Sample records for calculated mol wt

  1. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  2. Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling

    PubMed Central

    El-Eskandarany, M. Sherif; Shaban, Ehab

    2015-01-01

    Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH2 was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH2 powders. The as-fabricated nanocomposite MgH2/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H2 at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van’t Hoff approach was used to calculate the enthalpy (∆H) and entropy (∆S) of hydrogenation for MgH2, which was found to be −72.74 kJ/mol and 112.79 J/mol H2/K, respectively. Moreover, van’t Hoff method was employed to calculate the ΔH and ΔS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H2/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h. PMID:28793606

  3. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.

    PubMed

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2018-01-30

    Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK -/- ) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK -/- muscles (i.e. 0.65 and 0.05 mol phosphate mol -1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK -/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P <0.05, n =8). Interestingly, the HEPC determined during repeated isovelocity contractions was statistically similar between genotypes at 19.03±3.37 and 16.02±3.41 μmol P; respectively ( P <0.27). As a result, despite performing significantly more work, the contractile economy calculated for WT muscles was similar to that calculated for skMLCK -/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg -1  μmol -1 P, respectively ( P <0.27). In conclusion, our results support the notion that myosin RLC phosphorylation enhances dynamic contractile function of mouse fast skeletal muscle but does so without decreasing contractile economy. © 2018. Published by The Company of Biologists Ltd.

  4. Human thyrotropin receptor subunits characterized by thyrotropin affinity purification and western blotting.

    PubMed

    Leedman, P J; Newman, J D; Harrison, L C

    1989-07-01

    We studied the subunit structure of the human TSH receptor in thyroid tissue from patients with Graves' disease and multinodular goiter by TSH affinity chromatography, immunoprecipitation with Graves' immunoglobulins (Igs), and a modified technique of Western blotting. Human TSH receptor-binding activity was purified about 1,270-fold by sequential affinity chromatography on wheat germ lectin-agarose and TSH-agarose. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of nonreduced affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed three noncovalently linked subunits of 70,000, 50,000, and 35,000 mol wt. When reduced, a major subunit of 25,000 mol wt was identified. When 3 mol/L NaCl was used to elute affinity-purified receptors only the 50,000 mol wt nonreduced subunit was detected. This subunit bound [125I]bovine TSH and was precipitated by Graves' Igs. Modifications to the conventional Western blotting technique enabled thyroglobulin components (approximately 220,000 mol wt), thyroid microsomal antigen (a doublet of approximately 110,000 mol wt), and putative TSH receptor subunits of 70,000 and 50,000 mol wt to be identified in thyroid particulate membranes by Graves' Igs. Blotting of affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed subunits of either 70,000 or 50,000 mol wt, with a minority of Graves' serum samples. We conclude that the nonreduced human TSH receptor is an oligomeric complex comprising three different subunits of 70,000, 50,000, and 35,000 mol wt. The reduced receptor exists as a single subunit of 25,000 mol wt, which may be disulfide linked to form the higher mol wt forms. The 70,000 and 50,000 mol wt subunits contain epitopes that bind Graves' Igs in modified Western blots, thus directly confirming that the human TSH receptor is a target for Graves' Igs.

  5. Venom from the snake Bothrops asper Garman. Purification and characterization of three phospholipases A2

    PubMed Central

    Anagón, Alejandro C.; Molinar, Ricardo R.; Possani, Lourival D.; Fletcher, Paul L.; Cronan, John E.; Julia, Jordi Z.

    1980-01-01

    The water-soluble venom of Bothrops asper Garman (San Juan Evangelista, Veracruz, México) showed 15 polypeptide bands on polyacrylamide-gel electrophoresis. This material exhibited phospholipase, hyaluronidase, N-benzoyl-l-arginine ethyl hydrolase, N-benzoyl-l-tyrosine ethyl hydrolase and phosphodiesterase activity, but no alkaline phosphatase or acid phosphatase activity. Fractionation on Sephadex G-75 afforded seven protein fractions, which were apparently less toxic than the whole venom (LD50=4.3μg/g mouse wt.). Subsequent separation of the phospholipase-positive fraction (II) on DEAE-cellulose with potassium phosphate buffers (pH7.55) gave several fractions, two being phospholipase-positive (II.6 and II.8). These fractions were further purified on DEAE-cellulose columns with potassium phosphate buffers (pH8.6). Fraction II.8.4 was rechromatographed in the same DEAE-cellulose column, giving a pure protein designated phospholipase 1. The fraction II.6.3 was further separated by gel disc electrophoresis yielding two more pure proteins designated phospholipase 2 and phospholipase 3. Analysis of phospholipids hydrolysed by these enzymes have shown that all three phospholipases belong to type A2. Amino acid analysis has shown that phospholipase A2 (type 1) has 97 residues with a calculated mol.wt. of 10978±11. Phospholipase A2 (type 2) has 96 residues with a mol.wt. of 10959±11. Phospholipase A2 (type 3) has 266 residues with 16 half-cystine residues and a calculated mol.wt of 29042±31. Automated Edman degradation showed the N-terminal sequence to be: Asx-Leu-Trp-Glx-Phe-Gly-Glx-Met-Met-Ser-Asx-Val- Met-Arg-Lys-Asx-Val-Val-Phe-Lys-Tyr-Leu- for phospholipase A2 (type 2). ImagesFig. 1. PMID:7387631

  6. A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells.

    PubMed

    Yang, H Y; Lieska, N; Goldman, A E; Goldman, R D

    1985-02-01

    Native intermediate filament (IF) preparations from the baby hamster kidney fibroblastic cell line (BHK-21) contain a number of minor polypeptides in addition to the IF structural subunit proteins desmin, a 54,000-mol-wt protein, and vimentin, a 55,000-mol-wt protein. A monoclonal antibody was produced that reached exclusively with a high molecular weight (300,000) protein representative of these minor proteins. Immunological methods and comparative peptide mapping techniques demonstrated that the 300,000-mol-wt species was biochemically distinct from the 54,000- and 55,000-mol-wt proteins. Double-label immunofluorescence observations on spread BHK cells using this monoclonal antibody and a rabbit polyclonal antibody directed against the 54,000- and 55,000-mol-wt proteins showed that the 300,000-mol-wt species co-distributed with IF in a fibrous pattern. In cells treated with colchicine or those in the early stages of spreading, double-labeling with these antibodies revealed the co-existence of the respective antigens in the juxtanuclear cap of IF that is characteristic of cells in these physiological states. After colchicine removal, or in the late stages of cell spreading, the 300,00-mol-wt species and the IF subunits redistributed to their normal, highly coincident cytoplasmic patterns. Ultrastructural localization by the immunogold technique using the monoclonal antibody supported the light microscopic findings in that the 300,000-mol-wt species was associated with IF in the several physiological and morphological cell states investigated. The gold particle pattern was less intimately associated with IF than that defined by anti-54/55 and was one of non-uniform distribution along IF, being clustered primarily at points of proximity between IF, where an amorphous, proteinaceous material was often the labeled element. Occasionally, "bridges" of label were seen extending outward from such clusters on IF. Gold particles were infrequently bound to microtubules, microfilaments, or other cellular organelles, and when so, IF were usually contiguous. During multiple cycles of in vitro disassembly/assembly of the IF from native preparations, the 300,000-mol-wt protein remained in the fraction containing the 54,000- and 55,000-mol-wt structural subunits, whether the latter were in the soluble state or pelleted as formed filaments. In keeping with the nomenclature developed for the microtubule-associated proteins (MAPs), the acronym IFAP-300K (intermediate filament associated protein) is proposed for this molecule.

  7. Reaction layer characterization of the braze joint of silicon nitride to stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, R.; Indacochea, J. E.

    1994-10-01

    This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium suicide (Ti 5Si3). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kj/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kj/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 °C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.

  8. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C

    NASA Astrophysics Data System (ADS)

    Neudorf, D. A.; Elliott, J. F.

    1980-12-01

    The thermodynamic properties of Na2O-SiO2 and Na2O-SiO2-CaO melts have been measured using the galvanic cellbegin{array}{*{20}c} {O_2 (g), (Na_2 O), Pt} \\ {Na_2 O - WO_3 liq} \\ left| begin{gathered} Na^ + \\ β - alumina \\ right| begin{array}{*{20}c} {Pt,(Na_2 O), O_2 (g)} \\ {Na_2 O - SiO_2 - CaO liq} \\ Activities of Na2O were calculated from the reversible emf of the cell. This is possible because the activity of Na2O in the Na2O-WO3 liquid is known from previous work. Data for the binary Na2O-SiO2 system were obtained between 1000 and 1100 °C and for compositions ranging from 25 wt pct to 40 wt pct Na2O. At 1050 °C, Loga_{Na_2 O} varied from approximately 10.2 at 25 wt pct Na2O to approximately -8.3 at 40 wt pct Na2O, the dependence with respect to composition being nearly linear. The Gibbs-Duhem equation was used to calculate the activities of SiO2(s), and the integral mixing properties, G M, HM, and S M, were derived. At the di-silicate composition, G M = -83 kJ/mol, H M = -41 kJ mol and S M = 33 J/mol K at 1000 °C. (Standard states are pure, liquid Na2O and pure, solid tridymite.) The activity data are interpreted in terms of the polymeric nature of silicate melts. Activities of Na2O in the Na2O-CaO-SiO2 system were measured for the 25, 30 and 35 wt pct Na2O binary compositions with up to 10 wt pct CaO added. The addition of CaO caused an increase in the activity of Na2O at constantN_{Na_2 O} /N_{SiO_2 } . The experimental data agree well with the behavior predicted by Richardson’s ternary mixing model.

  9. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments.

    PubMed

    Tilney, L G

    1975-02-01

    When Limulus sperm are induced to undergo the acrosomal reaction, a process, 50 mum in length, is generated in a few seconds. This process rotates as it elongates; thus the acrosomal process literally screws through the jelly of the egg. Within the process is a bundle of filaments which before induction are coiled up inside the sperm. The filament bundle exists in three stable states in the sperm. One of the states can be isolated in pure form. It is composed of only three proteins whose molecular weights (mol wt) are 43,000, 55,000, and 95,000. The 43,000 mol wt protein is actin, based on its molecular weight, net charge, morphology, G-F transformation, and heavy meromyosin (HMM) binding. The 55,000 mol wt protein is in equimolar ratio to actin and is not tubulin, binds tenaciously to actin, and inhibits HMM binding. Evidence is presented that both the 55,000 mol wt protein and the 95,000 mol wt protein (possibly alpha-actinin) are also present in Limulus muscle. Presumably these proteins function in the sperm in holding the actin filaments together. Before the acrosomal reaction, the actin filaments are twisted over one another in a supercoil; when the reaction is completed, the filaments lie parallel to each other and form an actin paracrystal. This change in their packing appears to give rise to the motion of the acrosomal process and is under the control of the 55,000 mol wt protein and the 95,000 mol wt protein.

  10. Sintering activation energy MoSi2-WSi2-Si3N4 ceramic

    NASA Astrophysics Data System (ADS)

    Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.

    2018-04-01

    The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.

  11. Stress-State Effects on Strength and Fracture of Partially-Stabilized Zirconia

    DTIC Science & Technology

    1994-03-01

    Ceramics and Test Procedures (1) Ce-TZP/AI 2 0 3 Ceramics A Ce-TZP/A120 3 powder of the nominal composition, 88 wt % of Ce-TZP (12 mol % CeO2 and 88...mol % ZrO2) and 10 wt % A120 3 and 2 wt % of proprietary dopants was obtained from a commercial source#. Billets of the Ce-TZP/A120 3 were prepared by...34Metastability of the Martensitic Transformation in a 12 mol % Ceria-Zirconia Alloy : 1, Deformation and Fracture Observations," J. Am. Ceram. Soc

  12. Subunit composition and structure of subcomponent C1q of the first component of human complement.

    PubMed

    Reid, K B; Porter, R R

    1976-04-01

    1. Unreduced human subcomponent C1q was shown by electrophoresis on polyacrylamide gels run in the presence of sodium dodecyl sulphate to be composed of two types of non-covalently linked subunits of apparent mol.wts. 69 000 and 54 000. The ratio of the two subunits was markedly affected by the ionic strength of the applied sample. At a low ionic strength of applied sample, which gave the optimum value for the 54 000-apparent mol.wt. subunit, a ratio of 1.99:1.00 was obtained for the ratio of the 69 000-apparent mol.wt. subunit to the 5400-apparent-mol.wt. subunit. The amount of the 54 000-apparent-mol.wt. subunit detected in the expected position on the gel was found to be inversely proportional to increases in the ionic strength of the applled sample. 2. Human subcomponent C1q on reduction and alkylation, or oxidation, yields equimolar amounts of three chains designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. The results obtained by Yonemasu & Stroud [(1972) Immunochemistry 9, 545-554], which showed that the 69 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the A and B chains and that the 54 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the C chain, were confirmed. 3. Gel filtration on Sephadex G-200 in 6.0M-guanidinium chloride showed that both types of unreduced subunit were eluted together as a single symmetrical peak of apparent mol.wt. 49 000-50 000 when globular proteins were used as markers. The molecular weights of the oxidized or reduced A, B and C chains have been shown previously to be very similar all being in the range 23 000-24 000 [Reid et al. (1972) Biochem. J. 130, 749-763; Reid (1974) Biochem. J. 141, 189-203]. 4. It is proposed that subcomponent C1q (mol.wt. 410000) is composed of nine non-covalently linked subunits, i.e. six A-B dimers and three C-C dimers. 5. A structure for subcomponent C1q is proposed and is based on the assumption that the collagen-like regions of 78 residues in each of the A, B and C chains are combined to form a triple-helical structure of the same type as is found in collagens.

  13. Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts.

    PubMed

    Gan, Darren Kin Wai; Loy, Adrian Chun Minh; Chin, Bridgid Lai Fui; Yusup, Suzana; Unrean, Pornkamol; Rianawati, Elisabeth; Acda, Menandro N

    2018-06-06

    Thermodynamic and kinetic parameters of catalytic pyrolysis of rice hull (RH) pyrolysis using two different types of renewable catalysts namely natural limestone (LS) and eggshells (ES) using thermogravimetric analysis (TG) approach at different heating rates of 10-100 K min -1 in temperature range of 323-1173 K are investigated. Catalytic pyrolysis mechanism of both catalysts had shown significant effect on the degradation of RH. Model free kinetic of iso-conversional method (Flynn-Wall-Ozawa) and multi-step reaction model (Distributed Activation Energy Model) were employed into present study. The average activation energy was found in the range of 175.4-177.7 kJ mol -1 (RH), 123.3-132.5 kJ mol -1 (RH-LS), and 96.1-100.4 kJ mol -1 (RH-ES) respectively. The syngas composition had increased from 60.05 wt% to 63.1 wt% (RH-LS) and 63.4 wt% (RH-ES). However, the CO 2 content had decreased from 24.1 wt% (RH) to 20.8 wt% (RH-LS) and 19.9 wt% (RH-ES). Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng

    This paper investigates the CO 2 and N 2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO 2 and N 2 O at representative lean (0.04 mol CO 2/mol alkalinity), middle (0.13 mol CO 2 /mol alkalinity) and rich (0.46 mol CO 2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N 2 O at (0.08-0.09 molmore » CO 2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO 2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO 2 and N 2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO 2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO 2 in GAP-1/TEG is linked to the physical solubility of CO 2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO 2 capture in water-lean solvents.« less

  15. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity.

    PubMed

    Tan, XueHai; Wang, Liya; Holt, Chris M B; Zahiri, Beniamin; Eikerling, Michael H; Mitlin, David

    2012-08-21

    We have synthesized a new metastable metal hydride with promising hydrogen storage properties. Body centered cubic (bcc) magnesium niobium hydride (Mg(0.75)Nb(0.25))H(2) possesses 4.5 wt% hydrogen gravimetric density, with 4 wt% being reversible. Volumetric hydrogen absorption measurements yield an enthalpy of hydride formation of -53 kJ mol(-1) H(2), which indicates a significant thermodynamic destabilization relative to the baseline -77 kJ mol(-1) H(2) for rutile MgH(2). The hydrogenation cycling kinetics are remarkable. At room temperature and 1 bar hydrogen it takes 30 minutes to absorb a 1.5 μm thick film at sorption cycle 1, and 1 minute at cycle 5. Reversible desorption is achieved in about 60 minutes at 175 °C. Using ab initio calculations we have examined the thermodynamic stability of metallic alloys with hexagonal close packed (hcp) versus bcc crystal structure. Moreover we have analyzed the formation energies of the alloy hydrides that are bcc, rutile or fluorite.

  16. Growth hormone aggregates in the rat adenohypophysis

    NASA Technical Reports Server (NTRS)

    Farrington, M.; Hymer, W. C.

    1990-01-01

    Although it has been known for some time that GH aggregates are contained within the rat anterior pituitary gland, the role that they might play in pituitary function is unknown. The present study examines this issue using the technique of Western blotting, which permitted visualization of 11 GH variants with apparent mol wt ranging from 14-88K. Electroelution of the higher mol wt variants from gels followed by their chemical reduction with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. With the blot procedure we found 1) that GH aggregates greater than 44K were associated with a 40,000 x g sedimentable fraction; 2) that GH aggregates were not present in glands from thyroidectomized rats, but were in glands from the thyroidectomized rats injected with T4; 3) that GH aggregates were uniquely associated with a heavily granulated somatotroph subpopulation isolated by density gradient centrifugation; and 4) that high mol wt GH forms were released from the dense somatotrophs in culture, since treatment of the culture medium with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. Taken together, the results show that high mol wt GH aggregates are contained in secretory granules of certain somatotrophs and are also released in aggregate form from these cells in vitro.

  17. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    NASA Astrophysics Data System (ADS)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  18. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  19. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology.

    PubMed

    Zhou, D; Xu, X; Mu, H; Høy, C E; Adler-Nissen, J

    2001-12-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.

  20. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  1. Properties of the iron--sulphur proteins of the benzene dioxygenase system from Pseudomonas putida.

    PubMed Central

    Crutcher, S E; Geary, P J

    1979-01-01

    A purification procedure was developed to stabilize the iron-sulphur proteins of the benzene dioxygenase system from Pseudomonas putida. The intermediate electron-carrying protein has a mol. wt. of 12300 and possesses one (2Fe--2S) cluster, whereas the terminal dioxygenase has a mol.wt. of 215300 and possesses two (2Fe--2S) clusters. The order and stoicheiometry of electron transfer and of the whole system are described. Images Fig. 2. PMID:435241

  2. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  3. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.

    PubMed

    Srinivasadesikan, V; Raghunath, P; Lin, M C

    2015-06-01

    Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

  4. [Cross-reactions between the antigens of healthy pulmonary tissue and Moraxella catarrhalis].

    PubMed

    Markina, O A; Iastrebova, N E; Vaneeva, N P; Liashova, V N; Ovechko, N N

    2004-01-01

    The study of cross-reactions between healthy pulmonary tissue antigens and Moraxella catarrhalis with the use of SDS-electrophoresis and immunoblotting revealed that in the component of healthy pulmonary tissue with a mol. wt. of 40 kD epitopes existed to which antibodies were produced, capable of cross reaction with the components of M. catarrhalis with a mol. wt. of 35 kD and 70 kD. In addition, the presence of cross-reactions between cytokeratin-8, protein contained in healthy pulmonary tissue, and M. catarrhalis antigens was established.

  5. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  6. Two distinct forms of Factor VIII coagulant protein in human plasma. Cleavage by thrombin, and differences in coagulant activity and association with von Willebrand factor.

    PubMed Central

    Weinstein, M J; Chute, L E

    1984-01-01

    We have characterized Factor VIII coagulant protein, present in normal human plasma, that reacts with a specific human 125I-labeled anti-human VIII:C antigen Fab antibody fragment. Two major Factor VIII coagulant antigen populations were present. The first, approximately 85% of the total antigen, was bound to von Willebrand factor and when tested in a standard one-stage assay had Factor VIII coagulant activity. The second antigenic population, eluting near fibrinogen when plasma was gel filtered, was not bound to von Willebrand protein, did not have Factor VIII coagulant activity unless activated, but did block anti-VIII:C Fab neutralization of clotting activity. The two antigenic populations were separable by cryoprecipitation and agarose gel electrophoresis. Although the two antigenic populations differed in their Factor VIII coagulant activity and in their binding to von Willebrand factor, the principal member of both populations is of mol wt 2.4 X 10(5). Both antigens, when proteolyzed by thrombin, were quickly converted to a 1 X 10(5)-mol wt form in association with the appearance of VIII:C activity. The 1 X 10(5)-mol wt antigen was further slowly degraded to an 8 X 10(4)-mol wt form while Factor VIII coagulant activity declined. These results demonstrate the presence of an inactive Factor VIII coagulant protein in plasma, not associated with von Willebrand factor, that can react with thrombin to yield Factor VIII coagulant activity. Images PMID:6421875

  7. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies.

    PubMed Central

    Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N

    1986-01-01

    We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence. Images PMID:3511098

  8. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies.

    PubMed

    Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N

    1986-02-01

    We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence.

  9. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai

    2018-02-01

    Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.

  10. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  11. Crystal phase analysis of SnO{sub 2}-based varistor ceramic using the Rietveld method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, M.L.; Pianaro, S.A.; Andrade, A.V.C.

    2006-09-15

    A second addition of l mol% of CoO to a pre calcined SnO{sub 2}-based ceramic doped with 1.0 mol% of CoO, 0.05 mol% of Nb{sub 2}O{sub 5} and 0.05 mol% of Cr{sub 2}O{sub 3} promotes the appearance of a secondary phase, Co{sub 2}SnO{sub 4}, besides the SnO{sub 2} cassiterite phase, when the ceramic was sintered at 1350 deg. C/2 h. This was observed using X-ray powder diffraction, scanning electron microscopy and energy dispersive X-ray techniques. Rietveld refinement was carried out to quantify the phases present in the ceramic system. The results of the quantitative analysis were 97 wt.% SnO{sub 2}more » and 3 wt.% Co{sub 2}SnO{sub 4}. The microstructural analysis showed that a certain amount of cobalt ion remains into cassiterite grains.« less

  12. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation.

    PubMed

    Chen, Yi-Lin; Lo, Shang-Lien; Chang, Hsiang-Ling; Yeh, Hsiao-Mei; Sun, Liping; Oiu, Chunsheng

    2016-01-01

    An attractive and effective method for converting solar energy into clean and renewable hydrogen energy is photocatalytic water splitting over semiconductors. The study aimed at utilizing organic sacrificial agents in water, modeled by formic acid, in combination with visible light driven photocatalysts to produce hydrogen with high efficiencies. The photocatalytic hydrogen production of cadmium sulfide (CdS)/titanate nanotubes (TNTs) binary hybrid with specific CdS content was investigated. After visible light irradiation for 3 h, the hydrogen production rate of 25 wt% CdS/TNT achieved 179.35 μmol·h(-1). Thanks to the two-step process, CdS/TNTs-WO3 ternary hybrid can better promote the efficiency of water splitting compared with CdS/TNTs binary hybrid. The hydrogen production of 25 wt% CdS/TNTs-WO3 achieved 212.68 μmol·h(-1), under the same condition. Coating of platinum metal onto the WO3 could further promote the reaction. Results showed that 0.2 g 0.1 wt% Pt/WO3 + 0.2 g 25 wt% CdS/TNTs had the best hydrogen production rate of 428.43 μmol·h(-1). The resultant materials were well characterized by high-resolution transmission electron microscope, X-ray diffraction, scanning electron microscopy, and UV-Vis spectra.

  13. Isolation and partial characterization of melanoma-associated antigens identified by autologous antibody.

    PubMed

    Vlock, D R; Scalise, D; Meglin, N; Kirkwood, J M; Ballou, B

    1988-06-01

    The study of the autologous immune response to cancer avoids the difficulties encountered in the use of xenoantisera and may identify antigens of physiological relevance. However, the low titer and incidence of autologous antibody to melanoma have hampered further evaluation. By utilizing acid dissociation and ultrafiltration of serum, we have been able to augment the detectable autologous immune response to melanoma in the majority of patients studied. In autologous system Y-Mel 84:420, serum S150 demonstrated a rise in titer from 1:32 in native sera to 1:262,044 after dissociation. The antigen detected by S150 was found to be broadly represented on melanoma, glioma, renal cell carcinoma, neuroblastoma, and head and neck carcinoma cell lines. It did not react with bladder or colon carcinoma, fetal fibroblasts, pooled platelets, lymphocytes and red blood cells, or autologous cultured lymphocytes. Using polyacrylamide gel electrophoresis, S150 detects a 66,000-mol wt antigen in spent tissue culture media and serum ultrafiltrate. In cell lysate two bands between 20,000 and 30,000 mol wt are detected by S150. The 66,000-mol wt antigen is sensitive to trypsin digestion and but is resistant to pepsin and heat inactivation. Exposure of spent media to trypsin results in the development of a 24,000-mol wt band that appears to correspond to the antigen detected in the cell lysate. The difference between the antigens detected in the cell lysate as compared with spent media and serum ultrafiltrate may be due to degradation during cell lysis. We conclude that melanoma-associated antigens are present in the serum of patients with melanoma and are shed or secreted by their tumor cells.

  14. ²H enrichment distribution of hepatic glycogen from ²H₂O reveals the contribution of dietary fructose to glycogen synthesis.

    PubMed

    Delgado, Teresa C; Martins, Fátima O; Carvalho, Filipa; Gonçalves, Ana; Scott, Donald K; O'Doherty, Robert; Macedo, M Paula; Jones, John G

    2013-02-15

    Dietary fructose can benefit or hinder glycemic control, depending on the quantity consumed, and these contrasting effects are reflected by alterations in postprandial hepatic glycogen synthesis. Recently, we showed that ²H enrichment of glycogen positions 5 and 2 from deuterated water (²H₂O) informs direct and indirect pathway contributions to glycogenesis in naturally feeding rats. Inclusion of position 6(S) ²H enrichment data allows indirect pathway sources to be further resolved into triose phosphate and Krebs cycle precursors. This analysis was applied to six rats that had fed on standard chow (SC) and six rats that had fed on SC plus 35% sucrose in their drinking water (HS). After 2 wk, hepatic glycogenesis sources during overnight feeding were determined by ²H₂O administration and postmortem analysis of glycogen ²H enrichment at the conclusion of the dark period. Net overnight hepatic glycogenesis was similar between SC and HS rodents. Whereas direct pathway contributions were similar (403 ± 71 μmol/g dry wt HS vs. 578 ± 76 μmol/g dry wt SC), triose phosphate contributions were significantly higher for HS compared with SC (382 ± 61 vs. 87 ± 24 μmol/g dry wt, P < 0.01) and Krebs cycle inputs lower for HS compared with SC (110 ± 9 vs. 197 ± 32 μmol/g dry wt, P < 0.05). Analysis of plasma glucose ²H enrichments at the end of the feeding period also revealed a significantly higher fractional contribution of triose phosphate to plasma glucose levels in HS vs. SC. Hence, the ²H enrichment distributions of hepatic glycogen and glucose from ²H₂O inform the contribution of dietary fructose to hepatic glycogen and glucose synthesis.

  15. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  16. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.

    PubMed

    Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde

    2015-09-01

    One α-tricalcium phosphate (α-TCP) powder was either calcined at 500°C to obtain fully crystalline α-TCP or milled for different durations to obtain α-TCP powders containing various amounts of X-ray amorphous tricalcium phosphate (ATCP). These powders containing between 0 and 71wt.% ATCP and up to 2.0±0.1wt.% β-TCP as minor phase were then hydrated in 0.1M Na2HPO4 aqueous solution and the resulting heat flows were measured by isothermal calorimetry. Additionally, the evolution of the phase composition during hydration was determined by in situ XRD combined with the G-factor method, an external standard method which facilitates the indirect quantification of amorphous phases. Maximum ATCP hydration was reached after about 1h, while that of crystalline α-TCP hydration occurred between 4 and 11h, depending on the ATCP content. An enthalpy of formation of -4065±6kJ/mol (T=23°C) was calculated for ATCP (Ca3(PO4)2), while for crystalline α-TCP (α-Ca3(PO4)2) a value of -4113±6kJ/mol (T=23°C) was determined. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  18. Hydrogen kinetics studies of MgH2-FeTi composites

    NASA Astrophysics Data System (ADS)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  19. High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency.

    PubMed

    Toscan, Andréia; Morais, Ana Rita C; Paixão, Susana M; Alves, Luís; Andreaus, Jürgen; Camassola, Marli; Dillon, Aldo José Pinheiro; Lukasik, Rafal M

    2017-01-01

    The performance of two lignocellulosic biomasses was studied in high-pressure carbon dioxide/water pre-treatment. Sugarcane bagasse and elephant grass were used to produce C 5 -sugars from hemicellulose and, simultaneously, to promote cellulose digestibility for enzymatic saccharification. Different pre-treatment conditions, with combined severity factor ranging from -1.17 to -0.04, were evaluated and maximal total xylan to xylose yields of 59.2wt.% (34.4wt.% xylooligomers) and 46.4wt.% (34.9wt.% xylooligomers) were attained for sugarcane bagasse and elephant grass, respectively. Furthermore, pre-treated biomasses were highly digestible, with glucan to glucose yields of 77.2mol% and 72.4mol% for sugarcane bagasse and elephant grass, respectively. High-pressure carbon dioxide/water pre-treatment provides high total C 5 -sugars and glucose recovery from both lignocellulosic biomasses; however it is highly influenced by composition and intrinsic features of each biomass. The obtained results confirm this approach as an effective and greener alternative to conventional pre-treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    PubMed

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  1. Siderophile trace element diffusion in Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Watson, Heather C.; Watson, E. Bruce

    2003-09-01

    Experiments were performed in a piston cylinder apparatus to characterize the diffusion behavior of the siderophile elements, Mo, Cu, Pd, Au, and Re in solid Fe-Ni alloy (90 wt.% Fe, 10 wt.% Ni). All experiments were conducted at 1 GPa and temperatures ranging from 1175 to 1400 °C. Activation energies of all elements fall between 270 kJ/mol (Cu) and 360 kJ/mol (Mo). Mo, Cu, Pd, and Au all show similar diffusivities at the same conditions, but the diffusivity of Re was consistently close to an order of magnitude lower. Initial experiments on other refractory elements (Os, Pt, and Ir) indicate that their diffusivities are close to or slightly lower than that of Re.

  2. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Early and advanced glycosylation end products. Kinetics of formation and clearance in peritoneal dialysis.

    PubMed Central

    Friedlander, M A; Wu, Y C; Elgawish, A; Monnier, V M

    1996-01-01

    The chronic contact of glucose-containing dialysate and proteins results in the deposition of advanced glycation end products (AGEs) on peritoneal tissues in patients treated by peritoneal dialysis (PD), yet plasma levels of the AGE pentosidine are significantly lower in PD than in hemodialysis (HD). We measured glycation of peritoneal proteins in patients on PD over the time course of intraperitoneal equilibration of fresh peritoneal dialysate. The glycated content of peritoneal proteins (furosine method) was initially identical to plasma but increased 200% within 4 h due to in situ glycation as also demonstrated in vitro. In contrast, peritoneal proteins contained a 2-4 x greater content of the AGE pentosidine at all equilibrium time points. Plasma protein furosine content was identical in patients on PD and on HD. Fractionation by gel filtration of serum from patients on PD and HD revealed that > 95% of the pentosidine was linked to proteins > 10,000 mol wt; < 1% to proteins < 10,000 mol wt; and < 1%, free. Neither HD nor PD affected protein-bound pentosidine. The HD treatment decreased free and < 10,000 mol wt bound pentosidine. However clearance of protein-associated pentosidine by the peritoneal membrane may explain lower steady state levels in patients treated by PD. PMID:8609229

  4. Abnormal factor VIII coagulant antigen in patients with renal dysfunction and in those with disseminated intravascular coagulation.

    PubMed Central

    Weinstein, M J; Chute, L E; Schmitt, G W; Hamburger, R H; Bauer, K A; Troll, J H; Janson, P; Deykin, D

    1985-01-01

    Factor VIII antigen (VIII:CAg) exhibits molecular weight heterogeneity in normal plasma. We have compared the relative quantities of VIII:CAg forms present in normal individuals (n = 22) with VIII:CAg forms in renal dysfunction patients (n = 19) and in patients with disseminated intravascular coagulation (DIC; n = 7). In normal plasma, the predominant VIII: CAg form, detectable by sodium dodecyl sulfate polyacrylamide gel electrophoresis, was of molecular weight 2.4 X 10(5), with minor forms ranging from 8 X 10(4) to 2.6 X 10(5) D. A high proportion of VIII:CAg in renal dysfunction patients, in contrast, was of 1 X 10(5) mol wt. The patients' high 1 X 10(5) mol wt VIII: CAg level correlated with increased concentrations of serum creatinine, F1+2 (a polypeptide released upon prothrombin activation), and with von Willebrand factor. Despite the high proportion of the 1 X 10(5) mol wt VIII:CAg form, which suggests VIII:CAg proteolysis, the ratio of Factor VIII coagulant activity to total VIII:CAg concentration was normal in renal dysfunction patients. These results could be simulated in vitro by thrombin treatment of normal plasma, which yielded similar VIII:CAg gel patterns and Factor VIII coagulant activity to antigen ratios. DIC patients with high F1+2 levels but no evidence of renal dysfunction had an VIII:CAg gel pattern distinct from renal dysfunction patients. DIC patients had elevated concentrations of both the 1 X 10(5) and 8 X 10(4) mol wt VIII:CAg forms. We conclude that an increase in a particular VIII:CAg form correlates with the severity of renal dysfunction. The antigen abnormality may be the result of VIII:CAg proteolysis by a thrombinlike enzyme and/or prolonged retention of proteolyzed VIII:CAg fragments. Images PMID:3932466

  5. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. Role of transcellular vesicular transport.

    PubMed Central

    Lake, J R; Licko, V; Van Dyke, R W; Scharschmidt, B F

    1985-01-01

    In these studies, we have used several approaches to systematically explore the contribution of transcellular vesicular transport (transcytosis) to the blood-to-bile movement of inert fluid-phase markers of widely varying molecular weight. First, under steady-state conditions, the perfused rat liver secreted even large markers in appreciable amounts. The bile-to-plasma (B/P) ratio of these different markers, including microperoxidase (B/P ratio = 0.06; mol wt = 1,879), insulin (B/P ratio = 0.09, mol wt = 5,000), horseradish peroxidase (B/P ratio = 0.04, mol wt = 40,000), and dextran (B/P ratio = 0.09, mol wt = 70,000), exhibited no clear ordering based on size alone, and when dextrans of two different sizes (40,000 and 70,000 mol wt) were studied simultaneously, the relative amounts of the two dextran species in bile were the same as in perfusate. Taurocholate administration produced a 71% increase in bile flow but little or no (0-20%) increase in the output of horseradish peroxidase, microperoxidase, inulin, and dextran. Second, under nonsteady-state conditions in which the appearance in or disappearance from bile of selected markers was studied after their abrupt addition to or removal from perfusate, erythritol reached a B/P ratio of 1 within 2 min. Microperoxidase and dextran appeared in bile only after a lag period of approximately 12 min and then slowly approached maximal values, whereas sucrose exhibited kinetically intermediate behavior. A similar pattern was observed after removal of greater than 95% of the marker from the perfusate. Erythritol rapidly reapproached a B/P ratio of 1, whereas the B/P ratio for sucrose, dextran, and microperoxidase fell much more slowly and exceeded 1 for a full 30 min after perfusate washout. Finally, electron microscopy and fluorescence microscopy of cultured hepatocytes demonstrated the presence of horseradish peroxidase and fluorescein-dextran, respectively, in intracellular vesicles, and fractionation of perfused liver homogenates revealed that at least 35-50% of sucrose, inulin, and dextran was associated with subcellular organelles. Collectively, these observations are most compatible with a transcytosis pathway that contributes minimally to the secretion of erythritol, but accounts for a substantial fraction of sucrose secretion and virtually all (greater than 95%) of the blood-to-bile transport of microperoxidase and larger markers. These findings have important implications with respect to current concepts of canalicular bile formation as well as with respect to the conventional use of solutes such as sucrose as markers of canalicular or paracellular pathway permeability. Images PMID:2411761

  6. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries

    NASA Astrophysics Data System (ADS)

    Fernandes, Aline; Afonso, Julio Carlos; Bourdot Dutra, Achilles Junqueira

    2012-12-01

    In this work a hydrometallurgical route to recover nickel, cobalt and cadmium after leaching spent Ni-Cd batteries with hydrochloric acid was investigated. Co(II) and Cd(II) were both recovered by solvent extraction. Cd(II) was first extracted (99.7 wt.%) with pure tri-n-butylphosphate (TBP), in the original leachate acidity (5.1 mol L-1), in two stages at 25 °C with an aqueous/organic (A/O) phase ratio = 1 v/v. The Co(II) present in the raffinate (free acidity 4.1 mol L-1) was extracted with Alamine 336 or Alamine 304 (10 vol.% in kerosene) at 25 °C with an A/O ratio = 1 in two stages. 97.5 wt.% of Co(II) was extracted using Alamine 336 while only 90.4 wt.% was extracted in the case of Alamine 304. Ni(II) was isolated from the raffinate as oxalate after addition of ammonium oxalate at pH 2.

  7. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source.

    PubMed

    Huang, Shanhua; Mahmood, Nubla; Tymchyshyn, Matthew; Yuan, Zhongshun; Xu, Chunbao Charles

    2014-11-01

    In this study, formic acid (FA) was employed as an in-situ hydrogen donor for the reductive de-polymerization of kraft lignin (KL). Under the optimum operating conditions, i.e., 300 °C, 1 h, 18.6 wt.% substrate concentration, 50/50 (v/v) water-ethanol medium with FA at a FA-to-lignin mass ratio of 0.7, KL (Mw∼10,000 g/mol) was effectively de-polymerized, producing de-polymerized lignin (DL, Mw 1270 g/mol) at a yield of ∼90 wt.% and <1 wt.% yield of solid residue (SR). The MW of the DL products decreased with increasing reaction temperature, time and FA-to-lignin mass ratio. The sulfur contents of all DL products were remarkably lower than that in the original KL. It was also demonstrated that FA is a more reactive hydrogen source than external hydrogen for reductive de-polymerization of KL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  9. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet.

    PubMed

    Sumi, H; Hamada, H; Tsushima, H; Mihara, H; Muraki, H

    1987-10-15

    A strong fibrinolytic activity was demonstrated in the vegetable cheese Natto, which is a typical soybean food eaten in Japan. The average activity was calculated at about 40 CU (plasmin units)/g wet weight. This novel fibrinolytic enzyme, named nattokinase, was easily extracted with saline. The mol. wt and pI were about 20,000 and 8.6, respectively. Nattokinase not only digested fibrin but also the plasmin substrate H-D-Val-Leu-Lys-pNA (S-2251), which was more sensitive to the enzyme than other substrates tried. Diisopropyl fluorophosphate and 2,2,2-trichloro-1-hydroxyethyl-o,o-dimethylphosphate strongly inhibited this fibrinolytic enzyme.

  10. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    NASA Astrophysics Data System (ADS)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co-methyl acrylate) of Mw = 200 kg/mol to 160 0C as measured via DSC. Glycerin, ethylene glycol and glycerin/water combinations were investigated as potential plasticizers for high molecular weight (˜200,000 g/mol), high acrylonitrile (93-96 mole:mole %) content poly(acrylonitrile-co-methyl acrylate) statistical copolymers. Pure glycerin (25 wt %) induced crystallization followed by a reduced "Tm" of about 213 0C via DSC. However this composition did not melt process well. A lower M W (˜35 kg/mol) copolymer did extrude with no apparent degradation. Our hypothesis is that the hydroxyl groups in glycerin (or water) disrupt the strong dipole-dipole interactions between the chains enabling the copolymer endothermic transition (Tm) to be reduced and enable melting before the onset of degradation. Additionally high molecular weight (Mw = 200-230 kg/mol) poly(acrylonitrile-co-methyl acrylate) copolymers with lower acrylonitrile content (82-85 wt %) were synthesized via emulsion copolymerization and successfully melt pressed. These materials will be further investigated for their utility in packaging applications.

  11. Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Van Aken, David C.

    2018-04-01

    Dynamic strain aging (DSA) and rapid work hardening are typical behaviors observed in medium-Mn transformation-induced plasticity (TRIP) steel. Three alloys with manganese ranging from 10.2 to 13.8 wt pct with calculated room temperature stacking fault energies varying from - 2.1 to 0.7 mJ/m2 were investigated. Significant serrations were observed in the stress-strain behavior for two of the steels and the addition of 4.6 wt pct chromium was effective in significantly reducing the occurrence of DSA. Addition of chromium to the alloy reduced DSA by precipitation of M23(C,N)6 during batch annealing at 873 K (600 °C) for 20 hours. Three distinct DSA mechanisms were identified: one related to manganese ordering in stacking faults associated with ɛ-martensite and austenite interface, with activation energies for the onset and termination of DSA being 145 and 277 kJ/mol. A second mechanism was associated with carbon diffusion in γ-austenite where Mn-C bonding added to the total binding energy, and activation energies of 88 and 155 kJ/mol were measured for the onset and termination of DSA. A third mechanism was attributed to dislocation pinning and unpinning by nitrogen in α-ferrite with activation energies of 64 and 123 kJ/mol being identified. Tensile behaviors of the three medium manganese steels were studied in both the hot band and batch annealed after cold working conditions. Ultimate tensile strengths ranged from 1310 to 1404 MPa with total elongation of 24.1 to 34.1 pct. X-ray diffraction (XRD) was used to determine the transformation response of the steels using interrupted tensile tests at room temperature. All three of the processed steels showed evidence of two-stage TRIP where γ-austenite first transformed to ɛ-martensite, and subsequently transformed to α-martensite.

  12. Role of alloy additions on strengthening in 17-4 PH stainless steel

    NASA Astrophysics Data System (ADS)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  13. Roles of calcitonin gene-related peptide in maintenance of gastric mucosal integrity and in enhancement of ulcer healing and angiogenesis.

    PubMed

    Ohno, Takashi; Hattori, Youichiro; Komine, Rie; Ae, Takako; Mizuguchi, Sumito; Arai, Katsuharu; Saeki, Takeo; Suzuki, Tatsunori; Hosono, Kanako; Hayashi, Izumi; Oh-Hashi, Yoshio; Kurihara, Yukiko; Kurihara, Hiroki; Amagase, Kikuko; Okabe, Susumu; Saigenji, Katsunori; Majima, Masataka

    2008-01-01

    The gastrointestinal tract is known to be rich in neural systems, among which afferent neurons are reported to exhibit protective actions. We tested whether an endogenous neuropeptide, calcitonin gene-related peptide (CGRP), can prevent gastric mucosal injury elicited by ethanol and enhance healing of acetic acid-induced ulcer using CGRP knockout mice (CGRP(-/-)). The stomach was perfused with 1.6 mmol/L capsaicin or 1 mol/L NaCl, and gastric mucosal injury elicited by 50% ethanol was estimated. Levels of CGRP in the perfusate were determined by enzyme immunoassay. Gastric ulcers were induced by serosal application of absolute acetic acid. Capsaicin inhibited injured area dose-dependently. Fifty percent ethanol containing capsaicin immediately increased intragastric levels of CGRP in wild-type (WT) mice, although 50% ethanol alone did not. The protective action of capsaicin against ethanol was completely abolished in CGRP(-/-). Preperfusion with 1 mol/L NaCl increased CGRP release and reduced mucosal damage during ethanol perfusion. However, 1 mol/L NaCl was not effective in CGRP(-/-). Healing of ulcer elicited by acetic acid in CGRP(-/-) mice was markedly delayed, compared with that in WT. In WT, granulation tissues were formed at the base of ulcers, and substantial neovascularization was induced, whereas those were poor in CGRP(-/-). Expression of vascular endothelial growth factor was more markedly reduced in CGRP(-/-) than in WT. CGRP has a preventive action on gastric mucosal injury and a proangiogenic activity to enhance ulcer healing. These results indicate that the CGRP-dependent pathway is a good target for regulating gastric mucosal protection and maintaining gastric mucosal integrity.

  14. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2015-03-14

    The structure and dynamics of the nitromethane-water (NM-WT) binary mixture surrounding single walled carbon nanotubes (SWNTs) have been investigated by molecular dynamics simulations. The simulation trajectories show that the NM molecules can be selectively adsorbed both outside the surface and inside the cavity of SWNTs mainly dominated by van der Waals attractions because SWNTs have a higher binding affinity for NM than WT. The binding energies of SWNTs with NM and WT obtained from electronic structure calculations at the M06-2X/6-31+G* level are 15.31 and 5.51 kcal mol(-1), respectively. Compared with the SWNT exterior, the selective adsorption of NM is preferentially occurred in the SWNT interior due to the hydrophobic interactions and the dipole-dipole interactions, which induces the decrease of the hydrogen-bond number of NM with WT and ordered structures of NM with preferred intermolecular orientation in the SWNT cavity. Furthermore, the selective adsorption dynamics of NM from the aqueous solution is regardless of the chirality and radius of SWNTs. The SWNT radius plays a negligible role in the mass density distributions of NM outside the SWNTs, while the mass density of NM in the SWNT interior decreases gradually as the SWNT radius increases. The structural arrangements and intermolecular orientations of NM in the SWNT cavity are greatly dependent on the SWNT radius due to the size effect.

  15. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  16. Isolation and characterization of the CNBr peptides from the proteolytically derived N-terminal fragment of ovine opsin.

    PubMed Central

    Brett, M; Findlay, J B

    1983-01-01

    Ovine rhodopsin may be cleaved in situ by Staphylococcus aureus V8 proteinase into two membrane-bound fragments designated V8-L (27 000 mol.wt.) and V8-S (12 000 mol.wt.). After purification of the proteolysed complex by affinity chromatography in detergent using concanavalin A immobilized on Sepharose 4B, the two polypeptide fragments may be separated by gel-permeation chromatography on Sephadex LH-60. Digestion of the N-terminal-derived V8-L fragment with CNBr in 70% (v/v) trifluoroacetic acid resulted in a peptide mixture that could be fractionated by procedures involving gel-permeation chromatography in organic and aqueous solvents and the use of differential solubility. The complete or partial sequences of all ten peptides are reported. PMID:6224479

  17. 18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels

    PubMed Central

    Du, Yi-mei; Xia, Cheng-kun; Zhao, Ning; Dong, Qian; Lei, Ming; Xia, Jia-hong

    2012-01-01

    Aim: To compare the effects of two stereoisomeric forms of glycyrrhetinic acid on different components of Na+ current, HERG and Kv1.5 channel currents. Methods: Wild-type (WT) and long QT syndrome type 3 (LQT-3) mutant ΔKPQ Nav1.5 channels, as well as HERG and Kv1.5 channels were expressed in Xenopus oocytes. In addition, isolated human atrial myocytes were used. Two-microelectrode voltage-clamp technique was used to record the voltage-activated currents. Results: Superfusion of 18β-glycyrrhetinic acid (18β-GA, 1–100 μmol/L) blocked both the peak current (INa,P) and late current (INa,L) generated by WT and ΔKPQ Nav1.5 channels in a concentration-dependent manner, while 18α-glycyrrhetinic acid (18α-GA) at the same concentrations had no effects. 18β-GA preferentially blocked INa,L (IC50=37.2±14.4 μmol/L) to INa,P (IC50=100.4±11.2 μmol/L) generated by ΔKPQ Nav1.5 channels. In human atrial myocytes, 18β-GA (30 μmol/L) inhibited 47% of INa,P and 87% of INa,L induced by Anemonia sulcata toxin (ATX-II, 30 nmol/L). Superfusion of 18β-GA (100 μmol/L) had no effects on HERG and Kv1.5 channel currents. Conclusion: 18β-GA preferentially blocked the late Na current without affecting HERG and Kv1.5 channels. PMID:22609834

  18. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Moore, Eric; Kurtz, Andrew; Portier, Evan; Alleau, Yvan; Merrell, David

    2014-09-01

    The compositions and loadings of organic matter in soils and sediments from a diverse range of environments along the Fly River system were determined to investigate carbon transport and sequestration in this region. Soil horizons from highland sites representative of upland sources have organic carbon contents (%OC) that range from 0.3 to 25 wt%, carbon:nitrogen ratios (OC/N) that range from 7 to 25 mol/mol, highly negative stable carbon isotopic compositions (δ13Corg < -26‰) and variable concentrations of lignin phenols (1 < LP < 5 mg/100 mg OC). These compositions reflect inputs from local vegetation, with contributions from bedrock carbon in the deeper mineral horizons. Soils developed on the levees of active floodplains receive inputs of allochthonous materials by overbank deposition as well as autochthonous inputs from local vegetation. In the forested upper floodplain reaches, %OC contents are lower than upland soils (0.8-1.5 wt%) as are OC/N ratios (9-15 mol/mol) while δ13Corg (-25 to -28‰) and LP (2-6 mg/100 mg OC) values are comparable to upland soils. These results indicate that organic matter present in these active floodplain soils reflect local (primarily C3) vegetation inputs mixed with allochthonous organic matter derived from eroded bedrock. In the lower reaches of the floodplain, which are dominated by swamp grass vegetation, isotopic compositions were less negative (δ13Corg > -25‰) and non-woody vegetation biomarkers (cinnamyl phenols and cutin acids) more abundant relative to upper floodplain sites. Soils developed on relict Pleistocene floodplain terraces, which are typically not flooded and receive little sediment from the river, were characterized by low %OC contents (<0.6 wt%), low OC/N ratios (<9 mol/mol), more positive δ13Corg signatures (>-21‰) and low LP concentrations (∼3 mg/100 mg OC). These relict floodplain soils contain modern carbon that reflects primarily local (C3 or C4) vegetation sources. Total suspended solids collected along the river varied widely in overall concentrations (1 < TSS < 9000 mg/L), %OC contents (0.1-60 wt%), OC/N ratios (7-17 mol/mol) and δ13Corg signatures (-26 to -32‰). These compositions reflect a mixture of C3 vascular plants and freshwater algae. However, little of this algal production appears to be preserved in floodplain soils. A comparison of organic carbon loadings of active floodplain soils (0.2 and 0.5 mg C/m2) with previous studies of actively depositing sediments in the adjacent delta-clinoform system (0.4-0.7 mg C/m2) indicates that Fly River floodplain sediments are less effective at sequestering organic carbon than deltaic sediments. Furthermore, relict Pleistocene floodplain sites with low or negligible modern sediment accumulation rates display significantly lower loadings (0.1-0.2 mg C/m2). This deficit in organic carbon likely reflects mineralization of sedimentary organic carbon during long term oxidative weathering, further reducing floodplain carbon storage.

  19. Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg-Ni alloy

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Chen, Ruirun; Jin, Yinling; Chen, Xiaoyu; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2018-01-01

    To investigate the effect of microstructure on the better de-/hydrogenation property of Mg-based alloy, hypo-eutectic Mg-8Ni (at. %) alloy and hyper-eutectic Mg-15Ni alloy are prepared by metallurgy method. The phase constitutions and microstructures are characterized by XRD and SEM/EDS. Mg-8/15Ni alloy is composed of primary Mg/Mg2Ni and eutectic Mg-Mg2Ni. In isothermal sorption test, Mg-15Ni alloy shows preferable activation performance and faster de-/hydrogenation rates than Mg-8Ni alloy. The respective hydrogen uptake capacity in 165min is 5.62 wt% and 5.76 wt% H2 at 300 °C 3 MPa. Intersections of Mg-Mg2Ni eutectic phase boundaries with particle surface provide excellent sites and paths for the dissociation and permeation of hydrogen. The de-/hydrogenation enthalpy and entropy values are determined by PCI measurement. Based on the DSC curves at different heating rates, the desorption behavior of Mg-8/15Ni hydride is revealed and the respective activation energy is calculated to be 134.67 kJ mol-1 and 88.34 kJ mol-1 H2 by Kissinger method. Synergic dehydrogenation occurs in eutectic MgH2-Mg2NiH4, which facilitates the primary MgH2 in Mg-8Ni hydride to decompose at a lower temperature. The rapid H diffusion and synergic effect in eutectic MgH2-Mg2NiH4 collectively contribute to the lower dehydrogenation energy barrier of Mg-15Ni hydride.

  20. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  1. High performance lignin-acrylonitrile polymer blend materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naskar, Amit K.; Tran, Chau D.

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPamore » at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.« less

  2. Posttransfusion purpura associated with an autoantibody directed against a previously undefined platelet antigen.

    PubMed

    Stricker, R B; Lewis, B H; Corash, L; Shuman, M A

    1987-05-01

    Although alloantibody against the PLA1 platelet antigen is usually found in patients with posttransfusion purpura (PTP), the mechanism of destruction of the patient's own PLA1-negative platelets is unexplained. We used a sensitive immunoblot technique to detect antiplatelet antibodies in a patient with classic PTP. The patient's acute-phase serum contained antibodies against three proteins present in control (PLA1-positive) platelets: an antibody that bound to a previously unrecognized platelet protein of mol wt 120,000 [glycoprotein (GP) 120], antibodies that bound to PLA1 (mol wt 90,000), and an epitope of GP IIb (mol wt 140,000). The antibodies against PLA1 and GP IIb did not react with the patient's own PLA1-negative platelets, control PLA1-negative platelets, or thrombasthenic platelets. In contrast, the antibody against GP 120 recognized this protein in all three platelet preparations, but not in Bernard-Soulier or Leka (Baka)-negative platelets. Antibody against GP 120 was not detected in the patient's recovery serum, although the antibodies against PLA1 and GP IIb persisted. F(ab)2 prepared from the patient's acute-phase serum also bound to GP 120. These results suggest that in PTP, transient autoantibody production may be responsible for autologous (PLA1-negative) platelet destruction. In addition, alloantibodies against more than one platelet alloantigen may be found in this disease. The nature of the GP 120 autoantigen and the GP IIb-related alloantigen defined by our patient's serum remains to be determined.

  3. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana.

    PubMed

    Vishwakarma, Abhaypratap; Bashyam, Leena; Senthilkumaran, Balasubramanian; Scheibe, Renate; Padmasree, Kollipara

    2014-08-01

    As plants are sessile, they often face high light (HL) stress that causes damage of the photosynthetic machinery leading to decreased photosynthesis. The importance of alternative oxidase (AOX) in optimizing photosynthesis is well documented. In the present study, the role of AOX in sustaining photosynthesis under HL was studied using AOX1a knockout mutants (aox1a) of Arabidopsis thaliana. Under growth light (GL; 50 μmol photons m(-2) s(-1)) conditions, aox1a plants did not show any changes in photosynthetic parameters, NAD(P)/H redox ratios, or respiratory O2 uptake when compared to wild-type (WT). Upon exposure to HL (700 μmol photons m(-2) s(-1)), respiratory rates did not vary between WT and aox1a. But, photosynthetic parameters related to photosystem II (PSII) and NaHCO3 dependent O2 evolution decreased, while the P700 reduction state increased in aox1a compared to WT. Further, under HL, the redox state of cellular NAD(P)/H pools increased with concomitant rise in reactive oxygen species (ROS) and malondialdehyde (MDA) content in aox1a compared to WT. In presence of HL, the transcript levels of several genes related to antioxidant, malate-oxaloacetate (malate-OAA) shuttle, photorespiratory and respiratory enzymes was higher in aox1a compared to WT. Taken together, these results demonstrate that under HL, in spite of significant increase in transcript levels of several genes mentioned above to maintain cellular redox homeostasis and minimize ROS production, Arabidopsis plants deficient in AOX1a were unable to sustain photosynthesis as is the case in WT plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. The geochemical and petrological characteristics of prenatal caldera volcano: a case of the newly formed small dacitic caldera, Hijiori, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, Isoji; Kita, Noriko; Morishita, Yuichi

    2017-09-01

    Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H_2O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 °C; (2) bulk magma composition: 66 ± 1.5 wt% SiO2; (3) bulk magmatic H_2O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: ≤57 vol%; (5) bulk modulus of magma: 0.1-0.8 GPa; (6) magma density: 1.8-2.3 g/cm3; and (7) amount of excess magmatic H_2O: 11-32 vol% or 48-81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2-9 wt%) suggests the range of depth phenocrysts growth to be wide (2˜13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.

  5. Molecular Dynamics and Free Energy Simulations of Phenylacetate and CO2 Release from AMDase and Its G74C/C188S Mutant: A Possible Rationale for the Reduced Activity of the Latter.

    PubMed

    Karmakar, Tarak; Balasubramanian, Sundaram

    2016-11-17

    Arylmalonate decarboxylase (AMDase) catalyzes the decarboxylation of α-aryl-α-methyl malonates to produce optically pure α-arylpropionates of industrial and medicinal importance. Herein, atomistic molecular dynamics simulations have been carried out to delineate the mechanism of the release of product molecules phenylacetate (PAC) and carbon dioxide (CO 2 ), from the wild-type (WT) and its G74C/C188S mutant enzymes. Both of the product molecules follow a crystallographically characterized solvent-accessible channel to come out of the protein interior. A higher free energy barrier for the release of PAC from G74C/C188S compared to that in the WT is consistent with the experimentally observed compromised efficiency of the mutant. The release of CO 2 precedes that of PAC; free energy barriers for CO 2 and PAC release in the WT enzyme are calculated to be ∼1-2 and ∼23 kcal/mol, respectively. Postdecarboxylation, CO 2 moves toward a hydrophobic pocket formed by Pro 14, Leu 38, Leu 40, Leu 77, and the side chain of Tyr 48 which serves as its temporary "reservoir". CO 2 releases following a channel mainly decorated by apolar residues, unlike in the case of oxalate decarboxylase where polar residues mediate its transport.

  6. Minimization and Optimization of Designed β-Hairpin Folds

    PubMed Central

    Andersen, Niels H.; Olsen, Katherine A.; Fesinmeyer, R. Matthew; Tan, Xu; Hudson, F. Michael; Eidenschink, Lisa A.; Farazi, Shabnam R.

    2011-01-01

    Mimimized β hairpins have provided additional data on the geometric preferences of Trp interactions in TW-loop-WT motifs. This motif imparts significant fold stability to peptides as short as 8 residues. High-resolution NMR structures of a 16- (KKWTWNPATGKWTWQE, ΔGU298 ≥ +7 kJ/mol) and 12-residue (KTWNPATGKWTE, ΔGU298 = +5.05 kJ/mol) hairpin reveal a common turn geometry and edge-to-face (EtF) packing motif and a cation-π interaction between Lys1 and the Trp residue nearest the C-terminus. The magnitude of a CD exciton couplet (due to the two Trp residues) and the chemical shifts of a Trp Hε3 site (shifted upfield by 2.4 ppm due to the EtF stacking geometry) provided near-identical measures of folding. CD melts of representative peptides with the –TW-loop-WT- motif provided the thermodynamic parameters for folding, which reflect enthalpically driven folding at laboratory temperatures with a small ΔCp for unfolding (+420 JK−1/mol). In the case of Asx-Pro-Xaa-Thr-Gly-Xaa loops, mutations established that the two most important residues in this class of direction-reversing loops are Asx and Gly: mutation to alanine is destabilizing by about 6 and 2 kJ/mol, respectively. All indicators of structuring are retained in a minimized 8-residue construct (Ac-WNPATGKW-NH2) with the fold stability reduced to ΔGU278 = −0.7 kJ/mol. NMR and CD comparisons indicate that -TWXNGKWT- (X = S, I) sequences also forms the same hairpin-stabilizing W/W interaction. PMID:16669679

  7. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  8. Effective and Durable Co Single Atomic Cocatalysts for Photocatalytic Hydrogen Production.

    PubMed

    Zhao, Qi; Yao, Weifeng; Huang, Cunping; Wu, Qiang; Xu, Qunjie

    2017-12-13

    This research reports for the first time that single cobalt atoms anchored in nitrogen-doped graphene (Co-NG) can serve as a highly effective and durable cocatalyst for visible light photocatalytic hydrogen production from water. Results show that, under identical conditions, the hydrogen production rate (1382 μmol/h) for 0.25 wt % Co-NG-loaded CdS photocatalyst (0.25 wt % Co-NG/CdS) is 3.42 times greater than that of nitrogen-doped graphene (NG) loaded CdS photocatalyst (NG/CdS) and about 1.3 times greater than the greatest hydrogen production rate (1077 μmol/h) for 1.5 wt % Pt nanoparticle loaded CdS photocatalyst (1.5 wt % Pt-NPs/CdS). At 420 nm irradiation, the quantum efficiency of the 0.25 wt % Co-NG/CdS photocatalyst is 50.5%, the highest efficiency among those literature-reported non-noble metal cocatalysts. The Co-NG/CdS nanocomposite-based photocatalyst also has an extended durability. No activity decline was detected during three cyclic photocatalytic life span tests. The very low cocatalyst loading, along with the facile preparation technology for this non-noble metal cocatalyst, will significantly reduce the hydrogen production costs and finally lead to the commercialization of the solar catalytic hydrogen production process. Based on experimental results, we conclude that Co-NG can successfully replace noble metal cocatalysts as a highly effective and durable cocatalyst for renewable solar hydrogen production. This finding will point to a new way for the development of highly effective, long life span, non-noble metal-based cocatalysts for renewable and cost-effective hydrogen production.

  9. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO{sub 3} POWDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.-I; Huang, C.-Y.

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO{sub 3} increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 {mu}mol and 0.14 {mu}mol by the DNS measurement. Moreover, CaCO{sub 3} treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95more » deg. when 15wt% treated CaCO{sub 3} was added. Treated CaCO{sub 3} was confirmed to improve the hydrophobility of starch blends effectively.« less

  10. INTERRELATION BETWEEN ACTIVATION AND POLYMERIZATION IN GRAMICIDIN S BIOSYNTHESIS*

    PubMed Central

    Kleinkauf, Horst; Gevers, Wieland; Lipmann, Fritz

    1969-01-01

    The nucleic acid-independent biosynthesis of the peptide antibiotic gramicidin S results from the interaction of an enzyme bearing phenylalanine in activated form with a polyenzyme system charged with the other four component amino acids. After reaction with ATP, magnesium, and any or all of its amino acid substrates, the polyenzyme system (mol wt 280,000) yields complexes containing AMP and the respective amino acids in the proportion of 1 to 2. Similar complexes are formed by another enzyme (mol wt 100,000) on incubation with ATP, magnesium, and L- or D-phenylalanine. The amino acids are probably bound as aminoacyl adenylates and then transferred to another function on the enzyme. Initiation of polymerization is achieved by combination of the two complexes. No ATP is needed for completion of synthesis, and free intermediates are not released. Enzyme organization and specificity are responsible for the ordering of the amino acid sequence. PMID:5253659

  11. Isolation and characterization of a new clotting factor from Bothrops jararacussu (jararacuçu) venom.

    PubMed

    Andrião-Escarso, S H; Sampaio, S V; Cunha, O A; Marangoni, S; Oliveira, B; Giglio, J R

    1997-07-01

    A detailed procedure for the isolation of a new clotting enzyme from the venom of Bothrops jararacussu (common name jararacuçu) is described. The estimated mol. wt of the native protein was 30,100 but 37,500 after reduction by dithiothreitol. Two major close bands corresponding to pI 5.18 and 5.20 were detected by electrofocusing but, after methanolysis, a single band focused at pI 8.20. The mol. wt of the protein moiety of this glycoprotein was 28,500, showing V-V-G-A-D-N-C-N-F-N... as N-terminal sequence. The content of neutral sugar was 4.8% and that of total sugars 5.3%. This clotting factor degraded only the A alpha-chain of the fibrinogen molecule. The stability of the clot, when produced in the presence of aprotinin opens new uses for snake clotting enzymes in the production of fibrin glue.

  12. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3.

    PubMed

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-29

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl 2  · 6H 2 O, which is beneficial to improving the de/rehydrogenation performances of MgH 2 . The dehydrogenation onset temperature of MgH 2 -Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH 2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H 2 . Activation energy values of both dehydrogenation (43.4 kJ mol -1 ) and rehydrogenation (37.4 kJ mol -1 ) for MgH 2 -Ni/CMK-3 are greatly enhanced from those of as-milled MgH 2 . Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH 2 by 1.5 kJ mol [Formula: see text] The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  13. Spectral properties and anti-Stokes luminescence of TeO2-BaF2:Ho3+, Ho3+/Yb3+ ceramics and glass excited by 1.9-μm radiation of a Tm:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Savikin, A. P.; Egorov, A. S.; Budruev, A. V.; Perunin, I. Yu.; Krasheninnikova, O. V.; Grishin, I. A.

    2017-07-01

    We demonstrate the up-conversion of Tm:LiYF4 infrared (IR) laser radiation with 1908-nm wavelength into visible light with a spectral maximum at 650 nm by ceramics with a composition of (100 - x)TeO2- xBaF2 - 1 wt % HoF3- yYbF3, where x = 20, 30, or 40 mol % and y = 0 or 0.5 wt %. The samples of 60TeO2-40BaF2 - 1 wt % HoF3 - 0.5 wt % YbF3 exhibited anti-Stokes luminescence at a threshold radiation power density of 1.0-1.5 W cm-2.

  14. Major immunoglobulin classes of the echidna (Tachyglossus aculeatus)

    PubMed Central

    Atwell, J. L.; Marchalonis, J. J.; Ealey, E. H. M.

    1973-01-01

    The Australian echidna responds to the antigen Salmonella adelaide flagella by producing antibodies characterized by mol. wt of 900,000 and 150,000. After cleavage of interchain disulphide bonds, both the high and low mol. wt immunoglobulins can be resolved into light and heavy polypeptide chains. In both cases, the light chains resemble those of other vertebrate immunoglobulins in size (22,500 Daltons) and electrophoretic mobility. The 900,000 Dalton immunoglobulin contains heavy chains similar to human μ chains in size (70,000 Daltons) and electrophoretic mobility. The 150,000 Dalton immunoglobulin contains a different class of heavy chain, similar in size (50,000 Daltons) and electrophoretic mobility to human γ chains. Proportional mass contributions of the light and heavy chains to the intact molecule suggest the structure of the intact molecules could be represented by (L2, μ2)5 and (L2, γ2) for the high and low mol. wt immunoglobulins respectively. These configurations are similar to those described for human γM and γG immunoglobulins. The results are relevant to theories of the evolution of the different classes of immunoglobulins. While the echidna is distinctly more primitive than eutherian mammals and still retains structural features characteristic of reptiles, its major immunoglobulin classes are very similar to human IgM and IgG. The striking similarities between the γ-like heavy chain of the echnidna and human IgG heavy chains suggest that the echidna may be the first species in which a γ chain gene directly homologous to mammalian γ chain genes is expressed. ImagesFIG. 4 PMID:4761634

  15. Occurrence of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus).

    PubMed

    Shiomi, K; Yamaguchi, S; Kikuchi, T; Yamamori, K; Matsui, T

    1992-12-01

    The shore crab (Hemigrapsus sanguineus) is highly resistant to tetrodotoxin (TTX) although it contains no detectable amount of TTX (less than 5 MU/g, where 1 MU is defined as the amount of TTX killing a 20 g mouse in 30 min). Its body fluid was examined for neutralizing effects against the lethal activity of TTX. When the mixture of the body fluid and TTX was injected i.p. into mice, the lethal activity of TTX was significantly reduced; 1 ml of the body fluid was evaluated to neutralize 3.6-4.0 MU of TTX. Higher neutralizing activity (7.2-12.5 MU/ml of the body fluid) was exhibited by i.v. administration of the body fluid into mice before or after i.p. challenge of TTX. The lethal effect of paralytic shellfish poisons was not counteracted by the body fluid. Analysis by gel filtration on Sepharose 6B revealed that the body fluid contained TTX-binding high mol. wt substances (> 2,000,000) responsible for the neutralizing activity of the body fluid against TTX, which accounts for the high resistibility of the crab to TTX. When the crude toxin extracted from the liver of puffer (Takifugu niphobles) was mixed with the body fluid and chromatographed on Sepharose 6B, almost pure TTX was obtained from the fractions containing the TTX-binding high mol. wt substances, suggesting that the TTX-binding high mol. wt substances could be useful in purification of TTX from biological samples.

  16. Purification and properties of arylsulphatase A from rabbit testis.

    PubMed Central

    Yang, C H; Srivastava, P N

    1976-01-01

    Rabbit testis arylsulphatase A was purified 140-fold with a recovery of 20% from detergent extracts of an acetone-dried powder by using DE-52 cellulose column chromatography, gel filtration on Sephadex G-200 and preparative isoelectric focusing. The purified enzyme showed one major band with one minor contaminant on electrophoresis in a 7.5% (w/v) polyacrylamide gel at pH8.3. On sodiumdodecyl sulphate/polyacrylamidegel electrophoresis, a single major band was observed with minor contaminants. The final preparation of enzyme was free from general proteolytic, esterase, hyaluronidase, beta-glucuronidase and beta-galactosidase activities. Rabbit testicular arylsulphatase A exists as a dimer of mol.wt. 110000 at pH7.1. At pH5.0 the enzyme is a tetramer of mol.wt. 220000. Arylsulphatase A appears to consist of two identical subunits of mol.wt. 55000 each. The highly purified enzyme has pI4.6. The enzyme hydrolyses p-nitrocatechol sulphate with Km and Vmax, of 4.1 mM and 80nmol/min respectively, but has no activity toward p-nitrophenyl sulphate. The pH optimum of the enzyme varies with the incubation time. By applying Sephacex G-200 chromatography and preparative isoelectric focusing, one form of enzyme was obtained. The enzyme has properites common to arylsulphatase A of other sources with respect to the anomalous time-activity relationship, pI, inhibition by PO42-, SO32- and Ag+ ions and substrate affinity to p-nitrocatechol sulphate. However, the enzyme shows the temperature optimum of arylsulphatase B of other species. PMID:11773

  17. PERMEABILITY OF BACTERIAL SPORES II.

    PubMed Central

    Gerhardt, Philipp; Black, S. H.

    1961-01-01

    Gerhardt, Philipp (University of Michigan, Ann Arbor) and S. H. Black. Permeability of bacterial spores. II. Molecular variables affecting solute permeation. J. Bacteriol. 82:750–760. 1961.—More than 100 compounds were tested for their uptake by dormant spores of a bacillus. The extent of penetration was found to be dependent on at least three molecular properties: (i) The dissociation of electrolytes usually resulted in high or low uptake predictable from their charge. (ii) Lipid insolubility restricted permeation of small molecules. (iii) The molecular weight of unsubstituted glycol and sugar polymers exponentially limited penetration to eventual exclusion at mol wt above 160,000. The results were plotted as a generalized curve, calculations from which permitted an interpretation that the effective spore surface contains pores varying in diameter from 10 to 200 A. PMID:13897940

  18. H 2OCH 4NaClCO 2 inclusions from the footwall contact of the Tanco granitic pegmatite: Estimates of internal pressure and composition from microthermometry, laser Raman spectroscopy, and gas chromatography

    NASA Astrophysics Data System (ADS)

    Thomas, A. V.; Pasteris, J. D.; Bray, C. J.; Spooner, E. T. C.

    1990-03-01

    Fluid inclusions in tourmaline and quartz from the footwall contact of the Tanco granitic pegmatite, S.E. Manitoba were studied using microthermometry (MT), laser Raman spectroscopy (LRS) and gas chromatography (GC). CH 4-bearing, aqueous inclusions occur in metasomatic tourmaline of the footwall amphibolite contact. The internal pressures estimated from MT are lower than those obtained from LRS (mean difference = 54 ± 19 bars). The difference is probably due to errors in the measurement of Th CH 4 (V) and to the presence of clathrate at Th CH 4 (V) into which CO 2 had been preferentially partitioned. LRS estimates of pressure (125-184 bars) are believed to be more accurate. Aqueous phase salinities based on LRS estimates of pressure are higher than those derived using the data from MT: 10-20 eq. wt% NaCl. The composition of the inclusions determined by GC bulk analysis is 97.3 mol% H 2O, 2.2 mol% CH 4, 0.4 mol% CO 2, 250 ppm C 2H 6, 130 ppm N 2, 33 ppm C 3H 8, 11 ppm C 2H 4, and 3 ppm C 3H 6, plus trace amounts of C 4 hydrocarbons. The composition is broadly similar to that calculated from MT (92% H 2O and 8% CH 4, with 7 eq. wt% NaCl dissolved in the aqueous phase and 2 mol% CO 2 dissolved in the CH 4 phase), as expected due to the dominance of a single generation of inclusions in the tourmaline. However, two important differences in composition are: (i) the CH 4 to CO 2 ratio of this fluid determined by GC is 5.33, which is significantly lower than that indicated by MT (49.0); and (ii) the H 2O content estimated from MT is 92 mol% compared to 98 mol% from GC. GC analyses may have been contaminated by the presence of secondary inclusions in the tourmaline. However, the rarity of the latter suggests that they cannot be completely responsible for the discrepancy. The differences may be accounted for by the presence of clathrate during measurement of Th CH 4 (critical), which would reduce CO 2 relative to CH 4 in the residual fluid, and by errors in visually estimating vol% H 2O. The compositions of the primary inclusions in tourmaline are unlike any of those found within the pegmatite and indicate that the fluid was externally derived, probably of metamorphic origin. Inclusions in quartz of the border unit of the pegmatite are secondary and are either aqueous (18 to 30 eq. wt% CaCl 2; Th total = 184 ± 14° C) or carbonic. Tm CO 2 for the carbonic inclusions ranges from -57.5 to -65.4°C and is positively correlated with Th CO 2. Analyses of X CH 4 based on LRS agree within 5 mol% of those derived from MT and together indicate a range of compositions from 5 to 50 mol% CH 4 in the CO 2 phase. Bulk analysis by GC gives 99.0 mol% H 2O, 0.6 mol% CO 2, 0.4 mol% CH 4, 160 ppm N 2, 7 ppm C 2H 6, 4 ppm C 3H 8, and 2 ppm C 2H 4, with trace amounts of COS (carbonyl sulphide) and C 3H 6. The level of H 2O in the analysis is consistent with the dominance of the aqueous inclusions in these samples, and the CH4: CO2 ratios are consistent with estimates from MT and LRS. The preservation of variable ratios of CH 4:CO 2 in inclusions < 50 μm apart indicates that neither H 2 diffusion out of the inclusions nor reduction of fluids leaving the pegmatite were responsible for the more oxidized chemistries of the border unit inclusions relative to those in the tourmaline of the metasomatised amphibolite. The compositions of the inclusions in the quartz lie between those of the fluid trapped by the tourmaline (externally derived) and the measured composition of a CO 2-bearing pegmatitic fluid, which indicates that the secondary fluids trapped in the border unit quartz were produced by late mixing.

  19. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  20. Nitric oxide-generating silicone as a blood-contacting biomaterial

    PubMed Central

    Amoako, Kagya A.; Cook, Keith E.

    2011-01-01

    Coagulation upon blood-contacting biomaterials remains a problem for short and long-term clinical applications. This study examined the ability of copper(II)-doped silicone surfaces to generate nitric oxide (NO) and locally inhibit coagulation. Silicone was doped with 3-micron copper (Cu(0)) particles yielding 3 to 10 weight percent (wt%) Cu in 70-μm thick Cu/Silicone polymeric matrix composites (Cu/Si PMCs). At 3, 5, 8 and 10 wt% Cu doping, the surface expression of Cu was 12.1 ± 2.8%, 19.7 ± 5.4%, 29.0 ± 3.8%, and 33.8 ± 6.5% respectively. After oxidizing Cu(0) to Cu(II) by spontaneous corrosion, NO flux, JNO (mol*cm−2*min−1), as measured by chemiluminescence, increased with surface Cu expression according to the relationship JNO =(1.63 %SACu −0.81) ×10−11, R2 = 0.98 where %SACu is the percentage of surface occupied by Cu. NO flux at 10 wt% Cu was 5.35± 0.74 ×10−10 mol*cm−2*min−1. The clotting time of sheep blood exposed to these surfaces was 80 ± 13s with pure silicone and 339 ± 44s when 10 wt% Cu(II) was added. SEMs of coatings showed clots occurred away from exposed Cu-dendrites. In conclusion, Cu/Si PMCs inhibit coagulation in a dose-dependent fashion related to the extent of copper exposure on the coated surface. PMID:22036723

  1. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  2. Thermophysical properties of undercooled liquid Co-Mo alloys

    NASA Astrophysics Data System (ADS)

    Han, X. J.; Wei, B.

    2003-05-01

    Using electromagnetic levitation in combination with the oscillating drop technique and drop calorimeter method, the surface tensions and specific heats of undercooled liquid Co-10 wt% Mo, Co-26.3 wt% Mo, and Co-37.6 wt% Mo alloys were measured. The containerless state during levitation produces substantial undercoolings up to 223 K (0.13TL), 213 K (0.13TL) and 110 K (0.07TL) respectively for these three alloys. In their respective undercooling ranges, the surface tensions were determined to be 1895 m 0.31(T m 1744), 1932 m 0.33(T m 1682), and 1989 m 0.34(T m 1607) mN mу. According to the Butler equation, the surface tensions of these three Co-Mo alloys were also calculated, and the results agree well with the experimental data. The specific heats of these three alloys are determined to be 41.85, 43.75 and 44.92 J molу Kу. Based on the determined surface tensions and specific heats, the changes in thermodynamics functions such as enthalpy, entropy and Gibbs free energy are predicted. Furthermore, the crystal nucleation, dendrite growth and Marangoni convection of undercooled Co-Mo alloys are investigated in the light of these measured thermophysical properties.

  3. Molecular weights and metabolism of rat brain proteins

    PubMed Central

    Vrba, R.; Cannon, Wendy

    1970-01-01

    1. Rats were injected with [U-14C]glucose and after various intervals extracts of whole brain proteins (and in some cases proteins from liver, blood and heart) were prepared by high-speed centrifugation of homogenates in 0.9% sodium chloride or 0.5% sodium deoxycholate. 2. The extracts were subjected to gel filtration on columns of Sephadex G-200 equilibrated with 0.9% sodium chloride or 0.5% sodium deoxycholate. 3. Extracts prepared with both solvents displayed on gel filtration a continuous range of proteins of approximate molecular weights ranging from less than 2×104 to more than 8×105. 4. The relative amount of the large proteins (mol.wt.>8×105) was conspicuously higher in brain and liver than in blood. 5. At 15min after the injection of [U-14C]glucose the smaller protein molecules (mol.wt.<2×104) were significantly radioactive, whereas no 14C could be detected in the larger (mol.wt.>2×104) protein molecules. The labelling of all protein samples was similar within 4h after injection of [U-14C]glucose. Fractionation of brain proteins into distinctly different groups by the methods used in the present work yielded protein samples with a specific radioactivity comparable with that of total brain protein. 6. No evidence could be obtained by the methods used in the present and previous work to indicate the presence of a significant amount of `metabolically inert protein' in the brain. 7. It is concluded that: (a) most or all of the brain proteins are in a dynamic state of equilibrium between continuous catabolism and anabolism; (b) the continuous conversion of glucose into protein is an important part of the maintenance of this equilibrium and of the homoeostasis of brain proteins in vivo. PMID:5435499

  4. An Umeclidinium membrane sensor; Two-step optimization strategy for improved responses.

    PubMed

    Yehia, Ali M; Monir, Hany H

    2017-09-01

    In the scientific context of membrane sensors and improved experimentation, we devised an experimentally designed protocol for sensor optimization. Two-step strategy was implemented for Umeclidinium bromide (UMEC) analysis which is a novel quinuclidine-based muscarinic antagonist used for maintenance treatment of symptoms accompanied with chronic obstructive pulmonary disease. In the first place, membrane components were screened for ideal ion exchanger, ionophore and plasticizer using three categorical factors at three levels in Taguchi design. Secondly, experimentally designed optimization was followed in order to tune the sensor up for finest responses. Twelve experiments were randomly carried out in a continuous factor design. Nernstian response, detection limit and selectivity were assigned as responses in these designs. The optimized membrane sensor contained tetrakis-[3,5-bis(trifluoro- methyl)phenyl] borate (0.44wt%) and calix[6]arene (0.43wt%) in 50.00% PVC plasticized with 49.13wt% 2-ni-tro-phenyl octylether. This sensor, along with an optimum concentration of inner filling solution (2×10 -4 molL -1 UMEC) and 2h of soaking time, attained the design objectives. Nernstian response approached 59.7mV/decade and detection limit decreased by about two order of magnitude (8×10 -8 mol L -1 ) through this optimization protocol. The proposed sensor was validated for UMEC determination in its linear range (3.16×10 -7 -1×10 -3 mol L -1 ) and challenged for selective discrimination of other congeners and inorganic cations. Results of INCRUSE ELLIPTA ® inhalation powder analyses obtained from the proposed sensor and manufacturer's UPLC were statistically compared. Moreover the proposed sensor was successfully used for the determination of UMEC in plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. DMSO modifies the permeability of the zebrafish (Danio rerio) chorion-implications for the fish embryo test (FET).

    PubMed

    Kais, B; Schneider, K E; Keiter, S; Henn, K; Ackermann, C; Braunbeck, T

    2013-09-15

    Since 2007, when REACH came into force, the fish embryo test has received increasing attention as a potential alternative for the acute fish test. Due to its low toxicity and the ability to permeate biological membranes without significant damage to their structural integrity, dimethyl sulfoxide (DMSO) is a commonly used solvent in the fish embryo test. Little is known, however, about the membrane penetration properties of DMSO, the impact of different concentrations of DMSO on the potential barrier function of the zebrafish chorion and on changes in the uptake of chemicals into the embryo. Therefore, in the present study, the fluorescent dyes fluorescein (mol wt 332; Pow 3.4) and 2,7-dichlorofluorescein (mol wt 401; Pow 4.7), both substances with limited water solubility, were used to visualize the uptake into the egg as well as the accumulation in the embryo of the zebrafish depending on different concentrations of DMSO. The distribution of fluorescein within the egg compartments varied with DMSO concentration: When dissolved in 0.01% DMSO, fluorescein did not pass the chorion. In contrast, concentrations ≥ 0.1% DMSO increasingly facilitated the uptake into the perivitelline space. In contrast, the uptake of 2,7-dichlorofluorescein was not substantially increased with rising DMSO concentrations, indicating the importance of factors other than the solvent (e.g. mol wt). With respect to the fish embryo test, results indicate that DMSO may be used without complications as a solvent, however, only at a maximum concentration of 0.01% (0.1 mL/L) as already indicated in the OECD difficult substances paper (OECD, 2000). Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Influence of molecular structure on the tolerogenicity of bacterial dextrans. I. The alpha1--6-linked epitope of dextran B512.

    PubMed Central

    Howard, J G; Vicari, G; Courtenay, B M

    1975-01-01

    Native dextran B512 is a near-linear glucose polymer with 96 per cent alpha1--6 and 4 per cent alpha1--3 linkages and a molecular weight (mol. wt) of 8 X 10(7). Sheep RBC sensitized with its O-stearoyl derivative (prepared by a modified method) have been used satisfactorily in direct PFC assays. B512 immunizes BALB/c mice optimally with doses of 1--10 mug and produces B-cell tolerance with 1 mg upwards. The specificity of the response determined by PFC inhibition analysis, is directed towards an alpha1--6-linked epitope. High dose tolerance is not preceded by immunity and is stable on cell transfer to irradiated recipients in which responsiveness becomes perceptible after 4--6 weeks. Progressive depolymerization of this polysaccharide reduces immunogenicity and tolerogenicity, both of which are extinguished when the mol. wt falls to 2 X 10(4). Optimal immunization with B512 is succeeded by partial tolerance (previously characterized by analogous levan experiments as a B-cell exhaustion process). The tolerance threshold dose of B512 is reduced 1000-fold during immunosuppression with cyclophosphamide. PFC inhibition studies supported the contention that tolerogenicity of polysaccharides is influenced by their overall binding capacities. A direct relationship between inhibitory and tolerogenic activities was found both with B512 fractions of varying mol. wt and with heterologous dextrans. The similarities between B512 and levan argue against the association of a highly branched structure with greater tolerogenicity. The effect of reducing the percentage of alpha1--6 linkages in dextrans suggests, however, that epitope density probably plays a contributory role in determining the outcome of interaction between polysaccharides and B cells. PMID:52612

  7. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47.

    PubMed

    Antunes, Sílvia; Freitas, Filomena; Alves, Vítor D; Grandfils, Christian; Reis, Maria A M

    2015-09-20

    Cheese whey was used as the sole substrate for the production of extracellular polysaccharides (EPS) by Enterobacter A47. An EPS concentration of 6.40 g L(-1) was reached within 3.2 days of cultivation, corresponding to a volumetric productivity of 2.00 g L(-1) d(-1). The produced EPS was mainly composed of glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose (21 mol% each) and a total acyl groups content of 32 wt.%. The polymer had an average molecular weight of 1.8×10(6) Da, with a polydispersity index of 1.2, and an intrinsic viscosity of 8.0 dL g(-1). EPS aqueous solutions (1.0 wt.% in 0.01 M NaCl, at pH 8.0) presented a shear thinning behavior with a viscosity of the first Newtonian plateau approaching 0.1 Pas. This novel glucuronic acid-rich polymer possesses interesting rheological properties, which, together with its high content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential for use in high-value applications, such as cosmetics and pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N-H/H-Si Dehydrocoupling Reactions.

    PubMed

    Bellini, Clément; Orione, Clément; Carpentier, Jean-François; Sarazin, Yann

    2016-03-07

    Ba[CH(SiMe3 )2 ]2 (THF)3 catalyzes the fast and controlled dehydrogenative polymerization of Ph2 SiH2 and p-xylylenediamine to afford polycarbosilazanes. The structure (cyclic versus linear; end-groups) and molecular weight of the macromolecules can be tuned by adjusting the Ph2 SiH2 /diamine feed ratio. A detailed analysis of the resulting materials (mol. wt up to ca. 10 000 g mol(-1) ) is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of silica particle sizes and promoters to equilibrium moisture content for CO2 hydrate formation in HPVA

    NASA Astrophysics Data System (ADS)

    Hassan, Mohd Hafiz Abu; Snape, Colin Edwards; Steven, Lee

    2018-06-01

    The formation of CO2 hydrate (CO2:6H2O) in this work was experimentally investigated in batch mode inside a high pressure volumetric analyser (HPVA). The investigations in pure CO2 gas systems highlighted the effect of type of silicas used and the concentration of promoters used on the amount of equilibrium moisture content available for formation of hydrate. Standard silica gel was the only silica found to show hydrate formation due to the best distribution of pore size with the amount of equilibrium moisture content of 14.8 wt%. The high amount of bulk water inside zeolites 13X and spherical MCF-17 (21.3 and 50.8 wt% respectively) was the main reason of no hydrate formation observed due to the interstitial spaces between both silica particles were fully occupied by water. In other words, diffusion of gas molecules into the water is required for hydrate nucleation as well as hydrate growth. Additionally, the combined-promoters designated type T1-5 (0.01 mol% sodium dodecyl sulphate (SDS)+5.6 mol% tetrahydrofuran (THF)) was the best obtaining a CO2 uptake of 5.95 mmol of CO2 per g of H2O with the amount of equilibrium moisture content of 13.28 wt%.

  10. The influence of water on the physicochemical characteristics of 1-butyl-3-methylimidazolium bromide ionic liquid

    NASA Astrophysics Data System (ADS)

    Ramenskaya, L. M.; Grishina, E. P.; Pimenova, A. M.; Gruzdev, M. S.

    2008-07-01

    A modified synthesis of 1-butyl-3-methylimidazolium bromide (BMImBr) was suggested and performed, and some physicochemical properties of the product containing 0.64 13.6 wt % water were determined. Water increased the electrical conductivity and decreased the viscosity and melting point of the substance but weakly influenced its density. Water in amounts of 5 8 wt % (45 50 mol %) caused structural changes. The BMImBr · 0.5H2O crystal hydrate was found to be stable thermodynamically.

  11. Stability of carbonated basaltic melt at the base of the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Litasov, K.; Ohtani, E.; Suzuki, A.

    2006-12-01

    Seismological observations of low velocity zones (LVZ) at the top of the 410-km discontinuity reveal possible existence of dense melt at this boundary (e.g. Reveanugh and Sipkin, 1994). Density measurements of anhydrous basaltic melts indicate that it is denser than surrounding mantle near 410-km depth (Ohtani and Maeda, 2001). However, melting temperature of peridotite is much higher than about 1400°C, estimated at 410-km depth. It has been shown recently that hydrous basaltic melt containing up to 2 wt.% H2O is denser than peridotite atop 410-km and therefore can be accumulated at the base of the upper mantle (Sakamaki et al., 2006). CO2 is another major volatile component in the mantle and it could be also important for explanation of LVZ near 410 km. In the present study, we have measured the density of carbonated basaltic melt at high pressures and high temperatures and discussed its possible stability at the base of the upper mantle. The density of the melt was determined using sink/float technique. The starting material was synthetic MORB glass. 5 and 10 wt.% CO2 was added to the glass as CaCO3 and Na2CO3, adjusting to proportions of related oxides. Experiments were carried out at 16-22 GPa and 2200-2300°C using a multianvil apparatus at Tohoku University, Japan. We observed neutral buoyancy of diamond density marker in MORB + 5 wt.% CO2 at 18 GPa and 2300°C, whereas, diamond was completely dissolved in the carbonated MORB melt containing 10 wt.% CO2 in 0.5-1 minute experiments. Based on the buoyancy test, the density of the carbonated basaltic melt, containing 5 wt.% CO2, is 3.56 g/cm3 at 18 GPa and 2300°C using an equation of state of diamond. To calculate the bulk modulus we assume that the pressure derivative of the isothermal bulk modulus is the same as that of the dry MORB melt, dKT/dP=5.0 and zero-pressure partial molar volume of CO2 is 32 cm3/mol (based on low-pressure experiments on carbonated basaltic melts and carbonatites, e.g. Dobson et al., 1996; Liu and Lange, 2003). Accordingly, the isothermal bulk modulus (KT) of the carbonated MORB melt containing 5 wt.% CO2 calculated using the Birch-Murnaghan equation of state is 16.3 ± 1 GPa. This value is close to that of dry MORB (KT=18 GPa) and indicates that addition of 5 wt.% CO2 to basaltic melt has minor influence on its compressibility. Density of MORB + 5 wt.% CO2 is almost same with the density of MORB + 2 wt.% H2O at 15-20 GPa. Comparison of the density of carbonated basaltic melt with PREM density profile at 1600°C indicates that it is buoyant above the 410 km discontinuity in the mantle only if it contains more than about 5 wt.% CO2.

  12. Production of biodiesel from Jatropha curcas L. oil catalyzed by SO₄²⁻/ZrO₂ catalyst: effect of interaction between process variables.

    PubMed

    Yee, Kian Fei; Lee, Keat Teong; Ceccato, Riccardo; Abdullah, Ahmad Zuhairi

    2011-03-01

    This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Separation of ethanol/water azeotrope using compound starch-based adsorbents.

    PubMed

    Wang, Yanhong; Gong, Chunmei; Sun, Jinsheng; Gao, Hong; Zheng, Shuai; Xu, Shimin

    2010-08-01

    Comparing breakthrough cures of five starch-based materials experimentally prepared for ethanol dehydration, a compound adsorptive agent ZSG-1 was formulated with high adsorption capacity, low energy and material cost. The selective water adsorption was conducted in a fixed-bed absorber packed with ZSG-1 to find the optimum conditions yielding 99.7 wt% anhydrous ethanol with high efficiency. The adsorption kinetics is well described by Bohart-Adams equation. The adsorption heat, Delta H(abs), was calculated to be -3.16 x 10(4)J mol(-1) from retention data by inverse gas chromatography. Results suggested that water entrapment in ZSG-1 is a exothermic and physisorption process. Also, ZSG-1 is recyclable for on-site multiple-use and then adapt for upstream fermentation process after saturation, avoiding pollution through disposal. (c) 2010 Elsevier Ltd. All rights reserved.

  14. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5-3.0 GPa - Implications for carbon flux in subduction zones

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep

    2014-01-01

    Partial melts of subducting sediments are thought to be critical agents in carrying trace elements and water to arc basalt source regions. Sediment partial melts may also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts that derive from partial fusion of downgoing sediment at sub-arc depths remains unconstrained. We conducted CO2-solubility experiments on a rhyolitic composition similar to average, low-degree experimental partial melt of pelitic sediments between 1.5 and 3.0 GPa at 1300 °C and containing variable water content. Concentrations of water and carbon dioxide were measured using FTIR. Molecular CO2(CO2mol.) and carbonate anions (CO32-) both appear as equilibrium species in our experimental melts. Estimated total CO2 concentrations (CO2mol.+CO32-) increased with increasing pressure and water content. At 3.0 GPa, the bulk CO2 solubility are in the range of ∼1-2.5 wt.%, for melts with H2O contents between 0.5 and 3.5 wt.%. For melts with low H2O content (∼0.5 wt.%), CO2mol. is the dominant carbon species, while in more H2O-rich melts CO32- becomes dominant. The experimentally determined, speciation-specific CO2 solubilities yielded thermodynamic parameters that control dissolution of CO2 vapor both as CO2mol. and as CO32- in silicate melt for each of our compositions with different water content; CO2vapor ↔CO2melt :lnK0=-15 to -18, ΔV0 = 29 to 14 cm3 mol-1 and CO2vapor +Omelt →CO32-melt :lnK0=-20 to -14, ΔV0 = 9 to 27 cm3 mol-1, with ΔV0 of reaction being larger for formation of CO2mol. in water-poor melts and for formation of CO32- in water-rich melts. Our bulk CO2 solubility data, [CO2] (in wt.%) can be fitted as a function of pressure, P (in GPa) and melt water content, [H2O] (in wt.%) with the following function: [CO2](wt.%)=(-0.01108[H2O]+0.03969)P2+(0.10328[H2O]+0.41165)P. This parameterization suggests that over the range of sub-arc depths of 72-173 km, water-rich sediment partial melt may carry as much as 2.6-5.5 wt.% CO2 to the sub-arc mantle source regions. At saturation, 1.6-3.3 wt.% sediment partial melt relative to the mantle wedge is therefore sufficient to bring up the carbon budget of the mantle wedge to produce primary arc basalts with 0.3 wt.% CO2. Sediment plumes in mantle wedge: Sediment plumes or diapirs may form from the downgoing slab because the sediment layer atop the slab is buoyant relative to the overlying, hanging wall mantle (Currie et al., 2007; Behn et al., 2011). Via this process, sediment layers with carbonates would carry CO2 to the arc source region. Owing to the higher temperature in the mantle wedge, carbonate can breakdown. Behn et al. (2011) suggested that sediment layers as thin as 100 m, appropriate for modern arcs, could form sediment diapirs. They predicted that diapirs would form from the slab in the sub-arc region for most subduction zones today without requiring hydrous melting. H2O-rich fluid driven carbonate breakdown: Hydrous fluid flushing of the slab owing to the breakdown of hydrous minerals could drive carbonate breakdown (Kerrick and Connolly, 2001b; Grove et al., 2002; Gorman et al., 2006). The addition of water would cause decarbonation creating an H2O-CO2-rich fluid that would then flux through the overlying sediment layer, lower the solidus temperature, and trigger melting. Recent geochemical (Cooper et al., 2012) and geodynamic (van Keken, 2003; Syracuse et al., 2010) constraints suggest that the sub-arc slab top temperatures are above the hydrous fluid-present sediment solidus, thus in the presence of excess fluid, both infiltration induced decarbonation and sediment melting may occur. Hot subduction: This is relevant for subduction zones such as Cascadia and Mexico, where slab-surface temperatures are estimated to be higher (Syracuse et al., 2010). A higher temperature could cause carbonate breakdown and sediment partial melting without requiring a hydrous fluid flux. In this case a relatively dry silicate sediment melt will have the opportunity to dissolve and carry CO2. For hot subduction zones, even if sedimentary layer itself does not carry carbonate, CO2 released from basalt-hosted carbonates may be dissolved in sediment partial melt. Experiments conducted on subducted sediment compositions show that the partial melt compositions are generally rhyolitic (Johnson and Plank, 1999; Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann and Spandler, 2008; Spandler et al., 2010; Tsuno and Dasgupta, 2011). Therefore, solubility of CO2 in rhyolitic sediment partial melts needs to be known. Previous studies on rhyolitic melts experimentally determined CO2 solubility from 0.05 to 0.66 GPa (Fig. 1; Fogel and Rutherford, 1990; Blank et al., 1993; Tamic et al., 2001). This pressure range is not appropriate for global sub-arc depth range of 72-173 km (Syracuse and Abers, 2006) settings (P = 2-5 GPa). Carbon dioxide solubility experiments at pressures from 1.5 to 3.5 GPa are available but only on simple compositions - i.e., albite, which does not have the chemical complexity of natural sediment partial melts (Fig. 1; Brey, 1976; Mysen, 1976; Mysen et al., 1976; Mysen and Virgo, 1980; Stolper et al., 1987; Brooker et al., 1999). For example, natural rhyolitic melt derived from partial fusion of pelitic sediments contain non-negligible concentrations of Ca2+, Mg2+, Fe2+. Many of these studies were also conducted under mixed-volatile conditions (CO2 + H2O) with H2O contents from 0.06 to 3.3 wt.%. These studies were used in calculating various solubility models: Volatile-Calc (Newman and Lowenstern, 2002), that of Liu et al. (2005), and that of Papale et al. (2006). Volatile-Calc can be used to calculate CO2 solubility only on a generic rhyolite composition up to 0.5 GPa. The model of Liu et al. (2005) is also on a generic rhyolite up to 0.5 GPa, but can calculate mixed volatile concentrations provided the vapor composition is known. The model of Papale et al. (2006) can be used to calculate mixed volatile concentrations for a melt composition of interest, but only up to 1.0 GPa.The literature data show that CO2 solubility increases with increasing pressure and decreases with increasing melt silica content (decreasing NBO/T; e.g., Brooker et al., 2001). The effect of temperature remains somewhat ambiguous, but is thought to be relatively smaller than the pressure or compositional effects, with Mysen (1976) measuring increasing CO2 solubility with temperature for albite melt, Brooker et al. (2001) and Fogel and Rutherford (1990) noticing decreasing CO2 solubility with increasing temperature, and Stolper et al. (1987) concluding that temperature has essentially no effect on total melt CO2 concentration at saturation. The presence of water in the melt also is known to affect CO2 solution (e.g., Mysen, 1976; Eggler and Rosenhauer, 1978), yet quantitative effect of water on CO2 solution in natural rhyolitic melt has only been investigated up to 0.5 GPa (Tamic et al., 2001). In order to determine the CO2 carrying capacity of sediment partial melts, experiments must be conducted at conditions (pressure, temperature, major element compositions, and XH2O) relevant to sub-arc settings.In this study we measured the solubility and speciation of CO2 in rhyolitic sediment partial melts. Experiments were conducted from 1.5 to 3.0 GPa at 1300 °C with variable water contents and synthesized glasses were analyzed for water and carbon speciation using Fourier-transformed infrared spectroscopy. Our measured solubility data allowed us to constrain volume change and equilibrium constant of the CO2 dissolution reactions. Moreover, we parameterize CO2 solubility in sediment partial melt as a function of pressure and melt water content. Our data and empirical model suggest that the CO2 carrying capacity of sediment partial melts is sufficiently high at sub-arc depths and hydrous sediment melt can potentially carry the necessary dose of CO2 to arc mantle source regions.

  15. The role of volatiles in the genesis of cenozoic magmatism in Northern Victoria Land (NVL), Antarctica

    NASA Astrophysics Data System (ADS)

    Giacomoni, Pier Paolo; Coltorti, Massimo; Bonadiman, Costanza; Ferlito, Carmelo; Zanetti, Alberto; Ottolini, Luisa

    2017-04-01

    This study offers an innovative view of the petrogenetic processes responsible for the magmas erupted in the Western Antarctic Rift System (WARS) by studying the chemical composition and the volatiles content of basic lavas and olivine-hosted melt inclusions (MI). Lavas come from three localities: Shield Nunatak (Mt. Melbourne), Eldridge Bluff and Handler Ridge. They are olivine-phyric basanites (42.41-44.80 SiO2 wt%; 3.11-6.19 Na2O+K2O wt%) and basalts (44.91-48.73 SiO2 wt%; 2.81-4.55 Na2O+K2O wt%) with minor clinopyroxene and plagioclase. Samples from Handler Ridge clearly differ by having the highest TiO2 (3.55-3.65 wt%), Rb, Ba, Nb, La, Zr despite their more primitive features (60.83-44.87 Mg#, MgO/(MgO+FeO) %mol). Olivine-hosted melt inclusions (MI) were analyzed for major element and volatiles (H2O. CO2, S, F, and Cl) after HT (1300°C) and HP (6 kbar) homogenization. Despite a larger variability, MI are compositionally comparable with the host lavas and are characterized by two distinct trends (high-Fe-Ti-K and low-Fe-Ti-K). The H2O content in MI ranges from 0.70 wt% to 2.64 wt% and CO2 from 25 ppm to 341 ppm (H2O/CO2 1). At comparable H2O contents, few samples show a higher CO2 values (1322 ppm to 3905 ppm) with a H2O/CO2 molar ratio down to 0.8. F and Cl content varies from 1386 ppm to 10 ppm and from 1336 ppm to 38 ppm respectively. Concentration of volatiles show a good correlation with alkalies, especially with K2O; Handler Ridge presents the highest total value of F and Cl (2675 ppm). Chondrite-normalized trace elements concentration in MI show an intraplate pattern with negative anomalies in Rb, K, Ti. Accordingly, to the lava contents, MI from Handler Ridge have a significantly higher concentration in Rb (12-45 ppm), Sr (700-834 ppm), Ba (433-554) and Nb (48.8-83.4 ppm) with respect to the other localities at comparable Mg#. Mantle melting mass balance calculations simulate the observed H2O, CO2 and Cl concentration by melting a spinel lhezolite from 3 to 7 % of melting (F) with a 5% of modal amphibole with the same composition and modal proportion of mantle xenoliths from Baker Rocks, a locality near to Shield Nunatak. The model was not able to predict the F content which is less abundant in natural sample. From the resulted partial melting percentage, we calculated a total amount of CO2 in mantle source of 273 ppm by assuming the highest 3900 ppm measured in MI as starting value. The estimated maximum content of H2O and CO2 in the primary melt is 2.6 wt% and 8800 ppm respectively. Obtained data were compared with those from mantle xenoliths from NVL with the aim to reconstruct the composition of the mantle source of the Cenozoic magmatism and to model the whole volatile budget from mantle to magmas starting from the measured volatile content in hydrous (amph) and NAM phases in mantle xenoliths. Preliminary results evidence that high-Fe-Ti-K basanites found in MI are very similar to the calculated metasomatic agent involved in the formation of the very peculiar Fe-rich lherzolites.

  16. The ozone acetylene reaction: concerted or non-concerted reaction mechanism? A quantum chemical investigation

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; Crehuet, Ramon; Anglada, Josep; Gräfenstein, Jürgen

    2001-10-01

    The ozone-acetylene reaction is found to proceed via an intermediate van der Waals complex (rather than a biradical), which is the precursor for a concerted symmetry-allowed [4+2] cycloaddition reaction leading to 1,2,3-trioxolene. CCSD(T)/6-311G+(2d, 2p) and CCSD(T)/CBS (complete basis set) calculations predict the ozone-acetylene van der Waals complex to be stable by 2.2 kcal mol -1, the calculated activation enthalpy for the cycloaddition reaction is 9.6 kcal mol -1 and the reaction enthalpy -55.5 kcal mol -1. Calculated kinetic data for the overall reaction ( k=0.8 l mol -1 s-1, A=1.71×10 6 l mol -1 s-1, E a=8.6 kcal mol -1) suggest that there is a need for refined kinetic measurements.

  17. Hydration Resistance of Y2O3 Doped CaO and Its Application to Melting Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Fanlong, Meng; Zhiwei, Cheng; Guangyao, Chen; Xionggang, Lu; Chonghe, Li

    Various amount Y2O3(1-8 mol%) doped CaO powder was synthesized by the solid state reaction method, the pellete and crucible were fabricated by the cold isostatic pressing and were sintered at 1750°C for 4h. The microstructural characterization was revealed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).The XRD results showed that when Y2O3 doped 2 mol%, metastable CaY2O4 phase existed in CaO grain boundary, when Y2O3 doped 3 mol%-8 mol%, in addition to the above structure, Y2O3 phase also be found in CaO grain boundary. Hydration experiment results showed when Y2O3 doped 0 mol%-4 mol%, CaO had excellent hydration resistance performance, Y2O3 doped 2 mol% had the best hydration resistance, its weight addition stored after 7 weeks (49 days) was only about 0.2 wt%. Melting experiment results showed that it was no reaction between crucible and alloy layer. Oxygen, calcium, titanium, nickle and yttrium element not diffusion between the CaO crucible and TiNi alloy, it was no oxygen content increase after melting.

  18. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  19. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Hillman, J. J.

    1982-04-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  20. Co3O4 nanowires as efficient catalyst precursor for hydrogen generation from sodium borohydride hydrolysis

    NASA Astrophysics Data System (ADS)

    Wei, Lei; Cao, Xurong; Ma, Maixia; Lu, Yanhong; Wang, Dongsheng; Zhang, Suling; Wang, Qian

    Hydrogen generation from the catalytic hydrolysis of sodium borohydride has many advantages, and therefore, significant research has been undertaken on the development of highly efficient catalysts for this purpose. In our present work, Co3O4 nanowires were successfully synthesized as catalyst precursor by employing SBA-15 as a hard template. For material characterization, high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and N2 adsorption isotherms were employed, respectively. To measure the catalyst activity, typical water-displacement method was carried out. Using a reaction solution comprising 10wt.% NaBH4 and 2wt.% NaOH, the hydrogen generation rate (HGR) was observed to be as high as 7.74L min-1 g-1 at 25∘C in the presence of Co3O4 nanowires, which is significantly higher than that of CoB nanoparticles and commercial Co3O4 powder. Apparent activation energy was calculated to be 50.9kJ mol-1. After recycling the Co3O4 nanowires six times, HGR was decreased to be 72.6% of the initial level.

  1. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  2. Detection of xanthine oxidase and immunologically related proteins in fractions from bovine mammary tissue and milk after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate.

    PubMed Central

    Mather, I H; Sullivan, C H; Madara, P J

    1982-01-01

    A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk. Images Fig. 1. Fig. 2. Fig. 3. PMID:7046730

  3. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance

    PubMed Central

    Karpinska, Barbara; Zhang, Kaiming; Rasool, Brwa; Pastok, Daria; Morris, Jenny; Verrall, Susan R.; Hedley, Pete E.

    2017-01-01

    Abstract The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild‐type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m−2 s−1] and high [high light (HL); 1600 μmol m−2 s−1] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL‐grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub‐sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state. PMID:28369975

  4. CO2 Solubility in Rhyolitic Melts as a Function of P, T, and fO2 - Implications for Carbon Flux in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2013-12-01

    Understanding the balance between subduction inputs vs. arc output of carbon is critical for constraining the global carbon cycle. However, the agent of carbon transfer from slab to sub-arc mantle is not constrained [1]. Partial melt of ocean-floor sediments is thought to be a key agent of mass transfer in subduction zones, accounting for the trace element characteristics of arc magmas [2]. Yet the carbon carrying capacity of rhyolitic partial melts of sediments remains unknown at sub-arc depths. In our previous work [3], we constrained CO2 solubility of natural rhyolite from 1.5-3.0 GPa, 1300 °C and logfO2 at FMQ×1.0. However, the effects of T and fO2 on CO2 solubility remain unconstrained. In particular, for sediments with organic carbon, graphite stability is expected and the fO2 of C-dissolution can be lower, which may affect the solubility. Thus it is critical to constrain the CO2 solubility of sediment partial melts under graphite-saturated conditions. We determined CO2 solubility of a model rhyolite composition, similar to partial melt composition of natural metapelite [4], at graphite saturation, using Pt/Gr capsules and a piston cylinder device. Experiments were conducted at 1.5-3.0 GPa and 1100-1400 °C. FTIR was employed to measure the concentrations of CO2 and H2O in doubly polished experimental glasses. Raman and SIMS were used to determine the presence of reduced carbon species and total carbon, respectively. FTIR spectra reveal that CO2 is dissolved as both molecular CO2 (CO2mol.) and carbonates (CO32-). For graphite-saturated, hydrous melts with measured H2O ~2.0 wt.%, CO2tot. (CO2mol.+CO32-) values increase with increasing P from ~0.6 to 1.2 wt.% from 1.5 to 3.0 GPa at 1300 °C. These values are lower than more oxidized melts with the same water content, which were 0.85 to 1.99 wt.% CO2 as P increased. At 3 GPa, graphite-saturated experiments from 1100 to 1300 °C yield CO2tot. value of 1.18-1.20 wt.%, suggesting minor effect of temperature in bulk CO2 solubility. To meet the minimum requirement of 3000 ppm CO2 in primary arc magma [5,6], the required sediment melt contribution is 0.18-0.28 wt.% CO2, which is distinctly lower than the solubility limit of graphite-saturated melt. However, 1.7 wt.% CO2 in primary arc basalts [5] exceeds the solubility limit of reduced, hydrous melts, which is in contrast to more oxidized, hydrous melts which can contribute up to 2 wt.% CO2. We determine that ~1.7-15% of sediment melt would be required to meet 3000 ppm CO2 in the primary arc basalt depending on the depth of melting (1.5-3.0 GPa) and the degree of mantle wedge melting (15-30%). This contribution is higher than that previously calculated for the more oxidized melts, but still may not be an unreasonable slab flux. [1] Dasgupta (2013) RiMG, 75, 183-229; [2] Plank and Langmuir (1993) Nature, 362, 739-743. [3] Duncan and Dasgupta. (in review) GCA; [4] Tsuno and Dasgupta (2011) CMP, 161, 743-763; [5] Blundy et al. (2010) EPSL, 290, 289-301; [6] Wallace (2005) JVGR, 140, 217-240.

  5. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  6. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO2 Capture and Separation Performance.

    PubMed

    Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Norouzi, Nazgol; El-Kadri, Oussama M; Turner, Joseph B McGee; El-Kaderi, Hani M

    2017-10-18

    Development of efficient sorbents for carbon dioxide (CO 2 ) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SA BET = 1266-2013 m 2 g -1 ), high CO 2 Q st (33.2-37.1 kJ mol -1 ), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO 2 uptakes that reach 2.15 and 6.06 mmol g -1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO 2 uptake improves to 3.7 and 8.59 mmol g -1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO 2 /N 2 (128) and CO 2 /CH 4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO 2 /N 2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO 2 sorbents.

  7. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  8. Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6.

    PubMed

    Malli, Gulzari L

    2016-05-21

    The first all-electron fully relativistic Dirac-Fock-Breit-Gaunt (DFBG), Dirac-Fock (DF), and nonrelativistic (NR) Hartree-Fock (HF) calculations are reported for octahedral (Oh) tungsten hexacarbonyl W(CO)6. Our DF and NR HF calculations predict atomization energy of 73.76 and 70.33 eV, respectively. The relativistic contribution of ∼3.4 eV to the atomization energy of W(CO)6 is fairly significant. The DF and NR energy for the reaction W + 6CO → W(CO)6 is calculated as -7.90 and -8.86 eV, respectively. The mean bond energy predicted by our NR and DF calculations is 142.5 kJ/mol and 177.5 kJ/mol, respectively, and our predicted DF mean bond energy is in excellent agreement with the experimental value of 179 kJ/mol quoted in the literature. The relativistic effects contribute ∼35 kJ/mol to the mean bond energy and the calculated BSSE is 1.6 kcal/mol, which indicates that the triple zeta basis set used here is fairly good. The mean bond energy and the atomization energy calculated in our DFBG SCF calculations, which include variationally both the relativistic and magnetic Breit effects, is 157.4 kJ/mol and 68.84 eV, respectively. The magnetic Breit effects lead to a decrease of ∼20 kJ/mol and ∼4.9 eV for the mean bond energy and atomization energy, respectively, for W(CO)6. Our calculated magnetic Breit interaction energy of -9.79 eV for the energy of reaction (ΔE) for W + 6CO → W(CO)6 is lower by ∼1.90 eV as compared to the corresponding DF value (ΔE) and contributes significantly to the ΔE. A detailed discussion is presented of electronic structure, bonding, and molecular energy levels at various levels of theory for W(CO)6.

  9. The resistance of polyvinylpyrrolidone-iodine-poly(-caprolactone) blends to adherence of Escherichia coli.

    PubMed

    Jones, David S; Djokic, Jasmina; Gorman, Sean P

    2005-05-01

    In this study, the resistance of biodegradable biomaterials, composed of blends of poly(-caprolactone) (PCL) and the polymeric antimicrobial complex, polyvinylpyrrolidone-iodine (PVP-I) to the adherence of a clinical isolate of Escherichia coli is described. Blends of PCL composed of a range of high (50,000 g mol(-1)) to low (5000 g mol(-1)) molecular weight ratios of polymer and either devoid of or containing PVP-I (1% w/w) were prepared by solvent evaporation. Following incubation (4 h), there was no relationship between m. wt. ratio of PCL in films devoid of PVP-I and adherence of E. coli. Conversely, microbial adherence to PCL containing PVP-I decreased as the ratio of high:low m. wt. polymer was decreased and was approximately 1000 fold lower than that to comparator films devoid of PVP-I. Following periods of immersion of PVP-I containing PCL films under sink conditions in phosphate buffered saline, subsequent adherence of E. coli was substantially reduced for 2 days (40:60 m. wt. ratio) and 6 days (100:0 m. wt. ratio). Concurrent exposure of PCL and E. coli to sub-minimum inhibitory concentrations (sub-MIC) of PVP-I significantly reduced microbial adherence to the biomaterial; however, the molecular weight ratio of PCL did not affect this outcome. Pretreatment of PCL with similar sub-MIC of PVP-I prior to inclusion within the microbial adherence assay significantly decreased the subsequent adherence of E. coli. Greatest reduction in adherence was observed following treatment of PCL (40:60 m. wt. ratio) with 0.0156% w/w PVP-I. In conclusion, this study has illustrated the utility of PVP-I as a suitable therapeutic agent for incorporation within PCL as a novel biomaterial. Due to the combined antimicrobial and biodegradable properties, these biomaterials offer a promising strategy for the reduction in medical device related infection.

  10. Characterization of inhibin forms and their measurement by an inhibin alpha-subunit ELISA in serum from postmenopausal women with ovarian cancer.

    PubMed

    Robertson, D M; Stephenson, T; Pruysers, E; McCloud, P; Tsigos, A; Groome, N; Mamers, P; Burger, H G

    2002-02-01

    The aim of this study was to characterize the molecular wt forms of inhibins A and B and its free alpha-subunit present in serum from women with ovarian cancer as a basis for developing improved monoclonal antibody-based inhibin assays for monitoring ovarian cancer. Three new inhibin alpha-subunit (alphaC) ELISAs were developed using monoclonal antibodies directed to three nonoverlapping peptide regions of the alphaC region of the inhibin alpha-subunit. To characterize serum inhibin molecular wt forms present in women with ovarian cancer, existing inhibin immunoassays (inhibin A, inhibin B, and pro-alphaC) and the new alphaC ELISAs were applied to sera from women with granulosa cell tumors and mucinous carcinomas previously fractionated using a combined immunoaffinity chromatography, preparative SDS-PAGE, and electroelution procedure. The distribution and molecular size of dimeric inhibins and alpha-subunit detected were consistent with known mol wt forms of inhibins A and B and inhibin alpha-subunit and their precursor forms present in serum and follicular fluid from healthy women. The alphaC ELISAs recognized all known forms of inhibin and the free inhibin alpha-subunit, although differences between alphaC ELISAs were observed in their ability to detect high mol wt forms. To assess which of the alphaC ELISAs was preferred in application to ovarian cancer, the alphaC ELISAs were applied to serum from a range of normal postmenopausal women (n = 61) and postmenopausal women (n = 152) with ovarian (serous, mucinous, endometrioid, clear cell carcinomas, and granulosa cell tumors) and nonovarian (breast and colon) cancers. Despite differences in their ability to detect high mol wt forms of inhibin, the alphaC ELISAs showed similar sensitivity (i.e. proportion of cancer patients correctly detected) and specificity (proportion of controls correctly detected) indexes in the detection of mucinous carcinomas (84% and 95%) and granulosa cell tumors (100% and 95%) compared with earlier inhibin RIA or polyclonal antibody-based immunofluorometric assays. A combination of the alphaC ELISAs with the CA125 assay, an ovarian tumor marker that has a high sensitivity and specificity for other ovarian cancers (serous, clear cell, and endometrioid), resulted in an increase in sensitivity/specificity indexes (95% and 95%) for the all ovarian cancer group. These new monoclonal antibody-based inhibin alphaC ELISAs now provide practical and sensitive assays suitable for evaluation as diagnostic tests for monitoring ovarian cancers.

  11. [Expression and significance of c-fos in resistant cell line TU177/VCR of larynx squamous cell carcinoma].

    PubMed

    Li, G D; Hu, X L; Xing, J F; Shi, R Y; Li, X; Li, J F; Li, T L

    2018-04-07

    Objective: To explore the effect of c-fos on multidrug resistance of laryngeal cancer TU177 cells. Method: Increasing drug concentration gradient is adopted to establish the stability of the laryngeal cancer drug resistance in cell line; RT-PCR and Western blot were used to detect difference of the c-fos between TU177 and TU177/VCR cells; plasmids with human c-fos knockdown or over expression were transfected into TU177/VCR and TU177 cells respectively, and the effects of different treatment on cell proliferation were investigated with MTT. Results: The drug resistance of TU177/VCR cells was 26.25-fold in vincristine (VCR), 7.33-fold in Paclitaxel (TAX), 2.41 in cisplatin (DDP), and 5.50 in 5-fluorouracil (5-FU), comparing with TU177( P <0.05). The TU177/VCR cells had significantly higher c-fos expression compared to TU177 cells( P <0.05). The results showed that the IC(50) values of 5-FU for the NC group and c-fos shRNA group were (306.2±6.3)μmol/L and (81.3±3.9)μmol/L, respectively, which was decreased by 73% in the c-fos shRNA group compared to that in the NC group ( P <0.05). Similarly, the results showed that the IC(50) values for 5-FU were (55.3±9.4) μmol/L in NC group and (288.1±7.3)μmol/L in c-fos WT group, which was increased 5.21-fold in c-fos WT cells. Conclusion: C-fos plays important role in multidrug resistance of larynx cancer cell TU177/VCR, and might become a new molecular target for laryngeal cancer treatment.

  12. In vitro wear, surface roughness and hardness of propanal-containing and diacetyl-containing novel composites and copolymers based on bis-GMA analogs.

    PubMed

    Prakki, Anuradha; Cilli, Renato; Mondelli, Rafael Francisco Lia; Kalachandra, Sid

    2008-03-01

    To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH(3)bis-GMA or CF(3)bis-GMA, with aldehyde (24 mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n=6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n=6). Data were analyzed by one-way ANOVA and Tukey's test (alpha=0.05). Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH(3)bis-GMA and bis-GMA/CF(3)bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties.

  13. Si-F complexing in aqueous fluids: experimental study and implications for transport of immobile elements

    NASA Astrophysics Data System (ADS)

    Dolejš, David

    2014-05-01

    Intepretation of fluid-mineral interaction mechanisms and hydrothermal fluxes requires knowledge of predominant solubility and speciation reactions and their thermodynamic properties. Fluorine represents a hard electron donor, capable of complexing and transporting high-field strength elements, which are traditionally considered to be immobile. Reactions responsible for element mobility have general form MOx + y HF (aq) + x - y H2O = M(OH)2x-yFy (aq), and their extent and transport efficiency relies on hydrogen fluoride activity. In natural fluids, a[HF] is controlled by various fluorination equilibria including neutralization of silicates with consequent formation of silicohydroxyfluoride complexes. Quartz solubility in HF-H2O fluids was experimentally determined at 400-800 oC and 100-200 MPa using rapid-quench cold-seal pressure vessels and the mineral weight-loss method. Quartz solubility significantly increases in the presence of hydrogen fluoride: at 400 oC and 100 MPa, dissolved SiO2 ranges from 0.18 wt. % in pure H2O to 12.2 wt. % at 8.3 wt. % F in the fluid, whereas at 800 oC and 200 MPa it rises from 1.51 wt. % in pure H2O to 15.3 wt. % at 8.0 wt. % F in the fluid. The isobaric solubilities of quartz appear to be temperature-independent, i.e., effects of temperature vs. fluid density on the solubility are counteracting. The experimental data are described by the density model: log m[SiO2] = a + blog ρ + clog m[F] + dT , where a = -1.049 mol kg-1, b = 0.816 mol cm-3, c = 0.802 and d = 1.256 · 10-3 mol kg-1 K-1. Solubility isotherms have similar d(log m[SiO2])/d(log m[F]) slopes over the entire range of conditions indicating that Si(OH)2F2 is the major aqueous species. Several factors promote breakdown of silicohydroxyfluoride complexes and precipitation of silica solute: (i) decreasing temperature and pressure, i.e., fluid ascent and cooling and/or (ii) neutralization and increase in the alkali/H ratio of fluids during alteration reactions or removal of hydrogen halides by fluid boiling. Thermodynamic analysis of mineral equilibria in the system SiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O-H2O-F2O-1 indicates that cryolite, topaz, fluorite and sellaite represent fluoride buffers with decreasing chemical potential of F2O-1 or a[HF], in a sequence from peralkaline to peraluminous silicic, intermediate to progressively Ca-rich mafic and, finally, ultramafic environments. Corresponding a[HF] decrease from 100.2 to 10-1 and from 10-1.6 to 10-3.0 mol kg-1 at 800 and 400 oC, respectively, and 100 MPa. These results imply that: (i) silicohydroxyfluoride and aluminumhydroxyfluoride complexes transport Si and Al in quantities appreciably greater than SiO2 (aq) and aluminate species in peraluminous granite and greisen environments only, and (ii) significant transport (10-100 ppm) of high-field strength (e.g., Ti, Zr) and rare earth elements in aqueous fluids is predicted when formation constants of metal-fluoride complexes exceed 101-2 under hydrothermal conditions. This study concludes that in fluorine-bearing environments the transport of Si and Al remains little affected, but HFSE and REE are largely mobile.

  14. Influence of Li Addition to Zn-Al Alloys on Cu Substrate During Spreading Test and After Aging Treatment

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstrus, Janusz; Cempura, Grzegorz; Berent, Katarzyna

    2016-12-01

    The spreading of Zn-Al eutectic-based alloys with 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% Li on Cu substrate has been studied using the sessile drop method in presence of QJ201 flux. Wetting tests were performed after 1 min, 3 min, 8 min, 15 min, 30 min, and 60 min of contact at temperatures of 475°C, 500°C, 525°C, and 550°C. Samples after spreading at 500°C for 1 min were subjected to aging for 1 day, 10 days, and 30 days at temperature of 120°C, 170°C, and 250°C. The spreadability of eutectic Zn-5.3Al alloy with different Li contents on Cu substrate was determined in accordance with ISO 9455-10:2013-03. Selected solidified solder-substrate couples were, after spreading and aging tests, cross-sectioned and subjected to scanning electron microscopy, energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD) analysis of the interfacial microstructure. An experiment was designed to demonstrate the effect of Li addition on the kinetics of the formation and growth of CuZn, Cu5Zn8, and CuZn4 intermetallic compound (IMC) phases, during spreading and aging. The IMC layers formed at the interface were identified using XRD and EDS analyses. Increasing addition of Li to Zn-Al alloy caused a reduction in the thickness of the IMC layer at the interface during spreading, and an increase during aging. The activation energy was calculated, being found to increase for the Cu5Zn8 phase but decrease for the CuZn and CuZn4 phases with increasing Li content in the Zn-Al-Li alloys. The highest value of 142 kJ mol-1 was obtained for Zn-Al with 1.0 Li during spreading and 69.2 kJ mol-1 for Zn-Al with 0.05 Li during aging. Aging at 250°C caused an increase in only the Cu5Zn8 layer, which has the lowest Gibbs energy in the Cu-Zn system. This result is connected to the high diffusion of Cu from the substrate to the solder.

  15. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    PubMed

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Antivenom activity of opossum (Didelphis marsupialis) serum fraction.

    PubMed

    Rodriguez-Acosta, A; Aguilar, I; Giron, M E

    1995-01-01

    We have found an opossum serum fraction of approximately 97,000 mol. wt to be highly proficient in inactivating the haemorrhagic and proteolytic fractions of Bothrops lanceolatus venom. This antivenom substance, isolated from opossum serum or a synthetic peptide based on the aforementioned protein, would probably be useful in the medical management of Bothrops accidents.

  17. Hydrogenation properties of KSi and NaSi Zintl phases.

    PubMed

    Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël

    2012-10-14

    The recently reported KSi-KSiH(3) system can store 4.3 wt% of hydrogen reversibly with slow kinetics of several hours for complete absorption at 373 K and complete desorption at 473 K. From the kinetics measured at different temperatures, the Arrhenius plots give activation energies (E(a)) of 56.0 ± 5.7 kJ mol(-1) and 121 ± 17 kJ mol(-1) for the absorption and desorption processes, respectively. Ball-milling with 10 wt% of carbon strongly improves the kinetics of the system, i.e. specifically the initial rate of absorption becomes about one order of magnitude faster than that of pristine KSi. However, this fast absorption causes a disproportionation into KH and K(8)Si(46), instead of forming the KSiH(3) hydride from a slow absorption. This disproportionation, due to the formation of stable KH, leads to a total loss of reversibility. In a similar situation, when the pristine Zintl NaSi phase absorbs hydrogen, it likewise disproportionates into NaH and Na(8)Si(46), indicating a very poorly reversible reaction.

  18. Characterization of mouse natural killer cell activating factor (NKAF) induced by OK-432: evidence for interferon- and interleukin 2-independent NK cell activation.

    PubMed Central

    Ichimura, O.; Suzuki, S.; Sugawara, Y.; Osawa, T.

    1984-01-01

    The bacterial immunopotentiator OK-432 induced natural killer cell activating factor (NKAF) from mouse spleen cells. OK-432-induced NKAF showed a single peak with an apparent mol. wt of 70 Kd by Sephadex G-100 chromatography and OK-432-induced interleukin 2 (IL-2) had the same mol. wt as NKAF. However, OK-432-induced interferon (IFN) showed molecular heterogeneity with two peaks at 90 Kd and 45 Kd. Further purification was achieved by Blue Sepharose affinity chromatography which copurified NKAF and IFN. The affinity-purified NKAF, however, was stable to heat (56 degrees C) and acid (pH 2) treatments. Moreover, anti-IFN failed to abolish NKAF activity and this activity was not absorbed by IL-2 dependent T cells. From isoelectric focusing analysis, a dissociation of NKAF and IFN was observed over the range of pI 6.5 to 8.0. Based on these results, KNAF appears to be a new kind of cytokine distinguishable from IFN and IL-2. PMID:6204667

  19. A simple procedure for the isolation of L-fucose-binding lectins from Ulex europaeus and Lotus tetragonolobus.

    PubMed

    Allen, H J; Johnson, E A

    1977-10-01

    L-Fucose-binding lectins from Ulex europeaus and Lotus tetragonolobus were isolated by affinity chromatography on columns of L-fucose-Sepharose 6B. L-Fucose was coupled to Sepharose 6B after divinyl sulfone-activation of the gel to give an affinity adsorbent capable of binding more than 1.2 mg of Ulex lextin/ml of gel, which could then be eluted with 0.1M or 0.05M L-fucose. Analysis of the isolated lectins by hemagglutination assay, by gel filtration, and polyacrylamide disc-electrophoresis revealed the presence of isolectins, or aggregated species, or both. The apparent mol. wt. of the major lectin fraction from Lotus was 35000 when determined on Sephadex G-200 or Ultrogel AcA 34. In contrast, the apparent mol. wt. of the major lectin fraction from Ulex was 68 000 when chromatographed on Sephadex G-200 and 45 000 when chromatographed on Ultrogel AcA 34. The yields of lectins were 4.5 mg/100 g of Ulex seeds and 394 mg/100 g of Lotus seeds.

  20. The allergens of Schistosoma mansoni

    PubMed Central

    Harris, W. G.

    1973-01-01

    Ten antigen fractions were prepared from adult Schistosoma mansoni by extraction into borate-buffered saline, precipitation at pH 4.6 and separation on Sephadex G-100. The allergic activity of these antigens was assayed by a modified Prausnitz—Kustner type reaction in rats; this test system was found to be sensitive and consistent, allowing differences in allergenicity between antigens to be accurately assessed. Skin-reactivity was detected in both acid-soluble and acid-insoluble fractions. Specific allergenicity was located in peak 3 of a G-100 separation of the acid-soluble fraction and in peaks 1 and 2 of a G-100 separation of the acid-insoluble fraction suggesting that the allergens of S. mansoni were of at least two types: (1) a protein of mol. wt above 150,000 precipitated at pH 4.6, and (2) a protein of mol. wt 20–30,000 remaining in solution at this pH. It is suggested that both these allergens are glycoproteins. Non-specific histamine-releasing agents were found in peak 1 of the G-100 separation of the acid-soluble material. ImagesFIG. 1 PMID:4122335

  1. An Ab Initio Study of CuCO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1994-01-01

    Modified coupled-pair functional (MCPF) calculations and coupled cluster singles and doubles calculations, which include a perturbational estimate of the connected triples [CCSD(T)], yield a bent structure for CuCO, thus, supporting the prediction of a nonlinear structure based on density functional (DF) calculations. Our best estimate for the binding energy is 4.9 +/- 1.4 kcal/mol; this is in better agreement with experiment (6.0 +/- 1.2 kcal/mol) than the DF approach which yields a value (19.6 kcal/mol) significantly larger than experiment.

  2. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    NASA Astrophysics Data System (ADS)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  3. The short-term effects of increasing plasma colloid osmotic pressure in patients with noncardiac pulmonary edema

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbald, W.J.; Driedger, A.A.; Wells, G.A.

    1983-05-01

    We infused hyperoncotic albumin (25 or 50 gm of a 50% solution) into patients with noncardiac pulmonary edema (adult respiratory distress syndrome (ARDS)) to evaluate its effect on the transmicrovascular flux from blood to pulmonary edema fluid of two radiotracers--/sup 111/In-DTPA (mol wt 504) and /sup 125/I-human serum albumin (HSA) (mol wt 69,000). Two groups of patients were studied--one with a modest increase in permeability of the pulmonary alveolocapillary membrane to /sup 125/I-HSA (group 1) and another with a large increase in permeability to /sup 125/I-HSA (group 2). We used furosemide, when necessary, to minimize the effect of albumin infusionmore » to increase the pulmonary microvascular hydrostatic pressure (Pmv), measured clinically as the pulmonary capillary wedge pressure (PCWP). Therapy significantly increased the mean colloid osmotic pressure (COP) in both groups, but not the mean PCWP or calculated Pmv. Albumin had no significant effect on the mean pulmonary transmicrovascular flux of the radiotracers in either group, despite the increase in COP. In individual patients, a change in the Pmv in response to albumin infusion was directly correlated with the change in flux of /sup 111/In-DTPA (group 1: delta In-DTPA (%) . 8.66 + 1.4 delta Pmv (%) r . 0.51, P less than 0.02; group 2: delta In-DTPA (%) . -3.43 + 1.6 delta Pmv (%) r . 0.67, P less than 0.01). A change in the transmicrovascular flux of I-HSA also correlated with a change in the intravascular Starling forces in both groups. We conclude that albumin infusion in patients with ARDS will not augment the pulmonary transmicrovascular flux of low or high molecular-weight solutes when the effect of albumin to increase the Pmv is minimized; nor, however, does an increase in plasma COP significantly reduce the flux of such solutes.« less

  4. Explicitly Representing the Solvation Shell in Continuum Solvent Calculations

    PubMed Central

    Svendsen, Hallvard F.; Merz, Kenneth M.

    2009-01-01

    A method is presented to explicitly represent the first solvation shell in continuum solvation calculations. Initial solvation shell geometries were generated with classical molecular dynamics simulations. Clusters consisting of solute and 5 solvent molecules were fully relaxed in quantum mechanical calculations. The free energy of solvation of the solute was calculated from the free energy of formation of the cluster and the solvation free energy of the cluster calculated with continuum solvation models. The method has been implemented with two continuum solvation models, a Poisson-Boltzmann model and the IEF-PCM model. Calculations were carried out for a set of 60 ionic species. Implemented with the Poisson-Boltzmann model the method gave an unsigned average error of 2.1 kcal/mol and a RMSD of 2.6 kcal/mol for anions, for cations the unsigned average error was 2.8 kcal/mol and the RMSD 3.9 kcal/mol. Similar results were obtained with the IEF-PCM model. PMID:19425558

  5. Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.

    PubMed

    Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan

    2011-07-01

    In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.

  6. Preliminary Determination of the Temperature Dependence of Siderophile Element Diffusion in Iron Meteorites at 1GPa

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Watson, B.

    2002-05-01

    Preliminary results for diffusion of siderophile elements (Cu, Pd, Re, Os, and Mo) in an iron meteorite analog were obtained at temperatures ranging from 1175° C to 1400° C and 1GPa from diffusion couple experiments in a piston-cylinder apparatus. Alloys were prepared by synthesizing mixtures of pure metal powders. The alloys were made from a 90 wt% Fe and 10 wt% Ni base mixture, and approximately 1wt% of the various siderophile elements was added (individually) to the same base mixture to make the doped alloys. The powders were packed in pre-drilled holes ( ~1 mm diameter by 8 mm deep) in MgO cylinders, and run in a piston cylinder apparatus at 1400° C and 1GPa for 48 hours. The resulting homogeneous alloys were then sectioned into wafers approximately 1mm thick, and the faces were polished to prepare for the diffusion experiments. A diffusion couple experiment was conducted by mating a pure alloy wafer and a doped wafer, and placing the couple into an MgO capsule for pressurization and heating in the piston cylinder. The duration of the diffusion experiments ranged from 12 hours to 100 hours. Upon run completion, the diffusion couples were extracted, sectioned lengthwise, and polished for analysis. Diffusion profiles were measured using standard electron microprobe techniques. Preliminary Arrhenius relations have been found as follows: DMo=2.12E-1+/-0.20 m2/s exp(390.86+/-40.46 kJ/mol/RT) DCu=1.37E-3+/-1.25E-3 m2/s exp(315.24+/-31.64 kJ/mol/RT) DPd=2.40E-5+/-2.40E-5 m2/s exp(269.64+/-87.49 kJ/mol/RT) Diffusion coefficients have also been found for Re and Os at 1325° C. They are: DRe=7.89E-15+/-6.70 m2/s and DOs=9.69E-15+/-8.24 m2/s

  7. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.

    1989-06-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organmore » uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.« less

  8. Experimental studies of magnetite formation in the solar nebula

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Fegley, B., Jr.

    1998-09-01

    Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91-442oC in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4-41. The magnetite produced was identified by X-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: cm2 hour-1 Eact = 92=B15(2s) kJ mol-1 cm2 hour-1 Eact = 95=B112(2s) kJ mol-1 These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10,000 ppmv H2S (Lauretta et al. 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1-1 micron radius metal grains are generally within estimated lifetimes of the solar nebula (0.1-10 million years). However, the calculated reaction times are probably lower limits and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.

  9. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Chen, Xiaoping; Jiang, Qizhong; Yuan, Jian; Lin, Caifang; Shangguan, Wenfeng

    2014-10-01

    Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H2 evolution rate (3004.8 μmol h-1) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H2 production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid.

  10. Description of Paenisporosarcina quisquiliarum gen. nov., sp. nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. 2003 as Paenisporosarcina macmurdoensis comb. nov.

    PubMed

    Krishnamurthi, S; Bhattacharya, A; Mayilraj, S; Saha, P; Schumann, P; Chakrabarti, T

    2009-06-01

    In the course of a study of the prokaryotic diversity of a landfill site in Chandigarh, India, a strain designated SK 55(T) was isolated and characterized using a polyphasic approach. Its 16S rRNA gene sequence showed closest similarity (98.3 %) to that of Sporosarcina macmurdoensis CMS 21w(T). The sequence similarity to strains of other hitherto described species of Sporosarcina was less than 95.5 %. Strain SK 55(T) contains peptidoglycan of the A4alpha type (l-Lys-d-Asp), MK-8 and MK-7 as the major menaquinones and iso-C(15 : 0) as the major fatty acid. Strain SK 55(T), Sporosarcina macmurdoensis and Sporosarcina ureae, the type species of the genus, had some polar lipids in common (diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a phospholipid and an unknown lipid). However, an aminolipid, an aminophospholipid and an unknown lipid found in the former two organisms are similar, though not identical, but quite different from the profile of S. ureae. The genomic DNA G+C contents of strain SK 55(T) (46.0 mol%) and S. macmurdoensis CMS 21w(T) (44.0 mol%) are higher than those reported for the majority of species of Sporosarcina (36-42 mol%). As revealed by 16S rRNA gene sequence analysis, strain SK 55(T) and S. macmurdoensis CMS 21w(T) form a clade which is distinct from the clade occupied by other species of Sporosarcina. On the basis of phenotypic characteristics including chemotaxonomic data and analysis of the 16S rRNA gene sequence, we conclude that strain SK 55(T) should be considered as a member of a novel genus and species, for which the name Paenisporosarcina quisquiliarum gen. nov., sp. nov. is proposed. The type strain of Paenisporosarcina quisquiliarum is SK 55(T) (=MTCC7604(T) =JCM 14041(T)). S. macmurdoensis CMS 21w(T) shows more similarity in its 16S rRNA gene sequence (98.3 %), DNA G+C content and polar lipid profile to strain SK 55(T) than to S. ureae DSM 2281(T). Phylogenetically, it forms a coherent cluster with strain SK 55(T) which is separate from the Sporosarcina cluster. Moreover, iso-C(15 : 0), anteiso-C(15 : 0) and C(16 : 1)omega7c alcohol are the three major fatty acids in both S. macmurdoensis CMS 21w(T) and SK 55(T). All these data suggest that S. macmurdoensis should be a member of the genus Paenisporosarcina. However, S. macmurdoensis can be differentiated from SK 55(T) in several physiological and biochemical characteristics, especially in the patterns of oxidation and acid production from carbohydrates. The genomic relatedness of S. macmurdoensis CMS 21w(T) and strain SK 55(T) was also very low (18.0 %). It is therefore logical to transfer Sporosarcina macmurdoensis to the newly created genus as Paenisporosarcina macmurdoensis comb. nov. The type strain is CMS 21w(T) (=MTCC4670(T) =DSM 15428(T)).

  11. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    PubMed Central

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna

    2015-01-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e−7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, −40.1 kcal/mol; G24E, −510 kcal/mol; E25K, −522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. PMID:26055363

  12. Flammability, Odor, and Offgassing Requirements and Test Procedures for Materials in Environments That Support Combustion

    DTIC Science & Technology

    1988-05-01

    alcohol (1- octanol ) phenol n-propyl alcohol (1-propanol) isopropy1 alcohol (2-propanol) **2. Aldehydes acetaldehyde (ethanal) acrolein (propenal...59.0) D-7 MACs 7-Day ppm fmq/M^) 20 (105) 20 (82.0) 20 (70.4) 20 (70.4) Mol. Wt. methyl hexyl ketone (2- octanone ) 128.2 methyl

  13. Oxy-Component in low-Pressure Kaersutite: How Much can be a Primary Magmatic Feature?

    NASA Astrophysics Data System (ADS)

    McCubbin, F.; Nekvasil, H.; Lindsley, D. H.

    2006-05-01

    Introduction: The presence of an oxy-component in kaersutite has been well established [1]. Many workers have attributed this oxy-component to dehydration or dehydrogenation [1, 2]. However, it has also been suggested that the oxy-component can be a primary magmatic feature because of a Ti-oxy substitution mechanism [2, 3], although the exact mechanism has yet to be determined experimentally [3]. This work focuses on experimentally determining how much oxy-component can be incorporated into kaersutite (specifically F-kaersutite) as a primary magmatic feature at 0 kbar. Additionally, substitution mechanisms involving Ti-oxy substitutions are con-sidered. Experimental Procedure: Powdered mixes of oxides and CaF2 were used as starting materials. F2/O ratios were different for each starting material in hopes of creating kaersutites with specific oxy- components for each starting composition. The powders were loaded into Fe-capsules and dried at 800°C under vacuum in silica-glass tubes. Next the silica-glass tubes were sealed and placed in a Deltech furnace. The temperature within the furnace was raised above the melting temperature of the starting material and main-tained for 3 hours to allow for liquid equilibration. The tempera-ture was then lowered to a crystallization temperature and left for several days. Pressures of both melting and crystallization were nominally 0 kbar (tensile strength of silica glass tubes used is ~3 atm). The resulting phases were considered to be nomi-nally water-free. [Quenched glass experiments at these conditions yielded 0.0 wt% H2O as determined by micro-FTIR]. Ex-perimental run products were analyzed by electron-microprobe. Results: To date, experiments on a starting mate-rial with 3.55 wt% fluorine yielded kaersutite that had ~75 mol% F-component and ~25 mol% oxy-component (as-suming O(3) site stoichiometry). Experiments on a starting mate-rial with 0.89 wt% F yielded kaersutites ranging from ~55 mol% F- component and ~45 mol% Oxy-component to ~70 mol% F-component and ~30 mol% Oxy- component. Conclusions: Significant primary magmatic oxy-component is apparently required in F-kaersutite crystallized at 0 kbar, which is consistent with suggested substitution mechanisms [2, 3], although the exact mechanism seems to be more complex than previously proposed. The availability of magmatic volatiles within the magma plays a role in the amount of oxy-component in kaersutite and could account for the complexity in the substitu-tion mechanism. Work is ongoing to establish upper and lower limits of oxy-component in kaersutite by primary magmatic proc-esses. References: [1] Hawthorne F.C., and Grundy, H.D. (1973) Mineralogical Magazine, Vol. 39, pp. 390-400. [2] Popp, R.K., and Bryndzia, L.T. (1992) American Mineralogist, Vol. 77, pp. 1250-1257. [3] Popp, R.K., Virgo, D., Phillips, M.W. (1995b) American Mineralogist, Vol. 80, pp. 1347-1350.

  14. Design of magnetic system to produce intense beam of polarized molecules of H2 and D2

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Nikolenko, D. M.; Rachek, I. A.; Shestakov, Yu V.; Toporkov, D. K.; Zorin, A. V.

    2017-12-01

    A magnetic-separating system is designed to produce polarized molecular high-density beams of H2/D2. The distribution of the magnetic field inside the aperture of the multipole magnet was calculated using the Mermaid software package. The calculation showed that the characteristic value of the magnetic field is 40 kGs, the field gradient is about 60 kGs/cm. A numerical calculation of the trajectories of the motion of molecules with different spin projections in this magnetic system is performed. The article discusses the possibility of using the magnetic system designed for the creation of a high-intensity source of polarized molecules. The expected intensity of this source is calculated. The expected flux of molecules focused in the receiver tube is 3.5·1016 mol/s for the hydrogen molecule and 2.0·1015 mol/s for the deuterium molecule.

  15. Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Capitelli, Francesco; Harley, Simon

    2012-11-01

    We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ɛ = 5,200 ± 700 l mol-1 cm-2 and [II]ɛ = 13,000 ± 3,000 l mol-1 cm-2, respectively. For CO2 the integrated coefficient is \\varepsilon_{{{{CO}}_{ 2} }} = 19,000 ± 2,000 l mol-1 cm-2.

  16. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  17. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.

    PubMed

    Mishra, Ranjeet Kumar; Mohanty, Kaustubha

    2018-03-01

    The present study reports pyrolysis behavior of three waste biomass using thermogravimetric analysis to determine kinetic parameters at five different heating rates. Physiochemical characterization confirmed that these biomass have the potential for fuel and energy production. Pyrolysis experiments were carried out at five different heating rates (5-25 °C min -1 ). Five model-free methods such as Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Friedman, Coats-Redfern, and distributed activation energy (DAEM) were used to calculate the kinetic parameters. The activation energy was found to be 171.66 kJ mol -1 , 148.44 kJ mol -1 , and 171.24 kJ mol -1 from KAS model; 179.29 kJ mol -1 , 156.58 kJ mol -1 , and 179.47 kJ mol -1 from OFW model; 168.58 kJ mol -1 , 181.53 kJ mol -1 , and 184.61 kJ mol -1 from Friedman model; and 206.62 kJ mol -1 , 171.63 kJ mol -1 , and 160.45 kJ mol -1 from DAEM model for PW, SW, AN biomass respectively. The calculated kinetic parameters are in good agreement with other reported biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts

    NASA Astrophysics Data System (ADS)

    Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.; Jiang, Bin; Kisielowski, Christian; Bardhan, Rizia; Urban, Jeffrey J.

    2011-04-01

    Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg-1 ref. 1), great variety of potential sources (for example water, biomass, organic matter), light weight, and low environmental impact (water is the sole combustion product). However, there remains a challenge to produce a material capable of simultaneously optimizing two conflicting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state, but weakly enough to release it on-demand with a small temperature rise. Many materials under development, including metal-organic frameworks, nanoporous polymers, and other carbon-based materials, physisorb only a small amount of hydrogen (typically 1-2 wt%) at room temperature. Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH2 has a ΔHf˜75 kJ mol-1), thus requiring unacceptably high release temperatures resulting in low energy efficiency. However, recent theoretical calculations and metal-catalysed thin-film studies have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption. Here, we report the synthesis of an air-stable composite material that consists of metallic Mg nanocrystals (NCs) in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6 wt% of Mg, 4 wt% for the composite) and rapid kinetics (loading in <30 min at 200 °C). Moreover, nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts.

  19. Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applications.

    PubMed

    Santos, Daniel; Correia, Cristina O; Silva, Dina M; Gomes, Pedro S; Fernandes, Maria H; Santos, José D; Sencadas, Vitor

    2017-06-01

    Tissue engineering is constantly evolving towards novel materials that mimic the properties of the replaced injured tissue or organ. A hybrid electrospun membrane of electroactive poly(l-acid lactic) (PLLA) polymer with glass reinforced hydroxyapatite (Bonelike®) microparticles placed among the polymer fibres in a morphology like "islands in the sea" was processed. The incorporation of 60 to 80wt% Bonelike® bone grafts granules with ≤150μm into the polymer solution lead to an amorphous polymeric fibre membranes, and a decrease of the average polymer fibre diameter from 550±150nm for neat PLA down to 440±170nm for the hybrid composite. The presence of Bonelike® in the polymer mats reduced the activation energy for thermal degradation from 134kJ·mol -1 , obtained for the neat PLLA membranes down to 71kJ·mol -1 , calculated for the hybrid composite membranes. In vitro cell culture results suggest that the developed processing method does not induce cytotoxic effects in MG 63 osteoblastic cells, and creates an environment that enhances cell proliferation, when compared to the neat PLLA membrane. The simplicity and scalability of the processing method suggests a large application potential of this novel hybrid polymer-microparticles fibre membranes for bone regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Seasonal variability in foliar characteristics and physiology for boreal forest species at the five Saskatchewan tower sites during the 1994 Boreal Ecosystem-Atmosphere Study

    NASA Astrophysics Data System (ADS)

    Middleton, E. M.; Sullivan, J. H.; Bovard, B. D.; Deluca, A. J.; Chan, S. S.; Cannon, T. A.

    1997-12-01

    Leaf-level measurements of gas exchange, chemistry, morphology, and spectral optical properties were acquired at the five instrumented tower sites during the three 1994 growing season intensive field campaigns (IFCs) conducted near Prince Albert, Saskatchewan, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Stands included old and young aspen (OA, YA) associated with the hazelnut shrub, old and young jack pine (OJP, YJP) stands, and an old black spruce (OBS) stand; white spruce (at YA) and an understory herb (dogbane, at OJP) were also examined. Midsummer peak photosynthesis for aspen leaves in the field (A, light saturated) and laboratory (Amax light and CO2 saturated) was ˜12.6 and 33-41 μmol CO2 m-2 s-1. Black spruce exhibited the lowest A, 3 μmol CO2 m-2 s-1. Jack pine and black spruce attained their highest Amax (17-20 μmol CO2 m-2 s-1) in late summer/early fall. Gas exchange by white spruce was significantly higher and stomatal limitation lower than for other conifers, at levels comparable to broadleaf responses. White spruce foliage had the highest chlorophyll content in fall (˜41 μg cm-2), followed by aspen (OA) and hazelnut (YA) in midsummer (˜31 μg cm-2). Specific leaf mass of aspen, hazelnut, and conifer foliage was 86, ˜47, and ˜174 g m-2, respectively. Leaf nitrogen content of broadleaves (18-40 g N g-1 dry wt) was 2-3 times greater than conifer needles (8-12 g N g-1). Significantly larger needles were produced at OJP versus YJP, but needle number per age class was greater at YJP. The absorbed photosynthetically active radiation fraction (fAPAR) in June/July averaged ˜80% for broadleaves and ˜83% in conifer needles. The simple ratio (SR, near-infrared/red ratio) calculated from foliar transmittances was more strongly related to fAPAR than SR calculated from reflectances, with stronger correlation for broadleaves (r=0.92) than for conifers (r=0.78).

  1. Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena, Sharma, Annu

    2018-05-01

    This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.

  2. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    PubMed Central

    Kadri, Atikah; Jia, Yi; Chen, Zhigang; Yao, Xiangdong

    2015-01-01

    Mg (MgH2)-based composites, using carbon nanotubes (CNTs) and pre-synthesized vanadium-based complex (VCat) as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD) results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time) are better to enhance the hydrogen sorption performance.

  3. Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes.

    PubMed

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Kiggans, Jim; Wood, David L

    2013-09-01

    Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite

    NASA Astrophysics Data System (ADS)

    Thomas, Sylvia-Monique; Jacobsen, Steven D.; Bina, Craig R.; Smyth, Joseph R.; Frost, Daniel J.

    2010-05-01

    Raman spectroscopy, combined with the 'Comparator technique' has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the 'Comparator technique' to provide ɛ-values for a set of synthetic Fe-free (Fo100) and Fe-bearing (Fo90, Fo87, Fo83, Fo60) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth's lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth's deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3130, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3244 cm-1 (Fo60) and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3170 cm-1 an ɛ-value of 191500 ± 38300 L cm-2/ molH2O was determined. For the ringwoodites with Fo90, Fo87 and Fo83 composition and the mean wavenumbers of 3229 cm-1, 3252 cm-1 and 3163 cm-1 values of 123600 ± 24700 L cm-2/ molH2O, 176300 ± 52900 L cm-2/ molH2O and 155000 ± 46500 L cm-2/ molH2O were computed. Our value for pure Mg-ringwoodite is in very good agreement with the value according to Libowitzky & Rossman (1997) and the absorption coefficient proposed by Balan et al. (2008), but is higher than the extrapolated value from Koch-Müller & Rhede (2010). However, in case of the sample with Fo60 composition water content and ɛ-value determined here are in excellent agreement with those calculated by Koch-Müller & Rhede (2010). Here, we will further discuss general IR calibrations and the dependence of ɛ on structure, composition and frequency for the (Mg,Fe)2SiO4 polymorphs in the mantle. We agree with the findings of Koch-Müller & Rhede (2010), which report that using the calibrations according to Paterson (1982) and Libowitzky & Rossman (1997) leads to a water content underestimation in case of Fe-rich (Fay-Fo60) samples. At this point this cannot be generalized for Mg-rich ringwoodite. References Thomas et al. (2009), Phys. Chem. Mineral., 36, 489-509. Libowitzky & Rossman (1997), Am. Mineral., 82, 1111-1115. Koch-Müller & Rhede (2010), Am. Mineral., in press. Paterson (1982), Bull. Mineral. (Paris), 105, 20-29.

  5. The high temperature creep deformation of Si3N4-6Y2O3-2Al2O3

    NASA Technical Reports Server (NTRS)

    Todd, J. A.; Xu, Zhi-Yue

    1988-01-01

    The creep properties of silicon nitride containing 6 wt percent yttria and 2 wt percent alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation epsilon dot varies as sigma sup n, was determined to be 2.00 + or - 0.15 and the true activation energy was found to be 692 + or - 25 kJ/mol. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.

  6. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentrations for intake-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the... equation: ER30AP10.095 Example: x NOxuncor = 700.5 µmol/mol x H2O = 0.022 mol/mol x NOxcor = 700.5 · (9.953...

  7. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concentrations for intake-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the... equation: ER30AP10.095 Example: x NOxuncor = 700.5 µmol/mol x H2O = 0.022 mol/mol x NOxcor = 700.5 · (9.953...

  8. Thermal properties of spinel based solid solutions

    NASA Astrophysics Data System (ADS)

    O'Hara, Kelley Rae

    Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in final chemistry (38.3 wt% Al20 3) caused by the nucleation and growth region in the system.

  9. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales

    DOE PAGES

    Riccardi, Demian M.; Parks, Jerry M.; Johs, Alexander; ...

    2015-03-20

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. We tested the core; it is well-documented and easy to install across computational platforms. Our goal for the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, anmore » abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.« less

  10. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales.

    PubMed

    Riccardi, Demian; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2015-04-27

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. The core is well-tested, well-documented, and easy to install across computational platforms. The goal of the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, an abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.

  11. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardi, Demian M.; Parks, Jerry M.; Johs, Alexander

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. We tested the core; it is well-documented and easy to install across computational platforms. Our goal for the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, anmore » abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.« less

  12. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    NASA Astrophysics Data System (ADS)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  13. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).

    PubMed

    Ren, Jianhua; Tan, John P; Harper, Robert T

    2009-10-15

    The gas-phase acidities of four cysteine-polyalanine peptides, A(3,4)CSH and HSCA(3,4), were determined using the extended Cooks kinetic method with full entropy analysis. A triple-quadrupole mass spectrometer with an electrospray interface was employed for the experimental study. The ion activation was achieved via collision-induced dissociation (CID) experiments. The deprotonation enthalpies (Delta(acid)H) of the peptides were determined to be 332.2 +/- 2.0 kcal/mol (A(3)CSH), 325.9 +/- 2.0 kcal/mol (A(4)CSH), 319.3 +/- 3.0 kcal/mol (HSCA(3)), and 319.2 +/- 4.0 kcal/mol (HSCA(4)). The deprotonation entropies (Delta(acid)S) of the peptides were estimated based on the entropy term (Delta(DeltaS)) and the deprotonation entropies of the reference acids. By using the deprotonation enthalpies and entropies, the gas-phase acidities (Delta(acid)G) of the peptides were derived: 325.0 +/- 2.0 kcal/mol (A(3)CSH), 320.2 +/- 2.0 kcal/mol (A(4)CSH), 316.3 +/- 3.0 kcal/mol (HSCA(3)), and 315.4 +/- 4.0 kcal/mol (HSCA(4)). Conformations and energetic information of the peptides were calculated through simulated annealing (Tripos), geometry optimization (AM1), and single-point energy calculations (B3LYP/6-31+G(d)), respectively. The calculated theoretical deprotonation enthalpies (Delta(acid)H) of 334.2 kcal/mol (A(3)CSH), 327.7 kcal/mol (A(4)CSH), 320.6 kcal/mol (HSCA(3)), and 318.6 kcal/mol (HSCA(4)) are in good agreement with the experimentally determined values. Both the experimental and computational studies suggest that the two N-terminal cysteine peptides, HSCA(3,4), are significantly more acidic than the corresponding C-terminal ones, A(3,4)CSH. The high acidities of the former are likely due to the helical conformational effects for which the thiolate anion may be strongly stabilized by the interaction with the helix macrodipole.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggita, R. K. Wardani, E-mail: anggita14@mhs.chem.its.ac.id; Yuniar, V. T. P., E-mail: yuniar11@mhs.chem.its.ac.id; Aini, W. T., E-mail: aini11@mhs.chem.its.ac.id

    In this study, the influence of hydrothermal temperature and time at zeolite X supported on glasswool were investigated. The results of characterization using XRD showed that a single phase zeolite X with highest crystallinity was obtained when hydrothermal temperature and time at 100°C during 24 hours (ZXF100-24H). The CO{sub 2} adsorption capacity of ZXF100-24H has reached up to 10.15 wt. %. Kinetics of CO{sub 2} adsorption onto zeolite X supported on glasswool was investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. After evaluating three kinetic models for CO{sub 2} adsorption at adsorption temperatures of 30°C, 40°C and 50°C, itmore » was found that intra-particle diffusion kinetic model provided the best fitting for the adsorption data. Furthermore, the thermodynamic parameters of CO{sub 2} adsorption were obtained as follows, Gibbs free energy change (ΔG°) are −0.409 kJ/mol at 30°C, −0.274 kJ/mol at 40°C and −0.138 kJ/mol at 50 °C, whereas the enthalpy change (ΔH°) is −4.53 kJ/mol and the entropy change (ΔS°) is −0.0135 kJ/(mol K).« less

  15. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    PubMed

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Oxygen potential of (U 0.88Pu 0.12)O 2±x and (U 0.7Pu 0.3)O 2±x at high temperatures of 1673-1873 K

    NASA Astrophysics Data System (ADS)

    Kato, M.; Takeuchi, K.; Uchida, T.; Sunaoshi, T.; Konashi, K.

    2011-07-01

    The oxygen potential of (U 0.88Pu 0.12)O 2±x (-0.0119 < x < 0.0408) and (U 0.7Pu 0.3)O 2±x (-0.0363 < x < 0.0288) was measured at high temperatures of 1673-1873 K using gas equilibrium method with thermo gravimeter. The measured data were analyzed by a defect chemistry model. Expressions were derived to represent the oxygen potential based on defect chemistry as functions of temperature and oxygen-to-metal ratio. The thermodynamic data, ΔG, ΔH and ΔS, at stoichiometric composition were obtained. The expressions can be used for in situ determination of the oxygen-to-metal ratio by the gas-equilibration method. The calculation results were consistent with measured data. It was estimated that addition of 1 wt.% Pu content increased oxygen potential of uranium and plutonium mixed oxide by 2-5 kJ/mol.

  17. Hydrogen Sulfide Attenuates Neurodegeneration and Neurovascular Dysfunction Induced by Intracerebral Administered Homocysteine in Mice

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Givvimani, Srikanth; Sathnur, PB; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) are associated with neurovascular diseases. H2S, a metabolite of Hcy, has a potent anti-oxidant and anti-inflammatory activity; however, the effect of H2S has not been explored in Hcy (IC) induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild type (WT) males ages 8–10 weeks, WT+ artificial cerebrospinal fluid (aCSF), WT+ Hcy (0.5μmol/μl) intracerebral injection (I.C., one time only prior to NaHS treatment), WT+Hcy +NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected intra-peritoneally (I.P.) once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased MDA, nitrite level, acetylcholinestrase activity, TNFα, IL1β, GFAP, iNOS, eNOS and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF treated groups. Further, increased expression of NSE, S100B and decreased expression of (PSD95, SAP97) synaptic protein indicated neurodegeneration. Brain sections of Hcy treated mice showed damage in the cortical area and periventricular cells. TUNEL positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of MMP9, MMP2 and decreased expression of TIMP-1, TIMP-2, tight junction proteins (ZO1, Occuldin) in Hcy treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction. PMID:23912038

  18. In vitro analysis of allogeneic lymphocyte interaction. V. Identification and characterization of two components of allogeneic effect factor, one of which displays H-2-restricted helper activity and the other, T cell-growth factor activity.

    PubMed

    Delovitch, T L; Watson, J; Battistella, R; Harris, J F; Shaw, J; Paetkau, V

    1981-01-01

    An allogeneic effect factor (AEF) derived from mixed lymphocyte reaction (MLR) cultures of alloactivated A.SW (H-2s) responder T cells and irradiated A/WySn (H-2a) stimulator spleen cells helps an in vitro primary anti-erythrocyte plaque-forming cell PFC response of BALB/c nude spleen cels and also A/WySn but not A.SW T cell-depleted spleen cells. AEF activity is adsorbed by anti-Ik and anti-I-Ak but not by anti-I-Jk, anti-I-ECk, and anti-Is. Gel filtration of ACA 54 resolves AEF into two main components that which appear in the 50,000- to 70,000-mol wt (component I) and 30,000- to 35,000-mol wt (component II) regions, respectively. Component I has a mol wt of 68,000, elutes from DEAE-Sephacel at 0.05-0.1 M NaCl, and has an isoelectric point (pI) of 5.8. It helps A/WySn but not A.SW B cells and, therefore, is H-2 restricted. Component II is not H-2 restricted, because it helps both A.SW and A/WySn B cells. It also stimulates (a) the growth of a long-term cytotoxic cell line in vitro, (b) Con A-induced thymocyte mitogenesis, and (c) the generation of cytotoxic T cells. The latter three properties of component II are not shared by component I. In addition, component II elutes from DEAE-Sephacel at 0.15-0.2 M NaCl and has a pI of 4.3 and 4.9. Ia determinants and Ig VH, CH, L-chain, and idiotypic determinants are not present on either component I or component II. The properties of component II are identical to that of a T cell growth factor produced by Con A-stimulated spleen cells. It is suggested that the H-2-restricted component I of AEF might be an MLR-activated responder T cell-derived Ia alloantigen receptor.

  19. [PKA-regulated phosphorylation status of S149 and S321 sites of CDC25B inhibits mitosis of fertilized mouse eggs].

    PubMed

    Xiao, Jian-Ying; Liu, Chao; Sun, Xiao-Han; Yu, Bing-Zhi

    2012-02-25

    To further test whether protein kinase A (PKA) can affect the mitotic cell cycle, one-cell stage mouse embryos at S phase (22 h after hCG injection) were incubated in M16 medium containing various concentrations of H-89, a PKA inhibitor. With increasing concentrations of H-89 (0-50 μmol/L), the G(2) phase of eggs was decreased and the cleavage rate was accelerated. A concentration of 40 μmol/L H-89 led to all of the mouse eggs entering the M phase of mitosis. Furthermore, to study the role of PKA in regulating the phosphorylation status of S149 and S321 sites of cell division cycle 25B (CDC25B) on one-cell stage fertilized mouse eggs, pBSK-CDC25B-WT, pBSK-CDC25B-S149A, pBSK-CDC25B-S321A and pBSK-CDC25B-S149A/S321A were transcribed into mRNAs in vitro, then mRNAs were microinjected into S phase of mouse fertilized eggs and cultured in M16 medium pretreated with H-89. Then, the cleavage of fertilized eggs, maturation promoting factor (MPF) activity and phosphorylation status of CDC2-Tyr15 were observed. In the presence of 40 μmol/L H-89, the cleavage rate of fertilized eggs in CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups was significantly higher than that in the control groups, and the peak of MPF activity appeared in the CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups earlier than that in the control groups. CDC2-Tyr15 phosphorylation state was consistent with MPF activity. In conclusion, the present study suggests that PKA regulates the early development of mouse embryos by phosphorylation of S149 and S321 of CDC25B, which plays an important role in the regulation of G(2)/M transition in the mitotic cell cycle of fertilized mouse eggs.

  20. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage.

    PubMed

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna; Perno, Carlo Federico; Svicher, Valentina

    2015-08-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products

    PubMed Central

    Hermann-Krauss, Carmen; Koller, Martin; Stelzer, Franz; Braunegg, Gerhart

    2013-01-01

    The archaeon Haloferax mediterranei was selected for production of PHA co- and terpolyesters using inexpensive crude glycerol phase (CGP) from biodiesel production as carbon source. CGP was assessed by comparison with the application of pure glycerol. Applying pure glycerol, a copolyester with a molar fraction of 3-hydroxybutyrate (3HB) of 0.90 mol/mol and 3-hydroxyvalerate (3HV) of 0.10 mol/mol, was produced at a volumetric productivity of 0.12 g/Lh and an intracellular PHA content of 75.4 wt.-% in the sum of biomass protein plus PHA. Application of CGP resulted in the same polyester composition and volumetric productivity, indicating the feasibility of applying CGP as feedstock. Analysis of molar mass distribution revealed a weight average molar mass M w of 150 kDa and polydispersity P i of 2.1 for pure glycerol and 253 kDa and 2.7 for CGP, respectively; melting temperatures ranged between 130 and 140°C in both setups. Supplying γ-butyrolactone as 4-hydroxybutyrate (4HB) precursor resulted in a poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate-co-4-hydroxybutyrate] (PHBHV4HB) terpolyester containing 3HV (0.12 mol/mol) and 4HB (0.05 mol/mol) in the poly[(R)-3-hydroxybutyrate] (PHB) matrix; in addition, this process runs without sterilization of the bioreactor. The terpolyester displayed reduced melting (melting endotherms at 122 and 137°C) and glass transition temperature (2.5°C), increased molar mass (391 kDa), and a polydispersity similar to the copolyesters. PMID:24453697

  2. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution.

    PubMed

    Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao

    2015-08-21

    Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).

  3. Desorption Kinetics of H2O from Cab-O-Sil-M-7D and Hi-Sil-233 Silica Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, L.; Balooch, M.; LeMay, J.D.

    2000-01-26

    Temperature programmed desorption (TPD) was performed at temperatures up to 850K on Cab-O-Sil-M-7D and Hi-Sil-233 silica particles. Physisorbed water molecules on both types of silica had activation energies in the range of 9-14.5 kcal/mol. However, the activation energies of desorption for chemisorbed water varied from {approx} 19 kcal/mol to > 59 kcal/mol for Cab-O-Sil-M-7D, and {approx} 23-37 kcal/mol for Hi-Sil-233. Our results suggest that physisorbed water can be effectively pumped away at room temperature (or preferably at 320 K) in a matter of hours. Chemisorbed water with high activation energies of desorption (>30 kcal/mol) will not escape the silica surfacesmore » in 100 years even at 320 K, while a significant amount of the chemisorbed water with medium activation energies (19-26 kcal/mol) will leave the silica surfaces in that time span. Most of the chemisorbed water with activation energies < 30 kcal/mol can be pumped away in a matter of days in a good vacuum environment at 500 K. We had previously measured about 0.1-0.4 wt. % of water in M9787 polysiloxane formulations containing {approx} 21% Cab-O-Sil-M-7D and {approx} 4% Hi-Sil-233. Comparing present results with these formulations, we conclude that absorbed H{sub 2}O and Si-OH bonds on the silica surfaces are the major contributors to water outgassing from M97 series silicones.« less

  4. Solvent effects and potential of mean force study of the SN2 reaction of CH3+CN‑ in water

    NASA Astrophysics Data System (ADS)

    Li, Chen; Liu, Peng; Li, Yongfang; Wang, Dunyou

    2018-03-01

    We used a combined quantum mechanics and molecular mechanics (QM/MM) method to investigate the solvent effects and potential of mean force of the CH3F+CN‑ reaction in water. Comparing to gas phase, the water solution substantially affects the structures of the stationary points along the reaction path. We quantitatively obtained the solvent effects’ contributions to the reaction: 1.7 kcal/mol to the activation barrier and ‑26.0 kcal/mol to the reaction free energy. The potential mean of force calculated with the density functional theory/MM theory has a barrier height at 19.7 kcal/mol, consistent with the experimental result at 23.0 kcal/mol; the calculated reaction free energy at ‑43.5 kcal/mol is also consistent with the one estimated based on the gas-phase data at ‑39.7 kcal/mol. Project supported by the National Natural Science Foundation of China (Grant No. 11774206) and Taishan Scholarship Fund from Shandong Province, China.

  5. Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 Molecules

    DOE PAGES

    Cheng, Lan; Gauss, Jürgen; Ruscic, Branko; ...

    2017-01-12

    Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015, 11, 2036) are reported in this paper. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of themore » latter discrepancies, the analysis used to determine the experimental dissociation energies for VH and CrH is revisited. It is shown that, if improved values are used for the heterolytic C–H dissociation energies of di- and trimethylamine involved in the experimental determination, the experimental values for the dissociation energies of VH and CrH are increased by 18 kJ/mol, such that D 0(VH) = 223 ± 7 kJ/mol and D 0(CrH) = 204 ± 7 kJ/mol (or D e(VH) = 233 ± 7 kJ/mol and D e(CrH) = 214 ± 7 kJ/mol). Finally, the new experimental values agree quite well with the calculated values, showing the consistency of the computation and the measured reaction thresholds.« less

  6. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  7. Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source.

    PubMed

    Antunes, Sílvia; Freitas, Filomena; Sevrin, Chantal; Grandfils, Christian; Reis, Maria A M

    2017-03-01

    Out-of-specification tomato paste, a by-product from the tomato processing industry, was used as the sole substrate for cultivation of the bacterium Enterobacter A47 and production of FucoPol, a value-added fucose-rich extracellular polysaccharide. Among the different tested fed-batch strategies, pH-stat, DO-stat and continuous substrate feeding, the highest production (8.77gL -1 ) and overall volumetric productivity (2.92gL -1 d -1 ) were obtained with continuous substrate feeding at a constant flow rate of 11gh -1 . The polymer produced had the typical FucoPol composition (37mol% fucose, 27mol% galactose, 23mol% glucose and 12mol% glucuronic acid, with an acyl groups content of 13wt%). The average molecular weight was 4.4×10 6 Da and the polydispersity index was 1.2. This study demonstrated that out-of-specification tomato paste is a suitable low-cost substrate for the production of FucoPol, thus providing a route for the valorization of this by-product into a high-value microbial product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion air humidity to calculate this correction if your combustion air humidity remains within a...-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the mean value over the...

  9. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion air humidity to calculate this correction if your combustion air humidity remains within a...-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the mean value over the...

  10. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion air humidity to calculate this correction if your combustion air humidity remains within a...-air humidity. You may use a time-weighted mean combustion air humidity to calculate this correction if your combustion air humidity remains within a tolerance of ±0.0025 mol/mol of the mean value over the...

  11. Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic.

    PubMed

    Huong, Kai-Hee; Teh, Chin-Hoe; Amirul, A A

    2017-08-01

    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, M w of 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ortho-, meta-, and para-benzyne. A comparative CCSD (T) investigation

    NASA Astrophysics Data System (ADS)

    Kraka, Elfi; Cremer, Dieter

    1993-12-01

    Geometries and energies of ortho-benzyne ( 1), mata-benzyne ( 2), and para-benzyne ( 3) have been calculated at the CCSD (T), GVB, GVB-LSDC, and MBPT (2) levels of theory employing the 6-31G(d, p) basis. Calculations suggest relative energies of O, 13.7, and 25.3 kcal/mol, respectively, and Δ H0f(298) values of 110.8, 123.9, and 135.7 kcal/mol for 1, 2, and 3. With the Δ H0f(298) value of 3, the reaction enthalpy Δ RH(298) and the activation enthalpy Δ H#(298) for the Bergman cyclization of (Z)-hexa-1,5-diy -ene to 3 are calculated to be 9.1 and 28.5 kcal/mol.

  13. An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein.

    PubMed

    Glidden, Michael D; Aldabbagh, Khadijah; Phillips, Nelson B; Carr, Kelley; Chen, Yen-Shan; Whittaker, Jonathan; Phillips, Manijeh; Wickramasinghe, Nalinda P; Rege, Nischay; Swain, Mamuni; Peng, Yi; Yang, Yanwu; Lawrence, Michael C; Yee, Vivien C; Ismail-Beigi, Faramarz; Weiss, Michael A

    2018-01-05

    Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo , of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function, and stability of such an analog, a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in the accompanying article. The stability of the analog (Δ G U 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation, the SCI retained full activity for >140 days at 45 °C and >48 h at 75 °C. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo Further, whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mm pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering, and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1-7 mm Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. THE MECHANISM OF ACTION OF COLCHICINE

    PubMed Central

    Wilson, Leslie; Meza, Isaura

    1973-01-01

    The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules. PMID:4747924

  15. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers.

    PubMed

    Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J

    2015-11-10

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.

  16. Rotational barriers. 1. 1,2-dihaloethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiberg, K.B.; Murcko, M.A.

    1987-06-18

    The rotational barrier about the C-C bond of 1,2-dichloroethane has been calculated by using several basis sets (4-31G, 6-31G*, 6-31+G*, and 6-31++G**) and including electron correlation. Corrections for zero-point energy differences, and the differences in enthalpy change from 0 to 298 K, were made by using the calculated geometries and vibrational frequencies. The trans/gauche energy difference was found to be 1.39 kcal/mol as compared to the observed value, 1.1 +/- 0.1 kcal/mol. The intramolecular interactions in the several rotamers are discussed. The trans/gauche energy difference for 1,2-difluoroethane also was calculated (MP3/6-311++G**) and was found to be 0.76 kcal/mol favoring themore » gauche conformer, again in good agreement with the experimental value of 0.57 +/- 0.09 kcal/mol. The trend in trans/gauche energy differences in the series n-butane, 1,2-dichloroethane, 1,2-difluoroethane is noted.« less

  17. Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani; Juneja, Chetan; Chen, Christina; Kumar, Binod

    Composites of 6 mol% scandia-stabilized zirconia materials (6ScSZ) and nanosize Al 2O 3 powder (0-30 wt.%) were prepared and characterized for electrical conductivity by the ac impedance method at various temperatures ranging from 300 to 950 °C. All the composites characterized showed improved conductivity at higher temperatures compared to the undoped ScSZ. An average conductivity of 0.12 S cm -1 was measured at 850 °C for 6ScSZ + 30 wt.% Al 2O 3 composite samples, an increase in conductivity up to 20% compared to the undoped 6ScSZ specimen at this temperature. Microstructural evaluation using scanning electron microscopy revealed that the ScSZ grain size was relatively unchanged up to 10 wt.% of Al 2O 3 additions. However, the grain size was reduced in samples with higher (20 and 30 wt.%) additions of Al 2O 3. Small grain size, reduced quantity of the 6ScSZ material (only 70%), and improved conductivity makes these ScSZ + 30 wt.% Al 2O 3 composites very attractive as electrolyte materials in view of their collective mechanical and electrical properties and cost requirements. The observed increase in conductivity values with the additions of an insulating Al 2O 3 phase is explained in light of the space charge regions at the 6ScSZ-Al 2O 3 grain boundaries.

  18. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  19. Textural and compositional characteristics of mantle xenoliths from southeastern Libya: Evidence of mantle refertilization processes

    NASA Astrophysics Data System (ADS)

    Radivojević, Maša; Erić, Suzana; Turki, Salah M.; Toljić, Marinko; Cvetković, Vladica

    2014-05-01

    The study presents the very first data on mantle xenoliths of the Wādi Eghei area, southeastern Libya. These dm- to cm-sized xenoliths are found in a small volcanic cone of Pliocene basalts, which is situated on the northeastern slopes of the Tibesti Mountains. The host basalts originated from near primary magmas derived by melting of an enriched and garnet-bearing mantle source in within-plate geotectonic settings. Generally, the Wādi Eghei xenoliths can be divided into two texturally different groups: i) well-equilibrated, undeformed protogranular xenoliths, and ii) moderately/strongly sheared, porphyroclastic/equigranular types. Despite their textural diversity, all xenoliths are anhydrous clinopyroxene (cpx)-rich lherzolites, except one protogranular sample (V-5) that can be classified as cpx-poor lherzolite or harzburgite (≡5% of modal cpx). In terms of mineral chemistry, the protogranular xenoliths display only slightly more depleted compositions compared to sheared xenoliths, with sample V-5 as always the most depleted of the whole suite. Fo contents in olivine from protogranular and sheared xenoliths range 90.5-91.0 (V-5~91.5). Orthopyroxene (opx) from protogranular samples has higher Mg#(Mg#=100*Mg/[Mg+Fetot]mol%) from 90.5 to 91.2 (91.8 for V-5 opx), than those from deformed xenoliths (Mg#=89.5-90.5). The composition of spinel also correlates with the texture of the xenoliths. Spinel from the undeformed samples has Cr#s(Cr#=100*Cr/[Cr+Al]mol%) mostly ranging 12-14 (V-5~16), whereas Cr# in spinel occurring in sheared xenoliths is always <10. The variations in cpx composition do not show discernible textural dependences. They display a wide compositional range: En=45.5-50.2; Fs=3.7-5.7; Wo=42.0-50.1. The contents of Al2O3, Na2O and TiO2 range from 2.32-7.75 wt.%, 0.96-1.79 wt.%, and 0.2-0.84 wt.%, respectively. Calculated temperatures indicate that the undeformed types of xenoliths equilibrated at slightly higher temperatures (with minimal and maximal temperatures ranging from 850-950°C, and from 1000 to 1130 °C, respectively), than deformed types (757-923°C and 900-980°C). In addition, among the protogranular xenoliths, a clear dependence of degree of fertility and calculated temperatures is established, with the most fertile samples having the highest equilibrium temperatures. The first data on modal and mineral chemistry compositions of mantle xenoliths from the Wādi Eghei area indicate that this mantle segment underneath southeastern Libya is too fertile to represent a 'normal' subcontinental mantle. The enrichment is most probably related to mafic metasomatisic processes, i.e. to percolations of mafic alkaline magma, similar in composition to the host basalts. The effects of similar mafic metasomatism are also recorded in mantle xenoliths from other localities in Libya. Further analyses, including whole rock, trace element and isotope compositions are in progress and will provide more details about these refertilization processes.

  20. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Hu, Shenyang; Overman, Nicole; Lavender, Curt; Joshi, Vineet V.

    2018-01-01

    The alloy U-10 wt% Mo was annealed at temperatures ranging from 700 °C to 900 °C for periods lasting up to 24 h. Annealed microstructures were examined using Electron Backscattered Diffraction (EBSD) to obtain average grain sizes and grain size distributions. From the temporal evolution of the average grain size, the activation energy of grain growth was determined to be 172.4 ± 0.961 kJ/mol. Grain growth over the annealing period stagnated after a period of 1-4 h. This stagnation is apparently caused by the pinning effect of second-phase particles in the materials. Back-scattered electron imaging (BSE) was used to confirm that these particles do not appreciably coarsen or dissolve during annealing at the aforementioned temperatures.

  1. New Standard State Entropy for Sphene (Titanite)

    NASA Astrophysics Data System (ADS)

    Manon, M. R.; Dachs, E.; Essene, E. J.

    2004-12-01

    Several recent papers have questioned the accepted standard state (STP) entropy of sphene (CaTiSiO5), which had been considered to be in the range 129-132 J/mol.K (Berman, 1988: 129.3 Robie and Hemingway, 1995: 129.2 J/mol.K; Holland and Powell, 1995: 131.2 J/mol.K.). However, Xirouchakis and Lindsley (1998) recommended a much lower value of 106 J/mol.K for the STP entropy of sphene. Tangeman and Xirouchakis (2001) inferred a value less than 124 or 120 J/mol.K, based on based on enthalpy constraints combined with the tightly reversed reaction sphene+kyanite=rutile+anorthite by Bohlen and Manning (1991). Their recommendations are in conflict with the accepted values for STP entropy for sphene, including values calculated by direct measurement of Cp from 50 to 300 K by King (1954). In order to resolve this discrepancy, we have collected new data on the Cp of sphene between 5 and 300 K. Our measurements were made in the PPMS at Salzburg on a 21.4 g sample of sphene generously furnished by Tangeman and Xirouchakis (2001), the same sample as used in their experiments. The Cp data are slightly lower than those of King (1954) but merge smoothly with data of Tangeman and Xirouchakis (2001) from 330 to 483 K (or whatever) where a transition is recorded in the Cp data as a lambda anomaly. Tangeman and Xirouchakis also obtained data above the transition up to 950K. Integration of the new Cp data yields a STP entropy of 127.3 J/mol.K, lower than the generally accepted value by ca. 2 J/mol.K. A change in the STP entropy of sphene will have an effect on many Ti-bearing reactions which occur within the earth, although the magnitude of this change is not nearly as large as that suggested by Xirouchakis and Lindsley (1998). Above 700 K, the entropy calculated using the new STP entropy with the heat capacity equation of Tangeman and Xirouchakis (2001) is within 1 J/mol.K of the value tabulated in Robie and Hemingway (1995) and of that calculated from Berman (1988). The effect on most phase equilibrium calculations will not be large except for reactions with small Δ S. The use of 127.2 J/mol.K as the standard entropy of sphene is recommended especially in calculations of geobarometers involving that phase.

  2. A density functional for core-valence correlation energy

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-01

    A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.

  3. Environmental Fate of Hydrazines

    DTIC Science & Technology

    1989-12-01

    adsorbent 0 - density (g/mL) of the liquid hydrazine FW - formula weight (g/mol) of the hydrazine wt = weight of adsorbent (grams) Vi M volume of i-th...8217 hydrazine, monomethyihydrazine (f4MH), and unsymmetrical dimethyihydrazine ( UDMH ) have been studied to assess the impact of these propellants on the...and permeation through the walls. Half-lives of 40, 19, and 60 hours were found for hydrazine, MMH, and UDMH , respectively. Metal surfaces were found to

  4. Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening.

    PubMed

    Mahajanakatti, Arpitha Badarinath; Murthy, Geetha; Sharma, Narasimha; Skariyachan, Sinosh

    2014-03-01

    Various types of cancer accounts for 10% of total death worldwide which necessitates better therapeutic strategies. Curcumin, a curcuminoid present in Curcuma longa, shown to exhibit antioxidant, anti-inflammatory and anticarcinogenic properties. Present study, we aimed to analyze inhibitory properties of curcumin towards virulent proteins for various cancers by computer aided virtual screening. Based on literature studies, twenty two receptors were selected which have critical virulent functions in various cancer. The binding efficiencies of curcumin towards selected targets were studied by molecular docking. Out of all, curcumin showed best results towards epidermal growth factor (EGF), virulent protein of gastric cancer; glutathione-S-transferase Pi gene (GST-PI), virulent protein for prostate cancer; platelet-derived growth factor alpha (PDGFA), virulent protein for mesothelioma and glioma compared with their natural ligands. The calculated binding energies of their docked conformations with curcumin found to be -7.59 kcal/mol, -7.98 kcal/mol and -7.93 kcal/mol respectively. Further, a comparative study was performed to screen binding efficiency of curcumin with two conventional antitumor agents, litreol and triterpene. Docking studies revealed that calculated binding energies of docked complex of litreol and EGF, GST-PI and PDGFA were found to be -5.08 kcal/mol, -3.69 kcal/mol and -1.86 kcal/mol respectively. The calculated binding energies of triterpene with EGF and PDGFA were found to be -4.02 kcal/mol and -3.11 kcal/mol respectively, whereas GST-PI showed +6.07 kcal/mol, indicate poor binding. The predicted pharmacological features of curcumin found to be better than litreol and triterpene. Our study concluded that curcumin has better interacting properties towards these cancer targets than their normal ligands and conventional antitumor agents. Our data pave insight for designing of curcumin as novel inhibitors against various types of cancer.

  5. Relationship Between the Melting Temperature of hcp Iron at ICB Pressure and the Light Impurity Content of Earth's Core

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    2001-12-01

    The table below leads the reader through calculation of the core density deficit starting from the melting temperature (solidus), Tm, at the pressure, P, of the inner core boundary (ICB) (330 GPa). Tm values come from recent data of four sets of authors. Thermal pressure, Δ PTH, values were calculated in the author's laboratory. P0 = 330 - PTH is the P corresponding to the volume, V, of iron at Tm, V0 (sol.). P0 yields V0 (sol.) from an equation of state. The volume change of melting, Δ Vm, which leads to the liquidus V, V0 (liq.), was determined by the author. The liquidus density, ρ 0 (liq.), is higher than the seismic density at 330 GPa by the core density deficit. S wt.% is the amount of sulfur alone that satisfies the core ρ deficit. Δ Tf is the freezing point depression arising from impurities. %table { \\setlength{\\tabcolsep}{.05truein} \\begin{center} \\begin{tabular}{lcccc} \\multicolumn{5}{l}{ Core density deficit and freezing point depression} multicolumn{5}{l}{calculated from Tm} \\hline Tm (330)& 4800 K& 5850 K& 6700 K& 7500 K \\hline Δ PTH& 64.0& 82.0& 97.0& 112\\P0 (330 K)& 266& 248& 233& 218\\V0 (sol.)& 4.25& 4.30& 4.37& 4.43Δ Vm& .055& .055& .055& .055\\V0 (liq.)& 4.305& 4.355& 4.425& 4.485ρ (liq.)& 13.09& 12.94& 12.73& 12.48 core ρ def.& 7.1& 6& 4& 2.9 S wt.% & 7.3& 6.2& 3.8& 2.5 Δ Tf& ~ 330& ~ 300& ~ 200& ~ 150 \\hline \\multicolumn{5}{l}{Units: PTH & P0, GPa; V0 & Δ Vm, cm3mol.-1;} multicolumn{5}{l}{ρ , kg m-3x 103; core ρ def., %; Δ Tf, K.}\\ } Cosmochemists' estimates of viable amounts of S and Si in the core are most easily satisfied by the core density deficit arising from Tm = 5850 K. High Tm values result in surprisingly high values for Earth's ICB temperature, because Δ Tf is low. A large Δ PTH results in a low Δ Tf.

  6. Thermal decomposition mechanism of 1-ethyl-3-methylimidazolium bromide ionic liquid.

    PubMed

    Chambreau, Steven D; Boatz, Jerry A; Vaghjiani, Ghanshyam L; Koh, Christine; Kostko, Oleg; Golan, Amir; Leone, Stephen R

    2012-06-21

    In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(‡)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(‡)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f, gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f, liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f, gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f, liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.

  7. The thermochemistry of cubane 50 years after its synthesis: a high-level theoretical study of cubane and its derivatives.

    PubMed

    Agapito, Filipe; Santos, Rui C; Borges dos Santos, Rui M; Martinho Simões, José A

    2015-03-26

    The gas-phase enthalpy of formation of cubane (603.4 ± 4 kJ mol(-1)) was calculated using an explicitly correlated composite method (W1-F12). The result obtained for cubane, together with the experimental value for the enthalpy of sublimation, 54.8 ± 2.0 kJ mol(-1), led to 548.6 ± 4.5 kJ mol(-1) for the solid-phase enthalpy of formation. This value is only 6.8 kJ mol(-1) higher than the 50-year-old original calorimetric result. The carbon-hydrogen bond dissociation enthalpy (C-H BDE) of cubane (438.4 ± 4 kJ mol(-1)), together with properties relevant for its experimental determination using gas-phase ion thermochemistry, namely the cubane gas-phase acidity (1704.6 ± 4 kJ mol(-1)), cubyl radical electron affinity (45.8 ± 4 kJ mol(-1)), cubane ionization energy (1435.1 ± 4 kJ mol(-1)), cubyl radical cation proton affinity (918.8 ± 4 kJ mol(-1)), cubane cation appearance energy (1099.6 ± 4 kJ mol(-1)), and cubyl ionization energy (661.2 ± 4 kJ mol(-1)), were also determined. These values were compared with those calculated for unstrained hydrocarbons (viz., methane, ethane, and isobutane). The strain energy of cubane (667.2 kJ mol(-1)) and cubyl radical (689.4 kJ mol(-1)) were independently estimated via quasihomodesmotic reactions. These values were related via a simple model to the C-H BDE in cubane. Taking into account the accuracy of the computational method, the comparison with high-precision experimental results, and the data consistency afforded by the relevant thermodynamic cycles, we claim an uncertainty better than ±4 kJ mol(-1) for the new enthalpy of formation values presented.

  8. The Effect of TiO2 on the Liquidus Zone and Apparent Viscosity of SiO2-CaO-8wt.%MgO-14wt.%Al2O3 System

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Xu, Jian

    TiO2 has been approved as a viscosity-decreasing agent in blast furnace slag under inert atmosphere both by experimental and structure calculation. However, the validity of the above conclusion in a much bigger zone in CaO-SiO2-Al2O3-MgO phase diagram has not approved. The viscosity of slag dependent on the TiO2 content and basicity were measured in the present work. It was found that the viscosity and viscous activation energy decrease with increasing TiO2 content and basicity at a reasonable range, indicating TiO2 behaved as a viscosity-decreasing agent by depolymerizing the silicate network structure when its less than 50wt. %. The liquidity of the slag can be improved when TiO2 content less than 50wt. % and basicity from 0.5 to 1.1. The free running temperature increase at TiO2 content from 10wt.% to 30wt. %. The results of calculation does not agree well with the experimental values at a high basicity of 1.3 with TiO2 content from 20wt.% to 30wt.% and the lower basicity of 0.5 with TiO2 content more than 50wt.%.

  9. Significance of hydrous silicate lamellae in pyrope-rich garnets from the Garnet Ridge in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2014-12-01

    Pyrope-rich garnets originated from the upper mantle underneath the Colorado Plateau occur at the Garnet Ridge. These garnets contain the following lamellae of hydrous and anhydrous minerals; Rt, Ilm, crichtonites, Cr-Spl, Amp, Cpx, Chl, rarely Apt, srilankite and carmichealite. The origin of these lamellae in the garnets is controversial; exsolved origin or epitaxial growth. We emphasize here the close relations between the presence of hydrous lamellae and the OH concentrations in the host garnets. Lamella phases were identified with a standard-less quantitative EDS system and a laser Raman spectrometer with Ar+ laser (514.5 nm). OH concentrations in garnets were quantitated on the basis of IR absorption spectra of garnet by micro FT-IR method using IR absorption coefficient (8770 L/mol/cm2, Katayama et al., 2006). Pyrope-rich reddish brown garnet (group B by Sato et al., AGU2014F) has large variations of major chemical compositions (Prp: 49-76, Alm: 6-43, Grs: 6-26 mol%), and OH contents (2-177 ppm wt. H2O). Among this group garnets, Ca-rich ones (Prp: 49-66; Alm: 18-28; Grs: 16-26 mol%) have lamellae of both hydrous (Amp and Chl) and anhydrous (Rt, Ilm, and Cpx) minerals. Amp and Chl lamellae are pargasitic amphibole and clinochlore, respectively, and their host garnets contain significantly low amounts of OH (2-42 ppm). Cr and pyrope-rich garnet (group A by Sato et al., AGU2014F) has chemical compositions of Prp: 67-74, Alm: 13-18, Grs: 7-11 mol% with Cr2O3 up to 5.9 wt.%, and contains lamellae of anhydrous minerals (Rt, Ilm, crichtonites, and Cr-Spl). The host garnet with these anhydrous lamellae contains a little higher OH ranging 24 to 115 ppm. Summarizing the present results, the OH contents of the host garnets depend on the presence of hydrous silicate lamella phase; OH in the garnet with hydrous silicate lamellae is lower than that in the garnet with anhydrous lamellae. The precursor OH incorporated in the host garnet structure was exsolved as hydrous silicate lamellae.

  10. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    PubMed

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  11. Probing the oxidation kinetics of small permalloy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less

  12. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.

    PubMed

    Ansah, Emmanuel; Wang, Lijun; Shahbazi, Abolghasem

    2016-10-01

    The thermogravimetric and calorimetric characteristics during pyrolysis of wood, paper, textile and polyethylene terephthalate (PET) plastic in municipal solid wastes (MSW), and co-pyrolysis of biomass-derived and plastic components with and without torrefaction were investigated. The active pyrolysis of the PET plastic occurred at a much higher temperature range between 360°C and 480°C than 220-380°C for the biomass derived components. The plastic pyrolyzed at a heating rate of 10°C/min had the highest maximum weight loss rate of 18.5wt%/min occurred at 420°C, followed by 10.8wt%/min at 340°C for both paper and textile, and 9.9wt%/min at 360°C for wood. At the end of the active pyrolysis stage, the final mass of paper, wood, textile and PET was 28.77%, 26.78%, 21.62% and 18.31%, respectively. During pyrolysis of individual MSW components at 500°C, the wood required the least amount of heat at 665.2J/g, compared to 2483.2J/g for textile, 2059.4J/g for paper and 2256.1J/g for PET plastic. The PET plastic had much higher activation energy of 181.86kJ/mol, compared to 41.47kJ/mol for wood, 50.01kJ/mol for paper and 36.65kJ/mol for textile during pyrolysis at a heating rate of 10°C/min. H2O and H2 peaks were observed on the MS curves for the pyrolysis of three biomass-derived materials but there was no obvious H2O and H2 peaks on the MS curves of PET plastic. There was a significant interaction between biomass and PET plastic during co-pyrolysis if the biomass fraction was dominant. The amount of heat required for the co-pyrolysis of the biomass and plastic mixture increased with the increase of plastic mass fraction in the mixture. Torrefaction at a proper temperature and time could improve the grindability of PET plastic. The increase of torrefaction temperature and time did not affect the temperature where the maximum pyrolytic rates occurred for both biomass and plastic but decreased the maximum pyrolysis rate of biomass and increased the maximum pyrolysis rate of PET plastic. The amount of heat for the pyrolysis of biomass and PET mixture co-torrefied at 280°C for 30min was 4365J/g at 500°C, compared to 1138J/g for the pyrolysis of raw 50% wood and 50% PET mixture at the same condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Proton dependence of tobacco mosaic virus dissociation by pressure.

    PubMed

    Santos, Jose L R; Bispo, Jose A C; Landini, Gustavo F; Bonafe, Carlos F S

    2004-09-01

    Tobacco mosaic virus (TMV) is an intensely studied model of viruses. This paper reports an investigation into the dissociation of TMV by pH and pressure up to 220 MPa. The viral solution (0.25 mg/ml) incubated at 277 K showed a significant decrease in light scattering with increasing pH, suggesting dissociation. This observation was confirmed by HPLC gel filtration and electron microscopy. The calculated volume change of dissociation (DeltaV) decreased (absolute value) from -49.7 ml/mol of subunit at pH 3.8 to -21.7 ml/mol of subunit at pH 9.0. The decrease from pH 9.0 to 3.8 caused a stabilization of 14.1 kJ/mol of TMV subunit. The estimated proton release calculated from pressure-induced dissociation curves was 0.584 mol H(+)/mol of TMV subunit. These results suggest that the degree of virus inactivation by pressure and the immunogenicity of the inactivated structures can be optimized by modulating the surrounding pH.

  14. Metabolic stability of new anticonvulsants in body fluids and organ homogenates.

    PubMed

    Marszałek, Dorota; Goldnik, Anna; Pluciński, Franciszek; Mazurek, Aleksander P; Jakubiak, Anna; Lis, Ewa; Tazbir, Piotr; Koziorowska, Agnieszka

    2012-01-01

    The stability as a function of time of compounds with established anticonvulsant activity: picolinic acid benzylamide (Pic-BZA), picolinic acid 2-fluorobenzylamide (Pic-2-F-BZA), picolinic acid 3-fluorobenzylamide (Pic-3-F-BZA), picolinic acid 4-fluorobenzylamide (Pic-4-F-BZA) and picolinic acid 2-methylbenzylamide (Pic-2-Me-BZA) in body fluids and homogenates of body organs were determined after incubation. It was found that they decompose relatively rapidly in liver and kidney and are stable against enzymes present in body fluids and some organs. These results are consistent with the bond strength expressed as total energy of amide bonds (calculated by quantum chemical methods) in the studied anticonvulsants. The calculated values of the amide bond energy are: 199.4 kcal/mol, 200.2 kcal/mol, 207.5 kcal/mol, 208.4 kcal/mol and 198.2 kcal/mol, respectively. The strength of the amide bonds in the studied anticonvulsants correctly reflects their stability in liver or kidney.

  15. Revealing thermal behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and its polyethylene glycol blends thin films: Effect of 3-Hydroxyhexanoate comonomer content

    NASA Astrophysics Data System (ADS)

    Chen, Yujing; Noda, Isao; Jung, Young Mee

    2018-06-01

    The 3-hydroxyhexanoate (HHx) molar fraction has a great effect on the property of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx). In the present study, we investigated the influence of HHx comonomer molar fraction on the thermal property of PHBHx with 3.9 mol% (PHBHx3.9) and 13 mol% HHx (PHBHx13) comonomer content and their polyethylene glycol (PEG) blends in thin films by temperature-dependent infrared-reflection absorbance spectroscopy (IRRAS) and two-dimensional correlation (2D-COS) analysis. 2D-COS analysis demonstrated that there are two distinct amorphous bands of Cdbnd O stretching of PHBHx13 during the heating process, respectively at 1752 and 1760 cm-1, while PHBHx3.9 only shows one amorphous band at 1756 cm-1. This is due to the increase of HHx content from 3.9 mol % to 13 mol % increases the amorphous state of PHBHx. Furthermore, with incorporation of 30 wt% PEG, an additional amorphous band at 1746 cm-1 was observed in the case of 70/30 PHBHx3.9/PEG during the heating process, while this band was absent in the case of 70/30 PHBHx13/PEG, suggesting that the influence of PEG on PHBH3.9 is different from PHBHx13.

  16. Fabrication and electrical properties of textured strontium(0.53)barium(0.47)niobium(2)oxygen(6) ceramics prepared by templated grain growth

    NASA Astrophysics Data System (ADS)

    Duran, Cihangir

    Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241 +/- 17 kJ/mol for the samples with 15.4 wt% seeds. The dielectric and piezoelectric properties were enhanced in samples with better orientation (i.e., high texture fraction (f) and narrow degree of orientation parameter (r) in the texture direction). The presence of nonferroelectric phases (V2O5 or Nb2O5-based) at the grain boundaries suppressed the observed dielectric properties, especially at the transition temperature. (Abstract shortened by UMI.)

  17. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  18. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  19. Excel-Based Tool for Pharmacokinetically Guided Dose Adjustment of Paclitaxel.

    PubMed

    Kraff, Stefanie; Lindauer, Andreas; Joerger, Markus; Salamone, Salvatore J; Jaehde, Ulrich

    2015-12-01

    Neutropenia is a frequent and severe adverse event in patients receiving paclitaxel chemotherapy. The time above a paclitaxel threshold concentration of 0.05 μmol/L (Tc > 0.05 μmol/L) is a strong predictor for paclitaxel-associated neutropenia and has been proposed as a target pharmacokinetic (PK) parameter for paclitaxel therapeutic drug monitoring and dose adaptation. Up to now, individual Tc > 0.05 μmol/L values are estimated based on a published PK model of paclitaxel by using the software NONMEM. Because many clinicians are not familiar with the use of NONMEM, an Excel-based dosing tool was developed to allow calculation of paclitaxel Tc > 0.05 μmol/L and give clinicians an easy-to-use tool. Population PK parameters of paclitaxel were taken from a published PK model. An Alglib VBA code was implemented in Excel 2007 to compute differential equations for the paclitaxel PK model. Maximum a posteriori Bayesian estimates of the PK parameters were determined with the Excel Solver using individual drug concentrations. Concentrations from 250 patients were simulated receiving 1 cycle of paclitaxel chemotherapy. Predictions of paclitaxel Tc > 0.05 μmol/L as calculated by the Excel tool were compared with NONMEM, whereby maximum a posteriori Bayesian estimates were obtained using the POSTHOC function. There was a good concordance and comparable predictive performance between Excel and NONMEM regarding predicted paclitaxel plasma concentrations and Tc > 0.05 μmol/L values. Tc > 0.05 μmol/L had a maximum bias of 3% and an error on precision of <12%. The median relative deviation of the estimated Tc > 0.05 μmol/L values between both programs was 1%. The Excel-based tool can estimate the time above a paclitaxel threshold concentration of 0.05 μmol/L with acceptable accuracy and precision. The presented Excel tool allows reliable calculation of paclitaxel Tc > 0.05 μmol/L and thus allows target concentration intervention to improve the benefit-risk ratio of the drug. The easy use facilitates therapeutic drug monitoring in clinical routine.

  20. Preliminary mineralogical data on epithermal ore veins associated with Rosia Poieni porphyry copper deposit, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Popescu, Gh. C.

    2012-04-01

    Rosia Poieni is the largest porphyry copper (±Au±Mo) deposits associated with Neogene magmatic rocks from the South Apuseni Mountains, being located approximately 8 km northeast of the town of Abrud. During a recent examination of some epithermal mineralized veins, crosscutting the porphyry mineralization from the Roşia Poieni deposit, two species of tellurides and one tellurosulfide minerals were identified. The studied samples were collected from the + 1045 m level, SW side of the open pit and are represented by epithermal veins, crosscutting the porphyry copper mineralized body. The thickness of the veins is almost 4 cm. Following reflected-polarized light microscopy to identify the ore-mineral assemblages, the polished sections were studied with a Scanning Electron Microscope (SEM) equipped with a back-scattered electron (BSE) detector to study fine-sized minerals. Quantitative compositional data were determined using a Cameca SX 50 electron microprobe (EMP). Based on optical microscopy, SEM and EMPA three mineral associations have been separated inside the epithermal vein, from the margins to the centre: 1. quartz+tennantite-tetrahedrite+goldfieldite+pyrite+sphalerite; 2. quartz+pyrite+tellurobismutite; 3. chalcopyrite+hessite+vivianite. Goldfieldite occurs in anhedral grains and it is associated with tennantite-tetrahedrite and quartz. The electron microprobe analysis gave a variable content in Te between 13.28-13.39 wt.%, 43.34 wt.% Cu, 0.1 wt. % Fe, 0.2 wt.% Zn, 14.68 wt.% As, 4.35 wt.% Sb and 24.84 wt.% S. The calculated formula for the goldfieldite is Cu11.8Te1.8(Sb,As)4S13.4. The EPM analyses on tetrahedrite-tennantite revealed a low content in Te (0.02-0.03 wt.%) and 42.23 wt.% Cu, 2.67 wt.% Fe, 7.34 wt.% Zn, 0.04 wt.% Sb, 19.28 wt.% As and 28.4 wt.% S. The calculated formula is Cu9.8(Fe,Zn)2.4(Sb,As,Te)3.8S13. The variable ratio of the Te content may reflect a variable content of Te in the hydrothermal fluids from which the tellurian tetrahedrite precipitated. Hessite lies close to the grain boundary between the calchopyrite grains, which is associated with vivianite. Electron microprobe analysis gave 57.73 wt.% Ag and 42.27 wt.% Te with calculated stoichiometric formula Ag1.9Te1.1 . Tellurobismuthite it forms irregular grains and it is associated with quartz and pyrite. Electron microprobe analysis gave 57.20 wt.% Bi and 42.80 wt.% Te with calculated stoichiometric formula Bi2.2Te2.8. Based on the mineral assemblages separated inside the ore vein and on the ratio of the Te content for the different identified tellurium bearing minerals, we can conclude that the Te content of the fluids from which they precipitated, increased from the margins to the centre of the vein. In summary, this study of specimens from Rosia Poieni porphyry copper deposit, has resulted in the recognition of some tellurium-bearing minerals, not reported by previous workers. These minerals are represented by tellurobismutite, hessite and goldfieldite and they are associated with epithermal vein mineralization (pyrite, chalcopyrite, sphalerite, tennantite-tetrahedrite, quartz, vivianite). The presence of tellurium indicates the transition between porphyry-style mineralization to epithermal vein mineralization. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".

  1. Coenzyme Q(1) as a probe for mitochondrial complex I activity in the intact perfused hyperoxia-exposed wild-type and Nqo1-null mouse lung.

    PubMed

    Bongard, Robert D; Myers, Charles R; Lindemer, Brian J; Baumgardt, Shelley; Gonzalez, Frank J; Merker, Marilyn P

    2012-05-01

    Previous studies showed that coenzyme Q(1) (CoQ(1)) reduction on passage through the rat pulmonary circulation was catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex I, but that NQO1 genotype was not a factor in CoQ(1) reduction on passage through the mouse lung. The aim of the present study was to evaluate the complex I contribution to CoQ(1) reduction in the isolated perfused wild-type (NQO1(+/+)) and Nqo1-null (NQO1(-)/(-)) mouse lung. CoQ(1) reduction was measured as the steady-state pulmonary venous CoQ(1) hydroquinone (CoQ(1)H(2)) efflux rate during infusion of CoQ(1) into the pulmonary arterial inflow. CoQ(1)H(2) efflux rates during infusion of 50 μM CoQ(1) were not significantly different for NQO1(+/+) and NQO1(-/-) lungs (0.80 ± 0.03 and 0.68 ± 0.07 μmol·min(-1)·g lung dry wt(-1), respectively, P > 0.05). The mitochondrial complex I inhibitor rotenone depressed CoQ(1)H(2) efflux rates for both genotypes (0.19 ± 0.08 and 0.08 ± 0.04 μmol·min(-1)·g lung dry wt(-1) for NQO1(+/+) and NQO1(-/-), respectively, P < 0.05). Exposure of mice to 100% O(2) for 48 h also depressed CoQ(1)H(2) efflux rates in NQO1(+/+) and NQO1(-/-) lungs (0.43 ± 0.03 and 0.11 ± 0.04 μmol·min(-1)·g lung dry wt(-1), respectively, P < 0.05 by ANOVA). The impact of rotenone or hyperoxia on CoQ(1) redox metabolism could not be attributed to effects on lung wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total venous effluent CoQ(1) recoveries, the latter measured by spectrophotometry or mass spectrometry. Complex I activity in mitochondria-enriched lung fractions was depressed in hyperoxia-exposed lungs for both genotypes. This study provides new evidence for the potential utility of CoQ(1) as a nondestructive indicator of the impact of pharmacological or pathological exposures on complex I activity in the intact perfused mouse lung.

  2. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites.

    PubMed Central

    Gasset, María; Alfonso, Carlos; Neira, José L; Rivas, Germán; Pajares, María A

    2002-01-01

    The reversible unfolding of rat liver methionine adenosyltransferase dimer by urea under equilibrium conditions has been monitored by fluorescence spectroscopy, CD, size-exclusion chromatography, analytical ultracentrifugation and enzyme activity measurements. The results obtained indicate that unfolding takes place through a three-state mechanism, involving an inactive monomeric intermediate. This intermediate has a 70% native secondary structure, binds less 8-anilinonaphthalene-1-sulphonic acid than the native dimer and has a sedimentation coefficient of 4.24+/-0.15. The variations of free energy in the absence of denaturant [DeltaG(H(2)O)] and its coefficients of urea dependence (m), calculated by the linear extrapolation model, were 36.15+/-2.3 kJ.mol(-1) and 19.87+/-0.71 kJ.mol(-1).M(-1) for the dissociation of the native dimer and 14.77+/-1.63 kJ.mol(-1) and 5.23+/-0.21 kJ.mol(-1).M(-1) for the unfolding of the monomeric intermediate respectively. Thus the global free energy change in the absence of denaturant and the m coefficient were calculated to be 65.69 kJ.mol(-1) and 30.33 kJ.mol(-1).M(-1) respectively. Analysis of the calculated thermodynamical parameters indicate the instability of the dimer in the presence of denaturant, and that the major exposure to the solvent is due to dimer dissociation. Finally, a minimum-folding mechanism for methionine adenosyltransferase III is established. PMID:11772402

  3. Multi-level quantum mechanics theories and molecular mechanics study of the double-inversion mechanism of the F- + CH3I reaction in aqueous solution.

    PubMed

    Liu, Peng; Zhang, Jingxue; Wang, Dunyou

    2017-06-07

    A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.

  4. In situ gas analysis for high pressure applications using property measurements

    NASA Astrophysics Data System (ADS)

    Moeller, J.; Span, R.; Fieback, T.

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  5. Construction of Martian Interior Model

    NASA Astrophysics Data System (ADS)

    Zharkov, V. N.; Gudkova, T. V.

    2005-09-01

    We present the results of extensive numerical modeling of the Martian interior. Yoder et al. in 2003 reported a mean moment of inertia of Mars that was somewhat smaller than the previously used value and the Love number k 2 obtained from observations of solar tides on Mars. These values of k 2 and the mean moment of inertia impose a strong new constraint on the model of the planet. The models of the Martian interior are elastic, while k 2 contains both elastic and inelastic components. We thoroughly examined the problem of partitioning the Love number k 2 into elastic and inelastic components. The information necessary to construct models of the planet (observation data, choice of a chemical model, and the cosmogonic aspect of the problem) are discussed in the introduction. The model of the planet comprises four submodels—a model of the outer porous layer, a model of the consolidated crust, a model of the silicate mantle, and a core model. We estimated the possible content of hydrogen in the core of Mars. The following parameters were varied while constructing the models: the ferric number of the mantle (Fe#) and the sulfur and hydrogen content in the core. We used experimental data concerning the pressure and temperature dependence of elastic properties of minerals and the information about the behavior of Fe(γ-Fe ), FeS, FeH, and their mixtures at high P and T. The model density, pressure, temperature, and compressional and shear velocities are given as functions of the planetary radius. The trial model M13 has the following parameters: Fe#=0.20; 14 wt % of sulfur in the core; 50 mol % of hydrogen in the core; the core mass is 20.9 wt %; the core radius is 1699 km; the pressure at the mantle-core boundary is 20.4 GPa; the crust thickness is 50 km; Fe is 25.6 wt %; the Fe/Si weight ratio is 1.58, and there is no perovskite layer. The model gives a radius of the Martian core within 1600 1820 km while ≥30 mol % of hydrogen is incorporated into the core. When the inelasticity of the Martian interior is taken into account, the Love number k 2 increases by several thousandths; therefore, the model radius of the planetary core increases as well. The prognostic value of the Chandler period of Mars is 199.5 days, including one day due to inelasticity. Finally, we calculated parameters of the equilibrium figure of Mars for the M13 model: J 2 0 = 1.82 × 10-3, J 4 0 = -7.79 × 10-6, e c-m D = 1/242.3 (the dynamical flattening of the core-mantle boundary).

  6. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole.

    PubMed

    Alamdarnejad, Ghazaleh; Sharif, Alireza; Taranejoo, Shahrouz; Janmaleki, Mohsen; Kalaee, Mohammad Reza; Dadgar, Mohsen; Khakpour, Mazyar

    2013-08-01

    A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (μmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.

  7. Solubilization of Genistein in Poly(Ethylene Glycol) via Eutectic Crystal Melting

    NASA Astrophysics Data System (ADS)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2012-02-01

    Genistein (5,7,4'-trihydroxyisoflavone) is a phytoestrogen found in soybean. It possesses various biological/pharmacological functions, e.g., tyrosine kinase inhibitory, anticarcinogenic, antioxidant, anti-inflammatory, and anti-microbial activities. However, genistein has poor water solubility and skin permeability, which have seemingly prohibited the progress to preclinical evaluation. Eutectic melting approach has been performed as a means of solubilizing genistein in poly(ethylene glycol) (PEG). Eutectic phase diagrams of blends containing genistein and PEG having three different molecular weights, i.e., 44k, 7k, and 500 g/mol, were established by means of DSC and compared with the theoretical liquidus and solidus lines, calculated self-consistently by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The eutectic temperatures were found to decrease with decreasing molecular weight of PEG. Guided by the phase diagram, it was found that genistein can be dissolved in PEG500 up to ˜7 wt% at room temperature. More importantly, the solubility of genistein in PEG can be improved to meet the end-use criteria of the PEG/genistein mixtures.

  8. Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate

    NASA Astrophysics Data System (ADS)

    Khezri, Khezrollah; Ghasemi, Moosa; Fazli, Yousef

    2018-05-01

    Mesoporous diatomite particles were employed to prepare different poly(styrene-co-butyl acrylate)/diatomite nanocomposites. Diatomite nanoplatelets were used for in situ copolymerization of styrene and butyl acrylate by SR&NI ATRP to synthesize well-defined poly(styrene-co-butyl acrylate) nanocomposites. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to increase of conversion from 73 to 89%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 17,115 to 20,343 g·mol-1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.14 to 1.37. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.26 to 39.61°C by adding 3 wt% of mesoporous diatomite nanoplatelets.

  9. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties

    NASA Astrophysics Data System (ADS)

    Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik

    2015-02-01

    Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.

  10. Search for β2 Adrenergic Receptor Ligands by Virtual Screening via Grid Computing and Investigation of Binding Modes by Docking and Molecular Dynamics Simulations

    PubMed Central

    Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694

  11. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    4139-4147. 6. de Maximy AA, Nakatake Y, Moncada S, Itoh N, Thiery JP, Bellusci S: Cloning and expression pattern of a mouse homologue of Drosophila...22992-22995. 18 10. Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras...Pelletier J, Housman DE : Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol Cell Biol 1995, 15: 1489-1498

  12. Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content

    NASA Astrophysics Data System (ADS)

    Rai, Amarendra K.; Schmitt, Michael P.; Dorfman, Mitchell R.; Zhu, Dongming; Wolfe, Douglas E.

    2018-04-01

    Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd2Zr2O7 (GZO) combined with 70 wt.% of a tougher t' low-k material (ZrO2-2Y2O3-1Gd2O3-1Yb2O3; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.

  13. DEMONSTRATION AND CHARACTERIZATION OF TWO DISTINCT HUMAN LEUKOCYTIC PYROGENS

    PubMed Central

    Dinarello, Charles A.; Goldin, Nathan P.; Wolff, Sheldon M.

    1974-01-01

    Human monocytes and neutrophils were separated from buffy coats of blood obtained from normal donors. Following incubation with heat-killed staphylococci, monocyte preparations contained 20 times more pyrogenic activity in the supernatant media than did supernates from an equal number of neutrophils. During purification of these pyrogens it was discovered that these cell preparations each produced a distinct and different pyrogen. The pyrogen obtained from neutrophils had a mol wt of 15,000 following Sephadex G-75 gel filtration, an isoelectric point of 6.9, and could be precipitated and recovered from 50% ethanol at –10°C. In contrast, the pyrogen derived from monocyte preparations had a mol wt of 38,000, an isoelectric point of 5.1, and was destroyed in cold ethanol. Both molecules were unaffected by viral neuraminidase but biologically destroyed at 80°C for 20 min and with trypsin at pH 8.0. The febrile peak produced by partially purified neutrophil pyrogen occurred at 40 min while that from monocytes was at 60 min. In addition, monocyte pyrogen produced more sustained fevers for the same peak elevation as neutrophil pyrogen. These studies demonstrate for the first time two chemically and biologically distinctive pyrogens derived from circulating human white blood cells and have important implications for our understanding of the pathogenesis of fever in man. PMID:4829934

  14. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica

    PubMed Central

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-01-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  15. Pro-opiomelanocortin messenger ribonucleic acid and posttranslational processing of beta endorphin in spleen macrophages.

    PubMed Central

    Lolait, S J; Clements, J A; Markwick, A J; Cheng, C; McNally, M; Smith, A I; Funder, J W

    1986-01-01

    We have previously demonstrated low levels of immunoreactive (ir)-beta-endorphin (beta-EP) and ir-ACTH in a subpopulation of mouse spleen macrophages, which is consistent with an involvement of opioid peptides in modulation of immune responses. Gel chromatography studies suggested the presence of an approximately 3.5,000-molecular weight (mol wt) species, putatively beta-EP, an approximately 11.5,000-mol-wt species, putatively beta-lipotropin, and a higher molecular weight species (putative beta-EP precursor, pro-opiomelanocortin (POMC). In this study we have extended our original findings by demonstrating the presence of messenger RNA for POMC by the use of a complementary DNA probe and Northern blot analysis of extracts of mouse and rat spleen. In addition, using high performance liquid chromatography (HPLC), we have shown that the major endorphin species in mouse spleen macrophages is beta-EP1-31, and that there are smaller amounts of each of the acetylated forms, N-acetyl-beta-EP1-16 (alpha-endorphin), N-acetyl-beta-EP1-17 (gamma-endorphin), N-acetyl-beta-EP1-27, and N-acetyl-beta-EP1-31. We interpret these studies as showing that (a) the spleen is an organ of POMC synthesis and that (b) the predominant COOH-terminal product of macrophage POMC is the opiate-receptor active species beta-EP1-31. Images PMID:2423557

  16. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    PubMed

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A Study of Interdiffusion in the Fe-C/Ti System Under Equilibrium and Nonequilibrium Conditions

    NASA Astrophysics Data System (ADS)

    Prasanthi, T. N.; Sudha, C.; Saroja, S.

    2017-04-01

    In the present study, diffusion behavior under equilibrium and nonequilibrium conditions in a Fe-C/Ti system is studied in the temperature range of 773 K to 1073 K (500 °C to 800 °C). A defect-free weld joint between mild steel (MS) (Fe-0.14 pct C) and Ti Grade 2 obtained by friction welding is diffusion annealed for various durations to study the interdiffusion behavior under equilibrium conditions, while an explosive clad joint is used to study interdiffusion under nonequilibrium conditions. From the elemental concentration profiles obtained across the MS-Ti interface using electron-probe microanalysis and imaging of the interface, the formation of distinct diffusion zones as a function of temperature and time is established. Concentration and temperature dependence of the interdiffusion coefficients ( D( c)) and activation energies are determined. Under equilibrium conditions, the change in molar volume with concentration shows a close match with the ideal Vegard's law, whereas a negative deviation is observed for nonequilibrium conditions. This deviation can be attributed to the formation of secondary phases, which, in turn, alters the D( c) values of diffusing species. Calculations showed that the D 0 and activation energy for interdiffusion under equilibrium is on the order of 10-11 m2/s and 147 kJ/mol, whereas it is far lower in the nonequilibrium case (10-10 m2/s and 117 kJ/mol) in the compositional range of 40 to 50 wt pct Fe, which also manifests as accelerated growth kinetics of the different diffusion zones.

  18. Spectroscopic properties and thermal stability of Er3+ -doped TeO2-B2O3-Nb2O5-ZnO glass for potential WDM amplifier.

    PubMed

    Xu, Tiefeng; Zhang, Xudong; Li, Guangpo; Dai, Shixun; Nie, Qiuhua; Shen, Xiang; Zhang, Xianghua

    2007-06-01

    A series of novel 70TeO2-(15-x)B2O3-xNb2O5-15ZnO-1wt.% Er2O3 (TBN x=0, 3, 6, 9, 12 and 15 mol%) tellurite glasses were prepared. The thermal stability, absorption spectra, emission spectra, and the lifetime of the (4)I(13/2) level of Er(3+) ions were measured and investigated. Three Judd-Ofelt intensity parameters Omega(t) (t=2, 4 and 6) (Omega(2)=(5.42-6.76)x10(-20)cm(2); Omega(4)=(1.37-1.73)x10(-20)cm(2); Omega(6)=(0.70-0.94)x10(-20)cm(2)) of Er(3+) ions were calculated by Judd-Ofelt theory. It is found that the Omega(6) first increases with the increase of Nb2O5 content from 0 to 6 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section (sigma(e)(peak)=(0.77-0.91)x10(-20)cm(2)) of Er(3+): (4)I(13/2)-->(4)I(15/2) transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=65-73 nm) of the (4)I(13/2)-->(4)I(15/2) transition of Er(3+) ions were measured. The results indicate that these new TBN glasses can be used as a candidate host material for potential broadband optical amplifiers.

  19. Thermochemistry of myricetin flavonoid

    NASA Astrophysics Data System (ADS)

    Abil'daeva, A. Z.; Kasenova, Sh. B.; Kasenov, B. K.; Sagintaeva, Zh. I.; Kuanyshbekov, E. E.; Rakhimova, B. B.; Polyakov, V. V.; Adekenov, S. M.

    2014-08-01

    The enthalpies of myricetin dissolution are measured by means of calorimetry with mol dilutions of flavonoid: 96 mol % ethanol equal to 1: 9000, 1: 18000, and 1: 36000. The standard enthalpies of dissolution for the biologically active substance in an infinitely diluted (standard) solution of 96% ethanol are calculated from the experimental data. Physicochemical means of approximation are used to estimate the values of the standard enthalpy of combustion, and the enthalpy of melting is calculated for the investigated flavonoid. Finally, the compound's standard enthalpy of formation is calculated using the Hess cycle.

  20. Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Kazemi, Mohammad; Rad, Ali Shokuhi

    2017-06-01

    In the present study, we used density functional theory calculations (at B3LYP and ωB97XD Levels) to search on the adsorption of Sulfur mustard gas (defined as mustard gas) on the surface of fullerene-like ZnO nanocage as a semiconductor. We found three different configurations of adsorbed gas on the surface of this nanostructure semiconductor. The values of adsorption energy of mustard gas are calculated in the range of -144∼ -200 kJ/mol with enthalpies in the range of -132∼-195 kJ/mol and Gibbs free energies in the range of -88∼-144 kJ/mol (T = 298 K, based on ωB97XD level), which indicate exothermic and spontaneous chemisorption. For all geometries, we calculated geometry parameters by taking into account the charge analysis and frontier molecular orbital study. The result of this study can be a support for next studies to develop new nanomaterials as adsorbent/sensor for mustard gas.

  1. Electrochemical studies and analysis of 1-10 wt% UCl3 concentrations in molten LiCl-KCl eutectic

    NASA Astrophysics Data System (ADS)

    Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn

    2014-09-01

    Three electrochemical methods - cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) - were applied to solutions of up to 10 wt% UCl3 in the molten LiCl-KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl4 and UCl3 were calculated to be (6.72 ± 0.360) × 10-6 cm2/s and (1.04 ± 0.17) × 10-5 cm2/s, respectively. Apparent standard reduction potentials were determined to be (-0.381 ± 0.013) V and (-1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (-1.448 ± 0.013) V and (-2.568 ± 0.076) V vs. Cl2/Cl- for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10-3 to 1.08 × 10-2 for UCl4 and 4.94 × 10-5 to 4.50 × 10-4 for UCl3. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl3 concentration in the molten salt.

  2. Binding of Single Walled Carbon Nanotube to WT and Mutant HIV-1 Proteases: Analysis of Flap Dynamics and Binding Mechanism

    PubMed Central

    Meher, Biswa Ranjan; Wang, Yixuan

    2012-01-01

    Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50VPR, V82APR and I84VPR) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3–5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1 kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors. PMID:23142620

  3. Recovery of slaughterhouse Animal Fatty Wastewater Sludge by conversion into Fatty Acid Butyl Esters by acid-catalyzed esterification.

    PubMed

    Wallis, Christopher; Cerny, Muriel; Lacroux, Eric; Mouloungui, Zéphirin

    2017-02-01

    Two types of Animal Fatty Wastewater Sludges (AFWS 1 and 2) were analyzed and fully characterized to determine their suitability for conversion into biofuel. AFWS 1 was determined to be unsuitable as it contains 68.8wt.% water and only 32.3wt.% dry material, of which only around 80% is lipids to be converted. AFWS 2 has only 15.7wt.% water and 84.3wt.% dry material of which is assumed to 100% lipids as the protein and ash contents were determined to be negligible. The 4-dodecylbenzenesulfonic acid (DBSA) catalyzed esterification of AFWS with 1-butanol was performed in a novel batch reactor fitted with a drying chimney for the "in situ" removal of water and optimized using a non-conventional Doehlert surface response methodology. The optimized condition was found to be 1.66mol equivalent of 1-butanol (with respect to total fatty acid chains), 10wt.% of DBSA catalyst (with respect to AFWS) at 105°C for 3h. Fatty Acid Butyl Esters (FABEs) were isolated in good yields (95%+) as well as a blend of FABEs with 1-butanol (16%). The two potential biofuels were analyzed in comparison with current and analogous biofuels (FAME based biodiesel, and FABE products made from vegetable oils) and were found to exhibit high cetane numbers and flash point values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Properties of an αs-casein-rich casein fraction: influence of dialysis on surface properties, miscibility, and micelle formation.

    PubMed

    Kessler, Anne; Menéndez-Aguirre, Orquidéa; Hinrichs, Jörg; Stubenrauch, Cosima; Weiss, Jochen

    2013-09-01

    In this study, the surface tension, miscibility, and particle size distribution of a solution containing an αs-casein (CN)-rich CN fraction (54 wt % αs-CN, 32 wt % β-CN, and 15 wt % κ-CN) were determined at pH 6.6. The nondialyzed CN fraction was compared with a dialyzed one. In the nondialyzed sample, every charge on the protein was compensated by 0.3 charges coming from counterions, whereas in the dialyzed sample, only 0.2 charges could be assigned to each charge on the protein. This relation was determined by calculating the charges at the proteins, taking the measured mineral content into account. The surface tension was measured as a function of the protein concentration by the du Noüy ring method at room temperature. Results indicated alterations in the surface properties after reduction of counterions. The equilibrium surface tension above the critical micelle concentration increased from 40.1×10(-3) to 45×10(-3) N/m, the critical micelle concentration increased from 0.9×10(-4) to 2×10(-3) mol/L, and the minimal area occupied per molecule at the surface increased from 2.4×10(-18) to 4.6×10(-18) m(2). Cloud points were determined by measuring the absorbance of CN solutions as a function of the temperature. The cloud points were found to be concentration dependent and had a minimum at 0.2 wt % at 34°C for nondialyzed CN and at 0.25 wt % at 28°C for dialyzed CN, again demonstrating the influence of counterion reduction. Below the cloud point, a micellar phase was found to exist. The hydrodynamic diameter of the micelles were characterized by dynamic light scattering in both auto- and cross-correlation mode. However, no influence of reduction in counterions could be observed, possibly due to the fact that dynamic light scattering is not a suitable method for this type of system. The presence of self-assembled structures was verified by freeze-fracture electron microscopy. The observed differences between dialyzed and nondialyzed samples were explained by changes in the counterion cloud surrounding the proteins. Consequently, the electrostatic interactions between as well as within the CN are altered by dialysis, which, in turn, affects the behavior at the surface as well as the properties in the solution. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has given only semi-quantitative results. The limits of detection (3 σ) were in the range 0.5-1.2 mg kg - 1 As dry weight (wt.) for direct ETAAS analysis of extracts in both TMAH and MeOH. Within-run precision (RSD%) was 5-15% and 7-20% for TMAH and MeOH extracts at As levels 4-50 mg kg - 1 dry wt., respectively. The hydride active fraction of As species in extracts, i.e. the sum of toxicologically-relevant arsenic species (inorganic As(III), inorganic As(V), monomethylarsonate (MMA) and dimethylarsinate (DMA)) was determined by FI-HG-ETAAS in diluted tissue extracts. Arsine, monomethylarsine and dimethylarsine were generated from diluted TMAH and MeOH extracts in the presence of 0.06-0.09 mol l - 1 hydrochloric acid and 0.075 mol l - 1 L-cysteine. Collection, pyrolysis and atomization temperatures were 450, 500, 2100 and 2150 °C, respectively. The LODs for the determination of hydride forming fraction (arsenite + arsenate + MMA + DMA) in TMAH and MeOH extracts were in the range 0.003-0.02 mg kg - 1 As dry wt. Within-run precision (RSD%) was 3-12% and 3-7% for TMAH and methanol extracts at As levels 0.15-2.4 mg kg - 1 dry wt., respectively. Results for the hydride forming fraction of As in TMAH and MeOH extract as % from the certified value for total As (for CRMs) or vs. the total As in TMAH extract (for real marine samples) are generally in agreement.

  6. First evidence for the production of OH radicals by carbonyl oxides in solution phase A DFT investigation

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; Sosa, Carlos

    2001-03-01

    Dimesitylketone O-oxide ( 1) rearranges in solution to yield the alcohol 2-methylhydroxy-pentamethylbenzophenone ( 5) and dimesitylketone ( 6). DFT-B3LYP/cc-pVTZ calculations reveal that H migration from an o-methyl group to the terminal O atom of the COO unit of 1 rather than the isomerization of 1 is energetically the most favorable process. Calculated activation enthalpies (gas phase: 12.8 kcal/mol; CH 3CN solution: 12.4 kcal/mol) are in excellent agreement with measured activation enthalpies (CFCl 3 solution: 13.2±0.2 kcal/mol; CH 3CN solution: 12.5±0.3 kcal/mol). The hydroperoxide formed by H migration decomposes to a OH and a benzyl radical. Recombination in the solvent cage leads to alcohol 5 while diffusion of OH out of the solvent cage yields 6.

  7. Improved modification for the density-functional theory calculation of thermodynamic properties for C-H-O composite compounds.

    PubMed

    Liu, Min Hsien; Chen, Cheng; Hong, Yaw Shun

    2005-02-08

    A three-parametric modification equation and the least-squares approach are adopted to calibrating hybrid density-functional theory energies of C(1)-C(10) straight-chain aldehydes, alcohols, and alkoxides to accurate enthalpies of formation DeltaH(f) and Gibbs free energies of formation DeltaG(f), respectively. All calculated energies of the C-H-O composite compounds were obtained based on B3LYP6-311++G(3df,2pd) single-point energies and the related thermal corrections of B3LYP6-31G(d,p) optimized geometries. This investigation revealed that all compounds had 0.05% average absolute relative error (ARE) for the atomization energies, with mean value of absolute error (MAE) of just 2.1 kJ/mol (0.5 kcal/mol) for the DeltaH(f) and 2.4 kJ/mol (0.6 kcal/mol) for the DeltaG(f) of formation.

  8. Dissociation energies of the hydrogen-bonded dimers RCN-HF (R = CH3, HCC) determined by rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Legon, A. C.; Millen, D. J.; North, Hazel M.

    1987-03-01

    The zero-point and equilibrium dissociation energies (D0 and De) of the hydrogen-bonded dimers CH3CN-HF and HCCCN-HF are determined experimentally on the basis of absolute intensity measurements of selected rotational transitions. A Stark-modulated microwave spectrometer is employed with the cooled absorption cell described by Legon et al. (1980). The results are presented in tables and analyzed. Energies determined are D0 = 26.1(0.6) kJ/mol and De = 29.0(0.9) kJ/mol for CH3CN-HF and D0 = 20.4(0.7) kJ/mol and De = 23.4(0.9) kJ/mol for HCCCN-HF. Theoretical De values calculated using the Morse potential function are found to be in much better agreement with the experimental results than those calculated with the Lennard-Jones potential function.

  9. Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogério, E-mail: roger@iqm.unicamp.br

    2013-11-14

    G3(MP2)//B3 theory was modified to incorporate compact effective potential (CEP) pseudopotentials, providing a theoretical alternative referred to as G3(MP2)//B3-CEP for calculations involving first-, second-, and third-row representative elements. The G3/05 test set was used as a standard to evaluate the accuracy of the calculated properties. G3(MP2)//B3-CEP theory was applied to the study of 247 standard enthalpies of formation, 104 ionization energies, 63 electron affinities, 10 proton affinities, and 22 atomization energies, comprising 446 experimental energies. The mean absolute deviations compared with the experimental data for all thermochemical results presented an accuracy of 1.4 kcal mol{sup −1} for G3(MP2)//B3 and 1.6more » kcal mol{sup −1} for G3(MP2)//B3-CEP. Approximately 75% and 70% of the calculated properties are found with accuracy between ±2 kcal mol{sup −1} for G3(MP2)//B3 and G3(MP2)//B3-CEP, respectively. Considering a confidence interval of 95%, the results may oscillate between ±4.2 kcal mol{sup −1} and ±4.6 kcal mol{sup −1}, respectively. The overall statistical behavior indicates that the calculations using pseudopotential present similar behavior with the all-electron theory. Of equal importance to the accuracy is the CPU time, which was reduced by between 10% and 40%.« less

  10. Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241

    NASA Technical Reports Server (NTRS)

    Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.

    2012-01-01

    The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.

  11. Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.

    PubMed

    Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D

    2002-03-01

    Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.

  12. Quantum chemical ab initio prediction of proton exchange barriers between CH{sub 4} and different H-zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuma, Christian; Sauer, Joachim, E-mail: js@chemie.hu-berlin.de

    2015-09-14

    A hybrid MP2:DFT (second-order Møller–Plesset perturbation theory–density functional theory) method that combines MP2 calculations for cluster models with DFT calculations for the full periodic structure is used to localize minima and transition structures for proton jumps at different Brønsted sites in different frameworks (chabazite, faujasite, ferrierite, and ZSM-5) and at different crystallographic positions of a given framework. The MP2 limit for the periodic structures is obtained by extrapolating the results of a series of cluster models of increasing size. A coupled-cluster (CCSD(T)) correction to MP2 energies is calculated for cluster models consisting of three tetrahedra. For the adsorption energies, thismore » difference is small, between 0.1 and 0.9 kJ/mol, but for the intrinsic proton exchange barriers, this difference makes a significant (10.85 ± 0.25 kJ/mol) and almost constant contribution across different systems. The total values of the adsorption energies vary between 22 and 34 kJ/mol, whereas the total proton exchange energy barriers fall in the narrow range of 152–156 kJ/mol. After adding nuclear motion contributions (harmonic approximation, 298 K), intrinsic enthalpy barriers between 134 and 141 kJ/mol and apparent energy barriers between 105 and 118 kJ/mol are predicted for the different sites examined for the different frameworks. These predictions are consistent with experimental results available for faujasite, ferrierite, and ZSM-5.« less

  13. Structural, Thermodynamic, Elastic, and Electronic Properties of α-SnS at High Pressure from First-Principles Investigations

    NASA Astrophysics Data System (ADS)

    Liu, Chun Mei; Xu, Chao; Duan, Man Yi

    2015-10-01

    SnS has potential technical applications, but many of its properties are still not well studied. In this work, the structural, thermodynamic, elastic, and electronic properties of α-SnS have been investigated by the plane wave pseudo-potential density functional theory with the framework of generalised gradient approximation. The calculated pressure-dependent lattice parameters agree well with the available experimental data. Our thermodynamic properties of α-SnS, including heat capacity CP , entropy S, and Gibbs free energy relation of -(GT -H0) curves, show similar growth trends as the experimental data. At T=298.15 K, our CP =52.31 J/mol·K, S=78.93 J/mol·K, and -(GT -H0)=12.03 J/mol all agree very well with experimental data CP =48.77 J/mol·K and 49.25 J/mol·K, S=76.78 J/mol·K, and -(GT -H0)=12.38 J/mol. The elastic constants, together with other elastic properties, are also computed. The anisotropy analyses indicate obvious elastic anisotropy for α-SnS along different symmetry planes and axes. Moreover, calculations demonstrate that α-SnS is an indirect gap semiconductor, and it transforms to semimetal with pressure increasing up to 10.2 GPa. Combined with the density of states, the characters of the band structure have been analysed in detail.

  14. Synthesis of Polyimides Curable by Intramolecular Cycloaddition

    DTIC Science & Technology

    1977-03-01

    5.17; N, 6.90; mol. wt., 384 (by mass spectrometry). c. 2’-Iodo-4! nitroacetanilide 2’-Iodo-4-acetanilide has been previously prepared in two steps...material) and was used without further purification or drying for the next step in the reaction sequence. (2) 2’-Iodo-4’- nitroacetanilide The crude 2...194 g (95% based upon p-nitroaniline) of 2’-iodo-4’- nitroacetanilide . Elemental analysis, I.R. and m.p. (120 0 C) were in agreement with the literature

  15. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  16. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach

    NASA Astrophysics Data System (ADS)

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-01

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 104. With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300K was calculated as - 5.234 kcal mol- 1 for CBZ-AAG interaction and - 6.237 kcal mol- 1 for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are - 9.553 kcal mol- 1 and - 14.618 cal mol- 1K- 1 respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol- 1 and 7.206 cal mol- 1K- 1 respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.

  17. Potential energy surface and quantum dynamics study of rovibrational states for HO(3) (X (2)A'').

    PubMed

    Braams, Bastiaan J; Yu, Hua-Gen

    2008-06-07

    An analytic potential energy surface has been constructed by fitting to about 28 thousand energy points for the electronic ground-state (X (2)A'') of HO(3). The energy points are calculated using a hybrid density functional HCTH and a large basis set aug-cc-pVTZ, i.e., a HCTH/aug-cc-pVTZ density functional theory (DFT) method. The DFT calculations show that the trans-HO(3) isomer is the global minimum with a potential well depth of 9.94 kcal mol(-1) with respect to the OH + O(2) asymptote. The equilibrium geometry of the cis-HO(3) conformer is located 1.08 kcal mol(-1) above that of the trans-HO(3) one with an isomerization barrier of 2.41 kcal mol(-1) from trans- to cis-HO(3). By using this surface, a rigorous quantum dynamics (QD) study has been carried out for computing the rovibrational energy levels of HO(3). The calculated results determine a dissociation energy of 6.15 kcal mol(-1), which is in excellent agreement with the experimental value of Lester et al. [J. Phys. Chem. A, 2007, 111, 4727.].

  18. Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise.

    PubMed

    Zhang, Xiaodong; Bruice, Thomas C

    2006-10-31

    We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-L-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 A for both the OD1 (Asp-134)-H(E) (GAA) and H(E) (GAA)-N(E) (GAA) bonds, and 2.47 and 2.03 A for the S8 (AdoMet)-C9 (AdoMet) and C9 (AdoMet)-N(E) (GAA) bonds, respectively. The potential-energy barrier (DeltaE++) determined by single-point B3LYP/6-31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (-TDeltaS++) and zero-point energy corrections Delta(ZPE)++ by normal mode analysis are 2.3 kcal/mol and -1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be DeltaH++ = DeltaE++ plus Delta(ZPE)++ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is DeltaG++ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 +/- 0.2.min(-1)).

  19. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids.

    PubMed

    Paulechka, Yauheni U; Kabo, Andrey G; Blokhin, Andrey V

    2009-11-05

    The enthalpy of the 1-butyl-3-methylimidazolium bromide [C(4)mim]Br ionic liquid synthesis reaction 1-methylimidazole (liq) + 1-bromobutane (liq) --> [C(4)mim]Br (liq) was determined in a homemade small-volume isoperibol calorimeter to be Delta(r)H degrees (298) = -87.7 +/- 1.6 kJ x mol(-1). The activation energy for this reaction in a homogeneous system E(A) = 73 +/- 4 kJ x mol(-1) was found from the results of calorimetric measurements. The formation enthalpies for the crystalline and liquid [C(4)mim]Br were determined from the calorimetric data: Delta(f)H degrees (298)(cr) = -178 +/- 5 kJ x mol(-1) and Delta(f)H degrees (298)(liq) = -158 +/- 5 kJ x mol(-1). The ideal-gas formation enthalpy of this compound Delta(f)H degrees (298)(g) = 16 +/- 7 kJ x mol(-1) was calculated using the methods of quantum chemistry and statistical thermodynamics. The vaporization enthalpy of [C(4)mim]Br, Delta(vap)H degrees (298) = 174 +/- 9 kJ x mol(-1), was estimated from the experimental and calculated formation enthalpies. It was demonstrated that vapor pressure of this ionic liquid cannot be experimentally determined.

  20. Fabrication of bismuth superhydrophobic surface on zinc substrate

    NASA Astrophysics Data System (ADS)

    Yu, Tianlong; Lu, Shixiang; Xu, Wenguo; He, Ge

    2018-06-01

    The dendritic Bi/Bi2O3/ZnO superhydrophobic surface (SHPS) was facilely obtained on zinc substrate via etching in 0.5 mol L-1 HCl solution for 2 min, immersing in 2 mmol L-1 Bi(NO3)3/0.1 mol L-1 HNO3 solution for 2.5 min and annealing treatment at 180 °C for 2 h. The wetting property results demonstrated that the superhydrophobic sample had excellent water-repellency with a static water contact angle of 160° and sliding angle of 0° under the optimum condition, which can be visually confirmed by the impacting droplet could rebound back immediately and roll off the horizontally placed sample. Moreover, it exhibited remarkable self-cleaning ability, buoyancy, desired stability in long-term storage in air, corrosion resistance in 3.5 wt% NaCl solution, ice-over delay at - 16 °C and durability in lab-simulated abrasion test.

  1. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    PubMed

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  2. Crystallization kinetics of Fe based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  3. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    NASA Astrophysics Data System (ADS)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  4. Regional thermal and electric energy output of salt-gradient solar ponds in the U.S.

    NASA Technical Reports Server (NTRS)

    Singer, M. J.; Lin, E. I. H.

    1982-01-01

    Salt-gradient solar pond thermal and electrical energy output was calculated for each of twelve regions within the United States as part of an effort to assess solar pond applicability and extent of requisite physical resources on a regional basis. The energy output level is one of the key factors affecting the economic feasibility of solar ponds. Calculated thermal energy output ranges from 6.9 Wt/sq m in Fairbanks, Alaska, to 73.1 Wt/sq m in Daggett, California, at an energy extraction temperature of 45 C. The output ranges from 0.0 Wt/sq m in Fairbanks to 63.2 Wt/sq m in Daggett at 60 C. Electrical energy output ranges from 0.0 We/sq m in Fairbanks to 3.11 We/sq m in Daggett. Although these estimates constitute a reasonable basis for regional comparison, site-specific analysis must be performed for an actual application design.

  5. Quasiparticle interference of Fermi arc states in the type-II Weyl semimetal candidate WT e2

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Yang, Xing; Peng, Lang; Wang, Zhi-Jun; Li, Jian; Yi, Chang-Jiang; Xian, Jing-Jing; Shi, You-Guo; Fu, Ying-Shuang

    2018-04-01

    Weyl semimetals possess linear dispersions through pairs of Weyl nodes in three-dimensional momentum spaces, whose hallmark arclike surface states are connected to Weyl nodes with different chirality. WT e2 was recently predicted to be a new type of Weyl semimetal. Here, we study the quasiparticle interference (QPI) of its Fermi arc surface states by combined spectroscopic-imaging scanning tunneling spectroscopy and density functional theory calculations. We observed the electron scattering on two types of WT e2 surfaces unambiguously. Its scattering signal can be ascribed mainly to trivial surface states. We also address the QPI feature of nontrivial surface states from theoretical calculations. The experimental QPI patterns show some features that are likely related to the nontrivial Fermi arc states, whose existence is, however, not conclusive. Our study provides an indispensable clue for studying the Weyl semimetal phase in WT e2 .

  6. Effect of the CTAB concentration on the upconversion emission of ZrO 2:Er 3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    López-Luke, T.; De la Rosa, E.; Sólis, D.; Salas, P.; Angeles-Chavez, C.; Montoya, A.; Díaz-Torres, L. A.; Bribiesca, S.

    2006-10-01

    Upconversion emission of ZrO 2:Er 3+ (0.2 mol%) nanophosphor were studied as function of surfactant concentration after excitation at 968 nm. The strong green emission was produced by the transition 2H 11/2 + 4S 3/2 → 4I 15/2 and was explained in terms of cooperative energy transfer between neighboring ions. The upconverted signal was enhanced but the fluorescence decay time was reduced as either the surfactant concentration increases or the annealing time reduces. Experimental results show that surfactant concentration controls the particle size and morphology while annealing time control the phase composition and crystallite size. The highest intensity was obtained for a sample composed of a mixture of tetragonal (33 wt.%) and monoclinic (67 wt.%) phase with crystallite size of 31 and 59 nm, respectively. This result suggests that tetragonal crystalline structure and small crystallite size are more favorable for the upconversion emission.

  7. Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Zhang, Wen; Yang, Feng

    2016-01-01

    We herein propose a novel synthetic methodology for a series of nickel–tungsten bimetallics/carbon nanofiber catalysts (Ni, 0.37–2.08 wt%; W, 0.01–0.06 wt%) in situ fabricated by pyrolysis (950 °C) of Ni, W and Zn-containing metal organic framework (Ni0.6-x–Wx–ZnBTC, x = 0–0.6) fibers. The resulting catalysts (Ni0.6-x–Wx/CNF) have uniform particles (ca. 68 nm), evenly dispersed onto the hierarchically porous carbon nanofibers formed simultaneously. All of the Ni0.6-x–Wx/CNF catalysts prove to be highly active towards direct conversion of cellulose to ethylene glycol (EG). A large productivity ranging from 15.3 to 70.8 molEG h-1 gW-1 is shown, two orders of magnitude higher than thosemore » by using other W-based catalysts reported.« less

  8. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  9. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  10. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    PubMed

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Structures, internal rotor potentials, and thermochemical properties for a series of nitrocarbonyls, nitroolefins, corresponding nitrites, and their carbon centered radicals.

    PubMed

    Snitsiriwat, Suarwee; Asatryan, Rubik; Bozzelli, Joseph W

    2011-12-01

    Structures, enthalpy (Δ(f)H°(298)), entropy (S°(T)), and heat capacity (C(p)(T)) are determined for a series of nitrocarbonyls, nitroolefins, corresponding nitrites, and their carbon centered radicals using the density functional B3LYP and composite CBS-QB3 calculations. Enthalpies of formation (Δ(f)H°(298)) are determined at the B3LYP/6-31G(d,p), B3LYP/6-31+G(2d,2p), and composite CBS-QB3 levels using several work reactions for each species. Entropy (S) and heat capacity (C(p)(T)) values from vibration, translational, and external rotational contributions are calculated using the rigid-rotor-harmonic-oscillator approximation based on the vibration frequencies and structures obtained from the density functional studies. Contribution to Δ(f)H(T), S, and C(p)(T) from the analysis on the internal rotors is included. Recommended values for enthalpies of formation of the most stable conformers of nitroacetone cc(═o)cno2, acetonitrite cc(═o)ono, nitroacetate cc(═o)no2, and acetyl nitrite cc(═o)ono are -51.6 kcal mol(-1), -51.3 kcal mol(-1), -45.4 kcal mol(-1), and -58.2 kcal mol(-1), respectively. The calculated Δ(f)H°(298) for nitroethylene c═cno2 is 7.6 kcal mol(-1) and for vinyl nitrite c═cono is 7.2 kcal mol(-1). We also found an unusual phenomena: an intramolecular transfer reaction (isomerization) with a low barrier (3.6 kcal mol(-1)) in the acetyl nitrite. The NO of the nitrite (R-ONO) in CH(3)C(═O')ONO moves to the C═O' oxygen in a motion of a stretching frequency and then a shift to the carbonyl oxygen (marked as O' for illustration purposes). © 2011 American Chemical Society

  12. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres.

    PubMed

    Romano, Edwin F; Holdsworth, Clovia I; Quirino, Joselito P; So, Regina C

    2018-01-01

    Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit

    2017-06-01

    Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.

  14. Relation between wall shear stress and carotid artery wall thickening MRI versus CFD.

    PubMed

    Cibis, Merih; Potters, Wouter V; Selwaness, Mariana; Gijsen, Frank J; Franco, Oscar H; Arias Lorza, Andres M; de Bruijne, Marleen; Hofman, Albert; van der Lugt, Aad; Nederveen, Aart J; Wentzel, Jolanda J

    2016-03-21

    Wall shear stress (WSS), a parameter associated with endothelial function, is calculated by computational fluid dynamics (CFD) or phase-contrast (PC) MRI measurements. Although CFD is common in WSS (WSSCFD) calculations, PC-MRI-based WSS (WSSMRI) is more favorable in population studies; since it is straightforward and less time consuming. However, it is not clear if WSSMRI and WSSCFD show similar associations with vascular pathology. Our aim was to test the associations between wall thickness (WT) of the carotid arteries and WSSMRI and WSSCFD. The subjects (n=14) with an asymptomatic carotid plaque who underwent MRI scans two times within 4 years of time were selected from the Rotterdam Study. We compared WSSCFD and WSSMRI at baseline and follow-up. Baseline WSSMRI and WSSCFD values were divided into 3 categories representing low, medium and high WSS tertiles. WT of each tertile was compared by a one-way ANOVA test. The WSSMRI and WSSCFD were 0.50±0.13Pa and 0.73±0.25Pa at baseline. Although WSSMRI was underestimated, a significant regression was found between WSSMRI and WSSCFD (r(2)=0.71). No significant difference was found between baseline and follow-up WSS by CFD and MRI-based calculations. The WT at baseline was 1.36±0.16mm and did not change over time. The WT was 1.55±0.21mm in low, 1.33±0.20mm in medium and 1.21±0.21mm in the high WSSMRI tertiles. Similarly, the WT was 1.49±0.21mm in low, 1.33±0.20mm in medium and 1.26±0.21mm in high WSSCFD tertiles. We found that WSSMRI and WSSCFD were inversely related with WT. WSSMRI and WSSCFD patterns were similar although MRI-based calculations underestimated WSS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  16. Accurate coupled cluster reaction enthalpies and activation energies for X+H2 --> XH+H (X=F, OH, NH2, and CH3)

    NASA Astrophysics Data System (ADS)

    Kraka, Elfi; Gauss, Jürgen; Cremer, Dieter

    1993-10-01

    Coupled cluster calculations at the CCSD(T)/[5s4p3d/4s3p] and CCSD(T)/[5s4p3d2 f1g/4s3p2d] level of theory are reported for reactions X+H2→XH+H [X=F (1a), OH (1b), NH2 (1c), and CH3 (1d)] utilizing analytical energy gradients for geometry, frequency, charge distribution, and dipole moment calculations of reactants, transition states, and products. A careful analysis of vibrational corrections leads to reaction enthalpies at 300 K, which are within 0.04, 0.15, 0.62, and 0.89 kcal/mol of experimental values. For reaction (1a) a bent transition state and for reactions (1b) and (1c) transition states with a cis arrangement of the reactants are calculated. The cis forms of transition states (1b) and (1c) are energetically favored because of electrostatic interactions, in particular dipole-dipole attraction as is revealed by calculated charge distributions. For reactions (1a)-(1d), the CCSD(T)/[5s4p3d2 f1g/4s3p2d] activation energies at 300 K are 1.1, 5.4, 10.8, and 12.7 kcal/mol which differ by just 0.1, 1.4, 2.3, and 1.8 kcal/mol, respectively, from the corresponding experimental values of 1±0.1, 4±0.5, 8.5±0.5, and 10.9±0.5 kcal/mol. For reactions (1), this is the best agreement between experiment and theory that has been obtained from ab initio calculations not including any empirically based corrections. Agreement is achieved after considering basis set effects, basis set superposition errors, spin contamination, tunneling effect and, in particular, zero-point energies as well as temperature corrections. Net corrections for the four activation energies are -1.05, -0.2, 1.25, and 0.89 kcal/mol, which shows that for high accuracy calculations a direct comparison of classical barriers and activation energies is misleading.

  17. Structures and Energetics of (MgCO 3 ) n Clusters ( n ≤ 16)

    DOE PAGES

    Chen, Mingyang; Jackson, Virgil E.; Felmy, Andrew R.; ...

    2015-03-13

    There is significant interest in the role of carbonate minerals for the storage of CO 2 and the role of prenucleation dusters in their formation. Global minima for (MgCO 3) n (n ≤ 16) structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. The most stable isomers for (MgCO 3) n (n < 5) are approximately 2-dimensional. Mg can be bonded to one or two 0 atoms of a CO 3 2-, and the 1-O bonding scheme is more favored asmore » the cluster becomes larger. The average C-Mg coordination number increases as the cluster size increases, and at n = 16, the average C-Mg coordination number was calculated to be 5.2. The normalized dissociation energy to form monomers increases as n increases. At n = 16, the normalized dissociation energy is calculated to be 116.2 kcal/mol, as compared to the bulk value of 153.9 kcal/mol. The adiabatic reaction energies for the recombination reactions of (MgO) nclusters and CO 2 to form (MgCO 3) n were calculated. The exothermicity of the normalized recombination energy < RE >(CO 2) decreases as n increases and converged to the experimental bulk limit rapidly. The normalized recombination energy < RE >(CO 2) was calculated to be -52.2 kcal/mol for the monomer and -30.7 kcal/mol for n = 16, as compared to the experimental value of -27.9 kcal/mol for the solid phase reaction. Infrared spectra for the lowest energy isomers were calculated, and absorption bands in the previous experimental infrared studies were assigned with our density functional theory predictions. The 13C, 17O, and 25Mg NMR chemical shifts for the clusters were predicted. We found that the results provide insights into the structural and energetic transitions from nanoclusters of (MgCO 3) n to the bulk and the spectroscopic properties of clusters for their experimental identification.« less

  18. Mechanism and kinetics for ammonium dinitramide (ADN) sublimation: a first-principles study.

    PubMed

    Zhu, R S; Chen, Hui-Lung; Lin, M C

    2012-11-08

    The mechanism for sublimation of NH(4)N(NO(2))(2) (ADN) has been investigated quantum-mechanically with generalized gradient approximation plane-wave density functional theory calculations; the solid surface is represented by a slab model and the periodic boundary conditions are applied. The calculated lattice constants for the bulk ADN, which were found to consist of NH(4)(+)[ON(O)NNO(2)](-) units, instead of NH(4)(+)[N(NO(2))(2)](-), agree quite well with experimental values. Results show that three steps are involved in the sublimation/decomposition of ADN. The first step is the relaxation of the surface layer with 1.6 kcal/mol energy per NH(4)ON(O)NNO(2) unit; the second step is the sublimation of the surface layer to form a molecular [NH(3)]-[HON(O)NNO(2)] complex with a 29.4 kcal/mol sublimation energy, consistent with the experimental observation of Korobeinichev et al. (10) The last step is the dissociation of the [H(3)N]-[HON(O)NNO(2)] complex to give NH(3) and HON(O)NNO(2) with the dissociation energy of 13.9 kcal/mol. Direct formation of NO(2) (g) from solid ADN costs a much higher energy, 58.3 kcal/mol. Our calculated total sublimation enthalpy for ADN(s) → NH(3)(g) + HON(O)NNO(2)) (g), 44.9 kcal/mol via three steps, is in good agreement with the value, 42.1 kcal/mol predicted for the one-step sublimation process in this work and the value 44.0 kcal/mol computed by Politzer et al. (11) using experimental thermochemical data. The sublimation rate constant for the rate-controlling step 2 can be represented as k(sub) = 2.18 × 10(12) exp (-30.5 kcal/mol/RT) s(-1), which agrees well with available experimental data within the temperature range studied. The high pressure limit decomposition rate constant for the molecular complex H(3)N···HON(O)NNO(2) can be expressed by k(dec) = 3.18 × 10(13) exp (-15.09 kcal/mol/RT) s(-1). In addition, water molecules were found to increase the sublimation enthalpy of ADN, contrary to that found in the ammonium perchlorate system, in which water molecules were shown to reduce pronouncedly the enthalpy of sublimation.

  19. Application of Free Energy Perturbation for the Design of BACE1 Inhibitors.

    PubMed

    Ciordia, Myriam; Pérez-Benito, Laura; Delgado, Francisca; Trabanco, Andrés A; Tresadern, Gary

    2016-09-26

    Novel spiroaminodihydropyrroles probing for optimized interactions at the P3 pocket of β-secretase 1 (BACE1) were designed with the use of free energy perturbation (FEP) calculations. The resulting molecules showed pIC50 potencies in enzymatic BACE1 inhibition assays ranging from approximately 5 to 7. Good correlation was observed between the predicted activity from the FEP calculations and experimental activity. Simulations run with a default 5 ns approach delivered a mean unsigned error (MUE) between prediction and experiment of 0.58 and 0.91 kcal/mol for retrospective and prospective applications, respectively. With longer simulations of 10 and 20 ns, the MUE was in both cases 0.57 kcal/mol for the retrospective application, and 0.69 and 0.59 kcal/mol for the prospective application. Other considerations that impact the quality of the calculations are discussed. This work provides an example of the value of FEP as a computational tool for drug discovery.

  20. Thermodynamic parameters of phase transitions of perfluoro-N-(4-methylcyclohexyl)piperidine

    NASA Astrophysics Data System (ADS)

    Druzhinina, A. I.; Efimova, A. A.; Varushchenko, R. M.; Chelovskaya, N. V.

    2007-12-01

    The heat capacity of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) was measured by low-temperature adiabatic calorimetry. The purity of the substance ( N 1 = 99.66 mol %), triple point temperature ( T tp = 293.26 K), and enthalpy of fusion (Δfus H {m/°} = 8.32 kJ/mol) were determined. The enthalpy of vaporization was measured by calorimetry at 298.15 K (Δvap H {m/°}(298.15 K) = 56.56 kJ/mol). The temperature dependence of the saturated vapor pressure of PMCP over the pressure range 6.2-101.6 kPa was determined by comparative ebulliometry. The normal boiling point ( T n.b. = 460.74 K), ehthalpies of vaporization (at various temperatures), and critical parameters of PMCP were calculated. The calculated and experimental values of Δvap H {m/°}(298.15 K) agree to within measurement errors, which proves the reliability of these values and pT parameters used in calculations.

  1. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    PubMed

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011

  2. The corrosion of Alloy 690 in high-temperature aqueous media - thermodynamic considerations

    NASA Astrophysics Data System (ADS)

    Lemire, R. J.; McRae, G. A.

    2001-04-01

    Alloy 690 (N06690) is a technologically important material that contains a minimum of 58 wt% nickel, 27.0-31.0 wt% chromium and 7.0-11.0 wt% iron. A thermodynamic analysis of the expected behaviour of Alloy 690 in high-temperature (573 K) aqueous media has been carried out. The stabilization or destabilization of chromium, iron and nickel in the alloy has been taken into account using a variation of regular solution theory. Formation of polymetallic corrosion products, such as spinels, has also been considered. Reaction path calculations were performed for Alloy 690 at 573 K. The results are similar to those found from comparable calculations for the more widely used Alloy 600. Comparisons are made with available experimental observations.

  3. Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise

    PubMed Central

    Zhang, Xiaodong; Bruice, Thomas C.

    2006-01-01

    We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-l-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 Å for both the OD1 (Asp-134)–HE (GAA) and HE (GAA)–NE (GAA) bonds, and 2.47 and 2.03 Å for the S8 (AdoMet)–C9 (AdoMet) and C9 (AdoMet)–NE (GAA) bonds, respectively. The potential-energy barrier (ΔE‡) determined by single-point B3LYP/6–31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (−TΔS‡) and zero-point energy corrections Δ(ZPE)‡ by normal mode analysis are 2.3 kcal/mol and −1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be ΔH‡ = ΔE‡ + Δ(ZPE)‡ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is ΔG‡ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 ± 0.2·min−1). PMID:17053070

  4. Sulfur diffusion in dacitic melt at various oxidation states: Implications for volcanic degassing

    NASA Astrophysics Data System (ADS)

    Lierenfeld, Matthias Bernhard; Zajacz, Zoltán; Bachmann, Olivier; Ulmer, Peter

    2018-04-01

    The diffusivity of S in a hydrous dacitic melt (4.5-6.0 wt.% H2O) has been investigated in the temperature (T) and pressure (P) range of 950 °C to 1100 °C and 200 to 250 MPa, respectively. Three series of experiments were conducted at relatively low oxygen fugacity (fO2) conditions [0.8 log units below fayalite-magnetite-quartz equilibrium (FMQ -0.8); referred to as "low fO2"] and high fO2 conditions (FMQ +2.5; referred to as "high fO2") to determine if the diffusivity of S is affected by its oxidation state and speciation. Sulfur concentration profiles were measured by electron microprobe and the diffusion coefficient (D) was calculated by fitting these profiles. Sulfur diffusion is approximately one order of magnitude faster when S is dominantly present as sulfide species (low fO2) in comparison to the sulfate dominated experiments (high fO2). The following Arrhenian equations were obtained for high and low fO2 conditions at 200 MPa: high fO2: D = 10-5.92±0.86 * exp ({-137.3±21.5 kJ/mol}/{RT}) low fO2: D = 10-5.18±1.39 * exp ({-125.7±34.4 kJ/mol}/{RT}) where D is the average diffusion coefficient in m2 s-1, R is the gas constant in 8.3144 J mol-1 K-1 and T is the temperature in K. Our results demonstrate for the first time in natural melts that S diffusion is strongly sensitive to fO2. Our S diffusivities under low fO2 conditions are only slightly slower of those found for H2O, suggesting that S can be rather efficiently purged from reduced dacitic melts during volcanic eruptions. However, for more oxidized systems (e.g. subduction zones), S diffusion will be much slower and will hinder equilibrium syn-eruptive degassing during rapid decompression. Therefore, we conclude that the "excess" measured during many explosive volcanic eruptions in arcs is dominantly derived from S-rich bubble accumulation in the eruptible portion of the magma reservoir.

  5. Effect of controlled zinc release on bone mineral density from injectable Zn-containing beta-tricalcium phosphate suspension in zinc-deficient diseased rats.

    PubMed

    Otsuka, Makoto; Ohshita, Yuko; Marunaka, Sunao; Matsuda, Yoshihia; Ito, Atsuo; Ichinose, Noboru; Otsuka, Kuniko; Higuchi, William I

    2004-06-01

    The purpose of this study was to evaluate the efficacy of zinc (Zn)-containing beta-tricalcium phosphate (Zn-TCP) in correcting the bone mineral deficiency noted in osteoporosis using ovariectomized rat model. Four rats were used for each of the four experimental groups: D0, D10, D20, and N10. The rats in D0, D10, and D20 groups were ovariectomized, and fed a vitamin D-, Ca-, and Zn-deficient diet, and induced Zn-deficient osteoporoses for 9 weeks. In contrast, the N10 group was the normal rats fed normal healthy diet for 9 weeks. D0 group was injected with pure beta-TCP suspension, D10 and D20 groups were injected with suspensions containing 10 mg of 10 mol % (6.17 wt % Zn) and 20 mol % (12.05 wt % Zn) Zn-TCP, respectively, and the healthy group, N10 were injected with 10 mol %. Zn-TCP suspensions. Injections were administered intramuscularly in the left thigh once a week in all rats, and fed a vitamin D- and Zn-deficient diet for 9 weeks. The plasma calcium (Ca) and Zn levels, plasma alkaline phosphatase activity (ALP) and bone mineral density (BMD) of the lumbar vertebra and femora were measured. The plasma Zn levels in all the rats were between 1.1 and 2.8 microg/mL. The areas under the curves for the Ca, Zn, and ALP (Ca-AUC, Zn-AUC, and ALP-AUC) levels between 0 and 63 days were calculated. Results for the AUCs were as follows: (1) the Zn-AUCs were in the order of N10 = D20 > D10 > D0; (2) the Ca-AUCs for D0, D10 groups were significantly lower than that for the N10 group; (3) the ALP-AUCs for the D10 and D20 groups were significantly higher than that for the N10 group, and that of the D0 group was in between those. The body weight of D10 and D20 groups significantly increased with time, that of the D0 group increased slightly, and that of the N10 group remained unchanged for the entire experimental period. The BMD of the lumbar vertebrae of the D10 and D20 groups (about 100 mg/cm(2)) was significantly higher than that of the D0 group but lower than that of the N10 group. The BMD of the left femur increased more than that of the right femur with the increase in the amount of Zn in the suspension. The results of this study suggest that the local effect on BMD was more pronounced than the effect on the whole body. Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 69A: 552-560, 2004

  6. A QM/MM Metadynamics Study of the Direct Decarboxylation Mechanism for Orotidine-5'-monophosphate Decarboxylase using Two Different QM Regions: Acceleration too Small to Explain Rate of Enzyme Catalysis

    PubMed Central

    Stanton, Courtney; Kuo, I-Feng W.; Mundy, Christopher J.; Laino, Teodoro; Houk, K. N.

    2011-01-01

    Despite decades of study, the mechanism by which orotidine-5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine monophosphate remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two different QM regions were explored. The free energy barriers for decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme (using the larger QM region) were determined with the metadynamics method to be 40 kcal/mol and 33 kcal/mol, respectively. The calculated change in activation free energy (ΔΔG±) on going from solution to the enzyme is therefore −7 kcal/mol, far less than the experimental change of −23 kcal/mol (for kcat/kuncat Radzicka, A.; Wolfenden, R., Science. 1995, 267, 90–92). These results do not support the direct decarboxylation mechanism that has been proposed for the enzyme. However, in the context of QM/MM calculations, it was found that the size of the QM region has a dramatic effect on the calculated reaction barrier. PMID:17927240

  7. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance

    USGS Publications Warehouse

    Eberl, D.D.

    2004-01-01

    The mineralogy of Yukon River basin sediment has been studied by quantitative X-ray diffraction. Bed, beach, bar, and suspended sediments were analyzed using the RockJock computer program. The bed sediments were collected from the main stem and from selected tributaries during a single trip down river, from Whitehorse to the Yukon River delta, during the summer of 2001. Beach and bar sediments were collected from the confluence region of the Tanana and Yukon Rivers during the summer of 2003. Suspended sediments were collected at three stations on the Yukon River and from a single station on the Tanana River at various times during the summers of 2001 through 2003, with the most complete set of samples collected during the summer of 2002. Changes in mineralogy of Yukon River bed sediments are related to sediment dilution or concentration effects from tributary sediment and to chemical weathering during transport. Carbonate minerals compose about 2 wt% of the bed sediments near Whitehorse, but increase to 14 wt% with the entry of the White River tributary above Dawson. Thereafter, the proportion of carbonate minerals decreases downstream to values of about 1 to 7 wt% near the mouth of the Yukon River. Quartz and feldspar contents of bed sediments vary greatly with the introduction of Pelly River and White River sediments, but thereafter either increase irregularly (quartz from 20 to about 50 wt%) or remain relatively constant (feldspar at about 35 wt%) with distance downstream. Clay mineral content increases irregularly downstream from about 15 to about 30 wt%. The chief clay mineral is chlorite, followed by illite + smectite; there is little to no kaolinite. The total organic carbon content of the bed sediments remains relatively constant with distance for the main stem (generally 1 to 2 wt%, with one exception), but fluctuates for the tributaries (1 to 6 wt%). The mineralogies of the suspended sediments and sediment flow data were used to calculate the amount of mineral dissolution during transport between Eagle and Pilot Station, a distance of over 2000 km. We estimate that approximately 3 wt% of the quartz, 15 wt% of the feldspar (1 wt% of the alkali and 25 wt% of the plagioclase), and 26 wt% of the carbonates (31 wt% of the calcite and 15 wt% of the dolomite) carried by the river dissolve in this reach. The mineralogies of the suspended sediments change with the season. For example, during the summer of 2002 the quartz content varied by 20 wt%, with a minimum in mid-summer. The calcite content varied by a similar amount, and had a maximum corresponding to the quartz minimum. These modes are related to the relative amount of sediment flowing from the White River system, which is relatively poor in quartz, but rich in carbonate minerals. Suspended total clay minerals varied by as much as 25 wt%, with maxima in mid July, and suspended feldspar varied up to 10 wt%. Suspended sediment data from the summers of 2001 and 2003 support the 2002 trends. A calculation technique was developed to determine theproportion of various sediment sources in a mixed sediment by unmixing its quantitative mineralogy. Results from this method indicate that at least three sediment sources can be identified quantitatively with good accuracy. With this technique, sediment mineralogies can be used to calculate the relative flux of sediment from different tributaries, thereby identifying sediment provenance.

  8. Gas-phase Raman spectra and the potential energy function for the internal rotation of 1,3-butadiene and its isotopologues.

    PubMed

    Boopalachandran, Praveenkumar; Craig, Norman; Groner, Peter; Laane, Jaan

    2011-08-18

    The gas-phase Raman spectra of 1,3-butadiene and its 2,3-d(2), 1,1,4,4-d(4), and -d(6) isotopologues have been recorded with high sensitivity in the region below 350 cm(-1) in order to investigate the internal rotation (torsional) vibration. Based on more accurate structural information, the internal rotor constants F(n) were calculated as a function of rotation angle (ϕ). The data for all the isotopologues were then fit using a one-dimensional potential energy function of the form V = (1)/(2)∑V(n)(1 - cos ϕ). Initial V(n) values were based on those generated from theoretical calculations. The agreement between observed and calculated frequencies is very good, although bands not taken into account were present in the spectra. The energy difference between the trans and gauche forms was determined to be about 1030 cm(-1) (2.94 kcal/mol), and the barrier between the two equivalent gauche forms was determined to be about 180 cm(-1) (0.51 kcal/mol), which agrees well with high-level ab initio calculations. An alternative set of assignments also fits the data quite well for all of the isotopologues. For this model, the energy difference between the trans and gauche forms is about 1080 cm(-1) (3.09 kcal/mol), and the barrier between gauche forms is about 405 cm(-1) (1.16 kcal/mol). © 2011 American Chemical Society

  9. Trends in the short-term release of fission products and actinides to aqueous solution from used CANDU fuels at elevated temperature

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, S.

    1992-08-01

    A large number of short-term leaching experiments has been performed to determine fission product and actinide release from used CANDU (CANada Deuterium Uranium) fuels and to establish which factors affect release. Results are reported after30 ± 10 d leaching at 100-150°C under oxidizing (air) or reducing (Ar-3% H 2 or Ar) conditions, in various synthetic groundwaters. Cesium-137 release (0.007-6%) was positively correlated with increases in fuel power, leachant temperature and ionic strength. Strontium-90 release (0.0003-0.3%) generally increased with ionic strength, higher temperature and redox conditions. Actinide and Tc concentrations were compared to ranges calculated with a thermodynamic equilibrium model, that accounts for the uncertain geochemical parameters of a nuclear waste vault by calculating concentration ranges based on 40000 hypothetical cases. Experimental U concentrations (10 -8.5 to 10 -3 mol/kg) were higher than the model range, probably because of higher redox potentials in the experiments. Measured Pu concentrations (10 -12.5 to 10 -7 mol/kg) were at the low end of the calculated range. Americium and Cm concentrations (10 -12.5 to 10 -7 and 10 -15 to 10 -9 mol/kg, respectively) were highest under oxidizing conditions and higher temperatures. Technetium-99 concentrations (10 -5.5 to 10 -10.5 mol/kg) covered a much narrower range than calculated by the model.

  10. Dry (Mg,Fe)SiO 3 perovskite in the Earth's lower mantle

    DOE PAGES

    Panero, Wendy R.; Pigott, Jeffrey S.; Reaman, Daniel M.; ...

    2015-02-26

    Combined synthesis experiments and first-principles calculations show that MgSiO 3-perovskite with minor Al or Fe does not incorporate significant OH under lower mantle conditions. Perovskite, stishovite, and residual melt were synthesized from natural Bamble enstatite samples (Mg/(Fe+Mg) = 0.89 and 0.93; Al 2O 3 < 0.1 wt% with 35 and 2065 ppm wt H 2O, respectively) in the laser-heated diamond anvil cell at 1600-2000 K and 25-65 GPa. Combined Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction, and ex-situ transmission electron microscopy (TEM) analysis demonstrates little difference in the resulting perovskite as a function of initial water content. Four distinct OHmore » vibrational stretching bands are evident upon cooling below 100 K (3576, 3378, 3274, and 3078 cm -1), suggesting 4 potential bonding sites for OH in perovskite with a maximum water content of 220 ppm wt H 2O, and likely no more than 10 ppm wt H 2O. Complementary, Fe-free, first-principles calculations predict multiple potential bonding sites for hydrogen in perovskite, each with significant solution enthalpy (0.2 eV/defect). We calculate that perovskite can dissolve less than 37 ppm wt H 2O (400 ppm H/Si) at the top of the lower mantle, decreasing to 31 ppm wt H 2O (340 ppm H/Si) at 125 GPa and 3000 K in the absence of a melt or fluid phase. Here, we propose that these results resolve a long-standing debate of the perovskite melting curve and explain the order of magnitude increase in viscosity from upper to lower mantle.« less

  11. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals.

    PubMed

    Naef, Rudolf; Acree, William E

    2017-06-25

    The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit ( Q ²) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ( N = 3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ( N = 1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ( N = 373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ( N = 2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ( N = 2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R ² of 0.6066.

  12. Production, purification and molecular weight determination of the haemolysin of Treponema hyodysenteriae.

    PubMed

    Kent, K A; Lemcke, R M; Lysons, R J

    1988-11-01

    The production of haemolysin from Treponema hyodysenteriae was increased by an improved culture method and by repeated incubation of spirochaetes suspended in a buffer containing RNA-core. Ion exchange chromatography on DEAE cellulose followed by gel filtration on Sephadex G100 yielded purified haemolysin free from extraneous protein, as judged by silver-stained polyacrylamide gels. The mol. wt of the purified haemolysin, determined by gel filtration was 19,000, a value similar to that of streptolysin S, but much lower than that previously reported.

  13. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  14. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag

    NASA Astrophysics Data System (ADS)

    Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming

    2017-03-01

    CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.

  15. Optimization and modeling for the synthesis of sterol esters from deodorizer distillate by lipase-catalyzed esterification.

    PubMed

    Zhang, Xinyu; Yu, Jiang; Zeng, Aiwu

    2017-03-01

    In this paper, cotton seed oil deodorizer distillate (CSODD), was recovered to obtain fatty acid sterol ester (FASE), which is one of the biological activated substances added as human therapeutic to lower cholesterol. Esterification reactions were carried out using Candida rugosa lipase as a catalyst, and the conversion of phytosterol was optimized using response surface methodology. The highest conversion (90.8 ± 0.4%) was reached at 0.84 wt% enzyme load, 1:25 solvent/CSODD mass ratio, and 44.2 °C after 12 H reaction. A kinetic model based on the reaction rate equation was developed to describe the reaction process. The activation energy of the reaction was calculated to be 56.9 kJ/mol and the derived kinetic parameters provided indispensable basics for further study. The optimization and kinetic research of synthesizing FASE from deodorizer distillate provided necessary information for the industrial applications in the near future. Experimental results showed that the proposed process is a promising alternative to recycle sterol esters from vegetable oil deodorizer distillates in a mild, efficient, and environmental friendly method. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance.

    PubMed

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-12-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl 3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  17. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  18. Association Mechanisms of Unsaturated C2 Hydrocarbons with Their Cations: Acetylene and Ethylene

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2013-01-01

    The ion-molecule association mechanism of acetylene and ethylene with their cations is investigated by ab initio quantum chemical methods to understand the structures, association energies, and the vibrational and electronic spectra of the products. Stable puckered cyclic isomers are found as the result of first forming less stable linear and bridge isomers. The puckered cyclic complexes are calculated to be strongly bound, by 87, 35 and 56 kcal/mol for acetylene-acetylene cation, ethylene-ethylene cation and acetylene-ethylene cation, respectively. These stable complexes may be intermediates that participate in further association reactions. There are no association barriers, and no significant inter-conversion barriers, so the initial linear and bridge encounter complexes are unlikely to be observable. However, the energy gap between the bridged and cyclic puckered isomers greatly differs from complex to complex: it is 44 kcal/mol in C4H4 +, but only 6 kcal/mol in C4H8 +. The accurate CCSD(T) calculations summarized above are also compared against less computationally expensive MP2 and density functional theory (DFT) calculations for structures, relative energies, and vibrational spectra. Calculated vibrational spectra are compared against available experiments for cyclobutadiene cation. Electronic spectra are also calculated using time-dependent DFT.

  19. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    PubMed

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Optical, structural and thermal properties of bismuth nitrate doped polycarbonate composite

    NASA Astrophysics Data System (ADS)

    Mirji, Rajeshwari; Lobo, Blaise

    2018-04-01

    Bismuth nitrate (Bi(NO3)3) doped polycarbonate (PC) films were prepared by solution casting method, in the doping range varying from 0.1 wt% to 5 wt %. The prepared samples were characterized using UV-Visible spectroscopy, X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). Optical band gap was calculated by analyzing the UV-Visible spectra of pure as well as doped PC. Optical band gap is found to decrease from 4.38 eV to 4.33 eV as the Bi(NO3)3 content within PC increases. XRD patterns showed an increase in the degree of crystallinity of Bi(NO3)3 doped PC, especially at 3.5 wt% and 5 wt%. DSC study showed an increase in the degradation temperature, as the doping level is increased from 0 wt% up to 0.3 wt%. A decrease in Tg is observed as the doping level of these samples increases from 0 wt% up to 5 wt%.

  1. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.

    PubMed

    Chetty, Sarentha; Bhakat, Soumendranath; Martin, Alberto J M; Soliman, Mahmoud E S

    2016-01-01

    The PR20 HIV-1 protease, a variant with 20 mutations, exhibits high levels of multi-drug resistance; however, to date, there has been no report detailing the impact of these 20 mutations on the conformational and drug binding landscape at a molecular level. In this report, we demonstrate the first account of a comprehensive study designed to elaborate on the impact of these mutations on the dynamic features as well as drug binding and resistance profile, using extensive molecular dynamics analyses. Comparative MD simulations for the wild-type and PR20 HIV proteases, starting from bound and unbound conformations in each case, were performed. Results showed that the apo conformation of the PR20 variant of the HIV protease displayed a tendency to remain in the open conformation for a longer period of time when compared to the wild type. This led to a phenomena in which the inhibitor seated at the active site of PR20 tends to diffuse away from the binding site leading to a significant change in inhibitor-protein association. Calculating the per-residue fluctuation (RMSF) and radius of gyration, further validated these findings. MM/GBSA showed that the occurrence of 20 mutations led to a drop in the calculated binding free energies (ΔGbind) by ~25.17 kcal/mol and ~5 kcal/mol for p2-NC, a natural peptide substrate, and darunavir, respectively, when compared to wild type. Furthermore, the residue interaction network showed a diminished inter-residue hydrogen bond network and changes in inter-residue connections as a result of these mutations. The increased conformational flexibility in PR20 as a result of loss of intra- and inter-molecular hydrogen bond interactions and other prominent binding forces led to a loss of protease grip on ligand. It is interesting to note that the difference in conformational flexibility between PR20 and WT conformations was much higher in the case of substrate-bound conformation as compared to DRV. Thus, developing analogues of DRV by retaining its key pharmacophore features will be the way forward in the search for novel protease inhibitors against multi-drug resistant strains.

  2. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.

    PubMed

    Clegg, S L; Wexler, A S

    2011-04-21

    Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H(2)SO(4), HNO(3), HCl, Na(2)SO(4), NaNO(3), NaCl, (NH(4))(2)SO(4), NH(4)NO(3), and NH(4)Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg(-1), it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm(3) mol(-1) from 0 to 50 °C. Volume properties of aqueous NaHSO(4), NaOH, and NH(3) have also been evaluated, at 25 °C only. In part 2 of this work (ref 1 ) an ion interaction (Pitzer) model has been used to calculate apparent molar volumes of H(2)SO(4) in 0-3 mol kg(-1) aqueous solutions of the pure acid and to represent directly the effect of the HSO(4)(-) ↔ H(+) + SO(4)(2-) reaction. The results are incorporated into the treatment of aqueous H(2)SO(4) density described here. Densities and apparent molar volumes from -20 to 50 °C, and from 0 to 100 wt % of solute, are tabulated for the electrolytes listed in the title and have also been incorporated into the extended aerosol inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) together with densities of the solid salts and hydrates.

  3. A large-scale test of free-energy simulation estimates of protein-ligand binding affinities.

    PubMed

    Mikulskis, Paulius; Genheden, Samuel; Ryde, Ulf

    2014-10-27

    We have performed a large-scale test of alchemical perturbation calculations with the Bennett acceptance-ratio (BAR) approach to estimate relative affinities for the binding of 107 ligands to 10 different proteins. Employing 20-Å truncated spherical systems and only one intermediate state in the perturbations, we obtain an error of less than 4 kJ/mol for 54% of the studied relative affinities and a precision of 0.5 kJ/mol on average. However, only four of the proteins gave acceptable errors, correlations, and rankings. The results could be improved by using nine intermediate states in the simulations or including the entire protein in the simulations using periodic boundary conditions. However, 27 of the calculated affinities still gave errors of more than 4 kJ/mol, and for three of the proteins the results were not satisfactory. This shows that the performance of BAR calculations depends on the target protein and that several transformations gave poor results owing to limitations in the molecular-mechanics force field or the restricted sampling possible within a reasonable simulation time. Still, the BAR results are better than docking calculations for most of the proteins.

  4. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by paracetamol, acetanilide, and phenacetin.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Bauer-Brandl, Annette

    2006-10-01

    Temperature dependencies of saturated vapor pressure for the monoclinic modification of paracetamol (acetaminophen), acetanilide, and phenacetin (acetophenetidin) were measured and thermodynamic functions of sublimation calculated (paracetamol: DeltaGsub298=60.0 kJ/mol; DeltaHsub298=117.9+/-0.7 kJ/mol; DeltaSsub298=190+/-2 J/mol.K; acetanilide: DeltaGsub298=40.5 kJ/mol; DeltaHsub298=99.8+/-0.8 kJ/mol; DeltaSsub298=197+/-2 J/mol.K; phenacetin: DeltaGsub298=52.3 kJ/mol; DeltaHsub298=121.8+/-0.7 kJ/mol; DeltaSsub298=226+/-2 J/mol.K). Analysis of packing energies based on geometry optimization of molecules in the crystal lattices using diffraction data and the program Dmol3 was carried out. Parameters analyzed were: (a) energetic contribution of van der Waals forces and hydrogen bonding to the total packing energy; (b) contributions of fragments of the molecules to the packing energy. The fraction of hydrogen bond energy in the packing energy increases as: phenacetin (17.5%)

  5. H 2 Adsorbed Site-to-Site Electronic Delocalization within IRMOF-1: Understanding Non-Negligible Interactions at High Pressure

    DOE PAGES

    Wu, Jian; Kucukkal, Mustafa U.; Clark, Aurora E.

    2016-07-15

    Isoreticular metal organic frameworks (IRMOFs) have shown high uptake capabilities for storage of H 2 (11.5 wt % at 77 K and 170 bar). A significant literature has employed fragment models and a single adsorbed H 2 to identify adsorption sites within IRMOFs, as well as the necessary adsorbate–adsorbent interactions needed to reach sufficient adsorption enthalpy for practical usage, however at high pressures it remains to be seen if H 2···H 2 intermolecular interactions may influence the energetics. This study focuses upon IRMOF-1 (also known as MOF-5), and examines the individual H 2 stabilization energies at different sites using Möller–Plessetmore » perturbation theory and density functional theory alongside chemical models that consist of isolated fragment models and a cubic super cell cluster consisting of both the face- and edge-cube’s of IRMOF-1. Optimization of twenty stable configurations of singly adsorbed H 2 in the super-cell cluster is observed to be essential to obtain energy ordering of the five primary sites consistent with experiment and prior benchmark calculations (α >> β > γ > δ ≈ ε). To examine site-to-site interactions that may occur in the high-pressure regime, 64 co-adsorbed H2 within a super-cell cluster have been studied (a theoretical maximum of all adsorption sites, 14 wt %). There, delocalization and/or charge transfer of electrons is observed from the σ orbitals of the H 2 bound at the γ positions into the σ* orbitals of H 2 bound at the α sites leads to stabilization of the interaction of H 2 at the γ, by 1.4 kJ/mol, respectively (using M06-2X/LANL2DZ). Furthermore, this effect has been confirmed to be charge transfer, and not a manifestation of enhanced dispersion at high loading, through natural bond order (NBO) analysis and by comparisons of the square of off-diagonal NBO Fock matrix elements for both density functionals that account for dispersion interactions and Hartree–Fock calculations that ignore dispersion.« less

  6. Preparation of a low-cost and eco-friendly superabsorbent composite based on wheat bran and laterite for potential application in Chinese herbal medicine growth.

    PubMed

    Gao, Jiande; Liu, Jin; Peng, Hui; Wang, Yaya; Cheng, Sha; Lei, Ziqiang

    2018-05-01

    A low-cost and eco-friendly superabsorbent composite is prepared through the free-radical graft co-polymerization of wheat bran (WB), acrylic acid (AA) and laterite (LA) in an aqueous solution. Elemental map, scanning electron microscopy and Fourier transform infrared spectra revealed that the LA evenly distributed in the superabsorbent composite and wheat bran-g-poly(acrylic acid)/laterite (WB-g-PAA/LA) formed successfully. Thermogravimetric analysis confirmed that the WB-g-PAA/LA had high thermal stability. Furthermore, the properties of the WB-g-PAA/LA, such as swelling in saline solutions and degradation, are also assessed. The final WB-g-PAA/LA (5 wt%) superabsorbent composite attained an optimum water absorbency of 1425 g g -1 in distilled water and 72 g g -1 in 0.9 wt% NaCl solution. The water absorbency of WB-g-PAA/LA (10 wt%) is even greater than that of the WB-g-PAA. Moreover, the water-retention capacity of WB-g-PAA/LA (5 wt%) is high, and the water-retention process followed a zero-order reaction. The reaction rate constant is 8.2428 × 10 5 exp(- E a /RT ) and the apparent activation energy ( E a ) is 35.11 kJ mol -1 . Furthermore, WB-g-PAA/LA (5 wt%) may regulate the release of urea, indicating that the superabsorbent composite could provide a promising application as a urea fertilizer carrier. Additionally, it increased the germination and growth rates of Glycyrrhiza uralensis Fisch, suggesting it could influence the growth of Chinese herbal medicine.

  7. Characterization of the functional role of Asp141, Asp194, and Asp464 residues in the Mn2+-L-malate binding of pigeon liver malic enzyme.

    PubMed

    Chou, W Y; Chang, H P; Huang, C H; Kuo, C C; Tong, L; Chang, G G

    2000-02-01

    Pigeon liver malic enzyme was inactivated and cleaved at Asp141, Asp194, and Asp464 by the Cu2+-ascorbate system in acidic environment. Site-specific mutagenesis was performed at these putative metal-binding sites. Three point mutants, D141N, D194N, and D464N; three double mutants, D(141,194)N, D(194,464)N, and D(141,464)N; and a triple mutant, D(141,194,464)N; as well as the wild-type malic enzyme (WT) were successfully cloned and expressed in Escherichia coli cells. All recombinant enzymes, except the triple mutant, were purified to apparent homogeneity by successive Q-Sepharose and adenosine-2',5'-bisphosphate-agarose columns. The mutants showed similar apparent Km,NADP values to that of the WT. The Km,Mal value was increased in the D141N and D194N mutants. The Km,Mn value, on the other hand, was increased only in the D141N mutant by 14-fold, corresponding to approximately 1.6 kcal/mol for the Asp141-Mn2+ binding energy. Substrate inhibition by L-malate was only observed in WT, D464N, and D(141,464)N. Initial velocity experiments were performed to derive the various kinetic parameters. The possible interactions between Asp141, Asp194, and Asp464 were analyzed by the double-mutation cycles and triple-mutation box. There are synergistic weakening interactions between Asp141 and Asp194 in the metal binding that impel the D(141,194)N double mutant to an overall specificity constant [k(cat)/(Kd,Mn Km,Mal Km,NADP)] at least four orders of magnitude smaller than the WT value. This difference corresponds to an increase of 6.38 kcal/mol energy barrier for the catalytic efficiency. Mutation at Asp464, on the other hand, has partial additivity on the mutations at Asp141 and Asp194. The overall specificity constants for the double mutants D(194,464)N and D(141,464)N or the triple mutant D(141,194,464)N were decreased by only 10- to 100-fold compared to the WT. These results strongly suggest the involvement of Asp141 in the Mn2+-L-malate binding for the pigeon liver malic enzyme. The Asp194 and Asp464, which may be oxidized by nonspecific binding of Cu2+, are involved in the Mn2+-L-malate binding or catalysis indirectly by modulating the binding affinity of Asp141 with the Mn2+.

  8. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  9. Simulation of Zr content in TiZrCuNi brazing filler metal for Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yue, Xishan; Xie, Zonghong; Jing, Yongjuan

    2017-07-01

    To optimize the Zr content in Ti-based filler metal, the covalent electron on the nearest atoms bond in unit cell ( n A u-v ) with Ti-based BCC structure was calculated, in which the brazing temperature was considered due to its influence on the lattice parameter. Based on EET theory (The Empirical Electron Theory for solid and molecules), n_{{A}}^{{u - v}} represents the strength of the unit cell with defined element composition and structure, which reflects the effect from solid solution strengthening on the strength of the unit cell. For Ti-Zr-15Cu-10Ni wt% filler metal, it kept constant as 0.3476 with Zr as 37.5˜45 wt% and decreased to 0.333 with Zr decreasing from 37.5 to 25 wt%. Finally, it increased up to 0.3406 with Zr as 2˜10 wt%. Thus, Ti-based filler metal with Zr content being 2˜10 wt% is suggested based on the simulation results. Moreover, the calculated covalent electron of n A u-v showed good agreement with the hardness of the joint by filler 37.5Zr and 10Zr. The composition of Ti-10Zr-15Cu-10Ni wt% was verified in this study with higher tensile strength of the brazing joint and uniform microstructure of the interface.

  10. Ionic molal conductivities, activity coefficients, and dissociation constants of HAsO42− and H2AsO4− from 5 to 90°C and ionic strengths from 0.001 up to 3 mol kg−1 and applications in natural systems

    USGS Publications Warehouse

    Zhu, Xiangyu; Nordstrom, D. Kirk; McCleskey, R. Blaine; Wang, Rucheng

    2016-01-01

    Arsenic is known to be one of the most toxic inorganic elements, causing worldwide environmental contamination. However, many fundamental properties related to aqueous arsenic species are not well known which will inhibit our ability to understand the geochemical behavior of arsenic (e.g. speciation, transport, and solubility). Here, the electrical conductivity of Na2HAsO4 solutions has been measured over the concentration range of 0.001–1 mol kg−1 and the temperature range of 5–90°C. Ionic strength and temperature-dependent equations were derived for the molal conductivity of HAsO42−and H2AsO4− aqueous ions. Combined with speciation calculations and the approach used by McCleskey et al. (2012b), these equations can be used to calculate the electrical conductivities of arsenic-rich waters having a large range of effective ionic strengths (0.001–3 mol kg−1) and temperatures (5–90°C). Individual ion activity coefficients for HAsO42− and H2AsO4− in the form of the Hückel equation were also derived using the mean salt method and the mean activity coefficients of K2HAsO4 (0.001–1 mol kg−1) and KH2AsO4 (0.001–1.3 mol kg−1). A check on these activity coefficients was made by calculating mean activity coefficients for Na2HAsO4 and NaH2AsO4 solutions and comparing them to measured values. At the same time Na-arsenate complexes were evaluated. The NaH2AsO40 ion pair is negligible in NaH2AsO4 solutions up to 1.3 mol kg−1. The NaHAsO4− ion pair is important in NaHAsO4 solutions >0.1 mol kg−1 and the formation constant of 100.69 was confirmed. The enthalpy, entropy, free energy and heat capacity for the second and third arsenic acid dissociation reactions were calculated from pH measurements. These properties have been incorporated into a widely used geochemical calculation code WATEQ4F and applied to natural arsenic waters. For arsenic spiked water samples from Yellowstone National Park, the mean difference between the calculated and measured conductivities have been improved from −18% to −1.0% with a standard deviation of 2.4% and the mean charge balances have been improved from 28% to 0.6% with a standard deviation of 1.5%.

  11. A new ab initio potential energy surface of LiClH (1A') system and quantum dynamics calculation for Li + HCl (v = 0, j = 0-2) → LiCl + H reaction

    NASA Astrophysics Data System (ADS)

    Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying

    2017-04-01

    A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.

  12. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  13. Solid-State Gas Adsorption Studies with Discrete Palladium(II) [Pd2 (L)4 ]4+ Cages.

    PubMed

    Preston, Dan; White, Keith F; Lewis, James E M; Vasdev, Roan A S; Abrahams, Brendan F; Crowley, James D

    2017-08-04

    The need for effective CO 2 capture systems remains high, and due to their tunability, metallosupramolecular architectures are an attractive option for gas sorption. While the use of extended metal organic frameworks for gas adsorption has been extensively explored, the exploitation of discrete metallocage architectures to bind gases remains in its infancy. Herein the solid state gas adsorption properties of a series of [Pd 2 (L) 4 ] 4+ lantern shaped coordination cages (L = variants of 2,6-bis(pyridin-3-ylethynyl)pyridine), which had solvent accessible internal cavities suitable for gas binding, have been investigated. The cages showed little interaction with dinitrogen gas but were able to take up CO 2 . The best performing cage reversibly sorbed 1.4 mol CO 2 per mol cage at 298 K, and 2.3 mol CO 2 per mol cage at 258 K (1 bar). The enthalpy of binding was calculated to be 25-35 kJ mol -1 , across the number of equivalents bound, while DFT calculations on the CO 2 binding in the cage gave ΔE for the cage-CO 2 interaction of 23-28 kJ mol -1 , across the same range. DFT modelling suggested that the binding mode is a hydrogen bond between the carbonyl oxygen of CO 2 and the internally directed hydrogen atoms of the cage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol.

    PubMed

    Simões, Ricardo G; Agapito, Filipe; Diogo, Hermínio P; da Piedade, Manuel E Minas

    2014-11-20

    Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

  15. Critical Test of Some Computational Chemistry Methods for Prediction of Gas-Phase Acidities and Basicities.

    PubMed

    Toomsalu, Eve; Koppel, Ilmar A; Burk, Peeter

    2013-09-10

    Gas-phase acidities and basicities were calculated for 64 neutral bases (covering the scale from 139.9 kcal/mol to 251.9 kcal/mol) and 53 neutral acids (covering the scale from 299.5 kcal/mol to 411.7 kcal/mol). The following methods were used: AM1, PM3, PM6, PDDG, G2, G2MP2, G3, G3MP2, G4, G4MP2, CBS-QB3, B1B95, B2PLYP, B2PLYPD, B3LYP, B3PW91, B97D, B98, BLYP, BMK, BP86, CAM-B3LYP, HSEh1PBE, M06, M062X, M06HF, M06L, mPW2PLYP, mPW2PLYPD, O3LYP, OLYP, PBE1PBE, PBEPBE, tHCTHhyb, TPSSh, VSXC, X3LYP. The addition of the Grimmes empirical dispersion correction (D) to B2PLYP and mPW2PLYP was evaluated, and it was found that adding this correction gave more-accurate results when considering acidities. Calculations with B3LYP, B97D, BLYP, B2PLYPD, and PBE1PBE methods were carried out with five basis sets (6-311G**, 6-311+G**, TZVP, cc-pVTZ, and aug-cc-pVTZ) to evaluate the effect of basis sets on the accuracy of calculations. It was found that the best basis sets when considering accuracy of results and needed time were 6-311+G** and TZVP. Among semiempirical methods AM1 had the best ability to reproduce experimental acidities and basicities (the mean absolute error (mae) was 7.3 kcal/mol). Among DFT methods the best method considering accuracy, robustness, and computation time was PBE1PBE/6-311+G** (mae = 2.7 kcal/mol). Four Gaussian-type methods (G2, G2MP2, G4, and G4MP2) gave similar results to each other (mae = 2.3 kcal/mol). Gaussian-type methods are quite accurate, but their downside is the relatively long computational time.

  16. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E., E-mail: bruns@iqm.unicamp.br

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching ofmore » the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone explain 145, 237, and 574 km mol{sup −1} of the H-bond stretching intensity enhancements for the water and HF dimers and their heterodimer compared with total increments of 149, 321, and 592 km mol{sup −1}, respectively.« less

  17. The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.

    2011-03-01

    Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth's outer core is undersaturated in oxygen with respect to plausible mantle FeO contents, which will result in either the depletion of FeO from the base of the mantle or cause the development of an outer core layer that is enriched in oxygen. The oxygen content of the more sulphur-rich Martian core would be in the range 2-4 wt.% if it is in equilibrium with the FeO-rich Martian mantle.

  18. THE FORM AND STRUCTURE OF KINETOPLAST DNA OF CRITHIDIA

    PubMed Central

    Renger, Hartmut C.; Wolstenholme, David R.

    1972-01-01

    Cesium chloride centrifugation of each of the DNAs extracted from eight strains of Crithidia revealed a main band at ρ = 1.717 g/cm3 and a satellite band varying from ρ = 1.701 to 1.705 g/cm3 for the different strains By electron microscopy each DNA was shown to include circular molecules, 0.69–0.80 µ in mean contour length, and large, topologically two-dimensional masses of DNA in which the molecules appeared in the form of rosettes. DNA isolated from kinetoplast fractions of Crithidia acanthocephali was shown to consist of light satellite DNA and to be mainly in the form of large masses, 0.8 µ (mol wt = 1.54 x 106 daltons) circular molecules, and a few long, linear molecules. The results of experiments involving ultracentrifugation, heating, and quenching, sonication, and endodeoxyribonuclease digestion, combined with electron microscopy, are consistent with the following hypothesis. The large DNA masses are associations of 0.8 µ circles which are mainly covalently closed. The circles are held together in groups (the rosettes) of up to 46 by the topological interlocking of each circle with many other circles in the group. A group of circles is attached to an adjacent group by one or more circles, each interlocking with many circles of both groups. Each of the associations comprises, on the average, about 27,000 circles (total mol wt ≃ 41 x 109 daltons). A model is proposed for the in situ arrangement of the associations which takes into consideration their form and structure, and appearance in thin sections PMID:5040863

  19. A serum factor promotes collagenase synthesis by an osteoblastic cell line

    NASA Technical Reports Server (NTRS)

    Puccinelli, J. M.; Omura, T. H.; Strege, D. W.; Jeffrey, J. J.; Partridge, N. C.

    1991-01-01

    Regulation of the synthesis of collagenase was investigated in the osteoblastic cell line, UMR 106-01. The cells were stained by the avidin-biotin-complex technique for the presence of the enzyme. By this method, it was possible to identify cells producing collagenase. Synthesis, but not secretion, was found to be constitutive in these cells with the enzyme located intracellularly in cytoplasmic vesicles and the Golgi apparatus. The amount of collagenase contained within UMR cells and the number of cells synthesizing the enzyme were proportional to the concentration of fetal bovine serum in the incubating medium. When serum was withdrawn from the osteosarcoma cells, the content of collagenase decreased with time and the enzyme became undetectable by 48 h of serum depletion. The decrease in collagenase content could be completely reversed by resupplying serum to the cells. The collagenase promoting activity of serum could not be eliminated by adsorption on activated charcoal but was retained by a dialysis membrane with a 12,000 mol wt cutoff. A range of bone-seeking hormones or agents known to affect collagenase secretion was added to the medium in an attempt to mimic the effect of serum on collagenase accumulation. None of these agonists, including parathyroid hormone, could reproduce the effect of serum on these cells, although parathyroid hormone could act as a collagenase secretagogue in the presence or absence of serum. It is concluded that fetal bovine serum contains a yet unidentified factor or factors greater than 12,000 mol wt responsible for the continued synthesis of collagenase by UMR 106-01 cells.

  20. [Aliskiren inhibits proliferation of cardiac fibroblasts in AGT-REN double transgenic hypertensive mice in vitro].

    PubMed

    Wang, Li-Ping; Fan, Su-Jing; Li, Shu-Min; Wang, Xiao-Jun; Sun, Na

    2016-10-25

    The purpose of the present study is to explore the effect of aliskiren on the proliferation of cardiac fibroblasts (CFs) in AGT-REN double transgenic hypertensive (dTH) mice. The cultured CFs from AGT-REN dTH mice were divided into AGT-REN group (dTH) and aliskiren group (ALIS). Cultured CFs from C57B6 mice were served as control (WT). The effect of different concentration of aliskiren (1 × 10 -6 , 1 × 10 -7 , 1 × 10 -8 , 1 × 10 -9 mol/L) on CFs proliferation was determined by MTT assay. After treatment with 1 × 10 -7 mol/L aliskiren for 24 h, α-SMA, collagen I, III and NADPH oxidase (NOX) protein expression in CFs of AGT-REN dTH mice were detected by Western blot. The collagen synthesis in CFs was assessed by hydroxyproline kit. The expression of ROS was determined by DHE. Results showed that the blood pressure and plasma Ang II levels were significantly increased and CFs proliferation was significantly increased as well in AGT-REN dTH mice compared with WT group. However, aliskiren intervention decreased CFs proliferation, myofibroblast transformation, as well as the collagen I and III synthesis in CFs of AGT-REN dTH mice. Meanwhile, aliskiren inhibited ROS content and NOX2/NOX4 protein expression in CFs of AGT-REN dTH mice. These results suggest that aliskiren decreases the cell proliferation, myofibroblast transformation and collagen production in CFs of AGT-REN dTH mice, which might be through inhibition of oxidative stress response.

  1. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells.

    PubMed

    Schamel, Martha; Bernhardt, Anne; Quade, Mandy; Würkner, Claudia; Gbureck, Uwe; Moseke, Claus; Gelinsky, Michael; Lode, Anja

    2017-04-01

    The application of biologically active metal ions to stimulate cellular reactions is a promising strategy to accelerate bone defect healing. Brushite-forming calcium phosphate cements were modified with low doses of Cu 2+ , Co 2+ and Cr 3+ . The modified cements released the metal ions in vitro in concentrations which were shown to be non-toxic for cells. The release kinetics correlated with the solubility of the respective metal phosphates: 17-45 wt.-% of Co 2+ and Cu 2+ , but <1 wt.-% of Cr 3+ were released within 28days. Moreover, metal ion doping led to alterations in the exchange of calcium and phosphate ions with cell culture medium. In case of cements modified with 50mmol Cr 3+ /mol β-tricalcium phosphate (β-TCP), XRD and SEM analyses revealed a significant amount of monetite and a changed morphology of the cement matrix. Cell culture experiments with human mesenchymal stromal cells indicated that the observed cell response is not only influenced by the released metal ions but also by changed cement properties. A positive effect of modifications with 50mmol Cr 3+ or 10mmol Cu 2+ per mol β-TCP on cell behaviour was observed in indirect and direct culture. Modification with Co 2+ resulted in a clear suppression of cell proliferation and osteogenic differentiation. In conclusion, metal ion doping of the cement influences cellular activities in addition to the effect of released metal ions by changing properties of the ceramic matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Salamatinia, Babak; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi

    2015-11-05

    The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Materials technology for coal-conversion processes. Seventeenth quarterly report, January-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingson, W. A.

    1979-01-01

    Studies of slag attack on refractories were continued, utilizing conditions relevant to MHD applications. Addition of 10 wt % K/sub 2/O seed to the slag did not increase its corrosive effect on the refractories tested. A hot gas-stream cleanup erosion-monitoring system using an ANL-developed nondestructive ultrasonic system was installed at the Morgantown Energy Technology Center (METC) during this period and was 75% completed. Characteristic-slope values obtained from broadband and resonant-band acoustic-emission transducers during rapid heating of a 95% Al/sub 2/O/sub 3/ refractory panel are consistent with theory. Corrosion information on type and thickness of corrosion-product layers was obtained on Incoloymore » 800, 310 stainless steel, Inconel 671 and 871 and 982/sup 0/C. Fluid-bed corrosion studies involving sulfation accelerators have shown that addition of 0.3 mol % CaCl/sub 2/ has no significant effect on corrosion behavior of the alloys studied. However, 0.5 mol % NaCl or 1.9 mol % Na/sub 2/CO/sub 3/ increases the corrosion rates of most materials. Failure analyses were performed on components from the slagging gasifier and liquefaction unit at the Grand Forks Energy Technology Center, and a ball valve from the METC Valve Dynamic Test Unit.« less

  5. Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Zhang; Chen, Li-Xin; Wang, Xin-Hua; Li, Shou-Quan; Hang, Zhou-Ming; Chen, Chang-Pin; Wang, Qi-Dong

    2007-12-01

    The NaAlH4 complex is attracting great attention for its potential applications in hydrogen-powered fuel-cell vehicles due to its high hydrogen storage capacity and suitable thermodynamic properties. However, its practicable hydrogen storage capacity presently obtained is less than the theoretical capacity (5.6 wt.%). To improve the hydrogen capacity, we chose metallic Ti or/and Zr powder as catalyst dopants, and prepared the sodium aluminum hydride by hydrogenation of ball-milled NaH/Al mixture containing 10 mol% dopants with different proportions of Ti and Zr, and then investigated the effects on their hydrogen storage (dehydriding) properties. The results showed that different catalyst dopants affected the dehydriding properties greatly. The catalysis of metal Ti as a catalyst dopant alone on dehydriding kinetics for the entire dehydrogenation process of ball-milled (NaH/Al) composite was higher than that of adopting Zr alone. The synergistic catalytic effect of Ti and Zr together as co-dopants on the dehydrogenation process of (NaH/Al) composite was higher than that using only Ti or Zr as dopant individually. The composite doped with proper proportion of Ti and Zr together (8 mol% Ti+ 2 mol% Zr) as co-dopants exhibited the highest dehydriding kinetic property and desorption capacity.

  6. Computational Analysis of a Zn-Bound Tris(imidazolyl) Calix[6]arene Aqua Complex: Toward Incorporating Second-Coordination Sphere Effects into Carbonic Anhydrase Biomimetics.

    PubMed

    Koziol, Lucas; Essiz, Sebnem G; Wong, Sergio E; Lau, Edmond Y; Valdez, Carlos A; Satcher, Joe H; Aines, Roger D; Lightstone, Felice C

    2013-03-12

    Molecular dynamics simulations and quantum-mechanical calculations were performed to characterize a supramolecular tris(imidazolyl) calix[6]arene Zn(2+) aqua complex, as a biomimetic model for the catalyzed hydration of carbon dioxide to bicarbonate, H2O + CO2 → H(+) + HCO3(-). On the basis of potential-of-mean-force (PMF) calculations, stable conformations had distorted 3-fold symmetry and supported either one or zero encapsulated water molecules. The conformation with an encapsulated water molecule is calculated to be lower in free energy than the conformation with an empty cavity (ΔG = 1.2 kcal/mol) and is the calculated free-energy minimum in solution. CO2 molecule partitioning into the cavity is shown to be very facile, proceeding with a barrier of 1.6 kcal/mol from a weak encounter complex which stabilizes the species by about 1.0 kcal/mol. The stabilization energy of CO2 is calculated to be larger than that of H2O (ΔΔG = 1.4 kcal/mol), suggesting that the complex will preferentially encapsulate CO2 in solution. In contrast, the PMF for a bicarbonate anion entering the cavity is calculated to be repulsive in all nonbonding regions of the cavity, due to the diameter of the calix[6]arene walls. Geometry optimization of the Zn-bound hydroxide complex with an encapsulated CO2 molecule showed that multiple noncovalent interactions direct the reactants into optimal position for nucleophilic addition to occur. The calixarene complex is a structural mimic of the hydrophilic/hydrophobic divide in the enzyme, providing a functional effect for CO2 addition in the catalytic cycle. The results show that Zn-binding calix[6]arene scaffolds can be potential synthetic biomimetics for CO2 hydration catalysis, both in terms of preferentially encapsulating CO2 from solution and by spatially fixing the reactive species inside the cavity.

  7. Exhaustive rotamer search of the 4C1 conformation of α- and β-d-galactopyranose.

    PubMed

    Del Vigo, Enrique A; Marino, Carla; Stortz, Carlos A

    2017-08-07

    An exhaustive search approach was used to establish all possible rotamers of α- and β-d-galactopyranose using DFT at the B3LYP/6-311+G** and M06-2X/6-311+G** levels, both in vacuum calculations, and including two variants of continuum solvent models as PCM and SMD to simulate water solutions. Free energies were also calculated. MM3 was used as the starting point for calculations, using a dielectric constant of 1.5 for vacuum modeling, and 80 for water solution modeling. For the vacuum calculations, out of the theoretically possible 729 rotamers, only about a hundred rendered stable minima, highly stabilized by hydrogen bonding and scattered in a ca. 14 kcal/mol span. The rotamer with a clockwise arrangement of hydrogen bonds was the most stable for the α-anomer, whereas that with a counterclockwise arrangement was the most stable for the β-anomer. Free energy calculations, and especially solvent modeling, tend to flatten the potential energy surface. With PCM, the total range of energies was reduced to 9-10 kcal/mol (α-anomer) or 7-8 kcal/mol (β-anomer). These figures fall to 4.5-6 kcal/mol using SMD. At the same time, the total number of possible rotamers increases dramatically to about 300 with PCM, and to 400 with SMD. Both models show a divergent behavior: PCM tends to underestimate the effect of solvent, thus rendering as the most stable many common rotamers with vacuum calculations, and giving underestimations of populations of β-anomers and gt rotamers in the equilibrium. On the other hand, SMD gives a better estimation of the solvent effect, yielding correct populations of gt rotamers, but more β-anomers than expected by the experimental values. The best agreement is observed when the functional M06-2X is combined with SMD. Both DFT models show minimal geometrical differences between the optimized conformers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies.

    PubMed

    Li, Hong Zhi; Hu, Li Hong; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2012-01-01

    A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by combining density functional theory (DFT) and artificial intelligence/machine learning methods, which consist of self-organizing feature mapping neural networks (SOFMNN) and radial basis function neural networks (RBFNN). A descriptor refinement step including SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN clustering analysis is applied to classify descriptors, and the representative descriptors in the groups are selected as neural network inputs according to their closeness to the experimental values through correlation analysis. Redundant descriptors and intuitively biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol(-1)) is achieved for all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are reduced from 4.45 and 10.53 kcal·mol(-1) to 0.15 and 0.18 kcal·mol(-1), respectively. The improved results for the minimal basis set STO-3G reach the same accuracy as those of 6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be used for minimizing the computational cost and to expand the applications to large molecular systems. Further extrapolation tests are performed with six molecules (two containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was within 1 kcal·mol(-1). This study shows that DFT-SOFM-RBFNN is an efficient and highly accurate method for Y-NO homolysis BDE. The method may be used as a tool to design new NO carrier molecules.

  9. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  10. The thermal behaviour of the co-combustion between paper sludge and rice straw.

    PubMed

    Xie, Zeqiong; Ma, Xiaoqian

    2013-10-01

    The thermal characteristics and kinetics of paper sludge, rice straw and their blends were evaluated under combustion condition. The paper sludge was blended with rice straw in the range of 10-95 wt.% to investigate their co-combustion behaviour. There was significant interaction between rice straw and paper sludge in high temperature. The combustion of paper sludge and rice straw could be divided into two stages. The value of the activation energy obtained by the Friedman and the Ozawa-Flynn-Wall (OFW) first decreased and then increased with the conversion degree rising. The average activation energy did not monotonically decrease with increasing the percentage of rice straw in the blends. When the percentage of rice straw in the blends was 80%, the value of the average activation energy was the smallest, which was 139 kJ/mol obtained by OFW and 132 kJ/mol obtained by Friedman, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Modeling for CO poisoning of a fuel cell anode

    NASA Technical Reports Server (NTRS)

    Dhar, H. P.; Kush, A. K.; Patel, D. N.; Christner, L. G.

    1986-01-01

    Poisoning losses in a half-cell in the 110-190 C temperature range have been measured in 100 wt pct H3PO4 for various mixtures of H2, CO, and CO2 gases in order to investigate the polarization loss due to poisoning by CO of a porous fuel cell Pt anode. At a fixed current density, the poisoning loss was found to vary linearly with ln of the CO/H2 concentration ratio, although deviations from linearity were noted at lower temperatures and higher current densities for high CO/H2 concentration ratios. The surface coverages of CO were also found to vary linearly with ln of the CO/H2 concentration ratio. A general adsorption relationship is derived. Standard free energies for CO adsorption were found to vary from -14.5 to -12.1 kcal/mol in the 130-190 C temperature range. The standard entropy for CO adsorption was found to be -39 cal/mol per deg K.

  12. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.

    PubMed

    Dussan, K; Girisuta, B; Haverty, D; Leahy, J J; Hayes, M H B

    2013-12-01

    This study investigated the kinetics of acid hydrolysis of the cellulose and hemicellulose in Miscanthus to produce levulinic acid and furfural under mild temperature and high acid concentration. Experiments were carried out in an 8L-batch reactor with 9%-wt. biomass loading, acid concentrations between 0.10 and 0.53 M H2SO4, and at temperatures between 150 and 200°C. The concentrations of xylose, glucose, furfural, 5-hydroxymethylfurfural and levulinic acid were used in two mechanistic kinetic models for the prediction of the performance of ideal continuous reactors for the optimisation of levulinic acid and the concurrent production of furfural. A two-stage arrangement was found to maximise furfural in the first reactor (PFR - 185°C, 0.5M H2SO4, 27.3%-mol). A second stage leads to levulinic acid yields between 58% and 72%-mol at temperatures between 160 and 200°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  14. Thermodynamics of Pb17Li-bismuth interactions

    NASA Astrophysics Data System (ADS)

    Hubberstey, Peter; Sample, Tony

    1994-09-01

    Thermodynamic calculations of the PbBiLi ternary system have been completed to rationalise the formation of solid Li 3Bi on reaction of liquid Pb17Li with bismuth. At 723 K, the bismuth activity in equilibrium with liquid Pi17Li and solid Li 3Bi is calculated to be 9.50 × 10 -4; this can be correlated to a solubility of 2.09 × 10 -1 mol% Bi(2520 wppm). The corresponding bismuth activity in equilibrium with liquid Pb17Li and solid LiBi is 5.04 × 10 -2 (an extrapolated value as LiBi decomposes peritectically at 688 K). The minimum lithium content of PbLi alloys required to react with unit activity bismuth to form Li 3Bi at 723 K is calculated to be ˜ 1.8 mol% Li. The dominance of Li 3Bi in the PbBiLi system is attributed to its extreme stability as evidenced by both its high melting point (1418 K) and free energy of formation [ ΔGf0(Li 3Bi, c 723 K) = 212.8 kJ mol -1].

  15. Combining Trust and Behavioral Analysis to Detect Security Threats in Open Environments

    DTIC Science & Technology

    2010-11-01

    behavioral feature values. This would provide a baseline notional object trust and is formally defined as follows: TO(1)[0, 1] = ∑ 0,n:νbt wtP (S) (8...TO(2)[0, 1] = ∑ wtP (S) · identity(O,P ) (9) 28- 12 RTO-MP-IST-091 Combining Trust and Behavioral Analysis to Detect Security Threats in Open...respectively. The wtP weight function determines the significance of a particular behavioral feature in the final trust calculation. Note that the weight

  16. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    NASA Astrophysics Data System (ADS)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  17. Studies on the thermal behavior of CS:LiTFSI:[Amim] Cl polymer electrolytes exerted by different [Amim] Cl content

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Shanti, R.; Morris, Ezra

    2012-01-01

    The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10 -2 S cm -1 at 40 °C with the activation energy of 4.86 kJ mol -1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li + and imidazolium, [Amim] +) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.

  18. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol-1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  19. Pore structure modified diatomite-supported PEG composites for thermal energy storage.

    PubMed

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol(-1), which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  20. Synthesis and Characterization of Poly (styrene-co-butyl acrylate)/Silica Aerogel Nanocomposites by in situ AGET ATRP: Investigating Thermal Properties

    NASA Astrophysics Data System (ADS)

    Khezri, Khezrollah; Fazli, Yousef

    2017-10-01

    Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.

  1. Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics.

    PubMed

    Zabaniotou, A A; Kantarelis, E K; Theodoropoulos, D C

    2008-05-01

    Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).

  2. Positron annihilation study on ZnO-based scintillating glasses

    NASA Astrophysics Data System (ADS)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  3. Low cost estimation of the contribution of post-CCSD excitations to the total atomization energy using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Sánchez, H. R.; Pis Diez, R.

    2016-04-01

    Based on the Aλ diagnostic for multireference effects recently proposed [U.R. Fogueri, S. Kozuch, A. Karton, J.M. Martin, Theor. Chem. Acc. 132 (2013) 1], a simple method for improving total atomization energies and reaction energies calculated at the CCSD level of theory is proposed. The method requires a CCSD calculation and two additional density functional theory calculations for the molecule. Two sets containing 139 and 51 molecules are used as training and validation sets, respectively, for total atomization energies. An appreciable decrease in the mean absolute error from 7-10 kcal mol-1 for CCSD to about 2 kcal mol-1 for the present method is observed. The present method provides atomization energies and reaction energies that compare favorably with relatively recent scaled CCSD methods.

  4. Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.

    PubMed

    Huang, Ming-Ju; Watts, John D

    2010-09-23

    Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).

  5. Shock compression of Fe-FeS mixture up to 204 GPa

    NASA Astrophysics Data System (ADS)

    Huang, Haijun; Wu, Shijie; Hu, Xiaojun; Wang, Qingsong; Wang, Xiang; Fei, Yingwei

    2013-02-01

    AbstractUsing a two-stage light gas gun, we obtained new shock wave Hugoniot data for an iron-sulfur alloy (Fe-11.8wt%S) over the pressure range of 94-204 GPa. A least-squares fit to the Hugoniot data yields a linear relationship between shock velocity DS and particle velocity u, DS (km/s) =3.60(0.14) +1.57(0.05) u. The measured Hugoniot data for Fe-11.8wt%S agree well with the calculated results based on the thermodynamic parameters of Fe and FeS using the additive law. By comparing the calculated densities along the adiabatic core temperature with the PREM density profile, an iron core with 10 wt.% sulfur (S) provides the best solution for the composition of the Earth's outer core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19623394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19623394"><span>Carbon-hydrogen vs. carbon-halogen oxidative addition of chlorobenzene by a neutral iridium complex explored by DFT.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Hong; Hall, Michael B</p> <p>2009-08-14</p> <p>Density functional theory (DFT) is used to explore the competitive C-H and C-Cl oxidative additions (OA) of chlorobenzene to the neutral Ir(i) complex: (PNP)Ir(I) [PNP = bis(Z-2-(dimethylphosphino)vinyl)amino]. Consistent with experimental results, our calculation shows that C-H OA is kinetically favored with an activation free-energy barrier of DeltaG(double dagger) = 17.2 kcal mol(-1) that is significantly lower than that for the C-Cl activation at DeltaG(double dagger) = 24.2 kcal mol(-1). However, C-Cl OA is thermodynamically preferred and the C-Cl OA product is 22.6 kcal mol(-1) more stable than the most stable C-H OA product. The calculations also show that the lowest energy path for the conversion of the C-H OA product to the more stable C-Cl OA product is intramolecular through a "benzyne"-type intermediate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJQC..108.1533K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJQC..108.1533K"><span>MP2, DFT-D, and PCM study of the HMB-TCNE complex: Thermodynamics, electric properties, and solvent effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kysel, Ondrej; Budzák, Scaronimon; Medveď, Miroslav; Mach, Pavel</p> <p></p> <p>Geometry, thermodynamic, and electric properties of the pi-EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6-31G* and, partly, DFT-D/6-31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB-TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10-10 m and the corresponding BSSE corrected interaction energy is -51.3 kJ mol-1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2-TCNE and HMB-TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10-10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06-3.16 × 10-10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB-TCNE complex formation in gas phase are: DeltaH0 = -61.59 kJ mol-1, DeltaSc0 = -143 J mol-1 K-1, DeltaG0 = -18.97 kJ mol-1, and K = 2,100 dm3 mol-1. Experimental data, however, measured in CCl4 are significantly lower: DeltaH0 = -34 kJ mol-1, DeltaSc0 = -70.4 J mol-1 K-1, DeltaG0 = -13.01 kJ mol-1, and K = 190 dm3 mol-1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol-1 which is very close to our PCM value 6.5 kJ mol-1. MP2/6-31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6-31G* study supplemented by DFT-D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of pi-EDA complexes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970014890&hterms=zero+point+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dzero%2Bpoint%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970014890&hterms=zero+point+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dzero%2Bpoint%2Benergy"><span>A New Potential Energy Surface for N+O2: Is There an NOO Minimum?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walch, Stephen P.</p> <p>1995-01-01</p> <p>We report a new calculation of the N+02 potential energy surface using complete active space self-consistent field internally contracted configuration interaction with the Dunning correlation consistent basis sets. The peroxy isomer of N02 is found to be a very shallow minimum separated from NO+O by a barrier of only 0.3 kcal/mol (excluding zero-point effects). The entrance channel barrier height is estimated to be 8.6 kcal/mol for ICCI+Q calculations correlating all but the Ols and N1s electrons with a cc-p VQZ basis set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22327298','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22327298"><span>Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Dong-Hong; Wang, Lei; Xu, An-Wu</p> <p>2012-03-21</p> <p>Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability. This journal is © The Royal Society of Chemistry 2012</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1339458-solubility-pyromorphite-pb5-po4-its-experimentally-determined-thermodynamic-parameters','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1339458-solubility-pyromorphite-pb5-po4-its-experimentally-determined-thermodynamic-parameters"><span>Solubility of pyromorphite Pb 5(PO 4) 3Cl at 5–65°C and its experimentally determined thermodynamic parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Topolska, Justyna; Manecki, Maciej; Bajda, Tomasz; ...</p> <p>2016-03-19</p> <p>Here, the solubility of synthetic pyromorphite Pb 5(PO 4) 3Cl was determined in a series of dissolution experiments conducted at 5–65 °C and at pH = 2.0. The equilibrium was established within 4 months. The dissolution of pyromorphite was congruent at all the temperatures, and the measured solubility product log K sp,298 for the dissolution reaction: Pb 5(PO 4) 3Cl ⇌ 5Pb 2+ + 3PO 4 3- + Cl - was determined to be –79.6 ± 0.15. The equilibrium ion activity product of pyromorphite increased with temperature, indicating a positive enthalpy of the dissolution reaction in the temperature range frommore » 5 to 65 °C. The temperature dependence of the log K sp was nonlinear: log K sp = A – B/T + D log(T), where A = 478.77 ± 136.62, B = 29,378 ± 6215, and D = –185.81 ± 46.77. This allowed for calculation of ΔG° r = 454.0 ± 1.7 kJ·mol –1, ΔH° r = 101.8 ± 6.0 J·mol –1·K –1, ΔC° p,r = –1545 ± 388.9 J·mol –1·K –1, and ΔS° r = –1181 ± 382 J·mol –1·K –1 of the dissolution reaction. Using these values and the published standard state quantities for constituent ions, the values of ΔG° f = –3764.3 ± 3.5 kJ·mol –1, ΔH° f = –4108.4 ± 7.9 J·mol –1·K –1, S° f = 622 ± 382 J·mol –1·K –1, and C° pf = 402 ± 398 J·mol –1·K –1 were calculated for synthetic pyromorphite Pb 5(PO 4) 3Cl.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23234386','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23234386"><span>Thermochemical properties for isooctane and carbon radicals: computational study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Snitsiriwat, Suarwee; Bozzelli, Joseph W</p> <p>2013-01-17</p> <p>Thermochemical properties for isooctane, its internal rotation conformers, and radicals with corresponding bond energies are determined by use of computational chemistry. Enthalpies of formation are determined using isodesmic reactions with B3LYP density function theory and composite CBS-QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the isooctane parent and for the primary, secondary, and tertiary radicals in order to identify isomer energies. Intramolecular interactions are shown to have a significant effect on the enthalpy of formation of the isooctane parent and its radicals. The computed standard enthalpy of formation for the lowest energy conformers of isooctane from this study is -54.40 ± 1.60 kcal mol(-1), which is 0.8 kcal mol(-1) lower than the evaluated experimental value -53.54 ± 0.36 kcal mol(-1). The standard enthalpy of formation for the primary radical for a methyl on the quaternary carbon is -5.00 ± 1.69 kcal mol(-1), for the primary radical on the tertiary carbon is -5.18 ± 1.69 kcal mol(-1), for the secondary isooctane radical is -9.03 ± 1.84 kcal mol(-1), and for the tertiary isooctane radical is -12.30 ± 2.02 kcal mol(-1). Bond energy values for the isooctane radicals are 100.64 ± 1.73, 100.46 ± 1.73, 96.41 ± 1.88 and 93.14 ± 2.05 kcal mol(-1) for C3•CCCC2, C3CCCC2•, C3CC•CC2, and C3CCC•C2, respectively. Entropy and heat capacity values are reported for the lowest energy homologues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26163759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26163759"><span>Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Ao; Jacob, Amita; Herrmann, Christiane; Tabassum, Muhammad Rizwan; Murphy, Jerry D</p> <p>2015-10-01</p> <p>Fermentative hydrogen from seaweed is a potential biofuel of the future. Mannitol, which is a typical carbohydrate component of seaweed, was used as a substrate for hydrogen fermentation. The theoretical specific hydrogen yield (SHY) of mannitol was calculated as 5 mol H2/mol mannitol (615.4 mL H2/g mannitol) for acetic acid pathway, 3 mol H2/mol mannitol (369.2 mL H2/g mannitol) for butyric acid pathway and 1 mol H2/mol mannitol (123.1 mL H2/g mannitol) for lactic acid and ethanol pathways. An optimal SHY of 1.82 mol H2/mol mannitol (224.2 mL H2/g mannitol) was obtained by heat pre-treated anaerobic digestion sludge under an initial pH of 8.0, NH4Cl concentration of 25 mM, NaCl concentration of 50mM and mannitol concentration of 10 g/L. The overall energy conversion efficiency achieved was 96.1%. The energy was contained in the end products, hydrogen (17.2%), butyric acid (38.3%) and ethanol (34.2%). Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......129F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......129F"><span>Enzymatic studies using quantum mechanical and molecular mechanical techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faulder, Paul F.</p> <p></p> <p>Enzymes have evolved to increase the rate of biological reactions using fundamental physical processes. Until recently, the nature of catalysis has been based upon a classical model but it has since been considered that certain aspects of catalysis, particularly those concerning the transfer of a hydrogen species, may be accounted for using the theory of quantum mechanics. This thesis reports the use of reaction paths obtained using QMMM (combined quantum mechanics-molecular mechanics), combined with canonical variational transition state theory and multidimensional tunnelling corrections, to study two dehydrogenase enzymes, Liver Alcohol Dehydrogenase (LADH) and Methylamine Dehydrogenase (MADH). These methods are used to investigate the nature of these models in explaining reported experimental data indicative of quantum mechanical tunnelling within these enzymes. The results obtained are in good agreement with experimental data indicating the presence of tunnelling in LADH and, to a greater degree, in MADH, reflected in the magnitude of the calculated kinetic isotope effects (KIEs). For LADH, a primary tritium KIE of 5.6 is reported, calculated using transition state theory (TST) with a Wigner tunnelling correction, and compares favourably with an experimental value of 7.1. For MADH, a KIE of 11.1 was determined using canonical variational theory (CVT) with a small curvature tunnelling (SCT) correction, and compared favourably with an experimental value of 16.8. In addition, a relationship is observed between the contribution due to tunnelling in each system and the geometric positioning of the donating and accepting atoms of the transferring species, and is in qualitative agreement with current opinion concerning tunnelling and the dynamic nature of catalysis. Potential energy barriers have been obtained for both systems using QMMM. For LADH, barriers of 8.2 kcal mol-1 and 22.0 kcal mol-1, and reaction energies of -25.7 kcal mol-1 and +3.4 kcal mol-1, are reported for PM3 semiempirical and HF/3-21G respectively compared with an experimental barrier of 15.6 kcal mol-1 and reaction energy of +1.0 kcal mol-1. In MADH, a potential energy barrier of 9.1 kcal mol-1 is reported for PM3, compared with 10.7 kcal mol-1 experimentally. A reaction energy of -3.5 kcal mol-1 is also reported although no experimental data is available for comparison. All ah initio calculations produced significantly higher barriers and endothermic reaction energies. Chapter 1 presents a review of protein structure and classical enzyme catalysis, providing the foundations for a discussion of recent work concerning the application of quantum tunnelling in rationalising catalysis in certain enzymatic systems. Chapter 2 utilises the background information provided in Chapter 1 in a discussion specifically applied to previous experimental data concerning the structure, function and catalytic behaviour reported for the enzymes LADH and MADH. Chapter 3 presents a background to the methodology behind the theoretical methods used in the investigation of LADH and MADH reported in this thesis, in addition to reporting the development of extra code which has allowed the integration of our QMMM software with the rate determining program, POLYRATE, allowing the calculation of KIEs for these enzymes. Chapter 4 presents the preparation of the enzyme model of LADH with two separate substrates and the results obtained from subsequent QMMM calculations carried out on these models. These results are presented alongside results obtained by other workers, for comparative analysis. Chapter 5 details the preparation of a model of MADH with the substrate methylamine, and the QMMM investigation of the mode of catalysis for this enzyme using a variety of separate QMMM models. The calculation of KIEs on this enzyme, using the modified POLYRATE, are then presented in addition to KIEs determined for LADH based on results obtained from Chapter 4, and are discussed. The results of QMMM calculations carried out on MADH from a separate species are then presented in the context of validating the first set of results. Finally, QMMM calculations are presented for MADH bound to the substrate ethanolamine, attempting to elucidate the catalytically similar mechanism to methylamine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RuMet2013..595N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RuMet2013..595N"><span>Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.</p> <p>2013-08-01</p> <p>The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19236045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19236045"><span>Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki</p> <p>2009-03-18</p> <p>It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMoSt1154..145R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMoSt1154..145R"><span>Binding behaviors of greenly synthesized silver nanoparticles - Lysozyme interaction: Spectroscopic approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roy, Swarup</p> <p>2018-02-01</p> <p>Interaction of greenly synthesized silver nanoparticles (SNP) and lysozyme (Lys) has been studied using spectroscopy. From UV-Vis study it is observed that a moderate association constant (Kapp) of 5.36 × 104 L/mol giving an indication of interaction. Fluorescence emission and time resolved study, confirm static mode of quenching phenomena and the binding constant (Kb) was 25.12, 3.98 and 1.99 × 103 L/mol at 298, 305 and 312 K respectively and the number of binding sites (n) was found to be ∼1. Using temperature dependent fluorimetric data, thermodynamic parameters calculated (Enthalpy change, ΔH = -143.95 kJ/mol, Entropy change, ΔS = -400.32 J/mol/K, Gibbs free energy change, ΔG = -24.66 kJ/mol at 298 K) and resulting insight indicative of weak force (van der Walls interaction & H-bonding) as key feature for the Lys-SNP interaction. By following Förster's non-radiative energy transfer (FRET) theory, average binding distance (r = 3.05 nm) was calculated and observed that nonradiative type energy transfer between SNP and Lys. What is more, circular dichroism (CD) spectra indicates presence of SNP does not display substantial alteration in the secondary structure of Lys. Hence, this results may be very useful for the well thought of essential aspects of binding between the Lys and SNP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JChPh.140h4315K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JChPh.140h4315K"><span>Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalescky, Robert; Kraka, Elfi; Cremer, Dieter</p> <p>2014-02-01</p> <p>The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Nanos...8.2249Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Nanos...8.2249Q"><span>Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Jiayi; Huo, Jingpei; Zhang, Piyong; Zeng, Jian; Wang, Tingting; Zeng, Heping</p> <p>2016-01-01</p> <p>Ag nanoparticles were deposited on the surface of g-C3N4 by a chemical reduction method to increase visible-light absorption via the localized surface plasmon resonance effect, resulting in the reduced recombination of photo-generated electron-holes and enhanced photocatalytic activity. The Ag/g-C3N4 composite with a Ag loading of 3 wt% has the optimum photoactivity that is almost 3.6 and 3.4 times higher than pure g-C3N4 and the same photocatalysis system which has been reported, respectively. Fluorescein was introduced as a photosensitizer and H2 evolution soared to 2014.20 μmol g-1 h-1 and the rate is even about 4.8 times higher than that of the 3 wt% Ag/g-C3N4 composite. The chemical structure, composites, morphologies and optical properties of the obtained products are well-characterized by XRD, FTIR, TEM, EDS, XPS and UV-Vis DRS. Meanwhile, the photocatalyst exhibits high stability and reusability.Ag nanoparticles were deposited on the surface of g-C3N4 by a chemical reduction method to increase visible-light absorption via the localized surface plasmon resonance effect, resulting in the reduced recombination of photo-generated electron-holes and enhanced photocatalytic activity. The Ag/g-C3N4 composite with a Ag loading of 3 wt% has the optimum photoactivity that is almost 3.6 and 3.4 times higher than pure g-C3N4 and the same photocatalysis system which has been reported, respectively. Fluorescein was introduced as a photosensitizer and H2 evolution soared to 2014.20 μmol g-1 h-1 and the rate is even about 4.8 times higher than that of the 3 wt% Ag/g-C3N4 composite. The chemical structure, composites, morphologies and optical properties of the obtained products are well-characterized by XRD, FTIR, TEM, EDS, XPS and UV-Vis DRS. Meanwhile, the photocatalyst exhibits high stability and reusability. Electronic supplementary information (ESI) available: TEM images, TGA curves, PXRD and FTIR spectra, the recycling experiment of 3% Ag/g-C3N4, the specific process for H2 production, the diagram for the rate of hydrogen generation vs. the amount of fluorescein, the figure for the photocatalytic hydrogen production testing system, tables of contrast experiments for photocatalytic hydrogen generation and elemental composition of the CN in all the samples. See DOI: 10.1039/c5nr06346a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1010054','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1010054"><span>Theoretical Studies of Oxygen Reduction and Proton Transfer in SOFCs and Nerve Agents on Selected Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-11-19</p> <p>hand, the energy change for CO3 2- +O2→CO5 2- is calculated to be - 105.5 kJ/mol and -87.3 kJ/mol by B3LYP and CCSD(T), respectively. Similarly, the...formation energy of CO4 2- ( CO3 2- +1/2O2→CO4 2- ) is -9.8 kJ/mol and -5.4 kJ/mol by B3LYP and CCSD(T), respectively. All testing results have...This configuration is same as those in their crystal structures of bulk Li2CO3, Na2CO3, and K2CO3. In addition, the average bond length between alkali</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940002959&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940002959&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwind%2Bmonitor"><span>WT - WIND TUNNEL PERFORMANCE ANALYSIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Viterna, L. A.</p> <p>1994-01-01</p> <p>WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4040391','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4040391"><span>Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Qiao, Yan; Han, Keli; Zhan, Chang-Guo</p> <p>2014-01-01</p> <p>As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow the similar catalytic reaction mechanism, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2a/TS2b should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal/mol) is 2.5 kcal/mol lower than that for the BChE-catalyzed hydrolysis (20.8 kcal/mol). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal/mol for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2a relative to TS2b. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017isms.confETJ02Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017isms.confETJ02Y"><span>a Rigorous Comparison of Theoretical and Measured Carbon Dioxide Line Intensities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, Hongming; Fleisher, Adam J.; Gameson, Lyn; Zak, Emil J.; Polyansky, Oleg; Tennyson, Jonathan; Hodges, Joseph T.</p> <p>2017-06-01</p> <p>The ability to calculate molecular line intensities from first principles plays an increasingly important role in populating line-by-line spectroscopic databases because of its generality and extensibility to various isotopologues, spectral ranges and temperature conditions. Such calculations require a spectroscopically determined potential energy surface, and an accurate dipole moment surface that can be either fully ab initio or an effective quantity based on fits to measurements Following our recent work where we used high-precision measurements of intensities in the (30013 →00001) band of ^{12}C^{16}O_2 to bound the uncertainty of calculated line lists, here we carry out high-precision, frequency-stabilized cavity ring-down spectroscopy measurements in the R-branch of the ^{12}C^{16}O_2 (20012 →00001) band from J = 16 to 52. Gas samples consisted of 50 μmol mol^{-1} or 100 μmol mol^{-1} of nitrogen-broadened carbon dioxide with gravimetrically determined SI-traceable molar composition. We demonstrate relative measurement precision (Type A) at the 0.15 % level and estimate systematic (Type B) uncertainty contributions in % of: isotopic abundance 0.01; sample density, 0.016; cavity free spectral rang,e 0.03; line shape, 0.05; line interferences, 0.05; and carbon dioxide molar fraction, 0.06. Combined in quadrature, these components yield a relative standard uncertainty in measured line intensity less than 0.2 % for most observed transitions. These intensities differ by more than 2 % from those measured by Fourier transform spectroscopy and archived in HITRAN 2012 but differ by less than 0.5 % with the calculations of Zak et al. E. Zak et al., J. Quant. Spectrosc. Radiat. Transf. 177, (2016) 31. Huang et al., J. Quant. Spectrosc. Radiat. Transf. 130, (2013) 134. Tashkun et al., J. Quant. Spectrosc. Radiat. Transf. 152, (2015) 45.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335510-quantification-water-hydrous-ringwoodite','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335510-quantification-water-hydrous-ringwoodite"><span>Quantification of water in hydrous ringwoodite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Thomas, Sylvia -Monique; Jacobsen, Steven D.; Bina, Craig R.; ...</p> <p>2015-01-28</p> <p>Here, ringwoodite, γ-(Mg,Fe) 2SiO 4, in the lower 150 km of Earth’s mantle transition zone (410-660 km depth) can incorporate up to 1.5-2 wt% H 2O as hydroxyl defects. We present a mineral-specific IR calibration for the absolute water content in hydrous ringwoodite by combining results from Raman spectroscopy, secondary ion mass spectrometery (SIMS) and proton-proton (pp)-scattering on a suite of synthetic Mg- and Fe-bearing hydrous ringwoodites. H 2O concentrations in the crystals studied here range from 0.46 to 1.7 wt% H 2O (absolute methods), with the maximum H 2O in the same sample giving 2.5 wt% by SIMS calibration.more » Anchoring our spectroscopic results to absolute H-atom concentrations from pp-scattering measurements, we report frequency-dependent integrated IR-absorption coefficients for water in ringwoodite ranging from 78180 to 158880 L mol -1cm -2, depending upon frequency of the OH absorption. We further report a linear wavenumber IR calibration for H 2O quantification in hydrous ringwoodite across the Mg 2SiO 4-Fe 2SiO 4 solid solution, which will lead to more accurate estimations of the water content in both laboratory-grown and naturally occurring ringwoodites. Re-evaluation of the IR spectrum for a natural hydrous ringwoodite inclusion in diamond from the study of the crystal contains 1.43 ± 0.27 wt% H 2O, thus confirming near-maximum amounts of H 2O for this sample from the transition zone.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23504069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23504069"><span>The substitution reaction of (CNC)Fe-2N₂ with CO.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Hongyan; Liu, Shuangshuang; Zhang, Xiang</p> <p>2013-06-01</p> <p>The substitution mechanism of two N₂ ligands in (CNC)Fe-2N₂ replaced by CO was studied theoretically at the B3LYP/LACVP* level. Both SN1 and SN₂ mechanisms were considered. The calculated results for the gas phase suggested that: 1) in SN1 mechanism, N₂ elimination, which involves S₀-T₁ PESs crossing, is the rate control step for both substitution stages. The barrier heights are 9.7 kcal mol(-1) and 13.05 kcal mol(-1), respectively. 2) In SN2 mechanism, the calculated barrier heights on LS PES are respectively 13.7 and 19.83 kcal mol(-1) for the two substitution steps, but S₀-T₁ PESs crossing lowers the two barriers to 10.7 and 15.7 kcal mol(-1), respectively. 3) Inclusion of solvation effect of THF by PCM model, the relative energies of all the key species (including minima, transition states and S₀-T₁ crossing points) do not have great difference from their gas phase relative energies. Considering that for each substitution step, SN1 barrier heights is slightly smaller than SN2 barrier, SN1 mechanism seems to be slightly preferable to SN2 mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..172a2040S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..172a2040S"><span>Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.</p> <p>2017-02-01</p> <p>Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23570440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23570440"><span>Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pliego, Josefredo R; Miguel, Elizabeth L M</p> <p>2013-05-02</p> <p>Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29765714','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29765714"><span>Synthesis, crystal structure and computational studies of a new Schiff base compound: (E)-4-bromo-2-eth-oxy-6-{[(2-meth-oxy-phen-yl)imino]meth-yl}phenol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Özek Yıldırım, Arzu; Gülsu, Murat; Albayrak Kaştaş, Çiğdem</p> <p>2018-03-01</p> <p>The title compound, C 16 H 16 BrNO 3 , which shows enol-imine tautomerism, crystallizes in the monoclinic P 2 1 / c space group. All non-H atoms of the mol-ecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, mol-ecules are held together by weak C-H⋯O, π-π and C-H⋯π inter-actions. The E / Z isomerism and enol/keto tautomerism energy barriers of the compound have been calculated by relaxed potential energy surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018173"><span>Characterization of the Minimum Energy Path for the Reaction of Singlet Methylene with N2: The Role of Singlet Methylene in Prompt NO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walch, Stephen P.</p> <p>1995-01-01</p> <p>We report calculations of the minimum energy pathways connecting CH2 + N2 to diazomethane and diazirine, for the rearrangement of diazirine to diazomethane, for the dissociation of diazirine to HCN2+H, and of diazomethane to CH2N+N. The calculations use Complete Active Space Self-Consistent Field (CASSCF) derivative methods to characterize the stationary points and Internally Contracted Configuration Interaction (ICCI) to determine the energetics. The calculations suggest a potential new source of prompt NO from the reaction CH2 with N2 to give diazirine, and subsequent reaction of diazirine with hydrogen abstracters to form doublet HCN2, which leads to HCN+N(S-4) on the previously studied CH+N2 surface. The calculations also predict accurate 0 K heats of formation of 77.7 kcal/mol and 68.0 kcal/mol for diazirine and diazomethane, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26636218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26636218"><span>Carbon-Hydrogen Bond Activation in Hydridotris(pyrazolyl)borate Platinum(IV) Complexes:  Comparison of Density Functionals, Basis Sets, and Bonding Patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vastine, Benjamin Alan; Webster, Charles Edwin; Hall, Michael B</p> <p>2007-11-01</p> <p>The reaction mechanism for the cycle beginning with the reductive elimination (RE) of methane from κ(3)-TpPt(IV)(CH3)2H (1) (Tp = hydridotris(pyrazolyl)borate) and subsequent oxidative addition (OA) of benzene to form finally κ(3)-TpPt(IV)(Ph)2H (19) was investigated by density functional theory (DFT). Two mechanistic steps are of particular interest, namely the barrier to C-H coupling (barrier 1 - Ba1) and the barrier to methane release (barrier 2 - Ba2). For 31 density functionals, the calculated values for Ba1 and Ba2 were benchmarked against the experimentally reported values of 26 (Ba1) and 35 (Ba2) kcal·mol(-1), respectively. Specifically, the values for Ba1 and Ba2, calculated at the B3LYP/double-ζ plus polarization level of theory, are 24.6 and 34.3 kcal·mol(-1), respectively. Overall, the best performing functional was BPW91 where the mae associated with the calculated values of the two barriers is 0.68 kcal·mol(-1). The calculated B3LYP values of Ba1 ranged between 20 and 26 kcal·mol(-1) for 12 effective core potential basis sets for platinum and 29 all-electron basis sets for the first row elements. Polarization functions for the first row elements were important for accurate values, but the addition of diffuse functions to non-hydrogen (+) and hydrogen atoms (++) had little effect on the calculated values. Basis set saturation was achieved with APNO basis sets utilized for first-row atoms. Bader's "Atoms in Molecules" was used to analyze the electron density of several complexes, and the electron density at the Pt-Nax bond critical point (trans to the active site for C-H coupling) varied over a wider range than any of the other Pt-N bonds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeCoA..69..283T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeCoA..69..283T"><span>Theoretical study on the dimerization of Si(OH) 4 in aqueous solution and its dependence on temperature and dielectric constant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tossell, J. A.</p> <p>2005-01-01</p> <p>Energetics for the condensation dimerization reaction of monosilicic acid: 2Si(⇒SiOH+HO have been calculated quantum mechanically, in gas-phase and aqueous solution, over a range of temperatures and dielectric constants. The calculated gas phase energy, E g, for this reaction is -6.6 kcal/mol at the very accurate composite G2 level, but the vibrational, rotational and translational contributions to the free energy in the gas-phase, ΔG VRT, sum to + 2.5 kcal/mol and the hydration free energy contribution calculated with a polarizable continuum model, ΔΔG COSMO, for a dielectric constant of 78.5, is about + 6.2 kcal/mol. Thus, the free energy change for the reaction in aqueous solution at ambient conditions is about + 2.1 kcal/mol and the equilibrium constant is ˜10 -1.5, in reasonable agreement with experiment. As T increases, ΔG VRT increases slowly. As the dielectric constant decreases (for example, under high T and P conditions in the supercritical region), ΔΔG COSMO decreases substantially. Thus, at elevated T and P, if the effective dielectric constant of the aqueous fluid is 10 or less, the reaction becomes much more favorable, consistent with recent experimental observations. The PΔV contribution to the enthalpy is also considered, but cannot be accurately determined. We have also calculated 29Si-NMR shieldings and Raman frequencies for Si(OH) 4, Si 2O 7H 6 and some other oligomeric silicates. We correctly reproduce the separation of monomer and dimer peaks observed in the 29Si-NMR spectrra at ambient T and P. The Raman spectral data are somewhat ambiguous, and the new peaks seen at high T and P could arise either from the dimer or from a 3-ring trimer, which is calculated to be highly stabilized entropically at high T.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950052506&hterms=photosynthesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dphotosynthesis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950052506&hterms=photosynthesis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dphotosynthesis"><span>Calculated quantum yield of photosynthesis of phytoplankton in the Marine Light-Mixed Layers (59 deg N, 21 deg W)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.</p> <p>1995-01-01</p> <p>The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090069&hterms=cation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090069&hterms=cation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcation"><span>The C4H7+ cation. A theoretical investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koch, W.; Liu, B.; DeFrees, D. J.</p> <p>1988-01-01</p> <p>The potential energy surface of the C4H7+ cation has been investigated with ab initio quantum chemical theory. Extended basis set calculations, including electronic correlation, show that cyclobutyl and cyclopropylcarbinyl cation are equally stable isomers. The saddle point connecting these isomers lies 0.6 kcal/mol above the minima. The global C4H7+ minimum corresponds to the 1-methylallyl cation, which is 9.0 kcal/mol more stable than the cyclobutyl and the cyclopropylcarbinyl cation and 9.5 kcal/mol below the 2-methylallyl cation. These results are in excellent agreement with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1033857-adsorption-diffusion-fructose-zeolite-hzsm-selection-models-methods-computational-studies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1033857-adsorption-diffusion-fructose-zeolite-hzsm-selection-models-methods-computational-studies"><span>Adsorption and diffusion of fructose in zeolite HZSM-5: selection of models and methods for computational studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheng, L.; Curtiss, L. A.; Assary, R. S.</p> <p></p> <p>The adsorption and protonation of fructose in HZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46Tmore » cluster model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1222165-adsorption-diffusion-fructose-zeolite-hzsm-selection-models-methods-computational-studies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1222165-adsorption-diffusion-fructose-zeolite-hzsm-selection-models-methods-computational-studies"><span>Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheng, Lei; Curtiss, Larry A.; Assary, Rajeev S.</p> <p></p> <p>The adsorption and protonation of fructose inHZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46T clustermore » model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JPhy1...2.1899G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JPhy1...2.1899G"><span>Orientational glasses. II. Calculation of critical thresholds in ACNxMn{1-x} mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galam, Serge; Depondt, Philippe</p> <p>1992-10-01</p> <p>Using a simple steric hindrance based idea, critical thresholds which occur in the phase diagram of ACNxMn{1-x} mixtures, where A stands for K, Na or Rb while Mn represents Br, Cl or I, are calculated. The cyanide density x is divided into a free-to-reorient part x_r, and a frozen-in part x_f. The latter term x_f is calculated from microscopic characteristics of the molecules involved. Two critical thresholds x_c and x_d for the disappearance of respectively, ferroelastic transitions and ferroelastic domains are obtained. The calculated values are in excellent agreement with available experimental results. Predictions are made for additionnal mixtures. Une idée simple d'encombrement stérique permet de calculer des seuils critiques qui apparaissent dans le diagramme de phase de mélanges ACNxMn{1-x}, où A représente K, Na ou Rb, et Mn, des atoms du type Br, Cl ou I. La concentration x du cyanure est divisée en une partie x_r de molécules libres de se réorienter, et une partie de molécules gelées x_f. Ce dernier terme x_f est calculé à partir des caractéristiques microscopiques des molécules concernées. Deux seuils critiques x_c et x_d pour la disparition respectivement des transitions et des domaines ferroelastiques sont obtenus. Les valeurs calculées sont en excellent accord avec les résultats expérimentaux disponibles. Des prédictions sont faites pour d'autres mélanges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JChPh.106.8620M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JChPh.106.8620M"><span>Benchmark quality total atomization energies of small polyatomic molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Jan M. L.; Taylor, Peter R.</p> <p>1997-05-01</p> <p>Successive coupled-cluster [CCSD(T)] calculations in basis sets of spdf, spdfg, and spdfgh quality, combined with separate Schwartz-type extrapolations A+B/(l+1/2)α of the self-consistent field (SCF) and correlation energies, permit the calculations of molecular total atomization energies (TAEs) with a mean absolute error of as low as 0.12 kcal/mol. For the largest molecule treated, C2H4, we find ∑D0=532.0 kcal/mol, in perfect agreement with experiment. The aug-cc-pV5Z basis set recovers on average about 99% of the valence correlation contribution to the TAE, and essentially the entire SCF contribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010107730&hterms=Lamb&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DLamb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010107730&hterms=Lamb&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DLamb"><span>Is the Lamb shift chemically significant?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)</p> <p>2001-01-01</p> <p>The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMMM..358...16R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMMM..358...16R"><span>Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reshak, A. H.; Azam, Sikander</p> <p>2014-05-01</p> <p>The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4112816','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4112816"><span>Evaluation and Quantitation of Intact Wax Esters of Human Meibum by Gas-Liquid Chromatography-Ion Trap Mass Spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Butovich, Igor A.; Arciniega, Juan C.; Lu, Hua; Molai, Mike</p> <p>2012-01-01</p> <p>Purpose. Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Methods. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. Results. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C16–C18 fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C16:0-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C18:0-FA was 43:57. Interestingly, C17:0-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. Conclusions. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum. PMID:22531701</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996MMTA...27..305P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996MMTA...27..305P"><span>Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.</p> <p>1996-02-01</p> <p>The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1148278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1148278"><span>Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kurylo-Borowska, Z</p> <p>1975-07-14</p> <p>Edeine-synthesizing polyenzymes, associated with a complex of sytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from dells intensively synthesizing edeines (18--20 h culture) contained edeine B. Edeine B was found to be bound covalently t o the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1--0.3 mumol/mg protein, depending on the age of cells. Detachment of deeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2-SO4 at 45--55% saturation or by DEAE-cellulose column fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to two protein fractions of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16--22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine B of specific activity: 80 units/mjmol was released. The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associated with this complex did not effect the DNA-synthesizing activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22531701','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22531701"><span>Evaluation and quantitation of intact wax esters of human meibum by gas-liquid chromatography-ion trap mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Butovich, Igor A; Arciniega, Juan C; Lu, Hua; Molai, Mike</p> <p>2012-06-20</p> <p>Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C(16)-C(18) fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C(16:0)-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C(18:0)-FA was 43:57. Interestingly, C(17:0)-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26744506','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26744506"><span>Resistance training enhances insulin suppression of endogenous glucose production in elderly women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Honka, Miikka-Juhani; Bucci, Marco; Andersson, Jonathan; Huovinen, Ville; Guzzardi, Maria Angela; Sandboge, Samuel; Savisto, Nina; Salonen, Minna K; Badeau, Robert M; Parkkola, Riitta; Kullberg, Joel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo</p> <p>2016-03-15</p> <p>An altered prenatal environment during maternal obesity predisposes offspring to insulin resistance, obesity, and their consequent comorbidities, type 2 diabetes and cardiovascular disease. Telomere shortening and frailty are additional risk factors for these conditions. The aim of this study was to evaluate the effects of resistance training on hepatic metabolism and ectopic fat accumulation. Thirty-five frail elderly women, whose mothers' body mass index (BMI) was known, participated in a 4-mo resistance training program. Endogenous glucose production (EGP) and hepatic and visceral fat glucose uptake were measured during euglycemic hyperinsulinemia with [(18)F]fluorodeoxyglucose and positron emission tomography. Ectopic fat was measured using magnetic resonance spectroscopy and imaging. We found that the training intervention reduced EGP during insulin stimulation [from 5.4 (interquartile range 3.0, 7.0) to 3.9 (-0.4, 6.1) μmol·kg body wt(-1)·min(-1), P = 0.042] in the whole study group. Importantly, the reduction was higher among those whose EGP was more insulin resistant at baseline (higher than the median) [-5.6 (7.1) vs. 0.1 (5.4) μmol·kg body wt(-1)·min(-1), P = 0.015]. Furthermore, the decrease in EGP was associated with telomere elongation (r = -0.620, P = 0.001). The resistance training intervention did not change either hepatic or visceral fat glucose uptake or the amounts of ectopic fat. Maternal obesity did not influence the studied measures. In conclusion, resistance training improves suppression of EGP in elderly women. The finding of improved insulin sensitivity of EGP with associated telomere lengthening implies that elderly women can reduce their risk for type 2 diabetes and cardiovascular disease with resistance training. Copyright © 2016 the American Physiological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6279450-biosynthesis-secretion-functional-protein-human-megakaryoblastic-cell-line-meg','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6279450-biosynthesis-secretion-functional-protein-human-megakaryoblastic-cell-line-meg"><span>Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ogura, M.; Tanabe, N.; Nishioka, J.</p> <p></p> <p>A human megakaryoblastic cell line (MEG-01) was investigated for the presence of protein S in culture medium and cell lysates using a specific enzyme-linked immunoassay (ELISA) and a functional assay. When 5 X 10(5) MEG-01 cells/mL was subcultured in RPMI 1640 medium with 10% fetal calf serum (FCS), the concentration of protein S antigen in the culture medium increased progressively with time from less than 8 ng/mL on day 0 to 105.6 +/- 6.0 ng/mL on day 13. Vitamin K2(1 microgram/mL) increased the production of functional protein S, whereas warfarin (1 microgram/mL) profoundly decreased the quantity and the specific activitymore » of secreted protein S. By an indirect immunofluorescent technique, protein S antigen was detected in both MEG-01 cells and human bone marrow megakaryocytes. Immunoblot analysis of culture medium revealed two distinct bands (mol wt 84,000 and 78,000) that are identical to the doublets of purified plasma protein S. De novo synthesis of protein S was demonstrated by the presence of specific immunoprecipitable radioactivity in the medium after 5 hours of labeling of the cells with (/sup 35/S)-methionine as a 84,000 mol wt protein. Plasma protein S levels of nine patients with severe aplastic anemia were not significantly different from those of normal controls. These results suggest that megakaryocytes produce functional protein S and contain the enzymes required for the carboxylation of selected glutamic acid residues, and that protein S synthesized by megakaryocytes does not represent a main source of plasma protein S.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25617066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25617066"><span>mRNA secondary structure engineering of Thermobifida fusca endoglucanase (Cel6A) for enhanced expression in Escherichia coli.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ali, Imran; Asghar, Rehana; Ahmed, Sajjad; Sajjad, Muhammad; Tariq, Muhammad; Waheed Akhtar, M</p> <p>2015-03-01</p> <p>The sequence and structure of mRNA plays an important role in solubility and expression of the translated protein. To divulge the role of mRNA secondary structure and its thermodynamics in the expression level of the recombinant endoglucanase in Escherichia coli, 5'-end of the mRNA was thermodynamically optimized. Molecular engineering was done by introducing two silent synonymous mutations at positions +5 (UCU with UCC) and +7 (UUC with UUU) of the 5'-end of mRNA to relieve hybridization with ribosomal binding site. Two variants of glycoside hydrolase family six endoglucanase, wild type (cel6A.wt) and mutant (cel6A.mut) from Thermobifida fusca were expressed and characterized in E. coli using T7 promoter-based expression vector; pET22b(+). Enhanced expression level of engineered construct (Cel6A.mut) with ∆G = -2.7 kcal mol(-1)was observed. It showed up to ~45 % higher expression as compared to the wild type construct (Cel6A.wt) having ∆G = -7.8 kcal mol(-1) and ~25 % expression to the total cell proteins. Heterologous protein was purified by heating the recombinant E. coli BL21 (DE3) CodonPlus at 60 °C. The optimum pH for enzyme activity was six and optimum temperature was 60 °C. Maximum activity was observed 4.5 Umg(-1) on CMC. Hydrolytic activity was also observed on insoluble substrates, i.e. RAC (2.8 Umg(-1)), alkali treated bagass (1.7 Umg(-1)), filter paper (1.2 Umg(-1)) and BMCC (0.3 Umg(-1)). Metal ions affect endoglucanase activity in different ways. Only Fe(2+) exhibited 20.8 % stimulatory effects on enzyme activity. Enzyme activity was profoundly inhibited by Hg2(+) (91.8 %).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27258899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27258899"><span>Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Freitas, Erico T F; Stroppa, Daniel G; Montoro, Luciano A; de Mello, Jaime W V; Gasparon, Massimo; Ciminelli, Virginia S T</p> <p>2016-09-01</p> <p>The nature of As-Al-Fe co-precipitates aged for 120 days are investigated in detail by High Resolution Transmission Electron Microscopy (HRTEM), Scanning TEM (STEM), electron diffraction, Energy Dispersive X-Ray Spectroscopy (EDS), Electron Energy-Loss Spectroscopy (EELS), and Energy Filtered Transmission Electron Microscopy (EFTEM). The Al present in magnetite is shown to favour As incorporation (up to 1.10 wt%) relative to Al-free magnetite and Al-goethite, but As uptake by Al-magnetite decreases with increasing Al substitution (3.53-11.37 mol% Al). Arsenic-bearing magnetite and goethite mesocrystals (MCs) are formed by oriented aggregation (OA) of primary nanoparticles (NPs). Well-crystalline magnetite likely formed by Otswald ripening was predominant in the Al-free system. The As content in Al-goethite MCs (having approximately 13% substituted Al) was close to the EDS detection limit (0.1 wt% As), but was below detection in Al-goethites with 23.00-32.19 mol% Al. Our results show for the first time the capacity of Al-magnetite to incorporate more As than Al-free magnetite, and the role of Al in favouring OA-based crystal growth under the experimental conditions, and therefore As retention in the formed MCs. The proposed mechanism of As incorporation involves adsorption of As onto the newly formed NPs. Arsenic is then trapped in the MCs as they grow by self-assembly OA upon attachment of the NPs. We conclude that Al may diffuse to the crystal faces with high surface energy to reduce the total energy of the system during the attachment events, thus favouring the oriented aggregation. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4932465','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4932465"><span>Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khader, Basel A.; Curran, Declan J.; Peel, Sean; Towler, Mark R.</p> <p>2016-01-01</p> <p>Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO2), calcium (CaO), zinc (ZnO) and sodium (Na2O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applications. Three glasses were formulated based on the SiO2-CaO-ZnO-Na2O parent glass (KBT01) with 0.03 mol % (KBT02) and 0.06 mol % (KBT03) germanium (GeO2) substituted for ZnO. Each glass was then mixed with 50 wt % of a patented SiO2-CaO-ZnO-strontium (SrO) glass composition and the resultant mixtures were subsequently reacted with aqueous PAA (50 wt % addition) to produce three GPCs. The incorporation of Ge in the glass phase was found to result in decreased working (142 s to 112 s) and setting (807 s to 448 s) times for the cements manufactured from them, likely due to the increase in crosslink formation between the Ge-containing glasses and the PAA. Compressive (σc) and biaxial flexural (σf) strengths of the cements were examined at 1, 7 and 30 days post mixing and were found to increase with both maturation and Ge content. The bonding strength of a titanium cylinder (Ti) attached to bone by the cements increased from 0.2 MPa, when placed, to 0.6 MPa, after 14 days maturation. The results of this research indicate that Germano-Silicate based GPCs have suitable handling and mechanical properties for cranioplasty fixation. PMID:27023623</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343931','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5343931"><span>Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram</p> <p>2017-01-01</p> <p>Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28208822','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28208822"><span>Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram</p> <p>2017-02-13</p> <p>Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1418289-thermodynamics-anharmonic-systems-uncoupled-mode-approximations-molecules','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1418289-thermodynamics-anharmonic-systems-uncoupled-mode-approximations-molecules"><span>Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, Yi-Pei; Bell, Alexis T.; Head-Gordon, Martin</p> <p>2016-05-26</p> <p>The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO hf). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentialsmore » are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO hf model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By con trast, the HO hf model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO hf model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol -1 K -1 at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol -1 K -1, respectively. For a test set composed of nine alkanes ranging from C5 to C8, the heat capacities calculated with the UM-VT model agree with the experimental values to within a RMS error of 0.78 cal mol -1 K -1 , which is less than one-third of the RMS error of the HO hf (2.69 cal mol -1 K -1) and UM-N (2.41 cal mol -1 K -1) models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApSS..258.6366X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApSS..258.6366X"><span>Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Yunqiang; Wang, Chunfeng; Zhou, Guowei; Wu, Yue; Chen, Jing</p> <p>2012-06-01</p> <p>Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992MinDe..27...72N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992MinDe..27...72N"><span>Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noronha, F.; Doria, A.; Dubessy, J.; Charoy, B.</p> <p>1992-01-01</p> <p>The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/921849-ab-initio-analytic-intermolecular-potentials-arch3oh','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/921849-ab-initio-analytic-intermolecular-potentials-arch3oh"><span>Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy</p> <p>2006-09-20</p> <p>Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22415422-composite-thermochemistry-gas-phase-vi-containing-molecules','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22415422-composite-thermochemistry-gas-phase-vi-containing-molecules"><span>Composite thermochemistry of gas phase U(VI)-containing molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bross, David H.; Peterson, Kirk A., E-mail: kipeters@wsu.edu</p> <p></p> <p>Reaction energies have been calculated for a series of reactions involving UF{sub 6}, UO{sub 3}, UO{sub 2}(OH){sub 2}, and UO{sub 2}F{sub 2} using coupled cluster singles and doubles with perturbative triples, CCSD(T), with a series of correlation consistent basis sets, including newly developed pseudopotential (PP)- and all-electron (AE) Douglas-Kroll-Hess-based sets for the U atom. The energies were calculated using a Feller-Peterson-Dixon composite approach in which CCSD(T) complete basis set (CBS) limits were combined with a series of additive contributions for spin-orbit coupling, outer-core correlation, and quantum electrodynamics effects. The calculated reaction enthalpies (both PP and AE) were combined with themore » accurately known heat of formation of UF{sub 6} to determine the enthalpies of formation of UO{sub 3}, UO{sub 2}(OH){sub 2}, and UO{sub 2}F{sub 2}. The contribution to the reaction enthalpies due to correlation of the 5s5p5d electrons of U was observed to be very slowly convergent with basis set and at the CBS limit their impact on the final enthalpies was on the order of 1 kcal/mol or less. For these closed shell molecules, spin-orbit effects contributed about 1 kcal/mol to the final enthalpies. Interestingly, the PP and AE approaches yielded quite different spin-orbit contributions (similar magnitude but opposite in sign), but the total scalar plus spin-orbit results from the two approaches agreed to within ∼1 kcal/mol of each other. The final composite heat of formation for UO{sub 2}F{sub 2} was in excellent agreement with experiment, while the two results obtained for UO{sub 3} were just outside the ±2.4 kcal/mol error bars of the currently recommended experimental value. An improved enthalpy of formation (298 K) for UO{sub 2}(OH){sub 2} is predicted from this work to be −288.7 ± 3 kcal/mol, compared to the currently accepted experimental value of −292.7 ± 6 kcal/mol.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930033323&hterms=levels&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D60%26Ntt%3DA%2Blevels','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930033323&hterms=levels&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D60%26Ntt%3DA%2Blevels"><span>A comparison of the coupled cluster and internally contracted averaged coupled-pair functional levels of theory for the calculation of the MCH2(+) binding energies for M = Sc to Cu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.</p> <p>1992-01-01</p> <p>The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.8333S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.8333S"><span>Compositional dependence of lower crustal viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinevar, William J.; Behn, Mark D.; Hirth, Greg</p> <p>2015-10-01</p> <p>We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4219543','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4219543"><span>A Computational Investigation of the Oxidative Deboronation of BoroGlycine, H2N–CH2–B(OH)2, Using H2O and H2O2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.</p> <p>2014-01-01</p> <p>We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2 → H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2 → H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546, 2006). PMID:19810757</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26698331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26698331"><span>Direct Production of Propene from the Thermolysis of Poly(β-hydroxybutyrate) (PHB). An Experimental and DFT Investigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clark, Jared M; Pilath, Heidi M; Mittal, Ashutosh; Michener, William E; Robichaud, David J; Johnson, David K</p> <p>2016-01-28</p> <p>We demonstrate a synthetic route toward the production of propene directly from poly(β-hydroxybutyrate) (PHB), the most common of a wide range of high-molecular-mass microbial polyhydroxyalkanoates. Propene, a major commercial hydrocarbon, was obtained from the depolymerization of PHB and subsequent decarboxylation of the crotonic acid monomer in good yields (up to 75 mol %). The energetics of PHB depolymerization and the gas-phase decarboxylation of crotonic acid were also studied using density functional theory (DFT). The average activation energy for the cleavage of the R'C(O)O-R linkage is calculated to be 163.9 ± 7.0 kJ mol(-1). Intramolecular, autoacceleration effects regarding the depolymerization of PHB, as suggested in some literature accounts, arising from the formation of crotonyl and carboxyl functional groups in the products could not be confirmed by the results of DFT and microkinetic modeling. DFT results, however, suggest that intermolecular catalysis involving terminal carboxyl groups may accelerate PHB depolymerization. Activation energies for this process were estimated to be about 20 kJ mol(-1) lower than that for the noncatalyzed ester cleavage, 144.3 ± 6.4 kJ mol(-1). DFT calculations predict the decarboxylation of crotonic acid to follow second-order kinetics with an activation energy of 147.5 ± 6.3 kJ mol(-1), consistent with that measured experimentally, 146.9 kJ mol(-1). Microkinetic modeling of the PHB to propene overall reaction predicts decarboxylation of crotonic acid to be the rate-limiting step, consistent with experimental observations. The results also indicate that improvements made to enhance the isomerization of crotonic acid to vinylacetic acid will improve the direct conversion of PHB to propene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26847380','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26847380"><span>A multi-level quantum mechanics and molecular mechanics study of SN2 reaction at nitrogen: NH2Cl + OH(-) in aqueous solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lv, Jing; Zhang, Jingxue; Wang, Dunyou</p> <p>2016-02-17</p> <p>We employed a multi-level quantum mechanics and molecular mechanics approach to study the reaction NH2Cl + OH(-) in aqueous solution. The multi-level quantum method (including the DFT method with both the B3LYP and M06-2X exchange-correlation functionals and the CCSD(T) method, and both methods with the aug-cc-pVDZ basis set) was used to treat the quantum reaction region in different stages of the calculation in order to obtain an accurate potential of mean force. The obtained free energy activation barriers at the DFT/MM level of theory yielded a big difference of 21.8 kcal mol(-1) with the B3LYP functional and 27.4 kcal mol(-1) with the M06-2X functional respectively. Nonetheless, the barrier heights become very close when shifted from DFT to CCSD(T): 22.4 kcal mol(-1) and 22.9 kcal mol(-1) at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM levels of theory, respectively. The free reaction energy obtained using CCSD(T)(M06-2X)/MM shows an excellent agreement with the one calculated using the available gas-phase data. Aqueous solution plays a significant role in shaping the reaction profile. In total, the water solution contributes 13.3 kcal mol(-1) and 14.6 kcal mol(-1) to the free energy barrier heights at CCSD(T)(B3LYP)/MM and CCSD(T)(M06-2X)/MM respectively. The title reaction at nitrogen is a faster reaction than the corresponding reaction at carbon, CH3Cl + OH(-).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..257a2037R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..257a2037R"><span>Comparative study on the pyrolysis behaviour and kinetics of two macroalgae biomass (Gracilaria changii and Gelidium pusillum) by thermogravimetric analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roslee, A. N.; Munajat, N. F.</p> <p>2017-10-01</p> <p>Macroalgae are often referred as seaweed and could be significant biomass resource for the production of numerous energy carriers including biofuels. In this study, the chemical composition of Gracilaria changii (G. changii) and Gelidium pusillum (G. pusillum) were determined through proximate and ultimate analysis and the thermal degradation behaviour of G. changii and G. pusillum were investigated via thermogravimetric analysis (TGA) in determining the important main composition to be considered as biomass fuels. It has found the pyrolysis of G. changii and G. pusillum consists of three stages and stage II is the main decomposition stage with major mass loss of around 52.16% and 44.42%, respectively. The TGA data were then used for determination of kinetic parameters of the pyrolysis process using three model-free methods: Kissinger, Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The apparent activation energy calculated by using Kissinger method for G. changii was lower than G. Pusillum, i.e.173.12 kJ/mol and 193.22 kJ/mol, respectively. The activation energies calculated from KAS and FWO methods were increased with increasing the pyrolysis conversion with average activation energies of 172.32 kJ/mol and 181.19 kJ/mol for G. changii while for G. pusillum (177.42 kJ/mol and 187.4 kJ/mol). G. pusillum has lower and wider distribution of activation energy and revealed that the pyrolysis process for G. changii was easier than G. pusillum. These data provide information for further application for designing and modelling in thermochemical conversion system of macroalgae biomass.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16471971','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16471971"><span>Transition state characterization for the reversible binding of dihydrogen to bis(2,2'-bipyridine)rhodium(I) from temperature- and pressure-dependent experimental and theoretical studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fujita, Etsuko; Brunschwig, Bruce S; Creutz, Carol; Muckerman, James T; Sutin, Norman; Szalda, David; van Eldik, Rudi</p> <p>2006-02-20</p> <p>Thermodynamic and kinetic parameters for the oxidative addition of H2 to [Rh(I)(bpy)2]+ (bpy = 2,2'-bipyridine) to form [Rh(III)(H)2(bpy)2]+ were determined from either the UV-vis spectrum of equilibrium mixtures of [Rh(I)(bpy)2]+ and [Rh(III)(H)2(bpy)2]+ or from the observed rates of dihydride formation following visible-light irradiation of solutions containing [Rh(III)(H)2(bpy)2]+ as a function of H2 concentration, temperature, and pressure in acetone and methanol. The activation enthalpy and entropy in methanol are 10.0 kcal mol(-1) and -18 cal mol(-1) K(-1), respectively. The reaction enthalpy and entropy are -10.3 kcal mol(-1) and -19 cal mol(-1) K(-1), respectively. Similar values were obtained in acetone. Surprisingly, the volumes of activation for dihydride formation (-15 and -16 cm(3) mol(-1) in methanol and acetone, respectively) are very close to the overall reaction volumes (-15 cm(3) mol(-1) in both solvents). Thus, the volumes of activation for the reverse reaction, elimination of dihydrogen from the dihydrido complex, are approximately zero. B3LYP hybrid DFT calculations of the transition-state complex in methanol and similar MP2 calculations in the gas phase suggest that the dihydrogen has a short H-H bond (0.823 and 0.810 Angstroms, respectively) and forms only a weak Rh-H bond (1.866 and 1.915 Angstroms, respectively). Equal partial molar volumes of the dihydrogenrhodium(I) transition state and dihydridorhodium(III) can account for the experimental volume profile found for the overall process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25254435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25254435"><span>Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E</p> <p>2014-11-14</p> <p>Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11716727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11716727"><span>Low-energy tautomers and conformers of neutral and protonated arginine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rak, J; Skurski, P; Simons, J; Gutowski, M</p> <p>2001-11-28</p> <p>The relative stabilities of zwitterionic and canonical forms of neutral arginine and of its protonated derivative were studied by using ab initio electronic structure methods. Trial structures were first identified at the PM3 level of theory with use of a genetic algorithm to systematically vary geometrical parameters. Further geometry optimizations of these structures were performed at the MP2 and B3LYP levels of theory with basis sets of the 6-31++G** quality. The final energies were determined at the CCSD/6-31++G** level and corrected for thermal effects determined at the B3LYP level. Two new nonzwitterionic structures of the neutral were identified, and one of them is the lowest energy structure found so far. The five lowest energy structures of neutral arginine are all nonzwitterionic in nature and are clustered within a narrow energy range of 2.3 kcal/mol. The lowest energy zwitterion structure is less stable than the lowest nonzwitterion structure by 4.0 kcal/mol. For no level of theory is a zwitterion structure suggested to be the global minimum. The calculated proton affinity of 256.3 kcal/mol and gas-phase basicity of 247.8 kcal/mol of arginine are in reasonable agreement with the measured values of 251.2 and 240.6 kcal/mol, respectively. The calculated vibrational characteristics of the low-energy structures of neutral arginine provide an alternative interpretation of the IR-CRLAS spectrum (Chapo et al. J. Am. Chem. Soc. 1998, 120, 12956-12957).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MinPe.111..499L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MinPe.111..499L"><span>Petrography and chemistry of tungsten-rich oxycalciobetafite in hydrothermal veins of the Adamello contact aureole, northern Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lumpkin, Gregory R.; Gieré, Reto; Williams, C. Terry; McGlinn, Peter J.; Payne, Timothy E.</p> <p>2017-09-01</p> <p>Tungsten-rich oxycalciobetafite occurs in complex Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy, where it occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29-34 wt% UO2. In terms of end-members, the betafite contains approximately 50 mol% CaUTi2O7 and is one of the closest known natural compositions to the pyrochlore phase proposed for use in titanate nuclear waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. Electron probe microanalyses reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. Zirconolite contains up to 18 wt% ThO2 and 24 wt% UO2, and exhibits strong compositional zoning, but no internal cracking due to differential (and anisotropic) volume expansion and no visible alteration. The available evidence demonstrates that both oxycalciobetafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, oxycalciobetafite and zirconolite accumulated a total alpha-decay dose of 3.0-3.6 × 1016 and 0.2-2.0 × 1016 α/mg, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5042101','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5042101"><span>Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter</p> <p>2015-01-01</p> <p>The food processing contaminants 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), 5‐hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N‐hydroxy‐PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild‐type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N‐hydroxy‐PhIP and HMF in vivo. Environ. Mol. Mutagen. 56:709–714, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26270892</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28945365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28945365"><span>Multilevel Quantum Mechanics Theories and Molecular Mechanics Calculations of the Cl- + CH3I Reaction in Water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Peng; Li, Chen; Wang, Dunyou</p> <p>2017-10-19</p> <p>The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730018114','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730018114"><span>Iron abundance in the moon from magnetometer measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkin, C. W.; Dyal, P.; Daily, W. D.</p> <p>1973-01-01</p> <p>Apollo 12 and 15 lunar surface magnetometer data with simultaneous lunar orbiting Explorer 35 data are used to plot hysteresis curves for the whole moon. From these curves a whole-moon permeability mu = 1.029 + 0.024 or - 0.019 is calculated. This result implies that the moon is not composed entirely of paramagnetic material, but that ferromagnetic material such as free iron exists in sufficient amounts to dominate the bulk lunar susceptibility. From the magnetic data the ferromagnetic free iron abundance is calculated. Then for assumed compositional models of the moon the additional paramagnetic iron is determined, yielding total lunar iron content. The calculated abundances are as follows: ferromagnetic free iron = 5 + or - 4 wt. percent, and total iron in the moon = 9 + or - 4 wt. percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740040261&hterms=Parkin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DParkin','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740040261&hterms=Parkin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DParkin"><span>Iron abundance in the moon from magnetometer measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkin, C. W.; Dyal, P.; Daily, W. D.</p> <p>1973-01-01</p> <p>Apollo 12 and 15 lunar surface magnetometer data with simultaneous lunar orbiting Explorer 35 data are used to plot hysteresis curves for the whole moon. From these curves a whole-moon permeability of 1.029 (+0.024 or -0.019) is calculated. This result implies that the moon is not composed entirely of paramagnetic material, but that ferromagnetic material such as free iron exists in sufficient amounts to dominate the bulk lunar susceptibility. From the magnetic data the ferromagnetic free iron abundance is calculated. Then for assumed compositional models of the moon the additional paramagnetic iron is determined, yielding total lunar iron content. The calculated abundances are as follows: ferromagnetic free iron, 5 plus or minus 4 wt %; total iron in the moon, 9 plus or minus 4 wt %.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614790G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614790G"><span>The Standard Hydrous Olivine (SHO) conductivity model: A new tool for probing water in the upper mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardés, Emmanuel; Gaillard, Fabrice; Tarits, Pascal</p> <p>2014-05-01</p> <p>It has long been assumed that the incorporation of water in olivine has dramatic effects on the physical properties of the mantle, affecting large scale geodynamic processesand triggering most electrical conductivity anomalies in the mantle. But the conductivity models for hydrous olivine based on experimental measurements predict contrasting effects of water (e.g. Wang et al. 2006; Yoshino et al. 2009), precluding any unequivocal interpretation of electrical conductivities in the mantle. Our thesis is that the uncertainties and biases in the water contents of the olivines used for experiments were inappropriately appreciated, resulting in apparent incompatibilities when analysing the different datasets and in significant biases in the models outside of their range of calibration. Here, we analyse all published experimental work and provide a new model, SHO, that settles these major inconstancies. SHO is calibrated on the largest database of raw conductivity measurements on oriented single crystals and polycrystals of hydrous olivine, with water concentrations and temperatures spreading over 0-2220 wt. ppm and 200-1440° C. Our model provides both oriented conductivities, allowing for calculating conductivity anisotropy, and isotropic conductivity, relevant for olivine aggregates without preferential orientation. SHO isotropic conductivity (S/m) is given by 2.93 - 157000 -1.54 - 87000-1820C1/H32O σ = 10 e RT + 10 CH2Oe RT , where CH2O is the water concentration in olivine (wt. ppm), T the temperature (K) and R = 8.314 J/K/mol. In the normally hot mantle, our model predicts a moderate effect of water on the conductivity of olivine. High conductivities (~ 0.1 S/m) are obtained at great depths and elevated water concentrations only (> 350 km and > 400 wt. ppm). The strongest effects are therefore expected in the coldest regions of the mantle, like cratonic lithospheres or subduction zones, where higher incorporation of water in olivine is allowed. Wang, D., Mookherjee, M., Xu, Y., Karato, S. The effect of water on the electrical conductivity of olivine. Nature 443, 977-980 (2006) Yoshino, T., Matsuzaki, T., Shatskiy, A., Katsura, T. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet. Sc. Lett. 288, 291-300 (2009)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27616457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27616457"><span>Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab</p> <p>2016-12-01</p> <p>Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1084730','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1084730"><span>ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Oji, L.</p> <p>2013-06-21</p> <p>Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporatormore » pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24077256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24077256"><span>Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P</p> <p>2014-01-01</p> <p>The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7599E..1KS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7599E..1KS"><span>Color tuning of photonic gel films by UV irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shin, Sung Eui; Kim, Su Young; Shin, Dong Myung</p> <p>2010-02-01</p> <p>Block copolymers have drawn increasing attention for fabricating functional nanomaterials due to their properties of self-assembly. In particular, photonic crystals hold promise for multiple optical applications. We prepared 1D photonic crystals with polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg /mol-b-57 kg/mol. The lamellar stacks, which are alternating layers of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5wt% of iodomethane solubilized in n-hexane. We demonstrate about the influence of UV light on those photonic gel films. To study of different properties of films, UV-visible absorption spectra were measured as a different UV irradiation time at swollen films with distilled water. The UV-visible maximum absorption spectra shifted by UV irradiation time. Dependent on the time of UV irradiations, we can change the photonic band gap.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22476048-enhancement-thermal-shock-resistance-reaction-sintered-mullitezirconia-composites-presence-lanthanum-oxide','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22476048-enhancement-thermal-shock-resistance-reaction-sintered-mullitezirconia-composites-presence-lanthanum-oxide"><span>Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kumar, P.; Nath, M.; Ghosh, A.</p> <p>2015-03-15</p> <p>Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25936094','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25936094"><span>Effect of reactive monomer on PS-b-P2VP film.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, H J; Shin, D M</p> <p>2014-08-01</p> <p>Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 52 kg/mol-b-57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, were obtained by exposing the spin coated film under chloroform vapor. The lamellar films were quaternized with 5 wt% of iodomethane diluted by n-hexane. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. As a result the photonic gel film with RM had more clear color. The lamellar films were swollen by DI water, ethanol (aq) and calcium carbonate solution. The band gaps of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution. And the lamellar films were shifted to shorter wave length swollen by ethanol. So each lamellar film showed different color.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25092594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25092594"><span>Molecular weight distribution characterization of hydrophobe-modified hydroxyethyl cellulose by size-exclusion chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yongfu; Meunier, David M; Partain, Emmett M</p> <p>2014-09-12</p> <p>Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29024909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29024909"><span>Impact of phosphate limitation on PHA production in a feast-famine process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert</p> <p>2017-12-01</p> <p>Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25549109','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25549109"><span>Anchoring the Gas-Phase Acidity Scale from Hydrogen Sulfide to Pyrrole. Experimental Bond Dissociation Energies of Nitromethane, Ethanethiol, and Cyclopentadiene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ervin, Kent M; Nickel, Alex A; Lanorio, Jerry G; Ghale, Surja B</p> <p>2015-07-16</p> <p>A meta-analysis of experimental information from a variety of sources is combined with statistical thermodynamics calculations to refine the gas-phase acidity scale from hydrogen sulfide to pyrrole. The absolute acidities of hydrogen sulfide, methanethiol, and pyrrole are evaluated from literature R-H bond energies and radical electron affinities to anchor the scale. Relative acidities from proton-transfer equilibrium experiments are used in a local thermochemical network optimized by least-squares analysis to obtain absolute acidities of 14 additional acids in the region. Thermal enthalpy and entropy corrections are applied using molecular parameters from density functional theory, with explicit calculation of hindered rotor energy levels for torsional modes. The analysis reduces the uncertainties of the absolute acidities of the 14 acids to within ±1.2 to ±3.3 kJ/mol, expressed as estimates of the 95% confidence level. The experimental gas-phase acidities are compared with calculations, with generally good agreement. For nitromethane, ethanethiol, and cyclopentadiene, the refined acidities can be combined with electron affinities of the corresponding radicals from photoelectron spectroscopy to obtain improved values of the C-H or S-H bond dissociation energies, yielding D298(H-CH2NO2) = 423.5 ± 2.2 kJ mol(-1), D298(C2H5S-H) = 364.7 ± 2.2 kJ mol(-1), and D298(C5H5-H) = 347.4 ± 2.2 kJ mol(-1). These values represent the best-available experimental bond dissociation energies for these species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.139w4305K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.139w4305K"><span>Quantum effects and anharmonicity in the H2-Li+-benzene complex: A model for hydrogen storage materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T.</p> <p>2013-12-01</p> <p>Quantum and anharmonic effects are investigated in H2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔHbind (0 K), being 16.5 kJ mol-1 and 12.4 kJ mol-1, respectively: 0.1 and 0.6 kJ mol-1 higher than harmonic values. Zero-point energy effects are 35% of the value of ΔHbind (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol-1. Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li+-benzene system at 0 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22253764-quantum-effects-anharmonicity-sub-li-sup-benzene-complex-model-hydrogen-storage-materials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22253764-quantum-effects-anharmonicity-sub-li-sup-benzene-complex-model-hydrogen-storage-materials"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au</p> <p></p> <p>Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ΔH{sub bind} (0 K), being 16.5 kJ mol{sup −1} and 12.4 kJ mol{sup −1}, respectively: 0.1 and 0.6more » kJ mol{sup −1} higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔH{sub bind} (0 K) by at least 6 kJ mol{sup −1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24850186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24850186"><span>Identification, purification and partial characterization of low molecular weight protein inhibitor of Na⁺/K⁺-ATPase from pulmonary artery smooth muscle cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahaman, Sayed Modinur; Dey, Kuntal; Das, Partha; Roy, Soumitra; Chakraborti, Tapati; Chakraborti, Sajal</p> <p>2014-08-01</p> <p>We have identified a novel endogenous low mol wt. (15.6 kDa) protein inhibitor of Na(+)/K(+)-ATPase in cytosolic fraction of bovine pulmonary artery smooth muscle cells. The inhibitor showed different affinities toward the α₂β₁ and α₁β₁ isozymes of Na(+)/K(+)-ATPase, where α₂ is more sensitive than α₁. The inhibitor interacted reversibly to the E1 site of the enzyme and blocked the phosphorylated intermediate formation. Circular dichroism study suggests that the inhibitor causes an alteration in the confirmation of the enzyme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1164124','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1164124"><span>Solubilization and other studies on adenylate cyclase of baker's yeast.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Varimo, K; Londesborough, J</p> <p>1976-01-01</p> <p>1. Adenylate cyclase of Saccharomyces cerevisiae was sedimented from mechanically disintegrated preparations of yeast over an unusually wide range of centrifugal forces. 2. The enzyme was readily solubilized by Ficoll and by Lubrol PX. Lubrol caused a 2-fold activation. 3. Both particle-bound and Lubrol-solubilized enzyme had an apparent Km for ATP of 1.6 mM in the presence of 0.4 mM-cyclic AMP and 5 mM-MnCl2 at pH 6.2 and 30 degrees C. 4. The Lubrol-solubilized enzyme behaved on gel filtration as a monodisperse protein with an apparent mol.wt. of about 450000. PMID:793584</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CPL...701..115K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CPL...701..115K"><span>Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand</p> <p>2018-06-01</p> <p>Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7676470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7676470"><span>Sphero-echinocytosis of human red blood cells caused by snake, red-back spider, bee and blue-ringed octopus venoms and its inhibition by snake sera.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Flachsenberger, W; Leigh, C M; Mirtschin, P J</p> <p>1995-06-01</p> <p>It was found that bee (Apis mellifera) venom, red-back spider (Latrodectus mactans) venom, blue-ringed octopus (Hapalochlaena maculosa) venom, ten different snake venoms, phospholipase A2 and four snake toxins caused sphero-echinocytosis of human red blood cells at 200 ng/ml. Most venoms and toxins lost the ability to deform human red blood cells when their components of less than mol. wt 10,000 were applied. In a number of cases the sphero-echinocytotic effect was also inhibited by blood sera of Notechis scutatus and Pseudonaja textilis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6351841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6351841"><span>Purification of the major endoglucanase from Aspergillus fumigatus Fresenius.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parry, J B; Stewart, J C; Heptinstall, J</p> <p>1983-08-01</p> <p>Aspergillus fumigatus (Fresenius), IMI 246651, A.T.C.C. 46324, produces two beta-glucosidase enzymes, cotton-solubilizing activity, xylanase and endoglucanase enzymes which can be separated by gel-filtration chromatography. The major endoglucanase does not bind to concanavalin A-Sepharose and does not stain with periodic acid/Schiff reagent. It is homogeneous on polyacrylamide isoelectric focusing (pI = 7.1) and has a mol.wt. of 12500 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The endoglucanase produces glucose and a mixture of oligosaccharides from cellulose; the purified enzyme has a small dextranase activity. It is stable at 50 degrees C and pH 6.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22796659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22796659"><span>The catalytic mechanism of mouse renin studied with QM/MM calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brás, Natércia F; Ramos, Maria J; Fernandes, Pedro A</p> <p>2012-09-28</p> <p>Hypertension is a chronic condition that affects nearly 25% of adults worldwide. As the Renin-Angiotensin-Aldosterone System is implicated in the control of blood pressure and body fluid homeostasis, its combined blockage is an attractive therapeutic strategy currently in use for the treatment of several cardiovascular conditions. We have performed QM/MM calculations to study the mouse renin catalytic mechanism in atomistic detail, using the N-terminal His6-Asn14 segment of angiotensinogen as substrate. The enzymatic reaction (hydrolysis of the peptidic bond between residues in the 10th and 11th positions) occurs through a general acid/base mechanism and, surprisingly, it is characterized by three mechanistic steps: it begins with the creation of a first very stable tetrahedral gem-diol intermediate, followed by protonation of the peptidic bond nitrogen, giving rise to a second intermediate. In a final step the peptidic bond is completely cleaved and both gem-diol hydroxyl protons are transferred to the catalytic dyad (Asp32 and Asp215). The final reaction products are two separate peptides with carboxylic acid and amine extremities. The activation energy for the formation of the gem-diol intermediate was calculated as 23.68 kcal mol(-1), whereas for the other steps the values were 15.51 kcal mol(-1) and 14.40 kcal mol(-1), respectively. The rate limiting states were the reactants and the first transition state. The associated barrier (23.68 kcal mol(-1)) is close to the experimental values for the angiotensinogen substrate (19.6 kcal mol(-1)). We have also tested the influence of the density functional on the activation and reaction energies. All eight density functionals tested (B3LYP, B3LYP-D3, X3LYP, M06, B1B95, BMK, mPWB1K and B2PLYP) gave very similar results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21161109','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21161109"><span>Adequate representation of charge polarization effects leads to a successful treatment of the CF4 + SiCl4 → CCl4 + SiF4 reaction by density functional theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Ruifang; Zhao, Yan; Truhlar, Donald G</p> <p>2011-02-28</p> <p>Adequate polarization functions reduce the error of density functional theory (DFT) for the heat of reaction for CF(4) + SiCl(4) from ∼9-12 kcal mol(-1) to ∼2-4 kcal mol(-1), and using an improved density functional further reduces it to ∼1 kcal mol(-1). This reaction was previously identified as a stumbling block for DFT, but we show that the problem with the previous calculations was not DFT but rather inadequate basis sets to account for intramolecular charge polarization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA594343','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA594343"><span>Volatilization Mechanism of 1-Ethyl-3-methylimidazolium Bromide Ionic Liquid (Briefing Charts)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-04-01</p> <p>bromides and alkylimidazoles, presumably through alkyl abstraction via an SN2 type mechanism, and that vaporization of intact ion pairs or the formation...116.1±6.6 kJ/mol and H.‡(CH3CH2Br) = 122.9±7.2 kJ/mol, and the results are found to be in agreement with calculated values for the SN2 reactions</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/320833-dft-ab-initio-study-unimolecular-decomposition-lowest-singlet-triplet-states-nitromethane','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/320833-dft-ab-initio-study-unimolecular-decomposition-lowest-singlet-triplet-states-nitromethane"><span>DFT and ab initio study of the unimolecular decomposition of the lowest singlet and triplet states of nitromethane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Manaa, M.R.; Fried, L.E.</p> <p>1998-11-26</p> <p>The fully optimized potential energy curves for the unimolecular decomposition of the lowest singlet and triplet states of nitromethane through the C-NO{sub 2} bond dissociation pathway are calculated using various DFT and high-level ab initio electronic structure methods. The authors perform gradient corrected density functional theory (DFT) and multiconfiguration self-consistent field (MCSCF) to conclusively demonstrate that the triplet state of nitromethane is bound. The adiabatic curve of this state exhibits a 33 kcal/mol energy barrier as determined at the MCSCF level. DFT methods locate this barrier at a shorter C-N bond distance with 12--16 kcal/mol lower energy than does MCSCF.more » In addition to MCSCF and DFT, quadratic configuration interactions with single and double substitutions (QCISD) calculations are also performed for the singlet curve. The potential energy profiles of this state predicted by FT methods based on Becke`s 1988 exchange functional differ by as much as 17 kcal/mol from the predictions of MCSCF and QCISD in the vicinity of the equilibrium structure. The computational methods predict bond dissociation energies 5--9 kcal/mol lower than the experimental value. DFT techniques based on Becke`s 3-parameter exchange functional show the best overall agreement with the higher level methods.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSSCh.255..219D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSSCh.255..219D"><span>Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denisenko, Yu. G.; Khritokhin, N. A.; Andreev, O. V.; Basova, S. A.; Sal'nikova, E. I.; Polkovnikov, A. A.</p> <p>2017-11-01</p> <p>Reactions of europium sulfates Eu2(SO4)3·8H2O and EuSO4 complete decomposition were studied by Simultaneous Thermal Analysis. It was revealed that one-step dehydratation of Eu2(SO4)3·8H2O crystallohydrate is accompanied by the formation of amorphous anhydrous europium sulfate Eu2(SO4)3. Crystallization of amorphous europium (III) sulfate occurs at 381.1 °C (in argon) and 391.3 °C (in air). The average enthalpy values for dehydratation reaction of Eu2(SO4)3·8H2O (ΔH° = 141.1 kJ/mol), decomposition reactions of Eu2(SO4)3 (ΔH = 463.1 kJ/mol), Eu2O2SO4 (ΔH = 378.4 kJ/mol) and EuSO4 (ΔH = 124.1 kJ/mol) were determined. The step process mechanisms of thermal decomposition of europium (III) sulfate in air and europium (II) sulfate in inert atmosphere were established and justified. The kinetic parameters of complete thermal decomposition of europium (III) sulfate octahydrate were calculated by Kissinger model. The standard enthalpies of compound formation were calculated using thermal effects and formation enthalpy data for binary compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17022155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17022155"><span>[Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej</p> <p>2006-01-01</p> <p>On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18481097','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18481097"><span>The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Kuijk, Marijke; Anten, N P R; Oomen, R J; van Bentum, D W; Werger, M J A</p> <p>2008-08-01</p> <p>It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5073163-theoretical-study-methyl-hypofluorite-ch-sub-related-compounds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5073163-theoretical-study-methyl-hypofluorite-ch-sub-related-compounds"><span>Theoretical study of methyl hypofluorite (CH sub 3 OF) and related compounds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Curtiss, L.A.; Pople, J.A.</p> <p>1991-12-01</p> <p>The Gaussian-2 (G2) theoretical procedure, based on {ital ab} {ital initio} molecular orbital theory, is used to calculate the energies of CH{sub 3}OF, CH{sub 3}OF{sup +}, and related compounds. In this study we have found methyl hypofluorite to have a trans {ital C}{sub {ital s}} structure and to be stable with respect to loss of fluorine by 45.9 kcal/mol. The energies of fragmentation processes of methyl hypofluorite calculated from G2 theory are in agreement with those measured by Ruscic, Appelman, and Berkowitz (J. Chem. Phys. {bold 95}, XXX (1991)) and support their interpretation of the photoionization data. The theoretical enthalpymore » of formation {Delta}{ital H}{sup 0}{sub {ital f}0}(CH{sub 3}OF) of {minus}21.0 kcal/mol is in agreement with the experimental value ({ge}{minus}23.0{plus minus}0.7 kcal/mol) derived from the photoionization data. The ordering of the O--F bond strengths in the series of molecules OF, HOF, and CH{sub 3}OF is OF{gt}HOF{gt}CH{sub 3}OF and the C--O bond strength is 6--8 kcal/mol weaker in methyl hypofluorite than in methanol.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AcSpA..82..213Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AcSpA..82..213Z"><span>Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Shufang; Sun, Xuejun; Jing, Zhihong; Qu, Fengli</p> <p>2011-11-01</p> <p>The interaction of resveratrol with calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was studied by spectroscopy, fluorescence spectroscopy and viscosity measurement method, respectively. Results indicated that a complex of resveratrol with ctDNA was formed with a binding constant of K17 °C = 5.49 × 10 3 L mol -1 and K37 °C = 1.90 × 10 4 L mol -1. The fluorescence quenching mechanism of acridine orange (AO)-ctDNA by resveratrol was shown to be a static quenching type. The thermodynamic parameters of the complex were calculated by a double reciprocal method: ΔHms=4.64×10 J mol, ΔSms=231.8 J K mol and ΔGms=-2.54×10 J mol (37 °C). Spectroscopic techniques together with viscosity determination provided evidences of intercalation mode of binding for the interaction between resveratrol and ctDNA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA289554','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA289554"><span>Ram Accelerator Performance Calculations Using a Modified Version of the NASA CET89 Equilibrium Chemistry Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-12-01</p> <p>Army Research Laboratory ATTN: AMSRL-WT-PA Aberdeen Proving Ground, MD 21005-5066 9 . SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING...8 1.5 DISTANCE vs. TIME CALCULATION ........................................... 9 2. D ISCU SSIO N...21 Figure 9 : Comparison of calculated thrust curves ..................................... 32 v</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNuM..487...43W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNuM..487...43W"><span>The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming</p> <p>2017-04-01</p> <p>High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24594166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24594166"><span>Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Shu-Wei; Huang, Myron; Hsieh, Yu-Hsun; Luo, Ying-Ting; Wu, Tsung-Ta; Tsai, Chia-Wen; Chen, Chin-Shuh; Shaw, Jei-Fu</p> <p>2014-07-15</p> <p>In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 μL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..444..485C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..444..485C"><span>In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng</p> <p>2018-06-01</p> <p>Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28347962','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28347962"><span>Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kristianto, Ivan; Limarta, Susan Olivia; Lee, Hyunjoo; Ha, Jeong-Myeong; Suh, Dong Jin; Jae, Jungho</p> <p>2017-06-01</p> <p>Lignin isolated by two-step concentrated acid hydrolysis of empty fruit bunch (EFB) was effectively depolymerized into a high-quality bio-oil using formic acid (FA) as an in-situ hydrogen source and Ru/C as a catalyst in supercritical ethanol. A bio-oil yield of 66.3wt% with an average molecular weight of 822g/mol and an aromatic monomer content of 6.1wt% was achieved at 350°C and a FA-to-lignin mass ratio of 3 after a reaction time of 60min. The combination of Ru/C and FA also resulted in a significant reduction in the oxygen content of the bio-oil by ∼60% and a corresponding increase in the higher heating value (HHV) to 32.7MJ/kg due to the enhanced hydrodeoxygenation activity. An examination of the FA decomposition characteristics revealed that Ru/C provides a greater increase in the rate of hydrogen production from FA, explaining the efficient depolymerization of lignin in a combined system. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15983989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15983989"><span>Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso</p> <p>2005-09-01</p> <p>Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23474409','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23474409"><span>Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naim, R; Ismail, A F</p> <p>2013-04-15</p> <p>A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..423..185E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..423..185E"><span>Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed</p> <p>2017-11-01</p> <p>A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARK10009P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARK10009P"><span>Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael</p> <p></p> <p>Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1942c0019R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1942c0019R"><span>Dilatometric investigation of α(orthorhombic)→β(tetragonal) transformation in U-15 wt.% Cr alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rameshkumar, Santhosh; Raju, Subramanian; Saibaba, Saroja</p> <p>2018-04-01</p> <p>The α→β transformation characteristics in U-15wt.% Cr alloy have been investigated by dilatometry at slow heating rates (3-10 K min-1). The starting microstructure of U-15Cr alloy consists of a mixture of metastable βm-U(body centred tetroganal), α-U(orthorhombic) and elemental Cr(bcc) phases. Upon heating, the metastable βmU phase has progressively transformed to equilibrium α-U structure; before, finally undergoing equilibrium α→β transformation with further increase in temperature. The measured α→β transformation temperature, when extrapolated to 0 K min-1 heating rate has been found to be higher than the currently accepted equilibrium phase diagram estimate. This is due to the kinetic difficulty associated with Cr-diffusion in U-15Cr alloy. The kinetics of α→β transformation upon continuous heating has been modeled in terms of a suitable framework for diffusional transformations, and the effective activation energy for overall transformation has been estimated to be in the range 160-180 kJ mol-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20667720','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20667720"><span>Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik</p> <p>2010-12-01</p> <p>Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016802','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5016802"><span>Effect of Li Adsorption on the Electronic and Hydrogen Storage Properties of Acenes: A Dispersion-Corrected TAO-DFT Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Seenithurai, Sonai; Chai, Jeng-Da</p> <p>2016-01-01</p> <p>Due to the presence of strong static correlation effects and noncovalent interactions, accurate prediction of the electronic and hydrogen storage properties of Li-adsorbed acenes with n linearly fused benzene rings (n = 3–8) has been very challenging for conventional electronic structure methods. To meet the challenge, we study these properties using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) with dispersion corrections. In contrast to pure acenes, the binding energies of H2 molecules on Li-adsorbed acenes are in the ideal binding energy range (about 20 to 40 kJ/mol per H2). Besides, the H2 gravimetric storage capacities of Li-adsorbed acenes are in the range of 9.9 to 10.7 wt%, satisfying the United States Department of Energy (USDOE) ultimate target of 7.5 wt%. On the basis of our results, Li-adsorbed acenes can be high-capacity hydrogen storage materials for reversible hydrogen uptake and release at ambient conditions. PMID:27609626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC..989..180R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC..989..180R"><span>The Use of Rietveld Technique to Study Phase Composition and Developments of Calcium Aluminate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ridwan, I.; Asmi, D.</p> <p>2008-03-01</p> <p>The phase composition and development of calcium aluminates (CA, CA2, and CA6) processed by in-situ reaction sintering of Al2O3 and CaCO3 have been studied by Rietveld refinement technique. The formation of calcium aluminates is temperature-dependent. X-ray diffraction result revealed that the CA, CA2, and CA6 phases starts to develop at approximately 1000 °C, 1100 °C and 1375 °C, respectively. The relative phase compositions obtained from x-ray diffraction patterns for the α-Al2O3 phase decreased markedly with increasing temperature, i.e. from 86.0(1.1) wt% at 1000 °C to 34.7(0.4) wt% at 1400 °C. The wt% of CA decreased from 10.9(0.3)-1.9(0.2) wt% at 1100-1200 °C but disappeared at 1300 °C. The wt% of CA2 reached 36.0(0.7) wt% at 1300 °C and decreased to 18.5 (0.5) wt% at 1400 °C. The wt% CA6 increased markedly from 1375 to 1400 °C, i.e. 12.80(0.6)-47.3(0.9) wt%. The goodness of fit values is relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013695','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013695"><span>Photolysis of rhodamine-WT dye</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tai, D.Y.; Rathbun, R.E.</p> <p>1988-01-01</p> <p>Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24701975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24701975"><span>Synthesis of poly(alkenoic acid) with L-leucine residue and methacrylate photopolymerizable groups useful in formulating dental restorative materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buruiana, Tinca; Nechifor, Marioara; Melinte, Violeta; Podasca, Viorica; Buruiana, Emil C</p> <p>2014-01-01</p> <p>To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27745851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27745851"><span>Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke</p> <p>2017-03-01</p> <p>Polyhydroxyalkanoates (PHAs), a class of renewable and biodegradable green polymers, have gained attraction as a potential substitute for the conventional plastics due to the increasing concern towards environmental pollution as well as the rapidly depleting petroleum reserve. Nevertheless, the high cost of downstream processing of PHA has been a bottleneck for the wide adoption of PHAs. Among the options of PHAs recovery techniques, aqueous two-phase extraction (ATPE) outshines the others by having the advantages of providing a mild environment for bioseparation, being green and non-toxic, the capability to handle a large operating volume and easily scaled-up. Utilizing unique properties of thermo-responsive polymer which has decreasing solubility in its aqueous solution as the temperature rises, cloud point extraction (CPE) is an ATPE technique that allows its phase-forming component to be recycled and reused. A thorough literature review has shown that this is the first time isolation and recovery of PHAs from Cupriavidus necator H16 via CPE was reported. The optimum condition for PHAs extraction (recovery yield of 94.8% and purification factor of 1.42 fold) was achieved under the conditions of 20 wt/wt % ethylene oxide-propylene oxide (EOPO) with molecular weight of 3900 g/mol and 10 mM of sodium chloride addition at thermoseparating temperature of 60°C with crude feedstock limit of 37.5 wt/wt %. Recycling and reutilization of EOPO 3900 can be done at least twice with satisfying yield and PF. CPE has been demonstrated as an effective technique for the extraction of PHAs from microbial crude culture. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22689710-hot-deformation-behaviors-processing-maps-sub-al6061-neutron-absorber-composites','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22689710-hot-deformation-behaviors-processing-maps-sub-al6061-neutron-absorber-composites"><span>Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Yu-Li</p> <p></p> <p>In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hotmore » working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28470115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28470115"><span>Characterization of Free Phenytoin Concentrations in End-Stage Renal Disease Using the Winter-Tozer Equation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soriano, Vincent V; Tesoro, Eljim P; Kane, Sean P</p> <p>2017-08-01</p> <p>The Winter-Tozer (WT) equation has been shown to reliably predict free phenytoin levels in healthy patients. In patients with end-stage renal disease (ESRD), phenytoin-albumin binding is altered and, thus, affects interpretation of total serum levels. Although an ESRD WT equation was historically proposed for this population, there is a lack of data evaluating its accuracy. The objective of this study was to determine the accuracy of the ESRD WT equation in predicting free serum phenytoin concentration in patients with ESRD on hemodialysis (HD). A retrospective analysis of adult patients with ESRD on HD and concurrent free and total phenytoin concentrations was conducted. Each patient's true free phenytoin concentration was compared with a calculated value using the ESRD WT equation and a revised version of the ESRD WT equation. A total of 21 patients were included for analysis. The ESRD WT equation produced a percentage error of 75% and a root mean square error of 1.76 µg/mL. Additionally, 67% of the samples had an error >50% when using the ESRD WT equation. A revised equation was found to have high predictive accuracy, with only 5% of the samples demonstrating >50% error. The ESRD WT equation was not accurate in predicting free phenytoin concentration in patients with ESRD on HD. A revised ESRD WT equation was found to be significantly more accurate. Given the small study sample, further studies are required to fully evaluate the clinical utility of the revised ESRD WT equation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........54K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........54K"><span>Evidence for the associated production of a W boson and a top quark at ATLAS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koll, James</p> <p></p> <p>This thesis discusses a search for the Standard Model single top Wt-channel process. An analysis has been performed searching for the Wt-channel process using 4.7 fb-1 of integrated luminosity collected with the ATLAS detector at the Large Hadron Collider. A boosted decision tree is trained using machine learning techniques to increase the separation between signal and background. A profile likelihood fit is used to measure the cross-section of the Wt-channel process at sigma(pp → Wt + X) = 16.8 +/-2.9 (stat) +/- 4.9(syst) pb, consistent with the Standard Model prediction. This fit is also used to generate pseudoexperiments to calculate the significance, finding an observed (expected) 3.3 sigma (3.4 sigma) excess over background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018982','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018982"><span>Characterization of the Minimum Energy Path for the Reaction of Singlet Methylene with N2: The Role of Singlet Methylene in Prompt NO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walch, Stephen P.</p> <p>1995-01-01</p> <p>We report calculations of the minimum energy pathways connecting (1)CH2+N2 to diazomethane and diazirine, for the rearrangement of diazirine to diazomethane, for the dissociation of diazirine to HCN2+H, and of diazomethane to CH2N+N. The calculations use complete active space self-consistent field (CASSCF) derivative methods to characterize the stationary points and internally contracted configuration interaction (ICCI) to determine the energetics. The calculations suggest a potential new source of prompt NO from the reaction of (1)CH2 with N2 to give diazirine, and subsequent reaction of diazirine with hydrogen abstracters to form doublet HCN2, which leads to HCN+N(S-4) on the previously studied CH+N2 Surface. The calculations also predict accurate 0 K heats of formation of 77.7 kcal/mol and 68.0 kcal/mol for diazirine and diazomethane, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.147p1728C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.147p1728C"><span>Quasi-chemical theory of F-(aq): The "no split occupancies rule" revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaudhari, Mangesh I.; Rempe, Susan B.; Pratt, Lawrence R.</p> <p>2017-10-01</p> <p>We use ab initio molecular dynamics (AIMD) calculations and quasi-chemical theory (QCT) to study the inner-shell structure of F-(aq) and to evaluate that single-ion free energy under standard conditions. Following the "no split occupancies" rule, QCT calculations yield a free energy value of -101 kcal/mol under these conditions, in encouraging agreement with tabulated values (-111 kcal/mol). The AIMD calculations served only to guide the definition of an effective inner-shell constraint. QCT naturally includes quantum mechanical effects that can be concerning in more primitive calculations, including electronic polarizability and induction, electron density transfer, electron correlation, molecular/atomic cooperative interactions generally, molecular flexibility, and zero-point motion. No direct assessment of the contribution of dispersion contributions to the internal energies has been attempted here, however. We anticipate that other aqueous halide ions might be treated successfully with QCT, provided that the structure of the underlying statistical mechanical theory is absorbed, i.e., that the "no split occupancies" rule is recognized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3250178M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3250178M"><span>Effect of nano BiPb-2212 phase addition on BiPb-2223 phase properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammed, N. H.; Abou-Aly, A. I.; Barakat, M. Me.; Hassan, M. S.</p> <p>2018-06-01</p> <p>BiPb-2212 phase in nanoscale was added to BiPb-2223 phase with a general stoichiometry of (Bi1.7Pb0.4Sr2.1Ca1.1Cu2.1O8+δ)x/Bi1.8Pb0.4Sr2.0Ca2.0Cu3.2O10+δ, 0.0 ≤ x  ≤ 2.5 wt.%. All samples were prepared by the standard solid-state reaction method. The prepared nano BiPb-2212 phase was characterized by X-ray powder diffraction (XRD) and transmission electron microscope (TEM). The prepared samples were characterized by XRD and the scanning electron microscope (SEM). XRD analysis indicated that the sample with x = 1.5 wt.% has the highest relative volume fraction for BiPb-2223 phase. Samples were examined by electrical resistivity and I-V measurements. There is no significant change in the superconducting transition temperature Tc for all samples. The highest critical current density Jc was recorded for the sample with x = 1.5 wt.%. The normalized excess conductivity (Δσ/σroom) was calculated according to Aslamazov-Larkin (AL) model. Four different fluctuating regions were recorded as the temperature decreased. The coherence length along the c-axis at 0 K ξc(0), interlayer coupling strength s, Fermi velocity vF of the carriers and Fermi energy EF were calculated for both samples with x = 0.0 wt.% and 1.5 wt.%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27041998','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27041998"><span>Solubility enhancement of simvastatin by arginine: thermodynamics, solute-solvent interactions, and spectral analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meor Mohd Affandi, M M R; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, A B A</p> <p>2016-01-01</p> <p>We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4780722','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4780722"><span>Solubility enhancement of simvastatin by arginine: thermodynamics, solute–solvent interactions, and spectral analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meor Mohd Affandi, MMR; Tripathy, Minaketan; Shah, Syed Adnan Ali; Majeed, ABA</p> <p>2016-01-01</p> <p>We examined the solubility of simvastatin in water in 0.01 mol·dm−3, 0.02 mol·dm−3, 0.04 mol·dm−3, 0.09 mol·dm−3, 0.18 mol·dm−3, 0.36 mol·dm−3, and 0.73 mol·dm−3 arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute–solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG0, ΔH0, ΔS0, and Es) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute–solvent and solute–cosolute interactions. Further, these systems were analyzed using ultraviolet–visible analysis, Fourier-transform infrared spectroscopy, and 13C, 1H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation. PMID:27041998</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016asec.book..199D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016asec.book..199D"><span>Modeling of Dendritic Structure and Microsegregation in Solidification of Al-Rich Quaternary Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Ting; Zhu, Mingfang; Chen, Shuanglin; Cao, Weisheng</p> <p></p> <p>A two-dimensional cellular automaton (CA) model is coupled with a CALPHAD tool for the simulation of dendritic growth and microsegregation in solidification of quaternary alloys. The dynamics of dendritic growth is calculated according to the difference between the local equilibrium liquidus temperature and the actual temperature, incorporating with the Gibbs—Thomson effect and preferential dendritic growth orientations. Based on the local liquid compositions determined by solving the solutal transport equation in the domain, the local equilibrium liquidus temperature and the solid concentrations at the solid/liquid (SL) interface are calculated by the CALPHAD tool. The model was validated through the comparisons of the simulated results with the Scheil predictions for the solid composition profiles as a function of solid fraction in an Al-6wt%Cu-0.6wt%Mg-1wt%Si alloy. It is demonstrated that the model is capable of not only reproducing realistic dendrite morphologies, but also reasonably predicting microsegregation patterns in solidification of Al-rich quaternary alloys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCAMD.tmp...20M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCAMD.tmp...20M"><span>Assessing the stability of free-energy perturbation calculations by performing variations in the method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manzoni, Francesco; Ryde, Ulf</p> <p>2018-03-01</p> <p>We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2-3 kJ/mol and a correlation coefficient (R 2) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates). However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty than if performing only one calculation with a single computational setup.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030001142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030001142"><span>Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)</p> <p>2002-01-01</p> <p>The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930006168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930006168"><span>Theoretical characterization of the potential energy surface for NH + NO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walch, Stephen P.</p> <p>1992-01-01</p> <p>The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JChPh.125p4105W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JChPh.125p4105W"><span>Extracting electron transfer coupling elements from constrained density functional theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Qin; Van Voorhis, Troy</p> <p>2006-10-01</p> <p>Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9446686','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9446686"><span>A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wood, A P; Kelly, D P; McDonald, I R; Jordan, S L; Morgan, T D; Khan, S; Murrell, J C; Borodina, E</p> <p>1998-02-01</p> <p>The isolation and properties of a novel species of pink-pigmented methylotroph, Methylobacterium thiocyanatum, are described. This organism satisfied all the morphological, biochemical, and growth-substrate criteria to be placed in the genus Methylobacterium. Sequencing of the gene encoding its 16S rRNA confirmed its position in this genus, with its closest phylogenetic relatives being M. rhodesianum, M. zatmanii and M. extorquens, from which it differed in its ability to grow on several diagnostic substrates. Methanol-grown organisms contained high activities of hydroxypyruvate reductase -3 micromol NADH oxidized min-1 (mg crude extract protein)-1], showing that the serine pathway was used for methylotrophic growth. M. thiocyanatum was able to use thiocyanate or cyanate as the sole source of nitrogen for growth, and thiocyanate as the sole source of sulfur in the absence of other sulfur compounds. It tolerated high concentrations (at least 50 mM) of thiocyanate or cyanate when these were supplied as nitrogen sources. Growing cultures degraded thiocyanate to produce thiosulfate as a major sulfur end product, apparently with the intermediate formation of volatile sulfur compounds (probably hydrogen sulfide and carbonyl sulfide). Enzymatic hydrolysis of thiocyanate by cell-free extracts was not demonstrated. Cyanate was metabolized by means of a cyanase enzyme that was expressed at approximately sevenfold greater activity during growth on thiocyanate [Vmax 634 +/- 24 nmol NH3 formed min-1 (mg protein)-1] than on cyanate [89 +/- 9 nmol NH3 min-1 (mg protein)-1]. Kinetic study of the cyanase in cell-free extracts showed the enzyme (1) to exhibit high affinity for cyanate (Km 0.07 mM), (2) to require bicarbonate for activity, (3) to be subject to substrate inhibition by cyanate and competitive inhibition by thiocyanate (Ki 0.65 mM), (4) to be unaffected by 1 mM ammonium chloride, (5) to be strongly inhibited by selenocyanate, and (6) to be slightly inhibited by 5 mM thiosulfate, but unaffected by 0.25 mM sulfide or 1 mM thiosulfate. Polypeptides that might be a cyanase subunit (mol.wt. 17.9 kDa), a cyanate (and/or thiocyanate) permease (mol.wt. 25.1 and 27.2 kDa), and a putative thiocyanate hydrolase (mol.wt. 39.3 kDa) were identified by SDS-PAGE. Correlation of the growth rate of cultures with thiocyanate concentration (both stimulatory and inhibitory) and the kinetics of cyanase activity might indicate that growth on thiocyanate involved the intermediate formation of cyanate, hence requiring cyanase activity. The very high activity of cyanase observed during growth on thiocyanate could be in compensation for the inhibitory effect of thiocyanate on cyanase. Alternatively, thiocyanate may be a nonsubstrate inducer of cyanase, while thiocyanate degradation itself proceeds by a carbonyl sulfide pathway not involving cyanate. A formal description of the new species (DSM 11490) is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679022-correlation-consistent-basis-sets-lanthanides-atoms-lalu','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679022-correlation-consistent-basis-sets-lanthanides-atoms-lalu"><span>Correlation consistent basis sets for lanthanides: The atoms La–Lu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lu, Qing; Peterson, Kirk A., E-mail: kipeters@wsu.edu</p> <p></p> <p>Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples,more » CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd{sub 2}, GdF, and GdF{sub 3}. Except for the equilibrium geometry and harmonic frequency of GdF, which are accurately known from experiment, all other calculated quantities represent significant improvements compared to the existing experimental quantities. With estimated uncertainties of about ±3 kcal/mol, the 0 K atomization energies (298 K heats of formation) are calculated to be (all in kcal/mol): 33.2 (160.1) for Gd{sub 2}, 151.7 (−36.6) for GdF, and 447.1 (−295.2) for GdF{sub 3}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V14B..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V14B..04F"><span>The 2005 and 2006 eruptions of Ol Doinyo Lengai: assessing deep and shallow processes at an active carbonatite volcano using volatile chemistry and fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, T.; Burnard, P.; Marty, B.; Palhol, F.; Mangasini, F.; Shaw, A. M.</p> <p>2006-12-01</p> <p>The African Rift valleys are sites of classical carbonatite volcano complexes. Ol Doinyo Lengai, the spectacular cone that rises to nearly 3000 m above Tanzania's Eastern Rift Valley, is the world's only active carbonatite volcano. High-alkali carbonatite lavas from this volcano were first recognized in the 1960's and the oldest natrocarbonatite tuffs have been dated to 1250 years B.P.. Earlier eruptions produced phonolitic and nephelinitc lavas [1]. Since the 1960's the volcano has erupted frequently producing carbonatite lava flows. Explosive eruptions are much less frequent but have occurred in 1966, 1983 [1] and 1993 [3] producing ash, cones and natrocarbonatite tephra. In July 2005, we launched an expedition to the crater to collect gas and rock samples. On July 4, the volcano began erupting low viscosity, low T (540C) high velocity (2 m/sec) lava flows at a rate of about 0.3 m3/sec. By afternoon, the lava was flowing over the eastern crater rim. During the eruption we sampled gases from nearby hornitos at 120 and 168C, yielding pristine magmatic gases characterized by 75 mol% H2O, 22% CO2, < 1% SO2, H2S, HCl and traces of H2, He, Ar, N2, CH4 and CO. CO2-CH4-CO gas equilibrium temperatures are 580C consistent with lava flow temperatures. N2-He-Ar abundances indicate an upper mantle origin of volatiles, confirmed by isotopes [4]. SO2 flux measured by mini DOAS was low (10 t/day). CO2 fluxes calculated using CO2/SO2 are 3000 to 4000 t/day. Volatiles measured in the carbonatite lavas by SIMS show low H2O (< 0.7 wt%), high S (0.2 to 1 wt%) and Cl (0.6 to 1.4 wt%) and variable F (0.06 to 0.7 wt%). CO2 contents are 30 wt% with major and trace elements typical of natrocarbonatite lavas previously reported in [1]. The release of all CO2 (30 wt% or 20 t/day) from eruption lavas would only produce a small fraction of the measured CO2. In March 2006 eyewitnesses [3] reported the occurrence of an explosive eruption and some of us returned to the volcano on May 12. The morphology of the crater had changed and was now filled with lava 2 m deep. The central cone area had collapsed. We sampled a deposit of carbonatite ash containing accretionary lapilli suggesting water-magma or water-ash interaction. The measured SO2 flux was low (approx. 10 t/day). Our data and observations imply that 1) Ol Doinyo Lengai gases originate from the upper mantle and have equilibrium temperatures consistent with carbonatite magmas, 2) the CO2 flux measured during the eruption cannot be produced by the eruption of carbonatite lavas and additional CO2 is released from the mantle, 3) explosive eruptions (such as in 2006) may be triggered by hydromagmatic processes. Alternatively the fountain material interacted with rain at the surface. 1 Dawson, J.B. (1962) nature 195, 1075-76; 2 Dawson, J.B. (1989) Carbonatites ;3 http://www.mtsu.edu/; 4 Burnard et al., AGU Fall 06</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28640841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28640841"><span>A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rizal, Govinda; Karki, Shanta; Thakur, Vivek; Wanchana, Samart; Alonso-Cantabrana, Hugo; Dionora, Jacque; Sheehy, John E; Furbank, Robert; von Caemmerer, Susanne; Quick, William Paul</p> <p>2017-01-01</p> <p>Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480886','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480886"><span>A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Karki, Shanta; Thakur, Vivek; Wanchana, Samart; Alonso-Cantabrana, Hugo; Dionora, Jacque; Sheehy, John E.; Furbank, Robert; von Caemmerer, Susanne; Quick, William Paul</p> <p>2017-01-01</p> <p>Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium’s efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants. PMID:28640841</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27474598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27474598"><span>Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Huihuang H; Cui, Steve W; Goff, H Douglas; Chen, Jie; Guo, Qingbin; Wang, Qi</p> <p>2016-10-20</p> <p>The structure of ethanol precipitated fraction from 1M KOH extracted flaxseed kernel polysaccharides (KPI-EPF) was studied for better understanding the molecular structures of flaxseed kernel cell wall polysaccharides. Based on methylation/GC-MS, NMR spectroscopy, and MALDI-TOF-MS analysis, the dominate sugar residues of KPI-EPF fraction comprised of (1,4,6)-linked-β-d-glucopyranose (24.1mol%), terminal α-d-xylopyranose (16.2mol%), (1,2)-α-d-linked-xylopyranose (10.7mol%), (1,4)-β-d-linked-glucopyranose (10.7mol%), and terminal β-d-galactopyranose (8.5mol%). KPI-EPF was proposed as xyloglucans: The substitution rate of the backbone is 69.3%; R1 could be T-α-d-Xylp-(1→, or none; R2 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, or T-α-l-Araf-(1→2)-α-d-Xylp-(1→; R3 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, T-α-l-Fucp-(1→2)-β-d-Galp-(1→2)-α-d-Xylp-(1→, or none. The Mw of KPI-EPF was calculated to be 1506kDa by static light scattering (SLS). The structure-sensitive parameter (ρ) of KPI-EPF was calculated as 1.44, which confirmed the highly branched structure of extracted xyloglucans. This new findings on flaxseed kernel xyloglucans will be helpful for understanding its fermentation properties and potential applications. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16852557','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16852557"><span>The thermochemistry of 2,4-pentanedione revisited: observance of a nonzero enthalpy of mixing between tautomers and its effects on enthalpies of formation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Temprado, Manuel; Roux, Maria Victoria; Umnahanant, Patamaporn; Zhao, Hui; Chickos, James S</p> <p>2005-06-30</p> <p>The enthalpies of formation of pure liquid and gas-phase (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione are examined in the light of some more recent NMR studies on the enthalpy differences between gas-phase enthalpies of the two tautomers. Correlation gas chromatography experiments are used to evaluate the vaporization enthalpies of the pure tautomers. Values of (51.2 +/- 2.2) and (50.8 +/- 0.6) kJ.mol(-1) are measured for pure 2,4-pentanedione and (Z)-4-hydroxy-3-penten-2-one, respectively. The value of (50.8 +/- 0.6) kJ.mol(-1) can be contrasted to a value of (43.2 +/- 0.2) kJ.mol(-1) calculated for pure (Z)-4-hydroxy-3-penten-2-one when the vaporization enthalpy is measured in a mixture of tautomers. The difference is attributed to an endothermic enthalpy of mixing that destabilizes the mixture relative to the pure components. Calculation of new enthalpies of formation for (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione in both the gas, Delta(f)H degrees (m)(g) = (-378.2 +/- 1.2) and (-358.9 +/- 2.5) kJ.mol(-1), respectively, and liquid phases, Delta(f)H degrees (m)(l) = (-429.0 +/- 1.0) and (-410.1 +/- 1.2) kJ.mol(-1), respectively, results in enthalpy differences between the two tautomers both in the liquid and gas phases that are identical within experimental error, and in excellent agreement with recent gas-phase NMR studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.901a2081C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.901a2081C"><span>Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan</p> <p>2017-09-01</p> <p>This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MRE.....3d5903S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MRE.....3d5903S"><span>Investigation of the structural, mechanical, dynamical and thermal properties of CsCaF3 and CsCdF3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salmankurt, Bahadır; Duman, Sıtkı</p> <p>2016-04-01</p> <p>The structural, mechanical, dynamical and thermal properties of CsCaF3 and CsCdF3 are presented by using an ab initio pseudopotential method and a linear response scheme, within the generalized gradient approximation. The obtained structural and mechanical properties are in good agreement with other available theoretical and experimental studies. The calculated elastic constants of these materials obey the cubic stability conditions. It has been found that CsCaF3 is brittle whereas CsCdF3 has ductile manner. The full phonon dispersion curves of these materials are reported for the first time in the literature. We have found that calculated phonon modes are positive along the all symmetry directions, indicating that these materials are dynamically stable at the cubic structure. The obtained zone-center phonon modes for CsCaF3 (IR data) are found to be 83 (98) cm-1, 104 (115) cm-1, 120 cm-1, 180 (192) cm-1, 231 (250.5) cm-1, 361 (374) cm-1, 446 (449) cm-1. Also, we have calculated internal energy, Helmholtz free energy, constant-volume specific heat, entropy and Debye temperature as function of temperature. At the 300 K, specific heats are calculated to be 113.36 J mol-1 K-1 and 115.58 J mol-1 K-1 for CsCaF3 and CsCdF3 ,respectively, which are lower than Doulong-Petit limit (12 472 J mol-1 K-1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29403926','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29403926"><span>Non-covalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV-vis, FT-IR, voltammetric and molecular modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurthi A</p> <p>2015-06-01</p> <p>This study was designed to examine the interaction of sulfamethoxazole (SMZ) with human serum albumin(HSA). Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of human serum albumin by SMZ was static mechanism. The binding constant values for the SMZ-HSA system were obtained to be 22,500 L/mol at 288 K, 15,600 L/mol at 298 K, and 8500 L/mol at 308 K. The distance r between donor and acceptor was evaluated according to the theory of Föster energy transfer. The results of spectroscopic analysis and molecular modeling techniques showed that the conformation of human serum albumin had been changed in the presence of SMZ. The thermodynamic parameters, namely enthalpy change (∆ H 0 ) -36.0 kJ/mol, entropy change (∆ S 0 ) -41.3 J/mol K and free energy change (∆ G 0 ) -23.7 kJ/mol, were calculated by using van׳t Hoff equation. The effect of common ions on the binding of SMZ to HSA was tested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21731439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21731439"><span>Improving the accuracy of Density Functional Theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond: generalized regression neural network based on grey relational analysis and principal component analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Hong Zhi; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min</p> <p>2011-01-01</p> <p>We propose a generalized regression neural network (GRNN) approach based on grey relational analysis (GRA) and principal component analysis (PCA) (GP-GRNN) to improve the accuracy of density functional theory (DFT) calculation for homolysis bond dissociation energies (BDE) of Y-NO bond. As a demonstration, this combined quantum chemistry calculation with the GP-GRNN approach has been applied to evaluate the homolysis BDE of 92 Y-NO organic molecules. The results show that the ull-descriptor GRNN without GRA and PCA (F-GRNN) and with GRA (G-GRNN) approaches reduce the root-mean-square (RMS) of the calculated homolysis BDE of 92 organic molecules from 5.31 to 0.49 and 0.39 kcal mol(-1) for the B3LYP/6-31G (d) calculation. Then the newly developed GP-GRNN approach further reduces the RMS to 0.31 kcal mol(-1). Thus, the GP-GRNN correction on top of B3LYP/6-31G (d) can improve the accuracy of calculating the homolysis BDE in quantum chemistry and can predict homolysis BDE which cannot be obtained experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060009296','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060009296"><span>Observations of a Cast Cu-Cr-Zr Alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ellis, David L.</p> <p>2006-01-01</p> <p>Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19007196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19007196"><span>A theoretical study of the cyclization processes of energized CCCSi and CCCP.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maclean, Micheal J; Eichinger, Peter C H; Wang, Tianfang; Fitzgerald, Mark; Bowie, John H</p> <p>2008-12-11</p> <p>Calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31+G(d) level of theory have shown that cyclization of both the ground state triplet and the corresponding singlet state of CCCSi may rearrange to give cyclic isomers which upon ring opening may reform linear C(3)Si isomers in which the carbon atoms are scrambled. The cyclization processes are energetically favorable with barriers to the transition states from 13 to 16 kcal mol(-1). This should be contrasted with the analogous process of triplet CCCC to triplet rhombic C(4), which requires an excess energy of 25.8 kcal mol(-1). A similar cyclization of doublet CCCP requires 50.4 kcal mol(-1) of excess energy; this should be contrasted with the same process for CCCN, which requires 54.7 kcal mol(-1) to effect cyclization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RJPCA..88.1081Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RJPCA..88.1081Z"><span>Kinetics of non-isothermal decomposition of cinnamic acid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Ming-rui; Qi, Zhen-li; Chen, Fei-xiong; Yue, Xia-xin</p> <p>2014-07-01</p> <p>The thermal stability and kinetics of decomposition of cinnamic acid were investigated by thermogravimetry and differential scanning calorimetry at four heating rates. The activation energies of this process were calculated from analysis of TG curves by methods of Flynn-Wall-Ozawa, Doyle, Distributed Activation Energy Model, Šatava-Šesták and Kissinger, respectively. There are only one stage of thermal decomposition process in TG and two endothermic peaks in DSC. For this decomposition process of cinnamic acid, E and log A[s-1] were determined to be 81.74 kJ mol-1 and 8.67, respectively. The mechanism was Mampel Power law (the reaction order, n = 1), with integral form G(α) = α (α = 0.1-0.9). Moreover, thermodynamic properties of Δ H ≠, Δ S ≠, Δ G ≠ were 77.96 kJ mol-1, -90.71 J mol-1 K-1, 119.41 kJ mol-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3344979','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3344979"><span>Octahydriodo diborane (B2H8) and its protonated cations containing five-, six-, and seven-coordinate boron atoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Olah, George A.; Surya Prakash, G. K.; Rasul, Golam</p> <p>2012-01-01</p> <p>Structures of octahydriodo diborane (B2H8) 1 and its protonated 3, diprotonated 5, triprotonated 6, and tetraprotonated 7 ions were found to be calculationally viable minima at the MP2/cc-pVTZ level of theory. Each structure contains two-electron three-center (2e-3c) bonds. The protonation of 1 to form 3 was found to be strongly exothermic by 176.0 kcal/mol. Subsequent protonation of 3 to form 5 was also found to be exothermic by 28.4 kcal/mol. Further protonation of 5 to form 6 was, however, computed to be endothermic by 122.0 kcal/mol whereas protonation of 6 to form 7 was again highly endothermic by 238.8 kcal/mol. Deprotonation barriers of the ions were also computed. PMID:22511715</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27690445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27690445"><span>A Chemical Activation Study of the Unimolecular Reactions of CD3CD2CHCl2 and CHCl2CHCl2 with Analysis of the 1,1-HCl Elimination Pathway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Larkin, Allie C; Nestler, Matthew J; Smith, Caleb A; Heard, George L; Setser, Donald W; Holmes, Bert E</p> <p>2016-10-03</p> <p>Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD=CHCl and CD3CD=CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD=CDCl under the conditions of the experiments. The experimental rate constants were 2.7 x107 and 0.47 x107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈ 66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 x 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. Based upon the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2Cl-CHCl2 molecules with 86 kcal mol-1 of energy in order to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97t5115S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97t5115S"><span>Single-crystal study of the charge density wave metal LuNiC2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steiner, S.; Michor, H.; Sologub, O.; Hinterleitner, B.; Höfenstock, F.; Waas, M.; Bauer, E.; Stöger, B.; Babizhetskyy, V.; Levytskyy, V.; Kotur, B.</p> <p>2018-05-01</p> <p>We report on single-crystal growth, single-crystal x-ray diffraction, physical properties, and density functional theory (DFT) electronic structure as well as Fermi surface calculations for two ternary carbides, LuCoC2 and LuNiC2. Electrical resistivity measurements reveal for LuNiC2 a charge density wave (CDW) transition at TCDW≃450 K and, for T >TCDW , a significant anisotropy of the electrical resistivity, which is lowest along the orthorhombic a axis. The analysis of x-ray superstructure reflections suggest a commensurate CDW state with a Peierls-type distortion of the Ni atom periodicity along the orthorhombic a axis. DFT calculations based on the CDW modulated monoclinic structure model of LuNiC2 as compared to results of the orthorhombic parent type reveal the formation of a partial CDW gap at the Fermi level which reduces the electronic density of states from N (EF)=1.03 states/eV f.u. without CDW to N (EF)=0.46 states/eV f.u. in the CDW state. The corresponding bare DFT Sommerfeld value of the latter, γDFTCDW=0.90 mJ/mol K2, reaches reasonable agreement with the experimental value γ =0.83 (5 ) mJ/mol K2 of LuNiC2. LuCoC2 displays a simple metallic behavior with neither CDW ordering nor superconductivity above 0.4 K. Its experimental Sommerfeld coefficient, γ =5.9 (1) mJ/mol K2, is in realistic correspondence with the calculated, bare Sommerfeld coefficient, γDFT=3.82 mJ/mol K2, of orthorhombic LuCoC2.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29584435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29584435"><span>Thermochemistry, Tautomerism, and Thermal Decomposition of 1,5-Diaminotetrazole: A High-Level ab Initio Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shakhova, Margarita V; Muravyev, Nikita V; Gritsan, Nina P; Kiselev, Vitaly G</p> <p>2018-04-19</p> <p>Thermochemistry, kinetics, and mechanism of thermal decomposition of 1,5-diaminotetrazole (DAT), a widely used "building block" of nitrogen-rich energetic compounds, were studied theoretically at a high and reliable level of theory (viz., using the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ procedure). Quantum chemical calculations provided detailed insight into the thermolysis mechanism of DAT missing in the existing literature. Moreover, several contradictory assumptions on the mechanism and key intermediates of thermolysis were resolved. The unimolecular primary decomposition reactions of the seven isomers of DAT were studied in the gas phase and in the melt using a simplified model of the latter. The two-step reaction of N 2 elimination from the diamino tautomer was found to be the primary decomposition process of DAT in the gas phase and melt. The effective Arrhenius parameters of this process were calculated to be E a = 43.4 kcal mol -1 and log( A/s -1 ) = 15.2 in a good agreement with the experimental values. Contrary to the existing literature data, all other decomposition channels of DAT isomers turned out to be kinetically unimportant. Apart from this, a new primary decomposition channel yielding N 2 , cyanamide, and 1,1-diazene was found for some H-bonded dimers of DAT. We also determined a reliable and mutually consistent set of thermochemical values for DAT (Δ f H solid 0 = 74.5 ± 1.5 kcal·mol -1 ) by combining theoretically calculated (W1 multilevel procedure along with an isodesmic reaction) gas phase enthalpy of formation (Δ f H gas 0 = 100.7 ± 1.0 kcal·mol -1 ) and experimentally measured sublimation enthalpy (Δ sub H 0 = 26.2 ± 0.5 kcal·mol -1 ).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21812469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21812469"><span>Magnitude and nature of carbohydrate-aromatic interactions in fucose-phenol and fucose-indole complexes: CCSD(T) level interaction energy calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsuzuki, Seiji; Uchimaru, Tadafumi; Mikami, Masuhiro</p> <p>2011-10-20</p> <p>The CH/π contact structures of the fucose-phenol and fucose-indole complexes and the stabilization energies by formation of the complexes (E(form)) were studied by ab initio molecular orbital calculations. The three types of interactions (CH/π and OH/π interactions and OH/O hydrogen bonds) were compared and evaluated in a single molecular system and at the same level of theory. The E(form) calculated for the most stable CH/π contact structure of the fucose-phenol complex at the CCSD(T) level (-4.9 kcal/mol) is close to that for the most stable CH/π contact structure of the fucose-benzene complex (-4.5 kcal/mol). On the other hand the most stable CH/π contact structure of the fucose-indole complex has substantially larger E(form) (-6.5 kcal/mol). The dispersion interaction is the major source of the attraction in the CH/π contact structures of the fucose-phenol and fucose-indole complexes as in the case of the fucose-benzene complex. The electrostatic interactions in the CH/π contact structures are small (less than 1.5 kcal/mol). The nature of the interactions between the nonpolar surface of the carbohydrate and aromatic rings is completely different from that of the conventional hydrogen bonds where the electrostatic interaction is the major source of the attraction. The distributed multipole analysis and DFT-SATP analysis show that the dispersion interactions in the CH/π contact structure of fucose-indole complex are substantially larger than those in the CH/π contact structures of fucose-benzene and fucose-phenol complexes. The large dispersion interactions are responsible for the large E(form) for the fucose-indole complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMoSt1097..226L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMoSt1097..226L"><span>Quantum mechanics study of repulsive π-π interaction and flexibility of phenyl moiety in the iron azodioxide complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.</p> <p>2015-10-01</p> <p>In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28295852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28295852"><span>Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Greig, Chasen J; Cowles, Robert A</p> <p>2017-07-01</p> <p>Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28641437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28641437"><span>Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lemke, Kono H</p> <p>2017-06-21</p> <p>This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148m4302K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148m4302K"><span>Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knochenmuss, Richard; Sinha, Rajeev K.; Leutwyler, Samuel</p> <p>2018-04-01</p> <p>We measured accurate intermolecular dissociation energies D0 of the supersonic jet-cooled complexes of 1-naphthol (1NpOH) with the noble gases Ne, Ar, Kr, and Xe and with N2, using the stimulated-emission pumping resonant two-photon ionization method. The ground-state values D0(S0) for the 1NpOHṡS complexes with S= Ar, Kr, Xe, and N2 were bracketed to be within ±3.5%; they are 5.67 ± 0.05 kJ/mol for S = Ar, 7.34 ± 0.07 kJ/mol for S = Kr, 10.8 ± 0.28 kJ/mol for S = Xe, 6.67 ± 0.08 kJ/mol for isomer 1 of the 1NpOHṡN2 complex, and 6.62 ± 0.22 kJ/mol for the corresponding isomer 2. For S = Ne, the upper limit is D0 < 3.36 kJ/mol. The dissociation energies increase by 1%-5% upon S0 → S1 excitation of the complexes. Three dispersion-corrected density functional theory (DFT-D) methods (B97-D3, B3LYP-D3, and ωB97X-D) predict that the most stable form of these complexes involves dispersive binding to the naphthalene "face." A more weakly bound edge isomer is predicted in which the S moiety is H-bonded to the OH group of 1NpOH; however, no edge isomers were observed experimentally. The B97-D3 calculated dissociation energies D0(S0) of the face complexes with Ar, Kr, and N2 agree with the experimental values within <5%, but the D0(S0) for Xe is 12% too low. The B3LYP-D3 and ωB97X-D calculated D0(S0) values exhibit larger deviations to both larger and smaller dissociation energies. For comparison to 1-naphthol, we calculated the D0(S0) of the carbazole complexes with S = Ne, Ar, Kr, Xe, and N2 using the same DFT-D methods. The respective experimental values have been previously determined to be within <2%. Again, the B97-D3 results are in the best overall agreement with experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.146w4301L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.146w4301L"><span>Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemke, Kono H.</p> <p>2017-06-01</p> <p>This study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22416112-relativistic-effects-reaction-sg-co-sg-co-sub-prediction-mean-bond-energy-atomization-energy-existence-first-organometallic-transactinide-superheavy-hexacarbonyl-sg-co-sub','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22416112-relativistic-effects-reaction-sg-co-sg-co-sub-prediction-mean-bond-energy-atomization-energy-existence-first-organometallic-transactinide-superheavy-hexacarbonyl-sg-co-sub"><span>Relativistic effects for the reaction Sg + 6 CO → Sg(CO){sub 6}: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO){sub 6}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Malli, Gulzari L., E-mail: malli@sfu.ca</p> <p>2015-02-14</p> <p>Our ab initio all-electron fully relativistic Dirac–Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO){sub 6} as −7.39 and −6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO){sub 6} are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contributionmore » of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg–C and C–O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO){sub 6} is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO){sub 6}, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO){sub 6}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750047279&hterms=ethanol&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dethanol','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750047279&hterms=ethanol&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dethanol"><span>Raman spectra of gases. XVI - Torsional transitions in ethanol and ethanethiol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A.</p> <p>1975-01-01</p> <p>The Raman spectra of gaseous ethanol and ethanethiol have been investigated. Thiol torsional fundamentals for the gauche conformer of EtSH and EtSD have been observed and the asymmetric potential function for this vibration has been calculated. Methyl torsional transitions and overtones have also been observed for both of these molecules. Barriers to internal rotation for the methyl top are calculated to be 3.77 and 3.84 kcal/mol for the EtSH and EtSD compounds, respectively. Hydroxyl torsional fundamentals were observed at 207 and 170 per cm in the EtOH and EtOD spectra, respectively. Overtones of the methyl torsion in both molecules yield a barrier to internal rotation of 3.62 kcal/mol for the gauche conformer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26453901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26453901"><span>Glucose transformation to 5-hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arifin; Puripat, Maneeporn; Yokogawa, Daisuke; Parasuk, Vudhichai; Irle, Stephan</p> <p>2016-01-30</p> <p>Isomerization and transformation of glucose and fructose to 5-hydroxymethylfurfural (HMF) in both ionic liquids (ILs) and water has been studied by the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method coupled with ab initio electronic structure theory, namely coupled cluster single, double, and perturbative triple excitation (CCSD(T)). Glucose isomerization to fructose has been investigated via cyclic and open chain mechanisms. In water, the calculations support the cyclic mechanism of glucose isomerization; with the predicted activation free energy is 23.8 kcal mol(-1) at experimental condition. Conversely, open ring mechanism is more favorable in ILs with the energy barrier is 32.4 kcal mol(-1) . Moreover, the transformation of fructose into HMF via cyclic mechanism is reasonable; the calculated activation barriers are 16.0 and 21.5 kcal mol(-1) in aqueous and ILs solutions, respectively. The solvent effects of ILs could be explained by the decomposition of free energies and radial distribution functions of solute-solvent that are produced by RISM-SCF-SEDD. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998CPL...293...90N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998CPL...293...90N"><span>On the formation of the ·CH 2CH 2CH=NH 2+ distonic radical cation upon ionization of cyclopropylamine and allylamine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Minh Tho; Creve, Steven; Ha, Tae-Kyu</p> <p>1998-08-01</p> <p>Ab initio molecular orbital and density functional theory calculations have been applied to determine the relative stability of the cyclopropylamine 1 and allylamine (CH 2=CHCH 2NH 2+·2) radical cations and their isomers. It is confirmed that, upon ionization, 1 undergoes barrier-free ring-opening giving the distonic species ·CH 2CH 2CH=NH 2+3. 2 also rearranges by a 1,2-H-shift to the more stable 3 (by 70 kJ/mol) which is, however, less stable than the 1-aminopropene ion (CH 3-CH=CH-NH 2+·4) by 60 kJ/mol. The transition structure TS 2/3 lies 40 kJ/mol higher in energy than TS 3/4. Although QCISD and B3LYP calculations of isotropic hyperfine coupling constants agree reasonably with observed values, supporting the presence of the distonic 3 in ESR matrix experiments, the exclusive observation of 3, but not 4, is intriguing. This emphasizes the role of the matrix in stabilizing 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.781a2010D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.781a2010D"><span>Mechanistic approach for nitride fuel evolution and fission product release under irradiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolgodvorov, A. P.; Ozrin, V. D.</p> <p>2017-01-01</p> <p>A model for describing uranium-plutonium mixed nitride fuel pellet burning was developed. Except fission products generating, the model includes impurities of oxygen and carbon. Nitrogen behaviour in nitride fuel was analysed and the nitrogen chemical potential in solid solution with uranium-plutonium nitride was constructed. The chemical program module was tested with the help of thermodynamic equilibrium phase distribution calculation. Results were compared with analogous data in literature, quite good agreement was achieved, especially for uranium sesquinitride, metallic species and some oxides. Calculation of a process of nitride fuel burning was also conducted. Used mechanistic approaches for fission product evolution give the opportunity to find fission gas release fractions and also volumes of intergranular secondary phases. Calculations present that the most massive secondary phases are the oxide and metallic phases. Oxide phase contain approximately 1 % wt of substance over all time of burning with slightly increasing of content. Metallic phase has considerable rising of mass and by the last stage of burning it contains about 0.6 % wt of substance. Intermetallic phase has less increasing rate than metallic phase and include from 0.1 to 0.2 % wt over all time of burning. The highest element fractions of released gaseous fission products correspond to caesium and iodide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29565126','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29565126"><span>Thermal E/ Z Isomerization in First Generation Molecular Motors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuwahara, Shunsuke; Suzuki, Yuri; Sugita, Naoya; Ikeda, Mari; Nagatsugi, Fumi; Harada, Nobuyuki; Habata, Yoichi</p> <p>2018-04-20</p> <p>Determination of a thermal E/ Z isomerization barrier of first generation molecular motors is reported. Stable ( E)-1a directly converts to stable ( Z)-1c without photochemical E/ Z isomerization. The activation Gibbs energy of the isomerization was determined to be 123 kJ mol -1 by circular dichroism spectral changes. Density functional theory calculations show that ( Z)-1c is ∼11.4 kJ mol -1 more stable than ( E)-1a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CP....507...10M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CP....507...10M"><span>Tautomeric preferences of the cis and trans isomers of axitinib</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirzaei, M. Saeed; Taherpour, Avat Arman</p> <p>2018-05-01</p> <p>The tautomeric preferences of axitinib, a potent anticancer drug, as tyrosine kinase inhibitor have been investigated using quantum chemical calculations and docking methods. The energy differences between the two tautomers of trans-isomer are around 4 and 3 kcal mol-1 in vacuo and water, respectively, and for its cis-isomer (major photochemical isomerization product) this equilibrium reversed completely in favour of the second tautomer (not considered previously), which is about 7-8 kcal mol-1 more stable in both gas and aqueous media. The results indicate a very high activation energy for proton exchange for both [1,2] and [1,5] H-shift (around 50 kcal mol-1) in the gas phase, but inclusion of protic solvents (e.g. water) decrease this barrier to around 14 and 35 kcal mol-1 for the both hydrogen shift processes, respectively. In order to have better insight about the electronic structure of axitinib tautomers, the NBO, HOMO-LUMO, NICS and molecular electrostatic potential surfaces (MESP) calculations have been carried out. Docking investigations on the two more stable tautomers revealed that binding of the trans isomer of tautomer I to the active site of the receptor is the most favourable in the terms of energy and structure. This more stability could be attributed to the more hydrogen bonding of this tautomer with the protein residues in comparison to the second tautomer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16869547','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16869547"><span>[Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej</p> <p>2006-01-01</p> <p>On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1030475-hybrid-quantum-mechanical-molecular-mechanics-study-sn2-reaction-ch3cl+oh-water','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1030475-hybrid-quantum-mechanical-molecular-mechanics-study-sn2-reaction-ch3cl+oh-water"><span>Hybrid Quantum Mechanical/Molecular Mechanics Study of the SN2 Reaction of CH3Cl+OH- in Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yin, Hongyun; Wang, Dunyou; Valiev, Marat</p> <p>2011-11-03</p> <p>The SN2 mechanism for the reaction of CH3Cl + OH- in aqueous solution was investigated using combined quantum mechanical and molecular mechanics methodology. We analyzed structures of reactant, transition and product states along the reaction pathway. The free energy profile was calculated using the multi-layered representation with the DFT and CCSD(T) level of theory for the quantum-mechanical description of the reactive region. Our results show that the aqueous environment has a significant impact on the reaction process. We find that solvation energy contribution raises the reaction barrier by ~18.9 kcal/mol and the reaction free energy by ~24.5 kcal/mol. The presencemore » of the solvent also induces perturbations in the electronic structure of the solute leading to an increase of 3.5 kcal/mol for the reaction barrier and a decrease of 5.6 kcal/mol for the reaction free energy respectively. Combining the results of two previous calculation results on CHCl3 + OH- and CH2Cl2 + OH- reactions in water, we demonstrate that increase in the chlorination of the methyl group (from CH3Cl to CHCl3) is accompanied by the decrease in the free energy reaction barrier, with the CH3Cl + OH- having the largest barrier among the three reactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhB...48r5701H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhB...48r5701H"><span>On the Runge-Lenz-Pauli vector operator as an aid to the calculation of atomic processes in laboratory and astrophysical plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hey, J. D.</p> <p>2015-09-01</p> <p>On the basis of the original definition and analysis of the vector operator by Pauli (1926 Z. Phys. 36 336-63), and further developments by Flamand (1966 J. Math. Phys. 7 1924-31), and by Becker and Bleuler (1976 Z. Naturforsch. 31a 517-23), we consider the action of the operator on both spherical polar and parabolic basis state wave functions, both with and without direct use of Pauli’s identity (Valent 2003 Am. J. Phys. 71 171-75). Comparison of the results, with the aid of two earlier papers (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641-64, Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077-96), yields a convenient ladder technique in the form of a recurrence relation for calculating the transformation coefficients between the two sets of basis states, without explicit use of generalized hypergeometric functions. This result is therefore very useful for application to Stark effect and impact broadening calculations applied to high-n radio recombination lines from tenuous space plasmas. We also demonstrate the versatility of the Runge-Lenz-Pauli vector operator as a means of obtaining recurrence relations between expectation values of successive powers of quantum mechanical operators, by using it to provide, as an example, a derivation of the Kramers-Pasternack relation. It is suggested that this operator, whose potential use in Stark- and Zeeman-effect calculations for magnetically confined fusion edge plasmas (Rosato, Marandet and Stamm 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105702) and tenuous space plasmas ( H II regions) has not been fully explored and exploited, may yet be found to yield a number of valuable results for applications to plasma diagnostic techniques based upon rate calculations of atomic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28121127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28121127"><span>Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Xiubo; Ma, Xiujuan; Liu, Peng; Shang, Jiaxiang; Li, Xingguo; Liu, Tong</p> <p>2017-02-22</p> <p>In order to enhance the hydrogen storage properties of Mg, flowerlike NiS particles have been successfully prepared by solvothermal reaction method, and are subsequently ball milled with Mg nanoparticles (NPs) to fabricate Mg-5 wt % NiS nanocomposite. The nanocomposite displays Mg/NiS core/shell structure. The NiS shell decomposes into Ni, MgS and Mg 2 Ni multiple-phases, decorating on the surface of the Mg NPs after the first hydrogen absorption and desorption cycle at 673 K. The Mg-MgS-Mg 2 Ni-Ni nanocomposite shows enhanced hydrogenation and dehydrogenation rates: it can quickly uptake 3.5 wt % H 2 within 10 min at 423 K and release 3.1 wt % H 2 within 10 min at 573 K. The apparent hydrogen absorption and desorption activation energies are decreased to 45.45 and 64.71 kJ mol -1 . The enhanced sorption kinetics of the nanocomposite is attributed to the synergistic catalytic effects of the in situ formed MgS, Ni and Mg 2 Ni multiple-phase catalysts during the hydrogenation/dehydrogenation process, the porthole effects for the volume expansion and microstrain of the phase transformation of Mg 2 Ni and Mg 2 NiH 4 and the reduced hydrogen diffusion distance caused by nanosized Mg. This novel method of in situ producing multiple-phase catalysts gives a new horizon for designing high performance hydrogen storage material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992ECSS...34..471K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992ECSS...34..471K"><span>Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in south-west England</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koch, M. S.; Maltby, E.; Oliver, G. A.; Bakker, S. A.</p> <p>1992-05-01</p> <p>Denitrification rates were determined utilizing the acetylene blockage technique at three sites: upper mudflat, lower mudflat, and Halimione portulacoides marsh on the fringing wetlands of the Torridge River Estuary in South-west England. Denitrification rates were calculated from nitrous oxide (N 2O) production each month for 1 year with intact sediment cores extracted at low tide (0-5 cm). In the lower and upper mudflat sites denitrification rates were low ranging from 0·52 to 5·78 μmol and 1·28 to 4·36 μmol N 2 m -2 h -1, respectively. Denitrification rates in marsh sediments were consistently higher than those of the mudflat ranging from 2·51 to 59·00 μmol N 2 m -2 h -1. Amending river water to sediment cores stimulated lower and upper mudflat denitrification rates approximately 10-fold up to 106·39 and 96·73 μmol N 2 m -2 h -1, respectively. In marsh sediments, a two-fold increase in denitrification was found with river water amended resulting in a maximum rate of 114·80 μmol N 2 m -2 h -1. During the winter months, when riverine NO 3-N levels were at a maximum (2·47 to 2·93 mg l -1), denitrification rates were highest (75·24 to 114·99 μmol N 2 m -2 h -1) and conversely, during the summer both NO 3-N concentrations (1·0 to 1·70 mg l -1) and denitrification (0·95 to 37·38 μmol N 2 m -2 h -1) rates were at a minimum. Mudflat sediment redox potentials (Eh), within the theoretical range of NO 3-1 instability, were limited to the upper 5 mm, thus maximum denitrification rates may be restricted to the sediment surface. When calculating annual denitrification rates in tidal estuaries several factors should be considered including: seasonal NO 3-1 concentrations in tidal water, tidal flooding duration and amplitude, and the depth of the aerobic/anaerobic zone of the sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27057111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27057111"><span>Genetic trend for growth and wool performance in a closed flock of Bharat Merino sheep at sub temperate region of Kodai hills, Tamil Nadu.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mallick, P K; Thirumaran, S M K; Pourouchottamane, R; Rajapandi, S; Venkataramanan, R; Nagarajan, G; Murali, G; Rajendiran, A S</p> <p>2016-03-01</p> <p>The study was conducted at Southern Regional Research Center, ICAR-Central Sheep and Wool Research Institute (CSWRI), Mannavanur, Kodaikanal, Tamil Nadu to estimate genetic trends for birth weight (BWT), weaning weight (3WT), 6 months weight (6WT), and greasy fleece weight (GFY) in a Bharat Merino (BM) flock, where selection was practiced for 6WT and GFY. The data for this study represents a total of 1652 BM lambs; progeny of 144 sires spread over 15 years starting from 2000 to 2014, obtained from the BM flock of ICAR-SRRC (CSWRI), Mannavanur, Kodaikanal, Tamil Nadu, India. The genetic trends were calculated by regression of average predicted breeding values using software WOMBAT for the traits BWT, 3WT, 6WT and GFY versus the animal's birth year. The least square means were 3.28±0.02 kg, 19.08±0.23 kg, 25.00±0.35 kg and 2.13±0.07 kg for BWT, 3WT, 6WT and GFY, respectively. Genetic trends were positive and highly significant (p<0.01) for BWT, while the values for 3WT, 6WT and GFY though positive, were not significant. The estimates of genetic trends in BWT, 3WT, 6WT and GFY were 5 g, 0.8 g, 7 g and 0.3 g/year gain and the fit of the regression shows 55%, 22%, 42% and 12% coefficient of determination with the regressed value, respectively. In this study, estimated mean predicted breeding value (kg) in BWT and 3WT, 6WT and GFY were 0.067, 0.008, 0.036 and -0.003, respectively. Estimates of genetic trends indicated that there was a positive genetic improvement in all studied traits and selection would be effective for the improvement of body weight traits and GFY of BM sheep.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17046147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17046147"><span>pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S</p> <p>2007-02-01</p> <p>We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3573645','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3573645"><span>An ATR-FTIR Study on the Effect of Molecular Structural Variations on the CO2 Absorption Characteristics of Heterocyclic Amines, Part II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Robinson, Kelly; McCluskey, Adam; Attalla, Moetaz I</p> <p>2012-01-01</p> <p>This paper reports on an ATR-FTIR spectroscopic investigation of the CO2 absorption characteristics of a series of heterocyclic diamines: hexahydropyrimidine (HHPY), 2-methyl and 2,2-dimethylhexahydropyrimidine (MHHPY and DMHHPY), hexahydropyridazine (HHPZ), piperazine (PZ) and 2,5- and 2,6-dimethylpiperazine (2,6-DMPZ and 2,5-DMPZ). By using in situ ATR-FTIR the structure–activity relationship of the reaction between heterocyclic diamines and CO2 is probed. PZ forms a hydrolysis-resistant carbamate derivative, while HHPY forms a more labile carbamate species with increased susceptibility to hydrolysis, particularly at higher CO2 loadings (>0.5 mol CO2/mol amine). HHPY exhibits similar reactivity toward CO2 to PZ, but with improved aqueous solubility. The α-methyl-substituted MHHPY favours HCO3− formation, but MHHPY exhibits comparable CO2 absorption capacity to conventional amines MEA and DEA. MHHPY show improved reactivity compared to the conventional α-methyl- substituted primary amine 2-amino-2-methyl-1-propanol. DMHHPY is representative of blended amine systems, and its reactivity highlights the advantages of such systems. HHPZ is relatively unreactive towards CO2. The CO2 absorption capacity CA (mol CO2/mol amine) and initial rates of absorption RIA (mol CO2/mol amine min−1) for each reactive diamine are determined: PZ: CA=0.92, RIA=0.045; 2,6-DMPZ: CA=0.86, RIA=0.025; 2,5-DMPZ: CA=0.88, RIA=0.018; HHPY: CA=0.85, RIA=0.032; MHHPY: CA=0.86, RIA=0.018; DMHHPY: CA=1.1, RIA=0.032; and HHPZ: no reaction. Calculations at the B3LYP/6-31+G** and MP2/6-31+G** calculations show that the substitution patterns of the heterocyclic diamines affect carbamate stability, which influences hydrolysis rates. PMID:22517608</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26395146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26395146"><span>Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carvalho, Nathalia F; Pliego, Josefredo R</p> <p>2015-10-28</p> <p>Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4815313','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4815313"><span>Successful application of the DBLOC method to the hydroxylation of camphor by cytochrome p450</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jerome, Steven V.; Hughes, Thomas F.</p> <p>2015-01-01</p> <p>Abstract The activation barrier for the hydroxylation of camphor by cytochrome P450 was computed using a mixed quantum mechanics/molecular mechanics (QM/MM) model of the full protein‐ligand system and a fully QM calculation using a cluster model of the active site at the B3LYP/LACVP*/LACV3P** level of theory, which consisted of B3LYP/LACV3P** single point energies computed at B3LYP/LACVP* optimized geometries. From the QM/MM calculation, a barrier height of 17.5 kcal/mol was obtained, while the experimental value was known to be less than or equal to 10 kcal/mol. This process was repeated using the D3 correction for hybrid DFT in order to investigate whether the inadequate treatment of dispersion interaction was responsible for the overestimation of the barrier. While the D3 correction does reduce the computed barrier to 13.3 kcal/mol, it was still in disagreement with experiment. After application of a series of transition metal optimized localized orbital corrections (DBLOC) and without any refitting of parameters, the barrier was further reduced to 10.0 kcal/mol, which was consistent with the experimental results. The DBLOC method to C—H bond activation in methane monooxygenase (MMO) was also applied, as a second, independent test. The barrier in MMO was known, by experiment, to be 15.4 kcal/mol.1 After application of the DBLOC corrections to the MMO barrier compute by B3LYP, in a previous study, and accounting for dispersion with Grimme's D3 method, the unsigned deviation from experiment was improved from 3.2 to 2.3 kcal/mol. These results suggested that the combination of dispersion plus localized orbital corrections could yield significant quantitative improvements in modeling the catalytic chemistry of transition‐metal containing enzymes, within the limitations of the statistical errors of the model, which appear to be on the order of approximately 2 kcal/mole. PMID:26441133</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA108115','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA108115"><span>A Summary of Selected Data: DSDP Legs 1-19,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-09-01</p> <p>100 minerals may be applied in the future (densi ty water when the mineralogy and attenuation wt. water + wt. dry sed. + salt coefficients become...may be applied in the future when densities of some common minerals are the exact quantitative mineralogy and listed in Harms and Choquette (1965...calculation. These measurements different attenuation coefficient than were used to get a " ball park" answer that of calcite. for a particular sediment type</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18922031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18922031"><span>Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Copeland, Kari L; Anderson, Julie A; Farley, Adam R; Cox, James R; Tschumper, Gregory S</p> <p>2008-11-13</p> <p>To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25635983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25635983"><span>Correlation study on waist circumference-triglyceride (WT) index and coronary artery scores in patients with coronary heart disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, R-F; Liu, X-Y; Lin, Z; Zhang, G</p> <p>2015-01-01</p> <p>Coronary disease is analyzed through common lipid profiles, but these analyses fail to account for residual risk due to abdominal weight and elevated TG levels. We aimed to investigate the relationship between the waist circumference × triglyceride index (WT index) and the Coronary Artery Score (CAS) in patients with coronary heart disease. 346 patients in our Cardiology Department were recruited from September 2007 to August 2011 and divided into two groups according to whether the patients presented with metabolic syndrome. We performed coronary angiography using the standard Judkins method. The severity of coronary artery stenosis and the CAS were calculated and analyzed with a computerized quantitative analysis system. The signs index, which includes the body mass index (BMI), waist circumference, hip circumference, waist-hip-ratio, and waist-height-ratio, the blood glucose and blood lipid index of all the patients were collected and used to calculate the WT index (waist circumference x triglyceride index. We performed a correlative analysis with age, gender, body mass index, blood glucose and blood lipid, blood pressure and other risk indicators of all patients as the dependent variables and the CAS as the independent variable. We show that the CAS is positively correlated to the WT index. Several lipid profiles and waist circumference were significantly associated with the CAS. The WT index is correlated to the CAS and is a good predictor for the development of coronary artery disease; it can be applied in the clinic for early intervention in populations at risk for coronary heart disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8288757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8288757"><span>Polypeptide profiles of human oocytes and preimplantation embryos.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Capmany, G; Bolton, V N</p> <p>1993-11-01</p> <p>The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820059239&hterms=1073&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231073','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820059239&hterms=1073&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231073"><span>Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whittenberger, J. D.; Wirth, G.</p> <p>1982-01-01</p> <p>A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890032115&hterms=Glasses+SiO2&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGlasses%2BSiO2','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890032115&hterms=Glasses+SiO2&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGlasses%2BSiO2"><span>Crystallization and characterization of Y2O3-SiO2 glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drummond, C. H., III; Lee, W. E.; Sanders, W. A.; Kiser, J. D.</p> <p>1988-01-01</p> <p>Glasses in the yttria-silica system with 20-40 mol pct Y2O3 have been subjected to recrystallization studies after melting at 1900-2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma-prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat-treatment in air at 1100-1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristobalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3245049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3245049"><span>Appearance and partial purification of a high molecular weight protein in crabs exposed to saxitoxin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barber, K G; Kitts, D D; Townsley, P M; Smith, D S</p> <p>1988-01-01</p> <p>This paper provides evidence for a protein component which appears to be involved in the seasonal resistance of small shore crabs, Hemigrapsus oregonesis and Hemigrapsus nudus to saxitoxin, a principle neurotoxin involved in paralytic shellfish poisoning (PSP). This unique protein complex was isolated and partially purified by ion exchange chromatography using DEAE-cellulose from visceral tissue extracts of resistant crabs. The complex was absent in control crabs that were sensitive to saxitoxin. In addition, the protein complex was induced in the crab after acute administration of low doses of saxitoxin. Results indicate that the protein complex is acidic in nature and has an apparent mol. wt of 145,000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V33C2894D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V33C2894D"><span>A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dachs, E.; Geiger, C. A.; Benisek, A.</p> <p>2012-12-01</p> <p>The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag). The calculated lattice entropy at 298.15 K is Svib = 303.3 J/molK and it contributes about 90% to the total standard entropy at 298 K. The non-lattice entropy is Sex = 33.4 J/molK and consists of Smag = 32.1 J/molK and Sel = 1.3 J/molK contributions. Using the So = 336.7 J/molK value and the Cp polynomial for almandine, we derived its enthalpy of formation, ΔHof, from an analysis of experimental phase equilibrium results on the reactions almandine + 3rutile = 3ilmenite + sillimanite + 2quartz and 2ilmenite = 2iron + 2rutile + O2. ΔHof = -5269.63 kJ/mol was obtained. So for grossular, pyrope, spessartine, and almandine, as well as their Cp behavior to high temperatures, have all been measured calorimetrically. Uncertainties in older calorimetric studies appear to have been resolved. The standard thermodynamic properties Vo and So are now well determined for all four garnets. In addition, ΔHof for all, except possibly spessartine, also appear to be well known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3026P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3026P"><span>Some physical aspects of fluid-fluxed melting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patiño Douce, A.</p> <p>2012-04-01</p> <p>Fluid-fluxed melting is thought to play a crucial role in the origin of many terrestrial magmas. We can visualize the fundamental physics of the process as follows. An infinitesimal amount of fluid infiltrates dry rock at the temperature of its dry solidus. In order to restore equilibrium the temperature must drop, so that enthalpy is released and immediately reabsorbed as enthalpy of melting. The amount of melt produced must be such that the energy balance and thermodynamic equilibrium conditions are simultaneously satisfied. We wish to understand how an initially dry rock melts in response to progressive fluid infiltration, under both batch and fractional melting constraints. The simplest physical model for this process is a binary system in which one of the components makes up a pure solid phase and the other component a pure fluid phase, and in which a binary melt phase exists over certain temperature range. Melting point depression is calculated under the assumption of ideal mixing. The equations of energy balance and thermodynamic equilibrium are solved simultaneously for temperature and melt fraction, using an iterative procedure that allows addition of fluid in infinitesimal increments. Batch melting and fractional melting are simulated by allowing successive melt increments to remain in the system (batch) or not (fractional). Despite their simplified nature, these calculations reveal some important aspects of fluid-fluxed melting. The model confirms that, if the solubility of the fluid in the melt is sufficiently high, fluid fluxed melting is an efficient mechanism of magma generation. One might expect that the temperature of the infiltrating fluid would have a significant effect on melt productivity, but the results of the calculations show this not to be the case, because a relatively small mass of low molecular weight fluid has a strong effect on the melting point of minerals with much higher molecular weights. The calculations reveal the somewhat surprising result that fluid infiltration produces more melt during fractional melting than during batch melting. This behavior, which is opposite to that of decompression melting of a dry solid, arises because the melting point depression effect of the added fluid is greater during fractional melting than during batch melting, which results in a greater release of enthalpy and, therefore, greater melt production for fractional melting than for batch melting, for the same total amount of fluid added. The difference may be considerable. As an example, suppose that 0.1 mols of H2O infiltrate 1 mol or silicate rock. Depending on the rock composition this may corresponds to ˜ 1 wt% H2O. For a given choice of model parameters (initial temperature, heat capacity and entropy of fusion), about 28% of the rock melts during fractional melting, versus some 23 % during batch melting. Fluid fluxing is a robust process of melt generation, without which magmatism at Earth's convergent plate margins would be impossible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2291938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2291938"><span>Effect of lateral mobility of fluorescent probes in lipid mixing assays of cell fusion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, S K; Cheng, M; Hui, S W</p> <p>1990-11-01</p> <p>Monolayers of human erythrocytes, immobilized on a cover slip, were induced to fuse by polyethylene glycol (mol wt 8,000). The mobility of fluorescent probes, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadizol-4-yl)amino]dodecanoyl] phosphatidyl-choline (C12-NBD-PC), from labeled cells to unlabeled cells was monitored by video-enhanced fluorescence microscopy. A dequenching curve was obtained from the measurement of fluorescence intensities of pairs of fused cells over time. The dequenching curve and the curve obtained from macroscopic measurements of a cell monolayer (described in the preceding article) were compared and discussed. The slow probe transfer rate between a pair of fused cells was explained by a diffusion model based on membrane area conservation and the geometry of the fusion lumen. An equivalent lumen between two fused cells, thought to be the main rate limitation of probe mobility after fusion, was calculated to be approximately 130 nm in diameter. Lumens of 75 nm in diameter were observed by electron microscopy. Thus, the rate of macroscopic fluorescence dequenching depends not only upon the fusion efficiency, but also upon the number of simultaneous fusion partners, the geometry of their contact points, and the lateral mobility of the fluorescent probes through these points. The relative fusion efficiency can be derived only from the saturation dequenching values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat..47.1383W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat..47.1383W"><span>Theoretical Investigation of the Thermodynamic Properties of η'-(Cu, Co)6Sn5 Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Heng; Zhang, Xuechao; Zheng, Bing; Zhao, Xiuchen; Liu, Ying; Li, Hong; Cheng, Jingwei</p> <p>2018-02-01</p> <p>We perform theoretical investigations on the structures of η'-Cu6Sn5-based intermetallic compounds (IMCs) with different Co doping concentration (0-12.2 wt.%) based on density functional theory (DFT). The variations of the structural, elastic and thermodynamic properties of (Cu, Co)6Sn5 IMCs with pressure (0-18 GPa) and temperature (0-500 K) are obtained with the application of quasi-harmonic Debye model for the non-equilibrium Gibbs free energy. It is found that the volume of (Cu, Co)6Sn5 shrinks with Co concentration increasing in the range of imposed pressure and temperature. At the same time, the bulk modulus of Cu4Co2Sn5 is the largest among those of Cu6Sn5, Cu5Co1Sn5 and Cu4Co2Sn5. By calculating the Debye temperature of Cu6Sn5, we find that it is higher than that of Cu5Co1Sn5 and Cu4Co2Sn5 when the pressure is higher than 2 GPa. Meanwhile, heat capacities of all three Cu6Sn5, Cu5Co1Sn5, and Cu4Co2Sn5 converge to a near-constant value at about 1090 J/mol K in the range of the imposed pressures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25748688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25748688"><span>ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang</p> <p>2015-03-09</p> <p>The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy "controlling competitive reaction" strategy by selecting the thiourea as S(2-) source and Zn(Ac)₂·2H₂O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m(2)g(-1), microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h(-1) under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...5E8858W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...5E8858W"><span>ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang</p> <p>2015-03-01</p> <p>The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy ``controlling competitive reaction'' strategy by selecting the thiourea as S2- source and Zn(Ac)2.2H2O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m2g-1, microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h-1 under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19320448','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19320448"><span>Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stepanian, Stepan G; Karachevtsev, Maksym V; Glamazda, Alexander Yu; Karachevtsev, Victor A; Adamowicz, L</p> <p>2009-04-16</p> <p>In this work, we have used Raman spectroscopy and quantum chemical methods (MP2 and DFT) to study the interactions between nucleic acid bases (NABs) and single-walled carbon nanotubes (SWCNT). We found that the appearance of the interaction between the nanotubes and the NABs is accompanied by a spectral shift of the high-frequency component of the SWCNT G band in the Raman spectrum to a lower frequency region. The value of this shift varies from 0.7 to 1.3 cm(-1) for the metallic nanotubes and from 2.1 to 3.2 cm(-1) for the semiconducting nanotubes. Calculations of the interaction energies between the NABs and a fragment of the zigzag(10,0) carbon nanotube performed at the MP2/6-31++G(d,p)[NABs atoms]|6-31G(d)[nanotube atoms] level of theory while accounting for the basis set superposition error during geometry optimization allowed us to order the NABs according to the increasing interaction energy value. The order is: guanine (-67.1 kJ mol(-1)) > adenine (-59.0 kJ mol(-1)) > cytosine (-50.3 kJ mol(-1)) approximately = thymine (-50.2 kJ mol(-1)) > uracil (-44.2 kJ mol(-1)). The MP2 equilibrium structures and the interaction energies were used as reference points in the evaluation of the ability of various functionals in the DFT method to predict those structures and energies. We showed that the M05, MPWB1K, and MPW1B95 density functionals are capable of correctly predicting the SWCNT-NAB geometries but not the interaction energies, while the M05-2X functional is capable of correctly predicting both the geometries and the interaction energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27933043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27933043"><span>Antimicrobial Susceptibility of Flavobacterium psychrophilum from Chilean Salmon Farms and Their Epidemiological Cut-Off Values Using Agar Dilution and Disk Diffusion Methods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miranda, Claudio D; Smith, Peter; Rojas, Rodrigo; Contreras-Lynch, Sergio; Vega, J M Alonso</p> <p>2016-01-01</p> <p>Flavobacterium psychrophilum is the most important bacterial pathogen for freshwater farmed salmonids in Chile. The aims of this study were to determine the susceptibility to antimicrobials used in fish farming of Chilean isolates and to calculate their epidemiological cut-off (CO WT ) values. A number of 125 Chilean isolates of F. psychrophilum were isolated from reared salmonids presenting clinical symptoms indicative of flavobacteriosis and their identities were confirmed by 16S rRNA polymerase chain reaction. Susceptibility to antibacterials was tested on diluted Mueller-Hinton by using an agar dilution MIC method and a disk diffusion method. The CO WT values calculated by Normalized Resistance Interpretation (NRI) analysis allow isolates to be categorized either as wild-type fully susceptible (WT) or as manifesting reduced susceptibility (NWT). When MIC data was used, NRI analysis calculated a CO WT of ≤0.125, ≤2, and ≤0.5 μg mL -1 for amoxicillin, florfenicol, and oxytetracycline, respectively. For the quinolones, the CO WT were ≤1, ≤0.5, and ≤0.125 μg mL -1 for oxolinic acid, flumequine, and enrofloxacin, respectively. The disk diffusion data sets obtained in this work were extremely diverse and were spread over a wide range. For the quinolones there was a close agreement between the frequencies of NWT isolates calculated using MIC and disk data. For oxolinic acid, flumequine, and enrofloxacin the frequencies were 45, 39, and 38% using MIC data, and 42, 41, and 44%, when disk data were used. There was less agreement with the other antimicrobials, because NWT frequencies obtained using MIC and disk data, respectively, were 24 and 10% for amoxicillin, 8 and 2% for florfenicol, and 70 and 64% for oxytetracycline. Considering that the MIC data was more precise than the disk diffusion data, MIC determination would be the preferred method for susceptibility testing for this species and the NWT frequencies derived from the MIC data sets should be considered as the more authoritative. Despite the high frequency of isolates showing full susceptibility to florfenicol, the significant frequencies of isolates exhibiting reduced susceptibility to oxytetracycline and quinolones may result in treatment failures when these agents are used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA248764','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA248764"><span>United States Air Force Summer Research Program - 1991. Summer Faculty Research Program (SFRP) Reports. Volume 2. Armstrong Laboratory, Wilford Hall Medical Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-12-01</p> <p>results were to be generated in a form suitable for use in the Physiologically Based Pharmacokinetic Models. The literature was searched from 1979 to...body Blood flow % Cardiac 02 consumption wt(kg) weight (ml/min) output (ml/min/organ) Brain 1.4 2.0 775 15 46 Heart 0.3 0.43 175 3.3 23 Kidneys 0.3 0.43...Plasma Flow 500-800 ml/min(calculated per 24 hours) Volume, Blood 49-75m1\\kg body wt.Male 56-75m1/kg body wt.Female 2 500-400m1 /m2 Plasma 31-55m1/kg</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>