheral blood 48 to 72 hours postradiation, as shown by increases in CFU-GM formation and proportion of c-kit+ cells in the peripheral mononuclear cells. 75-mGy x-rays also maximally induced increases in G-CSF and GM-CSF mRNA expression in splenocytes and levels of serum GM-CSF. To define the critical role of these hematopoietic-stimulating factors in HPC peripheral mobilization, direct administration of G-CSF at a dose of 300 microg/kg/day or 150 microg/kg/day was applied and found to significantly stimulate GM-CFU formation and increase c-kit+ cells in the peripheral mononuclear cells. More importantly, 75-mGy x-rays plus 150 microg/kg/day G-CSF (LDR/150-G-CSF) produced a similar effect to that of 300 microg/kg/day G-CSF alone. Furthermore, the capability of LDR-mobilized donor HPCs to repopulate blood cells was confirmed in lethally irradiated recipient mice by counting peripheral WBC and CFUs-S. These results suggest that LDR induces hematopoietic hormesis, as demonstrated by HPC proliferation and peripheral mobilization, providing a potential approach to clinical application for HPC peripheral mobilization.

  16. Evidence for organ-specific stem cell microenvironments.

    PubMed

    Ghinassi, Barbara; Martelli, Fabrizio; Verrucci, Maria; D'Amore, Emanuela; Migliaccio, Giovanni; Vannucchi, Alessandro Maria; Hoffman, Ronald; Migliaccio, Anna Rita

    2010-05-01

    The X-linked Gata1(low) mutation in mice induces strain-restricted myeloproliferative disorders characterized by extramedullary hematopoiesis in spleen (CD1 and DBA/2) and liver (CD1 only). To assess the role of the microenvironment in establishing this myeloproliferative trait, progenitor cell compartments of spleen and marrow from wild-type and Gata1(low) mice were compared. Phenotype and clonal assay of non-fractionated cells indicated that Gata1(low) mice contain progenitor cell numbers 4-fold lower and 10-fold higher than normal in marrow and spleen, respectively. However, progenitor cells prospectively isolated from spleen, but not from marrow, of Gata1(low) mice expressed colony-forming function in vitro. Therefore, calculation of cloning activity of purified cells demonstrated that the total number of Gata1(low) progenitor cells was 10- to 100-fold lower than normal in marrow and >1,000 times higher than normal in spleen. This observation indicates that Gata1(low) hematopoiesis is favored by the spleen and is in agreement with our previous report that removal of this organ induces wild-type hematopoiesis in heterozygous Gata1(low/+) females (Migliaccio et al., 2009, Blood 114:2107). To clarify if rescue of wild-type hematopoiesis by splenectomy prevented extramedullary hematopoiesis in liver, marrow cytokine expression profile and liver histopathology of splenectomized Gata1(low/+) females were investigated. After splenectomy, the marrow expression levels of TGF-beta, VEGF, osteocalcin, PDGF-alpha, and SDF-1 remained abnormally high while Gata1(low) hematopoiesis was detectable in liver of both CD1 and DBA/2 mutants. Therefore, in the absence of the spleen, Gata1(low) hematopoiesis is supported by the liver suggesting that treatment of myelofibrosis in these animals requires the rescue of both stem cell and microenvironmental functions.

  17. Stage III and oestrogen receptor negativity are associated with poor prognosis after adjuvant high-dose therapy in high-risk breast cancer

    PubMed Central

    Hohaus, S; Funk, L; Martin, S; Schlenk, R F; Abdallah, A; Hahn, U; Egerer, G; Goldschmidt, H; Schneeweiß, A; Fersis, N; Kaul, S; Wallwiener, D; Bastert, G; Haas, R

    1999-01-01

    We report on the efficacy and toxicity of a sequential high-dose therapy with peripheral blood stem cell (PBSC) support in 85 patients with high-risk stage II/III breast cancer. There were 71 patients with more than nine tumour-positive axillary lymph nodes. An induction therapy of two cycles of ifosfamide (total dose, 7.5 g m−2) and epirubicin (120 mg m−2) was given, and PBSC were harvested during G-CSF-supported leucocyte recovery following the second cycle. The PBSC-supported high-dose chemotherapy consisted of two cycles of ifosfamide (total dose, 12 000 mg m−2), carboplatin (900 mg m−2) and epirubicin (180 mg m−2). Patients were autografted with a median number of 3.7 × 106 CD34+ cells kg−1 (range, 1.9–26.5 × 106) resulting in haematological reconstitution within approximately 2 weeks following high-dose therapy. The toxicity was moderate in general, and there was no treatment-related toxic death. Twenty-one patients relapsed between 3 and 30 months following the last cycle of high-dose therapy (median, 11 months). The probability of disease-free and overall survival at 4 years were 60% and 83%, respectively. According to a multivariate analysis, patients with stage II disease had a significantly better probability of disease-free survival (74%) in comparison to patients with stage III disease (36%). The probability of disease-free survival was also significantly better for patients with oestrogen receptor-positive tumours (70%) compared to patients with receptor-negative ones (40%). Bone marrow samples collected from 52 patients after high-dose therapy were examined to evaluate the prognostic relevance of isolated tumour cells. The proportion of patients presenting with tumour cell-positive samples did not change in comparison to that observed before high-dose therapy (65% vs 71%), but a decrease in the incidence and concentration of tumour cells was observed over time after high-dose therapy. This finding was true for patients with relapse and for those in remission, which argues against a prognostic significance of isolated tumour cells in bone marrow. In conclusion, sequential high-dose chemotherapy with PBSC support can be safely administered to patients with high-risk stage II/III breast cancer. Further intensification of the therapy, including the addition of non-cross resistant drugs or immunological approaches such as the use of antibodies against HER-2/NEU, may be envisaged for patients with stage III disease and hormone receptor-negative tumours. © 1999 Cancer Research Campaign PMID:10188897

  18. Monte Carlo evaluation of RapidArc™ oropharynx treatment planning strategies for sparing of midline structures

    NASA Astrophysics Data System (ADS)

    Bush, K.; Zavgorodni, S.; Gagne, I.; Townson, R.; Ansbacher, W.; Beckham, W.

    2010-08-01

    The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc™ (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D98%) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D2%) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D98%, and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D98% were found to be overestimated (1.3%, σ = 0.8% and 2.3%, σ = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D2% to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc™ demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence modeling, modeling of material inhomogeneities and dose deposition within low-density materials. The use of MC dose calculations leads to the same general conclusion as using AAA that a two arc delivery with limited collimator opening can provide the greatest amount of midline sparing compared to the other techniques investigated.

  19. The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity.

    PubMed

    Cui, Li-li; Kerkelä, Erja; Bakreen, Abdulhameed; Nitzsche, Franziska; Andrzejewska, Anna; Nowakowski, Adam; Janowski, Miroslaw; Walczak, Piotr; Boltze, Johannes; Lukomska, Barbara; Jolkkonen, Jukka

    2015-01-27

    Intra-arterial cell infusion is an efficient delivery route with which to target organs such as the ischemic brain. However, adverse events including microembolisms and decreased cerebral blood flow were recently reported after intra-arterial cell delivery in rodent models, raising safety concerns. We tested the hypothesis that cell dose, infusion volume, and velocity would be related to the severity of complications after intra-arterial cell delivery. In this study, 38 rats were subjected to a sham middle cerebral artery occlusion (sham-MCAO) procedure before being infused with allogeneic bone-marrow mesenchymal stem cells at different cell doses (0 to 1.0 × 10(6)), infusion volumes (0.5 to 1.0 ml), and infusion times (3 to 6 minutes). An additional group (n = 4) was infused with 1.0 × 10(6) cells labeled with iron oxide for in vivo tracking of cells. Cells were infused through the external carotid artery under laser Doppler flowmetry monitoring 48 hours after sham-MCAO. Magnetic resonance imaging (MRI) was performed 24 hours after cell infusion to reveal cerebral embolisms or hemorrhage. Limb placing, cylinder, and open field tests were conducted to assess sensorimotor functions before the rats were perfused for histology. A cell dose-related reduction in cerebral blood flow was noted, as well as an increase in embolic events and concomitant lesion size, and sensorimotor impairment. In addition, a low infusion velocity (0.5 ml/6 minutes) was associated with high rate of complications. Lesions on MRI were confirmed with histology and corresponded to necrotic cell loss and blood-brain barrier leakage. Particularly cell dose but also infusion velocity contribute to complications encountered after intra-arterial cell transplantation. This should be considered before planning efficacy studies in rats and, potentially, in patients with stroke.

  20. In vivo evaluation of the genetic toxicity of Rubus niveus Thunb. (Rosaceae) extract and initial screening of its potential chemoprevention against doxorubicin-induced DNA damage.

    PubMed

    Tolentino, Flora; Araújo, Priscila Alves de; Marques, Eduardo de Souza; Petreanu, Marcel; Andrade, Sérgio Faloni de; Niero, Rivaldo; Perazzo, Fábio F; Rosa, Paulo César Pires; Maistro, Edson Luis

    2015-04-22

    Rubus niveus Thunb. plant belongs to Rosaceae family and have been used traditionally to treat wounds, burns, inflammation, dysentery, diarrhea and for curing excessive bleeding during menstrual cycle. The present study was undertaken to investigate the in vivo genotoxicity of Rubus niveus aerial parts extract and its possible chemoprotection on doxorubicin (DXR)-induced DNA damage. In parallel, the main phytochemicals constituents in the extract were determined. The animals were exposed to the extract for 24 and 48 h, and the doses selected were 500, 1000 and 2000 mg/kg b.w. administered by gavage alone or prior to DXR (30 mg/kg b.w.) administered by intraperitoneal injection. The endpoints analyzed were DNA damage in bone marrow and peripheral blood cells assessed by the alkaline alkaline (pH>13) comet assay and bone marrow micronucleus test. The results of chemical analysis of the extract showed the presence of tormentic acid, stigmasterol, quercitinglucoronide (miquelianin) and niga-ichigoside F1 as main compounds. Both cytogenetic endpoints analyzed showed that there were no statistically significant differences (p>0.05) between the negative control and the treated groups with the two higher doses of Rubus niveus extract alone, demonstrating absence of genotoxic and mutagenic effects. Aneugenic/clastogenic effect was observed only at 2000 mg/kg dose. On the other hand, in the both assays and all tested doses were observed a significant reduction of DNA damage and chromosomal aberrations in all groups co-treated with DXR and extract compared to those which received only DXR. These results indicate that Rubus niveus aerial parts extract did not revealed any genotoxic effect, but presented some aneugenic/clastogenic effect at higher dose; and suggest that it could be a potential adjuvant against development of second malignant neoplasms caused by the cancer chemotherapic DXR. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

Top