Equation of state and QCD transition at finite temperature
NASA Astrophysics Data System (ADS)
Bazavov, A.; Bhattacharya, T.; Cheng, M.; Christ, N. H.; Detar, C.; Ejiri, S.; Gottlieb, Steven; Gupta, R.; Heller, U. M.; Huebner, K.; Jung, C.; Karsch, F.; Laermann, E.; Levkova, L.; Miao, C.; Mawhinney, R. D.; Petreczky, P.; Schmidt, C.; Soltz, R. A.; Soeldner, W.; Sugar, R.; Toussaint, D.; Vranas, P.
2009-07-01
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nτ=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nτ=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects.
Hadron spectrum in quenched lattice QCD and distribution of zero modes
NASA Astrophysics Data System (ADS)
Iwasaki, Yoichi
1989-06-01
I report the results of the calculation of the hadron spectrum with the standard one-plaquette gauge action on a 16★★3★48 lattice at β=5.85 in the quenched lattice QCD. The result remarkably agrees with that of quark potential models for the case where the quark mass is equal to or is larger than the strange quark mass, even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. Further, I show the distribution of zero modes of quark matrix, both in the cases of a RG improved gauge action and the standard action, and discuss the difference between the two cases.
B*Bπ coupling using relativistic heavy quarks
Flynn, J. M.; Fritzsch, P.; Kawanai, T.; ...
2016-01-27
We report on a calculation of the B*Bπ coupling in lattice QCD. The strong matrix element (Bπ|B*) is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HM ΧPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order |p →a| and (ma) n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a –1 = 1.729(25) GeV, a –1 = 2.281 (28) GeV, andmore » unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HM ΧPT coupling g b = 0.56(3) stat(7) sys in the continuum and at the physical light-quark masses. Furthermore, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.« less
The pion form factor from first principles
NASA Astrophysics Data System (ADS)
van der Heide, J.
2004-08-01
We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the O(a) improved current. We calculate form factor for pion masses down to mπ = 380 MeV. We compare the mean square radius for the pion extracted from our form factors to the value obtained from the `Bethe Salpeter amplitude'. Using (quenched) chiral perturbation theory, we extrapolate our results towards the physical pion mass.
Charmed Hadron Spectrum and Interactions
NASA Astrophysics Data System (ADS)
Liu, Liuming
Studying hadrons containing heavy quarks in lattice QCD is challenging mainly due to finite lattice spacing effects. To control the discretization errors, mQa is required to be much less than 1, where mQ is the quark mass and a is the lattice spacing. For currently accessible lattice spacings, the charm quark mass doesn't satisfy this requirement. One approach to simulate heavy quarks on the lattice is non-relativestic QCD, which treats heavy quark as a static source and expand the lattice quark action in powers of 1mQa . Unfortunately, the charm quark is not heavy enough to justify this expansion. An other is Heavy Quark Effective Theory (HQET) matched on QCD. Non-relativestic QCD and HQET are mainly used for bottom quark. Relativistic heavy-quark action, which incorporates both small mass and large mass formulations, is better suited to study the charm quark sector. The discretization errors can be reduced systematically following Symanzik improvement. In this work, we use the relativistic heavy quark action to study the charmed hadron spectrum and interactions in full lattice QCD. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. The parameters in the heavy quark action are tuned to reduce lattice artifacts and match the charm quark mass and the action is tested by calculating the low-lying charmonium spectrum. We compute the masses of the spin-1/2 singly and doubly charmed baryons. For the singly charmed baryons, our results are in good agreement with experiment within our systematics. For the doubly charmed baryon xicc we find the isospin-averaged mass to be MXcc = 3665 +/- 17 +/- 14+0-78 MeV; the three given uncertainties are statistical, systematic and an estimate of lattice discretization errors, respectively. In addition, we predict the mass splitting of the (isospin-averaged) spin-1/2 O cc with the xicc to be MWcc-MXcc = 98 +/- 9 +/- 22 +/- 13 MeV (in this mass splitting, the leading discretization errors are also suppressed by SU(3) symmetry). Combining this splitting with our determination of MXcc leads to our prediction of the spin-1/2 Occ mass, MWcc = 3763 +/- 19 +/- 26+13-79 MeV. We calculate the scattering lengths of the charmed mesons with the light pseudoscalar mesons. The calculation is performed for four different light quark masses and extrapolated to the physical point using chiral perturbation formulas to next-to-next-to-leading order. The low energy constants are determined and used to make predictions. We find relatively strong attractive interaction in DK channels, which is closely related to the structure of DsJ(2317) state. The scattering of charmonium with light hadrons is also studied. Particularly, we find very weak attractive interaction between J/Psi and nucleon, in this channel the dominate interaction is attractive gluonic van der Walls and it could lead to molecular-like bound states.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.
2016-10-01
We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a unified open-source framework for modeling chemically reactive systems.
BSM Kaon Mixing at the Physical Point
NASA Astrophysics Data System (ADS)
Boyle, Peter; Garron, Nicolas; Kettle, Julia; Khamseh, Ava; Tsang, Justus Tobias
2018-03-01
We present a progress update on the RBC-UKQCD calculation of beyond the standard model (BSM) kaon mixing matrix elements at the physical point. Simulations are performed using 2+1 flavour domain wall lattice QCD with the Iwasaki gauge action at 3 lattice spacings and with pion masses ranging from 430 MeV to the physical pion mass.
Electric Dipole Moment Results from lattice QCD
NASA Astrophysics Data System (ADS)
Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy
2018-03-01
We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.
NASA Astrophysics Data System (ADS)
Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian
2014-12-01
A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.
Numerical modeling of heat and mass transport processes in an evaporative thermal protection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrov, I.N.; Kuryachii, A.P.
1992-08-01
We propose a mathematical model of heat and mass transport processes in a moist, porous material subject to capillary action. The material is in contact with a heated surface, and the processes take place while the liquid is evaporating in a cavity with a drainage hole. A sample calculation based on the model is presented. 45 refs., 4 figs.
Sasaki, Shogo; Koga, Hideyuki; Krosshaug, Tron; Kaneko, Satoshi; Fukubayashi, Toru
2015-01-01
The strengths of interpersonal dyads formed by the attacker and defender in one-on-one situations are crucial for performance in team ball sports such as soccer. The purpose of this study was to analyze the kinematics of one-on-one defensive movements in soccer competitions, and determine the relationships between lower limb kinematics and the center of mass translation during cutting actions. Six defensive scenes in which a player was responding to an offender’s dribble attack were selected for analysis. To reconstruct the three-dimensional kinematics of the players, we used a photogrammetric model-based image-matching technique. The hip and knee kinematics were calculated from the matched skeleton model. In addition, the center of mass height was expressed as a ratio of each participant’s body height. The relationships between the center of mass height and the kinematics were determined by the Pearson’s product-moment correlation coefficient. The normalized center of mass height at initial contact was correlated with the vertical center of mass displacement (r = 0.832, p = 0.040) and hip flexion angle at initial contact (r = −0.823, p = 0.044). This suggests that the lower center of mass at initial contact is an important factor to reduce the downwards vertical center of mass translation during defensive cutting actions, and that this is executed primarily through hip flexion. It is therefore recommended that players land with an adequately flexed hip at initial contact during one-on-one cutting actions to minimize the vertical center of mass excursion. PMID:26240644
Calculation of electronic transport coefficients of Ag and Au plasma.
Apfelbaum, E M
2011-12-01
The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of ρ ~ 1 g/cm(3). The plasma composition was calculated using a corresponding system of coupled mass action laws, including the atom ionization up to +4. For momentum cross sections of electron-atom scattering we used the most accurate expressions available. The results of our modeling have been compared with other researchers' data whenever possible.
Calculation of K →π π decay amplitudes with improved Wilson fermion action in lattice QCD
NASA Astrophysics Data System (ADS)
Ishizuka, N.; Ishikawa, K.-I.; Ukawa, A.; Yoshié, T.
2015-10-01
We present our result for the K →π π decay amplitudes for both the Δ I =1 /2 and 3 /2 processes with the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al., we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is possible without complications from operators with wrong chirality, as for the case with chirally symmetric lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we consider the decay amplitudes at an unphysical quark mass mK˜2 mπ . Our calculations are carried out with Nf=2 +1 gauge configurations generated with the Iwasaki gauge action and nonperturbatively O (a )-improved Wilson fermion action at a =0.091 fm , mπ=280 MeV , and mK=580 MeV on a 323×64 (L a =2.9 fm ) lattice. For the quark loops in the penguin and disconnected contributions in the I =0 channel, the combined hopping parameter expansion and truncated solver method work very well for variance reduction. We obtain, for the first time with a Wilson-type fermion action, that Re A0=60 (36 )×1 0-8 GeV and Im A0=-67 (56 )×1 0-12 GeV for a matching scale q*=1 /a . The dependence on the matching scale q* for these values is weak.
Casimir energies and special dimensions in a toy model for branes
NASA Astrophysics Data System (ADS)
Cohen, Isaac
1988-12-01
We consider a generalization to branes of the old action for the strings without reparamentrization invariance. These actions admit natural supplementary mass-shell conditions. By regularizing the Casimir energies we calculate the special dimensions at which these toy branes show vector massless states in its spectrum. They all turn out to be non-integers. On sabbatical leave from Departamento de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 66961, Caracas 1061A, Venezuela.
NASA Astrophysics Data System (ADS)
Fu, Wei-Jie; Liu, Yu-Xin; Wu, Yue-Liang
2010-01-01
We study fluctuations of conserved charges including baryon number, electric charge, and strangeness as well as the correlations among these conserved charges in the 2+1 flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature. The calculated results are compared with those obtained from recent lattice calculations performed with an improved staggered fermion action at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We find that our calculated results are well consistent with those obtained in lattice calculations except for some quantitative differences for fluctuations related with strange quarks. Our calculations indicate that there is a pronounced cusp in the ratio of the quartic to quadratic fluctuations of baryon number, i.e. χ4B/χ2B, at the critical temperature during the phase transition, which confirms that χ4B/χ2B is a useful probe of the deconfinement and chiral phase transition.
Potential description of the charmonium from lattice QCD
NASA Astrophysics Data System (ADS)
Kawanai, Taichi; Sasaki, Shoichi
2016-01-01
We present spin-independent and spin-spin interquark potentials for charmonium states, that are calculated using a relativistic heavy quark action for charm quarks on the PACS-CS gauge configurations generated with the Iwasaki gauge action and 2+1 flavors of Wilson clover quark. The interquark potential with finite quark masses is defined through the equal-time Bethe-Salpeter amplitude. The light and strange quark masses are close to the physical point where the pion mass corresponds to Mπ ≈ 156(7) MeV, and charm quark mass is tuned to reproduce the experimental values of ηc and J/ψ states. Our simulations are performed with a lattice cutoff of a-1 ≈ 2.2 GeV and a spatial volume of (3 fm)3. We solve the nonrelativistic Schrödinger equation with resulting charmonium potentials as theoretical inputs. The resultant charmonium spectrum below the open charm threshold shows a fairly good agreement with experimental data of well-established charmonium states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, Martha; Panagopoulos, Haralambos; Skouroupathis, Apostolos
2011-04-01
In this work we calculate the corrections to the amputated Green's functions of four-fermion operators, in 1-loop lattice perturbation theory. One of the novel aspects of our calculations is that they are carried out to second order in the lattice spacing, O(a{sup 2}). We employ the Wilson/clover action for massless fermions (also applicable for the twisted mass action in the chiral limit) and a family of Symanzik improved actions for gluons. Our calculations have been carried out in a general covariant gauge. Results have been obtained for several popular choices of values for the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki,more » TILW and DBW2 action). While our Green's function calculations regard any pointlike four-fermion operators which do not mix with lower dimension ones, we pay particular attention to {Delta}F=2 operators, both parity conserving and parity violating (F stands for flavor: S, C, B). By appropriately projecting those bare Green's functions we compute the perturbative renormalization constants for a complete basis of four-fermion operators and we study their mixing pattern. For some of the actions considered here, even O(a{sup 0}) results did not exist in the literature to date. The correction terms which we calculate (along with our previous O(a{sup 2}) calculation of Z{sub {Psi}}[M. Constantinou, V. Lubicz, H. Panagopoulos, and F. Stylianou, J. High Energy Phys. 10 (2009) 064.][M. Constantinou, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, H. Panagopoulos, G. C. Rossi, S. Simula, F. Stylianou, and A. Vladikas, J. High Energy Phys. 08 (2010) 068.][C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou (unpublished).]) are essential ingredients for minimizing the lattice artifacts which are present in nonperturbative evaluations of renormalization constants with the RI{sup '}-MOM method. Our perturbative results, for the matrix elements of {Delta}F=2 operators and for the corresponding renormalization matrices, depend on a large number of parameters: coupling constant, number of colors, lattice spacing, external momentum, clover parameter, Symanzik coefficients, gauge parameter. To make these results most easily accessible to the reader, we have included them in the distribution package of this paper, as an ASCII file named: 4-fermi.m; the file is best perused as Mathematica input. The main results of this work have been applied to improve nonperturbative estimates of the B{sub K}-parameter in N{sub F}=2 twisted mass lattice QCD [M. Constantinou, P. Dimopoulos, R. Frezzotti, K. Jansen, V. Gimenez, V. Lubicz, F. Mescia, H. Panagopoulos, M. Papinutto, G. C. Rossi, S. Simula, A. Skouroupathis, F. Stylianou, and A. Vladikas, arXiv:1009.5606.].« less
Nucleon Structure from 2+1 Flavor Domain Wall QCD at Nearly Physical Pion Mass
NASA Astrophysics Data System (ADS)
Ohta, Shigemi
2011-05-01
The RBC and UKQCD collaborations have been investigating hadron physics in numerical lattice quantum chromodynamics (QCD) with (2+1) flavors of dynamical domain wall fermions (DWF) quarks that preserves continuum-like chiral and flavor symmetries. The strange quark mass is adjusted to physical value via reweighting and degenerate up and down quark masses are set as light as possible. In a recent study of nucleon structure we found a strong dependence on pion mass and lattice spatial extent in isovector axialvector-current form factors. This is likely the first credible evidence for the pion cloud surrounding nucleon. Here we report the status of nucleon structure calculations with a new (2+1)-flavor dynamical DWF ensembles with much lighter pion mass of 180 and 250 MeV and a much larger lattice spatial exent of 4.6 fm. A combination of the Iwasaki and dislocation-suppressing-determinant-ratio (I+DSDR) gauge action and DWF fermion action allows us to generate these ensembles at cutoff of about 1.4 GeV while keeping the residual breaking of chiral symmetry sufficiently small. Nucleon source Gaussian smearing has been optimized. Preliminary nucleon mass estimates are 0.98 and 1.05 GeV.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J P = 1/2 + and J P = 3/2 +. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limitmore » and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m Q and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Shaffer, Christopher J; Pepin, Robert; Tureček, František
2015-12-01
We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.
Future of Lattice Calculations with Staggered Sea Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottlieb, Steven
2011-05-23
The MILC collaboration for some years has been creating gauge ensembles with 2+1 flavors of asqtad or improved staggered quarks. There are some 40 ensembles covering a wide range of quark mass and lattice spacing, thus allowing control of the chiral and continuum limits. An extensive review of that program has been published in Reviews of Modern Physics. Recently, MILC has begun a new program using HPQCD's highly improved staggered quark (HISQ) action. This action has smaller taste symmetry breaking than asqtad and improved scaling properties. We also include a dynamical charm quark in these calculations. We summarize the achievementsmore » of the asqtad program, what has been done so far with HISQ quarks, and then consider what future ensembles will be created and their impact.« less
Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František
2017-09-07
We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.
D meson semileptonic form factors in Nf = 3 QCD with Möbius domain-wall quarks
NASA Astrophysics Data System (ADS)
Kaneko, Takashi; Colquhoun, Brian; Fukaya, Hidenori; Hashimoto, Shoji
2018-03-01
e present our calculation of D → π and D → K semileptonic form factors in Nf = 2 + 1 lattice QCD. We simulate three lattice cutoffs a-1 ≃ 2.5, 3.6 and 4.5 GeV with pion masses as low as 230 MeV. The Möbius domain-wall action is employed for both light and charm quarks. We present our results for the vector and scalar form factors and discuss their dependence on the lattice spacing, light quark masses and momentum transfer.
Effective vortex mass from microscopic theory
NASA Astrophysics Data System (ADS)
Han, Jung Hoon; Kim, June Seo; Kim, Min Jae; Ao, Ping
2005-03-01
We calculate the effective mass of a single quantized vortex in the Bardeen-Cooper-Schrieffer superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω) divided by ω3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2 ( kf=Fermi momentum, ξ0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5Tc and decreases continuously to zero at Tc .
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... long-lived and directly emitted GHGs--carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O... carbon dioxide equivalent (CO 2 e) but only if the project also significantly increase emissions of at... emissions must be calculated on both a mass basis and, as alluded to above, a carbon dioxide equivalent (CO...
Lattice gauge action suppressing near-zero modes of H{sub W}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi
2006-11-01
We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less
Nucleon form factors with 2+1 flavor dynamical domain-wall fermions
NASA Astrophysics Data System (ADS)
Yamazaki, Takeshi; Aoki, Yasumichi; Blum, Tom; Lin, Huey-Wen; Ohta, Shigemi; Sasaki, Shoichi; Tweedie, Robert; Zanotti, James
2009-06-01
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with Nf=2+1 dynamical domain-wall fermions and Iwasaki gauge actions at β=2.13, corresponding to a cutoff a-1=1.73GeV, and a spatial volume of (2.7fm)3. The up and down-quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2
Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature
NASA Astrophysics Data System (ADS)
Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.
2009-04-01
We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.
Analysis of Non-Tactical Vehicle Utilization at Fort Carson
2012-03-30
regenerative braking energy recovery. The mass of the vehicles monitored in this study was not known. However, some useful information may be...regeneration to add braking action when the driver demand for deceleration rate exceeds the power absorption capability of the regenerative energy...recovery efficiency. However, the VSquareLoss calculation can be easily adapted to take into account the clipping of regenerative braking at high speeds
Quark masses and strong coupling constant in 2+1 flavor QCD
Maezawa, Y.; Petreczky, P.
2016-08-30
We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α s(μ =more » m c) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α s(μ = M Z, n f = 5) = 0.11622(84).« less
Liu, Qing; Fragaszy, Dorothy M; Visalberghi, Elisabetta
2016-09-01
Expert tool users are known to adjust their actions skillfully depending on aspects of tool type and task. We examined if bearded capuchin monkeys cracking nuts with stones of different mass adjusted the downward velocity and the height of the stone when striking palm nuts. During a field experiment carried out in FBV (Piauí, Brazil), eight adult wild capuchin monkeys (five males) cracked Orbygnia nuts of varied resistance with hammer stones differing in mass. From recorded videos, we identified the highest strike per nut-cracking episode, and for this strike, we calculated the height to which the monkey lifted the stone, the maximum velocity of the stone during the downward phase, the work done on the stone, and the kinetic energy of the strike. We found that individual capuchins achieved average maximum kinetic energy of 8.7-16.1 J when using stones between 0.9 and 1.9 kg, and maximum kinetic energy correlated positively with mass of the stone. Monkeys lifted all the stones to an individually consistent maximum height but added more work to the stone when using lighter stones. One male and one female monkey lifted stones higher when they cracked more resistant nuts. The high resistance of the Orbygnia nut elicits production of maximum kinetic energy, which the monkeys modulate to some degree by adding work to lighter stones. Capuchin monkeys, like chimpanzees, modulate their actions in nut-cracking, indicating skilled action, although neither species regulates kinetic energy as precisely as skilled human stone knappers. Kinematic analyses promise to yield new insights into the ways and extent to which nonhuman tool users develop expertise. Am J Phys Anthropol 161:53-61, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Potential description of charmonium and charmed-strange mesons from lattice QCD
NASA Astrophysics Data System (ADS)
Kawanai, Taichi; Sasaki, Shoichi
2015-11-01
We present spin-independent and spin-spin interquark potentials for the charmonium and charmed-strange mesons, which are calculated in 2 +1 flavor lattice QCD simulations using the PACS-CS gauge configurations generated at the lightest pion mass (Mπ≈156 (7 ) MeV ) with a lattice cutoff of a-1≈2.2 GeV and a spatial volume of (3 fm )3 . For the charm quark, we use a relativistic heavy quark (RHQ) action with fine tuned RHQ parameters, which closely reproduce both the experimental spin-averaged mass and hyperfine splitting of the 1 S charmonium. The interquark potential and the quark kinetic mass, both of which are key ingredients within the potential description of heavy-heavy and heavy-light mesons, are determined from the equal-time Bethe-Salpeter (BS) amplitude. The charmonium potentials are obtained from the BS wave function of 1 S charmonia (ηc and J /ψ mesons), while the charmed-strange potential are calculated from the Ds and Ds* heavy-light mesons. We then use resulting potentials and quark masses as purely theoretical inputs so as to solve the nonrelativistic Schrödinger equation for calculating accessible energy levels of charmonium and charmed-strange mesons without unknown parameters. The resultant spectra below the D D ¯ and D K thresholds excellently agree with well-established experimental data.
Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas
2016-01-20
Here, we propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. Moreover, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to themore » dissipation in collective motion and to adiabatic fission characteristics.« less
Mass deformations of 5d SCFTs via holography
NASA Astrophysics Data System (ADS)
Gutperle, Michael; Kaidi, Justin; Raj, Himanshu
2018-02-01
Using six-dimensional Euclidean F (4) gauged supergravity we construct a holographic renormalization group flow for a CFT on S 5. Numerical solutions to the BPS equations are obtained and the free energy of the theory on S 5 is determined holographically by calculation of the renormalized on-shell supergravity action. In the process, we deal with subtle issues such as holographic renormalization and addition of finite counterterms. We then propose a candidate field theory dual to these solutions. This tentative dual is a supersymmetry-preserving deformation of the strongly-coupled non-Lagrangian SCFT derived from the D4-D8 system in string theory. In the IR, this theory is a mass deformation of a USp(2 N ) gauge theory. A localization calculation of the free energy is performed for this IR theory, which for reasonably small values of the deformation parameter is found to have the same qualitative behaviour as the holographic free energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torok, Aaron
The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less
Ghosts in the self-accelerating brane universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyama, Kazuya; Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth, PO1 2EG
2005-12-15
We study the spectrum of gravitational perturbations about a vacuum de Sitter brane with the induced 4D Einstein-Hilbert term, in a 5D Minkowski spacetime (DGP model). We consider solutions that include a self-accelerating universe, where the accelerating expansion of the universe is realized without introducing a cosmological constant on the brane. The mass of the discrete mode for the spin-2 graviton is calculated for various Hr{sub c}, where H is the Hubble parameter and r{sub c} is the crossover scale determined by the ratio between the 5D Newton constant and the 4D Newton constant. We show that, if we introducemore » a positive cosmological constant on the brane (Hr{sub c}>1), the spin-2 graviton has mass in the range 0
Paula-Moraes, S; Burkness, E C; Hunt, T E; Wright, R J; Hein, G L; Hutchison, W D
2011-12-01
Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a native pest of dry beans (Phaseolus vulgaris L.) and corn (Zea mays L.). As a result of larval feeding damage on corn ears, S. albicosta has a narrow treatment window; thus, early detection of the pest in the field is essential, and egg mass sampling has become a popular monitoring tool. Three action thresholds for field and sweet corn currently are used by crop consultants, including 4% of plants infested with egg masses on sweet corn in the silking-tasseling stage, 8% of plants infested with egg masses on field corn with approximately 95% tasseled, and 20% of plants infested with egg masses on field corn during mid-milk-stage corn. The current monitoring recommendation is to sample 20 plants at each of five locations per field (100 plants total). In an effort to develop a more cost-effective sampling plan for S. albicosta egg masses, several alternative binomial sampling plans were developed using Wald's sequential probability ratio test, and validated using Resampling for Validation of Sampling Plans (RVSP) software. The benefit-cost ratio also was calculated and used to determine the final selection of sampling plans. Based on final sampling plans selected for each action threshold, the average sample number required to reach a treat or no-treat decision ranged from 38 to 41 plants per field. This represents a significant savings in sampling cost over the current recommendation of 100 plants.
NASA Astrophysics Data System (ADS)
Bazavov, A.; Bhattacharya, Tanmoy; DeTar, C. E.; Ding, H.-T.; Gottlieb, Steven; Gupta, Rajan; Hegde, P.; Heller, Urs M.; Karsch, F.; Laermann, E.; Levkova, L.; Mukherjee, Swagato; Petreczky, P.; Schmidt, Christian; Soltz, R. A.; Soeldner, W.; Sugar, R.; Vranas, Pavlos M.
2012-08-01
We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree-level improved gauge and the highly improved staggered quark actions with almost physical light and strange quark masses at three different values of the lattice cutoff. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudoscalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150MeV≤T≤250MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T≲150MeV. We observe significant deviations in the temperature range 160MeV≲T≲170MeV and qualitative differences in the behavior of the three conserved charge sectors. At T≃160MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations, while the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.
A generalized chemistry version of SPARK
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.
1988-01-01
An extension of the reacting H2-air computer code SPARK is presented, which enables the code to be used on any reacting flow problem. Routines are developed calculating in a general fashion, the reaction rates, and chemical Jacobians of any reacting system. In addition, an equilibrium routine is added so that the code will have frozen, finite rate, and equilibrium capabilities. The reaction rate for the species is determined from the law of mass action using Arrhenius expressions for the rate constants. The Jacobian routines are determined by numerically or analytically differentiating the law of mass action for each species. The equilibrium routine is based on a Gibbs free energy minimization routine. The routines are written in FORTRAN 77, with special consideration given to vectorization. Run times for the generalized routines are generally 20 percent slower than reaction specific routines. The numerical efficiency of the generalized analytical Jacobian, however, is nearly 300 percent better than the reaction specific numerical Jacobian used in SPARK.
Δmix parameter in the overlap on domain-wall mixed action
NASA Astrophysics Data System (ADS)
Lujan, M.; Alexandru, A.; Chen, Y.; Draper, T.; Freeman, W.; Gong, M.; Lee, F. X.; Li, A.; Liu, K. F.; Mathur, N.
2012-07-01
A direct calculation of the mixed action parameter Δmix with valence overlap fermions on a domain-wall fermion sea is presented. The calculation is performed on four ensembles of the 2+1 flavor domain-wall gauge configurations: 243×64 (aml=0.005, a=0.114fm) and 323×64 (aml=0.004, 0.006, 0.008, a=0.085fm). For pion masses close to 300 MeV we find Δmix=0.030(6)GeV4 at a=0.114fm and Δmix=0.033(12)GeV4 at a=0.085fm. The results are quite independent of the lattice spacing and they are significantly smaller than the results for valence domain-wall fermions on asqtad sea or those of valence overlap fermions on clover sea. Combining the results extracted from these two ensembles, we get Δmix=0.030(6)(5)GeV4, where the first error is statistical and the second is the systematic error associated with the fitting method.
Neutron and proton electric dipole moments from N f=2+1 domain-wall fermion lattice QCD
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; ...
2016-05-05
We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s) with N f = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses 330 and 420 MeV and 2.7 fm 3 lattices with Iwasaki gauge action and a 170 MeV pion and 4.6 fm 3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient, high statistics calculation; however themore » statistical errors on our results are still relatively large, so we investigate a new direction to reduce them, reweighting with the local topological charge density which appears promising. Furthermore, we discuss the chiral behavior and finite size effects of the EDM’s in the context of baryon chiral perturbation theory.« less
Circumbinary habitability niches
NASA Astrophysics Data System (ADS)
Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.
2015-07-01
Binaries could provide the best niches for life in the Galaxy. Although counterintuitive, this assertion follows directly from stellar tidal interaction theory and the evolution of lower mass stars. There is strong evidence that chromospheric activity of rapidly rotating young stars may be high enough to cause mass loss from atmospheres of potentially habitable planets. The removal of atmospheric water is most critical. Tidal breaking in binaries could help reduce magnetic dynamo action and thereby chromospheric activity in favour of life. We call this the Binary Habitability Mechanism (BHM) that we suggest allows for water retention at levels comparable to or better than the Earth. We discuss novel advantages that life may exploit, in these cases, and suggest that life may even thrive on some circumbinary planets. We find that while many binaries do not benefit from BHM, high-quality niches do exist for various combinations of stars between 0.55 and 1.0 solar masses. For a given pair of stellar masses, BHM operates only for certain combinations of period and eccentricity. Binaries having a solar-type primary seem to be quite well-suited niches having wide and distant habitable zones with plentiful water and sufficient light for photosynthetic life. We speculate that, as a direct result of BHM, conditions may be suitable for life on several planets and possibly even moons of giant planets orbiting some binaries. Lower mass combinations, while more restrictive in parameter space, provide niches lasting many billions of years and are rich suppliers of photosynthetic photons. We provide a publicly available web-site (http://bit.ly/BHM-calculator or http://bit.ly/BHM-calculator-mirror), which calculates the BHM effects presented in this paper.
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
NASA Astrophysics Data System (ADS)
Ohta, Shigemi
2006-12-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is a-1 ˜ 1.7GeV and the spatial volume is about (1.9fm)3 . Despite the small volume, the ratio of the isovector vector and axial charges gA /gV and that of structure function moments x u-d / x u- d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a-1 ˜ 1.6GeV and the spatial volume is about (3.0fm)3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios gA /gV and x u-d / x u- d are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d1 , though yet to be renormalized, appears small in both sets.
NASA Astrophysics Data System (ADS)
Bernard, Laura; Blanchet, Luc; Bohé, Alejandro; Faye, Guillaume; Marsat, Sylvain
2017-11-01
The Fokker action of point-particle binaries at the fourth post-Newtonian (4PN) approximation of general relativity has been determined previously. However two ambiguity parameters associated with infrared (IR) divergencies of spatial integrals had to be introduced. These two parameters were fixed by comparison with gravitational self-force (GSF) calculations of the conserved energy and periastron advance for circular orbits in the test-mass limit. In the present paper together with a companion paper, we determine both these ambiguities from first principle, by means of dimensional regularization. Our computation is thus entirely defined within the dimensional regularization scheme, for treating at once the IR and ultra-violet (UV) divergencies. In particular, we obtain crucial contributions coming from the Einstein-Hilbert part of the action and from the nonlocal tail term in arbitrary dimensions, which resolve the ambiguities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Karessa L.; Dolislager, Fredrick G.; Bellamy, Michael B.
The Preliminary Remediation Goal (PRG) and Dose Compliance Concentration (DCC) calculators are screening level tools that set forth Environmental Protection Agency's (EPA) recommended approaches, based upon currently available information with respect to risk assessment, for response actions at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites, commonly known as Superfund. The screening levels derived by the PRG and DCC calculators are used to identify isotopes contributing the highest risk and dose as well as establish preliminary remediation goals. Each calculator has a residential gardening scenario and subsistence farmer exposure scenarios that require modeling of the transfer of contaminants frommore » soil and water into various types of biota (crops and animal products). New publications of human intake rates of biota; farm animal intakes of water, soil, and fodder; and soil to plant interactions require updates be implemented into the PRG and DCC exposure scenarios. Recent improvements have been made in the biota modeling for these calculators, including newly derived biota intake rates, more comprehensive soil mass loading factors (MLFs), and more comprehensive soil to tissue transfer factors (TFs) for animals and soil to plant transfer factors (BV's). New biota have been added in both the produce and animal products categories that greatly improve the accuracy and utility of the PRG and DCC calculators and encompass greater geographic diversity on a national and international scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, R.A.; McWhorter, D.B.
Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a proposed framework for quantifying the degree to which risk is reduced as mass is removed from DNAPL source areas in shallow, saturated, low-permeability media. Risk is defined in terms of meeting an alternate concentration limit (ACL) at a compliance well in an aquifer underlying the sourcemore » zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downgradient water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phase (aqueous, sorbed, NAPL). Due to the uncertainties in currently available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making specific risk-reduction calculations for individual technologies. Despite the qualitative nature of the exercise, results imply that very high total mass-removal efficiencies are required to achieve significant long-term risk reduction with technology applications of finite duration. This paper is not an argument for no action at contaminated sites. Rather, it provides support for the conclusions of Cherry et al. (1992) that the primary goal of current remediation should be short-term risk reduction through containment, with the aim to pass on to future generations site conditions that are well-suited to the future applications of emerging technologies with improved mass-removal capabilities.« less
Quantum corrections for the cubic Galileon in the covariant language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saltas, Ippocratis D.; Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach inmore » this context is discussed, while all calculations are explicitly presented.« less
Semileptonic B-meson decays to light pseudoscalar mesons on the HISQ ensembles
NASA Astrophysics Data System (ADS)
Gelzer, Zechariah; Bernard, C.; Tar, C. De; El-Khadra, AX; Gámiz, E.; Gottlieb, Steven; Kronfeld, Andreas S.; Liu, Yuzhi; Meurice, Y.; Simone, J. N.; Toussaint, D.; Water, R. S. Van de; Zhou, R.
2018-03-01
We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of B mesons with both charged currents (B → πlv, Bs → Klv) and neutral currents (B → πl+l-, B → Kl+l-). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILC's (2+1 + 1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the b quark. Simulations are carried out at three lattice spacings down to 0.088 fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits.
NASA Astrophysics Data System (ADS)
Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew
2018-03-01
We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.
Nucleon structure from 2+1-flavor domain-wall QCD
NASA Astrophysics Data System (ADS)
Ohta, Shigemi
2018-03-01
Nucleon-structure calculations of isovector vector-and axialvector-current form factors, transversity and scalar charge, and quark momentum and helicity fractions are reported from two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD Collaborations with Iwasaki × dislocation-suppressing-determinatn-ratio gauge action at inverse lattice spacing of 1.378(7) GeV and pion mass values of 249.4(3) and 172.3(3) MeV.
NASA Astrophysics Data System (ADS)
Dudar, O. I.; Dudar, E. S.
2017-11-01
The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.
Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD
NASA Astrophysics Data System (ADS)
Iannelli, Joe
2003-10-01
This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Chuvilskaya, T. V.; Shirokova, A. A.
2018-03-01
The results of calculation of 63Cu + p differential cross sections at incident-proton energies between 10 and 200 MeV and a comparative analysis of these results are presented as a continuation of the earlier work of our group on developing methods for calculating the contribution of nuclear reactions to radiative effects arising in the onboard spacecraft electronics under the action of high-energy cosmic-ray protons on 63Cu nuclei (generation of single-event upsets) and as a supplement to the earlier calculations performed on the basis of the TALYS code in order to determine elastic- and inelastic-scattering cross sections and charge, mass, and energy distributions of recoil nuclei (heavy products of the 63Cu + p nuclear reaction). The influence of various mechanisms of the angular distributions of particles emitted in the 63Cu + p nuclear reaction is also discussed.
$B$- and $D$-meson leptonic decay constants from four-flavor lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazavov, A.; Bernard, C.; Brown, N.
We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamicalmore » $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $$a\\approx 0.03$$~fm and several values of the light-quark mass down to the physical value $$\\frac{1}{2}(m_u+m_d)$$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $$f_{D^+} = 212.6 (0.5)$$~MeV, $$f_{D_s} = 249.8(0.4)$$~MeV, $$f_{D_s}/f_{D^+} = 1.1749(11)$$, $$f_{B^+} = 189.4(1.4)$$~MeV, $$f_{B_s} = 230.7(1.2)$$~MeV, $$f_{B_s}/f_{B^+} = 1.2180(49)$$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $$\\overline{\\mathcal{B}}(B_s \\to \\mu^+\\mu^-) = 3.65(11) \\times 10^{-9}$$, $$\\overline{\\mathcal{B}}(B^0 \\to \\mu^+\\mu^-) = 1.00(3) \\times 10^{-11}$$, and $$\\overline{\\mathcal{B}}(B^0 \\to \\mu^+\\mu^-)/\\overline{\\mathcal{B}}(B_s \\to \\mu^+\\mu^-) = 0.00264(7)$$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $$f_{p4s}$$, $$M_{p4s}$$, and $$R_{p4s}$$. We obtain the most precise lattice-QCD determination to date of the ratio $$f_{K^+}/f_{\\pi^+} = 1.1950(^{+15}_{-22})$$~MeV.« less
Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry
NASA Astrophysics Data System (ADS)
Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration
2017-08-01
We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.
Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; ...
2015-03-10
We calculate the B-meson decay constants f B, f Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M π ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clovermore » action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f B0 = 199.5(12.6) MeV, f B+=195.6(14.9) MeV, f Bs=235.4(12.2) MeV, f Bs/f B0=1.197(50), and f Bs/f B+=1.223(71), where the errors are statistical and total systematic added in quadrature. Finally, these results are in good agreement with other published results and provide an important independent cross-check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku
2015-03-10
We calculate the B-meson decay constants f B, f Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M π ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action withmore » the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f B0 = 196.2(15.7) MeV, f B+ = 195.4(15.8) MeV, f Bs = 235.4(12.2) MeV, f Bs/f B0 = 1.193(59), and f Bs/f B+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less
ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, Robyn E.; Helmi, Amina; Hogg, David W., E-mail: robyn@astro.columbia.edu
2015-03-10
We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like datamore » in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.« less
The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle.
Regoes, R R; Hottinger, J W; Sygnarski, L; Ebert, D
2003-10-01
In simple epidemiological models that describe the interaction between hosts with their parasites, the infection process is commonly assumed to be governed by the law of mass action, i.e. it is assumed that the infection rate depends linearly on the densities of the host and the parasite. The mass-action assumption, however, can be problematic if certain aspects of the host-parasite interaction are very pronounced, such as spatial compartmentalization, host immunity which may protect from infection with low doses, or host heterogeneity with regard to susceptibility to infection. As deviations from a mass-action infection rate have consequences for the dynamics of the host-parasite system, it is important to test for the appropriateness of the mass-action assumption in a given host-parasite system. In this paper, we examine the relationship between the infection rate and the parasite inoculum for the water flee Daphnia magna and its bacterial parasite Pasteuria ramosa. We measured the fraction of infected hosts after exposure to 14 different doses of the parasite. We find that the observed relationship between the fraction of infected hosts and the parasite dose is largely consistent with an infection process governed by the mass-action principle. However, we have evidence for a subtle but significant deviation from a simple mass-action infection model, which can be explained either by some antagonistic effects of the parasite spores during the infection process, or by heterogeneity in the hosts' susceptibility with regard to infection.
Meson and baryon dispersion relations with Brillouin fermions
NASA Astrophysics Data System (ADS)
Dürr, Stephan; Koutsou, Giannis; Lippert, Thomas
2012-12-01
We study the dispersion relations of mesons and baryons built from Brillouin quarks on one Nf=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cutoff effects. As an application we determine the masses of the Ωc0, Ωcc+ and Ωccc++ baryons on that ensemble.
Precision Light Flavor Physics from Lattice QCD
NASA Astrophysics Data System (ADS)
Murphy, David
In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its equivalence to the RHMC action, and demonstrate that additional preconditioning techniques can be used to significantly accelerate EOFA simulations. We apply EOFA to the ongoing RBC/UKQCD calculation of the Delta I = 1/2 K → pipi decay amplitude, and demonstrate that, in this context, gauge field configurations can be generated a factor of 4.2 times faster using an EOFA-based simulation rather than the previous RHMC-based simulations. We expect that EOFA will help to significantly reduce the statistical error in the first-principles determination of the Standard Model CP-violation parameters epsilon and epsilon' offered by the K → pipi calculation.
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LIN H.-W.; OHTA, S.
2006-10-02
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments
2+1 flavor lattice QCD toward the physical point
NASA Astrophysics Data System (ADS)
Aoki, S.; Ishikawa, K.-I.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yoshié, T.
2009-02-01
We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at β=1.9, corresponding to the lattice spacing of a=0.0907(13)fm, on a 323×64 lattice with the use of the domain-decomposed HMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose up-down quark mass is as light as the physical value. The resulting pseudoscalar meson masses range from 702 MeV down to 156 MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the pseudoscalar meson sector with SU(3) chiral perturbation theory reveals that the next-to-leading order corrections are large at the physical strange quark mass. In order to estimate the physical up-down quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) low energy constants lmacr 3 and lmacr 4 are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing mπ, mK and mΩ as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of fπ, fK and their ratio, where renormalization is carries out perturbatively at one loop, are compatible with the experimental values. For the physical quark masses we obtain mudM Smacr and msM Smacr extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors. We also briefly discuss the results for the static quark potential.
Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.
2000-01-01
A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.
40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle as...
40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle as...
NASA Astrophysics Data System (ADS)
Sobol', E. N.; Kitai, M. S.
1998-07-01
A theoretical model is developed for the calculation of the temperature fields and determination of the size of a zone with structural changes in the cartilaginous tissue. The model is based on a simultaneous analysis of the heat and mass transfer processes and it takes into account the bulk absorption of laser radiation by the tissue, surface evaporation of water, and temperature dependences of the diffusion coefficients. It is assumed that under the influence of a phase transition between free and bound water, caused by heating of the cartilage to 70°C, the proteoglycans of the cartilage matrix become mobile and, as a result of such mass transfer, structural changes are induced in the cartilaginous tissue causing relaxation of stresses or denaturation. It is shown that the maximum temperature is then reached not on the irradiated surface but at some distance from it, and that the size of the zones of structural changes (denaturation depth) depends strongly on the energy density of the laser radiation and its wavelength, on the duration of the irradiation, and on the cartilage thickness. This model makes it possible to calculate the temperature fields and the depth of structural changes in laser-induced relaxation of stresses and changes in the shape of the cartilaginous tissue.
NASA Astrophysics Data System (ADS)
Moren, I.; Worman, A. L. E.; Riml, J.
2017-12-01
Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically to evaluate if the mass removal is reaction or transport controlled.
QCD equation of state to O (μB6) from lattice QCD
NASA Astrophysics Data System (ADS)
Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Sandmeyer, H.; Steinbrecher, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Wagner, M.
2017-03-01
We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ∈[135 MeV ,330 MeV ] using up to four different sets of lattice cutoffs corresponding to lattices of size Nσ3×Nτ with aspect ratio Nσ/Nτ=4 and Nτ=6 - 16 . The strange quark mass is tuned to its physical value, and we use two strange to light quark mass ratios ms/ml=20 and 27, which in the continuum limit correspond to a pion mass of about 160 and 140 MeV, respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (μB≤2 T ). The fourth-order equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √{sN N}˜12 GeV . We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth-order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -μB plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. We argue that results on sixth-order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for μB/T ≤2 and T /Tc(μB=0 )>0.9 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazavov, A.; Ding, H. -T.; Hegde, P.
In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less
Propellant Mass Fraction Calculation Methodology for Launch Vehicles
NASA Technical Reports Server (NTRS)
Holt, James B.; Monk, Timothy S.
2009-01-01
Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between competing launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of a generic launch vehicle. This includes fundamental methods of pmf calculation which consider only the loaded propellant and the inert mass of the vehicle, more involved methods which consider the residuals and any other unusable propellant remaining in the vehicle, and other calculations which exclude large mass quantities such as the installed engine mass. Finally, a historic comparison is made between launch vehicles on the basis of the differing calculation methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, L.; Zaslawsky, M.
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
NASA Technical Reports Server (NTRS)
Holt, James B.; Monk, Timothy S.
2009-01-01
Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between candidate launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of launch vehicles. This includes fundamental methods of pmf calculation that consider only the total propellant mass and the dry mass of the vehicle; more involved methods that consider the residuals, reserves and any other unusable propellant remaining in the vehicle; and calculations excluding large mass quantities such as the installed engine mass. Finally, a historical comparison is made between launch vehicles on the basis of the differing calculation methodologies, while the unique mission and design requirements of the Ares V Earth Departure Stage (EDS) are examined in terms of impact to pmf.
NASA Astrophysics Data System (ADS)
Suzuki, Tsuneo
2018-02-01
Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1) smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the tadpole-improved gauge action. The effective action can be determined by adopting the inverse Monte Carlo method. The coupling constants F (i ) of the effective action depend on the coupling of the lattice action β and the number of the blocking step n . But it is found that F (i ) satisfies a beautiful scaling; that is, they are a function of the product b =n a (β ) alone for lattice coupling constants 3.0 ≤β ≤3.9 and the steps of blocking 1 ≤n ≤12 . The effective action showing the scaling behavior can be regarded as an almost perfect action corresponding to the continuum limit, since a →0 as n →∞ for fixed b . The infrared effective monopole action keeps the global color invariance when smooth gauges such as MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the continuum theory. Then we compare the results with those obtained by the analytic blocking method of topological defects from the continuum, assuming local two-point interactions are dominant as the infrared effective action. The action is formulated in the continuum limit while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be transformed into that of the string model. Since large b =n a (β ) corresponds to the strong-coupling region in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically with the use of the strong-coupling expansion of the string model. The almost perfect action gives us √{σ }≃1.3 √{σphys } for b ≥1.0 (σphys-1 /2) , whereas the scalar glueball mass is kept to be near M (0++)˜3.7 √{σphys } . In addition, using the effective action composed of 10 simple quadratic interactions alone, we can almost explain analytically the scaling function of the squared monopole density determined numerically for a large b region when b >1.2 (σphys-1 /2).
Bs and Ds decay constants in three-flavor lattice QCD.
Wingate, Matthew; Davies, Christine T H; Gray, Alan; Lepage, G Peter; Shigemitsu, Junko
2004-04-23
Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.
Sivers and Boer-Mulders observables from lattice QCD
NASA Astrophysics Data System (ADS)
Musch, B. U.; Hägler, Ph.; Engelhardt, M.; Negele, J. W.; Schäfer, A.
2012-05-01
We present a first calculation of transverse momentum-dependent nucleon observables in dynamical lattice QCD employing nonlocal operators with staple-shaped, “process-dependent” Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and, in particular, to access nonuniversal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm-gear function g1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an nf=2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
40 CFR 98.423 - Calculating CO2 supply.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Calculate the annual mass of CO2 captured, extracted, imported, or exported through each flow meter in... flow meters are used, you shall calculate the annual mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate...
Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility
NASA Technical Reports Server (NTRS)
Bozak, Richard F.
2018-01-01
Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.
Constraints on planet X/Nemesis from Solar System's inner dynamics
NASA Astrophysics Data System (ADS)
Iorio, L.
2009-11-01
We use the corrections to the standard Newtonian/Einsteinian perihelion precessions of the inner planets of the Solar system, recently estimated by E.V. Pitjeva by fitting a huge planetary data set with the dynamical models of the EPM ephemerides, to put constraints on the position of a putative, yet undiscovered large body X of mass MX, not modelled in the EPM software. The direct action of X on the inner planets can be approximated by a elastic Hooke-type radial acceleration plus a term of comparable magnitude having a fixed direction in space pointing towards X. The perihelion precessions induced by them can be analytically worked out only for some particular positions of X in the sky; in general, numerical calculations are used. We show that the indirect effects of X on the inner planets through its action on the outer ones can be neglected, given the present-day level of accuracy in knowing . As a result, we find that Mars yields the tightest constraints, with the tidal parameter . To constrain rX we consider the case of a rock-ice planet with the mass of Mars and the Earth, a giant planet with the mass of Jupiter, a brown dwarf with MX = 80mJupiter, a red dwarf with M = 0.5Msolar and a Sun-mass body. For each of them we plot rminX as a function of the heliocentric latitude β and longitude λ. We also determine the forbidden spatial region for X by plotting its boundary surface in the three-dimensional space; it shows significant departures from spherical symmetry. A Mars-sized body can be found at not less than 70-85 au: such bounds are 147-175 au, 1006-1200 au, 4334-5170 au, 8113-9524 au and 10222-12000 au for a body with a mass equal to that of the Earth, Jupiter, a brown dwarf, red dwarf and the Sun, respectively.
40 CFR 98.423 - Calculating CO2 supply.
Code of Federal Regulations, 2011 CFR
2011-07-01
... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...
40 CFR 98.423 - Calculating CO2 supply.
Code of Federal Regulations, 2014 CFR
2014-07-01
... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...
40 CFR 98.423 - Calculating CO2 supply.
Code of Federal Regulations, 2012 CFR
2012-07-01
... as allowed in paragraph (b) of this section, calculate the annual mass of CO2 captured, extracted... mass of CO2 for all flow meters according to the procedures specified in paragraph (a)(3) of this section. (1) For each mass flow meter, you shall calculate quarterly the mass of CO2 in a CO2 stream in...
Wei, Wei; Motoike, Toshiyuki; Krzeszinski, Jing Y.; Jin, Zixue; Xie, Xian-Jin; Dechow, Paul C.; Yanagisawa, Masashi; Wan, Yihong
2014-01-01
SUMMARY Orexin neuropeptides promote arousal, appetite, reward, and energy expenditure. However, whether orexin affects bone mass accrual is unknown. Here we show that orexin functions centrally through orexin receptor 2 (OX2R) in the brain to enhance bone formation. OX2R-null mice exhibit low-bone-mass owing to elevated circulating leptin; whereas central administration of an OX2R-selective agonist augments bone mass. Conversely, orexin also functions peripherally through orexin receptor 1 (OX1R) in the bone to suppress bone formation. OX1R-null mice exhibit high-bone-mass owing to a mesenchymal stem cell differentiation shift from adipocyte to osteoblast that results from higher osseous ghrelin expression. The central action is dominant over the peripheral action because bone mass is reduced in orexin-null and OX1R2R-double-null mice but enhanced in orexin over-expressing transgenic mice. These findings reveal orexin as a critical rheostat of skeletal homeostasis that exerts a yin-yang dual regulation, and highlight orexin as a therapeutic target for osteoporosis. PMID:24794976
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-02-01
We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.
NASA Astrophysics Data System (ADS)
Pashynska, Vlada; Stepanian, Stepan; Gömöry, Ágnes; Vékey, Károly; Adamowicz, Ludwik
2017-10-01
This study is devoted to examining the molecular structure and molecular mechanisms of action of the recently developed cardioprotective agent flokalin (Fl), a fluorine containing analogue of pinacidil, which is known as an activator of ATP sensitive potassium membrane channels. A combined experimental and computational investigation of flokalin and its biologically relevant supramolecular complexes with selected amino acids involved in KATP-channels proteins is performed by electrospray ionization mass spectrometry (ESI MS) and by B3LYP/aug-cc-pVDZ quantum-mechanical calculations. First Fl solution is probed by ESI MS and a characteristic mass spectrum of the agent is obtained. Next the intermolecular interactions of Fl with the potentially targeted aminoacids (AA), Lys and Thr, are experimentally investigated. The spectra of the model Fl:AA systems (in 1:1 M ratio) contain information on the ions characteristic to the individual components of the mixtures; though the most interesting spectral results from the biophysical view point are related to the ions of stable molecular clusters formed by flokalin with AA. The peaks of such ions are quite prominent in the spectrum for the Fl:Lys system and less prominent for Fl:Thr. The equilibrium geometries and the corresponding interaction energies of the noncovalent supramolecular complexes registered in the mass spectra are determined in the quantum chemical calculations. The formation of the stable noncovalent complexes of Fl with Lyz and Thr revealed by the ESI MS probing and by the theoretical modelling testify to a possibility of interaction of flokalin with the KATP-channel domains enriched with the two amino acids in biological systems.
Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André
2017-09-01
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
40 CFR 98.473 - Calculating CO2 received.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (a) You must calculate and report the annual mass of CO2 received by pipeline using the procedures in... applicable. (1) For a mass flow meter, you must calculate the total annual mass of CO2 in a CO2 stream received in metric tons by multiplying the mass flow by the CO2 concentration in the flow, according to...
Isovector charges of the nucleon from 2 + 1 -flavor QCD with clover fermions
Yoon, Boram; Jang, Yong -Chull; Gupta, Rajan; ...
2017-04-13
We present high-statistics estimates of the isovector charges of the nucleon from four 2+1-flavor ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved Symanzik gauge action at lattice spacingsmore » $a=0.114$ and $0.080$ fm and with $$M_\\pi \\approx 315$$ and 200 MeV. The truncated solver method with bias correction and the coherent source sequential propagator construction are used to cost-effectively achieve $O(10^5)$ measurements on each ensemble. Using these data, the analysis of two-point correlation functions is extended to include four states in the fits and of three-point functions to three states. Control over excited-state contamination in the calculation of the nucleon mass, the mass gaps between excited states, and in the matrix elements is demonstrated by the consistency of estimates using this multistate analysis of the spectral decomposition of the correlation functions and from simulations of the three-point functions at multiple values of the source-sink separation. Lastly, the results for all three charges, $$g_A$$, $$g_S$$ and $$g_T$$, are in good agreement with calculations done using the clover-on-HISQ lattice formulation with similar values of the lattice parameters.« less
A proposal of a renormalizable Nambu-Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Cabo Montes de Oca, Alejandro
2018-03-01
A local and gauge invariant gauge field model including Nambu-Jona-Lasinio (NJL) and QCD Lagrangian terms in its action is introduced. Surprisingly, it becomes power counting renormalizable. This occurs thanks to the presence of action terms which modify the quark propagators, to become more decreasing that the Dirac one at large momenta in a Lee-Wick form, implying power counting renormalizability. The appearance of finite quark masses already in the tree approximation in the scheme is determined by the fact that the new action terms explicitly break chiral invariance. In this starting work we present the renormalized Feynman diagram expansion of the model and derive the formula for the degree of divergence of the diagrams. An explanation for the usual exclusion of the added Lagrangian terms is presented. In addition, the primitíve divergent graphs are identified. We start their evaluation by calculating the simpler contribution to the gluon polarization operator. The divergent and finite parts both result transverse as required by gauge invariance. The full evaluation of the various primitive divergences, which are required for completely defining the counterterm Feynman expansion will be considered in coming works, for further allowing to discuss the flavour symmetry breaking and unitarity.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold start...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a coal...
Triaxial quadrupole dynamics and the inner fission barrier of some heavy even-even nuclei
NASA Astrophysics Data System (ADS)
Benrabia, K.; Medjadi, D. E.; Imadalou, M.; Quentin, P.
2017-09-01
Background: Inner fission barriers of actinide nuclei have been known for a long time to be unstable with respect to the axial symmetry. On the other hand, taking into account the effect of the relevant adiabatic mass parameter reduces or even may wash out this instability. A proper treatment of the dynamics for both axial and triaxial modes is thus crucial to accurately determine the corresponding fission barriers. This entails in particular an accurate description of pairing correlations. Purpose: We evaluate the potential energies, moments of inertia, and vibrational mass parameters in a two-dimensional relevant deformation space (corresponding to the usual β and γ quadrupole deformation parameters) for four actinide nuclei (236U, 240Pu, 248Cm, and 252Cf). We assess the relevance of our approach to describe the dynamics for a triaxial mode by computing the low energy spectra (exploring thus mainly the equilibrium deformation region). We evaluate the inner fission barrier heights releasing the axial symmetry constraint. Method: Calculations within the Hartree-Fock plus BCS approach are performed using the SkM* Skyrme effective interaction in the particle-hole channel and a seniority force in the particle-particle channel. The intensity of this residual interaction has been fixed to allow a good reproduction of some odd-even mass differences in the actinide region. Adiabatic mass parameters for the rotational and vibrational modes are calculated using the Inglis-Belyaev formula supplemented by a global renormalization factor taking into account the so-called Thouless-Valatin corrections. Spectra are obtained through the diagonalization of the corresponding Bohr collective Hamiltonian. Results: The experimental low energy spectra are qualitatively well reproduced by our calculations for the considered nuclei. Inner fission barrier heights are calculated and compared with available estimates from various experimental data. The reproduction of the data is better for 236U and 240Pu (up to about 300 keV) than for 248Cm and 252Cf (up to about one MeV). Conclusions: While these results are encouraging, they call for, in particular, a better treatment of pairing correlations, especially as far as the particle number conservation is concerned. Besides, these results could provide a basis for the determination of the least action trajectories which would generate better grounds for the evaluation of fission half lives.
Daniel, Yvonne A; Henthorn, Joan
2016-12-01
To determine (i) if electrospray mass spectrometry-mass spectrometry with the SpOtOn Diagnostics Ltd reagent kit for sickle cell screening could be integrated into the English newborn screening programme, under routine screening conditions, and provide mass spectrometry-mass spectrometry results which match existing methods, and (ii) if common action values could be set for all manufacturers in the study, for all assessed haemoglobins, to indicate which samples require further investigation. Anonymised residual blood spots were analysed using the SpOtOn reagent kit as per manufacturer's instructions, in parallel with existing techniques at four laboratories. Mass spectrometry-mass spectrometry instrumentation at Laboratories A and B was AB Sciex (Warrington, UK) AP4000, and at Laboratories C and D, Waters Micromass (Manchester, UK), Xevo TQMS and Premier, respectively. There were 23,898 results accepted from the four laboratories. Excellent specificity at 100% sensitivity was observed for haemoglobin S, haemoglobin C, haemoglobin E and haemoglobin O Arab . A common action value was not possible for Hb C, but action values were set by manufacturer. The two haemoglobin D Punjab cases at Laboratory D were not detected using the common action value. Conversely, false-positive results with haemoglobin D Punjab were a problem at the remaining three laboratories. This multicentre study demonstrates that it is possible to implement mass spectrometry-mass spectrometry into an established screening programme while maintaining consistency with existing methods for haemoglobinopathy screening. However, one of the instruments investigated cannot be recommended for use with this application. © The Author(s) 2016.
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
2016-02-11
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Action by the Federal Highway Administrator. 810.208 Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used to determine refueling mass emissions. The mass is calculated from initial and final hydrocarbon and...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used to determine refueling mass emissions. The mass is calculated from initial and final hydrocarbon and...
40 CFR 86.156-98 - Calculations; refueling test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard shall be computed by dividing the total refueling mass emissions by the total gallons of fuel... of the net hydrocarbon mass change and methanol mass change (if applicable) in the enclosure is used to determine refueling mass emissions. The mass is calculated from initial and final hydrocarbon and...
MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE
NASA Technical Reports Server (NTRS)
Hull, R. A.
1994-01-01
The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.
Internal Stresses Lead to Net Forces and Torques on Extended Elastic Bodies
NASA Astrophysics Data System (ADS)
Aharoni, Hillel; Kolinski, John M.; Moshe, Michael; Meirzada, Idan; Sharon, Eran
2016-09-01
A geometrically frustrated elastic body will develop residual stresses arising from the mismatch between the intrinsic geometry of the body and the geometry of the ambient space. We analyze these stresses for an ambient space with gradients in its intrinsic curvature, and show that residual stresses generate effective forces and torques on the center of mass of the body. We analytically calculate these forces in two dimensions, and experimentally demonstrate their action by the migration of a non-Euclidean gel disc in a curved Hele-Shaw cell. An extension of our analysis to higher dimensions shows that these forces are also generated in three dimensions, but are negligible compared to gravity.
The Relationship Between School Holidays and Transmission of Influenza in England and Wales
Jackson, Charlotte; Vynnycky, Emilia; Mangtani, Punam
2016-01-01
Abstract School closure is often considered as an influenza control measure, but its effects on transmission are poorly understood. We used 2 approaches to estimate how school holidays affect the contact parameter (the per capita rate of contact sufficient for infection transmission) for influenza using primary care data from England and Wales (1967–2000). Firstly, we fitted an age-structured susceptible-infectious-recovered model to each year's data to estimate the proportional change in the contact parameter during school holidays as compared with termtime. Secondly, we calculated the percentage difference in the contact parameter between holidays and termtime from weekly values of the contact parameter, estimated directly from simple mass-action models. Estimates were combined using random-effects meta-analysis, where appropriate. From fitting to the data, the difference in the contact parameter among children aged 5–14 years during holidays as compared with termtime ranged from a 36% reduction to a 17% increase; estimates were too heterogeneous for meta-analysis. Based on the simple mass-action model, the contact parameter was 17% (95% confidence interval: 10, 25) lower during holidays than during termtime. Results were robust to the assumed proportions of infections that were reported and individuals who were susceptible when the influenza season started. We conclude that school closure may reduce transmission during influenza outbreaks. PMID:27744384
Bonner, Carissa; Fajardo, Michael Anthony; Hui, Samuel; Stubbs, Renee; Trevena, Lyndal
2018-02-01
Online health information is particularly important for cardiovascular disease (CVD) prevention, where lifestyle changes are recommended until risk becomes high enough to warrant pharmacological intervention. Online information is abundant, but the quality is often poor and many people do not have adequate health literacy to access, understand, and use it effectively. This project aimed to review and evaluate the suitability of online CVD risk calculators for use by low health literate consumers in terms of clinical validity, understandability, and actionability. This systematic review of public websites from August to November 2016 used evaluation of clinical validity based on a high-risk patient profile and assessment of understandability and actionability using Patient Education Material Evaluation Tool for Print Materials. A total of 67 unique webpages and 73 unique CVD risk calculators were identified. The same high-risk patient profile produced widely variable CVD risk estimates, ranging from as little as 3% to as high as a 43% risk of a CVD event over the next 10 years. One-quarter (25%) of risk calculators did not specify what model these estimates were based on. The most common clinical model was Framingham (44%), and most calculators (77%) provided a 10-year CVD risk estimate. The calculators scored moderately on understandability (mean score 64%) and poorly on actionability (mean score 19%). The absolute percentage risk was stated in most (but not all) calculators (79%), and only 18% included graphical formats consistent with recommended risk communication guidelines. There is a plethora of online CVD risk calculators available, but they are not readily understandable and their actionability is poor. Entering the same clinical information produces widely varying results with little explanation. Developers need to address actionability as well as clinical validity and understandability to improve usefulness to consumers with low health literacy. ©Carissa Bonner, Michael Anthony Fajardo, Samuel Hui, Renee Stubbs, Lyndal Trevena. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 01.02.2018.
QCD equation of state to O ( μ B 6 ) from lattice QCD
Bazavov, A.; Ding, H. -T.; Hegde, P.; ...
2017-03-07
In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less
ERIC Educational Resources Information Center
Pfennig, Brian W.; Schaefer, Amy K.
2011-01-01
A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…
NASA Astrophysics Data System (ADS)
Chandrasekharam, Malapaka; Rajkumar, Ganugula; Srinivasa Rao, Chikkam; Suresh, Thogiti; Yella Reddy, Paidi; Yum, Jun-Ho; Khaja Nazeeruddin, Mahammad; Graetzel, Michael
2011-09-01
A new high molar extinction coefficient ruthenium(II) bipyridyl complex 'cis-Ru(L1)(2,2'-bipyridine-4,4'-dicarboxylic acid) (NCS)2, BDF', where L1=4,4-bis(9,9-dibutyl-9H-fluorene-2-yl)-[2,2] bipyridine, has been synthesized and characterized by Fourier transform infrared (FTIR), hydrogen nuclear magnetic resonance (1H-NMR) and electrospray ionization mass (ESI-MASS) spectroscopes. The dye, upon anchoring onto mesoporous nano-crystalline TiO2 solar cells, exhibited a broader photocurrent action spectrum, with a solar-to-electric energy conversion efficiency (η) of 6.58% (JSC=14.66 mA cm-2, VOC=640 mV, fill factor=0.71) under sunlight at air mass (AM) 1.5, larger than the reference Z907 sensitized solar cell fabricated under similar conditions, which exhibited an η-value of 4.65% (JSC=11.52 mA cm-2, VOC=566 mV, fill factor=0.72). Absorption measurements and time-dependent density functional theory (TDDFT) calculations show that the increased conjugation length by introducing 9,9-dibutyl-9H-fluorene moiety relatively enhances the spectral response of the ancillary ligand and the corresponding BDF complex. The calculated dipole moments for BDF and Z907 are 17.71 and 16.34 Debye, respectively. The first three highest occupied molecular orbitals (HOMOs) of BDF have a t2g character, as observed in Z907, while HOMO-4 and HOMO-5 have considerable sizable mixing from Ru-NCS with π-orbitals of L1.
A research on Performance Efficiency of Rubber Metal Support Structures
NASA Astrophysics Data System (ADS)
Mkrtychev, Oleg V.; Bunov, Artem A.
2017-11-01
The paper scrutinizes structural behavior of lead rubber bearings by a Chinese manufacturer subjected to a single-component seismic action. Several problems were solved using specialized software complexes, which conducted forth integration of motion equations through the explicit method or response spectrum method. Depending on the calculation method, the diagram of the bearing performance was assumed to be either an actual diagram approximated by an idealized non-linear diagram or an idealized linear diagram with a specific stiffness. The computational model was assumed to be a single-mass oscillator with a lumped mass. The effort undertaken facilitated the investigation of the patterns of horizontal displacement of the bearing top relative to bottom caused by earthquakes modeled as accelerograms with different spectral compositions. The behavior of the support structure was benchmarked against similar supports by another manufacturer. The paper presents the outcomes of the research effort and draws conclusions about the efficiency of using the bearings of this particular type and model.
Toumanidou, Themis; Noailly, Jérôme
2015-01-01
During daily activities, complex biomechanical interactions influence the biophysical regulation of intervertebral disks (IVDs), and transfers of mechanical loads are largely controlled by the stabilizing action of spine muscles. Muscle and other internal forces cannot be easily measured directly in the lumbar spine. Hence, biomechanical models are important tools for the evaluation of the loads in those tissues involved in low-back disorders. Muscle force estimations in most musculoskeletal models mainly rely, however, on inverse calculations and static optimizations that limit the predictive power of the numerical calculations. In order to contribute to the development of predictive systems, we coupled a predictive muscle model with the passive resistance of the spine tissues, in a L3–S1 musculoskeletal finite element model with osmo-poromechanical IVD descriptions. The model included 46 fascicles of the major back muscles that act on the lower spine. The muscle model interacted with activity-related loads imposed to the osteoligamentous structure, as standing position and night rest were simulated through distributed upper body mass and free IVD swelling, respectively. Calculations led to intradiscal pressure values within ranges of values measured in vivo. Disk swelling led to muscle activation and muscle force distributions that seemed particularly appropriate to counterbalance the anterior body mass effect in standing. Our simulations pointed out a likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics toward improved mechanical stability of the lumbar spine understanding. This balance suggests that proper night rest contributes to mechanically strengthen the spine during day activity. PMID:26301218
Mass spectra and decay properties of the c\\bar{c} meson
NASA Astrophysics Data System (ADS)
Chaturvedi, Raghav; Kumar Rai, Ajay
2018-06-01
In this article we present the result of c\\bar{c} meson mass calculation by solving the Schrödinger equation numerically considering the Coulomb plus linear potential. The spin-hyperfine, spin-orbit and tensor components of one-gluon-exchange interactions are employed to obtain the mass spectra of c\\bar{c} meson. The calculated mass spectra are compared with the latest results of PDG and are found to be in good accordance. The Regge trajectories of the calculated mass spectra have also been constructed. The values of the wave function are extracted and employed to calculate the leptonic decay constant, γγ, gg, e+e-, light hadron (LH) and γγγ decay widths of S-wave 0^{-+} and 1^{- -} states of c\\bar{c} meson, the widths have been calculated by Van Royen-Weisskopf formula and by NRQCD mechanism incorporating relativistic corrections of order ν2. The γγ and gg decay widths of χ0 and χ2 states of c\\bar{c} meson have also been calculated. The calculated decay constants and widths have been compared with the experimental results.
Λ b→pl⁻ν¯ l form factors from lattice QCD with static b quarks
Detmold, William; Lin, C.-J. David; Meinel, Stefan; ...
2013-07-23
We present a lattice QCD calculation of form factors for the decay Λ b→pμ⁻ν¯ μ, which is a promising channel for determining the Cabibbo-Kobayashi-Maskawa matrix element |V ub| at the Large Hadron Collider. In this initial study we work in the limit of static b quarks, where the number of independent form factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform the calculation at two different lattice spacings and at multiple values of the light-quark masses in a single large volume. Using our form factor results, we calculate the Λ b→pμ⁻ν¯ μ differential decaymore » rate in the range 14 GeV²≤q²≤q² max, and obtain the integral ∫ q²max 14 GeV²[dΓ/dq²]dq²/|V ub|²=15.3±4.2 ps⁻¹. Combined with future experimental data, this will give a novel determination of |V ub| with about 15% theoretical uncertainty. The uncertainty is dominated by the use of the static approximation for the b quark, and can be reduced further by performing the lattice calculation with a more sophisticated heavy-quark action.« less
40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat input rate. 75.83 Section 75.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions and heat input rate in accordance with the procedures in sections 9.1 through 9.3 of appendix F to...
Quantum-chemical Calculations in the Study of Antitumour Compounds
NASA Astrophysics Data System (ADS)
Luzhkov, V. B.; Bogdanov, G. N.
1986-01-01
The results of quantum-chemical calculations on antitumour preparations concerning the mechanism of their action at the electronic and molecular levels and structure-activity correlations are discussed in this review. Preparations whose action involves alkylating and free-radial mechanisms, complex-forming agents, and antimetabolites are considered. Modern quantum-chemical methods for calculations on biologically active substances are described. The bibliography includes 106 references.
NASA Astrophysics Data System (ADS)
Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-06-01
A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.
Physical limitations in sensors for a drag-free deep space probe
NASA Technical Reports Server (NTRS)
Juillerat, R.
1971-01-01
The inner perturbing forces acting on sensors were analyzed, taking into account the technological limitations imposed on the proof mass position pickup and proof mass acquisition system. The resulting perturbing accelerations are evaluated as a function of the drag-free sensor parameters. Perturbations included gravitational attraction, electrical action, magnetic action, pressure effects, radiation effects, and action of the position pickup. These data can be used to study the laws of guidance, providing an optimization of the space probe as a whole.
Sivers and Boer-Mulders observables from lattice QCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.U. Musch, Ph. Hagler, M. Engelhardt, J.W. Negele, A. Schafer
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, 'process-dependent' Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g{submore » 1}T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n{sub f} = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.« less
Rapid Analysis of Mass Distribution of Radiation Shielding
NASA Technical Reports Server (NTRS)
Zapp, Edward
2007-01-01
Radiation Shielding Evaluation Toolset (RADSET) is a computer program that rapidly calculates the spatial distribution of mass of an arbitrary structure for use in ray-tracing analysis of the radiation-shielding properties of the structure. RADSET was written to be used in conjunction with unmodified commercial computer-aided design (CAD) software that provides access to data on the structure and generates selected three-dimensional-appearing views of the structure. RADSET obtains raw geometric, material, and mass data on the structure from the CAD software. From these data, RADSET calculates the distribution(s) of the masses of specific materials about any user-specified point(s). The results of these mass-distribution calculations are imported back into the CAD computing environment, wherein the radiation-shielding calculations are performed.
The framed Standard Model (II) — A first test against experiment
NASA Astrophysics Data System (ADS)
Chan, Hong-Mo; Tsou, Sheung Tsun
2015-10-01
Apart from the qualitative features described in Paper I (Ref. 1), the renormalization group equation derived for the rotation of the fermion mass matrices are amenable to quantitative study. The equation depends on a coupling and a fudge factor and, on integration, on 3 integration constants. Its application to data analysis, however, requires the input from experiment of the heaviest generation masses mt, mb, mτ, mν3 all of which are known, except for mν3. Together then with the theta-angle in the QCD action, there are in all 7 real unknown parameters. Determining these 7 parameters by fitting to the experimental values of the masses mc, mμ, me, the CKM elements |Vus|, |Vub|, and the neutrino oscillation angle sin2θ 13, one can then calculate and compare with experiment the following 12 other quantities ms, mu/md, |Vud|, |Vcs|, |Vtb|, |Vcd|, |Vcb|, |Vts|, |Vtd|, J, sin22θ 12, sin22θ 23, and the results all agree reasonably well with data, often to within the stringent experimental error now achieved. Counting the predictions not yet measured by experiment, this means that 17 independent parameters of the standard model are now replaced by 7 in the FSM.
Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng
Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less
Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; ...
2017-09-25
Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less
NASA Astrophysics Data System (ADS)
Lee, S. S.; Kim, H. J.; Kim, M. O.; Lee, K.; Lee, K. K.
2016-12-01
A study finding evidence of remediation represented on monitoring data before and after in site intensive remedial action was performed with various quantitative evaluation methods such as mass discharge analysis, tracer data, statistical trend analysis, and analytical solutions at DNAPL contaminated site, Wonju, Korea. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Prior to the remediation action, the concentration and mass discharges of TCE at all transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the main source zone and industrial complex. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The removal amount of the residual source mass during the intensive remedial action was estimated to evaluate the efficiency of the intensive remedial action using analytical solution. From results of quantitative evaluation using analytical solution, it is assessed that the intensive remedial action had effectively performed with removal efficiency of 70% for the residual source mass during the remediation period. Analytical solution which can consider and quantify the impacts of partial mass reduction have been proven to be useful tools for quantifying unknown contaminant source mass and verifying dissolved concentration at the DNAPL contaminated site and evaluating the efficiency of remediation using long-term monitoring data. Acknowledgement : This subject was supported by the Korea Ministry of Environment under "GAIA project (173-092-009) and (201400540010)", R&D Project on Enviornmental Management of Geologic CO2 storage" from the KEITI (Project number:2014001810003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy
2009-12-15
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.
The calculation of the mass moment of inertia of a fluid in a rotating rectangular tank
NASA Technical Reports Server (NTRS)
1977-01-01
This analysis calculated the mass moment of inertia of a nonviscous fluid in a slowly rotating rectangular tank. Given the dimensions of the tank in the x, y, and z coordinates, the axis of rotation, the percentage of the tank occupied by the fluid, and angle of rotation, an algorithm was written that could calculate the mass moment of inertia of the fluid. While not included in this paper, the change in the mass moment of inertia of the fluid could then be used to calculate the force exerted by the fluid on the container wall.
Brst-Bfv Quantization and the Schwinger Action Principle
NASA Astrophysics Data System (ADS)
Garcia, J. Antonio; Vergara, J. David; Urrutia, Luis F.
We introduce an operator version of the BRST-BFV effective action for arbitrary systems with first class constraints. Using the Schwinger action principle we calculate the propagators corresponding to: (i) the parametrized nonrelativistic free particle, (ii) the relativistic free particle and (iii) the spinning relativistic free particle. Our calculation correctly imposes the BRST invariance at the end points. The precise use of the additional boundary terms required in the description of fermionic variables is incorporated.
Rana, Kesha; Chiu, Maria W S; Russell, Patricia K; Skinner, Jarrod P; Lee, Nicole K L; Fam, Barbara C; Zajac, Jeffrey D; MacLean, Helen E
2016-08-01
The aim of this study was to investigate the direct muscle cell-mediated actions of androgens by comparing two different mouse lines. The cre-loxP system was used to delete the DNA-binding activity of the androgen receptor (AR) in mature myofibers (MCK mAR(ΔZF2)) in one model and the DNA-binding activity of the AR in both proliferating myoblasts and myofibers (α-actin mAR(ΔZF2)) in another model. We found that hind-limb muscle mass was normal in MCK mAR(ΔZF2) mice and that relative mass of only some hind-limb muscles was reduced in α-actin mAR(ΔZF2) mice. This suggests that myoblasts and myofibers are not the major cellular targets mediating the anabolic actions of androgens on male muscle during growth and development. Levator ani muscle mass was decreased in both mouse lines, demonstrating that there is a myofiber-specific effect in this unique androgen-dependent muscle. We found that the pattern of expression of genes including c-myc, Fzd4 and Igf2 is associated with androgen-dependent changes in muscle mass; therefore, these genes are likely to be mediators of anabolic actions of androgens. Further research is required to identify the major targets of androgen actions in muscle, which are likely to include indirect actions via other tissues. © 2016 Society for Endocrinology.
Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture
NASA Astrophysics Data System (ADS)
Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin
2017-10-01
SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.
Staggered heavy baryon chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less
Ulander, Johan; Haymet, A D J
2003-12-01
Valproic acid is a short branched fatty acid used as an anticonvulsant drug whose therapeutic action has been proposed to arise from membrane-disordering properties. Static and kinetic properties of valproic acid interacting with fully hydrated dipalmitoyl phosphatidylcholine lipid bilayers are studied using molecular-dynamics simulations. We calculate spatially resolved free energy profiles and local diffusion coefficients using the distance between the bilayer and valproic acid respective centers-of-mass along the bilayer normal as reaction coordinate. To investigate the pH dependence, we calculate profiles for the neutral valproic acid as well as its water-soluble anionic conjugate base valproate. The local diffusion constants for valproate/valproic acid along the bilayer normal are found to be approximately 10(-6) to 10(-5) cm2 s(-1). Assuming protonation of valproic acid upon association with--or insertion into--the lipid bilayer, we calculate the permeation coefficient to be approximately 2.0 10(-3) cm s(-1), consistent with recent experimental estimates of fast fatty acid transport. The ability of the lipid bilayer to sustain local defects such as water intrusions stresses the importance of going beyond mean field and taking into account correlation effects in theoretical descriptions of bilayer translocation processes.
Davey, Rachel A; Clarke, Michele V; Russell, Patricia K; Rana, Kesha; Seto, Jane; Roeszler, Kelly N; How, Jackie M Y; Chia, Ling Yeong; North, Kathryn; Zajac, Jeffrey D
2017-10-01
Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice. Copyright © 2017 Endocrine Society.
VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS
One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...
Method and system for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2001-01-01
An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.
The ξ/ξ2nd ratio as a test for Effective Polyakov Loop Actions
NASA Astrophysics Data System (ADS)
Caselle, Michele; Nada, Alessandro
2018-03-01
Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour of lattice gauge theories. They are much simpler to simulate than the original (3+1) dimensional LGTs and are affected by a milder sign problem. However it is not clear to which extent they really capture the rich spectrum of the original theories, a feature which is instead of great importance if one aims to address the sign problem. We propose here a simple way to address this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and becomes larger and larger as the complexity of the spectrum increases. Since both ξexp and ξ2nd are easy to measure on the lattice, this is an economic and effective way to keep track of the spectrum of the theory. In this respect we show using both numerical simulation and effective string calculations that this ratio increases dramatically as the temperature decreases. This non-trivial behaviour should be reproduced by the Polyakov loop effective action.
First-principle calculation of the electronic structure, DOS and effective mass TlInSe2
NASA Astrophysics Data System (ADS)
Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.
2017-05-01
The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.
NASA Astrophysics Data System (ADS)
Baranov, A. I.; Konyashkin, A. V.; Ryabushkin, O. A.
2015-09-01
Model of second harmonic generation with thermal self-action was developed. Second harmonic generation temperature phase matching curves were measured and calculated for periodically polled lithium niobate crystal. Both experimental and calculated data show asymmetrical shift of temperature tuning curves with pump power.
NASA Astrophysics Data System (ADS)
Lazarev, L. A.
2015-07-01
An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.
Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busse, Nathan; Erwin, William; Pan, Tinsu
2013-12-15
Purpose: The authors sought to evaluate a simple, semiautomated lung mass estimation method using computed tomography (CT) scans obtained using a variety of acquisition techniques and reconstruction parameters for mass correction of medical internal radiation dose-based internal radionuclide radiation absorbed dose estimates.Methods: CT scans of 27 patients with lung cancer undergoing stereotactic body radiation therapy treatment planning with PET/CT were analyzed retrospectively. For each patient, free-breathing (FB) and respiratory-gated 4DCT scans were acquired. The 4DCT scans were sorted into ten respiratory phases, representing one complete respiratory cycle. An average CT reconstruction was derived from the ten-phase reconstructions. Mid expiration breath-holdmore » CT scans were acquired in the same session for many patients. Deep inspiration breath-hold diagnostic CT scans of many of the patients were obtained from different scanning sessions at similar time points to evaluate the effect of contrast administration and maximum inspiration breath-hold. Lung mass estimates were obtained using all CT scan types, and intercomparisons made to assess lung mass variation according to scan type. Lung mass estimates using the FB CT scans from PET/CT examinations of another group of ten male and ten female patients who were 21–30 years old and did not have lung disease were calculated and compared with reference lung mass values. To evaluate the effect of varying CT acquisition and reconstruction parameters on lung mass estimation, an anthropomorphic chest phantom was scanned and reconstructed with different CT parameters. CT images of the lungs were segmented using the OsiriX MD software program with a seed point of about −850 HU and an interval of 1000. Lung volume, and mean lung, tissue, and air HUs were recorded for each scan. Lung mass was calculated by assuming each voxel was a linear combination of only air and tissue. The specific gravity of lung volume was calculated using the formula (lung HU − air HU)/(tissue HU − air HU), and mass = specific gravity × total volume × 1.04 g/cm{sup 3}.Results: The range of calculated lung masses was 0.51–1.29 kg. The average male and female lung masses during FB CT were 0.80 and 0.71 kg, respectively. The calculated lung mass varied across the respiratory cycle but changed to a lesser degree than did lung volume measurements (7.3% versus 15.4%). Lung masses calculated using deep inspiration breath-hold and average CT were significantly larger (p < 0.05) than were some masses calculated using respiratory-phase and FB CT. Increased voxel size and smooth reconstruction kernels led to high lung mass estimates owing to partial volume effects.Conclusions: Organ mass correction is an important component of patient-specific internal radionuclide dosimetry. Lung mass calculation necessitates scan-based density correction to account for volume changes owing to respiration. The range of lung masses in the authors’ patient population represents lung doses for the same absorbed energy differing from 25% below to 64% above the dose found using reference phantom organ masses. With proper management of acquisition parameters and selection of FB or midexpiration breath hold scans, lung mass estimates with about 10% population precision may be achieved.« less
Calculate Your Body Mass Index
... Professional Resources Calculate Your Body Mass Index Body mass index (BMI) is a measure of body fat based on height and weight that applies to adult men and women. Enter your weight and height using standard or metric measures. Select "Compute BMI" and your ...
Heavy-Meson Spectrum Tests of the Oktay--Kronfeld Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.; Jang, Yong-Chull; Lee, Weonjong
2014-11-07
We present heavy-meson spectrum results obtained using the Oktay--Kronfeld (OK) action on MILC asqtad lattices. The OK action was designed to improve the heavy-quark action of the Fermilab formulation, such that heavy-quark discretization errors are reduced. The OK action includes dimension-6 and -7 operators necessary for tree-level matching to QCD through ordermore » $$\\mathrm{O}(\\Lambda^3/m_Q^3)$$ for heavy-light mesons and $$\\mathrm{O}(v^6)$$ for quarkonium, or, equivalently, through $$\\mathrm{O}(a^2)$$ with some $$\\mathrm{O}(a^3)$$ terms with Symanzik power counting. To assess the improvement, we extend previous numerical tests with heavy-meson masses by analyzing data generated on a finer ($$a \\approx 0.12\\;$$fm) lattice with the correct tadpole factors for the $$c_5$$ term in the action. We update the analyses of the inconsistency parameter and the hyperfine splittings for the rest and kinetic masses.« less
Exciton center-of-mass localization and dielectric environment effect in monolayer WS2
NASA Astrophysics Data System (ADS)
Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem
2017-06-01
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.
The Relationship Between School Holidays and Transmission of Influenza in England and Wales.
Jackson, Charlotte; Vynnycky, Emilia; Mangtani, Punam
2016-11-01
School closure is often considered as an influenza control measure, but its effects on transmission are poorly understood. We used 2 approaches to estimate how school holidays affect the contact parameter (the per capita rate of contact sufficient for infection transmission) for influenza using primary care data from England and Wales (1967-2000). Firstly, we fitted an age-structured susceptible-infectious-recovered model to each year's data to estimate the proportional change in the contact parameter during school holidays as compared with termtime. Secondly, we calculated the percentage difference in the contact parameter between holidays and termtime from weekly values of the contact parameter, estimated directly from simple mass-action models. Estimates were combined using random-effects meta-analysis, where appropriate. From fitting to the data, the difference in the contact parameter among children aged 5-14 years during holidays as compared with termtime ranged from a 36% reduction to a 17% increase; estimates were too heterogeneous for meta-analysis. Based on the simple mass-action model, the contact parameter was 17% (95% confidence interval: 10, 25) lower during holidays than during termtime. Results were robust to the assumed proportions of infections that were reported and individuals who were susceptible when the influenza season started. We conclude that school closure may reduce transmission during influenza outbreaks. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Energies and radial distributions of Bs mesons - the effect of hypercubic blocking
NASA Astrophysics Data System (ADS)
Koponen, Jonna
2006-12-01
This is a follow-up to our earlier work for the energies and the charge (vector) and matter (scalar) distributions for S-wave states in a heavy-light meson, where the heavy quark is static and the light quark has a mass about that of the strange quark. We study the radial distributions of higher angular momentum states, namely P- and D-wave states, using a "fuzzy" static quark. A new improvement is the use of hypercubic blocking in the time direction, which effectively constrains the heavy quark to move within a 2a hypercube (a is the lattice spacing). The calculation is carried out with dynamical fermions on a 163 × 32 lattice with a ≈ 0.10 fm generated using the non-perturbatively improved clover action. The configurations were gener- ated by the UKQCD Collaboration using lattice action parameters β = 5.2, c SW = 2.0171 and κ = 0.1350. In nature the closest equivalent of this heavy-light system is the Bs meson. Attempts are now being made to understand these results in terms of the Dirac equation.
The Kaon B-parameter in mixed action chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, C.; /Columbia U.; Laiho, Jack
2006-09-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}).more » This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less
Kaon B-parameter in mixed action chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, C.; Laiho, Jack; Water, Ruth S. van de
2007-02-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). Thismore » term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less
Complexity-action duality of the shock wave geometry in a massive gravity theory
NASA Astrophysics Data System (ADS)
Miao, Yan-Gang; Zhao, Long
2018-01-01
On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.
Axial-vector form factors of the nucleon from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen
In this paper, we present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of G A (Q 2)more » and the induced pseudoscalar form factor G P(Q 2) . We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius r A data to obtain physical estimates. Using the dipole ansatz to fit the Q 2 behavior we obtain r A | dipole = 0.49(3) fm , which corresponds to M A = 1.39(9) GeV , and is consistent with M A = 1.35(17) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is r A | z - expansion = 0.46(6) fm, and the combined result is r A | combined = 0.48(4) fm. Analysis of the induced pseudoscalar form factor G P (Q 2) yields low estimates for g* P and g πNN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. Lastly, we find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.« less
Axial-vector form factors of the nucleon from lattice QCD
Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen; ...
2017-12-04
In this paper, we present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of G A (Q 2)more » and the induced pseudoscalar form factor G P(Q 2) . We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius r A data to obtain physical estimates. Using the dipole ansatz to fit the Q 2 behavior we obtain r A | dipole = 0.49(3) fm , which corresponds to M A = 1.39(9) GeV , and is consistent with M A = 1.35(17) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is r A | z - expansion = 0.46(6) fm, and the combined result is r A | combined = 0.48(4) fm. Analysis of the induced pseudoscalar form factor G P (Q 2) yields low estimates for g* P and g πNN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. Lastly, we find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.« less
Christensen, Jeppe Schultz; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Nordsborg, Rikke B; Ketzel, Matthias; Sørensen, Thorkild Ia; Sørensen, Mette
2016-03-01
Traffic noise has been associated with cardiovascular and metabolic disorders. Potential modes of action are through stress and sleep disturbance, which may lead to endocrine dysregulation and overweight. We aimed to investigate the relationship between residential traffic and railway noise and adiposity. In this cross-sectional study of 57,053 middle-aged people, height, weight, waist circumference, and bioelectrical impedance were measured at enrollment (1993-1997). Body mass index (BMI), body fat mass index (BFMI), and lean body mass index (LBMI) were calculated. Residential exposure to road and railway traffic noise exposure was calculated using the Nordic prediction method. Associations between traffic noise and anthropometric measures at enrollment were analyzed using general linear models and logistic regression adjusted for demographic and lifestyle factors. Linear regression models adjusted for age, sex, and socioeconomic factors showed that 5-year mean road traffic noise exposure preceding enrollment was associated with a 0.35-cm wider waist circumference (95% CI: 0.21, 0.50) and a 0.18-point higher BMI (95% CI: 0.12, 0.23) per 10 dB. Small, significant increases were also found for BFMI and LBMI. All associations followed linear exposure-response relationships. Exposure to railway noise was not linearly associated with adiposity measures. However, exposure > 60 dB was associated with a 0.71-cm wider waist circumference (95% CI: 0.23, 1.19) and a 0.19-point higher BMI (95% CI: 0.0072, 0.37) compared with unexposed participants (0-20 dB). The present study finds positive associations between residential exposure to road traffic and railway noise and adiposity.
11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode
2012-01-30
drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor
Quark ACM with topologically generated gluon mass
NASA Astrophysics Data System (ADS)
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Vlachopanos, A; Soupsana, E; Politou, A S; Papamokos, G V
2014-12-01
Mass spectrometry is a widely used technique for protein identification and it has also become the method of choice in order to detect and characterize the post-translational modifications (PTMs) of proteins. Many software tools have been developed to deal with this complication. In this paper we introduce a new, free and user friendly online software tool, named POTAMOS Mass Spectrometry Calculator, which was developed in the open source application framework Ruby on Rails. It can provide calculated mass spectrometry data in a time saving manner, independently of instrumentation. In this web application we have focused on a well known protein family of histones whose PTMs are believed to play a crucial role in gene regulation, as suggested by the so called "histone code" hypothesis. The PTMs implemented in this software are: methylations of arginines and lysines, acetylations of lysines and phosphorylations of serines and threonines. The application is able to calculate the kind, the number and the combinations of the possible PTMs corresponding to a given peptide sequence and a given mass along with the full set of the unique primary structures produced by the possible distributions along the amino acid sequence. It can also calculate the masses and charges of a fragmented histone variant, which carries predefined modifications already implemented. Additional functionality is provided by the calculation of the masses of fragments produced upon protein cleavage by the proteolytic enzymes that are most widely used in proteomics studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Two-loop mass splittings in electroweak multiplets: Winos and minimal dark matter
NASA Astrophysics Data System (ADS)
McKay, James; Scott, Pat
2018-03-01
The radiatively-induced splitting of masses in electroweak multiplets is relevant for both collider phenomenology and dark matter. Precision two-loop corrections of O (MeV ) to the triplet mass splitting in the wino limit of the minimal supersymmetric standard model can affect particle lifetimes by up to 40%. We improve on previous two-loop self-energy calculations for the wino model by obtaining consistent input parameters to the calculation via two-loop renormalization-group running, and including the effect of finite light quark masses. We also present the first two-loop calculation of the mass splitting in an electroweak fermionic quintuplet, corresponding to the viable form of minimal dark matter (MDM). We place significant constraints on the lifetimes of the charged and doubly-charged fermions in this model. We find that the two-loop mass splittings in the MDM quintuplet are not constant in the large-mass limit, as might naively be expected from the triplet calculation. This is due to the influence of the additional heavy fermions in loop corrections to the gauge boson propagators.
40 CFR 1065.650 - Emission calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following sequence of preliminary calculations on recorded concentrations: (i) Correct all THC and CH4.... (iii) Calculate all THC and NMHC concentrations, including dilution air background concentrations, as... NMHC to background corrected mass of THC. If the background corrected mass of NMHC is greater than 0.98...
2012-01-30
calculated action exceeded 1.7 MA2 -s. Preliminary efforts on high voltage diode interconnection have produced quarter wafer interconnected PiN...was packaged in a “hockey-puck” configuration and pulsed to 64 kA, dissipating 382 J with a calculated action exceeding 1.7 MA2 -s. II. FULL...epitaxial layers are utilized. 11.72-cm2 Active-area Wafer Interconnected PiN Diode pulsed at 64 kA dissipates 382 J and exhibits an action of 1.7 MA2 -s
Un-renormalized classical electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibison, Michael
2006-02-15
This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinitemore » forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.« less
NASA Astrophysics Data System (ADS)
Ermis, Elif Ebru
2017-02-01
The photon mass attenuation coefficients of LiF, BaSO4, CaCO3 and CaSO4 thermoluminescent dosimetric compounds at 100; 300; 500; 600; 800; 1,000; 1,500; 2,000; 3,000 and 5,000 keV gamma-ray energies were calculated. For this purpose, FLUKA Monte Carlo (MC) program which is one of the well-known MC codes was used in this study. Furthermore, obtained results were analyzed by means of ROOT program. National Institute of Standards and Technology (NIST) values were also used to compare the obtained theoretical values because the mass attenuation values of the used compounds could not found in the literature. Calculated mass attenuation coefficients were highly in accordance with the NIST values. As a consequence, FLUKA was successful in calculating the mass attenuation coefficients of the most used thermoluminescent compound.
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass... may authorize the State to make available to the publicly-owned mass transit authority the land needed...
High Resolution Mass Spectra Analysis with a Programmable Calculator.
ERIC Educational Resources Information Center
Holdsworth, David K.
1980-01-01
Highlighted are characteristics of programs written for a pocket-sized programmable calculator to analyze mass spectra data (such as displaying high resolution masses for formulas, predicting whether formulas are stable molecules or molecular ions, determining formulas by isotopic abundance measurement) in a laboratory or classroom. (CS)
The Design and Development of BMI Calc Android Application
NASA Astrophysics Data System (ADS)
Mohd Ali, Iliana; Samsudin, Nooraida
2016-11-01
Body mass index is a familiar term for those who are weight conscious. It is the term that let user know about the overall body composition in terms of fat.The available body mass index calculators whether online or on Play Store do not provide Malaysian meal suggestions. Hence, this paper proposes an application for body mass index calculator together with Malaysian meal suggestion. The objectives of the study are to design and develop BMI Calc android application for the purpose of calculating body mass index while embedding meal suggestion module. The design and methodology involve in the process are also presented.
ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations
NASA Astrophysics Data System (ADS)
Bijnens, Johan
2018-03-01
I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
Geochemistry of spring water, southeastern Uinta Basin, Utah and Colorado
Kimball, Briant A.
1981-01-01
The chemical quality of water in the southeastern Uinta Basin, Utah and Colorado, is important to the future development of the abundant oil-shale resources of the area. This report examines the observed changes in chemistry as water circulates in both shallow and deep ground-water systems. Mass-balance and mass- transfer calculations are used to define reactions that simulate the observed water chemistry in the mixed sandstone, siltstone, and carbonate lithology of the Green River Formation of Tertiary age.The mass-transfer calculations determine a reaction path particular to this system. The early dominance of calcite dissolution produces a calcium carbonate water. After calcite saturation, deeper circulation and further rock-water interaction cause the reprecipitation of calcite, the dissolution of dolomite and plagioclase, and the oxidation of pyrite; all combining to produce a calcium magnesium sodium bicarbonate sulfate water. The calculations suggest that silica concentrations are controlled by a kaolinite-Ca-montmorillonite phase boundary. Close agreement of mineral-saturation indices calculated by both an aqueous-equilibrium model and the mass-transfer model support the selection of reactions from the mass-transfer calculations.
Equivalence between the Lovelock-Cartan action and a constrained gauge theory
NASA Astrophysics Data System (ADS)
Junqueira, O. C.; Pereira, A. D.; Sadovski, G.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.
2017-04-01
We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.
ERIC Educational Resources Information Center
Rose, Michael T.; Crossan, Angus N.; Kennedy, Ivan R.
2008-01-01
Consideration of the property of action is proposed to provide a more meaningful definition of efficient energy use and sustainable production in ecosystems. Action has physical dimensions similar to angular momentum, its magnitude varying with mass, spatial configuration and relative motion. In this article, the relationship of action to…
Multistationarity in mass action networks with applications to ERK activation.
Conradi, Carsten; Flockerzi, Dietrich
2012-07-01
Ordinary Differential Equations (ODEs) are an important tool in many areas of Quantitative Biology. For many ODE systems multistationarity (i.e. the existence of at least two positive steady states) is a desired feature. In general establishing multistationarity is a difficult task as realistic biological models are large in terms of states and (unknown) parameters and in most cases poorly parameterized (because of noisy measurement data of few components, a very small number of data points and only a limited number of repetitions). For mass action networks establishing multistationarity hence is equivalent to establishing the existence of at least two positive solutions of a large polynomial system with unknown coefficients. For mass action networks with certain structural properties, expressed in terms of the stoichiometric matrix and the reaction rate-exponent matrix, we present necessary and sufficient conditions for multistationarity that take the form of linear inequality systems. Solutions of these inequality systems define pairs of steady states and parameter values. We also present a sufficient condition to identify networks where the aforementioned conditions hold. To show the applicability of our results we analyse an ODE system that is defined by the mass action network describing the extracellular signal-regulated kinase (ERK) cascade (i.e. ERK-activation).
Tykesson, Emil; Mao, Yang; Maccarana, Marco; Pu, Yi; Gao, Jinshan; Lin, Cheng; Zaia, Joseph; Westergren-Thorsson, Gunilla; Ellervik, Ulf; Malmström, Lars; Malmström, Anders
2016-02-01
Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis.
K(L) - K(S) mass difference from lattice QCD.
Bai, Z; Christ, N H; Izubuchi, T; Sachrajda, C T; Soni, A; Yu, J
2014-09-12
We report on the first complete calculation of the K_{L}-K_{S} mass difference, ΔM_{K}, using lattice QCD. The calculation is performed on a 2+1 flavor, domain wall fermion ensemble with a 330 MeV pion mass and a 575 MeV kaon mass. We use a quenched charm quark with a 949 MeV mass to implement Glashow-Iliopoulos-Maiani cancellation. For these heavier-than-physical particle masses, we obtain ΔM_{K}=3.19(41)(96)×10^{-12} MeV, quite similar to the experimental value. Here the first error is statistical, and the second is an estimate of the systematic discretization error. An interesting aspect of this calculation is the importance of the disconnected diagrams, a dramatic failure of the Okubo-Zweig-Iizuka rule.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-30
... for OMB Review; Comment Request; Mass Layoff Statistics Program ACTION: Notice. SUMMARY: The... request (ICR) titled, ``Mass Layoff Statistics Program,'' to the Office of Management and Budget (OMB) for... Statistics (BLS). Title of Collection: Mass Layoff Statistics Program. OMB Control Number: 1220-0090...
2007-06-01
2.2.4 A QUALITATIVE VIEW OF OC CYCLING 44 2.2.5 COUPLED ISOTOPE MASS BALANCE CALCULATIONS 47 2.3 CONCLUSIONS 56 ACKNOWLEDGEMENTS 57 REFERENCES 58...METHODS 71 3.2 RESULTS & DISCUSSION 73 3.2.1 CHRONOLOGY DEVELOPMENT 73 3.2.2 ELEMENTAL AND ISOTOPIC PROFILES 77 3.2.3 MASS BALANCE CALCULATIONS 80 3.3...2005). Within this framework, isotopic mass balance calculations used to assess the fractional abundance of modem and ancient OC (Blair et al., 2003
Search for the pentaquark resonance signature in lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. G. Lasscock; J. Hedditch; Derek Leinweber
2005-02-01
Claims concerning the possible discovery of the {Theta}{sup +} pentaquark, with minimal quark content uudd{bar s}, have motivated our comprehensive study into possible pentaquark states using lattice QCD. We review various pentaquark interpolating fields in the literature and create a new candidate ideal for lattice QCD simulations. Using these interpolating fields we attempt to isolate a signal for a five-quark resonance. Calculations are performed using improved actions on a large 20{sup 3} x 40 lattice in the quenched approximation. The standard lattice resonance signal of increasing attraction between baryon constituents for increasing quark mass is not observed for spin-1/2 pentaquarkmore » states. We conclude that evidence supporting the existence of a spin-1/2 pentaquark resonance does not exist in quenched QCD.« less
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
NASA Astrophysics Data System (ADS)
Taboada, Pablo; Gutiérrez-Pichel, Manuel; Mosquera, Víctor
2004-03-01
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drug clomipramine hydrochloride have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered aqueous solution of pH 3.0 and 5.5. Critical concentrations of aggregation of this drug were obtained from inflections on the plots of the sound velocity against drug concentration. Apparent molal adiabatic compressibilities of the aggregates formed by the drug, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. From the temperature dependence of the critical concentration and using the mass action model combined with the Phillips definition of the critical concentration the thermodynamic standard quantities: free Gibbs energy, enthalpy and entropy of aggregate formation were calculated. The critical concentration and energy involved in the aggregation process of this drug have been also evaluated experimentally using isothermal titration calorimetry at 298.15 K. The solvent-drug interactions have been discussed from compressibility and calorimetry data.
Remotely detected vehicle mass from engine torque-induced frame twisting
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.
2017-06-01
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrington, Josef R.
Disclosed is an impaction densitometer having a chamber configured to receive a particle; a beam generator configured to emit a beam; a detector configured to receive the beam and convert a change in intensity of the received beam into an electrical signal corresponding to a particle volume; an impact sensor positioned a known distance from the beam and configured to measure a particle momentum as a function of an impact energy transferred from the particle to the impact sensor; a velocity calculator configured to calculate a particle velocity based on a time it takes the particle to pass through themore » beam and strike the impact sensor; a mass calculator configured to calculate a particle mass as a function of the particle momentum and velocity; and a density calculator configured to calculate a particle density as a function of the particle mass and volume.« less
NASA Astrophysics Data System (ADS)
Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.
2013-04-01
We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.
NASA Astrophysics Data System (ADS)
Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.
2013-01-01
We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 yr-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant, due to vigorous photochemistry and secondary OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matters constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We reported, for the first time, high correlations between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic property of aerosol dicarboxylic acids.
ERIC Educational Resources Information Center
Park, Julie J.; Liu, Amy
2014-01-01
We use the Critical Race Theory frameworks of interest convergence and divergence to critique the anti-affirmative action movement's co-option of Asian Americans. Past discussions of affirmative action and Asian Americans mainly concentrate on how Asian Americans are affected by affirmative action, whether positively or negatively. We demonstrate…
... Aim for a Healthy Weight » Healthy Weight Tools » BMI Calculator » Body Mass Index Table 1 Home Assessing ... Eat Right Be Physically Active Healthy Weight Tools BMI Calculator Menu Plans Portion Distortion Key Recommendations Healthy ...
Model Hierarchies in Edge-Based Compartmental Modeling for Infectious Disease Spread
Miller, Joel C.; Volz, Erik M.
2012-01-01
We consider the family of edge-based compartmental models for epidemic spread developed in [11]. These models allow for a range of complex behaviors, and in particular allow us to explicitly incorporate duration of a contact into our mathematical models. Our focus here is to identify conditions under which simpler models may be substituted for more detailed models, and in so doing we define a hierarchy of epidemic models. In particular we provide conditions under which it is appropriate to use the standard mass action SIR model, and we show what happens when these conditions fail. Using our hierarchy, we provide a procedure leading to the choice of the appropriate model for a given population. Our result about the convergence of models to the Mass Action model gives clear, rigorous conditions under which the Mass Action model is accurate. PMID:22911242
Optimum periodicity of repeated contractile actions applied in mass transport
NASA Astrophysics Data System (ADS)
Ahn, Sungsook; Lee, Sang Joon
2015-01-01
Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.
Gaseous Nitrogen Orifice Mass Flow Calculator
NASA Technical Reports Server (NTRS)
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
Comparative pulsation calculations with OP and OPAL opacities
NASA Technical Reports Server (NTRS)
Kanbur, Shashi M.; Simon, Norman R.
1994-01-01
Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.
Update on Heavy-Meson Spectrum Tests of the Oktay--Kronfeld Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.; Jang, Yong-Chull; Lee, Weonjong
2016-01-18
We present updated results of a numerical improvement test with heavy-meson spectrum for the Oktay--Kronfeld (OK) action. The OK action is an extension of the Fermilab improvement program for massive Wilson fermions including all dimension-six and some dimension-seven bilinear terms. Improvement terms are truncated by HQET power counting atmore » $$\\mathrm{O}(\\Lambda^3/m_Q^3)$$ for heavy-light systems, and by NRQCD power counting at $$\\mathrm{O}(v^6)$$ for quarkonium. They suffice for tree-level matching to QCD to the given order in the power-counting schemes. To assess the improvement, we generate new data with the OK and Fermilab action that covers both charm and bottom quark mass regions on a MILC coarse $$(a \\approx 0.12~\\text{fm})$$ $2+1$ flavor, asqtad-staggered ensemble. We update the analyses of the inconsistency quantity and the hyperfine splittings for the rest and kinetic masses. With one exception, the results clearly show that the OK action significantly reduces heavy-quark discretization effects in the meson spectrum. The exception is the hyperfine splitting of the heavy-light system near the $$B_s$$ meson mass, where statistics are too low to draw a firm conclusion, despite promising results.« less
Consistency of FMEA used in the validation of analytical procedures.
Oldenhof, M T; van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Vredenbregt, M J; Weda, M; Barends, D M
2011-02-20
In order to explore the consistency of the outcome of a Failure Mode and Effects Analysis (FMEA) in the validation of analytical procedures, an FMEA was carried out by two different teams. The two teams applied two separate FMEAs to a High Performance Liquid Chromatography-Diode Array Detection-Mass Spectrometry (HPLC-DAD-MS) analytical procedure used in the quality control of medicines. Each team was free to define their own ranking scales for the probability of severity (S), occurrence (O), and detection (D) of failure modes. We calculated Risk Priority Numbers (RPNs) and we identified the failure modes above the 90th percentile of RPN values as failure modes needing urgent corrective action; failure modes falling between the 75th and 90th percentile of RPN values were identified as failure modes needing necessary corrective action, respectively. Team 1 and Team 2 identified five and six failure modes needing urgent corrective action respectively, with two being commonly identified. Of the failure modes needing necessary corrective actions, about a third were commonly identified by both teams. These results show inconsistency in the outcome of the FMEA. To improve consistency, we recommend that FMEA is always carried out under the supervision of an experienced FMEA-facilitator and that the FMEA team has at least two members with competence in the analytical method to be validated. However, the FMEAs of both teams contained valuable information that was not identified by the other team, indicating that this inconsistency is not always a drawback. Copyright © 2010 Elsevier B.V. All rights reserved.
40 CFR 1065.650 - Emission calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for performing the drift validation according to § 1065.550(b). When applying the initial THC and CH4...-corrected set of calculations as described in § 1065.520(g)(7). (ii) Correct all THC and CH4 concentrations... § 1065.667. (5) Mass of NMHC. Compare the corrected mass of NMHC to corrected mass of THC. If the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEM, M.J.
2000-05-11
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.
Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail
2017-02-27
Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β-decaymore » lifetimes, and β-delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. Here, we find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail
Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β-decaymore » lifetimes, and β-delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. Here, we find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.« less
Ferner, Robin E; Aronson, Jeffrey K
2016-01-01
We have traced the historical link between the Law of Mass Action and clinical pharmacology. The Law evolved from the work of the French chemist Claude Louis Berthollet, was first formulated by Cato Guldberg and Peter Waage in 1864 and later clarified by the Dutch chemist Jacobus van 't Hoff in 1877. It has profoundly influenced our qualitative and quantitative understanding of a number of physiological and pharmacological phenomena. According to the Law of Mass Action, the velocity of a chemical reaction depends on the concentrations of the reactants. At equilibrium the concentrations of the chemicals involved bear a constant relation to each other, described by the equilibrium constant, K. The Law of Mass Action is relevant to various physiological and pharmacological concepts, including concentration-effect curves, dose-response curves, and ligand-receptor binding curves, all of which are important in describing the pharmacological actions of medications, the Langmuir adsorption isotherm, which describes the binding of medications to proteins, activation curves for transmembrane ion transport, enzyme inhibition and the Henderson-Hasselbalch equation, which describes the relation between pH, as a measure of acidity and the concentrations of the contributory acids and bases. Guldberg and Waage recognized the importance of dynamic equilibrium, while others failed to do so. Their ideas, over 150 years old, are embedded in and still relevant to clinical pharmacology. Here we explain the ideas and in a subsequent paper show how they are relevant to understanding adverse drug reactions. © 2015 The British Pharmacological Society.
Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions
NASA Astrophysics Data System (ADS)
Seydi, I.; Abedinpour, S. H.; Tanatar, B.
2017-06-01
We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.
Intrinsic Carrier Concentration and Electron Effective Mass in Hg(1-x) Zn(x) Te
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Lehoczky, S. L.
1997-01-01
In this work, the intrinsic carrier concentration and electron effective mass in Hg(l-x)Zn(x)Te were numerically calculated. We adopt the procedures similar to those used by Su et. al. for calculating intrinsic carrier concentrations in Hg(1-x)Cd(x)Te which solve the exact dispersion relation in Kane model for the calculation of the conduction band electron concentrations and the corresponding electron effective masses. No approximation beyond those inherent in the k centered dot p model was used here.
Quantum properties of affine-metric gravity with the cosmological term
NASA Astrophysics Data System (ADS)
Baurov, A. Yu; Pronin, P. I.; Stepanyantz, K. V.
2018-04-01
The paper contains analysis of the one-loop effective action for affine-metric gravity of the Hilbert–Einstein type with the cosmological term. We discuss different approaches to the calculation of the effective action, which depends on two independent variables, namely, the metric tensor and the affine connection. In the one-loop approximation we explain how the effective action can be obtained, if, at the first step of the calculation, the metric tensor is integrated out. It is demonstrated that the result is the same as in the case when one starts by integrating out the connection.
Direct Final Rule for Exhaust Emission Standards for 2012 and Later Model Year Snowmobiles
In this action removing the NOX component from the Phase 3 emission standard calculation and deferring action on the 2012 CO and HC emission standards portion of the court’s remand to a separate rulemaking action.
A Generalized Weizsacker-Williams Method Applied to Pion Production in Proton-Proton Collisions
NASA Technical Reports Server (NTRS)
Ahern, Sean C.; Poyser, William J.; Norbury, John W.; Tripathi, R. K.
2002-01-01
A new "Generalized" Weizsacker-Williams method (GWWM) is used to calculate approximate cross sections for relativistic peripheral proton-proton collisions. Instead of a mass less photon mediator, the method allows for the mediator to have mass for short range interactions. This method generalizes the Weizsacker-Williams method (WWM) from Coulomb interactions to GWWM for strong interactions. An elastic proton-proton cross section is calculated using GWWM with experimental data for the elastic p+p interaction, where the mass p+ is now the mediator. The resulting calculated cross sections is compared to existing data for the elastic proton-proton interaction. A good approximate fit is found between the data and the calculation.
Effective Mass of a Single π0 Interacting With Itself
NASA Astrophysics Data System (ADS)
Eldridge, J. M.; Orginos, K.
2014-09-01
The effective mass of a single π0 π on when interacting with itself has been calculated. The calculation was done using C++ and It++, a C++ library extension which attempts to emulate MATLAB. This calculation was done by generating a matrix G from a database, and two meson state matrices M0, and M1. G, M0, and M1 are each 1584 × 1584 , however, careful algebra, knowing the properties of these matrices, enables only the top left 792 × 792 block of each to be created, saving computation time and reducing numerical error. The π0 self-interacting-effective-mass has been calculated to be 0.0755(190).
Stern, Robin L; Heaton, Robert; Fraser, Martin W; Goddu, S Murty; Kirby, Thomas H; Lam, Kwok Leung; Molineu, Andrea; Zhu, Timothy C
2011-01-01
The requirement of an independent verification of the monitor units (MU) or time calculated to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance. The need for and value of such a verification was obvious when calculations were performed by hand using look-up tables, and the verification was achieved by a second person independently repeating the calculation. However, in a modern clinic using CT/MR/PET simulation, computerized 3D treatment planning, heterogeneity corrections, and complex calculation algorithms such as convolution/superposition and Monte Carlo, the purpose of and methodology for the MU verification have come into question. In addition, since the verification is often performed using a simpler geometrical model and calculation algorithm than the primary calculation, exact or almost exact agreement between the two can no longer be expected. Guidelines are needed to help the physicist set clinically reasonable action levels for agreement. This report addresses the following charges of the task group: (1) To re-evaluate the purpose and methods of the "independent second check" for monitor unit calculations for non-IMRT radiation treatment in light of the complexities of modern-day treatment planning. (2) To present recommendations on how to perform verification of monitor unit calculations in a modern clinic. (3) To provide recommendations on establishing action levels for agreement between primary calculations and verification, and to provide guidance in addressing discrepancies outside the action levels. These recommendations are to be used as guidelines only and shall not be interpreted as requirements.
Positive parity low spin states of odd-mass tellurium isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazar, Harun Resit
2006-11-15
In this work, we analyse the positive parity of states of odd-mass nucleus within the framework of interacting boson fermion model. The result of an IBFM-1 multilevel calculation with the lg{sub 9/2}, 2d{sub 5/2}, 2d{sub 3/2}, 3s{sub 1/2} and one level, 1h{sub 11/2} with negative parity, single particle orbits is reported for the positive parity states of the odd mass nucleus {sup 123-125}Te. Also, an IBM-1 calculation is presented for the low-lying states in the even-even {sup 124-126}Te core nucleus. The energy levels and B (E2) transition probabilities were calculated and compared with the experimental data. It was found thatmore » the calculated positive parity low spin state energy spectra of the odd-mass {sup 123-125}Te isotopes agree quite well with the experimental data.« less
Remotely detected vehicle mass from engine torque-induced frame twisting
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...
2017-06-08
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less
Remotely detected vehicle mass from engine torque-induced frame twisting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
NASA Astrophysics Data System (ADS)
Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.
2018-03-01
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.
Leading chiral logarithms for the nucleon mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimirov, Alexey A.; Bijnens, Johan
2016-01-22
We give a short introduction to the calculation of the leading chiral logarithms, and present the results of the recent evaluation of the LLog series for the nucleon mass within the heavy baryon theory. The presented results are the first example of LLog calculation in the nucleon ChPT. We also discuss some regularities observed in the leading logarithmical series for nucleon mass.
Quark Mass Functions and Pion Structure in the Covariant Spectator Theory
Biernat, Elmar P.; Gross, Franz; Pena, Teresa; ...
2018-05-24
The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.
40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass of organic HAP emissions during the month, grams. A = Total mass of organic HAP in the coatings used during the month, grams, as calculated in Equation 1A of this section. B = Total mass of organic HAP in the thinners used during the month, grams, as calculated in Equation 1B of this section. C...
Quark Mass Functions and Pion Structure in the Covariant Spectator Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernat, Elmar P.; Gross, Franz; Pena, Teresa
The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.
Bert, C; Vande Vijver, V; Andries, M; Verhaert, P; Proost, P; De Vreese, B; Van Beeumen, J; Vankelecom, H; Denef, C
1999-08-20
We report the production of biologically active recombinant rat Gly-2-Ser-1-POMC1-74 (rrPOMC1-74) in a prokaryotic expression system. The polypeptide was produced as a fusion protein with glutathione-S-transferase (GST), using the pGEX-4T-1 vector and subsequently cleaved by thrombin. Amino acid sequencing, up to residue 45, showed a correct primary structure including the two additional amino acids at the N-terminus, Gly and Ser, derived from the thrombin cleavage site. Electrospray ionization mass spectrometry showed a Mr of 8358.5 Da which was 14-16 Da heavier (oxidation or methylation) than the calculated mass. Combined digestion with trypsin and endoproteinase Glu-C followed by MALDI-TOF mass spectrometry and N-terminal sequencing of the separated fragments showed a correct disulphide bridge configuration. In reaggregate cell cultures of immature rat pituitary, rrPOMC1-74 displayed biological activity similar to that of natural human (h) POMC1-76 or rat POMC1-74: it stimulated DNA replication in lactotrophs but not in other pituitary cell types. However, its efficacy was significantly lower than that of the natural product. Gamma3-MSH, a peptide that can be generated from POMC1-74 and a typical ligand of the melanocortin-3 (MC-3) receptor, also stimulated DNA replication in lactotrophs and, in contrast to rrPOMC1-74, also in somatotrophs and thyrotrophs. rrPOMC1-74 increased cAMP levels in 293HEK cells stably transfected with the MC-3 receptor with an intrinsic activity and potency similar to that of gamma3-MSH. However, natural hPOMC1-76 was inactive in the latter test system. These data show that rrPOMC1-74 mimics the selective mitogenic action of natural POMC1-74 on lactotrophs. Since natural POMC1-74 is N- and O-glycosylated and rrPOMC1-74 is not, glycosylation does not seem to determine the selectivity for lactotrophs. In spite of the feature that rrPOMC1-74 is an agonist at the MC-3 receptor and the reported evidence that the MC-3 receptor is expressed in the anterior pituitary, the mitogenic action of rrPOMC1-74 on lactotrophs does not seem to be mediated by the MC-3 receptor.
Vector mesons in the Nambu-Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Schüren, C.; Döring, F.; Ruiz Arriola, E.; Goeke, K.
1993-12-01
We investigate solitonic solutions with baryon number equal to one of the semi-bosonized SU(2) Nambu-Jona-Lasinio model including σ -, π -, ρ -, A 1- and ω-mesons both on the chiral circle ( σ2r) + π2( r) = f2π) and beyond it ( σ2( r) + π2( r) ≠ f2π). The action is treated in the mesonic and baryonic sector in the leading order of the large- Nc expansion (one-quark-loop approximation). The UV-divergent real part of the effective action is rendered finite using different gauge-invariant regularization methods (Pauli-Villars and proper time). The parameters of the model are fixed in two different ways: either approximately by a heat kernel expansion of the effective action up to second order or by an exact calculation of the mesonic on-shell masses. This leaves the constituent quark mass as the only free parameter of the model. In the solitonic sector we pay special attention to the way the Wick rotation from euclidean space back to Minkowski space has to be performed. We get solitonic solutions from hedgehoglike field configurations on the chiral circle for a wide range of couplings. We also find that if the chiral-circle constraint is relaxed vector mesons provide stable solitonic solutions. Moreover, whether the baryon number is carried by the valence quarks or by the Dirac sea depends strongly on the particular values of the constituent quark mass. We also study the low-energy limit of the model and its connection to chiral perturbation theory. To this end a covariant-derivative expansion is performed in the presence of external fields. After integrating out the scalar, vector and axial degrees of freedom this leads to the corresponding low-energy parameters as e.g. pion radii and some threshold parameters for pion-pion scattering. Vector mesons provide a natural explanation for an axial coupling constant at the quark level gAQ lower than one. However, we find for the gAN of the nucleon noticeable deviations from the non-relativistic quark model prediction g AN = {5}/{3}g AQ. For the values of the parameters where solitons are found, pionic radii come out to be too small. Finally, the relation of the present model to other chiral soliton models as well as some effective lagrangians is displayed.
Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T
2016-07-01
We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2008-11-01
The simple map is the simplest map that has topology of divertor tokamaks [1]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [2]. Action-angle coordinates for simple map can not be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories can not cross separatrix [2]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to magnetic noise and field errors. Mode numbers for noise + field errors from the DIII-D tokamak are used. Mode numbers are (m,n)=(3,1), (4,1), (6,2), (7,2), (8,2), (9,3), (10,3), (11,3), (12,3) [3]. The common amplitude δ is varied from 0.8X10-5 to 2.0X10-5. For this noise and field errors, the width of stochastic layer in simple map is calculated. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793 1. A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007). 2. O. Kerwin, A. Punjabi, and H. Ali, to appear in Physics of Plasmas. 3. A. Punjabi and H. Ali, P1.012, 35^th EPS Conference on Plasma Physics, June 9-13, 2008, Hersonissos, Crete, Greece.
Nuclear mass formula with the shell energies obtained by a new method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koura, H.; Tachibana, T.; Yamada, M.
1998-12-21
Nuclear shapes and masses are estimated by a new method. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies by mixing them with appropriate weights. The spherical shell energies are calculated from single-particle potentials, and, till now, two mass formulas have been constructed from two different sets of potential parameters. The standard deviation of the calculated masses from all the experimental masses of the 1995 Mass Evaluation is about 760 keV. Contrary to the mass formula by Tachibana, Uno, Yamada and Yamada in the 1987-1988 Atomic Mass Predictions, the present formulasmore » can give nuclear shapes and predict on super-heavy elements.« less
A proposal of a local modified QCD
NASA Astrophysics Data System (ADS)
Cabo Montes de Oca, A.
2012-06-01
A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.
Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.
Giordano, Guido; Doronzo, Domenico M
2017-06-30
The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.
A Synthetic Model of Mass Persuasion.
ERIC Educational Resources Information Center
Kneupper, Charles W.; Underwood, Willard A.
Mass persuasion involves a message production process which significantly alters or reinforces an attitude, belief, or action of the members of a large, heterogeneous audience. A synthetic communication model for mass persuasion has been constructed which incorporates aspects of several models created to describe the process of effective…
Mass-energy distribution of fragments within Langevin dynamics of fission induced by heavy ions
NASA Astrophysics Data System (ADS)
Anischenko, Yu. A.; Adeev, G. D.
2012-08-01
A stochastic approach based on four-dimensional Langevin fission dynamics is applied to calculating mass-energy distributions of fragments originating from the fission of excited compound nuclei. In the model under investigation, the coordinate K representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of the { c, h, α} parametrization. The evolution of the orientation degree of freedom ( K mode) is described by means of the Langevin equation in the overdamped regime. The tensor of friction is calculated under the assumption of the reducedmechanismof one-body dissipation in the wall-plus-window model. The calculations are performed for two values of the coefficient that takes into account the reduction of the contribution from the wall formula: k s = 0.25 and k s = 1.0. Calculations with a modified wall-plus-window formula are also performed, and the quantity measuring the degree to which the single-particle motion of nucleons within the nuclear system being considered is chaotic is used for k s in this calculation. Fusion-fission reactions leading to the production of compound nuclei are considered for values of the parameter Z 2/ A in the range between 21 and 44. So wide a range is chosen in order to perform a comparative analysis not only for heavy but also for light compound nuclei in the vicinity of the Businaro-Gallone point. For all of the reactions considered in the present study, the calculations performed within four-dimensional Langevin dynamics faithfully reproduce mass-energy and mass distributions obtained experimentally. The inclusion of the K mode in the Langevin equation leads to an increase in the variances of mass and energy distributions in relation to what one obtains from three-dimensional Langevin calculations. The results of the calculations where one associates k s with the measure of chaoticity in the single-particle motion of nucleons within the nuclear system under study are in good agreement for variances of mass distributions. The results of calculations for the correlations between the prescission neutron multiplicity and the fission-fragment mass, < n pre( M)>, and between, this multiplicity and the kinetic energy of fission fragments, < n pre( E k )>, are also presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... and for a flow monitoring system and an O2 or CO2 diluent gas monitoring system to measure heat input...
40 CFR 86.143-96 - Calculations; evaporative emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
....1005(f): ER28AP14.005 Where: m THCE = the sum of the mass of THCE in the SHED. m THC = the mass of THC and all oxygenated hydrocarbons in the SHED, as measured by the FID. Calculate THC mass based on ρ THC. ρ THC = the effective C1-equivalent density of THC as specified in 40 CFR 1066.1005(f). m OHCi = the...
The mass balance of the ice plain of Ice Stream B and Crary Ice Rise
NASA Technical Reports Server (NTRS)
Bindschadler, Robert
1993-01-01
The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.
Hadron mass and decays constant predictions of the valence approximation to lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weingarten, D.
1993-05-01
A key goal of the lattice formulation of QCD is to reproduce the masses and decay constants of the low-lying baryons and mesons. Lattice QCD mass and decay constant predictions for the real world are supposed to be obtained from masses and decay constants calculated with finite lattice spacing and finite lattice volume by taking the limits of zero spacing and infinite volume. In addition, since the algorithms used for hadron mass and decay constant calculations become progressively slower for small quark masses, results are presently found with quark masses much larger than the expected values of the up andmore » down quark masses. Predictions for the properties of hadrons containing up and down quarks then require a further extrapolation to small quark masses. The author reports here mass and decay constant predictions combining all three extrapolations for Wilson quarks in the valence (quenched) approximation. This approximation may be viewed as replacing the momentum and frequency dependent color dielectric constant arising from quark-antiquark vacuum polarization with its zero-momentum, zero-frequency limit. These calculations used approximately one year of machine time on the GF11 parallel computer running at a sustained rate of between 5 and 7 Gflops.« less
Mass Deacidification Systems: Planning and Managerial Decision Making.
ERIC Educational Resources Information Center
Turko, Karen
Library administrators, faced with the problems of acid-paper deterioration, are examining mass deacidification procedures. Mass deacidification of acidic books while they are still physically sound and not yet brittle is the most cost-effective corrective action to extend the life of the paper. There are currently at least five mass…
The Center of Mass of a Soft Spring
ERIC Educational Resources Information Center
Serna, Juan D.; Joshi, Amitabh
2011-01-01
This article uses calculus to find the center of mass of a soft, vertically suspended, cylindrical helical spring, which necessarily is stretched non-uniformly by the action of gravity. A general expression for the vertical position of the center of mass is obtained and compared with other results in the literature.
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less
Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields
Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...
2018-03-15
The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
CASCADE IMPACTOR DATA REDUCTION WITH SR-52 AND TI-59 PROGRAMMABLE CALCULATORS
The report provides useful tools for obtaining particle size distributions and graded penetration data from cascade impactor measurements. The programs calculate impactor aerodynamic cut points, total mass collected by the impactor, cumulative mass fraction less than for each sta...
40 CFR 403.6 - National pretreatment standards: Categorical standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Control Authority calculating equivalent mass-per-day limitations under paragraph (c)(2) of this section... production shall be estimated using projected production. (4) A Control Authority calculating equivalent... Control Authority convert the limits to equivalent mass limits. The determination to convert concentration...
40 CFR 403.6 - National pretreatment standards: Categorical standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Control Authority calculating equivalent mass-per-day limitations under paragraph (c)(2) of this section... production shall be estimated using projected production. (4) A Control Authority calculating equivalent... Control Authority convert the limits to equivalent mass limits. The determination to convert concentration...
40 CFR 403.6 - National pretreatment standards: Categorical standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Control Authority calculating equivalent mass-per-day limitations under paragraph (c)(2) of this section... production shall be estimated using projected production. (4) A Control Authority calculating equivalent... Control Authority convert the limits to equivalent mass limits. The determination to convert concentration...
40 CFR 403.6 - National pretreatment standards: Categorical standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Control Authority calculating equivalent mass-per-day limitations under paragraph (c)(2) of this section... production shall be estimated using projected production. (4) A Control Authority calculating equivalent... Control Authority convert the limits to equivalent mass limits. The determination to convert concentration...
40 CFR 403.6 - National pretreatment standards: Categorical standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Control Authority calculating equivalent mass-per-day limitations under paragraph (c)(2) of this section... production shall be estimated using projected production. (4) A Control Authority calculating equivalent... Control Authority convert the limits to equivalent mass limits. The determination to convert concentration...
Jasuja, Guneet Kaur; Travison, Thomas G; Davda, Maithili; Murabito, Joanne M; Basaria, Shehzad; Zhang, Anqi; Kushnir, Mark M; Rockwood, Alan L; Meikle, Wayne; Pencina, Michael J; Coviello, Andrea; Rose, Adam J; D'Agostino, Ralph; Vasan, Ramachandran S; Bhasin, Shalender
2013-06-01
Age trends in estradiol and estrone levels in men and how lifestyle factors, comorbid conditions, testosterone, and sex hormone-binding globulin affect these age trends remain poorly understood, and were examined in men of the Framingham Heart Study. Estrone and estradiol concentrations were measured in morning fasting samples using liquid chromatography tandem mass spectrometry in men of Framingham Offspring Generation. Free estradiol was calculated using a law of mass action equation. There were 1,461 eligible men (mean age [±SD] 61.1±9.5 years and body mass index [BMI] 28.8±4.5kg/m(2)). Total estradiol and estrone were positively associated with age, but free estradiol was negatively associated with age. Age-related increase in total estrone was greater than that in total estradiol. Estrone was positively associated with smoking, BMI, and testosterone, and total and free estradiol with diabetes, BMI, testosterone, and comorbid conditions; additionally, free estradiol was associated negatively with smoking. Collectively, age, BMI, testosterone, and other health and behavioral factors explained only 18% of variance in estradiol, and 9% of variance in estrone levels. Men in the highest quintile of estrone levels had significantly higher age and BMI, and a higher prevalence of smoking, diabetes, and cardiovascular disease than others, whereas those in the highest quintile of estradiol had higher BMI than others. Total estrone and estradiol levels in men, measured using liquid chromatography tandem mass spectrometry, revealed significant age-related increases that were only partially accounted for by cross-sectional differences in BMI, diabetes status, and other comorbidities and health behaviors. Longitudinal studies are needed to confirm these findings.
Petersen, J.H.; Ward, D.L.
1999-01-01
A bioenergetics model was developed and corroborated for northern pikeminnow Ptychocheilus oregonensis, an important predator on juvenile salmonids in the Pacific Northwest. Predictions of modeled predation rate on salmonids were compared with field data from three areas of John Day Reservoir (Columbia River). To make bioenergetics model estimates of predation rate, three methods were used to approximate the change in mass of average predators during 30-d growth periods: observed change in mass between the first and the second month, predicted change in mass calculated with seasonal growth rates, and predicted change in mass based on an annual growth model. For all reservoir areas combined, bioenergetics model predictions of predation on salmon were 19% lower than field estimates based on observed masses, 45% lower than estimates based on seasonal growth rates, and 15% lower than estimates based on the annual growth model. For each growth approach, the largest differences in field-versus-model predation occurred at the midreservoir area (-84% to -67% difference). Model predictions of the rate of predation on salmonids were examined for sensitivity to parameter variation, swimming speed, sampling bias caused by gear selectivity, and asymmetric size distributions of predators. The specific daily growth rate of northern pikeminnow predicted by the model was highest in July and October and decreased during August. The bioenergetics model for northern pikeminnow performed well compared with models for other fish species that have been tested with field data. This model should be a useful tool for evaluating management actions such as predator removal, examining the influence of temperature on predation rates, and exploring interactions between predators in the Columbia River basin.
NASA Astrophysics Data System (ADS)
Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy
2017-10-01
The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2009-11-01
The simple map is the simplest map that has topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007)]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)]. Action-angle coordinates for simple map cannot be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories cannot cross separatrix [op cit]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to the low mn magnetic perturbation with mode numbers m=1, and n=±1. The width of stochastic layer near the X-point scales as 0.63 power of the amplitude δ of low mn perturbation, toroidal flux loss scales as 1.16 power of δ, and poloidal flux loss scales as 1.26 power of δ. Scaling of width deviates from Boozer-Rechester scaling by 26% [A. Boozer, and A. Rechester, Phys. Fluids 21, 682 (1978)]. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
Saroff, Harry A
Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.
Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.
2008-12-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Cosmological perturbations in inflation and in de Sitter space
NASA Astrophysics Data System (ADS)
Pimentel, Guilherme Leite
This thesis focuses on various aspects of inflationary fluctuations. First, we study gravitational wave fluctuations in de Sitter space. The isometries of the spacetime constrain to a few parameters the Wheeler-DeWitt wavefunctional of the universe, to cubic order in fluctuations. At cubic order, there are three independent terms in the wavefunctional. From the point of view of the bulk action, one term corresponds to Einstein gravity, and a new term comes from a cubic term in the curvature tensor. The third term is a pure phase and does not give rise to a new shape for expectation values of graviton fluctuations. These results can be seen as the leading order non-gaussian contributions in a slow-roll expansion for inflationary observables. We also use the wavefunctional approach to explain a universal consistency condition of n-point expectation values in single field inflation. This consistency condition relates a soft limit of an n-point expectation value to ( n-1)-point expectation values. We show how these conditions can be easily derived from the wavefunctional point of view. Namely, they follow from the momentum constraint of general relativity, which is equivalent to the constraint of spatial diffeomorphism invariance. We also study expectation values beyond tree level. We show that subhorizon fluctuations in loop diagrams do not generate a mass term for superhorizon fluctuations. Such a mass term could spoil the predictivity of inflation, which is based on the existence of properly defined field variables that become constant once their wavelength is bigger than the size of the horizon. Such a mass term would be seen in the two point expectation value as a contribution that grows linearly with time at late times. The absence of this mass term is closely related to the soft limits studied in previous chapters. It is analogous to the absence of a mass term for the photon in quantum electrodynamics, due to gauge symmetry. Finally, we use the tools of holography and entanglement entropy to study superhorizon correlations in quantum field theories in de Sitter space. The entropy has interesting terms that have no equivalent in flat space field theories. These new terms are due to particle creation in an expanding universe. The entropy is calculated directly for free massive scalar theories. For theories with holographic duals, it is determined by the area of some extremal surface in the bulk geometry. We calculate the entropy for different classes of holographic duals. For one of these classes, the holographic dual geometry is an asymptotically Anti-de Sitter space that decays into a crunching cosmology, an open Friedmann-Robertson-Walker universe. The extremal surface used in the calculation of the entropy lies almost entirely on the slice of maximal scale factor of the crunching cosmology.
Computing Gravitational Fields of Finite-Sized Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2005-01-01
A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.
Nuclear binding energy using semi empirical mass formula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankita,, E-mail: ankitagoyal@gmail.com; Suthar, B.
2016-05-06
In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.
Chou, Ting-Chao
2011-01-01
The mass-action law based system analysis via mathematical induction and deduction lead to the generalized theory and algorithm that allows computerized simulation of dose-effect dynamics with small size experiments using a small number of data points in vitro, in animals, and in humans. The median-effect equation of the mass-action law deduced from over 300 mechanism specific-equations has been shown to be the unified theory that serves as the common-link for complicated biomedical systems. After using the median-effect principle as the common denominator, its applications are mechanism-independent, drug unit-independent, and dynamic order-independent; and can be used generally for single drug analysis or for multiple drug combinations in constant-ratio or non-constant ratios. Since the "median" is the common link and universal reference point in biological systems, these general enabling lead to computerized quantitative bio-informatics for econo-green bio-research in broad disciplines. Specific applications of the theory, especially relevant to drug discovery, drug combination, and clinical trials, have been cited or illustrated in terms of algorithms, experimental design and computerized simulation for data analysis. Lessons learned from cancer research during the past fifty years provide a valuable opportunity to reflect, and to improve the conventional divergent approach and to introduce a new convergent avenue, based on the mass-action law principle, for the efficient cancer drug discovery and the low-cost drug development.
Chou, Ting-Chao
2011-01-01
The mass-action law based system analysis via mathematical induction and deduction lead to the generalized theory and algorithm that allows computerized simulation of dose-effect dynamics with small size experiments using a small number of data points in vitro, in animals, and in humans. The median-effect equation of the mass-action law deduced from over 300 mechanism specific-equations has been shown to be the unified theory that serves as the common-link for complicated biomedical systems. After using the median-effect principle as the common denominator, its applications are mechanism-independent, drug unit-independent, and dynamic order-independent; and can be used generally for single drug analysis or for multiple drug combinations in constant-ratio or non-constant ratios. Since the “median” is the common link and universal reference point in biological systems, these general enabling lead to computerized quantitative bio-informatics for econo-green bio-research in broad disciplines. Specific applications of the theory, especially relevant to drug discovery, drug combination, and clinical trials, have been cited or illustrated in terms of algorithms, experimental design and computerized simulation for data analysis. Lessons learned from cancer research during the past fifty years provide a valuable opportunity to reflect, and to improve the conventional divergent approach and to introduce a new convergent avenue, based on the mass-action law principle, for the efficient cancer drug discovery and the low-cost drug development. PMID:22016837
Concepts, challenges, and successes in modeling thermodynamics of metabolism.
Cannon, William R
2014-01-01
The modeling of the chemical reactions involved in metabolism is a daunting task. Ideally, the modeling of metabolism would use kinetic simulations, but these simulations require knowledge of the thousands of rate constants involved in the reactions. The measurement of rate constants is very labor intensive, and hence rate constants for most enzymatic reactions are not available. Consequently, constraint-based flux modeling has been the method of choice because it does not require the use of the rate constants of the law of mass action. However, this convenience also limits the predictive power of constraint-based approaches in that the law of mass action is used only as a constraint, making it difficult to predict metabolite levels or energy requirements of pathways. An alternative to both of these approaches is to model metabolism using simulations of states rather than simulations of reactions, in which the state is defined as the set of all metabolite counts or concentrations. While kinetic simulations model reactions based on the likelihood of the reaction derived from the law of mass action, states are modeled based on likelihood ratios of mass action. Both approaches provide information on the energy requirements of metabolic reactions and pathways. However, modeling states rather than reactions has the advantage that the parameters needed to model states (chemical potentials) are much easier to determine than the parameters needed to model reactions (rate constants). Herein, we discuss recent results, assumptions, and issues in using simulations of state to model metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VANGELAS, KAREN
2005-05-19
Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC ofmore » the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, R. A.
The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string,more » through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.« less
Noncommutative geometry inspired Einstein–Gauss–Bonnet black holes
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.
2018-04-01
Low energy limits of a string theory suggests that the gravity action should include quadratic and higher-order curvature terms, in the form of dimensionally continued Gauss–Bonnet densities. Einstein–Gauss–Bonnet is a natural extension of the general relativity to higher dimensions in which the first and second-order terms correspond, respectively, to general relativity and Einstein–Gauss–Bonnet gravity. We obtain five-dimensional (5D) black hole solutions, inspired by a noncommutative geometry, with a static spherically symmetric, Gaussian mass distribution as a source both in the general relativity and Einstein–Gauss–Bonnet gravity cases, and we also analyzes their thermodynamical properties. Owing the noncommutative corrected black hole, the thermodynamic quantities have also been modified, and phase transition is shown to be achievable. The phase transitions for the thermodynamic stability, in both the theories, are characterized by a discontinuity in the specific heat at r_+=rC , with the stable (unstable) branch for r < (>) rC . The metric of the noncommutative inspired black holes smoothly goes over to the Boulware–Deser solution at large distance. The paper has been appended with a calculation of black hole mass using holographic renormalization.
The Stewart approach--one clinician's perspective.
Morgan, T John
2009-05-01
Peter Stewart added controversy to an already troubled subject when he entered the clinical acid-base arena. His approach puts water dissociation at the centre of the acid-base status of body fluids. It is based on six simultaneous equations, incorporating the Laws of Mass Action, Mass Conservation, and Electrical Neutrality. Together with Gibbs-Donnan equilibria, these equations explain the diagnostically important PaCO(2)/pH relationship, and improve understanding of the physiologic basis of traditional acid-base approaches. Spin-offs have included new scanning tools for unmeasured ions, in particular the 'strong ion gap' and 'net unmeasured ions'. The most controversial feature is the designation of pH and bicarbonate concentrations as dependent variables, answerable exclusively to three independent variables. These are the strong ion difference (SID), the total concentration of non-volatile weak acid (A(TOT)), and PCO(2). Aspects of this assertion conflict with traditional renal physiology, and with current models of membrane H(+)/base transporters, oxidative phosphorylation, and proton and bicarbonate ionophores. The debate in this area is ongoing. Meanwhile, Stewart-style diagnostic and decision support systems such as the 'Strong Ion Calculator' and the web-site www.acidbase.org are now appearing.
Adams, K.A.; Vangelas, K.M.; Looney, B.B.; Chapelle, F.; Early, T.; Gilmore, T.; Sink, C.H.
2005-01-01
Nature's inherent ability to cleanse itself is at the heart of Monitored Natural Attenuation (MNA). The complexity comes when one attempts to measure and calculate this inherent ability, called the Natural Attenuation Capacity (NAC), and determine if it is sufficient to cleanse the system to agreed upon criteria. An approach that is simple in concept for determining whether the NAC is sufficient for MNA to work is the concept of a mass balance. Mass balance is a robust framework upon which all decisions can be made. The inflows to and outflows from the system are balanced against the NAC of the subsurface system. For MNA to be acceptable, the NAC is balanced against the contaminant loading to the subsurface system with the resulting outflow from the system being in a range that is acceptable to the regulating and decision-making parties. When the system is such that the resulting outflow is not within an acceptable range, the idea of taking actions that are sustainable and that will bring the system within the acceptable range of outflows is evaluated. These sustainable enhancements are being developed under the Enhanced Attenuation (EA) concept. Copyright ASCE 2005.
Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.
Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T
2007-03-30
Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.
Isovector and isoscalar tensor charges of the nucleon from lattice QCD
Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Cohen, Saul D.; ...
2015-11-01
Here, we present results for the isovector and flavor diagonal tensor charges g u–d T, g u T, g d T, and g s T needed to probe novel tensor interactions at the TeV scale in neutron and nuclear β-decays and the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06, 0.09 and 0.12 fm and three quark masses corresponding to the pionmore » masses M π ≈ 130, 220 and 310 MeV. Using estimates from these ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, volume and light quark masses for the connected contributions. The final estimates of the connected nucleon (proton) tensor charge for the isovector combination is g u–d T = 1.020(76) in the MS¯ scheme at 2 GeV. The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging technique. We find that the size of the disconnected contribution is smaller than the statistical error in the connected contribution. This allows us to bound the disconnected contribution and include it as an additional uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find g u T = 0.774(66), g d T = –0.233(28) and g u+d T = 0.541(67). The strangeness tensor charge, that can make a significant contribution to the neutron EDM due to the large ratio m s/m u,d, is g s T = 0.008(9) in the continuum limit.« less
A discussion on leading renormalon in the pole mass
NASA Astrophysics Data System (ADS)
Komijani, J.
2017-08-01
Perturbative series of some quantities in quantum field theories, such as the pole mass of a quark, suffer from a kind of divergence called renormalon divergence. In this paper, the leading renormalon in the pole mass is investigated, and a map is introduced to suppress this renormalon. The inverse of the map is then used to generate the leading renormalon and obtain an expression to calculate its overall normalization. Finally, the overall normalization of the leading renormalon of the pole mass is calculated for several values of quark flavors.
Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations
NASA Astrophysics Data System (ADS)
Roscher, Dietrich; Braun, Jens; Chen, Jiunn-Wei; Drut, Joaquín E.
2014-05-01
Fermi gases in strongly coupled regimes are inherently challenging for many-body methods. Although progress has been made analytically, quantitative results require ab initio numerical approaches, such as Monte-Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. For finite spin imbalance, the problem can be circumvented using imaginary polarizations and analytic continuation, and large parts of the phase diagram then become accessible. We propose to apply this strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. We perform a first mean-field analysis which suggests that zero-temperature studies, as well as detecting a potential (tri)critical point, are feasible.
Dynamic Diversity: Toward a Contextual Understanding of Critical Mass
ERIC Educational Resources Information Center
Garces, Liliana M.; Jayakumar, Uma M.
2014-01-01
Through an analysis of relevant social science evidence, this article provides a deeper understanding of critical mass, a concept that has become central in litigation efforts related to affirmative action admissions policies that seek to further the educational benefits of diversity. We demonstrate that the concept of critical mass requires an…
Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging.
Florentine, M S; Grosskreutz, C L; Chang, W; Hartnett, J A; Dunn, V D; Ehrhardt, J C; Fleagle, S R; Collins, S M; Marcus, M L; Skorton, D J
1986-07-01
Alterations of left ventricular mass occur in a variety of congenital and acquired heart diseases. In vivo determination of left ventricular mass, using several different techniques, has been previously reported. Problems inherent in some previous methods include the use of ionizing radiation, complicated geometric assumptions and invasive techniques. We tested the ability of gated nuclear magnetic resonance imaging to determine in vivo left ventricular mass in animals. By studying both dogs (n = 9) and cats (n = 2) of various sizes, a broad range of left ventricular mass (7 to 133 g) was examined. With a 0.5 tesla superconducting nuclear magnetic resonance imaging system the left ventricle was imaged in the transaxial plane and multiple adjacent 10 mm thick slices were obtained. Endocardial and epicardial edges were manually traced in each computer-displayed image. The wall area of each image was determined by computer and the areas were summed and multiplied by the slice thickness and the specific gravity of muscle, providing calculated left ventricular mass. Calculated left ventricular mass was compared with actual postmortem left ventricular mass using linear regression analysis. An excellent relation between calculated and actual mass was found (r = 0.95; SEE = 13.1 g; regression equation: magnetic resonance mass = 0.95 X actual mass + 14.8 g). Intraobserver and interobserver reproducibility were also excellent (r = 0.99). Thus, gated nuclear magnetic resonance imaging can accurately determine in vivo left ventricular mass in anesthetized animals.
21 CFR 352.73 - Determination of SPF value.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Procedures § 352.73 Determination of SPF value. (a)(1) The following erythema action spectrum shall be used...) (2) The data contained in this action spectrum are to be used as spectral weighting factors to... (adjusted to the erythema action spectrum calculated according to § 352.73(a)) is administered to the...
40 CFR 86.164-08 - Supplemental Federal Test Procedure calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... provisions provide the procedures for calculating mass emission results of each regulated exhaust pollutant... this section. These provisions provide the procedures for determining the weighted mass emissions for... reported test results for the SFTP composite (NMHC+NOX) and optional composite CO standards shall be...
40 CFR 86.164-08 - Supplemental Federal Test Procedure calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... provisions provide the procedures for calculating mass emission results of each regulated exhaust pollutant... this section. These provisions provide the procedures for determining the weighted mass emissions for... reported test results for the SFTP composite (NMHC+NOX) and optional composite CO standards shall be...
Action growth of charged black holes with a single horizon
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Sasaki, Misao; Wang, Shao-Jiang
2017-06-01
According to the conjecture "complexity equals action," the complexity of a holographic state is equal to the action of a Wheeler-DeWitt (WDW) patch of black holes in anti-de Sitter space. In this paper we calculate the action growth of charged black holes with a single horizon, paying attention to the contribution from a spacelike singularity inside the horizon. We consider two kinds of such charged black holes: one is a charged dilaton black hole, and the other is a Born-Infeld black hole with β2Q2<1 /4 . In both cases, although an electric charge appears in the black hole solutions, the inner horizon is absent; instead a spacelike singularity appears inside the horizon. We find that the action growth of the WDW patch of the charged black hole is finite and satisfies the Lloyd bound. As a check, we also calculate the action growth of a charged black hole with a phantom Maxwell field. In this case, although the contributions from the bulk integral and the spacelike singularity are individually divergent, these two divergences just cancel each other and a finite action growth is obtained. But in this case, the Lloyd bound is violated as expected.
Are temporal characteristics of fast repetitive oscillating movement invariant?
Gutnik, B J; Nicholson, J; Go, W; Gale, D; Nash, D
2003-06-01
Validation of the proportional duration model was attempted using very fast single-joint repetitive horizontal abductive-adductive movements of the stretched upper extremity with minimal cognitive input. Participants drew oscillating horizontal lines during 20 sec. over relatively short distances as quickly as possible without visual feedback. Spatial, temporal, and kinetic parameters were analysed. The amplitude and the time spent accelerating, decelerating, and reversing in both directions of each experimental line were recorded and related to the centre of gravity of the upper extremity. The accelerations of the centre of mass of the upper extremity were calculated and used to calculate the forces involved. The ratios of durations were compared and intercorrelated for the two fastest, two average, and two slowest cycles from each participant. Results exhibited significant standard deviations and variability of temporal and kinetic parameters within individual trials. The number of significant coefficients of correlation within individual trials was small despite the controlling influence of the same generalised motor program. The proportional duration model did not hold for our data. Peripheral factors (probably the length-tension relationship rule for skeletal muscles and viscosity of muscle) may be important in this type of action.
NASA Astrophysics Data System (ADS)
Gong, M.; Alexandru, A.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Freeman, W.; Glatzmaier, M.; Li, A.; Liu, K. F.; Liu, Z.
2013-07-01
We present a calculation of the strangeness and charmness contents ⟨N|s¯s|N⟩ and ⟨N|c¯c|N⟩ of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 243×64 lattice with sea-quark mass aml=0.005, ams=0.04, and inverse lattice spacing a-1=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. The nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal-to-noise ratio. We obtain the strangeness matrix element fTs=ms⟨N|s¯s|N⟩/MN=0.0334(62), and the charmness content fTc=mc⟨N|c¯c|N⟩/MN=0.094(31) which is resolved from zero by 3σ precision for the first time.
The self-association of acebutolol: Conductometry and light scattering
NASA Astrophysics Data System (ADS)
Ruso, Juan M.; López-Fontán, José L.; Prieto, Gerardo; Sarmiento, Félix
2003-04-01
The association characteristics of an amphiphilic beta-blocker drug, acebutolol hydrochloride, in aqueous solution containing high concentrations of electrolyte and at different temperatures have been examined by static and dynamic light scattering and electrical conductivity. Time averaged light scattering measurements on aqueous solutions of acebutolol at 298.15 K in the presence of added electrolyte (0.4-1.0 mol kg-1 NaCl) have shown discontinuities which reflect the appearance of aggregates. The critical micelle concentration, aggregation numbers, effective micelle charges, and degree of micellar ionization were calculated. Dynamic light scattering has shown an increase in micellar size with increase in concentration of added electrolyte. Data have been interpreted using the DLVO theory to quantify the interaction between the drug aggregates and the colloidal stability. Critical micelle concentrations in water have been calculated from conductivity measurements over the temperature range 288.15-313.15 K. The variation in critical concentration with temperature passes through a minimum close to 294 K. Thermodynamic parameters of aggregate formation (ΔGm0,ΔHm0,ΔSm0) were obtained from a variation of the mass action model applicable to systems of low aggregation number.
Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD
NASA Astrophysics Data System (ADS)
Hasan, Nesreen; Green, Jeremy; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Negele, John; Pochinsky, Andrew; Syritsyn, Sergey
2018-02-01
We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0 . This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z -expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
Felicita, A Sumathi
2017-01-01
The aim of the present study was to clarify the biomechanics of en-masse retraction of the upper anterior teeth and attempt to quantify the different forces and moments generated using mini-implants and to calculate the amount of applied force optimal for en-masse intrusion and retraction using mini-implants. The optimum force required for en-masse intrusion and retraction can be calculated by using simple mathematical formulae. Depending on the position of the mini-implant and the relationship of the attachment to the center of resistance of the anterior segment, different clinical outcomes are encountered. Using certain mathematical formulae, accurate measurements of the magnitude of force and moment generated on the teeth can be calculated for each clinical outcome. Optimum force for en-masse intrusion and retraction of maxillary anterior teeth is 212 grams per side. Force applied at an angle of 5o to 16o from the occlusal plane produce intrusive and retraction force components that are within the physiologic limit. Different clinical outcomes are encountered depending on the position of the mini-implant and the length of the attachment. It is possible to calculate the forces and moments generated for any given magnitude of applied force. The orthodontist can apply the basic biomechanical principles mentioned in this study to calculate the forces and moments for different hypothetical clinical scenarios.
Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy
NASA Astrophysics Data System (ADS)
Mallik, S.; Das Gupta, S.; Chaudhuri, G.
2016-04-01
This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.
Mass-action equilibrium and non-specific interactions in protein binding networks
NASA Astrophysics Data System (ADS)
Maslov, Sergei
2009-03-01
Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).
Cai, Yi-Hong; Wang, Yi-Sheng
2018-04-01
This work discusses the correlation between the mass resolving power of matrix-assisted laser desorption/ionization time-of-flight mass analyzers and extraction condition with an uneven sample morphology. Previous theoretical calculations show that the optimum extraction condition for flat samples involves an ideal ion source design and extraction delay. A general expression of spectral feature takes into account ion initial velocity, and extraction delay is derived in the current study. The new expression extends the comprehensive calculation to uneven sample surfaces and above 90% Maxell-Boltzmann initial velocity distribution of ions to account for imperfect ionization condition. Calculation shows that the impact of uneven sample surface or initial spatial spread of ions is negligible when the extraction delay is away from the ideal value. When the extraction delay approaches the optimum value, the flight-time topology shows a characteristic curve shape, and the time-domain mass spectral feature broadens with an increase in initial spatial spread of ions. For protonated 2,5-dihydroxybenzoic acid, the mass resolving power obtained from a sample of 3-μm surface roughness is approximately 3.3 times lower than that of flat samples. For ions of m/z 3000 coexpanded with 2,5-dihydroxybenzoic acid, the mass resolving power in the 3-μm surface roughness case only reduces roughly 7%. Comprehensive calculations also show that the mass resolving power of lighter ions is more sensitive to the accuracy of the extraction delay than heavier ions. Copyright © 2018 John Wiley & Sons, Ltd.
40 CFR 86.164-00 - Supplemental Federal Test Procedure calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... provide the procedures for calculating mass emission results of each regulated exhaust pollutant for the... section. These provisions provide the procedures for determining the weighted mass emissions for the FTP... test results for the SFTP composite (NMHC+NOX) and optional composite CO standards shall be computed by...
40 CFR 86.164-00 - Supplemental Federal Test Procedure calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... provide the procedures for calculating mass emission results of each regulated exhaust pollutant for the... section. These provisions provide the procedures for determining the weighted mass emissions for the FTP... test results for the SFTP composite (NMHC+NOX) and optional composite CO standards shall be computed by...
The added mass forces in insect flapping wings.
Liu, Longgui; Sun, Mao
2018-01-21
The added mass forces of three-dimensional (3D) flapping wings of some representative insects, and the accuracy of the often used simple two-dimensional (2D) method, are studied. The added mass force of a flapping wing is calculated by both 3D and 2D methods, and the total aerodynamic force of the wing is calculated by the CFD method. Our findings are as following. The added mass force has a significant contribution to the total aerodynamic force of the flapping wings during and near the stroke reversals, and the shorter the stroke amplitude is, the larger the added mass force becomes. Thus the added mass force could not be neglected when using the simple models to estimate the aerodynamics force, especially for insects with relatively small stroke amplitudes. The accuracy of the often used simple 2D method is reasonably good: when the aspect ratio of the wing is greater than about 3.3, error in the added mass force calculation due to the 2D assumption is less than 9%; even when the aspect ratio is 2.8 (approximately the smallest for an insect), the error is no more than 13%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Size-exclusion chromatography of perfluorosulfonated ionomers.
Mourey, T H; Slater, L A; Galipo, R C; Koestner, R J
2011-08-26
A size-exclusion chromatography (SEC) method in N,N-dimethylformamide containing 0.1 M LiNO(3) is shown to be suitable for the determination of molar mass distributions of three classes of perfluorosulfonated ionomers, including Nafion(®). Autoclaving sample preparation is optimized to prepare molecular solutions free of aggregates, and a solvent exchange method concentrates the autoclaved samples to enable the use of molar-mass-sensitive detection. Calibration curves obtained from light scattering and viscometry detection suggest minor variation in the specific refractive index increment across the molecular size distributions, which introduces inaccuracies in the calculation of local absolute molar masses and intrinsic viscosities. Conformation plots that combine apparent molar masses from light scattering detection with apparent intrinsic viscosities from viscometry detection partially compensate for the variations in refractive index increment. The conformation plots are consistent with compact polymer conformations, and they provide Mark-Houwink-Sakurada constants that can be used to calculate molar mass distributions without molar-mass-sensitive detection. Unperturbed dimensions and characteristic ratios calculated from viscosity-molar mass relationships indicate unusually free rotation of the perfluoroalkane backbones and may suggest limitations to applying two-parameter excluded volume theories for these ionomers. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Monson, D. J.
1978-01-01
Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS
Abstract
Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...
Mass Transit: Actions Needed for the BART Airport Extension
DOT National Transportation Integrated Search
1996-05-31
The Bay Area Rapid Transit District (BART) intends to spend over $1.1 billion, including $750 million in federal funds, to extend mass transit service to the San Francisco International Airport. The project is controversial, encountering both widespr...
Werner-Wheeler mass tensor for fusionlike configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherghescu, R.A.; Poenaru, D.N.
2005-08-01
The Werner-Wheeler approach is used to calculate the components of the mass tensor for a binary configuration of two intersected spheroids. Four free coordinates form the deformation space: the small semiaxis of the projectile, the two semiaxis ratios of the spheroids, and the distance between centers. A correction term is also calculated, due to the center of mass motion. Final results are presented for the fusion channel {sup 54}Cr+{sup 240}Pu, and all possible couplings are analyzed.
Formulations and algorithms for problems on rock mass and support deformation during mining
NASA Astrophysics Data System (ADS)
Seryakov, VM
2018-03-01
The analysis of problem formulations to calculate stress-strain state of mine support and surrounding rocks mass in rock mechanics shows that such formulations incompletely describe the mechanical features of joint deformation in the rock mass–support system. The present paper proposes an algorithm to take into account the actual conditions of rock mass and support interaction and the algorithm implementation method to ensure efficient calculation of stresses in rocks and support.
Code of Federal Regulations, 2010 CFR
2010-04-01
.../m), calculated on a dry basis. (2) The sulfated ash content is not more than 0.3 percent, m/m... action to final action. (3) Sulfated ash content, section 31.014, “Ash of Sugars and Sirups,” Final Action, Sulfated Ash, 14th Ed. (1984), p. 575. (4) pH, section 14.022, “pH of Flour, Potentiometric...
Code of Federal Regulations, 2011 CFR
2011-04-01
.../m), calculated on a dry basis. (2) The sulfated ash content is not more than 0.3 percent, m/m... action to final action. (3) Sulfated ash content, section 31.014, “Ash of Sugars and Sirups,” Final Action, Sulfated Ash, 14th Ed. (1984), p. 575. (4) pH, section 14.022, “pH of Flour, Potentiometric...
Freydank; Krasia; Tiddy; Patrickios
2000-05-01
A family of six near-monodisperse homopolymers of sodium methacrylate (Mn = 1100, 3200, 5500, 7200, 14100, and 21000) is characterized by linear salt gradient anion-exchange chromatography. Although the retention times depend on the initial and final salt concentrations of the gradient, they are almost independent of the molecular weight of poly(sodium methacrylate). This suggests that anion-exchange chromatography is incapable of resolving mixtures of a given polyelectrolyte to their components of various molecular weights, and it is therefore impossible to identify the polydispersity of such a sample using this method. The independence of the retention times from molecular weight is also predicted by a theory based on stoichiometric mass-action ion-exchange. Using this theory and our experimental retention times, the equilibrium anion-exchange constant and the corresponding Gibbs free energy of anion-exchange of the monomer repeat unit are calculated to be around 2.1 and -1.8 kJ/mol, respectively.
NASA Astrophysics Data System (ADS)
Yan, Zhengquan; Zhao, Qi; Wen, Meijun; Hu, Lei; Zhang, Xuezhong; You, Jinmao
2017-11-01
A novel polydentate ligand chromophore, 3,6-di-(N-ethyl-N-ethoxyl phenylazo) acridine (EEPA), was identified and synthesized. After its structure was characterized by FTIR, 1H NMR, mass spectra and element analyses, it was noted to find that there was a simultaneously colorimetric response to Ag+ and Fe3 + accompanying with different color changes, i.e., from brown to light purple for Ag+ and further to purple-red for Fe3 +, respectively. Their different action mechanisms, a 1:2 complex mode for EEPA-Ag+ and 1:1 for EEPA-Fe3 +, were investigated and confirmed by means of Job's plot and theoretical calculation. EEPA would be a potential colorimetric chemo-dosimeter for simultaneous detection of Ag+ and Fe3 + with the detection limits of 1.6 nmol·L- 1 and 69 nmol·L- 1, respectively.
Droplet breakup in accelerating gas flows. Part 2: Secondary atomization
NASA Technical Reports Server (NTRS)
Zajac, L. J.
1973-01-01
An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.
Gauge assisted quadratic gravity: A framework for UV complete quantum gravity
NASA Astrophysics Data System (ADS)
Donoghue, John F.; Menezes, Gabriel
2018-06-01
We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2010-02-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2009-09-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Cold fission description with constant and varying mass asymmetries
NASA Astrophysics Data System (ADS)
Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.
1998-05-01
Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.
Reducing the Consequences of a Nuclear Detonation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buddemeier, B R
2007-11-09
The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazardmore » area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.« less
NASA Astrophysics Data System (ADS)
Chenciner, Alain; Venturelli, Andrea
2000-09-01
We consider the problem of 4 bodies of equal masses in R 3 for the Newtonian r-1 potential. We address the question of the absolute minima of the action integral among (anti)symmetric loops of class H 1 whose period is fixed. It is the simplest case for which the results of [4] (corrected in [5]) do not apply: the minima cannot be the relative equilibria whose configuration is an absolute minimum of the potential among the configurations having a given moment of inertia with respect to their center of mass. This is because the regular tetrahedron cannot have a relative equilibrium motion in R 3 (see [2]). We show that the absolute minima of the action are not homographic motions. We also show that if we force the configuration to admit a certain type of symmetry of order 4, the absolute minimum is a collisionless orbit whose configuration ‘hesitates’ between the central configuration of the square and the one of the tetrahedron. We call these orbits ‘hip-hop’. A similar result holds in case of a symmetry of order 3 where the central configuration of the equilateral triangle with a body at the center of mass replaces the square.
XAFSmass: a program for calculating the optimal mass of XAFS samples
NASA Astrophysics Data System (ADS)
Klementiev, K.; Chernikov, R.
2016-05-01
We present a new implementation of the XAFSmass program that calculates the optimal mass of XAFS samples. It has several improvements as compared to the old Windows based program XAFSmass: 1) it is truly platform independent, as provided by Python language, 2) it has an improved parser of chemical formulas that enables parentheses and nested inclusion-to-matrix weight percentages. The program calculates the absorption edge height given the total optical thickness, operates with differently determined sample amounts (mass, pressure, density or sample area) depending on the aggregate state of the sample and solves the inverse problem of finding the elemental composition given the experimental absorption edge jump and the chemical formula.
Secuencias evolutivas e isocronas para estrellas de baja masa e intermedia
NASA Astrophysics Data System (ADS)
Panei, J.; Baume, G.
2016-08-01
We present theoretical evolutionary sequences for low- and intermediate-mass stars. The masses calculated range from 1.7 to 10 M. The initial chemical composition is . In addition, we have taken into account a nuclear network with 17 isotopes and 34 nuclear reactions. With respect to the mix, we considered overshooting with a parameter . The evolutionary calculations were initialized from the region of instability of Hayashi, in order to calculate isochrones of pre-sequence, too.
ACTOMP - AUTOCAD TO MASS PROPERTIES
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft QuickBasic (Version 2.0). It was developed for the IBM PC microcomputer and has been implemented on an IBM PC compatible under DOS 3.21. ACTOMP was developed in 1988 and requires approximately 5K bytes to operate.
Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.
2018-01-01
Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134
Measuring fish body condition with or without parasites: does it matter?
Lagrue, C; Poulin, R
2015-10-01
A fish body condition index was calculated twice for each individual fish, including or excluding parasite mass from fish body mass, and index values were compared to test the effects of parasite mass on measurement of body condition. Potential correlations between parasite load and the two alternative fish condition index values were tested to assess how parasite mass may influence the perception of the actual effects of parasitism on fish body condition. Helminth parasite mass was estimated in common bully Gobiomorphus cotidianus from four New Zealand lakes and used to assess the biasing effects of parasite mass on body condition indices. Results showed that the inclusion or exclusion of parasite mass from fish body mass in index calculations significantly influenced correlation patterns between parasite load and fish body condition indices. When parasite mass was included, there was a positive correlation between parasite load and fish body condition, seemingly indicating that fish in better condition supported higher parasite loads. When parasite mass was excluded, there was no correlation between parasite load and fish body condition, i.e. there was no detectable effect of helminth parasites on fish condition or fish condition on parasite load. Fish body condition tended to be overestimated when parasite mass was not accounted for; results showed a positive correlation between relative parasite mass and the degree to which individual fish condition was overestimated. Regardless of the actual effects of helminth parasites on fish condition, parasite mass contained within a fish should be taken into account when estimating fish condition. Parasite tissues are not host tissues and should not be included in fish mass when calculating a body condition index, especially when looking at potential effects of helminth infections on fish condition. © 2015 The Fisheries Society of the British Isles.
Experimental study of iron-chloride complexing in hydrothermal fluids
Fein, J.B.; Hemley, J.J.; d'Angelo, W. M.; Komninou, A.; Sverjensky, D.A.
1992-01-01
Mineral assemblage solubilities were measured in cold-seal pressure vessels as a function of pressure, temperature, and potassium chloride concentration in order to determine the nature and thermodynamic properties of iron-chloride complexes under hydrothermal conditions. The assemblage pyritepyrrhotite-magnetite was used to buffer f{hook}S2 and f{hook}O2, and K+ H+ ratios were buffered at reasonable geologic values using the assemblage potassium feldspar-muscovite (or andalusite)-quartz. The pressure-temperature ranges were 0.5-2.0 kbar and 300-600??C, and initial fluid compositions ranged from 0.01-2.0 molal KCl. With all other factors constant, the concentration of iron in solution increases with increasing temperature, with decreasing pressure, and with increasing total potassium chloride concentration. Changes in iron concentrations as a function of KCl concentration, in conjunction with charge balance, mass action, and mass balance constraints on the system, place constraints on the stoichiometry of the important iron-chloride complexes under each of the experimental conditions. Using least-squared linear regression fits to determine these slopes, the calculations yield values for the average ligand numbers that are in the range 1.2-1.9, with uncertainties ranging from ??0.1-0.6 at the several PT conditions considered. The slopes of the regressed fits to the data suggest that both FeCl+ and FeCl20 are important in the experimental fluids, with FeCl20 becoming dominant at the higher temperatures. Theoretical calculations, however, indicate that FeCl+ does not contribute significantly to the solubility. Because of the large uncertainties associated with some of the calculated average ligand numbers, we base our data analysis on the theoretical calculations. A statistical analysis is applied to the solubility data in order to determine the values and uncertainties of the dissociation constant for FeCl20 that best fit the data at each of the experimental pressures and temperatures. The calculated stability of FeCl20 increases with increasing temperature and total chloride concentration, and with decreasing pressure. The values of the dissociation constant of FeCl20that are calculated in this study are in moderately good agreement with FeCl20dissociation constants from other studies of iron-chloride complexing in supercritical fluids. Differences are likely due to different assumptions made concerning activity coefficients of aqueous species. Log kd values for full dissociation of FeCl20 at 0.5 kbar-300??C-and at 1 kbar-400, 500, and 600??C, respectively-are -3.75 ?? 0.40, -6.25 ?? 0.10, -9.19 ?? 0.44, and -13.29 ?? 0.09. ?? 1992.
Linear perturbation theory for tidal streams and the small-scale CDM power spectrum
NASA Astrophysics Data System (ADS)
Bovy, Jo; Erkal, Denis; Sanders, Jason L.
2017-04-01
Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl; Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu
2016-05-07
Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.
Nonrelativistic Contribution to Mercury's Perihelion Precession.
ERIC Educational Resources Information Center
Price, Michael P.; Rush, William F.
1979-01-01
Presents a calculation of the precession of the perihelion of Mercury due to the perturbations from the outer planets. The time-average effect of each planet is calculated by replacing that planet with a ring of linear mass density equal to the mass of the planet divided by the circumference of its orbit. (Author/GA)
40 CFR 98.443 - Calculating CO2 geologic sequestration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... each gas-liquid separator for which flow is measured using a mass flow meter, you must calculate...) For each gas-liquid separator for which flow is measured using a volumetric flow meter, you must...) To aggregate production data, you must sum the mass of all of the CO2 separated at each gas-liquid...
The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy
NASA Technical Reports Server (NTRS)
Armandroff, T. E.; Da Costa, G. S.
1986-01-01
The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.
Mass eigenstates in bimetric theory with matter coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt-May, Angnis, E-mail: angnis.schmidt-may@fysik.su.se
2015-01-01
In this paper we study the ghost-free bimetric action extended by a recently proposed coupling to matter through a composite metric. The equations of motion for this theory are derived using a method which avoids varying the square-root matrix that appears in the matter coupling. We make an ansatz for which the metrics are proportional to each other and find that it can solve the equations provided that one parameter in the action is fixed. In this case, the proportional metrics as well as the effective metric that couples to matter solve Einstein's equations of general relativity including a mattermore » source. Around these backgrounds we derive the quadratic action for perturbations and diagonalize it into generalized mass eigenstates. It turns out that matter only interacts with the massless spin-2 mode whose equation of motion has exactly the form of the linearized Einstein equations, while the field with Fierz-Pauli mass term is completely decoupled. Hence, bimetric theory, with one parameter fixed such that proportional solutions exist, is degenerate with general relativity up to linear order around these backgrounds.« less
NASA Astrophysics Data System (ADS)
Cannon, William R.; Baker, Scott E.
2017-10-01
Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.
NASA Astrophysics Data System (ADS)
Thompson, Rodger I.
2018-04-01
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.
NASA Astrophysics Data System (ADS)
Thompson, Rodger I.
2018-07-01
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar φ with respect to the natural log of the scale factor a, β (φ)=d φ/d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar φ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated `beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that Λ cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.
Tyler, Christopher J; Pérez-Jeldres, Tamara; Ehinger, Erik; Capaldo, Brian; Karuppuchamy, Thangaraj; Boyer, Joshua D; Patel, Derek; Dulai, Parambir; Boland, Brigid S; Lannigan, Joanne; Eckmann, Lars; Ernst, Peter B; Sandborn, William J; Ho, Samuel B; Rivera-Nieves, Jesús
2018-06-08
Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.
A study of vibrating nanotubes with additional adsorbed masses
NASA Astrophysics Data System (ADS)
Adler, Joan; Adler, Omri
2017-11-01
We describe calculations of the electronic density surrounding strained nanotubes. These are then used to estimate the nanotube wall width. This width is an essential parameter for the analysis of the nanotube vibrations. By studying the effect of additional adsorbed molecules on the nanotubes’ vibrations and their frequency changes we can deduce the molecules’ mass. Our calculations show that the strain does not greatly affect the nanotube width, but the vibrations change sufficiently for the mass to be detected.
Insights into the disparate action of osmolytes and macromolecular crowders on amyloid formation
Sukenik, Shahar
2012-01-01
It is widely recognized that amyloid formation sensitively responds to conditions set by myriad cellular solutes. These cosolutes include two important classes: macromolecular crowders and compatible osmolytes. We have recently found that addition of macromolecular PEG only slightly affects fibril formation of a model peptide in vitro. Polyol osmolytes, in contrast, lengthen the lag time for aggregation, and lead to larger fibril mass at equilibrium. To further hypothesize on the molecular underpinnings of the disparate effect of the two cosolute classes, we have further analyzed the experiments using an available kinetic mechanism describing fibril aggregation. Model calculations suggest that all cosolutes similarly lengthen the time required for nucleation, possibly due to their excluded volume effect. However, PEGs may in addition promote fibril fragmentation, leading to lag times that are overall almost unvaried. Moreover, polyols effectively slow the monomer-fibril detachment rates, thereby favoring additional fibril formation. Our analysis provides first hints that cosolutes act not only by changing association or dissociation rates, but potentially also by directing the formation of fibrils of varied morphologies with different mechanical properties. Although additional experiments are needed to unambiguously resolve the action of excluded cosolutes on amyloid formation, it is becoming clear that these compounds are important to consider in the search for ways to modulate fibril formation. PMID:22453174
Elbeze, Alexandre Chaloum
2013-01-01
Recent revised estimates of the Earth's surface heat flux are in the order of 47 TW. Given that its internal radiogenic (mantle and crust) heat production is estimated to be around 20 TW, the Earth has a thermal deficit of around 27 TW. This article will try to show that the action of the gravitational field of the Sun on the rotating masses of the Earth is probably the source of another heat production in order of 54TW, which would satisfy the thermal balance of our celestial body and probably explain the reduced heat flow Qo. We reach this conclusion within the framework of gravitation implied by Einstein's special and general relativity theory (SR, GR). Our results show that it might possible, in principle, to calculate the heat generated by the action of the gravitational field of celestial bodies on the Earth and planets of the Solar System (a phenomenon that is different to that of the gravitational tidal effect from the Sun and the Moon). This result should help physicists to improve and develop new models of the Earth's heat balance, and suggests that contrary to cooling, the Earth is in a phase of thermal balance, or even reheating.
a HARTREE-FOCK Nuclear Mass Table
NASA Astrophysics Data System (ADS)
Goriely, S.; Tondeur, F.; Pearson, J. M.
2001-03-01
We present the first complete nuclear mass table, HFBCS-1, to be based on the Hartree-Fock-BCS method. The force used, MSk7, is a 10-parameter Skyrme force, along with a 4-parameter δ-function pairing force and a 2-parameter phenomenological Wigner term. Our tabulation presents 9200 nuclei, including all those lying between the drip lines over the range Z, N≥8 and Z≤120. The root-mean-square error of our fit to the 1888 nuclei in this range for which measured masses are given in the 1995 Audi-Wapstra compilation is 0.738 MeV. In addition to the calculated masses, we show the calculated neutron- and proton-separation energies, and beta-decay energies. We also give for each nucleus in the table the calculated values for the deformation parameters and deformation energy (with axial and left-right symmetry assumed), and for the charge radius.
π0 pole mass calculation in a strong magnetic field and lattice constraints
NASA Astrophysics Data System (ADS)
Avancini, Sidney S.; Farias, Ricardo L. S.; Benghi Pinto, Marcus; Tavares, William R.; Timóteo, Varese S.
2017-04-01
The π0 neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, G (eB), fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the π0 meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as fπ0 and gπ0qq.
NASA Astrophysics Data System (ADS)
Lee, Seong-Sun; Lee, Seung Hyun; Lee, Kang-Kun
2016-04-01
A research for the contamination of chlorinated ethenes such as trichloroethylene (TCE) at an industrial complex, Wonju, Korea, was carried out based on 17 rounds of groundwater quality data collection from 2009 to 2015. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones to groundwater discharge area like a stream. The remediation efficiency according to the remedial actions was evaluated by tracing a time-series of plume evaluation and temporal mass discharge at three transects (Source, Transect-1, Transect-2) which was assigned along the groundwater flow path. Also, based on long term monitoring data, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The results of temporal and spatial monitoring before remedial actions showed that a TCE plume originating from main and local source zones continues to be discharged to a stream. However, from the end of intensive remedial actions from 2012 to 2013, the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly. Especially, during the intensive remediation period, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Estimated initial dissolved concentration and residual mass of TCE in the initial stage of disposal decreased rapidly after an intensive remedial action in 2013 and it is expected to be continuously decreased from the end of remedial actions to 2020. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remedial actions at chlorinated ethenes contaminated site. Acknowledgements This project is supported by the Korea Ministry of Environment under "The GAIA Project (173-092-009)"and "R&D Project on Environmental Management of Geologic CO2 storage" from the KEITI (Project number:2014001810003).
New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications
NASA Astrophysics Data System (ADS)
Möller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.
2008-05-01
The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space (ɛ2, V3, V4, V6,) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV. We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from 70Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by use of an ``immersion'' technique.
Theoretical study of thermopower behavior of LaFeO3 compound in high temperature region
NASA Astrophysics Data System (ADS)
Singh, Saurabh; Shastri, Shivprasad S.; Pandey, Sudhir K.
2018-04-01
The electronic structure and thermopower (α) behavior of LaFeO3 compound were investigated by combining the ab-initio electronic structures and Boltzmann transport calculations. LSDA plus Hubbard U (U = 5 eV) calculation on G-type anti-ferromagnetic (AFM) configuration gives an energy gap of ˜2 eV, which is very close to the experimentally reported energy gap. The calculated values of effective mass of holes (mh*) in valance band (VB) are found ˜4 times that of the effective mass of electrons (me*) in conduction band (CB). The large effective masses of holes are responsible for the large and positive thermopower exhibited by this compound. The calculated values of α using BoltzTraP code are found to be large and positive in the 300-1200 K temperature range, which is in agreement with the experimentally reported data.
The 4-dimensional Langevin approach to low energy nuclear fission
NASA Astrophysics Data System (ADS)
Ivanyuk, F. A.; Ishizuka, C.; Usang, M. D.; Chiba, S.
2018-03-01
We applied the four-dimensional Langevin approach to the description of fission of 235U by neutrons and calculated the dependence of the excitation energy of fission fragments on their mass number. For this we have fitted the compact just-before-scission configuration obtained by the Langevin calculations by the two separated fragments and calculated the intrinsic excitation and the deformation energy of each fragment accurately taking into account the shell and pairing effects and their dependence on the temperature and mass of the fragments. For the sharing of energy between the fission fragments we have used the simplest and most reliable assumption - the temperature of each fragment immediately after the neck rupture is the same as the temperature of mother nucleus just before scission. The calculated excitation energy of fission fragments clearly demonstrates the saw-tooth structure in the dependence on fragment mass number.
NASA Technical Reports Server (NTRS)
Brendley, K.; Chato, J. C.
1982-01-01
The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.
The Perihelion Precession of Saturn, Planet X/Nemesis and MOND
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2010-05-01
We show that the retrograde perihelion precession of Saturn \\Delta\\dot\\varpi, recently estimated by different teams of astronomers by processing ranging data from the Cassini spacecraft and amounting to some milliarcseconds per century, can be explained in terms of a localized, distant body X, not yet directly discovered. From the determination of its tidal parameter K = GM_X/r_X^3 as a function of its ecliptic longitude \\lambda_X and latitude \\beta_X, we calculate the distance at which X may exist for different values of its mass, ranging from the size of Mars to that of the Sun. The minimum distance would occur for X located perpendicularly to the ecliptic, while the maximum distance is for X lying in the ecliptic. We find for rock-ice planets of the size of Mars and the Earth that they would be at about 80-150 au, respectively, while a Jupiter-sized gaseous giant would be at approximately 1 kau. A typical brown dwarf would be located at about 4 kau, while an object with the mass of the Sun would be at approximately 10 kau, so that it could not be Nemesis for which a solar mass and a heliocentric distance of about 88 kau are predicted. If X was directed towards a specific direction, i.e. that of the Galactic Center, it would mimick the action of a recently proposed form of the External Field Effect (EFE) in the framework of the MOdified Newtonian Dynamics (MOND).
Derivation of a first order approximation of particulate matter from aircraft
DOT National Transportation Integrated Search
2003-06-22
The mass of particulate matter (PM) emitted from aircraft must be predicted for major : actions at airports to comply with current federal regulations. However, this PM mass in : the jet exhaust has not been effectively quantified to permit accurate ...
77 FR 61048 - Agency Information Collection Activity Under OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... Information Collection Activity Under OMB Review AGENCY: Federal Transit Administration, DOT. ACTION: Notice... necessary to determine eligibility of applicants and ensure mass transportation service at a minimum cost... will improve mass transportation service or help transportation service meet the total urban...
Ohno, Tsutomu; Ohno, Paul E
2013-04-01
Soil organic matter (SOM) is involved in many important ecosystem processes. Ultrahigh resolution mass spectrometry has become a powerful technique in the chemical characterization of SOM, allowing assignment of elemental formulae for thousands of peaks resolved in a typical mass spectrum. We investigated how the addition of N, S, and P heteroatoms in the formula calculation stage of the mass spectra processing workflow affected the formula assignments of mass spectra peaks. Dissolved organic matter extracted from plant biomass and soil as well as the soil humic acid fraction was studied. We show that the addition of S and P into the molecular formula calculation increased peak assignments on average by 17.3 % and 10.7 %, respectively, over the assignments based on the CHON elements frequently reported by SOM researchers using ultrahigh resolution mass spectrometry. The organic matter chemical characteristics as represented by van Krevelen diagrams were appreciably affected by differences in the heteroatom pre-selection for the three organic matter samples investigated, especially so for the wheat-derived dissolved organic matter. These results show that inclusion of both S and P heteroatoms into the formula calculation step, which is not routinely done, is important to obtain a more chemically complete interpretation of the ultrahigh resolution mass spectra of SOM.
Enhancement of the Accretion of Jupiters Core by a Voluminous Low-Mass Envelope
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; D'angelo, Gennaro; Weidenschilling, Stuart John; Bodenheimer, Peter; Hubickyj, Olenka
2013-01-01
We present calculations of the early stages of the formation of Jupiter via core nucleated accretion and gas capture. The core begins as a seed body of about 350 kilometers in radius and orbits in a swarm of planetesimals whose initial radii range from 15 meters to 100 kilometers. We follow the evolution of the swarm by accounting for growth and fragmentation, viscous and gravitational stirring, and for drag-induced migration and velocity damping. Gas capture by the core substantially enhances the cross-section of the planet for accretion of small planetesimals. The dust opacity within the atmosphere surrounding the planetary core is computed self-consistently, accounting for coagulation and sedimentation of dust particles released in the envelope as passing planetesimals are ablated. The calculation is carried out at an orbital semi-major axis of 5.2 AU and an initial solids' surface density of 10/g/cm^2 at that distance. The results give a core mass of 7 Earth masses and an envelope mass of approximately 0.1 Earth mass after 500,000 years, at which point the envelope growth rate surpasses that of the core. The same calculation without the envelope gives a core mass of only 4 Earth masses.
First assembly times and equilibration in stochastic coagulation-fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Orsogna, Maria R.; Department of Mathematics, CSUN, Los Angeles, California 91330-8313; Lei, Qi
2015-07-07
We develop a fully stochastic theory for coagulation and fragmentation (CF) in a finite system with a maximum cluster size constraint. The process is modeled using a high-dimensional master equation for the probabilities of cluster configurations. For certain realizations of total mass and maximum cluster sizes, we find exact analytical results for the expected equilibrium cluster distributions. If coagulation is fast relative to fragmentation and if the total system mass is indivisible by the mass of the largest allowed cluster, we find a mean cluster-size distribution that is strikingly broader than that predicted by the corresponding mass-action equations. Combinations ofmore » total mass and maximum cluster size under which equilibration is accelerated, eluding late-stage coarsening, are also delineated. Finally, we compute the mean time it takes particles to first assemble into a maximum-sized cluster. Through careful state-space enumeration, the scaling of mean assembly times is derived for all combinations of total mass and maximum cluster size. We find that CF accelerates assembly relative to monomer kinetic only in special cases. All of our results hold in the infinite system limit and can be only derived from a high-dimensional discrete stochastic model, highlighting how classical mass-action models of self-assembly can fail.« less
Franco-Villoria, Maria; Wright, Charlotte M; McColl, John H; Sherriff, Andrea; Pearce, Mark S
2016-01-07
To explore the usefulness of Bioelectrical Impedance Analysis (BIA) for general use by identifying best-evidenced formulae to calculate lean and fat mass, comparing these to historical gold standard data and comparing these results with machine-generated output. In addition, we explored how to best to adjust lean and fat estimates for height and how these overlapped with body mass index (BMI). Cross-sectional observational study within population representative cohort study. Urban community, North East England Sample of 506 mothers of children aged 7-8 years, mean age 36.3 years. Participants were measured at a home visit using a portable height measure and leg-to-leg BIA machine (Tanita TBF-300MA). Height, weight, bioelectrical impedance (BIA). Lean and fat mass calculated using best-evidenced published formulae as well as machine-calculated lean and fat mass data. Estimates of lean mass were similar to historical results using gold standard methods. When compared with the machine-generated values, there were wide limits of agreement for fat mass and a large relative bias for lean that varied with size. Lean and fat residuals adjusted for height differed little from indices of lean (or fat)/height(2). Of 112 women with BMI >30 kg/m(2), 100 (91%) also had high fat, but of the 16 with low BMI (<19 kg/m(2)) only 5 (31%) also had low fat. Lean and fat mass calculated from BIA using published formulae produces plausible values and demonstrate good concordance between high BMI and high fat, but these differ substantially from the machine-generated values. Bioelectrical impedance can supply a robust and useful field measure of body composition, so long as the machine-generated output is not used. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Franco-Villoria, Maria; Wright, Charlotte M; McColl, John H; Sherriff, Andrea; Pearce, Mark S
2016-01-01
Objectives To explore the usefulness of Bioelectrical Impedance Analysis (BIA) for general use by identifying best-evidenced formulae to calculate lean and fat mass, comparing these to historical gold standard data and comparing these results with machine-generated output. In addition, we explored how to best to adjust lean and fat estimates for height and how these overlapped with body mass index (BMI). Design Cross-sectional observational study within population representative cohort study. Setting Urban community, North East England Participants Sample of 506 mothers of children aged 7–8 years, mean age 36.3 years. Methods Participants were measured at a home visit using a portable height measure and leg-to-leg BIA machine (Tanita TBF-300MA). Measures Height, weight, bioelectrical impedance (BIA). Outcome measures Lean and fat mass calculated using best-evidenced published formulae as well as machine-calculated lean and fat mass data. Results Estimates of lean mass were similar to historical results using gold standard methods. When compared with the machine-generated values, there were wide limits of agreement for fat mass and a large relative bias for lean that varied with size. Lean and fat residuals adjusted for height differed little from indices of lean (or fat)/height2. Of 112 women with BMI >30 kg/m2, 100 (91%) also had high fat, but of the 16 with low BMI (<19 kg/m2) only 5 (31%) also had low fat. Conclusions Lean and fat mass calculated from BIA using published formulae produces plausible values and demonstrate good concordance between high BMI and high fat, but these differ substantially from the machine-generated values. Bioelectrical impedance can supply a robust and useful field measure of body composition, so long as the machine-generated output is not used. PMID:26743700
Nucleon-nucleon scattering parameters in the limit of SU(3) flavor symmetry
NASA Astrophysics Data System (ADS)
Beane, S. R.; Chang, E.; Cohen, S. D.; Detmold, W.; Junnarkar, P.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreño, A.; Savage, M. J.; Walker-Loud, A.
2013-08-01
The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with lattice quantum chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L˜3.4fm, 4.5fm, and 6.7fm, and with a lattice spacing of b˜0.145fm. With determinations of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses) at rest and moving in the lattice volume, Lüscher's method is used to determine the low-energy phase shifts in each channel, from which the scattering length and effective range are obtained. The scattering parameters, in the 1S0 channel are found to be mπa(1S0)=9.50-0.69+0.78-0.80+1.10 and mπr(1S0)=4.61-0.31+0.29-0.26+0.24, and in the 3S1 channel are mπa(3S1)=7.45-0.53+0.57-0.49+0.71 and mπr(3S1)=3.71-0.31+0.28-0.35+0.28. These values are consistent with the two-nucleon system exhibiting Wigner's supermultiplet symmetry, which becomes exact in the limit of large Nc. In both spin channels, the phase shifts change sign at higher momentum, near the start of the t-channel cut, indicating that the nuclear interactions have a repulsive core even at the SU(3)-symmetric point.
Black hole perturbation under a 2 +2 decomposition in the action
NASA Astrophysics Data System (ADS)
Ripley, Justin L.; Yagi, Kent
2018-01-01
Black hole perturbation theory is useful for studying the stability of black holes and calculating ringdown gravitational waves after the collision of two black holes. Most previous calculations were carried out at the level of the field equations instead of the action. In this work, we compute the Einstein-Hilbert action to quadratic order in linear metric perturbations about a spherically symmetric vacuum background in Regge-Wheeler gauge. Using a 2 +2 splitting of spacetime, we expand the metric perturbations into a sum over scalar, vector, and tensor spherical harmonics, and dimensionally reduce the action to two dimensions by integrating over the two sphere. We find that the axial perturbation degree of freedom is described by a two-dimensional massive vector action, and that the polar perturbation degree of freedom is described by a two-dimensional dilaton massive gravity action. Varying the dimensionally reduced actions, we rederive covariant and gauge-invariant master equations for the axial and polar degrees of freedom. Thus, the two-dimensional massive vector and massive gravity actions we derive by dimensionally reducing the perturbed Einstein-Hilbert action describe the dynamics of a well-studied physical system: the metric perturbations of a static black hole. The 2 +2 formalism we present can be generalized to m +n -dimensional spacetime splittings, which may be useful in more generic situations, such as expanding metric perturbations in higher dimensional gravity. We provide a self-contained presentation of m +n formalism for vacuum spacetime splittings.
40 CFR 63.4720 - What reports must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
...; and if applicable, the calculation used to determine mass of organic HAP in waste materials according... determine mass of organic HAP in waste materials according to § 63.4751(e)(4); the calculation of the total... certification or audit. (vi) The date and time that each CPMS was inoperative, except for zero (low-level) and...
40 CFR 98.153 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... periods for the year. 10−3 = Conversion factor from kilograms to metric tons. (2) Where the mass of only a... concentration and mass measurement periods for the year. 10−3 = Conversion factor from kilograms to metric tons... produced over the year. This calculation is summarized in Equation O-1 of this section: ER30OC09.051 Where...
40 CFR 98.153 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... periods for the year. 10−3 = Conversion factor from kilograms to metric tons. (2) Where the mass of only a... concentration and mass measurement periods for the year. 10−3 = Conversion factor from kilograms to metric tons... produced over the year. This calculation is summarized in Equation O-1 of this section: ER30OC09.051 Where...
40 CFR 1065.550 - Gas analyzer range validation, drift validation, and drift correction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interval (i.e., do not set them to zero). A third calculation of composite brake-specific emission values... from each test interval and sets any negative mass (or mass rate) values to zero before calculating the... value is less than the standard by at least two times the absolute difference between the uncorrected...
Brief communication: On direct impact probability of landslides on vehicles
NASA Astrophysics Data System (ADS)
Nicolet, Pierrick; Jaboyedoff, Michel; Cloutier, Catherine; Crosta, Giovanni B.; Lévy, Sébastien
2016-04-01
When calculating the risk of railway or road users of being killed by a natural hazard, one has to calculate a temporal spatial probability, i.e. the probability of a vehicle being in the path of the falling mass when the mass falls, or the expected number of affected vehicles in case such of an event. To calculate this, different methods are used in the literature, and, most of the time, they consider only the dimensions of the falling mass or the dimensions of the vehicles. Some authors do however consider both dimensions at the same time, and the use of their approach is recommended. Finally, a method considering an impact on the front of the vehicle is discussed.
Brief Communication: On direct impact probability of landslides on vehicles
NASA Astrophysics Data System (ADS)
Nicolet, P.; Jaboyedoff, M.; Cloutier, C.; Crosta, G. B.; Lévy, S.
2015-12-01
When calculating the risk of railway or road users to be killed by a natural hazard, one has to calculate a "spatio-temporal probability", i.e. the probability for a vehicle to be in the path of the falling mass when the mass falls, or the expected number of affected vehicles in case of an event. To calculate this, different methods are used in the literature, and, most of the time, they consider only the dimensions of the falling mass or the dimensions of the vehicles. Some authors do however consider both dimensions at the same time, and the use of their approach is recommended. Finally, a method considering an impact on the front of the vehicle in addition is discussed.
[Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].
Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan
2010-04-01
Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.
Searching for Top How do today's scientists use conservation of momentum? Particle physicists mass into energy and then energy into mass! You can use the principle of conservation of momentum which
NASA Astrophysics Data System (ADS)
Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.
2013-06-01
UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.
The Stanford Nutrition Action Program: a dietary fat intervention for low-literacy adults.
Howard-Pitney, B; Winkleby, M A; Albright, C L; Bruce, B; Fortmann, S P
1997-01-01
OBJECTIVES: This study was undertaken to test the effectiveness of the Stanford Nutrition Action Program, an experimental trial to reduce dietary fat intake among low-literacy, low-income adults. METHODS: Twenty-four paired adult education classes (351 participants, 85% women, mean age = 31 years) were randomly assigned to receive a newly developed dietary fat curriculum (the Stanford Nutrition Action Program) or an existing general nutrition curriculum. Food frequency and nutrition-related data, body mass index, and capillary blood cholesterol were collected at baseline and at two postintervention follow-ups. RESULTS: The Stanford Nutrition Action Program classes showed significantly greater net improvements in nutrition knowledge (+7.7), attitudes (/0.2), and self-efficacy (-0.2) than the general nutrition classes; they also showed significantly greater reductions in the percentage of calories from total (-2.3%) and saturated (-0.9%) fat. There were no significant differences in body mass index or blood cholesterol. All positive intervention effects were maintained for 3 months postintervention. CONCLUSIONS: The Stanford Nutrition Action Program curriculum, tailored to the cultural, economic, and learning needs of low-literacy, low-income adults, was significantly more effective in achieving fat-related nutritional changes than the general nutrition curriculum. PMID:9431286
Performance of an inverted pendulum model directly applied to normal human gait.
Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O
2006-03-01
In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, R. Navarro; Schunck, N.; Lasseri, R. -D.
Here, we describe the new version 3.00 of the code hfbtho that solves the nuclear Hartree–Fock (HF) or Hartree–Fock–Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle–hole and particle–particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scalemore » mass table calculations.« less
Antigravity: Spin-gravity coupling in action
NASA Astrophysics Data System (ADS)
Plyatsko, Roman; Fenyk, Mykola
2016-08-01
The typical motions of a spinning test particle in Schwarzschild's background which show the strong repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-Papapetrou equations. An approximated approach to choice solutions of these equations which describe motions of the particle's proper center of mass is developed.
20 CFR 408.1004 - Which administrative actions are not initial determinations?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Which administrative actions are not initial determinations? 408.1004 Section 408.1004 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SPECIAL BENEFITS FOR... federally administered State recognition payments due to a State-initiated mass change, as defined in § 408...
Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer
Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey
2003-08-19
A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.
NASA Astrophysics Data System (ADS)
Kolb, Ulrich; Baraffe, Isabelle
Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs we calculate the secular evolution of low-donor-mass CVs, including those which form with a brown dwarf donor star. Our models confirm the mismatch between the calculated minimum period (plus or minus in ~= 70 min) and the observed short-period cut-off (~= 80 min) in the CV period histogram. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent in the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach plus or minus in, and that small-number statistics may hide the period spike for magnetic CVs. We calculate the minimum period for high mass transfer rate sequences and discuss the relevance of these for explaining the location of CV secondaries in the orbital-period-spectral-type diagram. We also show that a recently suggested revised mass-radius relation for low-mass main-sequence stars cannot explain the CV period gap.
The influence of Oort clouds on the mass and chemical balance of the interstellar medium
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Shull, J. Michael
1990-01-01
The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common.
Survey and Experimental Testing of Nongravimetric Mass Measurement Devices
NASA Technical Reports Server (NTRS)
Oakey, W. E.; Lorenz, R.
1977-01-01
Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.
The formation of protostellar disks. 2: Disks around intermediate-mass stars
NASA Technical Reports Server (NTRS)
Yorke, Harold W.; Bodenheimer, Peter; Laughlin, G.
1995-01-01
Hydrodynamical calculations of the evolution of a collapsing, rotating axisymmetric 10 solar masses molecular clump, including the effects of radiative acceleration but without magnetic fields, are represented. The initial cloud is assumed to be uniformly rotating, centrally condensed sphere with rho is proportional to r(exp -2). Several cases are considered, in which both the overall clump size and the total amount of angular momentum are varied. The calculations show how a warm, quasi-hydrostatic disk surrounding a central unresolved core of only a few solar masses forms and grows in size and mass. The disk is encased in two distinct accretion shock fronts, both of which are several scale heights above the equatorial plane. At the end of the calculation of our standard case, the central unresolved region is found to have a mass of 2.7 solar masses and a ratio of rotational to gravitational energy of approximately 0.45, sufficiently large to be unstable to nonaxisymmetric perturbations. In addition, the inner portions of the disk containing most of the mass are unstable according to the local Toomre criterion, implying that also in this region nonaxisymmetric perturbations will lead to rapid evolution. Under the assumption that gravitational torques would transport angular momentum out of this region, a central core of less than or approximately 8 solar masses with a stable disk of greater than or approximately = 2 solar masses should result. Frequency-dependent radiative transfer calculations of the standard case at selected ages show how the continuum spectrum of the structure depends on the disk's orientation and age and how the observed isophotal contours vary with wavelength. Because of the strong dependence on viewing angle, continuum spectra alone should not be used to estimate the evolutionary stage of development of these objects. Comparable results were obtained for the other cases considered.
Fee, David; Izbekov, Pavel; Kim, Keehoon; ...
2017-10-09
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fee, David; Izbekov, Pavel; Kim, Keehoon
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
Complexity, action, and black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard
In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
Complexity, action, and black holes
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; ...
2016-04-18
In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
A Fast Code for Jupiter Atmospheric Entry
NASA Technical Reports Server (NTRS)
Tauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq; Arnold, James (Technical Monitor)
1998-01-01
A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry; the calculation required 3.5 sec of CPU time on a work station. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 12.5% too high. The forebody's mass loss was overpredicted by 5.5% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was considered satisfactory, especially in view of the code's fast running time and the methods' approximations.
47 CFR 1.1623 - Probability calculation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be...
NASA Astrophysics Data System (ADS)
Sandhu, J. K.; Yeoman, T. K.; James, M. K.; Rae, I. J.; Fear, R. C.
2018-01-01
The fundamental eigenfrequencies of standing Alfvén waves on closed geomagnetic field lines are estimated for the region spanning 5.9≤L < 9.5 over all MLT (Magnetic Local Time). The T96 magnetic field model and a realistic empirical plasma mass density model are employed using the time-of-flight approximation, refining previous calculations that assumed a relatively simplistic mass density model. An assessment of the implications of using different mass density models in the time-of-flight calculations is presented. The calculated frequencies exhibit dependences on field line footprint magnetic latitude and MLT, which are attributed to both magnetic field configuration and spatial variations in mass density. In order to assess the validity of the time-of-flight calculated frequencies, the estimates are compared to observations of FLR (Field Line Resonance) frequencies. Using IMAGE (International Monitor for Auroral Geomagnetic Effects) ground magnetometer observations obtained between 2001 and 2012, an automated FLR identification method is developed, based on the cross-phase technique. The average FLR frequency is determined, including variations with footprint latitude and MLT, and compared to the time-of-flight analysis. The results show agreement in the latitudinal and local time dependences. Furthermore, with the use of the realistic mass density model in the time-of-flight calculations, closer agreement with the observed FLR frequencies is obtained. The study is limited by the latitudinal coverage of the IMAGE magnetometer array, and future work will aim to extend the ground magnetometer data used to include additional magnetometer arrays.
B-meson decay constant from unquenched lattice QCD.
Gray, Alan; Wingate, Matthew; Davies, Christine T H; Gulez, Emel; Lepage, G Peter; Mason, Quentin; Nobes, Matthew; Shigemitsu, Junko
2005-11-18
We present determinations of the -meson decay constant f(B) and f(B)(s)/f(B) using the MILC Collaboration unquenched gauge configurations, which include three flavors of light sea quarks. The mass of one of the sea quarks is kept around the strange quark mass, and we explore a range in masses for the two lighter sea quarks down to m(s)/8. The heavy quark is simulated using nonrelativistic QCD, and both the valence and sea light quarks are represented by the highly improved (AsqTad) staggered quark action. The good chiral properties of the latter action allow for a more accurate chiral extrapolation to physical up and down quarks than has been possible in the past. We find f(B)=216(9)(19)(4)(6) MeV and f(B)(s)/f(B)=1.20(3)(1).
NASA Astrophysics Data System (ADS)
Popov, Fedor K.
2018-06-01
We calculate the one-loop contributions to the polarization operator for scalar quantum electrodynamics in different external electromagnetic and gravitational fields. In the case of gravity, de Sitter space and its different patches were considered. It is shown that the Debye mass appears only in the case of alpha-vacuum in the Expanding Poincare Patch. It can be shown either by direct computations or by using analytical and causal properties of the de Sitter space. Also, the case of constant electric field is considered and the Debye mass is calculated.
40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2011 CFR
2011-07-01
... during the month, grams. A = Total mass of organic HAP in the coatings used during the month, grams, as... month, grams, as calculated in Equation 1B of this section. C = Total mass of organic HAP in the cleaning materials used during the month, grams, as calculated in Equation 1C of this section. Rw = Total...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
Mass dependence of Higgs boson production at large transverse momentum through a bottom-quark loop
NASA Astrophysics Data System (ADS)
Braaten, Eric; Zhang, Hong; Zhang, Jia-Wei
2018-05-01
In the production of the Higgs through a bottom-quark loop, the transverse momentum distribution of the Higgs at large PT is complicated by its dependence on two other important scales: the bottom quark mass mb and the Higgs mass mH. A strategy for simplifying the calculation of the cross section at large PT is to calculate only the leading terms in its expansion in mb2/PT2. In this paper, we consider the bottom-quark-loop contribution to the parton process q q ¯→H +g at leading order in αs. We show that the leading power of 1 /PT2 can be expressed in the form of a factorization formula that separates the large scale PT from the scale of the masses. All the dependence on mb and mH can be factorized into a distribution amplitude for b b ¯ in the Higgs, a distribution amplitude for b b ¯ in a real gluon, and an end point contribution. The factorization formula can be used to organize the calculation of the leading terms in the expansion in mb2/PT2 so that every calculation involves at most two scales.
General formulation of characteristic time for persistent chemicals in a multimedia environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, D.H.; McKone, T.E.; Kastenberg, W.E.
1999-02-01
A simple yet representative method for determining the characteristic time a persistent organic pollutant remains in a multimedia environment is presented. The characteristic time is an important attribute for assessing long-term health and ecological impacts of a chemical. Calculating the characteristic time requires information on decay rates in multiple environmental media as well as the proportion of mass in each environmental medium. The authors explore the premise that using a steady-state distribution of the mass in the environment provides a means to calculate a representative estimate of the characteristic time while maintaining a simple formulation. Calculating the steady-state mass distributionmore » incorporates the effect of advective transport and nonequilibrium effects resulting from the source terms. Using several chemicals, they calculate and compare the characteristic time in a representative multimedia environment for dynamic, steady-state, and equilibrium multimedia models, and also for a single medium model. They demonstrate that formulating the characteristic time based on the steady-state mass distribution in the environment closely approximates the dynamic characteristic time for a range of chemicals and thus can be used in decisions regarding chemical use in the environment.« less
40 CFR 1066.605 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test interval, corrected to standard temperature and pressure. m PMfil = mass of particulate... = stabilized, ht = hot transient), corrected to standard reference conditions. m PMfil = mass of particulate... stabilized), corrected to standard reference conditions. m PMfil = mass of particulate matter emissions on...
High-Precision Mass Measurement of
NASA Astrophysics Data System (ADS)
Valverde, A. A.; Brodeur, M.; Bollen, G.; Eibach, M.; Gulyuz, K.; Hamaker, A.; Izzo, C.; Ong, W.-J.; Puentes, D.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Sumithrarachchi, C. S.; Surbrook, J.; Villari, A. C. C.; Yandow, I. T.
2018-01-01
We report the mass measurement of
On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion
NASA Astrophysics Data System (ADS)
Detweiler, L. G.; Yates, K.; Siem, E.
2017-12-01
The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that at this distance, it does not accrete enough mass to surpass the mass limit for hydrogen fusion. Finally, we apply this method to brown dwarfs orbiting a 15 solar mass star at Jupiter's distance. It is found that a significantly smaller amount of mass is accreted when compared to the same brown dwarfs orbiting our Sun at the same distance.
23 CFR 810.208 - Action by the Federal Highway Administrator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 810.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PUBLIC TRANSPORTATION MASS TRANSIT AND SPECIAL USE HIGHWAY PROJECTS Making Highway Rights-of-Way Available for Mass... agency under § 810.206 is satisfactory; (b) The public interest will be served thereby; and (c) The...
Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates
NASA Astrophysics Data System (ADS)
Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik
2016-01-01
We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.
NASA Technical Reports Server (NTRS)
Walitt, L.
1982-01-01
The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.
ORIGEN2 calculations supporting TRIGA irradiated fuel data package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.A.
ORIGEN2 calculations were performed for TRIGA spent fuel elements from the Hanford Neutron Radiography Facility. The calculations support storage and disposal and results include mass, activity,and decay heat. Comparisons with underwater dose-rate measurements were used to confirm and adjust the calculations.
Calculating Measurement Uncertainty of the “Conventional Value of the Result of Weighing in Air”
Flicker, Celia J.; Tran, Hy D.
2016-04-02
The conventional value of the result of weighing in air is frequently used in commercial calibrations of balances. The guidance in OIML D-028 for reporting uncertainty of the conventional value is too terse. When calibrating mass standards at low measurement uncertainties, it is necessary to perform a buoyancy correction before reporting the result. When calculating the conventional result after calibrating true mass, the uncertainty due to calculating the conventional result is correlated with the buoyancy correction. We show through Monte Carlo simulations that the measurement uncertainty of the conventional result is less than the measurement uncertainty when reporting true mass.more » The Monte Carlo simulation tool is available in the online version of this article.« less
CALCOM: a software for calculating the center of mass of proteins.
Costantini, Susan; Paladino, Antonella; Facchiano, Angelo M
2008-02-09
The center of mass of a protein is an artificial point useful for detecting important and simple features of proteins structure, shape and association.CALCOM is a software which calculates the center of mass of a protein, starting from PDB protein structure files. In the case of protein complexes and of protein-small ligand complexes, the position of protein residues or of ligand atoms respect to each protein subunit can be evaluated, as well as the distance among the center of mass of the protein subunits, in order to compare different conformations and evaluate the relative motion of subunits. THE SERVICE IS AVAILABLE AT THE URL: http://bioinformatica.isa.cnr.it/CALCOM/.
Effects of radiobiological uncertainty on shield design for a 60-day lunar mission
NASA Technical Reports Server (NTRS)
Wilson, John W.; Nealy, John E.; Schimmerling, Walter
1993-01-01
Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray exposure are analyzed to determine their effect on engineering designs for a first lunar outpost - a 60-day mission. Quantitative estimates of shield mass requirements as a function of a radiobiological uncertainty factor are given for a simplified vehicle structure. The additional shield mass required for compensation is calculated as a function of the uncertainty in galactic cosmic ray exposure, and this mass is found to be as large as a factor of 3 for a lunar transfer vehicle. The additional cost resulting from this mass is also calculated. These cost estimates are then used to exemplify the cost-effectiveness of research.
Systematics of first 2+ state g factors around mass 80
NASA Astrophysics Data System (ADS)
Mertzimekis, T. J.; Stuchbery, A. E.; Benczer-Koller, N.; Taylor, M. J.
2003-11-01
The systematics of the first 2+ state g factors in the mass 80 region are investigated in terms of an IBM-II analysis, a pairing-corrected geometrical model, and a shell-model approach. Subshell closure effects at N=38 and overall trends were examined using IBM-II. A large-space shell-model calculation was successful in describing the behavior for N=48 and N=50 nuclei, where single-particle features are prominent. A schematic truncated-space calculation was applied to the lighter isotopes. The variations of the effective boson g factors are discussed in connection with the role of F -spin breaking, and comparisons are made between the mass 80 and mass 180 regions.
NASA Astrophysics Data System (ADS)
Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.
2016-04-01
Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.
ON CRITICAL MASS ANALYSIS OF JRR-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-01-01
The critica mass of the JRR-2 was found to be 15 fuel elements, instead of 8 as expected, when the reactor reached criticaity. The critica mass was analyzed by AMF and JAERI a few years ago, but afterwards some modifications have been made of the stucture for the reinforcement, for example, during the construction. The critical mass is recalculated perfectly and the difference bctween 15 and S fuel elements is discussed. The deviation of the critical mass is mainly caused by the effects of control rods, fuel elcments, grid-plate, etc., in the reflector; only heavy water or light water wasmore » conaidered as the reflector in the previous calculation. A simple method is used to calculate the critical mass. The effective multiplication factor for the core with 15 fuel elements is obtained about 2% higher than the experimental value. This difference is also discussed in detail. (auth)« less
Masses of proton-rich T/sub z/<0 nuclei via the isobaric mass equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pape, A.; Antony, M.S.
Masses of T/sub z/<0 nuclei through the element Sm, corresponding to Aless than or equal to117, have been calculated with the isobaric multiplet mass equation using parameterizations of its constant b and T/sub z/>0 reference masses of Wapstra, Audi, and Hoekstra. copyright 1988 Academic Press, Inc.
Slicing cluster mass functions with a Bayesian razor
NASA Astrophysics Data System (ADS)
Sealfon, C. D.
2010-08-01
We apply a Bayesian ``razor" to forecast Bayes factors between different parameterizations of the galaxy cluster mass function. To demonstrate this approach, we calculate the minimum size N-body simulation needed for strong evidence favoring a two-parameter mass function over one-parameter mass functions and visa versa, as a function of the minimum cluster mass.
Observing mergers of nonspinning black-hole binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
McWilliams, Sean T.; Baker, John G.; Kelly, Bernard J.
2010-07-15
Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass-ratio on merger signal-to-noise ratios for several detectors, and compare our results with expectations from the test-mass limit. Wemore » note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal-mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass-ratio for mergers of moderate-mass-ratio systems.« less
Importance of eccentric actions in performance adaptations to resistance training
NASA Technical Reports Server (NTRS)
Dudley, Gary A.; Miller, Bruce J.; Buchanan, Paul; Tesch, Per A.
1991-01-01
The importance of eccentric (ecc) muscle actions in resistance training for the maintenance of muscle strength and mass in hypogravity was investigated in experiments in which human subjects, divided into three groups, were asked to perform four-five sets of 6 to 12 repetitions (rep) per set of three leg press and leg extension exercises, 2 days each weeks for 19 weeks. One group, labeled 'con', performed each rep with only concentric (con) actions, while group con/ecc with performed each rep with only ecc actions; the third group, con/con, performed twice as many sets with only con actions. Control subjects did not train. It was found that resistance training wih both con and ecc actions induced greater increases in muscle strength than did training with only con actions.
Simple Map in Action-Angle Coordinates.
NASA Astrophysics Data System (ADS)
Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima
2008-04-01
The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).
Homma, S; Nakajima, Y; Hayashi, K; Toma, S
1986-01-01
Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.
Physical stress, mass, and energy for non-relativistic matter
NASA Astrophysics Data System (ADS)
Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.
2017-06-01
For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Flavor symmetry breaking in lattice QCD with a mixed action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Oliver; Golterman, Maarten; Shamir, Yigal
2011-03-01
We study the phase structure of mixed-action QCD with two Wilson sea quarks and any number of chiral valence quarks (and ghosts), starting from the chiral Lagrangian. A priori the effective theory allows for a rich phase structure, including a phase with a condensate made of sea and valence quarks. In such a phase, mass eigenstates would become admixtures of sea and valence fields, and pure-sea correlation functions would depend on the parameters of the valence sector, in contradiction with the actual setup of mixed-action simulations. Using that the spectrum of the chiral Dirac operator has a gap for nonzeromore » quark mass we prove that spontaneous symmetry breaking of the flavor symmetries can only occur within the sea sector. This rules out a mixed condensate and implies restrictions on the low-energy constants of the effective theory.« less
Initial conditions in high-energy collisions
NASA Astrophysics Data System (ADS)
Petreska, Elena
This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result implies an advancement of the fourth-order action towards Gaussian when the energy is increased. Finally, we calculate perturbatively the expectation value of the magnetic Wilson loop operator in the first moments of heavy-ion collisions. For the magnetic flux we obtain a first non-trivial term that is proportional to the square of the area of the loop. The result is close to numerical calculations for small area loops.
Nationalism and Media Coverage of Indigenous People's Collective Action in Canada
ERIC Educational Resources Information Center
Wilkes, Rima; Corrigall-Brown, Catherine; Ricard, Danielle
2010-01-01
Over the past several decades indigenous people in Canada have mounted hundreds of collective action events such as marches, demonstrations, road blockades, and land occupations. What the general public knows about these events and their causes overwhelmingly comes from the mainstream mass media. For this reason, media coverage of these events…
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan; ...
2015-01-01
Here, we present a lattice QCD calculation of transverse momentum dependent parton distribution functions (TMDs) of protons using staple-shaped Wilson lines. For time-reversal odd observables, we calculate the generalized Sivers and Boer-Mulders transverse momentum shifts in SIDIS and DY cases, and for T-even observables we calculate the transversity related to the tensor charge and the generalized worm-gear shift. The calculation is done on two different n f = 2+1 ensembles: domain-wall fermion (DWF) with lattice spacing 0:084fm and pion mass of 297 MeV, and clover fermion with lattice spacing 0:114 fm and pion mass of 317 MeV. The results frommore » those two different discretizations are consistent with each other.« less
State-dependent resource harvesting with lagged information about system states
Johnson, Fred A.; Fackler, Paul L.; Boomer, G Scott; Zimmerman, Guthrie S.; Williams, Byron K.; Nichols, James D.; Dorazio, Robert
2016-01-01
Markov decision processes (MDPs), which involve a temporal sequence of actions conditioned on the state of the managed system, are increasingly being applied in natural resource management. This study focuses on the modification of a traditional MDP to account for those cases in which an action must be chosen after a significant time lag in observing system state, but just prior to a new observation. In order to calculate an optimal decision policy under these conditions, possible actions must be conditioned on the previous observed system state and action taken. We show how to solve these problems when the state transition structure is known and when it is uncertain. Our focus is on the latter case, and we show how actions must be conditioned not only on the previous system state and action, but on the probabilities associated with alternative models of system dynamics. To demonstrate this framework, we calculated and simulated optimal, adaptive policies for MDPs with lagged states for the problem of deciding annual harvest regulations for mallards (Anas platyrhynchos) in the United States. In this particular example, changes in harvest policy induced by the use of lagged information about system state were sufficient to maintain expected management performance (e.g. population size, harvest) even in the face of an uncertain system state at the time of a decision.
Heavy-quark meson spectrum tests of the Oktay–Kronfeld action
Bailey, Jon A.; DeTar, Carleton; Jang, Yong -Chull; ...
2017-11-15
The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through ordermore » $${\\mathrm{O}}(\\Lambda^3/m_Q^3)$$ in HQET power counting, for applications to heavy-light systems, and $${\\mathrm{O}}(v^6)$$ in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all $${\\mathrm{O}}(a^2)$$ and some $${\\mathrm{O}}(a^3)$$ terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than the results obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. Lastly, these studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC's $$a\\approx0.12$$~fm, $$N_f=2+1$$-flavor, asqtad-staggered ensembles.« less
Heavy-quark meson spectrum tests of the Oktay–Kronfeld action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Jon A.; DeTar, Carleton; Jang, Yong -Chull
The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through ordermore » $${\\mathrm{O}}(\\Lambda^3/m_Q^3)$$ in HQET power counting, for applications to heavy-light systems, and $${\\mathrm{O}}(v^6)$$ in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all $${\\mathrm{O}}(a^2)$$ and some $${\\mathrm{O}}(a^3)$$ terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than the results obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. Lastly, these studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC's $$a\\approx0.12$$~fm, $$N_f=2+1$$-flavor, asqtad-staggered ensembles.« less
NASA Astrophysics Data System (ADS)
Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara
2017-06-01
Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0026] Medical Devices; Immunology and Microbiology Devices; Classification of Ovarian Adnexal Mass Assessment Score Test System; Correction AGENCY: Food and Drug Administration, HHS. ACTION...
An Action Assembly Approach to Predicting Emotional Responses to Frightening Mass Media.
ERIC Educational Resources Information Center
Sparks, Glenn G.
1986-01-01
Assesses the validity of a 20-item scale that purportedly measures long term memory records--in this case, frightening mass media. Evidence for validity emerged in that subjects' scale scores were related to negative emotion, negative cognitions, and skin conductance during film clips of scary movies. (NKA)
The Sunyaev-Zeldovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Cooray, Asantha R.; Holzappel, William L.
2000-01-01
We present interferometric measurements of the Sunyaev-Zeldovich (SZ) effect toward the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas distribution to be strongly aspherical, as do the X-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction in two ways. We first compare the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deprojecting the three-dimensional gas density distribution and deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods and find that they agree within the errors of the measurement. We discuss the possible system- atic errors in the gas mass fraction measurement and the constraints it places on the matter density parameter, Omega(sub M).
20 CFR 408.1003 - Which administrative actions are initial determinations?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Which administrative actions are initial determinations? 408.1003 Section 408.1003 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SPECIAL BENEFITS FOR...) Our calculation of the amount of change in your federally administered State recognition payment...
Lapauw, Bruno; Taes, Youri; Goemaere, Stefan; Toye, Kaatje; Zmierczak, Hans-Georg; Kaufman, Jean-Marc
2009-11-01
Pathophysiology of deficient bone mass acquisition in male idiopathic osteoporosis (IO) remains poorly understood. Our objective was to investigate volumetric and geometric parameters of the appendicular skeleton, biochemical markers, and anthropometrics in men with IO. Our cross-sectional study included 107 men diagnosed with idiopathic low bone mass, 23 of their adult sons, and 130 age-matched controls. Body composition and areal bone parameters (dual-energy x-ray absorptiometry) and volumetric and geometric parameters of radius and tibia (peripheral quantitative computed tomography) were assessed. Serum levels of testosterone, estradiol (E(2)), and SHBG, and bone turnover markers were measured using immunoassays. Free hormone fractions were calculated. Men with idiopathic low bone mass had lower weight (-9.6%), truncal height (-3.3%), and upper/lower body segment ratio (-2.7%; all P < 0.001) and presented at the radius and tibia lower trabecular (-19.0 and -23.6%, respectively; both P < 0.001) and cortical volumetric bone mineral density (vBMD) (-2.4 and -1.7%; both P < 0.001) and smaller cortical areas (-9.7 and -13.6%; both P < 0.001) and thicknesses (-13.5 and -14.5%, both P < 0.001) due to larger endosteal circumferences (+11.8 and +7.4%, both P < 0.001) than controls. Furthermore, (free) E(2) was lower and SHBG higher (both P < 0.01). Their sons had lower trabecular vBMD (-10.3%, P = 0.036) and a thinner cortex (-8.3%, P = 0.024) at the radius. Bone mass deficits in men with idiopathic low bone mass involve trabecular and cortical bone, resulting from lower vBMD and smaller cortical bone cross-sectional areas and thicknesses. A similar bone phenotype is present in at least part of their sons. The lower E(2), together with characteristics as lower upper/lower body segment ratio, larger endosteal circumferences and lower vBMD, may indicate an estrogen-related factor in the pathogenesis of male IO.
The impact of nuclear mass models on r-process nucleosynthesis network calculations
NASA Astrophysics Data System (ADS)
Vaughan, Kelly
2002-10-01
An insight into understanding various nucleosynthesis processes is via modelling of the process with network calculations. My project focus is r-process network calculations where the r-process is nucleosynthesis via rapid neutron capture thought to take place in high entropy supernova bubbles. One of the main uncertainties of the simulations is the Nuclear Physics input. My project investigates the role that nuclear masses play in the resulting abundances. The code tecode, involves rapid (n,γ) capture reactions in competition with photodisintegration and β decay onto seed nuclei. In order to fully analyze the effects of nuclear mass models on the relative isotopic abundances, calculations were done from the network code, keeping the initial environmental parameters constant throughout. The supernova model investigated by Qian et al (1996) in which two r-processes, of high and low frequency with seed nucleus ^90Se and of fixed luminosity (fracL_ν_e(0)r_7(0)^2 ˜= 8.77), contribute to the nucleosynthesis of the heavier elements. These two r-processes, however, do not contribute equally to the total abundance observed. The total isotopic abundance produced from both events was therefore calculated using equation refabund. Y(H+L) = fracY(H)+fY(L)f+1 <~belabund where Y(H) denotes the relative isotopic abundance produced in the high frequency event, Y(L) corresponds to the low freqeuncy event and f is the ratio of high event matter to low event matter produced. Having established reliable, fixed parameters, the network code was run using data files containing parameters such as the mass excess, neutron separation energy, β decay rates and neutron capture rates based around three different nuclear mass models. The mass models tested are the HFBCS model (Hartree-Fock BCS) derived from first principles, the ETFSI-Q model (Extended Thomas-Fermi with Strutinsky Integral including shell Quenching) known for its particular successes in the replication of Solar System abundances, and the P-Scheme Model tePscheme. The aims of this research is to test the applicability of the P-Scheme in relation to the other mass models to the r-process network calculations. 02 Pscheme Aprahamian,A., Gadala-Maria,A. & Cuka,N. 1996, Revista Mexicana de Fisica,42,1 code Surman,R. & Engel,J. 1998, Phys.Rev. C,54,4 thebibliography
New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, P.; Sierk, A. J.; Bengtsson, R.
The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regionsmore » of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space ({epsilon}{sub 2}, {epsilon}{sub 3}, {epsilon}{sub 4}, {epsilon}{sub 6},) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV.We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from {sup 70}Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by use of an ''immersion'' technique.« less
Body Mass Index: Calculator for Child and Teen
... Healthy Weight Sample Link BMI Percentile Calculator for Child and Teen English Version Language: English Español (Spanish) ... and Weight Accurately At Home BMI Calculator for Child and Teen ( English | Metric ) 1. Birth Date : Month: ...
Meisel, Z.; George, S.; Ahn, S.; ...
2015-10-16
We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((+0)(-54)) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted bymore » the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A approximate to 56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.« less
NASA Astrophysics Data System (ADS)
Meisel, Z.; George, S.; Ahn, S.; Bazin, D.; Brown, B. A.; Browne, J.; Carpino, J. F.; Chung, H.; Cole, A. L.; Cyburt, R. H.; Estradé, A.; Famiano, M.; Gade, A.; Langer, C.; Matoš, M.; Mittig, W.; Montes, F.; Morrissey, D. J.; Pereira, J.; Schatz, H.; Schatz, J.; Scott, M.; Shapira, D.; Smith, K.; Stevens, J.; Tan, W.; Tarasov, O.; Towers, S.; Wimmer, K.; Winkelbauer, J. R.; Yurkon, J.; Zegers, R. G. T.
2015-10-01
We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85 (59 )(-54+0) MeV and -21.0 (1.3 ) MeV , respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A =56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A ≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.
The origin of the mass of the Nambu-Goldstone bosons
NASA Astrophysics Data System (ADS)
Arraut, Ivan
2018-03-01
We explain the origin of the mass for the Nambu-Goldstone bosons when there is a chemical potential in the action which explicitly breaks the symmetry. The method is based on the number of independent histories for the interaction of the pair of Nambu-Goldstone bosons with the degenerate vacuum (triangle relations). The analysis suggests that under some circumstances, pairs of massive Nambu-Goldstone bosons can become a single degree of freedom with an effective mass defined by the superposition of the individual masses of each boson. Possible mass oscillations for the Nambu-Goldstone bosons are discussed.
About Mass Transfer in Capillaries of Biological Systems under Influence of Vibrations
NASA Astrophysics Data System (ADS)
Prisniakov, K.
Vibrations accompany the flight of the manned spacecraft both at a stage of a orbital injection to an orbit, and during long flights (as noise), rendering undesirable physiological influence on crew, reducing serviceability and creating constant discomfort. The report represents attempt to predict a state of the cosmonaut in conditions of influence of vibrations for the period of start and stay in Space, being based on researches of mass transfer processes in capillary systems. For this purpose the original researches on heat and mass transfer processes with evaporation of liquids in capillary - porous structures in conditions of vibration actions and changes of a direction of action of gravitation are generalized. Report demonstrates the existence of modes at which increased or lowered mass transfer is achieved on border of separation "liquid - gas". The possible mechanism of influence of vibrations on evaporation of a liquid in capillaries is examined. The magnitudes of frequencies and amplitudes are submitted at which minimax characteristics are observed. The opportunity of application of the developed mathematical model of heat and mass transfer in capillary - porous structures to forecasting influence of vibrations for biological processes in capillaries of alive essences is analyzed. Such approach is justified on the mechanical nature of harmful influence of vibrations on an organism of the person. In addition the range of vibration frequencies which arise during space flights, corresponds to own resonant frequencies of a human body and his separate organs. Comparison of these resonant frequencies of a body of the person (5-80 Hertz) with vibration frequencies of optimum modes of heat and mass transfer in capillary - porous structures (20-40 Hertz) is shown their ranges of coverage. It gives the basis to assume existence of similar effects in capillaries of human body. It is supposed, that the difficulty of breath, change of a rhythm of breath, the subsequent weariness under vibration action are attributable to infringements of normal mass transfer between the inhaled air and blood. The opportunity of use of the received laws is discussed for assessment of influence of gravitational fields on intensity mass transfer in capillaries of biosystems also.
A New Proposal to Redefine Kilogram by Measuring the Planck Constant Based on Inertial Mass
NASA Astrophysics Data System (ADS)
Liu, Yongmeng; Wang, Dawei
2018-04-01
A novel method to measure the Planck constant based on inertial mass is proposed here, which is distinguished from the conventional Kibble balance experiment which is based on the gravitational mass. The kilogram unit is linked to the Planck constant by calculating the difference of the parameters, i.e. resistance, voltage, velocity and time, which is measured in a two-mode experiment, unloaded mass mode and the loaded mass mode. In principle, all parameters measured in this experiment can reach a high accuracy, as that in Kibble balance experiment. This method has an advantage that some systematic error can be eliminated in difference calculation of measurements. In addition, this method is insensitive to air buoyancy and the alignment work in this experiment is easy. At last, the initial design of the apparatus is presented.
Wang, Changguang; Williams, Noelle S
2013-03-05
The aim of this study is to further validate the use of ultrafiltration (UF) as a method for determining plasma protein binding (PPB) by demonstrating that non-specific binding (NSB) is not a limitation, even for highly lipophilic compounds, because NSB sites on the apparatus are passivated in the presence of plasma. Mass balance theory was used to calculate recovery of 20 commercial and seven investigational compounds during ultrafiltration in the presence and absence of plasma. PPB was also measured using this mass balance approach for comparison to PPB determined by rapid equilibrium dialysis (RED) and as found in the literature. Compound recovery during UF was dramatically different in the presence and absence of plasma for compounds with high NSB in PBS only. A comparison of PPB calculated by ultrafiltration with literature values or calculated by RED gave concordant results. Discrepancies could be explained by changes in pH, insufficient time to equilibrium, or compound instability during RED, problems which were circumvented by ultrafiltration. Therefore, NSB, as measured by the traditional incubation of compound in PBS, need not be an issue when choosing UF as a PPB assay method. It is more appropriate to calculate compound recovery from the device in plasma as measured by mass balance to determine the suitability of the method for an individual compound. The speed with which UF can be conducted additionally avoids changes in pH or compound loss that can occur with other methods. The mass balance approach to UF is thus a preferred method for rapid determination of PPB. Copyright © 2012 Elsevier B.V. All rights reserved.
Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S
2015-03-15
In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., inertial separators, afterburners, thermal or catalytic incinerators, adsorption devices (such as carbon... and calculation procedures (e.g., mass balance or stoichiometric calculations). (4) Maintenance and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id
A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less
Method for predicting peptide detection in mass spectrometry
Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA
2010-07-13
A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.
Christensen, Jeppe Schultz; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Nordsborg, Rikke B.; Ketzel, Matthias; Sørensen, Thorkild IA; Sørensen, Mette
2015-01-01
Background Traffic noise has been associated with cardiovascular and metabolic disorders. Potential modes of action are through stress and sleep disturbance, which may lead to endocrine dysregulation and overweight. Objectives We aimed to investigate the relationship between residential traffic and railway noise and adiposity. Methods In this cross-sectional study of 57,053 middle-aged people, height, weight, waist circumference, and bioelectrical impedance were measured at enrollment (1993–1997). Body mass index (BMI), body fat mass index (BFMI), and lean body mass index (LBMI) were calculated. Residential exposure to road and railway traffic noise exposure was calculated using the Nordic prediction method. Associations between traffic noise and anthropometric measures at enrollment were analyzed using general linear models and logistic regression adjusted for demographic and lifestyle factors. Results Linear regression models adjusted for age, sex, and socioeconomic factors showed that 5-year mean road traffic noise exposure preceding enrollment was associated with a 0.35-cm wider waist circumference (95% CI: 0.21, 0.50) and a 0.18-point higher BMI (95% CI: 0.12, 0.23) per 10 dB. Small, significant increases were also found for BFMI and LBMI. All associations followed linear exposure–response relationships. Exposure to railway noise was not linearly associated with adiposity measures. However, exposure > 60 dB was associated with a 0.71-cm wider waist circumference (95% CI: 0.23, 1.19) and a 0.19-point higher BMI (95% CI: 0.0072, 0.37) compared with unexposed participants (0–20 dB). Conclusions The present study finds positive associations between residential exposure to road traffic and railway noise and adiposity. Citation Christensen JS, Raaschou-Nielsen O, Tjønneland A, Overvad K, Nordsborg RB, Ketzel M, Sørensen TI, Sørensen M. 2016. Road traffic and railway noise exposures and adiposity in adults: a cross-sectional analysis of the Danish Diet, Cancer, and Health cohort. Environ Health Perspect 124:329–335; http://dx.doi.org/10.1289/ehp.1409052 PMID:26241990
Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.
NASA Astrophysics Data System (ADS)
Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David
1987-01-01
A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations were made.
Does mass accretion lead to field decay in neutron stars
NASA Technical Reports Server (NTRS)
Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.
1989-01-01
The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.
Comparison of different source calculations in two-nucleon channel at large quark mass
NASA Astrophysics Data System (ADS)
Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu
2018-03-01
We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.
Learn about the Stormwater Calculator that provides estimates for stormwater runoff from a specific site. Users can input any location within the U.S. and select different scenarios to see how it affects runoff volumes.
Evaluation of the preparation of the coronal part of the mesial canals of lower molars.
Sinan, A; Georgelin-Gurgel, M; Diemer, F
2011-03-01
Canal entrances can be flared using specific, low speed, continuously rotating Ni-Ti instruments. Two such instruments were evaluated for their capacity to flare the canal entrance while respecting the initial canal axis. Lower molars (n = 20) with two distinct mesial canals were prepared to within 2.5 mm of the pulp chamber floor using Bramante's technique. Canal entrances were flared with a QUANTEC FLARE LX or an ENDOFLARE. They both had a 0.12 taper and a #25 tip diameter. The instruments were first inserted in the canals using an axial movement and then withdrawn with a selective circumferential brushing action. Photographs taken before and after each preparation were compared. No ledging or significant modification of the working length was noted. The centre of mass was displaced on average by 0.138 mm with no brushing action and 0.274 mm with brushing action. In most cases (87.5%), the centre of mass was displaced mesially. The two instruments behaved in an identical mode, both before (p = 0.3497) and after (p = 0.9304) the brushing action. Ni-Ti flaring instruments can be used to flare the canal entrance with little displacement of the initial canal axis, even when a brushing action is used.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
...] Misuse of Internet Protocol (IP) Captioned Telephone Service; Telecommunications Relay Services and... further possible actions necessary to improve internet protocol captioned telephone relay service (IP CTS... for calculating the compensation rate paid to IP CTS providers. This action is necessary to ensure...
Observing Mergers of Non-Spinning Black-Hole Binaries
NASA Technical Reports Server (NTRS)
McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.
2010-01-01
Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.
NASA Astrophysics Data System (ADS)
Kaufman, Richard
2017-12-01
A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by forces acting over distances. An analysis of the system must include all energy interactions, including the work done on the car and especially the (negative) work done on Earth in a moving reference frame. This shows the importance of considering the force on Earth and the distance Earth travels. For calculation of work in inertial reference frames, the center of mass perspective is shown to be useful. We also consider the energy requirements to efficiently accelerate a mass among interacting masses.
NASA Astrophysics Data System (ADS)
Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz
2015-04-01
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).
calculation of B → D*lv form factor at zero recoil using the Oktay-Kronfeld action
NASA Astrophysics Data System (ADS)
Bailey, Jon A.; Bhattacharya, Tanmoy; Gupta, Rajan; Jang, Yong-Chull; Lee, Weonjong; Leem, Jaehoon; Park, Sungwoo; Yoon, Boram
2018-03-01
We present the first preliminary results for the semileptonic form factor hA1 (w = 1)/ρAj at zero recoil for the B → D*lv decay using lattice QCD with four flavors of sea quarks. We use the HISQ staggered action for the light valence and sea quarks (the MILC HISQ configurations), and the Oktay-Kronfeld (OK) action for the heavy valence quarks.
Is there a relation between the 2D Causal Set action and the Lorentzian Gauss-Bonnet theorem?
NASA Astrophysics Data System (ADS)
Benincasa, Dionigi M. T.
2011-07-01
We investigate the relation between the two dimensional Causal Set action, Script S, and the Lorentzian Gauss-Bonnet theorem (LGBT). We give compelling reasons why the answer to the title's question is no. In support of this point of view we calculate the causal set inspired action of causal intervals in some two dimensional spacetimes: Minkowski, the flat cylinder and the flat trousers.
Development and testing of a European Union-wide farm-level carbon calculator
Tuomisto, Hanna L; De Camillis, Camillo; Leip, Adrian; Nisini, Luigi; Pelletier, Nathan; Haastrup, Palle
2015-01-01
Direct greenhouse gas (GHG) emissions from agriculture accounted for approximately 10% of total European Union (EU) emissions in 2010. To reduce farming-related GHG emissions, appropriate policy measures and supporting tools for promoting low-C farming practices may be efficacious. This article presents the methodology and testing results of a new EU-wide, farm-level C footprint calculator. The Carbon Calculator quantifies GHG emissions based on international standards and technical specifications on Life Cycle Assessment (LCA) and C footprinting. The tool delivers its results both at the farm level and as allocated to up to 5 main products of the farm. In addition to the quantification of GHG emissions, the calculator proposes mitigation options and sequestration actions that may be suitable for individual farms. The results obtained during a survey made on 54 farms from 8 EU Member States are presented. These farms were selected in view of representing the diversity of farm types across different environmental zones in the EU. The results of the C footprint of products in the data set show wide range of variation between minimum and maximum values. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. To avoid burden-shifting from climate change to other environmental issues, the future improvements of the tool should include incorporation of other environmental impact categories in place of solely focusing on GHG emissions. Integr Environ Assess Manag 2015;11:404–416. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. Key Points The methodology and testing results of a new European Union-wide, farm-level carbon calculator are presented. The Carbon Calculator reports life cycle assessment-based greenhouse gas emissions at farm and product levels and recommends farm- specific mitigation actions. Based on the results obtained from testing the tool in 54 farms in 8 European countries, it was found that the product-level carbon footprint results are comparable with those of other studies focusing on similar products. The results of the mitigation actions showed that the tool can help identify practices that can lead to substantial emission reductions. PMID:25655187
A Fast Code for Jupiter Atmospheric Entry Analysis
NASA Technical Reports Server (NTRS)
Yauber, Michael E.; Wercinski, Paul; Yang, Lily; Chen, Yih-Kanq
1999-01-01
A fast code was developed to calculate the forebody heating environment and heat shielding that is required for Jupiter atmospheric entry probes. A carbon phenolic heat shield material was assumed and, since computational efficiency was a major goal, analytic expressions were used, primarily, to calculate the heating, ablation and the required insulation. The code was verified by comparison with flight measurements from the Galileo probe's entry. The calculation required 3.5 sec of CPU time on a work station, or three to four orders of magnitude less than for previous Jovian entry heat shields. The computed surface recessions from ablation were compared with the flight values at six body stations. The average, absolute, predicted difference in the recession was 13.7% too high. The forebody's mass loss was overpredicted by 5.3% and the heat shield mass was calculated to be 15% less than the probe's actual heat shield. However, the calculated heat shield mass did not include contingencies for the various uncertainties that must be considered in the design of probes. Therefore, the agreement with the Galileo probe's values was satisfactory in view of the code's fast running time and the methods' approximations.
NASA Astrophysics Data System (ADS)
Arning, Esther T.; Häußler, Steffen; van Berk, Wolfgang; Schulz, Hans-Martin
2016-07-01
The modelling of early diagenetic processes in marine sediments is of interest in marine science, and in the oil and gas industry, here, especially with respect to methane occurrence and gas hydrate formation as resources. Early diagenesis in marine sediments evolves from a complex web of intertwining (bio)geochemical reactions. It comprises microbially catalysed reactions and inorganic mineral-water-gas interactions. A model that will describe and consider all of these reactions has to be complex. However, it should be user-friendly, as well as to be applicable for a broad community and not only for experts in the field of marine chemistry. The presented modelling platform PeaCH4 v.2.0 combines both aspects, and is Microsoft Excel©-based. The modelling tool is PHREEQC (version 2), a computer programme for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. The conceptual PEaCH4 model is based on the conversion of sediment-bound degradable organic matter. PEaCH4 v.2.0 was developed to quantify and predict early diagenetic processes in marine sediments with the focus on biogenic methane formation and its phase behaviour, and allows carbon mass balancing. In regard to the irreversible degradation of organic matter, it comprises a "reaction model" and a "kinetic model" to predict methane formation. Both approaches differ in their calculations and outputs as the "kinetic model" considers the modelling time to integrate temperature dependent biogenic methane formation in its calculations, whereas the "reaction model" simply relies on default organic matter degradation. With regard to the inorganic mineral-water-gas interactions, which are triggered by irreversible degradation of organic matter, PEaCH4 v.2.0 is based on chemical equilibrium thermodynamics, appropriate mass-action laws, and their temperature dependent equilibrium constants. The programme is exemplarily presented with the example of upwelling sediments off Namibia, ODP Leg 175, Site 1082. The application demonstrates that the modelling platform PEaCH4 v.2.0 provides a user-friendly, but complex scientific tool that delivers retraceable information about early diagenetic processes and products in marine sediments.
Infrared spectrum of NH4+(H2O): Evidence for mode specific fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankewitz, Tobias; Lagutschenkov, Anita; Niedner-schatteburg, Gereon
2007-02-21
The gas phase infrared spectrum (3250 to 3810 cm1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by consequence spectroscopy of mass selected and isolated ions. The obtained four bands are assigned to N-H stretching modes and O-H stretching modes, respectively. The observed N-H stretching modes are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The observed O-H stretching modes are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicularmore » transitions. The K-type equidistant rotational spacings of 11.1(2) cm1 (NH4+) and 29(3) cm1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The recorded relative band intensities compare favorably with predictions of high level ab initio calculations except for the 3(H2O) band for which the observed value is about 20 times weaker than the calculated one. This long standing puzzle motivated us to examine the a 3(H2O)/1(H2O) intensity ratios from other published action spectra in other cationic complexes. These suggest that the 3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggested that the coupling of the 3(H2O) and 1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings altogether render the picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high-level electronic structure calculations at the coupled-cluster single and double with perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. Our extrapolated values at the CCSD(T) complete basis set (CBS) limit are H(0 K) (NH4+(H2O)) = 85.40(± 0.24) kJ/mol and H(298 K) (NH4+H2O)) = 78.1(± 0.3) kJ/mol, in which double standard deviations are indicated in parenthesis. This work was supported by the Office of Basic Energy Sciences of the US Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the US Departmetn of Energy.« less
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
A conative educational model for an intervention program in obese youth.
Vanhelst, Jérémy; Béghin, Laurent; Fardy, Paul Stephen; Bui-Xuan, Gilles; Mikulovic, Jacques
2012-06-07
Obesity in children has increased in recent years throughout the world and is associated with adverse health consequences. Early interventions, including appropriate pedagogy strategies, are important for a successful intervention program. The aim of this study was to assess changes in body mass index, the ability to perform sport activities, behavior in the classroom and academic performance following one year of a health-wellness intervention program in obese youth. The CEMHaVi program included 37 obese children (19 girls and 18 boys). Participants received an intervention program consisting of physical activity and health education. Assessment included body mass index, academic performance, classroom performance and ability to perform sport activities. Paired t tests were used to assess the effects of intervention, and chi square was used to assess inter-action between measures. Findings of the study suggest significant decrease in Z scores of Body Mass Index and an improvement of academic performance, classroom behavior and the ability to perform sport activities (p < 0.05). Chi square testing showed significant positive inter-actions between body mass index, classroom behavior and academic performance. Results following year one of CEMHaVi showed that a program of physical activity and health education had positive effects on obesity, behavior in the classroom and the ability to perform sport activities in obese adolescents. Significant inter-action in changes between variables was observed. Findings are important for designing intervention models to improve health in obese youth.
Using FLUKA to Calculate Spacecraft: Single Event Environments: A Practical Approach
NASA Technical Reports Server (NTRS)
Koontz, Steve; Boeder, Paul; Reddell, Brandon
2009-01-01
The FLUKA nuclear transport and reaction code can be developed into a practical tool for calculation of spacecraft and planetary surface asset SEE and TID environments. Nuclear reactions and secondary particle shower effects can be estimated with acceptable accuracy both in-flight and in test. More detailed electronic device and/or spacecraft geometries than are reported here are possible using standard FLUKA geometry utilities. Spacecraft structure and shielding mass. Effects of high Z elements in microelectronic structure as reported previously. Median shielding mass in a generic slab or concentric sphere target geometry are at least approximately applicable to more complex spacecraft shapes. Need the spacecraft shielding mass distribution function applicable to the microelectronic system of interest. SEE environment effects can be calculated for a wide range of spacecraft and microelectronic materials with complete nuclear physics. Evaluate benefits of low Z shielding mass can be evaluated relative to aluminum. Evaluate effects of high Z elements as constituents of microelectronic devices. The principal limitation on the accuracy of the FLUKA based method reported here are found in the limited accuracy and incomplete character of affordable heavy ion test data. To support accurate rate estimates with any calculation method, the aspect ratio of the sensitive volume(s) and the dependence must be better characterized.
NASA Astrophysics Data System (ADS)
Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.
2016-05-01
We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.
Electron ionization and dissociation of aliphatic amino acids
NASA Astrophysics Data System (ADS)
Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.
2012-09-01
We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.
NASA Technical Reports Server (NTRS)
Flynn, G. J.
1993-01-01
Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.
Λb→p ℓ-ν¯ ℓ and Λb→Λcℓ-ν¯ ℓ form factors from lattice QCD with relativistic heavy quarks
NASA Astrophysics Data System (ADS)
Detmold, William; Lehner, Christoph; Meinel, Stefan
2015-08-01
Measurements of the Λb→p ℓ-ν¯ ℓ and Λb→Λcℓ-ν¯ ℓ decay rates can be used to determine the magnitudes of the Cabibbo-Kobayashi-Maskawa matrix elements Vu b and Vc b, provided that the relevant hadronic form factors are known. Here we present a precise calculation of these form factors using lattice QCD with 2 +1 flavors of dynamical domain-wall fermions. The b and c quarks are implemented with relativistic heavy-quark actions, allowing us to work directly at the physical heavy-quark masses. The lattice computation is performed for six different pion masses and two different lattice spacings, using gauge-field configurations generated by the RBC and UKQCD Collaborations. The b →u and b →c currents are renormalized with a mostly nonperturbative method. We extrapolate the form factor results to the physical pion mass and the continuum limit, parametrizing the q2 dependence using z expansions. The form factors are presented in such a way as to enable the correlated propagation of both statistical and systematic uncertainties into derived quantities such as differential decay rates and asymmetries. Using these form factors, we present predictions for the Λb→p ℓ-ν¯ℓ and Λb→Λc ℓ-ν¯ℓ differential and integrated decay rates. Combined with experimental data, our results enable determinations of |Vu b|, |Vc b|, and |Vu b/Vc b| with theory uncertainties of 4.4%, 2.2%, and 4.9%, respectively.
NASA Astrophysics Data System (ADS)
Xiao, Zhenggang; Xu, Fuming
2018-04-01
In order to investigate the relationship between the slivering point and burning progressivity, a set of 19-perforation propellants containing triethylene glycol dinitrate (TEGDN) with different lengths/outside diameter ratios and perforation diameters was prepared and tested in a closed vessel. The mass fraction of burnt propellant was derived from the recorded pressure-time history of 19-perforation TEGDN propellants in the closed vessel according to the gas state equation and the form function of tested propellants. Based on the form function calculation and the mass fraction of burnt propellant, instantaneous burning surface area and the burning rate were obtained. The influence of length/outside diameter ratios and perforation diameters on the progressive combustion performance is studied through the dynamic vivacity method. With an increase in the length/outsider diameter, the slivering point occurs earlier and the slivering process lasts longer. Further, the burning progressivity of surface area can be improved. For propellants with same length/outside diameter ratio, with a decreasing of perforation diameter, the slivering point lags behind and the burning progressivity becomes greater. The slivering point corresponds to the instantaneous burning area, which is related to the form function and total burning process as well. However, the total burning progressivity of propellant is a very comprehensive result of propellant under multiple actions, including the mass fraction of burnt propellant, grain size and burning rate at different pressure regions. The correlation between them can boost a better understanding on the interaction between grain size, slivering burning process and burning progressivity.
NASA Astrophysics Data System (ADS)
Kissin, Yevgeni; Thompson, Christopher
2015-07-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.
Baran, Richard; Northen, Trent R
2013-10-15
Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., including part-time employees, who in the aggregate work at least 4,000 hours per week, exclusive of hours... action that results in the effective cessation of production or the work performed by a unit, even if a... work as specified under the definition of “employment loss.” (c) Mass layoff. (1) The term “mass layoff...
Mass Media, Education, and a Better Society.
ERIC Educational Resources Information Center
Stein, Jay W.
In an examination of the conflict between the mass media and public education, the author concludes that a pressing need exists for better understanding and cooperation between the two and calls for action which involves them both. The overcommunication of the media and the under-utilization of the media toward constructive ends are examined.…
The Mass Media of Entertainment and Human Survival.
ERIC Educational Resources Information Center
Gorney, Roderic; Steele, Gary
Urgently needed for human survival is a means of influencing large numbers of people to put into rapid action measures which could neutralize such menances as pollution, overpopulation, and violence. Though the cumulative effect of the mass media is not fully established, media entertainment may be the most influential institution in our society.…
Reopening the Black Box: Toward a Limited Effects Theory.
ERIC Educational Resources Information Center
Gans, Herbert J.
1993-01-01
Discusses eight limiting factors on media effects, identifying and raising research questions about agents and structures that limit the potential effects of the mass media on the behavior and attitudes of people and on the actions of institutions. Discusses the ignorance of researchers about how people use, and live with, the mass media. (SR)
77 FR 71452 - Extension of Comment Period: Orphan Works and Mass Digitization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... Office hereby extends the time for filing comments to 5:00 p.m. EST on February 4, 2013. The due date for... LIBRARY OF CONGRESS Copyright Office [Docket No. 2012-10] Extension of Comment Period: Orphan Works and Mass Digitization AGENCY: Copyright Office, Library of Congress. ACTION: Extension of comment...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... (M2R) Full-Scale Exercise for a Mass Rescue Incident (MRI) AGENCY: Coast Guard, DHS. ACTION: Temporary... simulate a mass rescue incident (MRI) and will involve an abandon ship scenario with multiple response... full scale exercise which will simulate a MRI to provide training in specific emergency response...
BPS-like bound and thermodynamics of the charged BTZ black hole
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Monni, Cristina
2009-07-01
The charged Bañados-Teitelboim-Zanelli (BTZ) black hole is plagued by several pathologies: (a) Divergent boundary terms are present in the action; hence, we have a divergent black-hole mass. (b) Once a finite, renormalized, mass M is defined, black-hole states exist for arbitrarily negative values of M. (c) There is no upper bound on the charge Q. We show that these pathological features are an artifact of the renormalization procedure. They can be completely removed by using an alternative renormalization scheme leading to a different definition M0 of the black-hole mass, which is the total energy inside the horizon. The new mass satisfies a BPS-like bound M0≥(π)/(2)Q2, and the heat capacity of the hole is positive. We also discuss the black-hole thermodynamics that arises when M0 is interpreted as the internal energy of the system. We show, using three independent approaches (black-hole thermodynamics, Einstein equations, and Euclidean action formulation), that M0 satisfies the first law if a term describing the mechanical work done by the electrostatic pressure is introduced.
Stop coannihilation in the CMSSM and SubGUT models
NASA Astrophysics Data System (ADS)
Ellis, John; Evans, Jason L.; Luo, Feng; Olive, Keith A.; Zheng, Jiaming
2018-05-01
Stop coannihilation may bring the relic density of heavy supersymmetric dark matter particles into the range allowed by cosmology. The efficiency of this process is enhanced by stop-antistop annihilations into the longitudinal (Goldstone) modes of the W and Z bosons, as well as by Sommerfeld enhancement of stop annihilations and the effects of bound states. Since the couplings of the stops to the Goldstone modes are proportional to the trilinear soft supersymmetry-breaking A-terms, these annihilations are enhanced when the A-terms are large. However, the Higgs mass may be reduced below the measured value if the A-terms are too large. Unfortunately, the interpretation of this constraint on the stop coannihilation strip is clouded by differences between the available Higgs mass calculators. For our study, we use as our default calculator FeynHiggs 2.13.0, the most recent publicly available version of this code. Exploring the CMSSM parameter space, we find that along the stop coannihilation strip the masses of the stops are severely split by the large A-terms. This suppresses the Higgs mass drastically for μ and A_0 > 0, whilst the extent of the stop coannihilation strip is limited for A_0 < 0 and either sign of μ . However, in sub-GUT models, reduced renormalization-group running mitigates the effect of the large A-terms, allowing larger LSP masses to be consistent with the Higgs mass calculation. We give examples where the dark matter particle mass may reach ≳ 8 TeV.
Usefulness of Epicardial Area in the Short Axis to Identify Elevated Left Ventricular Mass in Men.
Fitzpatrick, Jesse K; Cohen, Beth E; Rosenblatt, Andrew; Shaw, Richard E; Schiller, Nelson B
2018-06-15
Left ventricular (LV) hypertrophy is strongly associated with increased cardiovascular morbidity and mortality. The 2-dimensional LV mass algorithms suffer from measurement variability that can lead to misclassification of patients with LV hypertrophy as normal, or vice versa. Among the 4 echocardiographic measurements required by the 2-dimensional LV mass algorithms, epicardial and endocardial area have the lowest interobserver variation and could be used to corroborate LV mass calculations. We sought cut-off values that are able to discriminate between elevated and normal LV mass based on endocardial or epicardial area alone. Using data from 664 men enrolled in the Mind Your Heart Study, we calculated the correlation of LV mass index with epicardial area and endocardial area. We then used receiver operator characteristic curves to identify epicardial and endocardial area cut-points that could discriminate subjects with normal LV mass and LV hypertrophy. LV mass index was more strongly correlated with epicardial area compared with endocardial area, r = 0.70 versus r = 0.27, respectively. Epicardial area had a significantly higher area under the receiver operator characteristic curve (p <0.001) compared with endocardial area, 0.90 (95% confidence interval 0.86 to 0.93) versus 0.63 (95% confidence interval 0.57 to 0.71). An epicardial area cut-point of ≥38.0 cm 2 corresponded to a sensitivity of 95.0% and specificity of 54.4% for detecting LV hypertrophy. In conclusion, epicardial area showed promise as a method of rapid screening for LV hypertrophy and could be used to validate formal LV mass calculations. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostou, T; Papadimitroulas, P; Kagadis, GC
2014-06-15
Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less
Jordan, Claus; Luttmann, Alwin; Theilmeier, Andreas; Kuhn, Stefan; Wortmann, Norbert; Jäger, Matthias
2011-05-26
The human spine is often exposed to mechanical load in vocational activities especially in combination with lifting, carrying and positioning of heavy objects. This also applies in particular to nursing activities with manual patient handling. In the present study a detailed investigation on the load of the lumbar spine during manual patient handling was performed. For a total of 13 presumably endangering activities with transferring a patient, the body movements performed by healthcare workers were recorded and the exerted action forces were determined with regard to magnitude, direction and lateral distribution in the time course with a "measuring bed", a "measuring chair" and a "measuring floor". By the application of biomechanical model calculations the load on the lowest intervertebral disc of the lumbar spine (L5-S1) was determined considering the posture and action force data for every manual patient handling. The results of the investigations reveal the occurrence of high lumbar load during manual patient handling activities, especially in those cases, where awkward postures of the healthcare worker are combined with high action forces caused by the patient's mass. These findings were compared to suitable issues of corresponding investigations provided in the literature. Furthermore measurement-based characteristic values of lumbar load were derived for the use in statement procedures concerning the disease no. 2108 of the German list of occupational diseases. To protect healthcare workers from mechanical overload and the risk of developing a disc-related disease, prevention measures should be compiled. Such measures could include the application of "back-fairer" nursing techniques and the use of "technical" and" small aids" to reduce the lumbar load during manual patient handling. Further studies, concerning these aspects, are necessary.
Mass Properties for Space Systems Standards Development
NASA Technical Reports Server (NTRS)
Beech, Geoffrey
2013-01-01
Current Verbiage in S-120 Applies to Dry Mass. Mass Margin is difference between Required Mass and Predicted Mass. Performance Margin is difference between Predicted Performance and Required Performance. Performance estimates and corresponding margin should be based on Predicted Mass (and other inputs). Contractor Mass Margin reserved from Performance Margin. Remaining performance margin allocated according to mass partials. Compliance can be evaluated effectively by comparison of three areas (preferably on a single sheet). Basic and Predicted Mass (including historical trend). Aggregate potential changes (threats and opportunities) which gives Mass Forecast. Mass Maturity by category (Estimated/Calculated/Actual).
Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry
ERIC Educational Resources Information Center
Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos
2015-01-01
In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…
Gu, Huidong; Wang, Jian; Aubry, Anne-Françoise; Jiang, Hao; Zeng, Jianing; Easter, John; Wang, Jun-sheng; Dockens, Randy; Bifano, Marc; Burrell, Richard; Arnold, Mark E
2012-06-05
A methodology for the accurate calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) assays and its application in supporting microdose absolute bioavailability studies are reported for the first time. For simplicity, this calculation methodology and the strategy to minimize the isotopic interference are demonstrated using a simple molecule entity, then applied to actual development drugs. The exact isotopic interferences calculated with this methodology were often much less than the traditionally used, overestimated isotopic interferences simply based on the molecular isotope abundance. One application of the methodology is the selection of a stable isotopically labeled internal standard (SIL-IS) for an LC-MS/MS bioanalytical assay. The second application is the selection of an SIL analogue for use in intravenous (i.v.) microdosing for the determination of absolute bioavailability. In the case of microdosing, the traditional approach of calculating isotopic interferences can result in selecting a labeling scheme that overlabels the i.v.-dosed drug or leads to incorrect conclusions on the feasibility of using an SIL drug and analysis by LC-MS/MS. The methodology presented here can guide the synthesis by accurately calculating the isotopic interferences when labeling at different positions, using different selective reaction monitoring (SRM) transitions or adding more labeling positions. This methodology has been successfully applied to the selection of the labeled i.v.-dosed drugs for use in two microdose absolute bioavailability studies, before initiating the chemical synthesis. With this methodology, significant time and cost saving can be achieved in supporting microdose absolute bioavailability studies with stable labeled drugs.
NASA Astrophysics Data System (ADS)
Matsui, H.; Koike, M.; Kondo, Y.; Takegawa, N.; Fast, J. D.; PöSchl, U.; Garland, R. M.; Andreae, M. O.; Wiedensohler, A.; Sugimoto, N.; Zhu, T.
2010-11-01
Model calculations were conducted using the Weather Research and Forecasting model coupled with chemistry (WRF-chem) for the region around Beijing, China, in the summer of 2006, when the CAREBeijing-2006 intensive campaign was conducted. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. The model calculations generally captured the observed variability of various surface and column aerosol optical parameters in and around Beijing. At the surface, the spatial and temporal variations of aerosol absorption and scattering coefficients corresponded well to those of elemental carbon and sulfate mass concentrations, respectively, and were controlled by local-scale (<100 km and <24 hours) and regional-scale (<500 km and <3 days) emissions, respectively. The contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer. This variation led to a considerable increase in column aerosol optical depth and was responsible for the differences in regional and temporal variations between surface and column aerosol optical properties around Beijing. These processes are expected to be common in other megacity regions as well. Model calculations, however, underestimated or overestimated the absolute levels of aerosol optical properties in and around Beijing by up to 60%. Sensitivity studies showed that these discrepancies were mostly due to the uncertainties in aerosol mixing state and aerosol density (affecting mass extinction efficiency) in the model calculations. Good agreement with measurements is achieved when these aerosol properties are accurately predicted or assumed; however, significant bias can result when these properties are inadequately treated, even if total aerosol mass concentrations are reproduced well in the model calculations.
Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17).
Krasnobaeva, L A; Yakushevich, L V
2015-02-01
In the present work, rotational oscillations of nitrogenous bases in the DNA with the sequence of the gene coding interferon alpha 17 (IFNA17), are investigated. As a mathematical model simulating oscillations of the bases, we use a system of two coupled nonlinear partial differential equations that takes into account effects of dissipation, action of external fields and dependence of the equation coefficients on the sequence of bases. We apply the methods of the theory of oscillations to solve the equations in the linear approach and to construct the dispersive curves determining the dependence of the frequency of the plane waves (ω) on the wave vector (q). In the nonlinear case, the solutions in the form of kink are considered, and the main characteristics of the kink: the rest energy (E0), the rest mass (m0), the size (d) and sound velocity (C0), are calculated. With the help of the energetic method, the kink velocity (υ), the path (S), and the lifetime (τ) are also obtained.
Synthesis and binding studies of Alzheimer ligands on solid support.
Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas
2007-05-11
Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.
Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations
NASA Astrophysics Data System (ADS)
Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2014-02-01
Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.
Present constraints on the H-dibaryon at the physical point from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2011-11-10
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependencemore » observed in Lattice QCD calculations of the octet baryon masses. In both cases, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.« less
Mass spectrometry and inhomogeneous ion optics
NASA Technical Reports Server (NTRS)
White, F. A.
1973-01-01
Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.
Nuclear fusion and carbon flashes on neutron stars
NASA Technical Reports Server (NTRS)
Taam, R. E.; Picklum, R. E.
1978-01-01
This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.
NASA Astrophysics Data System (ADS)
Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.
2018-03-01
The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.
Mass, heat and freshwater fluxes in the South Indian Ocean
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng
1986-01-01
Six hydrographic sections were used to examine the circulation and property fluxes in the South Indian Ocean from 10 to 32 deg S. The calculations were made by applying an inverse method to the data. In the interior of the South Indian Ocean, the geostrophic flow is generally northward. At 18 deg S, the northward interior mass flux is balanced by the southward Ekman mass flux at the surface, whereas at 32 deg S the northward interior mass flux is balanced by the southward mass flux of the Agulhas Current. There is a weak, southward mass flux of 6 x 10 to the 9th kg/s in the Mozambique Channel. The rate of water exchange between the Pacific Ocean and the Indian Ocean is dependent on the choice of the initial reference level used in the inverse calculation. The choice of 1500 m, the depth of the deep oxygen minimum, has led to a flux of water from the Pacific Ocean to the Indian Ocean at a rate of 6.6 x 10 to the 9th kg/s. Heat flux calculations indicate that the Indian Ocean is exporting heat to the rest of the world's oceans at a rate of -0.69 x 10 to the 15th W at 18 deg S and -0.25 x 10 to the 15th W at 32 deg S (negative values being southward).
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim
2017-06-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.
Slowly-rotating neutron stars in massive bigravity
NASA Astrophysics Data System (ADS)
Sullivan, A.; Yunes, N.
2018-02-01
We study slowly-rotating neutron stars in ghost-free massive bigravity. This theory modifies general relativity by introducing a second, auxiliary but dynamical tensor field that couples to matter through the physical metric tensor through non-linear interactions. We expand the field equations to linear order in slow rotation and numerically construct solutions in the interior and exterior of the star with a set of realistic equations of state. We calculate the physical mass function with respect to observer radius and find that, unlike in general relativity, this function does not remain constant outside the star; rather, it asymptotes to a constant a distance away from the surface, whose magnitude is controlled by the ratio of gravitational constants. The Vainshtein-like radius at which the physical and auxiliary mass functions asymptote to a constant is controlled by the graviton mass scaling parameter, and outside this radius, bigravity modifications are suppressed. We also calculate the frame-dragging metric function and find that bigravity modifications are typically small in the entire range of coupling parameters explored. We finally calculate both the mass-radius and the moment of inertia-mass relations for a wide range of coupling parameters and find that both the graviton mass scaling parameter and the ratio of the gravitational constants introduce large modifications to both. These results could be used to place future constraints on bigravity with electromagnetic and gravitational-wave observations of isolated and binary neutron stars.
Updated polychlorinated biphenyl mass budget for Lake Michigan
This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994-1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budg...
Evaluation of species-dependent detection efficiencies in the aerosol mass spectrometer
USDA-ARS?s Scientific Manuscript database
Mass concentrations of chemical species calculated from the aerosol mass spectrometer (AMS) depend on two factors: particle collection efficiency (CE) and relative ionization efficiency (RIE, relative to the primary calibrant ammonium nitrate). While previous studies have characterized CE, RIE is re...
Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi
2015-03-01
In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.
Modeling and calculation of impact friction caused by corner contact in gear transmission
NASA Astrophysics Data System (ADS)
Zhou, Changjiang; Chen, Siyu
2014-09-01
Corner contact in gear pair causes vibration and noise, which has attracted many attentions. However, teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches. Based on the mechanism of corner contact, the process of corner contact is divided into two stages of impact and scratch, and the calculation model including gear equivalent error—combined deformation is established along the line of action. According to the distributive law, gear equivalent error is synthesized by base pitch error, normal backlash and tooth profile modification on the line of action. The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action, on basis of the theory of engagement and the curve of tooth synthetic compliance & load-history. Combined secondarily the equivalent error with the combined deflection, the position standard of the point situated at corner contact is probed. Then the impact positions and forces, from the beginning to the end during corner contact before the normal path, are calculated accurately. Due to the above results, the lash model during corner contact is founded, and the impact force and frictional coefficient are quantified. A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated. This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient, and to gear exact design for tribology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 gramsmore » is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.« less
Applications of Programmable Calculators in Chemistry Classes
ERIC Educational Resources Information Center
Holdsworth, David
1977-01-01
Described is the use of calculators in two experiments. In the first, students determine the relative atomic mass of magnesium. In the second, students use a calculator to determine a constant for gaseous concentrations of two reactants and the product at equilibrium. (AJ)
CELSS scenario analysis: Breakeven calculations
NASA Technical Reports Server (NTRS)
Mason, R. M.
1980-01-01
A model of the relative mass requirements of food production components in a controlled ecological life support system (CELSS) based on regenerative concepts is described. Included are a discussion of model scope, structure, and example calculations. Computer programs for cultivar and breakeven calculations are also included.
Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B
2017-04-01
A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu 2+ caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and R free values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
NASA Astrophysics Data System (ADS)
Harrilal, Christopher P.; DeBlase, Andrew F.; Burke, Nicole L.; McLuckey, Scott A.; Zwier, Timothy S.
2016-06-01
The "proline effect" is a well-known fragmentation phenomenon in mass spectrometry, in which y-fragments are produced preferentially over b-fragments during the collision induced dissociation of protonated L-proline containing peptide ions. This specific fragmentation channel is favored because of the high basicity of the secondary amine intermediate and the ring instability in alternative bn+ products [ASMS 2014, 25, 1705]. In contrast, peptides containing the D-Pro stereoisomer have been shown to largely favor the production of b4+ ions over y3+ ions. This strongly suggests that differences in the conformational preferences between the D-Pro and L-Pro diastereomers are likely to be responsible but structural evidence has been lacking to date. Using tandem mass spectrometry and IR-UV double resonant action spectroscopy we are able to compare the 3D structures of cold [YA(D-Pro)AA+H]+ to [YA(L-Pro)AA+H]+ ions. The UV action spectra reveals two major conformers in [YA(D-Pro)AA+H]+ and one major conformer in [YA(L-Pro)AA+H]+. Clear differences in the hydrogen bonding patterns are apparent between the two conformers observed in the D-Pro specie which are both distinct from the L-Pro diastereomer. Furthermore, conformer and diastereomer specific photofragmentation patterns are observed. It is also noted that a ten-fold photofragment enhancement unique to one of the D-Pro conformers is observed upon absorption of a resonant IR photon after UV excitation. Differences in the excited state photophysics between the two D-Pro conformers suggest that vibrational excitation of S1 turns on coupling to the dissociative -Tyr channel in one conformer, while this coupling is already present in the vibronic ground state of the other. Calculated harmonic spectra (M052X/6-31+G*) of conformers obtained from Monte Carlo searches to the experimental spectra.
NASA Astrophysics Data System (ADS)
Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Hieu, Nguyen V.; Thu, Tran V.; Hung, Nguyen M.; Ilyasov, Victor V.; Poklonski, Nikolai A.; Nguyen, Chuong V.
2018-01-01
In this paper, we studied the electronic properties, effective masses, and carrier mobility of monolayer MoS_2 using density functional theory calculations. The carrier mobility was considered by means of ab initio calculations using the Boltzmann transport equation coupled with deformation potential theory. The effects of mechanical biaxial strain on the electronic properties, effective mass, and carrier mobility of monolayer MoS_2 were also investigated. It is demonstrated that the electronic properties, such as band structure and density of state, of monolayer MoS_2 are very sensitive to biaxial strain, leading to a direct-indirect transition in semiconductor monolayer MoS_2. Moreover, we found that the carrier mobility and effective mass can be enhanced significantly by biaxial strain and by lowering temperature. The electron mobility increases over 12 times with a biaxial strain of 10%, while the carrier mobility gradually decreases with increasing temperature. These results are very useful for the future nanotechnology, and they make monolayer MoS_2 a promising candidate for application in nanoelectronic and optoelectronic devices.
Pseudoscalar D and B mesons in the hot dense and nonstrange symmetric medium
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-01-01
We investigate the effect of temperature and density on the shift in the masses and decay constants of the pseudoscalar D and B mesons in the nonstrange symmetric medium. We use chiral SU(3) model to calculate the medium modified scalar and isoscalar fields σ, ζ, δ and χ. We use these modified fields to calculate the in-medium quark and gluon condensates by solving the coupled equations of motions in the chiral SU(3) model. We obtain the medium modified mass and decay constant through these medium modified condensates using the QCD sum rules. Further we use the 3P0 model by taking the internal structure of the mesons to calculate the in-medium decay width of the higher charmonium states χ(3556) , ψ(3686) and ψ(3770) to the D D pairs, through the in-medium mass of D meson and neglecting the mass modification of higher charmonium states. We also compare the present data with the previous results. These results of present investigation may be important to explain the possible outcomes of the experiments like CBM, Panda at GSI.
The development of android - based children's nutritional status monitoring system
NASA Astrophysics Data System (ADS)
Suryanto, Agus; Paramita, Octavianti; Pribadi, Feddy Setio
2017-03-01
The calculation of BMI (Body Mass Index) is one of the methods to calculate the nutritional status of a person. The BMI calculation has not yet widely understood and known by the public. In addition, people should know the importance of progress in the development of child nutrition each month. Therefore, an application to determine the nutritional status of children based on Android was developed in this study. This study restricted the calculation for children with the age of 0-60 months. The application can run on a smartphone or tablet PC with android operating system due to the rapid development of a smartphone or tablet PC with android operating system and many people own and use it. The aim of this study was to produce a android app to calculate of nutritional status of children. This study was Research and Development (R & D), with a design approach using experimental studies. The steps in this study included analyzing the formula of the Body Mass Index (BMI) and developing the initial application with the help of a computer that includes the design and manufacture of display using Eclipse software. This study resulted in android application that can be used to calculate the nutritional status of children with the age 0-60 months. The results of MES or the error calculation analysis using body mass index formula was 0. In addition, the results of MAPE percentage was 0%. It shows that there is no error in the calculation of the application based on the BMI formula. The smaller value of MSE and MAPE leads to higher level of accuracy.
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
NASA Astrophysics Data System (ADS)
Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A.
2017-09-01
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A+ and A- reggeized gluons fields and application of the obtained results is discussed as well.
The Symmetry Group of the Permutahedron
ERIC Educational Resources Information Center
Crisman, Karl-Dieter
2011-01-01
Although it can be visualized fairly easily and its symmetry group is easy to calculate, the permutahedron is a somewhat neglected combinatorial object. We propose it as a useful case study in abstract algebra. It supplies concrete examples of group actions, the difference between right and left actions, and how geometry and algebra can work…
40 CFR 1065.370 - CLD CO2 and H2O quench verification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... collisional quenching, which inhibits the chemiluminescent reaction that a CLD utilizes to detect NOX. This... x NOwet and use it in the quench verification calculations in § 1065.675. (f) Corrective action. If... action by repairing or replacing the analyzer. Before running emission tests, verify that the corrective...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Thomas; Christ, Norman; Hayakawa, Masashi
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48 3 × 96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a HLbL μ = 5.35(1.35) × 10 –10, where the error is statistical only. The finite-volume and finite lattice-spacing errorsmore » could be quite large and are the subject of ongoing research. Finally, the omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.« less
Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kervinen, T.; Riikonen, V.; Ritonummi, T.
A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less
Magnetic moments of light nuclei from lattice quantum chromodynamics
Beane, S. R.; Chang, E.; Cohen, S.; ...
2014-12-16
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m π ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron capturesmore » its dominant structure. Similarly a shell-model-like moment is found for the triton, μ 3H ~ μ p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less
Automatic extraction of blocks from 3D point clouds of fractured rock
NASA Astrophysics Data System (ADS)
Chen, Na; Kemeny, John; Jiang, Qinghui; Pan, Zhiwen
2017-12-01
This paper presents a new method for extracting blocks and calculating block size automatically from rock surface 3D point clouds. Block size is an important rock mass characteristic and forms the basis for several rock mass classification schemes. The proposed method consists of four steps: 1) the automatic extraction of discontinuities using an improved Ransac Shape Detection method, 2) the calculation of discontinuity intersections based on plane geometry, 3) the extraction of block candidates based on three discontinuities intersecting one another to form corners, and 4) the identification of "true" blocks using an improved Floodfill algorithm. The calculated block sizes were compared with manual measurements in two case studies, one with fabricated cardboard blocks and the other from an actual rock mass outcrop. The results demonstrate that the proposed method is accurate and overcomes the inaccuracies, safety hazards, and biases of traditional techniques.
On the study of rotational effects in mass asymmetric colliding nuclei at intermediate energies
NASA Astrophysics Data System (ADS)
Kaur, Kamaldeep; Kumar, Suneel
2018-05-01
The rotational dynamics has been studied for different mass asymmetric systems 49122In + 50126Sn, 48114Cs + 54134In, 40100Mo + 64148Gd, 3686Kr + 67162Ho, 3171Ga + 71177Lu, 2860Ni + 76188Os and 2450Cr + 78198 Pt for incident energies between 40 MeV/nucleon and 400 MeV/nucleon for impact parameter range 0.25 < b ˆ < 0.45 using isospin-dependent quantum molecular dynamics (IQMD) model. Our calculations reveal that the time evolutions of rotational observables for participant and spectator nuclear matter are different in mass asymmetric heavy ion reactions. Theoretical data of BUU model's azimuthal distributions for free protons have been compared successfully with IQMD model calculations. The rotational flow of free protons with increasing incident energies and elliptic flow (calculated from the fits of azimuthal distributions of free protons) dependence with energy has also been investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz
2015-04-29
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 valuemore » of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)« less
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; ...
2017-01-11
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48 3 × 96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a HLbL μ = 5.35(1.35) × 10 –10, where the error is statistical only. The finite-volume and finite lattice-spacing errorsmore » could be quite large and are the subject of ongoing research. Finally, the omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.« less
A network dynamics approach to chemical reaction networks
NASA Astrophysics Data System (ADS)
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
2013-08-01
neutralization: 1. Physical removal involves mechanical action with techniques such as gentle fric- tion (such as rubbing with hands, soft non...sulfur mustard), using gen- tle friction, such as rubbing with hands, a soft cloth, or sponges is recommended to aid in re- moval of the contaminants...account for both initial mass decontamination and secondary de- contamination. Some examples include the use of colored rubber bands and specially de
NASA Astrophysics Data System (ADS)
Bailey, Jon A.; Jang, Yong-Chull; Lee, Weonjong; Leem, Jaehoon
2018-03-01
The CKM matrix element |Vcb| can be extracted by combining data from experiments with lattice QCD results for the semileptonic form factors for the B̅ → D(*)lv̅ decays. The Oktay-Kronfeld (OK) action was designed to reduce heavy-quark discretization errors to below 1%, or through O(λ3) in HQET power counting. Here we describe recent progress on bottom-to-charm currents improved to the same order in HQET as the OK action, and correct formerly reported results of our matching calculations, in which the operator basis was incomplete.
Gravitational form factors and decoupling in 2D
NASA Astrophysics Data System (ADS)
Ribeiro, Tiago G.; Shapiro, Ilya L.; Zanusso, Omar
2018-07-01
We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to the second order in the curvature and confirmed using Feynman diagrams. The analysis of the ultraviolet (UV) limit reveals a generalized "running" form of the Polyakov action for a nonminimal scalar field and the usual Polyakov action in the conformally invariant cases. In the infrared (IR) we establish the gravitational decoupling theorem, which can be seen directly from the form factors or from the physical beta function for fields of any spin.
Classical conformal blocks and accessory parameters from isomonodromic deformations
NASA Astrophysics Data System (ADS)
Lencsés, Máté; Novaes, Fábio
2018-04-01
Classical conformal blocks appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3 /CFT2 correspondence, they are related to classical bulk actions and used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlevé VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ -function. We also discuss how the c = 1 expansion of the τ -function leads to a novel approach to calculate the 4-point classical conformal block.
Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H
2012-12-21
For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.
The dependence of stellar properties on initial cloud density
NASA Astrophysics Data System (ADS)
Jones, Michael O.; Bate, Matthew R.
2018-05-01
We investigate the dependence of stellar properties on the initial mean density of the molecular cloud in which stellar clusters form using radiation hydrodynamical simulations that resolve the opacity limit for fragmentation. We have simulated the formation of three star clusters from the gravitational collapse of molecular clouds whose densities vary by a factor of a hundred. As with previous calculations including radiative feedback, we find that the dependence of the characteristic stellar mass, Mc, on the initial mean density of the cloud, ρ, is weaker than the dependence of the thermal Jeans mass. However, unlike previous calculations, which found no statistically significant variation in the median mass with density, we find a weak dependence approximately of the form Mc∝ρ-1/5. The distributions of properties of multiple systems do not vary significantly between the calculations. We compare our results to the result of observational surveys of star-forming regions, and suggest that the similarities between the properties of our lowest density calculation and the nearby Taurus-Auriga region indicate that the apparent excess of solar-type stars observed may be due to the region's low density.
Surface term effects on mass estimators
NASA Astrophysics Data System (ADS)
Membrado, M.; Pacheco, A. F.
2016-05-01
Context. We propose a way of estimating the mass contained in the volume occupied by a sample of galaxies in a virialized system. Aims: We analyze the influence of surface effects and the contribution of the cosmological constant terms on our mass estimations of galaxy systems. Methods: We propose two equations that contain surface terms to estimate galaxy sample masses. When the surface terms are neglected, these equations provide the so-called virial and projected masses. Both equations lead to a single equation that allows sample masses to be estimated without the need for calculating surface terms. Sample masses for some nearest galaxy groups are estimated and compared with virialized masses determined from turn-around radii and results of a spherical infall model. Results: Surface effects have a considerable effect on the mass estimations of the studied galaxy groups. According to our results, they lead sample masses of some groups to being less than half the virial mass estimations and even less than 10% of projected mass estimations. However, the contributions of cosmological constant terms to mass estimations are smaller than 2% for the majority of the virialized groups studied. Our estimations are in agreement with virialized masses calculated from turn-around radii. Virialized masses for complexes were found to be: (8.9 ± 2.8) × 1011 M⊙ for the Milky Way - M 31; (12.5 ± 2.5) × 1011 M⊙ for M 81 - NGC 2403; (21.5 ± 7.7) × 1011 M⊙. for Cantaurs A - M 83; and (7.9 ± 2.6) × 1011 M⊙. for IC 324 - Maffei. Conclusions: The nearest galaxy groups located inside a sphere of 5 Mpc have been addressed to explore the performance of our mass estimator. We have seen that surface effects make mass estimations of galaxy groups rather smaller than both virial and projected masses. In mass calculations, cosmological constant terms can be neglected; nevertheless, the collapse of cold dark matter leading to virialized structures is strongly affected by the cosmological constant. We have also seen that, if mass density were proportional to luminosity density on different scales in the Universe, the 5 Mpc sphere would have a mean density close to that of the sphere region containing galaxies and systems of galaxies; thus, the rest of the sphere could contain regions of low-mass dark halos with similar mass density. This mass density would be about 4.5 times greater than that of the matter background of the Universe at present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danshita, Ippei; Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555; Tsuchiya, Shunji
2007-07-15
In their recent paper [Phys. Rev. A 71, 033622 (2005)], Seaman et al. studied Bloch states of the condensate wave function in a Kronig-Penney potential and calculated the band structure. They argued that the effective mass is always positive when a swallowtail energy loop is present in the band structure. In this Comment, we reexamine their argument by actually calculating the effective mass. It is found that there exists a region where the effective mass is negative even when a swallowtail is present. Based on this fact, we discuss the interpretation of swallowtails in terms of superfluidity.
NASA Astrophysics Data System (ADS)
Nishio, Katsuhisa
2013-12-01
Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.