Sample records for calculated temperature profiles

  1. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  2. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  3. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J. A.; Baumberger, V.

    1978-01-01

    The author has identified the following significant results. To investigate the general relationship between surface temperature and soil moisture profiles, a series of model calculations were carried out. Soil temperature profiles were calculated during a complete diurnal cycle for a variety of moisture profiles. Preliminary results indicate the surface temperature difference between two sites measured at about 1400 hours is related to the difference in soil moisture within the diurnal damping depth (about 50 cm). The model shows this temperature difference to vary considerably throughout the diurnal cycle.

  4. Effect of Internal Solitary Waves on Underwater Acoustic Propagation

    DTIC Science & Technology

    2010-01-01

    and 760 m from an expendable bathyther- mograph and one temperature profile below 760 m from the Navy’s Gen- eralized Digital Environment Model ( GDEM ...To calculate sound speed, the GDEM (average of July and August) salinity profile (nearest to CMB) was used. The sound speeds calculated from the GDEM ...from the GDEM sa- linity profile and 424 temperature pro- files generated the range-dependent SSPs (Figure 6). Comparison of the acoustic propagation

  5. Are anharmonicity corrections needed for temperature-profile calculations of interiors of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1982-07-01

    The temperature profile of planetary interiors is an important item of information, because many thermodynamic or geodynamic investigations of a planet's interior require an estimate of the temperature profile. Modeling studies of the thermal history or convective processes focus in detail on the thermal profile of the planet. A description is presented of results which show how the present (or equilibrium) interior temperature profile is related to certain constraints placed on the planet, especially the physical properties of the mantle material. These properties depend upon a priori assumptions of chemical composition. The investigation is mainly concerned with experimental and theoretical data appropriate to mantle minerals, in order to justify the use of a simple equation-of-state for planet interiors. It is found that anharmonicity does not seem to be required for calculations of interior properties of the terrestrial planets.

  6. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak

    Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. In conclusion, the degradation in the life of the IGBT power device is predicted basedmore » on time-dependent temperature calculation.« less

  7. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications

    DOE PAGES

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak; ...

    2015-07-15

    Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. In conclusion, the degradation in the life of the IGBT power device is predicted basedmore » on time-dependent temperature calculation.« less

  8. Feasibility of Coupling Between a Single-Mode Elliptical-Core Fiber and a Single Mode Rib Waveguide Over Temperature. Ph.D. Thesis - Akron Univ., Aug. 1995

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.

    1995-01-01

    To determine the feasibility of coupling the output of an optical fiber to a rib waveguide in a temperature environment ranging from 20 C to 300 C, a theoretical calculation of the coupling efficiency between the two was investigated. This is a significant problem which needs to be addressed to determine whether an integrated optic device can function in a harsh temperature environment. Because the behavior of the integrated-optic device is polarization sensitive, a polarization-preserving optic fiber, via its elliptical core, was used to couple light with a known polarization into the device. To couple light energy efficiently from an optical fiber into a channel waveguide, the design of both components should provide for well-matched electric field profiles. The rib waveguide analyzed was the light input channel of an integrated-optic pressure sensor. Due to the complex geometry of the rib waveguide, there is no analytical solution to the wave equation for the guided modes. Approximation or numerical techniques must be utilized to determine the propagation constants and field patterns of the guide. In this study, three solution methods were used to determine the field profiles of both the fiber and guide: the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of a rib channel waveguide and elliptical fiber at two temperatures, 20 C and 300 C. These temperatures were chosen to represent a nominal and a high temperature that the device would experience. Using the electric field profile calculated from each method, the theoretical coupling efficiency between the single-mode optical fiber and rib waveguide was calculated using the overlap integral and results of the techniques compared. Initially, perfect alignment was assumed and the coupling efficiency calculated. Then, the coupling efficiency calculation was repeated for a range of transverse offsets at both temperatures. Results of the calculation indicate a high coupling efficiency can be achieved when the two components were properly aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  9. Calculated coupling efficiency between an elliptical-core optical fiber and an optical waveguide over temperature

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Weisshaar, Andreas; Li, Jian; Beheim, Glenn

    1995-01-01

    To determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.

  10. Temperature profile and equipartition law in a Langevin harmonic chain

    NASA Astrophysics Data System (ADS)

    Kim, Sangrak

    2017-09-01

    Temperature profile in a Langevin harmonic chain is explicitly derived and the validity of the equipartition law is checked. First, we point out that the temperature profile in previous studies does not agree with the equipartition law: In thermal equilibrium, the temperature profile deviates from the same temperature distribution against the equipartition law, particularly at the ends of the chain. The matrix connecting temperatures of the heat reservoirs and the temperatures of the harmonic oscillators turns out to be a probability matrix. By explicitly calculating the power spectrum of the probability matrix, we will show that the discrepancy comes from the neglect of the power spectrum in higher frequency ω, which is in decay mode, and related with the imaginary number of wave number q.

  11. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  12. Line mixing calculation in the ν 6Q-branches of N 2-broadened CH 3Br at low temperatures

    NASA Astrophysics Data System (ADS)

    Gomez, L.; Tran, H.; Jacquemart, D.

    2009-07-01

    In an early study [H. Tran, D. Jacquemart, J.Y. Mandin, N. Lacome, JQSRT 109 (2008) 119-131], line mixing effects of the ν 6 band of methyl bromide were observed and modeled at room temperature. In the present work, line mixing effects have been considered at low temperatures using state-to-state collisional rates which were modeled by a fitting law based on the energy gap and a few fitting parameters. To validate the model, several spectra of methyl bromide perturbed by nitrogen have been recorded at various temperatures (205-299 K) and pressures (230-825 hPa). Comparisons between measured spectra and calculations using both direct calculation from relaxation operator and Rosenkranz profile have been performed showing improvement compared to the usual Lorentz profile. Note that the temperature dependence of the spectroscopic parameters has been taken into account using results of previous studies.

  13. Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating

    NASA Technical Reports Server (NTRS)

    Ko, William I.

    2004-01-01

    This research investigates thermal buckling characteristics of rectangular panels subjected to different types of humped temperature profile heating. Minimum potential energy and finite-element methods are used to calculate the panel buckling temperatures. The two methods give fairly close thermal buckling solutions. 'Buckling temperature magnification factor of the first kind, eta' is established for the fixed panel edges to scale up the buckling solution of uniform temperature loading case to give the buckling solution of the humped temperature profile loading cases. Also, 'buckling temperature magnification factor of the second kind, xi' is established for the free panel edges to scale up the buckling solution of humped temperature profile loading cases with unheated boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up.

  14. Atmospheric studies from the Mars Science Laboratory Entry, Descent and Landing atmospheric structure reconstruction

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Maue, A.; Withers, P.

    2016-01-01

    The Mars Science Laboratory (MSL) entered the martian atmosphere on Aug. 6, 2012 landing in Gale crater (4.6°S, 137.4°E) in the local mid-afternoon. Aerodynamic accelerations were measured during descent and atmospheric density, pressure and temperature profiles have been calculated from this data. Using an averaging technique developed for the NASA Phoenix Mars mission, the profiles are extended to 134.1 km, twice that of the engineering reconstruction. Large-scale temperature oscillations in the MSL temperature profile are suggestive of thermal tides. Comparing the MSL temperature profile with measured Mars Climate Sounder temperature profiles and Mars Climate Database model output highlights the presence of diurnal tides. Derived vertical wavelengths for the diurnal migrating tide are larger than predicted from idealized tidal theory, indicating an added presence of nonmigrating diurnal tides. Sub-CO2 condensation mesospheric temperatures, very similar to the Pathfinder temperature profile, allude to the possibility of CO2 clouds. This is however not supported by recent observations and models.

  15. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  16. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  17. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  18. Thermal modeling of the lithium/polymer battery

    NASA Astrophysics Data System (ADS)

    Pals, C. R.

    1994-10-01

    Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

  19. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-07-01

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  20. Effect of Fuel Temperature Profile on Eigenvalue Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C

    2008-01-01

    Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less

  1. Twilight and nighttime ionospheric temperatures from oxygen 6300- and 5577-A spectral-line profiles.

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi , M. A.

    1972-01-01

    Use of Fabry-Perot interferometer measurements of atomic-oxygen 6300- and 5577-A line profiles from twilight and nightglow to determine the neutral temperatures in the F2 and E regions of the earth's ionosphere. The exospheric temperatures determined from the 6300-A profiles are usually somewhat higher than the temperatures calculated from Jacchia's model, and differences as large as about 300 K are noted when the exospheric temperature equals 1500 to 1600 K. The postsunset and predawn rate of change of the exospheric temperature is often substantially larger than the Jacchia prediction. The 5577-A (E region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.

  2. Statistical analysis of stratospheric temperature and ozone profile data for trends and model comparison

    NASA Technical Reports Server (NTRS)

    Tiao, G. C.

    1992-01-01

    Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.

  3. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  4. Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, E. R.; Yu, Y.; Kim, T. K.

    The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The effortsmore » in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the STAR-CCM+ calculations. The HCFs of the peak temperatures at cladding outer surface, cladding inner wall surface, and fuel centerline induced by cladding manufacturing tolerance and uncertainties on the cladding, coolant, and fuel properties were evaluated for the AFR-100. Some assessment on the effect of wire wrap configuration and size of the bundle shows that it is practical to use the 7-pin bare rod bundle to calculate the HCFs. The resulting HCFs obtained from the high-fidelity SHARP calculations are generally smaller than those developed for the earlier SFRs because the most uncertainties involved in the modeling and simulations were disappeared. For completeness, additional investigations are planned in FY 2018, which will use random sampling techniques.« less

  5. Argonne Bubble Experiment Thermal Model Development III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Cynthia Eileen

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less

  6. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    NASA Astrophysics Data System (ADS)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  7. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  8. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  9. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  10. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  11. Comparison of modeled and experimental PV array temperature profiles for accurate interpretation of module performance and degradation

    NASA Astrophysics Data System (ADS)

    Elwood, Teri; Simmons-Potter, Kelly

    2017-08-01

    Quantification of the effect of temperature on photovoltaic (PV) module efficiency is vital to the correct interpretation of PV module performance under varied environmental conditions. However, previous work has demonstrated that PV module arrays in the field are subject to significant location-based temperature variations associated with, for example, local heating/cooling and array edge effects. Such thermal non-uniformity can potentially lead to under-prediction or over-prediction of PV array performance due to an incorrect interpretation of individual module temperature de-rating. In the current work, a simulated method for modeling the thermal profile of an extended PV array has been investigated through extensive computational modeling utilizing ANSYS, a high-performance computational fluid dynamics (CFD) software tool. Using the local wind speed as an input, simulations were run to determine the velocity at particular points along modular strings corresponding to the locations of temperature sensors along strings in the field. The point velocities were utilized along with laminar flow theories in order to calculate Nusselt's number for each point. These calculations produced a heat flux profile which, when combined with local thermal and solar radiation profiles, were used as inputs in an ANSYS Thermal Transient model that generated a solar string operating temperature profile. A comparison of the data collected during field testing, and the data fabricated by ANSYS simulations, will be discussed in order to authenticate the accuracy of the model.

  12. Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.

    1981-01-01

    A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.

  13. A small porous-plug burner for studies of combustion chemistry and soot formation

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Schrader, P. E.; Catalano, A. L.; Johansson, K. O.; Bohlin, G. A.; Richards-Henderson, N. K.; Kliewer, C. J.; Michelsen, H. A.

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  14. A small porous-plug burner for studies of combustion chemistry and soot formation.

    PubMed

    Campbell, M F; Schrader, P E; Catalano, A L; Johansson, K O; Bohlin, G A; Richards-Henderson, N K; Kliewer, C J; Michelsen, H A

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  15. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  16. Assessment of COSMIC radio occultation and AIRS hyperspectral IR sounder temperature products in the stratosphere using observed radiances

    NASA Astrophysics Data System (ADS)

    Feltz, M. L.; Knuteson, R. O.; Revercomb, H. E.

    2017-08-01

    Upper air temperature is defined as an essential climate variable by the World Meteorological Organization. Two remote sensing technologies being promoted for monitoring stratospheric temperatures are GPS radio occultation (RO) and spectrally resolved IR radiances. This study assesses RO and hyperspectral IR sounder derived temperature products within the stratosphere by comparing IR spectra calculated from GPS RO and IR sounder products to coincident IR observed radiances, which are used as a reference standard. RO dry temperatures from the University Corporation for Atmospheric Research (UCAR) Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission are compared to NASA Atmospheric Infrared Sounder (AIRS) retrievals using a previously developed profile-to-profile collocation method and vertical temperature averaging kernels. Brightness temperatures (BTs) are calculated for both COSMIC and AIRS temperature products and are then compared to coincident AIRS measurements. The COSMIC calculated minus AIRS measured BTs exceed the estimated 0.5 K measurement uncertainty for the winter time extratropics around 35 hPa. These differences are attributed to seasonal UCAR COSMIC biases. Unphysical vertical oscillations are seen in the AIRS L2 temperature product in austral winter Antarctic regions, and results imply a small AIRS tropical warm bias around 35 hPa in the middle stratosphere.

  17. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A computer code which can account for plastic deformation effects on stress generated in silicon sheet grown at high speeds is fully operative. Stress and strain rate distributions are presented for two different sheet temperature profiles. The calculations show that residual stress levels are very sensitive to details of the cooling profile in a sheet with creep. Experimental work has been started in several areas to improve understanding of ribbon temperature profiles and stress distributions associated with a 10 cm wide ribbon cartridge system.

  18. Greenhouse effects on Venus

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  19. An efficient routine for infrared radiative transfer in a cloudy atmosphere

    NASA Technical Reports Server (NTRS)

    Chou, M. D.; Kouvaris, L.

    1981-01-01

    A FORTRAN program that calculates the atmospheric cooling rate and infrared fluxes for partly cloudy atmospheres is documented. The IR fluxes in the water bands and the 9.6 and 15 micron bands are calculated at 15 levels ranging from 1.39 mb to the surface. The program is generalized to accept any arbitrary atmospheric temperature and humidity profiles and clouds as input and return the cooling rate and fluxes as output. Sample calculations for various atmospheric profiles and cloud situations are demonstrated.

  20. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  1. Model 'zero-age' lunar thermal profiles resulting from electrical induction

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.

  2. Calculation of the Naval Long and Short Waste Package Three-Dimensional Thermal Interface Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Marr

    2006-10-25

    The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.

  3. The effect of safety factor profile on transport in steady-state, high-performance scenarios

    DOE PAGES

    Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; ...

    2012-03-09

    In this study, an analysis of the dependence of transport on the safety factor profile in high-performance, steady-state scenario discharges is presented. This is based on experimental scans of q 95 and q min taken with fixed β N, toroidal field, double-null plasma shape, divertor pumping, and electron cyclotron current drive input. The temperature and thermal diffusivity profiles were found to vary considerably with the q-profile, and these variations were significantly different for electrons and ions. With fixed q 95, both temperature profiles increase and broaden as q min is increased and the magnetic shear becomes low or negative inmore » the inner half radius, but these temperature profile changes are stronger for the electrons. Power balance calculations show the peak in the ion thermal diffusivity (χ i) at ρ – 0.6 – 0.8 increases with q 95 or q min.« less

  4. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  5. Spatial variation of stratospheric aerosol acidity and model refractive index - Implications of recent results

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hamill, P.

    1984-01-01

    Recent experimental results indicate that little or no solid ammonium sulfate is present in background stratospheric aerosols. Other results allow straightforward calculation of sulfuric acid/water droplet properties (acidity, specific gravity, refractive index) as functions of stratospheric temperature and humidity. These results are combined with a variety of latitudinal and seasonal temperature and humidity profiles to obtain corresponding profiles of droplet properties. These profiles are used to update a previous model of stratospheric aerosol refractive index. The new model retains the simplifying approximation of vertically constant refractive index in the inner stratosphere, but has sulfuric acid/water refractive index values that significantly exceed the previously used room temperature values. Mean conversion ratios (e.g., extinction-to-number, backscatter-to-volume) obtained using Mie scattering calculations with the new refractive indices are very similar to those obtained for the old indices, because the effects of deleting ammonium sulfate and increasing acid indices tend to cancel each other.

  6. Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod

    NASA Astrophysics Data System (ADS)

    Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.

    2003-09-01

    The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.

  7. On vertical profile of ozone at Syowa

    NASA Technical Reports Server (NTRS)

    Chubachi, Shigeru

    1994-01-01

    The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.

  8. The 60 GHz radiometric local vertical sensor experiment

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.

    1973-01-01

    The experiment concept involves the use of millimeter wave radiation the atmospheric oxygen to provide vertical sensing information to a satellite-borne radiometer. The radiance profile studies require the calculation of ray brightness temperature as a function of tangential altitude and atmosphere model, and the computer program developed for this purpose is discussed. Detailed calculations have been made for a total of 12 atmosphere models, including some showing severe warning conditions. The experiment system analysis investigates the effect of various design choices on system behavior. Calculated temperature profiles are presented for a wide variety of frequencies, bandwidths, and atmosphere models. System performance is determined by the convolution of the brightness temperature and an assumed antenna pattern. A compensation scheme to account for different plateau temperatures is developed and demonstrated. The millimeter wave components developed for the local vertical sensor are discussed, with emphasis on the antenna, low noise mixer, and solid state local oscillator. It was concluded that a viable sensing technique exists, useful over a wide range of altitude with an accuracy generally on the order of 0.01 degree or better.

  9. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.

  10. RF current profile control studies in the alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.

    1999-09-01

    Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.

  11. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  12. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  13. High temperature spectral emissivity measurement using integral blackbody method

    NASA Astrophysics Data System (ADS)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  14. A Two-Temperature Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Takizawa, Motokazu

    1998-12-01

    We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, the ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through Coulomb collisions and reach equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a megaparsec scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of a two-temperature plasma by Fox & Loeb with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about half the mean temperature at radii ~1 Mpc. This could lead to about a 50% underestimation in the total mass contained within ~1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ~=1.5, whereas those of mean temperature are ~=1.3 for r >= 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.

  15. Reentry heating analysis of space shuttle with comparison of flight data

    NASA Technical Reports Server (NTRS)

    Gong, L.; Quinn, R. D.; Ko, W. L.

    1982-01-01

    Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow.

  16. Modelling and experimental study of temperature profiles in cw laser diode bars

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Gordeev, V. P.; Krokhin, O. N.; Mikaelyan, G. T.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.

    2018-02-01

    Three-dimensional simulation is used to theoretically assess temperature profiles in proposed 10-mm-wide cw laser diode bars packaged in a standard heat spreader of the C - S mount type with the aim of raising their reliable cw output power. We obtain calculated temperature differences across the emitting aperture and along the cavity. Using experimental laser bar samples with up to 60 W of cw output power, the emission spectra of individual clusters are measured at different pump currents. We compare and discuss the simulation results and experimental data.

  17. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.

  18. Twilight and nighttime ionospheric temperatures from oxygen wavelengths 6300 and 5577 spectral line profiles

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi, M. A.

    1971-01-01

    Fabry-Perot interferometer measurements of atomic oxygen 6300 A and 5577 A line profiles from twilight and nightglow are used to determine the neutral temperatures in F2 and E regions of the earth's ionosphere. The exospheric temperatures T sub n (infinity) determined from the 6300 A profiles are usually somewhat higher than those calculated from Jacchia's model, with differences as large as approximately 300 K noted when T sub n (infinity) = 1500 to 1600 K. The post-sunset and pre-dawn rate of change of T sub n (infinity) is often substantially larger than the Jacchia prediction. The 5577 A (E-region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.

  19. A combined boundary-profile and automated data-reduction and analysis system. [meteorological balloon-calculator system

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Morris, A. L.; Mcbeth, R. B.

    1976-01-01

    A portable boundary-layer meteorological data-acquisition and analysis system is described which employs a small tethered balloon and a programmable calculator. The system is capable of measuring pressure, wet- and dry-bulb temperature, wind speed, and temperature fluctuations as a function of height and time. Other quantities, which can be calculated in terms of these, can also be made available in real time. All quantities, measured and calculated, can be printed, plotted, and stored on magnetic tape in the field during the data-acquisition phase of an experiment.

  20. Role of temperature-dependent O-p-Fe-d hybridization parameter in the metal-insulator transition of Fe3O4: a theoretical study

    NASA Astrophysics Data System (ADS)

    Fauzi, A. D.; Majidi, M. A.; Rusydi, A.

    2017-04-01

    We propose a simple tight-binding based model for Fe3O4 that captures the preference of ferrimagnetic over ferromagnetic spin configuration of the system. Our model is consistent with previous theoretical and experimental studies suggesting that the system is half metallic, in which spin polarized electrons hop only among the Fe B sites. To address the metal-insulator transition (MIT) we propose that the strong correlation among electrons, which may also be influenced by the electron-phonon interactions, manifest as the temperature-dependence of the O-p-Fe-d hybridization parameter, particularly Fe-d belonging to one of the Fe B sites (denoted as {t}{{FeB}-{{O}}}(2)). By proposing that this parameter increases as the temperature decreases, our density-of-states calculation successfully captures a gap opening at the Fermi level, transforming the system from half metal to insulator. Within this model along with the corresponding choice of parameters and a certain profile of the temperature dependence of {t}{{FeB}-{{O}}}(2), we calculate the resistivity of the system as a function of temperature. Our calculation result reveals the drastic uprising trend of the resistivity profile as the temperature decreases, with the MIT transition temperature located around 100 K, which is in agreement with experimental data.

  1. On the structure of the upper atmosphere of Mars according to data from experiments on the Viking space vehicles

    NASA Technical Reports Server (NTRS)

    Izakov, M. N.

    1979-01-01

    Altitude profiles of the concentrations of the atmospheric components measured by the on board mass spectrometers during the descent of Viking lander are discussed by assuming that temperature has a smoother profile, and the eddy mixing coefficients are smaller at altitudes of 120 to 170 km than those formally determined. The influence of acoustic gravitational waves and errors in measurements and calculations are discussed in relation to the convolutions in the altitude profiles of the concentrations of the atmospheric components and the temperature of the atmosphere.

  2. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  3. The effects of temperatures on the pebble flow in a pebble bed high temperature reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, R. S.; Cogliati, J. J.; Gougar, H. D.

    2012-07-01

    The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles,more » especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the interaction between the pebbles and the immobile graphite reflector as well as the geometry of the discharge conus near the bottom of the core. In this paper, the coupling between the temperature profile and the pebble flow dynamics was analyzed by using PEBBED/THERMIX and PEBBLES codes by modeling the HTR-10 reactor in China. Two extreme and opposing velocity profiles are used as a starting point for the iterations. The PEBBED/THERMIX code is used to calculate the burnup, power and temperature profiles with one of the velocity profiles as input. The resulting temperature profile is then passed to PEBBLES code to calculate the updated pebble velocity profile taking the new temperature profile into account. If the aforementioned hypothesis is correct, the strong temperature effect upon the friction coefficients would cause the two cases to converge to different final velocity and temperature profiles. The results of this analysis indicates that a single zone pebble bed core is self-stabilizing in terms of the pebble velocity profile and the effect of the temperature profile on the pebble flow is insignificant. (authors)« less

  4. United States Air Force Research Initiation Program for 1987. Volume 2

    DTIC Science & Technology

    1989-04-01

    is partly in darkness and partly sunlit with a low angle sun. Solar absorption was added as an additional excitation mechanism in the calculation of...34-7 Also, the sun was assumed to be above the horizon ( solar zenith angle = 880) in the calculation of sunlit vibrational temperature profiles, when...time conditions. This will involve modifying the kinetic equations to include solar pumping at higher sun angles, determining vibrational temperature

  5. Long-Wave Radiation Divergence over Water and Land from Measurement and Calculation (Die Langwellige Strahlungsdivergenz ueber Wasser und ueber dem Festen Boden nach Messung und Rechnung),

    DTIC Science & Technology

    surface temperature field. If these are eliminated, which is relatively simple over a water surface, the differences between calculated and measured...divergences at these levels is less than 20%, on the average. The relative variation of the divergence with height is somewhat greater over water than over land, due to the different temperature profiles. (Author)

  6. Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.

  7. A method for the retrieval of atomic oxygen density and temperature profiles from ground-based measurements of the O(+)(2D-2P) 7320 A twilight airglow

    NASA Technical Reports Server (NTRS)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.; Sharp, W. E.

    1991-01-01

    This paper describes a technique for extracting thermospheric profiles of the atomic-oxygen density and temperature, using ground-based measurements of the O(+)(2D-2P) doublet at 7320 and 7330 A in the twilight airglow. In this method, a local photochemical model is used to calculate the 7320-A intensity; the method also utilizes an iterative inversion procedure based on the Levenberg-Marquardt method described by Press et al. (1986). The results demonstrate that, if the measurements are only limited by errors due to Poisson noise, the altitude profiles of neutral temperature and atomic oxygen concentration can be determined accurately using currently available spectrometers.

  8. Analysis of the feasibility of an experiment to measure carbon monoxide in the atmosphere. [using remote platform interferometry

    NASA Technical Reports Server (NTRS)

    Bortner, M. H.; Alyea, F. N.; Grenda, R. N.; Liebling, G. R.; Levy, G. M.

    1973-01-01

    The feasibility of measuring atmospheric carbon monoxide from a remote platform using the correlation interferometry technique was considered. It has been determined that CO data can be obtained with an accuracy of 10 percent using this technique on the first overtone band of CO at 2.3 mu. That band has been found to be much more suitable than the stronger fundamental band at 4.6 mu. Calculations for both wavelengths are presented which illustrate the effects of atmospheric temperature profiles, inversion layers, ground temperature and emissivity, CO profile, reflectivity, and atmospheric pressure. The applicable radiative transfer theory on which these calculations are based is described together with the principles of the technique.

  9. An Efficient Monte Carlo Method for Modeling Radiative Transfer in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Kim, Stacy

    2011-01-01

    Monte Carlo methods have been shown to be effective and versatile in modeling radiative transfer processes to calculate model temperature profiles for protoplanetary disks. Temperatures profiles are important for connecting physical structure to observation and for understanding the conditions for planet formation and migration. However, certain areas of the disk such as the optically thick disk interior are under-sampled, or are of particular interest such as the snow line (where water vapor condenses into ice) and the area surrounding a protoplanet. To improve the sampling, photon packets can be preferentially scattered and reemitted toward the preferred locations at the cost of weighting packet energies to conserve the average energy flux. Here I report on the weighting schemes developed, how they can be applied to various models, and how they affect simulation mechanics and results. We find that improvements in sampling do not always imply similar improvements in temperature accuracies and calculation speeds.

  10. Lunar electrical conductivity and magnetic permeability

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  11. A user-friendly one-dimensional model for wet volcanic plumes

    USGS Publications Warehouse

    Mastin, Larry G.

    2007-01-01

    This paper presents a user-friendly graphically based numerical model of one-dimensional steady state homogeneous volcanic plumes that calculates and plots profiles of upward velocity, plume density, radius, temperature, and other parameters as a function of height. The model considers effects of water condensation and ice formation on plume dynamics as well as the effect of water added to the plume at the vent. Atmospheric conditions may be specified through input parameters of constant lapse rates and relative humidity, or by loading profiles of actual atmospheric soundings. To illustrate the utility of the model, we compare calculations with field-based estimates of plume height (∼9 km) and eruption rate (>∼4 × 105 kg/s) during a brief tephra eruption at Mount St. Helens on 8 March 2005. Results show that the atmospheric conditions on that day boosted plume height by 1–3 km over that in a standard dry atmosphere. Although the eruption temperature was unknown, model calculations most closely match the observations for a temperature that is below magmatic but above 100°C.

  12. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.

  13. A simple algorithm for beam profile diagnostics using a thermographic camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, Ken; Hojo, Satoru; Honma, Toshihiro

    2014-03-15

    A new algorithm for digital image processing apparatuses is developed to evaluate profiles of high-intensity DC beams from temperature images of irradiated thin foils. Numerical analyses are performed to examine the reliability of the algorithm. To simulate the temperature images acquired by a thermographic camera, temperature distributions are numerically calculated for 20 MeV proton beams with different parameters. Noise in the temperature images which is added by the camera sensor is also simulated to account for its effect. Using the algorithm, beam profiles are evaluated from the simulated temperature images and compared with exact solutions. We find that niobium ismore » an appropriate material for the thin foil used in the diagnostic system. We also confirm that the algorithm is adaptable over a wide beam current range of 0.11–214 μA, even when employing a general-purpose thermographic camera with rather high noise (ΔT{sub NETD} ≃ 0.3 K; NETD: noise equivalent temperature difference)« less

  14. General kinetic solution for the Biermann battery with an associated pressure anisotropy generation

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Silva, L. O.

    2018-01-01

    Fully kinetic analytic calculations of an initially Maxwellian distribution with arbitrary density and temperature gradients exhibit the development of temperature anisotropies and magnetic field growth associated with the Biermann battery. The calculation, performed by taking a small order expansion of the ratio of the Debye length to the gradient scale, predicts anisotropies and magnetic fields as a function of space given an arbitrary temperature and density profile. These predictions are shown to qualitatively match the values measured from particle-in-cell simulations, where the development of the Weibel instability occurs at the same location and with a wavenumber aligned with the predicted temperature anisotropy.

  15. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr; Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr

    2016-05-21

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, threemore » distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.« less

  16. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    NASA Astrophysics Data System (ADS)

    Vo, Truong Quoc; Barisik, Murat; Kim, BoHung

    2016-05-01

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.

  17. Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.

    2017-10-01

    Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.

  18. Thermal Evolution of Charon and the Major Satellites of Uranus: Constraints on Early Differentiation

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Multhaup, K.

    2007-12-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and the satellites of Uranus Ariel, Umbriel, Titania, Oberon and Miranda. The model assumes homogeneously accreted satellites. To calculate the initial temperature profile we assume that infalling planetesimals deposit a fraction h of their kinetic energy as heat at the instantaneous surface of the growing satellites. The parameter h is varied between models. The model continuously checks for convectively unstable shells in the interior by updating the temperature profile and calculating the Rayleigh number and the temperature-dependent viscosity. The viscosity parameter values are taken as those of ice I although the satellites under consideration likely contain admixtures of lighter constituents. Their effects and those of rock on the viscosity are discussed. Convective heat transport is calculated assuming the stagnant lid model for strongly temperature dependent viscosity. In convectively stable regions heat transfer is by conduction with a temperature dependent thermal conductivity. Thermal evolution calculations considering radiogenic heating by the long-lived radiogenic isotopes of U, Th, and K suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. With short-lived isotopes -- if present in sizeable concentrations -- this time will move earlier. Results for Miranda -- the smallest satellite of Uranus -- indicate that it never convected or differentiated if heated by the said long-lived isotopes only. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as the decay of short-lived isotopes or early tidal heating.

  19. Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls.

    PubMed

    Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V

    2008-10-01

    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.

  20. Thermal management of batteries

    NASA Astrophysics Data System (ADS)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  1. Spectroscopic study of the star Canum Venat (G0)

    NASA Astrophysics Data System (ADS)

    Mentese, H. H.

    In this work the effective temperature and surface gravity of the star BetaCVn were determined by means of the theoretical profiles calculated by De Jager and Neven (1967-1968). The best agreement was obtained for T(eff) = 5940 K and log g = 4. The values of the excitation temperatures for Ti, Cr, Mn, and Fe were calculated and found to be very close to each other. The abundances of the elements were obtained by the growth curve method and found to be normal.

  2. The effect of space charge on beams extracted from the room temperature electron cyclotron resonance ion source (abstract)

    NASA Astrophysics Data System (ADS)

    Xie, Z. Q.; Antaya, T. A.

    1990-01-01

    We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.

  3. The effect of space charge on beams extracted from the room temperature electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Xie, Z. Q.; Antaya, T. A.

    1990-02-01

    We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.

  4. Prediction of Microstructure in HAZ of Welds

    NASA Astrophysics Data System (ADS)

    Khurana, S. P.; Yancey, R.; Jung, G.

    2004-06-01

    A modeling technique for predicting microstructure in the heat-affected zone (HAZ) of the hypoeutectoid steels is presented. This technique aims at predicting the phase fractions of ferrite, pearlite, bainite and martensite present in the HAZ after the cool down of a weld. The austenite formation kinetics and austenite decomposition kinetics are calculated using the transient temperature profile. The thermal profile in the weld and the HAZ is calculated by finite-element analysis (FEA). Two kinds of austenite decomposition models are included. The final phase fractions are predicted with the help of a continuous cooling transformation (CCT) diagram of the material. In the calculation of phase fractions either the experimental CCT diagram or the mathematically calculated CCT diagram can be used.

  5. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin P.; Roy, Pierre-Nicholas

    2018-03-01

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  6. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures.

    PubMed

    Bishop, Kevin P; Roy, Pierre-Nicholas

    2018-03-14

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  7. Lunar electrical conductivity, permeability,and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate and electrical conductivity profile for the moon, and those profiles were used to calculate the lunar temperature for an assumed lunar material of olivine. Simultaneous measurements by magnetometers on the lunar surface and in orbit around the moon were use to construct a whole-moon hysteresis curve, from which the global lunar magnetic permeability is determined. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) was calculated for two assumed compositional models of the lunar interior. Other lunar models with an iron core and with a shallow iron-rich layer also discussed in light of the measured global lunar permeability. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Velocities and thicknesses of the earth's magnetopause and bow shock were also estimated from simultaneous magnetometer measurements.

  8. A comparative study of microwave radiometer observations over snowfields with radiative transfer model calculations. [for water runoff estimation

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Shiue, J. C.

    1979-01-01

    Truck mounted microwave instrumentation was used to study the microwave emission characteristics of the Colorado Rocky Mountain snowpack in the vicinity of Fraser, Colorado during the winter of 1978. The spectral signatures of 5.0, 10.7, 18, and 37 GHz radiometers with dual polarization were used to measure the snowpack density and temperature profiles, rain profile, and free water content. These data were compared with calculated results based on microscopic scattering models for dry, surface melting, and very wet snowpacks.

  9. Model calculation of Cr dissolution behavior of ODS ferritic steel in high-temperature flowing sodium environment

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji

    2018-07-01

    A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in inlet sodium bulk flow was set at 0.07 wt ppm in the calculation.

  10. Calculation of two-dimension radial electric field in boundary plasmas by using BOUT++

    NASA Astrophysics Data System (ADS)

    Li, N. M.; Xu, X. Q.; Rognlien, T. D.; Gui, B.; Sun, J. Z.; Wang, D. Z.

    2018-07-01

    The steady state radial electric field (Er) is calculated by coupling a plasma transport model with the quasi-neutrality constraint and the vorticity equation within the BOUT++ framework. Based on the experimentally measured plasma density and temperature profiles in Alcator C-Mod discharges, the effective radial particle and heat diffusivities are inferred from the set of plasma transport equations. The effective diffusivities are then extended into the scrape-off layer (SOL) to calculate the plasma density, temperature and flow profiles across the separatrix into the SOL with the electrostatic sheath boundary conditions (SBC) applied on the divertor plates. Given these diffusivities, the electric field can be calculated self-consistently across the separatrix from the vorticity equation with SBC coupled to the plasma transport equations. The sheath boundary conditions act to generate a large and positive Er in the SOL, which is consistent with experimental measurements. The effect of magnetic particle drifts is shown to play a significant role on local particle transport and Er by inducing a net particle flow in both the edge and SOL regions.

  11. Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard K.

    2018-03-01

    We have developed a seasonal radiative-dynamical model of Titan's stratosphere to investigate the temporal variation of temperatures in the 0.2-4 mbar range observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS and Huygens/DISR data to calculate the radiative heating and cooling rate profiles as a function of time and latitude. At 20°S in 2007, the heating rate is larger than the cooling rate at all altitudes, and more specifically by 20-35% in the 0.1-5 mbar range. A new calculation of the radiative relaxation time as a function of pressure level is presented, leading to time constants significantly lower than previous estimates. At 6°N around spring equinox, the radiative equilibrium profile is warmer than the observed one at all levels. Adding adiabatic cooling in the energy equation, with a vertical upward velocity profile approximately constant in pressure coordinates below the 0.02-mbar level (corresponding to 0.03-0.05 cm s-1 at 1 mbar), allows us to reproduce the observed profile quite well. The velocity profile above the ∼0.5-mbar level is however affected by uncertainties in the haze density profile. The model shows that the change in insolation due to Saturn's orbital eccentricity is large enough to explain the observed 4-K decrease in equatorial temperatures around 1 mbar between 2009 and 2016. At 30°N and S, the radiative model predicts seasonal variations of temperature much larger than observed. A seasonal modulation of adiabatic cooling/heating is needed to reproduce the temperature variations observed from 2005 to 2016 between 0.2 and 4 mbar. At 1 mbar, the derived vertical velocities vary in the range -0.05 (winter solstice) to 0.16 (summer solstice) cm s-1 at 30°S, -0.01 (winter solstice) to 0.14 (summer solstice) cm s-1 at 30°N, and 0.03-0.07 cm s-1 at the equator.

  12. Atmospheric parameterization schemes for satellite cloud property retrieval during FIRE IFO 2

    NASA Technical Reports Server (NTRS)

    Titlow, James; Baum, Bryan A.

    1993-01-01

    Satellite cloud retrieval algorithms generally require atmospheric temperature and humidity profiles to determine such cloud properties as pressure and height. For instance, the CO2 slicing technique called the ratio method requires the calculation of theoretical upwelling radiances both at the surface and a prescribed number (40) of atmospheric levels. This technique has been applied to data from, for example, the High Resolution Infrared Radiometer Sounder (HIRS/2, henceforth HIRS) flown aboard the NOAA series of polar orbiting satellites and the High Resolution Interferometer Sounder (HIS). In this particular study, four NOAA-11 HIRS channels in the 15-micron region are used. The ratio method may be applied to various channel combinations to estimate cloud top heights using channels in the 15-mu m region. Presently, the multispectral, multiresolution (MSMR) scheme uses 4 HIRS channel combination estimates for mid- to high-level cloud pressure retrieval and Advanced Very High Resolution Radiometer (AVHRR) data for low-level (is greater than 700 mb) cloud level retrieval. In order to determine theoretical upwelling radiances, atmospheric temperature and water vapor profiles must be provided as well as profiles of other radiatively important gas absorber constituents such as CO2, O3, and CH4. The assumed temperature and humidity profiles have a large effect on transmittance and radiance profiles, which in turn are used with HIRS data to calculate cloud pressure, and thus cloud height and temperature. For large spatial scale satellite data analysis, atmospheric parameterization schemes for cloud retrieval algorithms are usually based on a gridded product such as that provided by the European Center for Medium Range Weather Forecasting (ECMWF) or the National Meteorological Center (NMC). These global, gridded products prescribe temperature and humidity profiles for a limited number of pressure levels (up to 14) in a vertical atmospheric column. The FIRE IFO 2 experiment provides an opportunity to investigate current atmospheric profile parameterization schemes, compare satellite cloud height results using both gridded products (ECMWF) and high vertical resolution sonde data from the National Weather Service (NWS) and Cross Chain Loran Atmospheric Sounding System (CLASS), and suggest modifications in atmospheric parameterization schemes based on these results.

  13. One-Dimensional Hybrid Satellite Track Model for the Dynamics Explorer 2 (DE 2) Satellite

    NASA Technical Reports Server (NTRS)

    Deng, Wei; Killeen, T. L.; Burns, A. G.; Johnson, R. M.; Emery, B. A.; Roble, R. G.; Winningham, J. D.; Gary, J. B.

    1995-01-01

    A one-dimensional hybrid satellite track model has been developed to calculate the high-latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2 (DE 2) satellite measurements and theory. This model is based on Emery et al. satellite track code but also includes elements of Roble et al. global mean thermosphere/ionosphere model. A number of parameterizations and data handling techniques are used to input satellite data from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are determined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation spectra are used in an auroral model to calculate particle impact ionization rates below the satellite. These rates are combined with a solar ionization rate profile and used to solve the O(+) diffusion equation, with the measured electron density as an upper boundary condition. The calculated O(+) density distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model to calculate the electron and molecular ion densities. The electron temperature is also calculated by solving the electron energy equation with an upper boundary condition determined by the DE 2 measurement. The model enables calculations of altitude profiles of conductivity and Joule beating rate along and below the satellite track. In a first application of the new model, a study is made of thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit, is compared with the model predictions of the height-integrated energy conversion rate. Good quantitative agreement between these two estimates has been reached. In addition, measurements taken at the incoherent scatter radar site at Chatanika (65.1 deg N, 147.4 deg W) during a DE 2 overflight are compared with the model calculations. A good agreement was found in lower thermospheric conductivities and Joule heating rate.

  14. A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-01-01

    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures.

  15. Subgroup Benchmark Calculations for the Intra-Pellet Nonuniform Temperature Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Jung, Yeon Sang; Liu, Yuxuan

    A benchmark suite has been developed by Seoul National University (SNU) for intrapellet nonuniform temperature distribution cases based on the practical temperature profiles according to the thermal power levels. Though a new subgroup capability for nonuniform temperature distribution was implemented in MPACT, no validation calculation has been performed for the new capability. This study focuses on bench-marking the new capability through a code-to-code comparison. Two continuous-energy Monte Carlo codes, McCARD and CE-KENO, are engaged in obtaining reference solutions, and the MPACT results are compared to the SNU nTRACER using a similar cross section library and subgroup method to obtain self-shieldedmore » cross sections.« less

  16. An Intercomparison of Lidar Ozone and Temperature Measurements From the SOLVE Mission With Predicted Model Values

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas J.; Hoegy, Walt; Lait, Leslie; Sumnicht, Grant; Twigg, Larry; Heaps, William

    2000-01-01

    Temperature profiles acquired by Goddard Space Flight Center's AROTEL lidar during the SOLVE mission onboard NASA's DC-8 are compared with predicted values from several atmospheric models (DAO, NCEP and UKMO). The variability in the differences between measured and calculated temperature fields was approximately 5 K. Retrieved temperatures within the polar vortex showed large regions that were significantly colder than predicted by the atmospheric models.

  17. Some results of recording infrasonic signals from explosions in Finland, 2009

    NASA Astrophysics Data System (ADS)

    Kulichkov, S.; Kremenetskaya, E.; Vinogradov, Yu.; Asming, V.; Popov, O.; Bush, G.; Golikova, E.; Drob, D.

    2010-05-01

    The results of recording infrasonic signals from series of explosions in Finland in 2009 are presented. The explosions were carried out by Finish militaries for destruction of outdated weapon. Explosions yield about 10 t tnt. It was performed about twenty explosions in 2009, August-September. The distance between the source and the receiver was 304 km. It was detected infrasonic waves corresponding to sound propagation along earth surface and in stratospheric and thermospheric acoustic waveguides. The significant difference in azimuths for surface, stratospheric, thermospheric arrivals of infrasound signals is obtained. These differences are due to the influence of transverse wind propagation. The theoretical calculation of the waveform of recorded infrasonic signals is produced. The calculation is done using the TDPE (Time Domain Parabolic Equation Code) method and the G2S temperature and wind profile. The temperature and wind profile are taken from balloon sounding data up to the height of 17 km. A satisfactory agreement between the results of calculations and experimental data is obtained.

  18. Acousto-thermometric recovery of the deep temperature profile using heat conduction equations

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.

    2012-09-01

    In a model experiment using the acousto-thermographic method, deep temperature profiles varying in time are recovered. In the recovery algorithm, we used a priori information in the form of a requirement that the calculated temperature must satisfy the heat conduction equation. The problem is reduced to determining two parameters: the initial temperature and the temperature conductivity coefficient of the object under consideration (the plasticine band). During the experiment, there was independent inspection using electronic thermometers mounted inside the plasticine. The error in the temperature conductivity coefficient was about 17% and the error in initial temperature determination was less than one degree. Such recovery results allow application of this approach to solving a number of medical problems. It is experimentally proved that acoustic irregularities influence the acousto-thermometric results as well. It is shown that in the chosen scheme of experiment (which corresponds to measurements of human muscle tissue), this influence can be neglected.

  19. Assessment of thermal efficiency of heat recovery coke making

    NASA Astrophysics Data System (ADS)

    Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.

    2017-08-01

    The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.

  20. EXTASE - An Experimental Thermal Probe For Applications In Snow Research And Earth Sciences

    NASA Astrophysics Data System (ADS)

    Schröer, K.; Seiferlin, K.; Marczewski, W.; Spohn, T.

    EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, both funded by DLR. The application of this probe is to be tested in different fields e.g. in snow research, agriculture, permafrost etc. The probe penetrates the surface ca. 32 cm and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: -no need to excavate material -minimized influence of the probe on the temperature field -minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Fur- ther applications could be: monitoring waste deposits and the heat set free by decom- position, volcanology and ground truth for remote sensing. We present the general concept of the probe, some temperature profiles measured during a field measurement campaign to demonstrate the capability of this new technique and first experiments made in the laboratory. First attempts to calculate thermal diffusivity and conductivity from the data are also given.

  1. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments

    NASA Astrophysics Data System (ADS)

    Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.

    2015-11-01

    The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.

  2. Instability of a shear layer between multicomponent fluids at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun

    2018-04-01

    The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.

  3. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  4. Meteorological Measurement Guide

    DTIC Science & Technology

    1992-01-01

    measurements by inverting the equation for acoustic propa- gation through air . Uncertainties in this inversion, because of variability of atmospheric...shields can produce highly accurate relative air temperature measurements suitable for temperature gradient calculation. Well-designed radiation shields... measurement , clear- air profiling, and weather echo interpretations. The atmosphere is in a continuous state of change as patches of air with different

  5. Fourier Transform Spectroscopy of two trace gases namely Methane and Carbon monoxide for planetary and atmospheric research application

    NASA Astrophysics Data System (ADS)

    Hashemi, R.; Dudaryonok, A. S.; Lavrentieva, N. N.; Vandaele, A. C.; Vander Auwera, J.; Tyuterev, AV Nikitin G., VI; Sung, K.; Smith, M. A. H.; Devi, V. M.; Predoi-Cross, A.

    2017-02-01

    Two atmospheric trace gases, namely methane and carbon monoxide have been considered in this study. Fourier transform absorption spectra of the 2-0 band of 12C16O mixed with CO2 have been recorded at total pressures from 156 to 1212 hPa and at 4 different temperatures between 240 K and 283 K. CO2 pressure-induced line broadening and line shift coefficients, and the associated temperature dependence have been measured in an multi-spectrum non-linear least squares analysis using Voigt profiles with an asymmetric profile due to line mixing. The measured CO2-broadening and CO2-shift parameters were compared with theoretical values, calculated by collaborators. In addition, the CO2-broadening and shift coefficients have been calculated for individual temperatures using the Exponential Power Gap (EPG) semi-empirical method. We also discuss the retrieved line shape parameters for Methane transitions in the spectral range known as the Methane Octad. We used high resolution spectra of pure methane and of dilute mixtures of methane in dry air, recorded with high signal to noise ratio at temperatures between 148 K and room temperature using the Bruker IFS 125 HR Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory, Pasadena, California. Theoretical calculations for line parameters have been performed and the results are compared with the previously published values and with the line parameters available in the GEISA2015 [1] and HITRAN2012 [2] databases.

  6. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  7. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  8. LIDAR detection of forest fire smoke above Sofia

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Deleva, Atanaska; Stoyanov, Dimitar; Kolev, Nikolay; Kolarov, Georgi

    2015-01-01

    The distribution of aerosol load in the atmosphere due to two forest fires near Sofia (the capital city of Bulgaria) was studied using two aerosol lidars which operated at 510.6 nm and 1064 nm. Experimental data is presented as 2D-heatmaps of the evolution of attenuated backscatter coefficient profiles and mean profile of the aerosol backscatter coefficient, calculated for each lidar observation. Backscatter related Angstrom exponent was used as a criterion in particle size estimation of detected smoke layers. Calculated minimal values at altitudes where the aerosol layer was observed corresponded to predominant fraction of coarse aerosol. Dust-transport forecast maps and calculations of backward trajectories were employed to make conclusions about aerosol's origin. They confirmed the local transport of smoke aerosol over the city and lidar station. DREAM forecast maps predicted neither cloud cover, nor Saharan load in the air above Sofia on the days of measurements. The results of lidar observations are discussed in conjunction with meteorological situation, aiming to better explain the reason for the observed aerosol stratification. The data of regular radio sounding of the atmosphere showed a characteristic behavior with small differences of the values between the air temperature and dew-point temperature profiles at aerosol smoke layer altitude. So the resulting stratification revealed the existence of atmospheric layers with aerosol trapping properties.

  9. Microstructure of Turbulence in the Stably Stratified Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew; Balsley, Ben B.

    2008-11-01

    The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.

  10. Analysis of Surface and Bulk Behavior in Ni-Pd Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Rondald D.

    2003-01-01

    The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.

  11. Analysis of different models for atmospheric correction of meteosat infrared images. A new approach

    NASA Astrophysics Data System (ADS)

    Pérez, A. M.; Illera, P.; Casanova, J. L.

    A comparative study of several atmospheric correction models has been carried out. As primary data, atmospheric profiles of temperature and humidity obtained from radiosoundings on cloud-free days have been used. Special attention has been paid to the model used operationally in the European Space operations Centre (ESOC) for sea temperature calculations. The atmospheric correction results are expressed in terms of the increase in the brightness temperature and the surface temperature. A difference of up to a maximum of 1.4 degrees with respect to the correction obtained in the studied models has been observed. The radiances calculated by models are also compared with those obtained directly from the satellite. The temperature corrections by the latter are greater than the former in practically every case. As a result of this, the operational calibration coefficients should be first recalculated if we wish to apply an atmospheric correction model to the satellite data. Finally, a new simplified calculation scheme which may be introduced into any model is proposed.

  12. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-03-01

    This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Photochemical escape of oxygen from Mars: constraints from MAVEN in situ measurements

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Deighan, J.; Fox, J. L.; Bougher, S. W.; Lee, Y.; Cravens, T.; Rahmati, A.; Mahaffy, P. R.; Andersson, L.; Combi, M. R.; Benna, M.; Jakosky, B. M.; Gröller, H.

    2016-12-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. Photochemical escape of oxygen is expected to be a significant channel for atmospheric loss, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. We use near-periapsis (<400 km altitude) data from three instruments. The Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make a series of calculations, each as a function of altitude. The first uses electron and ion temperatures to calculate the probability distribution for initial energies of hot O atoms. The second calculates the probability that a hot atom born at that altitude will escape. The third takes calculates the production rate of the hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We will present escape fluxes and derived escape rates from the first Mars year of data collected. Total photochemical loss over time is not very useful to calculate from such escape fluxes derived from current conditions because a thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  14. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2007-08

    USGS Publications Warehouse

    Fisher, Jason C.; Twining, Brian V.

    2011-01-01

    During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.

  15. Joule-Thomson effect and internal convection heat transfer in turbulent He II flow

    NASA Technical Reports Server (NTRS)

    Walstrom, P. L.

    1988-01-01

    The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.

  16. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucukboyaci, Vefa; Marshall, William BJ J

    2012-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion,more » thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.« less

  17. Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem

    NASA Technical Reports Server (NTRS)

    Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.

    1994-01-01

    Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).

  18. Effective Elastic and Neutron Capture Cross Section Calculations Corresponding to Simulated Fluid Properties from CO2 Push-Pull Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugunov, Nikita; Altundas, Bilgin

    The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less

  19. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  20. Method of realizing catalytic processes under unsteady state conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noskov, A.S.; Lakhmostov, V.S.; Matros, Yu.S.

    1988-07-01

    The operation of a system with the catalyst bed divided into three parts was investigated theoretically and experimentally. The conditions under which the system will efficiently convert a reaction mixture with a low inlet temperature in an unsteady state regime are determined. Calculations were performed for the industrially typical process of afterburning CO on a copper-chrome catalyst in the form of Raschig rings. A flow sheet of the unit with the catalyst divided into three is shown with temperature profiles along the bed at various moments in time. The method can be used for processing large volumes of gaseous wastesmore » on very active catalysts and for catalytic reactions with optimum temperature profiles close to those presented.« less

  1. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa

    2015-07-01

    An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.

  2. Postcombustion and its influences in 135 MWe CFB boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaohua Li; Hairui Yang; Hai Zhang

    2009-09-15

    In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile,more » and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.« less

  3. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution ofmore » single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.« less

  4. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Ohno, N.; Shibata, Y.

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less

  5. Transport modeling of convection dominated helicon discharges in Proto-MPEX with the B2.5-Eirene code

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Rapp, J.; Canik, J.; Lore, J. D.

    2017-11-01

    Data-constrained interpretative analyses of plasma transport in convection dominated helicon discharges in the Proto-MPEX linear device, and predictive calculations with additional Electron Cyclotron Heating/Electron Bernstein Wave (ECH/EBW) heating, are reported. The B2.5-Eirene code, in which the multi-fluid plasma code B2.5 is coupled to the kinetic Monte Carlo neutrals code Eirene, is used to fit double Langmuir probe measurements and fast camera data in front of a stainless-steel target. The absorbed helicon and ECH power (11 kW) and spatially constant anomalous transport coefficients that are deduced from fitting of the probe and optical data are additionally used for predictive simulations of complete axial distributions of the densities, temperatures, plasma flow velocities, particle and energy fluxes, and possible effects of alternate fueling and pumping scenarios. The somewhat hollow electron density and temperature radial profiles from the probe data suggest that Trivelpiece-Gould wave absorption is the dominant helicon electron heating source in the discharges analyzed here. There is no external ion heating, but the corresponding calculated ion temperature radial profile is not hollow. Rather it reflects ion heating by the electron-ion equilibration terms in the energy balance equations and ion radial transport resulting from the hollow density profile. With the absorbed power and the transport model deduced from fitting the sheath limited discharge data, calculated conduction limited higher recycling conditions were produced by reducing the pumping and increasing the gas fueling rate, resulting in an approximate doubling of the target ion flux and reduction of the target heat flux.

  6. Hyperheat: a thermal signature model for super- and hypersonic missiles

    NASA Astrophysics Data System (ADS)

    van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.

    2017-10-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.

  7. Equilibrium theory of cylindrical discharges with special application to helicons

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Chen, Francis F.

    2011-11-01

    Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature Te and neutral density nn. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform Te and nn, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.

  8. The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas

    2017-10-01

    Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer, the Hubble Space Telescope (HST), and the James Web Space Telescope (JWST) bandpasses, covering the wavelength range between 1 and 11 μm where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature-pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the arithmetic average. The Spitzer and HST simulated observations sample deep parts of the planetary atmosphere and provide fewer constraints on the temperature and pressure profile, while the JWST observations sample the middle part of the atmosphere, providing a good match with the middle and most complex part of the arithmetic average of the 3D temperature structure.

  9. Characterization of Hg1-xCdxTe heterostructures by thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Baars, J.; Brink, D.; Edwall, D. D.; Bubulac, L. O.

    1993-08-01

    P-on-n mercury cadmium telluride (MCT) heterostructures grown by MOCVD with As and In as n- and p-type dopants, respectively, are examined by measuring the Seebeck and Hall coefficients between 20 and 320K. The results are analyzed regarding doping and composition of the layers by least squares fitting the experimental profiles with the calculated temperature dependencies. The electron and hole densities of the layers are calculated taking into account Fermi-Dirac statistics, a nonparabolic conduction band, a parabolic valence band, a discrete acceptor level, and fully ionized donors. For the Seebeck coefficient, the relation we previously showed to be valid for p-type MCT1 is used. This relation relies on the thermoelectric effect in a temperature gradient resulting from the diffusion of nondegenerate carriers scattered by LO-phonons. It also fits the observed thermoelectric properties of n-type MCT in a wide temperature range. The doping and structural parameters determined from the thermoelectric measurements agreed very well with As and In profiles obtained from secondary ion mass spectroscopy measurements and the data obtained from analyses of infrared transmission measurements.

  10. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NASA Astrophysics Data System (ADS)

    Crombé, K; Andrew, Y; Biewer, T M; Blanco, E; de Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Tala, T; von Hellermann, M; Zastrow, K-D; JET EFDA Contributors

    2009-05-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (vθ) in the ITB region is measured to be of the order of a few tens of km s-1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of vθ is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.

  11. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombe, K.; Andrew, Y.; Biewer, Theodore M

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v ) in the ITB region is measured tomore » be of the order of a few tens of km s 1, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (Er), with the largest gradient in Er measured in the radial region coinciding with the ITB.« less

  12. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    NASA Technical Reports Server (NTRS)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  13. Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device

    DOE PAGES

    Pablant, N. A.; Satake, S.; Yokoyama, M.; ...

    2016-01-28

    An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less

  14. Chromospheric heating by acoustic shocks - A confrontation of GHRS observations of Alpha Tauri (K5 III) with ab initio calculations

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Cuntz, M.

    1993-01-01

    We compare ab initio calculations of semiforbidden C II line profiles near 2325 A with recently published observations of the inactive red giant Alpha Tau (K5 III) obtained using the GHRS on board the Hubble Space Telescope. Our one-dimensional, time-dependent calculations assume that the chromosphere is heated by stochastic acoustic shocks generated by photospheric convection. We calculate various models using results from traditional (mixing length) convection zone calculations as input to hydrodynamical models. The semiforbidden C II line profiles and ratios provide sensitive diagnostics of chromospheric velocity fields, electron densities, and temperatures. We identify major differences between observed and computed line profiles which are related to basic gas dynamics and which are probably not due to technical modeling restrictions. If the GHRS observations are representative of chromospheric conditions at all epochs, then one (or more) of our model assumptions must be incorrect. Several possibilities are examined. We predict time variability of semiforbidden C II lines for comparison with observations. Based upon data from the IUE archives, we argue that photospheric motions associated with supergranulation or global pulsation modes are unimportant in heating the chromosphere of Alpha Tau.

  15. Numerical determination of vertical water flux based on soil temperature profiles

    NASA Astrophysics Data System (ADS)

    Tabbagh, Alain; Cheviron, Bruno; Henine, Hocine; Guérin, Roger; Bechkit, Mohamed-Amine

    2017-07-01

    High sensitivity temperature sensors (0.001 K sensitivity Pt100 thermistors), positioned at intervals of a few centimetres along a vertical soil profile, allow temperature measurements to be made which are sensitive to water flux through the soil. The development of high data storage capabilities now makes it possible to carry out in situ temperature recordings over long periods of time. By directly applying numerical models of convective and conductive heat transfer to experimental data recorded as a function of depth and time, it is possible to calculate Darcy's velocity from the convection transfer term, thus allowing water infiltration/exfiltration through the soil to be determined as a function of time between fixed depths. In the present study we consider temperature data recorded at the Boissy-le-Châtel (Seine et Marne, France) experimental station between April 16th, 2009 and March 8th, 2010, at six different depths and 10-min time intervals. We make use of two numerical finite element models to solve the conduction/convection heat transfer equation and compare their merits. These two models allow us to calculate the corresponding convective flux rate every day using a group of three sensors. The comparison of the two series of calculated values centred at 24 cm shows reliable results for periods longer than 8 days. These results are transformed in infiltration/exfiltration value after determining the soil volumetric heat capacity. The comparison with the rainfall and evaporation data for periods of ten days shows a close accordance with the behaviour of the system governed by rainfall evaporation rate during winter and spring.

  16. Variations in Temperature at the Base of the Lithosphere Beneath the Archean Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Jaupart, C. P.

    2013-12-01

    Most of the variations in surface heat flux in stable continents are caused by variations in crustal heat production, with an almost uniform heat flux at the base of the crust ( 15+/-3 mW/m2). Such relatively small differences in Moho heat flux cannot be resolved by heat flow data alone, but they lead to important lateral variations in lithospheric temperatures and thicknesses. In order to better constrain temperatures in the lower lithosphere, we have combined surface heat flow and heat production data from the southern Superior Province in Canada with vertical shear wave velocity profiles obtained from surface wave inversion. We use the Monte-Carlo method to generate lithospheric temperature profiles from which shear wave velocity can be calculated for a given mantle composition. We eliminate thermal models which yield lithospheric and sub-lithospheric velocities that do not fit the shear wave velocity profile. Surface heat flux being constrained, the free parameters of the thermal model are: the mantle heat flux, the mantle heat production, the crustal differentiation index (ratio of surface to bulk crustal heat production) and the temperature of the mantle isentrope. Two conclusions emerge from this study. One is that, for some profiles, the vertical variations in shear wave velocities cannot be accounted for by temperature alone but also require compositional changes within the lithosphere. The second is that there are long wavelength horizontal variations in mantle temperatures (~80-100K) at the base of the lithosphere and in the mantle below

  17. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Qiu, Rong; Wang, Kunpeng; Zhang, Jiangmei; Zhou, Guorui; Yao, Ke; Jiang, Yong; Zhou, Qiang

    2017-04-01

    A model for predicting the size ranges of different potential inclusions initiating damage on the surface of fused silica has been presented. This accounts for the heating of nanometric inclusions whose absorptivity is described based on Mie Theory. The depth profile of impurities has been measured by ICP-OES. By the measured temporal pulse profile on the surface of fused silica, the temperature and thermal stress has been calculated. Furthermore, considering the limit conditions of temperature and thermal stress strength for different damage morphologies, the size range of potential inclusions for fused silica is discussed.

  18. Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile

    NASA Astrophysics Data System (ADS)

    M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki

    2015-12-01

    In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.

  19. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  20. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.

    2013-01-01

    In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.

  1. Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.

    2011-03-01

    SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.

  2. Characterisation of the SOFC material, LaCrO 3, using vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Tompsett, G. A.; Sammes, N. M.

    LaCrO 3 is reported to undergo a low to high temperature (HT) phase transition from orthorhombic ( Pnma) to rhombohedral ( R-3 c), at ca. 255 °C. The phases involved in the low temperature phase transition of LaCrO 3 have been determined using Raman spectroscopy at temperatures from -196 to 300 °C. There are nine Raman bands observed from a total of 24 predicted modes, seven of which are assigned from comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, YMnO 3, as follows: 131(B 2g), 150(B 3g), 174(A g), 252(B 1g), 279(A g), 441(A g) and 590(A g) cm -1. A phase transformation was observed at ca. 260 °C from the change in the Raman profile. The high temperature rhombohedral phase of LaCrO 3 had four bands which are assigned as follows: 58(E g), 161(E g), 288(A 1g) and 434(E g, E g) cm -1, from comparison with the Raman profile and relative band positions observed for the isostructural compound, NdAlO 3. The Fourier transform infrared (FTIR) spectrum of LaCrO 3 showed a total of eight bands discernible at room temperature from 25 predicted modes for the orthorhombic structure. The mode assignments were determined by comparison with the Raman profile and relative band positions observed and calculated for the isostructural compound, SmAlO 3, as follows: 138(B 2u), 166(B 3u), 197(B 1u), 240(B 3u), 266(B 2u), 332(B 2u), 357(B 2u), 381(B 3u), 425(B 3u), 446(B 1u), 471(B 3u), 493(B 3u), 573(B 1u), 606(B 3u) and 670 (B 1u) cm -1.

  3. Perspectives on dilution jet mixing. [in creating temperature patterns at combustor exits in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  4. Calculated occultation profiles of Io and the hot spots

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.; Matson, D. L.; Johnson, T. V.; Lunine, J. I.

    1986-01-01

    Occultations of Io by other Galilean satellites in 1985 provide a means to locate volcanic hot spots and to model their temperatures. The expected time variations in the integral reflected and emitted radiation of the occultations are computed as a function of wavelength (visual to 8.7 microns). The best current ephemerides were used to calculate the geometry of each event as viewed from earth. Visual reflectances were modeled from global mosaics of Io. Thermal emission from the hot spots was calculated from Voyager 1 IRIS observations and, for regions unobserved by IRIS, from a model based on the distribution of low-albedo features. The occultations may help determine (1) the location and temperature distribution of Loki; (2) the source(s) of excess emission in the region from long 50 deg to 200 deg and (3) the distribution of small, high-temperature sources.

  5. Atmospheric emissivity with clear sky computed by E-Trans/HITRAN

    NASA Astrophysics Data System (ADS)

    Mendoza, Víctor M.; Villanueva, Elba E.; Garduño, René; Sánchez-Meneses, Oscar

    2017-04-01

    The vertical profiles of temperature and pressure from the International Standard Atmosphere, together with the mixing ratio profiles of the main greenhouse effect gases (GG), namely water vapour, CO2 , CH4 , N2 O and stratospheric O3 , are used to determine the downward emissivity of long wave radiation by cloudless atmosphere, by means of the spectral calculator E-Trans with the HITRAN (high-resolution transmission) database. We make a review of emissivity parameterizations, reported by several authors, in terms of the surface vapour pressure and surface air temperature. We compute vertically weighted averages of temperature and pressure, also parameterize the CH4 , N2 O and O3 mixing ratio profiles, in order to adapt these variables as required by the E-Trans/HITRAN. Our results of emissivity for the corresponding vapour pressures agree well with those obtained by the reviewed authors. With this method, the emissivity can be computed at a regional scale and towards the future global warming, according to the IPCC temperature projections that will also increase the atmospheric humidity, from the emission scenarios of GG.

  6. Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzeja, R.

    2001-07-26

    Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacificmore » Ocean site but were 1-2 percent different over the mid-latitude lake.« less

  7. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  8. Beta Testing of CFD Code for the Analysis of Combustion Systems

    NASA Technical Reports Server (NTRS)

    Yee, Emma; Wey, Thomas

    2015-01-01

    A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.

  9. Photothermal modeling of thulium fibre laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Warnaby, Catherine E.; Coleman, Daniel J.; King, Terence A.

    2003-10-01

    A one-dimensional finite difference model has been used to investigate the temperature distribution within thulium fibre laser-irradiated tissue. Temperature-time and temperature-depth profiles are presented for various laser stimulus parameters in the 2 micron region. These current calculations are aimed at determining theoretical temperature distributions in the application of relatively low power fibre lasers for thermal stimulation of cutaneous nerves in human pain processing. Theoretical skin surface temperatures are compared with those from thermal camera measurements during thulium fibre laser irradiation. The effectiveness of the thulium fibre laser for thermally stimulating cutaneous nerves is confirmed.

  10. High-freezing-point fuel studies

    NASA Technical Reports Server (NTRS)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  11. Perspectives on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  12. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.

    PubMed

    Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-11-30

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.

  13. Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.

    2002-02-01

    Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.

  14. Amplitudes of doping striations: comparison of numerical calculations and analytical approaches

    NASA Astrophysics Data System (ADS)

    Jung, T.; Müller, G.

    1997-02-01

    Transient, axisymmetric numerical calculations of the heat and species transport including convection were performed for a simplified vertical gradient freeze (Bridgman) process with bottom seeding for GaAs. Periodical oscillations were superimposed onto the transient heater temperature profile. The amplitudes of the resulting oscillations of the growth rate and the dopant concentration (striations) in the growing crystals are compared with the predictions of analytical models.

  15. Numerical investigation on the batch characteristics of liquid encapsulated vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Ting, C. C.

    1995-04-01

    Since the liquid encapsulated vertical Bridgman (LEVB) crystal growth is a batch process, it is time dependent in nature. A numerical simulation is conducted to study the unsteady features of the process, including the dynamic evolution of heat flow, growth rate, and interface morphology during crystal growth. The numerical model, which is governed by time-dependent equations for momentum and energy transport, and the conditions for evolution of melt/crystal and melt/encapsulant interfaces, is approximated by a body-fitted coordinate finite-volume method. The resulting differential/algebraic equations are then solved by the ILU (0) preconditioned DASPK code. Sample calculations are mainly conducted for GaAs. Dynamic effects of some process parameters, such as the growth speed, the ambient temperature profile, and ampoule design, are illustrated through calculated results. Due to the heat of fusion release and time-dependent end effects, in some cases a near steady-state operation is not possible. The control of growth front by modifying the ambient temperature profile is also demonstrated. Calculations are also performed for a 4.8 cm diameter InP crystal. The calculated melt/seed interface shape is compared with the measured one from Matsumoto et al. [J. Crystal Growth 132 (1993) 348] and they are in good agreement.

  16. Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tanzila; Nadeem, S.

    2018-03-01

    This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.

  17. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made sensitivity analysis of TANSO-FTS TIR band in troposphere changing in-situ GHG profiles.

  18. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    PubMed

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days not represented well primarily had continuously high humidity. Mean kinetic temperature was useful for severity ranking. Simulating temperature and humidity conditions clearly reveals operational challenges encountered during disasters and emergencies. Understanding of environmental stresses and MKT leads to insights regarding operational robustness necessary for safe and accurate use of POC devices and reagents. Rescue personnel should understand these principles before performing POC testing in adverse environments.

  19. Uncertainties in Climatological Seawater Density Calculations

    NASA Astrophysics Data System (ADS)

    Dai, Hao; Zhang, Xining

    2018-03-01

    In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.

  20. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  1. Characteristics of the air supply envelop of the cooled flooded air jet

    NASA Astrophysics Data System (ADS)

    Timofeevskiy, A. L.; Sulin, A. B.; Ryabova, T. N.; Neganov, D. V.

    2017-08-01

    The characteristics of a plane-parallel non-isothermal airflow (which is fed into the room in the form of a flooded jet) were investigated,. The temperature and velocity fields were measured experimentally in the cross section of the supply air flare. The results of the theoretical calculation and numerical simulation of temperature and velocity profiles were compared with experimental data in a flat cooled supply jet.

  2. Radiative transfer in a plane stratified dielectric

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T., Jr.

    1975-01-01

    A model is developed for calculating radiative transfer in a stratified dielectric. This model is used to show that the reflectivity of a stratified dielectric is primarily determined by gradients in the real part of the refractive index over distances on the order of 1/10 wavelength in the medium. The effective temperature of the medium is determined by the thermodynamic temperature profile over distances of the order delta T.

  3. Molecular rotational line profiles from oxygen-rich red giant winds

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.

    1994-01-01

    We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.

  4. Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data

    USGS Publications Warehouse

    MacGregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D.

    2007-01-01

    The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ?? 5.7 dB km-1) is somewhat lower than the value derived from radar profiles (25.3 ?? 1.1 dB km-1). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ?? 2.2 dB km-1. This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet. Copyright 2007 by the American Geophysical Union.

  5. Transport modeling of L- and H-mode discharges with LHCD on EAST

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  6. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  7. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar data from the Chinese Meridian Project and from Data Center for Geophysics, Data Sharing Infrastructure of Earth System Science. The Mohe meteor radar was operated by Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences. The data can be available from the first author.

  8. Simultaneous Measurements of CO2 Concentration and Temperature profiles using 1.6 μm DIAL in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. The barometric formula can derive atmospheric pressure of each altitude using atmospheric pressure of ground level at the lidar site. Comparison of atmospheric pressure prlofiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan are consisted within 0.2 % below 3 km altitude. So, we have developed a 1.6 μm CO2 DIAL system for simultaneous measurements of the CO2 concentration and temperature profiles in the lower-atmosphere. Laser beams of three wavelengths around a CO2 absorption spectrum is transmitted alternately to the atmosphere. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration and temperature, which measured by these DIAL techniques. We have acheived vertical CO2 concentration and temperature profile from 0.5 to 2.0 km altitude by this DIAL system. In the next step, we will use this high accuracy CO2 concentration profile and back-trajectory analysis for the behavior analysis of the CO2 mass. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrario, Lorenzo, E-mail: lorenzo.ferrario@polimi.it; Little, Justin M., E-mail: jml@princeton.edu; Choueiri, Edgar Y., E-mail: choueiri@princeton.edu

    The plasma flow in a finite-electron-temperature magnetic nozzle, under the influence of an applied azimuthal current at the throat, is modeled analytically to assess its propulsive performance. A correction to the nozzle throat boundary conditions is derived by modifying the radial equilibrium of a magnetized infinite two-population cylindrical plasma column with the insertion of an external azimuthal body force for the electrons. Inclusion of finite-temperature effects, which leads to a modification of the radial density profile, is necessary for calculating the propulsive performance, which is represented by nozzle divergence efficiency and thrust coefficient. The solutions show that the application ofmore » the azimuthal current enhances all the calculated performance parameters through the narrowing of the radial density profile at the throat, and that investing power in this beam focusing effect is more effective than using the same power to pre-heat the electrons. The results open the possibility for the design of a focusing stage between the plasma source and the nozzle that can significantly enhance the propulsive performance of electron-driven magnetic nozzles.« less

  10. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  11. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang

    2017-02-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.

  12. Composition and structure of the martian upper atmosphere: analysis of results from viking.

    PubMed

    McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O

    1976-12-11

    Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.

  13. Derivation of the threshold condition for the ion temperature gradient mode with an inverted density profile from a simple physics picture

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun

    2018-05-01

    We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.

  14. The role of turbulent suppression in the triggering ITBs on C-Mod

    NASA Astrophysics Data System (ADS)

    Zhurovich, K.; Fiore, C. L.; Ernst, D. R.; Bonoli, P. T.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Marmar, E. S.; Mikkelsen, D. R.; Phillips, P.; Rice, J. E.

    2007-11-01

    Internal transport barriers can be routinely produced in C-Mod steady EDA H-mode plasmas by applying ICRF at |r/a|>= 0.5. Access to the off-axis ICRF heated ITBs may be understood within the paradigm of marginal stability. Analysis of the Te profiles shows a decrease of R/LTe in the ITB region as the RF resonance is moved off axis. Ti profiles broaden as the ICRF power deposition changes from on-axis to off-axis. TRANSP calculations of the Ti profiles support this trend. Linear GS2 calculations do not reveal any difference in ETG growth rate profiles for ITB vs. non-ITB discharges. However, they do show that the region of stability to ITG modes widens as the ICRF resonance is moved outward. Non-linear simulations show that the outward turbulent particle flux exceeds the Ware pinch by factor of 2 in the outer plasma region. Reducing the temperature gradient significantly decreases the diffusive flux and allows the Ware pinch to peak the density profile. Details of these experiments and simulations will be presented.

  15. A passive microwave technique for estimating rainfall and vertical structure information from space. Part 1: Algorithm description

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Giglio, Louis

    1994-01-01

    This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avrett, E.; Tian, H.; Landi, E.

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equationsmore » for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.« less

  17. Ion-beam-induced damage formation in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rischau, C. W.; Schnohr, C. S.; Wendler, E.

    2011-06-01

    Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that themore » high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.« less

  18. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    USGS Publications Warehouse

    Hurwitz, S.; Farrar, C.D.; Williams, C.F.

    2010-01-01

    Long Valley Caldera in eastern California formed 0.76Ma ago in a cataclysmic eruption that resulted in the deposition of 600km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~290MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40MWe. The RD in the center of the caldera was uplifted by ~80cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50??C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7??C and 129.5??C and bottom hole temperatures range between 99.4??C and 129.5??C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate horizontal groundwater velocities in the hydrothermal flow unit under the RD that range from 1.9 to 2.8m/yr, which corresponds to a maximum power flowing through the RD of 3-4MW. The relatively low temperatures and large isothermal segments at the bottom of the temperature profiles are inconsistent with the presence of magma at shallow crustal levels. ?? 2010.

  19. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Farrar, Christopher D.; Williams, Colin F.

    2010-12-01

    Long Valley Caldera in eastern California formed 0.76 Ma ago in a cataclysmic eruption that resulted in the deposition of 600 km 3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~ 290 MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40 MWe. The RD in the center of the caldera was uplifted by ~ 80 cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158 m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50 °C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7 °C and 129.5 °C and bottom hole temperatures range between 99.4 °C and 129.5 °C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate horizontal groundwater velocities in the hydrothermal flow unit under the RD that range from 1.9 to 2.8 m/yr, which corresponds to a maximum power flowing through the RD of 3-4 MW. The relatively low temperatures and large isothermal segments at the bottom of the temperature profiles are inconsistent with the presence of magma at shallow crustal levels.

  20. Laser depth profiling studies of helium diffusion in Durango fluorapatite

    NASA Astrophysics Data System (ADS)

    van Soest, Matthijs C.; Monteleone, Brian D.; Hodges, Kip V.; Boyce, Jeremy W.

    2011-05-01

    Ultraviolet lasers coupled with sensitive mass spectrometers provide a useful way to measure laboratory-induced noble gas diffusion profiles in minerals, thus enabling the calculation of diffusion parameters. We illustrate this laser ablation depth profiling (LADP) technique for a previously well-studied mineral-isotopic system: 4He in Durango fluorapatite. LADP studies were conducted on oriented, polished slabs from a single crystal that were heated under vacuum to a variety of temperatures between 300 and 450 °C for variable times. The resolved 4He profiles exhibited error-function loss as predicted by previous bulk 4He diffusion studies. All of the slabs, regardless of crystallographic orientation, yielded modeled diffusivities that are statistically co-linear on an Arrhenius diagram, suggesting no diffusional anisotropy of 4He in this material. The data indicate an activation energy of 142.2 ± 5.0 (2 σ) kJ/mol and diffusivity at infinite temperature - reported as ln( D0) - of -4.71 ± 0.94 (2 σ) m 2/s. These values imply a bulk closure temperature for 4He in Durango fluorapatite of 74 °C for a 50 μm radius grain, infinite cylinder geometry, and a cooling rate of 10 °C/Myr.

  1. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.

    PubMed

    Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe

    2016-05-01

    Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.

  2. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.

  3. Correlation electron cyclotron emission diagnostic and improved calculation of turbulent temperature fluctuation levels on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.

    2018-05-01

    A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

  4. Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Powell, Robert; Jenkins, Thomas

    1998-11-01

    Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow. Robert L. Powell, Thomas P. Jenkins Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616 Using laser Doppler velocimetry, we have measured the axial velocity profiles for steady, pressure driven, laminar flow of water in a circular tube. The flow was established in a one inch diameter seamless glass tube. The entry length prior to the measuring section was over one hundred diameters. Reynolds numbers in the range 500-2000 were used. Under conditions where the temperature difference between the fluid and the surroundings differed by as little as 0.2C, we found significant asymmetries in the velocity profiles. This asymmetry was most pronounced in the vertical plane. Varying the temperature difference moved the velocity maximum either above or below the centerline depending upon whether the fluid was warmer or cooler than the room. These results compare well to existing calculations. Using the available theory and our experiments it is possible to identify parameter ranges where non-ideal conditions(not parabolic velocity profiles) will be found. Supported by the EMSP Program of DOE.

  5. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    NASA Astrophysics Data System (ADS)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  6. Flow behavior in inlet guide vanes of radial turbines

    NASA Technical Reports Server (NTRS)

    Sokhey, J.; Tabakoff, W.; Hosny, W. M.

    1975-01-01

    Scroll flow is discussed. Streamline pattern and velocity distribution in the guide vanes are calculated. The blade surface temperature distribution is also determined. The effects of the blade shapes and the nozzle channel width on the velocity profiles at inlet to the guide vanes are investigated.

  7. CLIMATIC DATA ON ESTIMATED EFFECTIVE CHIMNEY HEIGHTS IN THE UNITED STATES

    EPA Science Inventory

    Plume rise calculations are based on the equations of Briggs (1975) for use with variable vertical profiles of temperature and wind speed. Results are presented for small and large chimneys, based on five years of twice-daily rawinsondes throughout the contiguous United States. I...

  8. Isotopic abundances of Hg in mercury stars inferred from the Hg II line at 3984 A

    NASA Technical Reports Server (NTRS)

    White, R. E.; Vaughan, A. H., Jr.; Preston, G. W.; Swings, J. P.

    1976-01-01

    Wavelengths of the Hg II absorption feature at 3984 A in 30 Hg stars are distributed uniformly from the value for the terrestrial mix to a value that corresponds to nearly pure Hg-204. The wavelengths are correlated loosely with effective temperatures inferred from Q(UBV). Relative isotopic abundances derived from partially resolved profiles of the 3984-A line in iota CrB, chi Lup, and HR 4072 suggest that mass-dependent fractionation has occurred in all three stars. It is supposed that such fractionation occurs in all Hg stars, and a scheme whereby isotopic compositions can be inferred from a comparison of stellar wavelengths and equivalent widths with those calculated for a family of fractionated isotopic mixes. Theoretical profiles calculated for the derived isotopic composition agree well with high-resolution interferometric profiles obtained for three of the stars.

  9. Temperature profiles in the earth of importance to deep electrical conductivity models

    NASA Astrophysics Data System (ADS)

    Čermák, Vladimír; Laštovičková, Marcela

    1987-03-01

    Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.

  10. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  11. Implications for Metallographic Cooling Rates, Derived from Fine-Scale Analytical Traverses Across Kamacite, Taenite, and Tetrataenite in the Butler Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Ross, D. K.; Chabot, N. L.; Keller, L. P.

    2016-01-01

    The "M-shaped" Ni concentrations across Widmanstatten patterns in iron meteorites, mesosiderites, and ordinary chondrites are commonly used to calculate cooling rates. As Ni-poor kamacite exolves from Ni-rich taenite, Ni concentrations build up at the kamacite-taenite interface because of the sluggish diffusivity of Ni. Quantitative knowledge of experimentally-determined Ni diffusivities, coupled with the shape of the M-profile, have been used to allow calculation of cooling rates that pertained at low temperatures, less than or equal to 500 C. However, determining Ni metallographic cooling rates are challenging, due to the sluggish diffusivity of Ni at low temperatures. There are three potential difficulties in using Ni cooling rates at low temperatures: (i) Ni diffusivities are typically extrapolated from higher-temperature measurements; (ii) Phase changes occur at low temperatures that may be difficult to take into account; and (iii) It appears that Ge in kamacite and taenite has continued to equilibrate (or attempted to equilibrate) at temperatures below those that formed the M-shaped Ni profile. Combining Ni measurements with those of other elements has the potential to provide a way to confirm or challenge Ni-determined cooling rates, as well as provide insight into the partitioning behaviors of elements during the cooling of iron meteorites. Despite these benefits, studies that examine elemental profiles of Ni along with other elements in iron meteorites are limited, often due to the low concentration levels of the other elements and associated analytical challenges. The Butler iron meteorite provides a good opportunity to conduct a multi-element analytical study, due to the higher concentration levels of key elements in addition to Fe and Ni. In this work, we perform combined analysis for six elements in the Butler iron to determine the relative behaviors of these elements during the evolution of iron meteorites, with implications for metallographic cooling rates.

  12. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.

    2014-08-01

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β e , νe ∗ , the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe ∗ were relatively low, ballooning parity modes were dominant. As time progressed and both βe and νe ∗ increased, microtearing became the dominant low-kθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-kθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  13. Reduced model prediction of electron temperature profiles in microtearing-dominated NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Guttenfelder, W.; Bell, R.; Gerhardt, S.; Leblanc, B.; Maingi, R.

    2014-10-01

    A representative H-mode discharge from the National Spherical Torus Experiment (NSTX) is studied in detail as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, νe*, the MHD α parameter and the gradient scale lengths of Te, Ti and ne were examined prior to performing linear gyrokinetic calculations to determine the fastest growing microinstability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe* were relatively low, ballooning parity modes were dominant. As both βe and νe* increased with time, microtearing became the dominant low-kθmode, especially in the outer half of the plasma. There are instances in time and radius where other modes, at higher-kθ, may be important for driving electron transport. The Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant. This work has been supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.

  14. The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas, E-mail: jasmina@nyu.edu

    Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer , the Hubble Space Telescope ( HST ), and the James Web Space Telescope ( JWST ) bandpasses, covering the wavelength range between 1 and 11 μ m where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailedmore » comparisons between the temperature–pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the arithmetic average. The Spitzer and HST simulated observations sample deep parts of the planetary atmosphere and provide fewer constraints on the temperature and pressure profile, while the JWST observations sample the middle part of the atmosphere, providing a good match with the middle and most complex part of the arithmetic average of the 3D temperature structure.« less

  15. Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.

    1992-01-01

    A detailed chemical kinetic scheme is applied to stellar envelope profiles of gas density and temperature profiles in order to study the formation of PAH molecules in carbon-rich stellar outflows. Chemical concentration profiles are calculated for several envelope models by integrating the coupled continuity equations that include spherically expanding flows from an inner boundary at the shock formation radius. The influence of the 'inverse greenhouse' effect experienced by small PAHs is investigated and shown to increase the PAH yield by many orders of magnitude. It is shown that the route through propargyl radicals could be an important channel to produce benzene. PAH formation yields are found to be extremely sensitive to gas density and temperature and are much smaller than values inferred from the observed dust content of late-type carbon-rich stellar envelopes. It is therefore unlikely that aromatic molecules are generated in the stellar outflow itself.

  16. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOEpatents

    Kee, Robert J.; Ting, Aili

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  17. In-flight Compressible Turbulent Boundary Layer Measurements on a Hollow Cylinder at a Mach Number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1978-01-01

    Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.

  18. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Schmalstieg, Johannes; Käbitz, Stefan; Ecker, Madeleine; Sauer, Dirk Uwe

    2014-07-01

    Knowledge on lithium-ion battery aging and lifetime estimation is a fundamental aspect for successful market introduction in high-priced goods like electric mobility. This paper illustrates the parameterization of a holistic aging model from accelerated aging tests. More than 60 cells of the same type are tested to analyze different impact factors. In calendar aging tests three temperatures and various SOC are applied to the batteries. For cycle aging tests especially different cycle depths and mean SOC are taken into account. Capacity loss and resistance increase are monitored as functions of time and charge throughput during the tests. From these data physical based functions are obtained, giving a mathematical description of aging. To calculate the stress factors like temperature or voltage, an impedance based electric-thermal model is coupled to the aging model. The model accepts power and current profiles as input, furthermore an ambient air temperature profile can be applied. Various drive cycles and battery management strategies can be tested and optimized using the lifetime prognosis of this tool. With the validation based on different realistic driving profiles and temperatures, a robust foundation is provided.

  19. Arctic Strato-Mesospheric Temperature and Wind Variations

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  20. Prise en compte d'un couplage fin neutronique-thermique dans les calculs d'assemblage pour les reacteurs a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan

    Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.

  1. Surface Segregation in Cu-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.

  2. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  3. Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2018-03-01

    An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet-vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.; Lu, S. X.; Li, C. H.

    In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less

  5. Mesospheric dynamics and chemistry from SME data

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.

    1987-01-01

    A fast Curtis matrix calculation of cooling rates due to the 15 micron band of CO2 is modified to parameterize the detailed calculations by Dickinson (1984) of infrared cooling by CO2 in the mesosphere and lower thermosphere. The calculations included separate NLTE treatment of the different 15 micron bands likely to be important for cooling. The goal was to compress the detailed properties of the different bands into a modified Curtis matrix, which represents one composite band with appropriate averaged radiative properties to allow for a simple and quick calculation of cooling rates given a temperature profile. Vertical constituent transport in the mesosphere was also studied.

  6. Constraints on atmospheric structure and helium abundance of Saturn from Cassini/UVIS and CIRS

    NASA Astrophysics Data System (ADS)

    Koskinen, Tommi; Guerlet, Sandrine

    2017-10-01

    We combine results from stellar occultations observed by Cassini/UVIS and infrared emissions observed by Cassini/CIRS to create empirical models of atmospheric structure on Saturn corresponding to the locations probed by the UVIS stellar occultations. These models span multiple occultation locations at different latitudes from 2005 to the end of 2015. In summary, we connect the temperature-pressure profiles retrieved from the CIRS data to the temperature-pressure profiles in the thermosphere retrieved from the occultations. A corresponding altitude scale is calculated and matched to the altitude scale of the density profiles that are retrieved directly from the occultations. In addition to the temperature structure, our ability to match the altitudes in the occultation light curves depends on the mean molecular weight of the atmosphere. We use the UVIS occultations to constrain the abundance of methane near the homopause, allowing us to constrain the eddy mixing rate of the atmosphere. In addition, our preliminary results are consistent with a mixing ratio of about 11% for helium in the lower atmosphere. Our results provide an important reference for future models of Saturn’s upper atmosphere.

  7. Using Heat as a Tracer to Estimate Saline Groundwater Fluxes from the Deep Aquifer System to the Shallow Aquifers and the Rio Grande in the Mesilla Basin, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Pepin, J. D.; Robertson, A.; Ferguson, C.; Burns, E. R.

    2017-12-01

    Heat is used as a tracer to estimate vertical groundwater flow and associated saline fluxes from deep (greater than 1 km) parts of the Mesilla Basin regional aquifer to the Rio Grande. Profiles of temperature with depth below ground surface are used to locate groundwater upflow zones and to estimate associated salinity fluxes. The results of this study will inform understanding of the impact of deep saline groundwater on regional water supplies. The Mesilla Basin in southern New Mexico, Texas, and Chihuahua, Mexico was designated by the U.S. as a priority transboundary aquifer in part because of the presence of the Rio Grande within the basin. Declining water levels, deteriorating water quality in both the aquifer and the river, and increasing use of water resources on both sides of the international border raise concerns about the sustainability of regional water supplies. The Rio Grande chloride concentration increases by about 130% (120 ppm to 280 ppm) as the river traverses the Mesilla Basin. Previous research attributed this reduction in water quality to the upwelling of deep sedimentary brines and geothermal waters within the basin. However, the spatial distribution of these upflow zones and their groundwater flow rates are poorly understood. Temperature profiles from 374 existing boreholes within the Mesilla Basin indicate that temperature-profile shape is affected by heat advection in the basin. Three distinct geothermal upflow zones were identified along regional fault zones in the study area based on the temperature profiles. Groundwater in these zones is considered thermal, having temperatures greater than 50°C at depths of less than 200 m. Identification of upflow-zone profiles combines analysis of temperature profiles, lithologic records, well-completion data, and profile derivatives. The Bredehoeft and Papadopulos (1965) one-dimensional heat-transport analytical solution will be applied to upflow-zone profiles to estimate the corresponding vertical groundwater flow rates. Temperature, heat flow, and salinity maps will be constructed to approximate the areal extents of identified upflow zones. These areal estimates will then be combined with the 1D vertical groundwater flow calculations and salinity data to quantify volumetric salinity fluxes to the shallow aquifer system and Rio Grande.

  8. Kinetic neoclassical calculations of impurity radiation profiles

    DOE PAGES

    Stotler, D. P.; Battaglia, D. J.; Hager, R.; ...

    2016-12-30

    Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions atmore » a given electron temperature. As a result, analogous simulations with a neon impurity yield qualitatively similar results.« less

  9. Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations

    NASA Technical Reports Server (NTRS)

    Turpin, J. B.

    2007-01-01

    This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.

  10. Numerical study of influences of crosswind and additional steam on the flow field and temperature of propane non-premixed turbulence flame

    NASA Astrophysics Data System (ADS)

    Wusnah; Bindar, Y.; Yunardi; Nur, F. M.; Syam, A. M.

    2018-03-01

    This paper presents results the process of combustion propane using computational fluid dynamics (CFD) to simulate the turbulent non-premixed flame under the influences of crosswinds and the ratio of fuel (propane) to steam, S. Configuration, discretization and boundary conditions of the flame are described using GambitTM software and integrated with FluentTM software for calculations of flow and reactive fields. This work focuses on the influence of various crosswind speeds (0–10 m/s) and values of S (0.14–2.35) while the velocity of fuel issued from the nozzle was kept constant at 20 m/s. A turbulence model, k-ɛ standard and combustion model, Eddy Dissipation model were employed for the calculation of velocity and temperature fields, respectively. The results are displayed in the form of predictive terrain profile of the propane flame at different crosswind speeds. The results of the propane flame profile demonstrated that the crosswind significantly affect the structure velocity and position of the flame which was off-center moving towards the direction of crosswind, eventually affect the temperature along the flame. As the values of S is increasing, the flame contour temperature decreases, until the flame was extinguished at S equals to 2.35. The combustion efficiency for a variety of crosswind speeds decreases with increasing values of S.

  11. Do we understand the temperature profile of air-water interface?

    NASA Astrophysics Data System (ADS)

    Solcerova, A.; van Emmerik, T. H. M.; Uittenbogaard, R.; van de Ven, F. H. M.; Van De Giesen, N.

    2017-12-01

    Lakes and reservoirs exchange energy with the atmosphere through long-wave radiation and turbulent heat fluxes. Calculation of those fluxes often depend on the surface temperature. Several recent studies used high resolution Distributed Temperature Sensing (DTS) to measure the temperature of air-water interface. We present results of three of such studies conducted on three different locations with three different climates (Ghana, Israel, The Netherland). Measurements from all presented studies show a distinct temperature drop close to the water surface during daytime. We provide several possible explanations for existence of such deviation of temperature, and discuss the plausibility of each. Explaining the measured temperature drop is crucial for a better understanding of the energy balance of lake surface, and estimation of the surface energy balance.

  12. Low-latitude Temperatures, Pressures, and Winds on Saturn from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Flasar, F. M.; Schinder, P. J.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.

    2005-12-01

    We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. Below the 200-mbar level, in the upper troposphere, the vertical profiles are smoother, and the overall trend of temperatures is to increase away from the equator. This implies a decay of the zonal winds with altitude. The zonal winds can actually be inferred directly from the meridional gradient in pressure, without the need of a boundary condition on the winds. We summarize results of these calculations. This is of interest because recent cloud tracking studies have indicated lower equatorial winds than found earlier, but whether this indicates a real change in the winds at a given altitude or a change in the altitudes of the features tracked is controversial.

  13. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  14. Fuel-conservation evaluation of US Army helicopters. Part 6. Performance calculator evaluation. Final report for period ending January 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominick, F.; Lockwood, R.A.

    1986-07-01

    The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less

  15. Adjusted Levenberg-Marquardt method application to methene retrieval from IASI/METOP spectra

    NASA Astrophysics Data System (ADS)

    Khamatnurova, Marina; Gribanov, Konstantin

    2016-04-01

    Levenberg-Marquardt method [1] with iteratively adjusted parameter and simultaneous evaluation of averaging kernels together with technique of parameters selection are developed and applied to the retrieval of methane vertical profiles in the atmosphere from IASI/METOP spectra. Retrieved methane vertical profiles are then used for calculation of total atmospheric column amount. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder,USA) [2] are taken as initial guess for retrieval algorithm. Surface temperature, temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval for each selected spectrum. Modified software package FIRE-ARMS [3] were used for numerical experiments. To adjust parameters and validate the method we used ECMWF MACC reanalysis data [4]. Methane columnar values retrieved from cloudless IASI spectra demonstrate good agreement with MACC columnar values. Comparison is performed for IASI spectra measured in May of 2012 over Western Siberia. Application of the method for current IASI/METOP measurements are discussed. 1.Ma C., Jiang L. Some Research on Levenberg-Marquardt Method for the Nonlinear Equations // Applied Mathematics and Computation. 2007. V.184. P. 1032-1040 2.http://www.esrl.noaa.gov/psdhttp://www.esrl.noaa.gov/psd 3.Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G.. A New Software Tool for Radiative Transfer Calculations and its application to IMG/ADEOS data // JQSRT.2001.V.68.№ 4. P. 435-451. 4.http://www.ecmwf.int/http://www.ecmwf.int

  16. Comparison of Gas Displacement based on Thermometry in the Pulse Tube with Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Hagiwara, Yasumasa; Nara, Kenichi; Ito, Seitoku; Saito, Takamoto

    A pulse tube refrigerator has high reliability because of its simple structure. Recently the level of development activity of the pulse tube refrigerator has increased, but the quantitative understanding of the refrigeration mechanism has not fully been obtained. Therefore various explanations were proposed. The concept of virtual gas piston in particular helps us to understand the function of a phase shifter such as a buffer tank and an orifice because the virtual gas piston corresponds to a piston of a Stirling refrigerator. However it is difficult to directly measure the averaged gas displacement which corresponds to the virtual gas piston because uniform gas flow such as a gas piston does not always exist. For example, there are a jet flow from orifice and circulated flows in a pulse tube, which are predicted theoretically. In spite of these phenomena, the averaged gas displacement is very important in practical use because it can simply predict the performance from the displacement. In this report, we calculate the averaged gas displacement and mass flow through an orifice. The mass flow is calculated from the pressure change in a buffer tank. The averaged gas displacement is calculated from temperature profiles in the pulse tube and the mass flow. It is necessary to measure temperature in the pulse tube as widely as possible in order to calculate the averaged gas displacement. We apply a method using the Rayleigh Scattering the thermometry in the pulse tube. With this method, it is possible to perform 2-dimensional measurement without disturbing the gas flow. By this method, the averaged gas displacements and the temperature profiles of basic and orifice types of refrigeration were compared.

  17. Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-01

    The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less

  18. Properties of thermal air plasma with admixing of copper and carbon

    NASA Astrophysics Data System (ADS)

    Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph

    2014-11-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.

  19. Current/Pressure Profile Effects on Tearing Mode Stability in DIII-D Hybrid Discharges

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Yong-Su

    2015-11-01

    It is important to understand the onset threshold and the evolution of tearing modes (TMs) for developing a high-performance steady state fusion reactor. As initial and basic comparisons to determine TM onset, the measured plasma profiles (such as temperature, density, rotation) were compared with the calculated current profiles between a pair of discharges with/without n=1 mode based on the database for DIII-D hybrid plasmas. The profiles were not much different, but the details were analyzed to determine their characteristics, especially near the rational surface. The tearing stability index calculated from PEST3, Δ' tends to increase rapidly just before the n=1 mode onset for these cases. The modeled equilibrium with varying pressure or current profiles parametrically based on the reference discharge is reconstructed for checking the onset dependency on Δ' or neoclassical effects such as bootstrap current. Simulations of TMs with the modeled equilibrium using resistive MHD codes will also be presented and compared with experiments to determine the sensibility for predicting TM onset. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  20. A time-dependent radiative model of HD 209458b

    NASA Astrophysics Data System (ADS)

    Iro, N.; Bézard, B.; Guillot, T.

    2005-06-01

    We present a time-dependent radiative model of the atmosphere of HD 209458b and investigate its thermal structure and chemical composition. In a first step, the stellar heating profile and radiative timescales were calculated under planet-averaged insolation conditions. We find that 99.99% of the incoming stellar flux has been absorbed before reaching the 7 bar level. Stellar photons cannot therefore penetrate deeply enough to explain the large radius of the planet. We derive a radiative time constant which increases with depth and reaches about 8 h at 0.1 bar and 2.3 days at 1 bar. Time-dependent temperature profiles were also calculated, in the limit of a zonal wind that is independent of height (i.e. solid-body rotation) and constant absorption coefficients. We predict day-night variations of the effective temperature of ~600 K, for an equatorial rotation rate of 1 km s-1, in good agreement with the predictions by Showmann & Guillot (2002). This rotation rate yields day-to-night temperature variations in excess of 600 K above the 0.1-bar level. These variations rapidly decrease with depth below the 1-bar level and become negligible below the ~5-bar level for rotation rates of at least 0.5 km s-1. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during planetary transites agrees with the value reported by Charbonneau et al. (2002).

  1. Theoretical study of high temperature behavior of Pb and Pb-base alloy surfaces

    NASA Astrophysics Data System (ADS)

    Landa, Alexander Ilyich

    1998-11-01

    A recent study of a Pb-Bi-Ni alloy reported a strong co-segregation of Bi and Ni at the alloy surface. The nature of this surface phenomenon has been studied by means of modern ab initio and classical simulation techniques. It was useful to begin by a study of the underlying binaries. We have performed ab initio calculations of the segregation profiles at the (111), (100) and (110) surfaces of random Pbsb{95}Bisb{05} alloys by means of the coherent potential approximation within the context of a tight-binding linear muffin-tin-orbitals method. We have found the segregation profiles to be oscillatory (this effect is most pronounced for the (111) surface) with a strong preference for Bi to segregate to the first atom layer. We have performed Monte Carlo simulations, employing Finnis-Sinclair-type empirical many-body potentials and computed the solubility limits of Pb-Bi and Pb-Ni alloys, as well as the segregation profiles at the (111) surfaces of Pbsb{95}Bisb{05} and Pb-Ni alloys. For Pb-Bi alloys, the concentration profiles have also been found to be oscillatory. Calculations on Pb-Ni showed that within the solubility limit of Ni in Pb, Ni did not segregate to the Pb(111) outermost surface layer. In the ternary Pbsb{95}Bisb{05}{+}Ni alloy ab initio calculations detected a tendency for Ni to segregate to the subsurface from layer due its strong interaction with Bi. Calculations on Pb-Bi-Ni showed strong segregation of Ni to the subsurface atom layer, accompanied by co-segregation of Bi to several of the outermost atom layers. We have also focused our attention on the high temperature behavior of the pure Pb(110) metal surface. Molecular dynamics simulations incorporating a many-body potential have been used to investigate the atomic structure and dynamics of the Pb(110) surface in the range from room temperature up to the bulk melting point. The surface starts to disorder approximately at 360 K via the generation of vacancies and the formation of an adlayer. At about 520 K, the onset of a quasiliquid region at the surface has been observed. The disordering of the surface beyond 520 K was described as premelting with a gradually developing liquid-like film, the thickness of which increased proportionally to 1n(1-T/Tsb{M}) as the bulk melting temperature (Tsb{M}) was approached. The dynamics of the equilibrium crystal-melt interface at the bulk melting point has been also studied: the interface exhibits fluctuating atomic-scale (111) facets, and, the two outermost quasiliquid layers retain a considerable degree of short range order (surface layering). The roughening transition on the Pb(110) surface has been studied using a combination of lattice-gas Monte Carlo and molecular-dynamics methods in conjunction with the same many-body glue potential. Lattice-gas Monte Carlo simulations yield a roughening transition temperature or approximately Tsbsp{R}{LGMC}≈ 1100 K. Molecular-dynamics simulations. which account for surface relaxation and lattice vibrations, detected the roughening transition at Tsbsp{R}{MD}≈ 545 K, above the high-resolution low-energy diffraction measurements of Tsbsp{R}{EXP} ≈ 415 K. The anisotropic body-centered solid-on-solid model has been used in the interpretation of these results. The time scale of local roughening was estimated approximately {˜}0.6 ns at the calculated roughening transition temperature. (Abstract shortened by UMI.)

  2. Atmospheric and surface temperatures and airborne dust amounts during late southern summer from Mariner 9 IRIS data

    NASA Technical Reports Server (NTRS)

    Santee, M.; Crisp, D.

    1992-01-01

    The temperature structure and dust loading of the Martian atmosphere are investigated using thermal emission spectra recorded in 1972 by the Mariner 9 infrared interferometer spectrometer (IRIS). The analysis focuses on a subset of data consisting of approximately 2400 spectra obtained near the end of the southern summer season (L(sub s) equal to 343 deg to 348 deg), after the global dust storm had largely abated and airborne dust amounts were subsiding to background values. Simultaneous retrieval of the vertical distribution of both atmospheric temperature and dust optical depth is accomplished through an iterative procedure which is performed on each individual spectrum. The atmospheric transmittances are calculated using a Voigt quasi-random band model, which includes absorption by CO2 and dust, but neglects the effects of multiple scattering. Vertical profiles of temperature and dust optical depth are obtained using modified algorithms. These profiles are used to construct global maps of temperature and dust optical depth as functions of latitude (+/- 90 deg), altitude (approximately 0-50 km), and local time of day.

  3. Comment on Rayleigh-Scattering Calculations for the Terrestrial Atmosphere

    NASA Astrophysics Data System (ADS)

    On, Ois-Marie

    1998-01-01

    It is shown that, for a given surface pressure, the atmospheric vertical temperature profile has a negligible influence on the Rayleigh optical depth. This contradicts the Bucholtz recommendation for the use of values that vary with air mass type. The influence of atmospheric water vapor amount on the Rayleigh optical depth is also investigated.

  4. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  5. Research of Fast DAQ system in KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, H. J.; Yamada, I.; Funaba, H.; Kim, Y. G.; Kim, D. Y.

    2017-12-01

    The Thomson scattering diagnostic is one of the most important diagnostic systems in fusion plasma research. It provides reliable electron temperature and density profiles in magnetically confined plasma. A Q-switched Nd:YAG Thomson system was installed several years ago in KSTAR tokamak to measure the electron temperature and density profiles. For the KSTAR Thomson scattering system, a Charge-to-Digital Conversion (QDC) type data acquisition system was used to measure a pulse type Thomson signal. Recently, however, an error was found during the Te, ne calculation, because the QDC system had integrated the pulse Thomson signal that included a signal similar to stray light. To overcome such errors, we introduce a fast data acquisition (F-DAQ) system. To test this, we use CAEN V1742 5 GS/s, a Versa Module Eurocard Bus (VMEbus) type 12-bit switched capacitor digitizer with 32 channels. In this experiment, we compare the calculated Te results of Thomson scattering data measured simultaneously using QDC and F-DAQ. In the F-DAQ system, the shape of the pulse was restored by fitting.

  6. The influence of surface roughness and turbulence on heat fluxes from an oil palm plantation in Jambi, Indonesia

    NASA Astrophysics Data System (ADS)

    June, Tania; Meijide, Ana; Stiegler, Christian; Purba Kusuma, Alan; Knohl, Alexander

    2018-05-01

    Oil palm plantations are expanding vastly in Jambi, resulted in altered surface roughness and turbulence characteristics, which may influence exchange of heat and mass. Micrometeorological measurements above oil palm canopy were conducted for the period 2013–2015. The oil palms were 12.5 years old, canopy height 13 meters and 1.5 years old canopy height 2.5 m. We analyzed the influence of surface roughness and turbulence strenght on heat (sensible and latent) fluxes by investigating the profiles and gradient of wind speed, and temperature, surface roughness (roughness length, zo, and zero plane displacement, d), and friction velocity u*. Fluxes of heat were calculated using profile similarity methods taking into account atmospheric stability calculated using Richardson number Ri and the generalized stability factor ζ. We found that roughness parameters (zo, d, and u*) directly affect turbulence in oil palm canopy and hence heat fluxes; they are affected by canopy height, wind speed and atmospheric stability. There is a negative trend of d towards air temperature above the oil palm canopy, indicating the effect of plant volume and height in lowering air temperature. We propose studying the relation between zero plane displacement d with a remote sensing vegetation index for scaling up this point based analysis.

  7. Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, J.Y.; James, D.L.; Parameswaran, S.

    1999-07-01

    Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less

  8. Radiative energy balance of the Venus mesosphere

    NASA Astrophysics Data System (ADS)

    Haus, R.; Goering, H.

    1990-03-01

    An accurate radiative transfer model for line-by-line gaseous absorption, as well as for cloud absorption and multiple scattering, is used in the present calculation of solar heating and thermal cooling rates for standard temperature profiles and temperatures yielded by the Venera 15 Fourier Spectrometer Experiment. A strong dependency is noted for heating and cooling rates on cloud-structure variations. The Venus mesosphere is characterized by main cloud-cover heating and overlying-haze cooling. These results are applicable to Venus atmosphere dynamical models.

  9. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.

    PubMed

    Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F

    2014-05-01

    The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage risk following thermal process deviations for tomato products. © 2014 Institute of Food Technologists®

  10. Growth of analog Al(x)Ga(1-x)As/GaAs parabolic quantum wells by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Treideris, G.; Chen, W. Q.; Andersson, T. G.

    1993-01-01

    Parabolic Al(x)Ga(1-x)As/GaAs quantum wells have been grown by molecular beam epitaxy with linear ramping of the Al effusion cell temperature, where the ramping rate was carefully analyzed to avoid a flux lag. The calculated potential profile from the temperature variation was very close to the parabolic one. Low-temperature photoluminescence showed clear interband transitions up to the n = 3 sublevels. The equal energy spacing between adjacent transitions involving heavy-hole states confirmed the parabolic shape of the quantum well.

  11. A Time Dependent Model of HD209458b

    NASA Astrophysics Data System (ADS)

    Iro, N.; Bézard, B.; Guillot, T.

    2004-12-01

    We developed a time-dependent radiative model for the atmosphere of HD209458b to investigate its thermal structure and chemical composition. Time-dependent temperature profiles were calculated, using a uniform zonal wind modelled as a solid body rotation. We predict day/night temperature variations of 600K around 0.1 bar, for a 1 km/s wind velocity, in good agreement with the predictions by Showman & Guillot (2002). On the night side, the low temperature allows the sodium to condense. Depletion of sodium in the morning limb may explain the lower than expected abundance found by Charbonneau et al. (2002).

  12. 140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Airoldi, A.; Bruschi, A.; Buratti, P.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Panaccione, L.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Tudisco, O.; Zerbini, M.

    1999-09-01

    Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.

  13. Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment

    NASA Technical Reports Server (NTRS)

    Gong, Leslie; Richards, W. Lance

    1998-01-01

    A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives.

  14. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S. M.; Guttenfelder, W.; Bell, R. E.

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, ν*e, the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early inmore » the discharge, when βe and ν*e were relatively low, ballooning parity modes were dominant. As time progressed and both βe and ν*e increased, microtearing became the dominant low-κθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-κθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.« less

  15. Kinetics of silver release from microfuel with taking into account the limited-solubility effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A. S., E-mail: asi.kiae@gmail.com; Rusinkevich, A. A., E-mail: rusinkevich_andr@mail.ru

    2014-12-15

    The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code.more » This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.« less

  16. A Nonlocal Calculation of Circumstellar OH Masers

    NASA Astrophysics Data System (ADS)

    Collison, A. J.; Nedoluha, G. E.

    1993-12-01

    We present calculations for circumstellar OH masers which explicitly account for the nonlocal interaction throughout the masing region. Excitation temperatures and observed emission are calculated for all four ground state maser lines. All other transitions are treated using a modified Sobolev approximation. Calculations are performed within the context of a simplified dust/outflow model which provides the pumping conditions and their variation with radius. Total velocity relaxation is implicitly assumed in the calculations. We find general agreement with the qualitative results of earlier work (Collison & Nedoluha, ApJ, 10 Feb 94 issue) and agree with the conclusions of Alcock & Ross (1986, ApJ, 305, 837) who showed that observed profiles can not be produced by a smooth, spherically symmetric wind model of the outflow.

  17. Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles

    NASA Astrophysics Data System (ADS)

    Motapon, O.

    1998-01-01

    The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.

  18. Asparagine deamidation dependence on buffer type, pH, and temperature.

    PubMed

    Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John

    2013-06-01

    The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.

  19. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  20. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.

  1. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part I: Extraction and fractionation optimization based on metabolic profiling.

    PubMed

    Klein-Júnior, Luiz C; Viaene, Johan; Salton, Juliana; Koetz, Mariana; Gasper, André L; Henriques, Amélia T; Vander Heyden, Yvan

    2016-09-09

    Extraction methods evaluation to access plants metabolome is usually performed visually, lacking a truthful method of data handling. In the present study the major aim was developing reliable time- and solvent-saving extraction and fractionation methods to access alkaloid profiling of Psychotria nemorosa leaves. Ultrasound assisted extraction was selected as extraction method. Determined from a Fractional Factorial Design (FFD) approach, yield, sum of peak areas, and peak numbers were rather meaningless responses. However, Euclidean distance calculations between the UPLC-DAD metabolic profiles and the blank injection evidenced the extracts are highly diverse. Coupled with the calculation and plotting of effects per time point, it was possible to indicate thermolabile peaks. After screening, time and temperature were selected for optimization, while plant:solvent ratio was set at 1:50 (m/v), number of extractions at one and particle size at ≤180μm. From Central Composite Design (CCD) results modeling heights of important peaks, previously indicated by the FFD metabolic profile analysis, time was set at 65min and temperature at 45°C, thus avoiding degradation. For the fractionation step, a solid phase extraction method was optimized by a Box-Behnken Design (BBD) approach using the sum of peak areas as response. Sample concentration was consequently set at 150mg/mL, % acetonitrile in dichloromethane at 40% as eluting solvent, and eluting volume at 30mL. Summarized, the Euclidean distance and the metabolite profiles provided significant responses for accessing P. nemorosa alkaloids, allowing developing reliable extraction and fractionation methods, avoiding degradation and decreasing the required time and solvent volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Core radial electric field and transport in Wendelstein 7-X plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  3. Calculation of temperature distribution and rheological properties of the lithosphere along geotransect in the Red Sea region

    NASA Astrophysics Data System (ADS)

    Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav

    2017-12-01

    The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.

  4. Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations

    NASA Astrophysics Data System (ADS)

    Gierens, Klaus; Eleftheratos, Kostas; Sausen, Robert

    2018-02-01

    High-resolution Infrared Radiation Sounder (HIRS) brightness temperatures at channel 12 (T12) can be used to assess the water vapour content of the upper troposphere. The transition from HIRS/2 to HIRS/3 in 1999 involved a shift in the central wavelength of channel 12 from 6.7 to 6.5 µm, causing a discontinuity in the time series of T12. To understand the impact of this change in the measured brightness temperatures, we have performed radiative transfer calculations for channel 12 of HIRS/2 and HIRS/3 instruments, using a large set of radiosonde profiles of temperature and relative humidity from three different sites. Other possible changes within the instrument, apart from the changed spectral response function, have been assumed to be of minor importance, and in fact, it was necessary to assume as a working hypothesis that the spectral and radiometric calibration of the two instruments did not change during the relatively short period of their common operation. For each radiosonde profile we performed two radiative transfer calculations, one using the HIRS/2 channel response function of NOAA 14 and one using the HIRS/3 channel response function of NOAA 15, resulting in negative differences of T12 (denoted as ΔT12 := T12/15 - T12/14) ranging between -12 and -2 K. Inspection of individual profiles for large, medium and small values of ΔT12 pointed to the role of the mid-tropospheric humidity. This guided us to investigate the relation between ΔT12 and the channel 11 brightness temperatures which are typically used to detect signals from the mid-troposphere. This allowed us to construct a correction for the HIRS/3 T12, which leads to a pseudo-channel 12 brightness temperature as if a HIRS/2 instrument had measured it. By applying this correction we find an excellent agreement between the original HIRS/2 T12 and the HIRS/3 data inferred from the correction method with R = 0.986. Upper-tropospheric humidity (UTH) derived from the pseudo HIRS/2 T12 data compared well with that calculated from intersatellite-calibrated data, providing independent justification for using the two intercalibrated time series (HIRS/2 and HIRS/3) as a continuous HIRS time series for long-term UTH analyses.

  5. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  6. Kinetic rate laws of Cd, Pb, and Zn vaporization during municipal solid waste incineration.

    PubMed

    Falcoz, Quentin; Gauthier, Daniel; Abanades, Stéphane; Flamant, Gilles; Patisson, Fabrice

    2009-03-15

    The kinetic rate laws of heavy metal (HM) vaporization from municipal solid waste during its incineration were studied. Realistic artificial waste (RAW) samples spiked with Pb, Zn, and Cd were injected into a fluidized bed reactor. Metal vaporization wastracked by continuous measure ofthe above metals in exhaust gases. An inverse model of the reactor was used to calculate the metal vaporization rates from the concentration vs time profiles in the outlet gas. For each metal, experiments were carried out at several temperatures in order to determine the kinetic parameters and to obtain specific rate laws as functions of temperature. Temperature has a strong influence on the HM vaporization dynamics, especially on the vaporization kinetics profile. This phenomenon was attributed to internal diffusion control of the HM release. Two types of kinetic rate laws were established based on temperature: a fourth- or fifth-order polynomial rate law (r(x) = k0e(-E(A)/RT)p(x)) for temperatures lower than 740 degrees C and a first-order polynomial (r(x) = k0e(-E(A)/ RT(q-q(f) for temperatures higher than 740 degrees C.

  7. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  8. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE PAGES

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    2017-01-01

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  9. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  10. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests.

    PubMed

    Park, Haejun; Rangwala, Ali S; Dembsey, Nicholas A

    2009-08-30

    A method to estimate thermal and kinetic parameters of Pittsburgh seam coal subject to thermal runaway is presented using the standard ASTM E 2021 hot surface ignition test apparatus. Parameters include thermal conductivity (k), activation energy (E), coupled term (QA) of heat of reaction (Q) and pre-exponential factor (A) which are required, but rarely known input values to determine the thermal runaway propensity of a dust material. Four different dust layer thicknesses: 6.4, 12.7, 19.1 and 25.4mm, are tested, and among them, a single steady state dust layer temperature profile of 12.7 mm thick dust layer is used to estimate k, E and QA. k is calculated by equating heat flux from the hot surface layer and heat loss rate on the boundary assuming negligible heat generation in the coal dust layer at a low hot surface temperature. E and QA are calculated by optimizing a numerically estimated steady state dust layer temperature distribution to the experimentally obtained temperature profile of a 12.7 mm thick dust layer. Two unknowns, E and QA, are reduced to one from the correlation of E and QA obtained at criticality of thermal runaway. The estimated k is 0.1 W/mK matching the previously reported value. E ranges from 61.7 to 83.1 kJ/mol, and the corresponding QA ranges from 1.7 x 10(9) to 4.8 x 10(11)J/kg s. The mean values of E (72.4 kJ/mol) and QA (2.8 x 10(10)J/kg s) are used to predict the critical hot surface temperatures for other thicknesses, and good agreement is observed between measured and experimental values. Also, the estimated E and QA ranges match the corresponding ranges calculated from the multiple tests method and values reported in previous research.

  11. A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter O.; Gallagher, Kerry; Pain, Christopher C.

    2009-08-01

    Collections of suitably chosen borehole profiles can be used to infer large-scale trends in ground-surface temperature (GST) histories for the past few hundred years. These reconstructions are based on a large database of carefully selected borehole temperature measurements from around the globe. Since non-climatic thermal influences are difficult to identify, representative temperature histories are derived by averaging individual reconstructions to minimize the influence of these perturbing factors. This may lead to three potentially important drawbacks: the net signal of non-climatic factors may not be zero, meaning that the average does not reflect the best estimate of past climate; the averaging over large areas restricts the useful amount of more local climate change information available; and the inversion methods used to reconstruct the past temperatures at each site must be mathematically identical and are therefore not necessarily best suited to all data sets. In this work, we avoid these issues by using a Bayesian partition model (BPM), which is computed using a trans-dimensional form of a Markov chain Monte Carlo algorithm. This then allows the number and spatial distribution of different GST histories to be inferred from a given set of borehole data by partitioning the geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic factors will be partitioned separately. Conversely, profiles with climatic information, which is consistent with neighbouring profiles, will then be inferred to lie in the same partition. The geographical extent of these partitions then leads to information on the regional extent of the climatic signal. In this study, three case studies are described using synthetic and real data. The first demonstrates that the Bayesian partition model method is able to correctly partition a suite of synthetic profiles according to the inferred GST history. In the second, more realistic case, a series of temperature profiles are calculated using surface air temperatures of a global climate model simulation. In the final case, 23 real boreholes from the United Kingdom, previously used for climatic reconstructions, are examined and the results compared with a local instrumental temperature series and the previous estimate derived from the same borehole data. The results indicate that the majority (17) of the 23 boreholes are unsuitable for climatic reconstruction purposes, at least without including other thermal processes in the forward model.

  12. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, L.; Tskhakaya, D. D.; Jelic, N.

    2011-05-15

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile {Phi}(x) near the sheath edge x{sub s} in the limit {epsilon}{identical_to}{lambda}{sub D}/l=0 (where {lambda}{sub D} is the Debye length and l is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation ({epsilon}=0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys.more » D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since ''the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity''[Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and ''water-bag'' ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to ''practical infinity.'' While within limits of ''very low'' and ''relatively high'' ion source temperatures, the potential is proportional to the space coordinate powered by rational numbers {alpha}=1/2 and {alpha}=2/3, with medium ion source temperatures. We found {alpha} between these values being a non-rational number strongly dependent on the ion source temperature. The range of the non-rational power-law turns out to be a very narrow one, at the expense of the extension of {alpha}=2/3 region towards unexpectedly low ion source temperatures.« less

  13. VERTICAL DIFFUSION IN SMALL STRATIFIED LAKES: DATA AND ERROR ANALYSIS

    EPA Science Inventory

    Water temperature profiles were measured at 2-min intervals in a stratified temperate lake with a surface area of 0.06 km2 and a aximum depth of 10 m from May 7 to August 9, 1989. he data were used to calculate the vertical eddy diffusion coefficient K2 in the hypolimnion. he dep...

  14. Surface magnetometer experiments: Internal lunar properties

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1973-01-01

    Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are respectively 38 gammas, 103 gammas (maximum), 3 gammas, and 327 gammas. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites are compressed and that the scale size of the Apollo 16 remanent field is 5 or = L 100 km. The global eddy current fields, induced by magnetic step transients in the solar wind, were analyzed to calculate an electrical conductivity profile. From nightside data it was found that deeper than 170 km into the moon, the conductivity rises from 0.0003 mhos/m to 0.01 mhos/m at 1000 km depth. Analysis of dayside transient data using a spherically symmetric two-layer model yields a homogeneous conducting core of radios 0.9 R and conductivity sigma = 0.001 mhos/m, surrounded by a nonconducting shell of thickness 0.1 R. This result is in agreement with a nonconducting profile determined from nightside data. The conductivity profile is used to calculate the temperature for an assumed lunar material of peridotite. In an outer layer the temperature rises to 850 to 1050 K, after which it gradually increases to 1200 to 1500 K at a depth of approximately 1000 km.

  15. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  16. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    PubMed Central

    Devesse, Wim; De Baere, Dieter; Guillaume, Patrick

    2017-01-01

    A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764

  17. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping phenomena show that the size of the trapped bolus is smaller for pure blood case as compared to the single wall carbon nanotubes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Growth of Escherichia coli O157:H7 and Listeria monocytogenes in packaged fresh-cut romaine mix at fluctuating temperatures during commercial transport, retail storage, and display.

    PubMed

    Zeng, Wenting; Vorst, Keith; Brown, Wyatt; Marks, Bradley P; Jeong, Sanghyup; Pérez-Rodríguez, Fernando; Ryser, Elliot T

    2014-02-01

    Temperature abuse during commercial transport and retail sale of leafy greens negatively impacts both microbial safety and product quality. Consequently, the effect of fluctuating temperatures on Escherichia coli O157:H7 and Listeria monocytogenes growth in commercially-bagged salad greens was assessed during transport, retail storage, and display. Over a 16-month period, a series of time-temperature profiles for bagged salads were obtained from five transportation routes covering four geographic regions (432 profiles), as well as during retail storage (4,867 profiles) and display (3,799 profiles). Five different time-temperature profiles collected during 2 to 3 days of transport, 1 and 3 days of retail storage, and 3 days of retail display were then duplicated in a programmable incubator to assess E. coli O157:H7 and L. monocytogenes growth in commercial bags of romaine lettuce mix. Microbial growth predictions using the Koseki-Isobe and McKellar-Delaquis models were validated by comparing the root mean square error (RMSE), bias, and the acceptable prediction zone between the laboratory growth data and model predictions. Monte Carlo simulations were performed to calculate the probability distribution of microbial growth from 8,122,127,472 scenarios during transport, cold room storage, and retail display. Using inoculated bags of retail salad, E. coli O157:H7 and L. monocytogenes populations increased a maximum of 3.1 and 3.0 log CFU/g at retail storage. Both models yielded acceptable RMSEs and biases within the acceptable prediction zone for E. coli O157:H7. Based on the simulation, both pathogens generally increased <2 log CFU/g during transport, storage, and display. However, retail storage duration can significantly impact pathogen growth. This large-scale U.S. study-the first using commercial time/temperature profiles to assess the microbial risk of leafy greens-should be useful in filling some of the data gaps in current risk assessments for leafy greens.

  19. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A program to study stress generation mechanisms in silicon sheet growth was started. The purpose of the research is to define post-growth temperature profiles for the sheet that can minimize its stress during growth at high speeds, e.g., greater than 3 cm/min. The initial tasks described concern work in progress toward the development of computing capabilities to (1) model stress-temperature relationships in steady-state ribbon growth, and (2) provide a means to calculate realistic temperature fields in ribbon, given growth system component temperatures as boundary conditions. If it is determined that low stress configurations can be achieved, the modeling is to be tested experimentally by constructing low-stress growth systems for EFG silicon ribbon.

  20. Temperature distribution of thick thermoset composites

    NASA Astrophysics Data System (ADS)

    Guo, Zhan-Sheng; Du, Shanyi; Zhang, Boming

    2004-05-01

    The development of temperature distribution of thick polymeric matrix laminates during an autoclave vacuum bag process was measured and compared with numerically calculated results. The finite element formulation of the transient heat transfer problem was carried out for polymeric matrix composite materials from the heat transfer differential equations including internal heat generation produced by exothermic chemical reactions. Software based on the general finite element software package was developed for numerical simulation of the entire composite process. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepreg manufacturers for thin laminates should be modified to prevent temperature overshoot.

  1. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  2. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed to evaluate the potential effects of crystallographic orientation on alpha ejection. The results from both crystals were very reproducible irrespective of crystal surface used and confirm the findings of Monteleone et al. (2008) that the measured alpha ejection profiles deviate significantly from and are shorter than the calculated theoretical average value. Efforts are currently underway to better constrain the measured alpha ejection distance and measure alpha ejection profiles in apatite crystals other than Durango apatite. References: Boyce, J. et al. (2006) GCA 70, pp. 3031-3039. Farley, K. et al. (1996) GCA 60, pp. 4223-4229. Farley, K. (2006) JGR SE 105, p. 2903-2914. Lippolt, H. et al. (1994) Chem Geol 112, pp. 179-191. Monteleone, B. et al. (2008) Eos Trans AGU, 89 Fall Meeting V53B-2162. Wolf, R. et al. (1996) GCA 60, pp. 4231-4240. Zeitler, P. et al. (1987) GCA 51, pp. 2865-2868.

  3. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    NASA Astrophysics Data System (ADS)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.

  4. Sensitivity Analysis of Fuel Centerline Temperatures in SuperCritical Water-cooled Reactors (SCWRs)

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman

    SuperCritical Water-cooled Reactors (SCWRs) are one of the six nuclear-reactor concepts currently being developed under the Generation-IV International Forum (GIF). A main advantage of SCW Nuclear Power Plants (NPPs) is that they offer higher thermal efficiencies compared to those of current conventional NPPs. Unlike today's conventional NPPs, which have thermal efficiencies between 30 - 35%, SCW NPPs will have thermal efficiencies within a range of 45 - 50%, owing to high operating temperatures and pressures (i.e., coolant temperatures as high as 625°C at 25 MPa pressure). The use of current fuel bundles with UO2 fuel at the high operating parameters of SCWRs may cause high fuel centerline temperatures, which could lead to fuel failure and fission gas release. Studies have shown that when the Variant-20 (43-element) fuel bundle was examined at SCW conditions, the fuel centerline temperature industry limit of 1850°C for UO2 and the sheath temperature design limit of 850°C might be exceeded. Therefore, new fuel-bundle designs, which comply with the design requirements, are required for future use in SCWRs. The main objective of this study to conduct a sensitivity analysis in order to identify the main factors that leads to fuel centerline temperature reduction. Therefore, a 54-element fuel bundle with smaller diameter of fuel elements compared to that of the 43-element bundle was designed and various nuclear fuels are examined for future use in a generic Pressure Tube (PT) SCWR. The 54-element bundle consists of 53 heated fuel elements with an outer diameter of 9.5 mm and one central unheated element of 20-mm outer diameter which contains burnable poison. The 54-element fuel bundle has an outer diameter of 103.45 mm, which is the same as the outer diameter of the 43-element fuel bundle. After developing the 54-element fuel bundle, one-dimensional heat-transfer analysis was conducted using MATLAB and NIST REFPROP programs. As a result, the Heat Transfer Coefficient (HTC), bulk-fluid, sheath and fuel centerline temperature profiles were generated along the heated length of 5.772 m for a generic fuel channel. The fuel centerline and sheath temperature profiles have been determined at four Axial Heat Flux Profiles (AHFPs) using an average thermal power per channel of 8.5 MWth. The four examined AHFPs are the uniform, cosine, upstream-skewed and downstream-skewed profiles. Additionally, this study focuses on investigating a possibility of using low, enhanced and high thermal-conductivity fuels. The low thermal-conductivity fuels, which have been examined in this study, are uranium dioxide (UO 2), Mixed Oxide (MOX) and Thoria (ThO2) fuels. The examined enhanced thermal-conductivity fuels are uranium dioxide - silicon carbide (UO2 - SiC) and uranium dioxide - beryllium oxide (UO2 - BeO). Lastly, uranium carbide (UC), uranium dicarbide (UC2) and uranium nitride (UN) are the selected high thermal-conductivity fuels, which have been proposed for use in SCWRs. A comparison has been made between the low, enhanced and high thermal-conductivity fuels in order to identify the fuel centerline temperature behaviour when different nuclear fuels are used. Also, in the process of conducting the sensitivity analysis, the HTC was calculated using the Mokry et al. correlation, which is the most accurate supercritical water heat-transfer correlation so far. The sheath and the fuel centerline temperature profiles were determined for two cases. In Case 1, the HTC was calculated based on the Mokry et al. correlation, while in Case 2, the HTC values calculated for Case 1 were multiplied by a factor of 2. This factor was used in order to identify the amount of decrease in temperatures if the heat transfer is enhanced with appendages. Results of this analysis indicate that the use of the newly developed 54-element fuel bundle along with the proposed fuels is promising when compared with the Variant-20 (43-element) fuel bundle. Overall, the fuel centerline and sheath temperatures were below the industry and design limits when most of the proposed fuels were examined in the 54-element fuel bundle, however, the fuel centerline temperature limit was exceeded while MOX fuel was examined. Keywords: SCWRs, Fuel Centerline Temperature, Sheath Temperature, High Thermal Conductivity Fuels, Low Thermal Conductivity Fuels, HTC.

  5. A model study of the vertical distributions and escape fluxes of the major and minor species in Titan's thermosphere under different conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Kai; Liang, Mao-Chang; Ip, Wing-Huen

    2017-04-01

    From the measurements of the Ion Neutral Mass Spectrometer (INMS) on the Cassini spacecraft at different close encounters with Titan, it is know that the vertical temperature profile and density distributions of N2, CH4, H2 and other species could have large variations which might be driven by environmental effects such as solar radiation and magnetospheric interaction. For example, the atmospheric temperature as determined from the N2 density profiles can vary between 120 K and 175 K. Following the treatment of Li et al. (PSS, 104 (2014) 48-58) by applying a non-monotonic eddy diffusivity profile, we compute the vertical distributions of different species between Titan's surface to 2000 km altitude, for a range of atmospheric temperatures. Intercomparison between the model results and observations leads to better understanding of the production mechanisms of the minor species like C2H2, C2H4, C2H6 and others, all important to the hydrocarbon budgets of Titan's atmosphere and surface, respectively. Furthermore, such detailed photochemical calculations will also yield accurate estimates of the escape fluxes of H, H2 and CH4 into the circum-planetary region.

  6. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonablemore » prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.« less

  7. Minimization of material inter-diffusion for thermally stable quaternary-capped InAs quantum dot via strain modification

    NASA Astrophysics Data System (ADS)

    Ghadi, Hemant; Sehara, Navneet; Murkute, Punam; Chakrabarti, Subhananda

    2017-05-01

    In this study, a theoretical model is developed for investigating the effect of thermal annealing on a single-layer quaternary-capped (In0.21Al0.21Ga0.58As) InAs quantum dot heterostructure (sample A) and compared to a conventional GaAs-capped sample (sample B). Strain, an interfacial property, aids in dot formation; however, it hinders interdiffusion (up to 650 °C), rendering thermal stability to heterostructures. Three diffusing species In/Al/Ga intermix because of the concentration gradient and temperature variation, which is modeled by Fick's law of diffusion. Ground-state energy for both carriers (electron and holes) is calculated by the Schrodinger equation at different annealing temperatures, incorporating strain computed by the concentration-dependent model. Change in activation energy due to strain decreases particle movement, thereby resulting in thermally stable structures at low annealing temperatures. At low temperature, the conduction band near the dot edge slightly decreases, attributed to the comparatively high strain. Calculated results are consistent with the experimental blue-shift i.e. towards lower wavelength of photoluminescence peak on the same sample with increasing annealing temperatures. Cross-sectional transmission microscopy (TEM) images substantiate the existence of dot till 800 °C for sample (A). With increasing annealing temperature, interdiffusion and dot sublimation are observed in XTEM images of samples A and B. Strain calculated from high-resolution X-ray diffraction (HRXRD) peaks and its decline with increasing temperature are in agreement with that calculated by the model. For highlighting the benefits of quaternary capping, InAlGaAs capping is theoretically and experimentally compared to GaAs capping. Concentration-dependent strain energy is calculated at every point and is further used for computing material interdiffusion, band profiles, and photoluminescence peak wavelength, which can provide better insights into strain energy behavior with temperature and help in the better understanding of thermal annealing.

  8. Winter wheat: A model for the simulation of growth and yield in winter wheat

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Smika, D. E.; Black, A. L.; Willis, W. O.; Bauer, A. (Principal Investigator)

    1981-01-01

    The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously.

  9. Titanite chronology, thermometry, and speedometry of ultrahigh-temperature (UHT) calc-silicates from south Madagascar: U-Pb dates, Zr temperatures, and lengthscales of trace-element diffusion

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2017-12-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  10. Lau phase interferometer for the measurement of the temperature and temperature profile of a gaseous flame

    NASA Astrophysics Data System (ADS)

    Shakher, Chandra; Thakur, Madhuri

    2001-05-01

    In this paper we have investigated the utility of Lau phase interferometer with white light source and circular gratings to measure temperature and temperature profile of an axisymmetric flame. In Lau phase interferometer the two gratings are separated by infinite distance. The third grating is placed at a distance Z equals n.p2(lambda) , (where n is an integer, d is the pitch of the grating and (lambda) is the wavelength of the white light source). The sensitivity of the system is determined by the pitch 'p' of the grating and the distance Z between the gratings. If the distance Z between the two gratings is increased to enhance the sensitivity, the accuracy of measurement is reduced because of the reduction in the fringe contrast. In white light Lau phase interferometer the fringe contrast can be improved by optimizing the self-image plane and the pitch of the grating. From the recorded interferogram the angle of deflection ((phi) ) is measured and temperature at a different point of the flame is calculated. The temperature measured using Lau phase interferometer is in good agreement with the temperature measured by thermocouple and dataloger. Details of the theoretical analysis and experimental results are presented.

  11. Yttrium geothermometry: an approach to determine the oldest garnet growth recrystallization conditions from micaschists (Yunquera Unit, Betic Cordilleras, southern Spain

    NASA Astrophysics Data System (ADS)

    Esteban, J. J.; Cuevas, J.; Tubía, J. M.; Gil Ibarguchi, J. I.

    2012-04-01

    The garnet-xenotime geothermometry is nowadays been using as a tool to identify low-grade relic garnets and even to calculate garnet growth temperatures in metapelites that have undergone a polymetamorphic evolution (Pyle and Spear, 2000; Borghi et al., 2006). A prograde metamorphic evolution, under continuously increasing temperature, can induce garnet and accompanying phase's composition homogenization by intra-crystalline diffusion, leading to flat zoning profiles. Consequently, the application of conventional geothermobarometers on those mineral assemblages does establish minimum P-T conditions. Therefore, the less susceptible elements to diffusion processes, like trace elements, should be taken into account in order to reconstruct their metamorphic evolution. We studied a polymetamorphic micaschist recovered from the Yunquera Unit, one of the tectonic slices of the Internal Zone of the Betic Cordilleras (southern Spain) (Dürr, 1963). The Yunquera unit evidences three stages of recrystallization at different P-T conditions. According to conventional geothermobarometry (Esteban et al., 2005) the metamorphic peak, M2, is estimated at 1200-1300 MPa and 560-695 °C and the decompression path, M3, at 600 MPa and 700 °C. The lack of mineral paragenesis in apparent chemical equilibrium during M1, does not allow determining accurately its recrystallization conditions. Xenotime, identified by scanning electron microprobe, appears as matrix mineral and therefore the entire garnets are assumed to be in chemical equilibrium with it. Yttrium profiles of two garnets show a mean bell-shape compositional variation that differs significatively from the discontinuous profiles shown by Ca, Mg and Fe. This difference accounts for different diffusion rates for those elements and agree with the original Y-zoning preservation. A third Y-profile shows an oscillatory compositional variation. The internal part of garnets, bounded by sharp inclusion trails, are characterized by sawed bell-shape zoning in the range of ca. 500-2000 ppm of Y, that abruptly decreases to less than 500 ppm to the borders. Temperature distribution calculated from the garnet-xenotime geothermometer of Pyle and Spear (2000) is outlined by flat patterns, matching up with the cores of the garnets, and by a slightly increase to the rim. The metamorphic temperature calculated using the Y-concentration of the central portions of garnet cores is ca. 520 °C, whereas towards the rim the temperature does increase up to ca. 575-625 °C. The estimation of garnet recrystallization pressure is still a matter of discussion, furthermore when the hypothetical equilibrium paragenesis is absent. According to the presented data, we suggest that the oldest garnet growth generation did occur at ca. 520 °C and therefore, the preservation of original Y-zonings can be used for thermal history reconstructions, as Y-content in garnet is T-dependent.

  12. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  13. HITRAN Application Programming Interface (hapi): Extending HITRAN Capabilities

    NASA Astrophysics Data System (ADS)

    Kochanov, Roman V.; Gordon, Iouli E.; Rothman, Laurence S.; Wcislo, Piotr; Hill, Christian; Wilzewski, Jonas

    2016-06-01

    In this talk we present an update on the HITRAN Application Programming Interface (HAPI). HAPI is a free Python library providing a flexible set of tools to work with the most up-to-date spectroscopic data provided by HITRANonline (www.hitran.org) HAPI gives access to the spectroscopic parameters which are continuously being added to HITRANonline. For instance, these include non-Voigt profile parameters, foreign broadenings and shifts, and line mixing. HAPI enables more accurate spectra calculations for the spectroscopic and astrophysical applications requiring the detailed modeling of the broadener. HAPI implements an expert algorithm for the line profile selection for a single-layer radiative transfer calculation, and can be extended by custom line profiles and algorithms of their calculations, partition sums, instrumental functions, and temperature and pressure dependences. Possible HAPI applications include spectroscopic data validation and analysis as well as radiative-transfer calculations, experiment verification and spectroscopic code benchmarking. Kochanov RV, Gordon IE, et al. Submitted to JQSRT HighRus Special Issue 2016 Kochanov RV, Hill C, et al. ISMS 2015. http://hdl.handle.net/2142/79241 Hill C, Gordon IE, et al. Accepted to JQSRT HighRus Special Issue 2016. Wcislo P, Gordon IE, et al. Accepted to JQSRT HighRus Special Issue 2016. Wilzewski JS, Gordon IE, et al. JQSRT 2016;168:193-206. Kochanov RV, Gordon IE, et al. Clim Past 2015;11:1097-105.

  14. Simutaneous Variational Retrievals of Temperature, Humidity, Surface and Cloud Properties from Satellite and Airborne Hyperspectral Infrared Sounder Data using the Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) as the Forward Model Operator

    NASA Astrophysics Data System (ADS)

    Havemann, S.; Thelen, J. C.; Harlow, R. C.

    2016-12-01

    Full scattering radiative transfer simulations for hyperspectral infrared and shortwave sounders are essential in order to be able to extract the maximal information content from these instruments for cloudy scenes and those with significant aerosol loading, but have been rarely done because of the high computational demands. The Havemann-Taylor Fast Radiative Transfer Code works in Principal Component space, reducing the computational demand by orders of magnitude thereby making fast simultaneous retrievals of vertical profiles of temperature and humidity, surface temperature and emissivity as well as cloud and aerosol properties feasible. Results of successful retrievals using IASI sounder data as well as data taken during flights of the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM Bae 146 aircraft will be presented. These will demonstrate that the use of all the instrument channels in PC space can provide valuable information both on temperature and humidity profiles relevant for NWP and on the cirrus cloud properties at the same time. There is very significant information on the humidity profile below semi-transparent cirrus to be gained from IR sounder data. The retrieved ice water content is in good agreement with airborne in-situ measurements during Lagrangian spiral descents. In addition to the full scattering calculations, the HT-FRTC has also been trained with a fast approximation to the scattering problem which reduces it to a clear-sky calculation but with a modified extinction (Chou scaling). Chou scaling is a reasonable approximation in the infrared but is very poor where the solar contribution becomes significant. The comparison of the retrieval performance with the full scattering solution and the Chou scaling solution in the forward model operator for infrared sounders shows that temperature and humidity profiles are only marginally degraded by the use of the Chou scaling approximation. Retrievals of the specific cloud parameters (ice water content, cirrus cloud thickness and cirrus cloud horizontal fraction) are however strongly negatively affected under the Chou scaling approximation. The aim is also to use HT-FRTC to run clear and cloudy simulations for the atmospheric state test set which has been prepared by the NASA/JPL/AIRS project.

  15. Seasonal cycle of the mixed layer depth, of the seasonal thermocline and of the upper-ocean heat rate in the Mediterranean Sea: an observational approach

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Somot, Samuel; D'Ortenzio, Fabrizio; Estournel, Claude; Lavigne, Héloïse

    2014-05-01

    We present a relatively high resolution Mediterranean climatology (0.5°x0.5°x12 months) of the seasonal thermocline based on a comprehensive collection of temperature profiles of the last 44 years (1969-2012). The database includes more than 190,000 profiles, merging CTD, XBT, profiling floats, and gliders observations. This data set is first used to describe the seasonal cycle of the mixed layer depth and of the seasonal thermocline and on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat Storage Rate (HSR) is calculated as the time rate of change of the heat content due to variations in the temperature integrated from the surface down to the base of the seasonal thermocline. Heat Entrainment Rate (HER) is calculated as the time rate of change of the heat content due to the deepening of thermocline base. We propose a new independent estimate of the seasonal cycle of the Net surface Heat Flux, calculated on average over the Mediterranean Sea for the 1979-2011 period, based only on in-situ observations. We used our new climatologies of HSR and of HER, combined to existing climatology of the horizontal heat flux at Gibraltar Strait. Although there is a good agreement between our estimation of NHF, from observations, with modeled NHF, some differences may be noticed during specific periods. A part of these differences may be explained by the high temporal and spatial variability of the Mixed Layer Depth and of the seasonal thermocline, responsible for very localized heat transfer in the ocean.

  16. Analysis of magnesium XI line profiles from solar active regions

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Cowan, R. D.; Felthauser, H.; Fenimore, E. E.; Hockaday, M. P.; Bely-Dubau, F.; Faucher, P.; Steenman-Clark, L.

    1984-01-01

    High-resolution solar spectra of the Mg XI 1s2 1S0-1s2p 1P1 resonance line at 9.169 A and the associated nearby satellite lines obtained from two rocket-borne crystal spectrometer measurements are presented. Comparisons with two independent sets of theoretical calculations for the 1s2nl-1s2pnl dielectronic satellite lines with n = 3-7 indicate electron temperatures of 4-4.5 million K. Measured line widths indicate either that the ion temperature exceeds the electron temperature by about a million K or that about 28 km/s of turbulence is present.

  17. A temperature microsensor for measuring laser-induced heating in gold nanorods.

    PubMed

    Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S

    2015-01-01

    Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.

  18. MIRO Observation of Comet C/2002 T7 (LINEAR) Water Line Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Frerking, Margaret; Hofstadter, Mark; Gulkis, Samuel; von Allmen, Paul; Crovisier, Jaques; Biver, Nicholas; Bockelee-Morvan, Dominique

    2011-01-01

    Comet C/2002 T7 (LINEAR) was observed with the Microwave Instrument for Rosetta Orbiter (MIRO) on April 30, 2004, between 5 hr and 16 hr UT. The comet was 0.63AU distance from the Sun and 0.68AU distance from the MIRO telescope at the time of the observations. The water line involving the two lowest rotational levels at 556.936 GHz is observed at 557.070 GHz due to a large Doppler frequency shift. The detected water line spectrum is interpreted using a non local thermal equilibrium (Non-LTE) molecular excitation and radiative transfer model. Several synthetic spectra are calculated with various coma profiles that are plausible for the comet at the time of observations. The coma profile is modeled with three characteristic parameters: outgassing rate, a constant expansion velocity, and a constant gas temperature. The model calculation result shows that for the distant line observation where contributions from a large coma space is averaged, the combination of the outgassing rate and the gas expansion velocity determines the line shape while the gas temperature has a negligible effect. The comparison between the calculated spectra and the MIRO measured spectrum suggests that the outgassing rate of the comet is about 2.0x1029 molecules/second and its gas expansion velocity about 1.2 km/s at the time of the observations.

  19. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  20. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. a, A.A. Kutepov, W.D. Pesnell, In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  1. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; El Fantroussi, Said; Smidt, Hauke; Smoot, James C.; Tribou, Erik H.; Kelly, John J.; Noble, Peter A.; Stahl, David A.

    2003-01-01

    The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.

  2. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  3. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Tunheim, J. A.; Heilman, J.

    1977-01-01

    The author has identified the following significant results. The finite difference model was used to calculate the differences in surface temperature between two hypothetical sites which result from a temperature difference at 50 cm due to the presence of shallow ground water at one of the sites. Although qualitative results of the model seemed consistant with experimental results, further evaluation showed a need for taking account of differences in thermal conductivity due to different moisture profiles at the two sites considered.

  4. Large-area sheet task advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1982-01-01

    The computer code for calculating web temperature distribution was expanded to provide a graphics output in addition to numerical and punch card output. The new code was used to examine various modifications of the J419 configuration and, on the basis of the results, a new growth geometry was designed. Additionally, several mathematically defined temperature profiles were evaluated for the effects of the free boundary (growth front) on the thermal stress generation. Experimental growth runs were made with modified J419 configurations to complement the modeling work. A modified J435 configuration was evaluated.

  5. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    NASA Technical Reports Server (NTRS)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  6. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S. M., E-mail: skaye@pppl.gov; Guttenfelder, W.; Bell, R. E.

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β{sub e}, ν{sub e}{sup ∗}, the MHD α parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stabilitymore » calculations were consistent. Early in the discharge, when β{sub e} and ν{sub e}{sup ∗} were relatively low, ballooning parity modes were dominant. As time progressed and both β{sub e} and ν{sub e}{sup ∗} increased, microtearing became the dominant low-k{sub θ} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub θ}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.« less

  7. Simulation of the wastewater temperature in sewers with TEMPEST.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2008-01-01

    TEMPEST is a new interactive simulation program for the estimation of the wastewater temperature in sewers. Intuitive graphical user interfaces assist the user in managing data, performing calculations and plotting results. The program calculates the dynamics and longitudinal spatial profiles of the wastewater temperature in sewer lines. Interactions between wastewater, sewer air and surrounding soil are modeled in TEMPEST by mass balance equations, rate expressions found in the literature and a new empirical model of the airflow in the sewer. TEMPEST was developed as a tool which can be applied in practice, i.e., it requires as few input data as possible. These data include the upstream wastewater discharge and temperature, geometric and hydraulic parameters of the sewer, material properties of the sewer pipe and surrounding soil, ambient conditions, and estimates of the capacity of openings for air exchange between sewer and environment. Based on a case study it is shown how TEMPEST can be applied to estimate the decrease of the downstream wastewater temperature caused by heat recovery from the sewer. Because the efficiency of nitrification strongly depends on the wastewater temperature, this application is of practical relevance for situations in which the sewer ends at a nitrifying wastewater treatment plant.

  8. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    NASA Technical Reports Server (NTRS)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  9. Biothermal modeling of transurethral ultrasound applicators for MR-guided prostate thermal therapy (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ross, Anthony B.; Diederich, Chris J.; Nau, William H.; Tyreus, Per D.; Gill, Harcharan; Bouley, Donna; Butts, R. K.; Rieke, Viola; Daniel, Bruce; Sommer, Graham

    2005-04-01

    Thermal ablation is a minimally-invasive treatment option for benign prostatic hyperplasia (BPH) and localized prostate cancer. Accurate spatial control of thermal dose delivery is paramount to improving thermal therapy efficacy and avoiding post-treatment complications. We have recently developed three types of transurethral ultrasound applicators, each with different degrees of heating selectivity. These applicators have been evaluated in vivo in coordination with magnetic resonance temperature imaging, and demonstrated to accurately ablate specific regions of the canine prostate. A finite difference biothermal model of the three types of transurethral ultrasound applicators (sectored tubular, planar, and curvilinear transducer sections) was developed and used to further study the performance and heating capabilities of each these devices. The biothermal model is based on the Pennes bioheat equation. The acoustic power deposition pattern corresponding to each applicator type was calculated using the rectangular radiator approximation to the Raleigh Sommerfield diffraction integral. In this study, temperature and thermal dose profiles were calculated for different treatment schemes and target volumes, including single shot and angular scanning procedures. This study also demonstrated the ability of the applicators to conform the cytotoxic thermal dose distribution to a predefined target area. Simulated thermal profiles corresponded well with MR temperature images from previous in vivo experiments. Biothermal simulations presented in this study reinforce the potential of improved efficacy of transurethral ultrasound thermal therapy of prostatic disease.

  10. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  11. Capturing Characteristics of Atmospheric Refractivity Using Observations and Modeling Approaches

    DTIC Science & Technology

    2015-06-01

    Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Electromagnetic wave...INTENTIONALLY LEFT BLANK v ABSTRACT Electromagnetic wave propagation is sensitive to gradients of refractivity derived from atmospheric temperature...evaporation duct profiles is then run through AREPS to calculate the propagation loss of EM energy along the path of varying geometric and transmitter setups

  12. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    NASA Astrophysics Data System (ADS)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  13. Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan

    2016-01-01

    We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.

  14. Core radial electric field and transport in Wendelstein 7-X plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pablant, N. A.; Langenberg, A.; Alonso, A.

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less

  15. Core radial electric field and transport in Wendelstein 7-X plasmas

    DOE PAGES

    Pablant, N. A.; Langenberg, A.; Alonso, A.; ...

    2018-02-12

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less

  16. Calculating clear-sky radiative heating rates using the Fu-Liou RTM with inputs from observed and reanalyzed profiles

    NASA Astrophysics Data System (ADS)

    Dolinar, E. K.; Dong, X.; Xi, B.

    2015-12-01

    One-dimensional radiative transfer models (RTM) are a common tool used for calculating atmospheric heating rates and radiative fluxes. In the forward sense, RTMs use known (or observed) quantities of the atmospheric state and surface characteristics to determine the appropriate surface and top-of-atmosphere (TOA) radiative fluxes. The NASA CERES science team uses the modified Fu-Liou RTM to calculate atmospheric heating rates and surface and TOA fluxes using the CERES observed TOA shortwave (SW) and longwave (LW) fluxes as constraints to derive global surface and TOA radiation budgets using a reanalyzed atmospheric state (e.g. temperature and various greenhouse gases) from the newly developed MERRA-2. However, closure studies have shown that using the reanalyzed state as input to the RTM introduces some disparity between the RTM calculated fluxes and surface observed ones. The purpose of this study is to generate a database of observed atmospheric state profiles, from satellite and ground-based sources, at several permanent Atmospheric Radiation Measurement (ARM) Program sites, including the Southern Great Plains (SGP), Northern Slope of Alaska (NSA) and Tropical Western Pacific Nauru (TWP-C2), and Eastern North Atlantic (ENA) permanent facilities. Since clouds are a major modulator of radiative transfer within the Earth's atmosphere, we will focus on the clear-sky conditions in this study, which will set up the baseline for our cloudy studies in the future. Clear-sky flux profiles are calculated using the Edition 4 NASA LaRC modified Fu-Liou RTM. The aforementioned atmospheric profiles generated in-house are used as input into the RTM, as well as from reanalyses. The calculated surface and TOA fluxes are compared with ARM surface measured and CERES satellite observed SW and LW fluxes, respectively. Clear-sky cases are identified by the ARM radar-lidar observations, as well as satellite observations, at the select ARM sites.

  17. Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations

    PubMed Central

    Lee, In-Ho; Kim, Seung-Yeon; Lee, Jooyoung

    2013-01-01

    We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to be the reaction coordinate, and the folding and unfolding processes are characterized by the ADMD step index, in contrast to the common a priori reaction coordinate as used in conventional studies. Second, we calculate free-energy profile as the function of temperature, by employing the replica-exchange molecular dynamics (REMD) method. The current method provides efficient exploration of conformational space and proper characterization of protein folding/unfolding dynamics from/to an arbitrary extended conformation. We demonstrate that combination of the two simulation methods, ADMD and REMD, provides understanding on molecular conformational changes in proteins. The protocol is tested on a small protein, penta-peptide of met-enkephalin. For the neuropeptide met-enkephalin system, folded, extended, and intermediate sates are well-defined through the free-energy profile over the reaction coordinate. Results are consistent with those in the literature. PMID:23917881

  18. Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, M., E-mail: ali.mehidi93@gmail.com; Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349; Alim, M. A., E-mail: maalim@math.buet.ac.bd

    An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocitymore » profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.« less

  19. MAVEN in situ measurements of photochemical escape of oxygen from Mars

    NASA Astrophysics Data System (ADS)

    Lillis, Robert; Deighan, Justin; Fox, Jane; Bougher, Stephen; Lee, Yuni; Cravens, Thomas; Rahmati, Ali; Mahaffy, Paul; Benna, Mehdi; Groller, Hannes; Jakosky, Bruce

    2016-04-01

    One of the primary goals of the MAVEN mission is to characterize rates of atmospheric escape from Mars at the present epoch and relate those escape rates to solar drivers. One of the known escape processes is photochemical escape, where a) an exothermic chemical reaction in the atmosphere results in an upward-traveling neutral particle whose velocity exceeds planetary escape velocity and b) the particle is not prevented from escaping through subsequent collisions. At Mars, photochemical escape of oxygen is expected to be a significant channel for atmospheric escape, particularly in the early solar system when extreme ultraviolet (EUV) fluxes were much higher. Thus characterizing this escape process and its variability with solar drivers is central to understanding the role escape to space has played in Mars' climate evolution. We use near-periapsis (<400 km altitude) data from three MAVEN instruments: the Langmuir Probe and Waves (LPW) instrument measures electron density and temperature, the Suprathermal And Thermal Ion Composition (STATIC) experiment measures ion temperature and the Neutral Gas and Ion Mass Spectrometer (NGIMS) measures neutral and ion densities. For each profile of in situ measurements, we make several calculations, each as a function of altitude. The first uses electron and temperatures and simulates the dissociative recombination of both O2+ and CO2+ to calculate the probability distribution for the initial energies of the resulting hot oxygen atoms. The second is a Monte Carlo hot atom transport model that takes that distribution of initial O energies and the measured neutral density profiles and calculates the probability that a hot atom born at that altitude will escape. The third takes the measured electron and ion densities and electron temperatures and calculates the production rate of hot O atoms. We then multiply together the profiles of hot atom production and escape probability to get profiles of the production rate of escaping atoms. We integrate with respect to altitude to give us the escape flux of hot oxygen atoms for that periapsis pass. We have sufficient coverage in solar zenith angle (SZA) to estimate total escape rates for two intervals with the obvious assumption that escape rates are the same at all points with the same SZA. We estimate total escape rates of 3.5-5.8 x 1025 s-1 for Ls = 289° to 319° and 1.6-2.6 x 1025 s-1 for Ls = 326° to 348°. The latter is the most directly comparable to previous model-based estimates and is roughly in line with several of them. Total photochemical loss over Mars history is not very useful to calculate from such escape fluxes derived over a limited area and under limited conditions. A thicker atmosphere and much higher solar EUV in the past may change the dynamics of escape dramatically. In the future, we intend to use 3-D Monte Carlo models of global atmospheric escape, in concert with our in situ and remote measurements, to fully characterize photochemical escape under current conditions and carefully extrapolate back in time using further simulations with new boundary conditions.

  20. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry; Elliott, Tim

    2009-02-01

    High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.

  1. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processesmore » inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.« less

  2. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    PubMed

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  3. Imaging of high-amylose starch tablets. 3. Initial diffusion and temperature effects.

    PubMed

    Thérien-Aubin, Héloïse; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H

    2005-01-01

    The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.

  4. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  5. The theory of an active magnetic regenerative refrigerator

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1983-01-01

    The adiabatic temperature change with field which is limited to about 2 K/Tesla for ferromagnets near their Curie temperatures by the change of magnetization with temperature and the lattice heat capacity is discussed. Practical magnetic refrigerators operate on a regenerative cycle such as the Brayton cycle. This cycle can be executed through the use of an active magnetic regenerator, i.e., a regenerator composed of magnetic material that is cycled in an out of a magnetic field with appropriate fluid flows. The theory of these devices is predicted by solving the partial differential equations that describe fluid and the magnetic solid. The active magnetic regenerator is described along with the method of calculation. Temperature profiles for a normal regenerator and a magnetic regenerative refrigerator are shown.

  6. Finite element model of the temperature increase in excised porcine cadaver iris during direct illumination by femtosecond laser pulses

    PubMed Central

    Sun, Hui; Kurtz, Ronald M.

    2012-01-01

    Abstract. In order to model the thermal effect of laser exposure of the iris during laser corneal surgery, we simulated the temperature increase in porcine cadaver iris. The simulation data for the 60 kHz FS60 Laser showed that the temperature increased up to 1.23°C and 2.45°C (at laser pulse energy 1 and 2 µJ, respectively) by the 24 second procedure time. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using porcine cadaver iris. Simulation results of different types of femtosecond lasers indicate that the Laser in situ keratomileusis procedure does not present a safety hazard to the iris. PMID:22894525

  7. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  8. Temperature dependence of quantized states in an InGaAs/GaAs strained asymmetric triangular quantum well

    NASA Astrophysics Data System (ADS)

    Chi, W. S.; Lin, D. Y.; Huang, Y. S.; Qiang, H.; Pollak, F. H.; Mathine, D. L.; Maracas, G. N.

    1996-03-01

    Photoreflectance (PR), contactless electroreflectance (CER) and piezoreflectance (PzR) measurements of an InGaAs/GaAs strained asymmetric triangular quantum well (ATQW) heterostructure as a function of temperature in the range of 20 to 300 K have been carried out. The structure was fabricated by molecular beam epitaxy using the digital alloy compositional grading method. A careful analysis of the PR, CER and PzR spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state to the nth heavy(light)-hole band state. Comparison of the observed intersubband transitions with a theoretical calculation based on the envelope function model, including the effects of strain, provide a self-consistent check of the ATQW composition profile. The detailed study of the temperature dependence of the excitonic transition energies indicates that the potential profile of the ATQW varies at different temperatures. The parameters that describe the temperature dependence of 0268-1242/11/3/012/img8 are evaluated. The anomalous behaviour of the temperature dependence of the linewidth of 11H, 0268-1242/11/3/012/img9, is compared with recent results for GaAs/AlGaAs and InGaAs/GaAs symmetric rectangular quantum wells of comparable dimensions.

  9. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir

    2016-10-01

    Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.

  10. Obtaining Potential Virtual Temperature Profiles, Entrainment Fluxes, and Spectra from Mini Unmanned Aerial Vehicle Data

    NASA Astrophysics Data System (ADS)

    Dias, N. L.; Gonçalves, J. E.; Freire, L. S.; Hasegawa, T.; Malheiros, A. L.

    2012-10-01

    We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane's ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent -5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.

  11. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  12. Neogene Uplift and Magmatism of Anatolia: Insights From Drainage Analysis and Basaltic Geochemistry

    NASA Astrophysics Data System (ADS)

    McNab, F.; Ball, P. W.; Hoggard, M. J.; White, N. J.

    2018-01-01

    It is agreed that mantle dynamics have played a role in generating and maintaining the elevated topography of Anatolia during Neogene times. However, there is debate about the relative importance of subduction zone and asthenospheric processes. Key issues concern onset and cause of regional uplift, thickness of the lithospheric plate, and the presence/absence of temperature and/or compositional anomalies within the convecting mantle. Here, we tackle these interlinked issues by analyzing and modeling two disparate suites of observations. First, a drainage inventory of 1,844 longitudinal river profiles is assembled. This database is inverted to calculate the variation of Neogene regional uplift through time and space by minimizing the misfit between observed and calculated river profiles subject to independent calibration. Our results suggest that regional uplift commenced at 20 Ma in the east and propagated westward. Second, we have assembled a database of geochemical analyses of basaltic rocks. Two different approaches have been used to quantitatively model this database with a view to determining the depth and degree of asthenospheric melting across Anatolia. Our results suggest that melting occurs at depths as shallow as 60 km in the presence of mantle potential temperatures as high as 1400°C. There is evidence that temperatures are higher in the east, consistent with the pattern of subplate shear wave velocity anomalies. Our combined results are consistent with isostatic and admittance analyses and suggest that elevated asthenospheric temperatures beneath thinned Anatolian lithosphere have played a first-order role in generating and maintaining regional dynamic topography and basaltic magmatism.

  13. Modeling of thermal lensing in a [1 1 1]-cut Nd:YAG rod with temperature-dependent parameters and different pumping profiles

    NASA Astrophysics Data System (ADS)

    Bričkus, D.; Dement'ev, A. S.

    2017-05-01

    Temperature dependences of the thermo-optical coefficients of YAG crystals are often neglected when thermal lensing in laser rods is investigated, though their influence is very significant. It is especially significant for transversally non-uniform thermal loading. An analytical solution of the heat transfer equation with only the radial heat flow is found in the integral form, which is very convenient for numerical simulations. Uniform, top-hat, parabolic, Gaussian, super-Gaussian and annular heat source distributions are used in the calculations. The generalization of the thermally-induced refractive index change for long enough [1 1 1]-cut YAG rods to the case of temperature-dependent YAG parameters is developed and applied to the calculation of the corresponding optical path differences. Different definitions of the optical power of the aberrated thermal lens (TL) are discussed in detail. It is shown that for each of the heat source distributions, the temperature dependences of the YAG parameters significantly increase (1.5-1.8 times) the paraxial optical power of the induced TL.

  14. D2O self-broadening study in 2.5 μ

    NASA Astrophysics Data System (ADS)

    Lavrentieva, N.; Lugovskoi, A.; Sinitsa, L.; Sherbakov, A.; Svetlichny, O.

    2014-11-01

    The absorption spectra of the D2O monomer in 3600…4200 cm-1 were recorded using Fourier Transform spectrometer FS-125M at room temperature and pressure of 15 and 33 mbar with spectral resolution of 0.03 cm-1 using 2.5 cm long absorption cell. Strong unblended D2O lines lying on the wing of the H2O stretching band were used to determine the line broadening parameters. They were determined from the line profile by Program VxpProfile. The differences between fitted line profiles and experimental ones do not exceed 2%. Registered D2O lines belong to (011) - (000) and (110) - (000) bands of the second triad. Self-broadening coefficients vary from 0.27 cm-1/atm to 0.445 cm-1/atm and they exceed 3 times the D2O-N2 line broadening coefficients in the v3. Calculations of self-broadening coefficients of the D2O lines were performed using semiempirical method based on the impact theory of broadening and included the correction factors. The calculated results well agree with experimental data.

  15. Microinstability properties of negative magnetic shear discharges in the Tokamak Fusion Test Reactor and DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rewoldt, G.; Tang, W.M.; Lao, L.L.

    1997-03-01

    The microinstability properties of discharges with negative (reversed) magnetic shear in the Tokamak Fusion Test Reactor (TFTR) and DIII-D experiments with and without confinement transitions are investigated. A comprehensive kinetic linear eigenmode calculation employing the ballooning representation is employed with experimentally measured profile data, and using the corresponding numerically computed magnetohydrodynamic (MHD) equilibria. The instability considered is the toroidal drift mode (trapped-electron-{eta}{sub i} mode). A variety of physical effects associated with differing q-profiles are explained. In addition, different negative magnetic shear discharges at different times in the discharge for TFTR and DIII-D are analyzed. The effects of sheared toroidal rotation,more » using data from direct spectroscopic measurements for carbon, are analyzed using comparisons with results from a two-dimensional calculation. Comparisons are also made for nonlinear stabilization associated with shear in E{sub r}/RB{sub {theta}}. The relative importance of changes in different profiles (density, temperature, q, rotation, etc.) on the linear growth rates is considered.« less

  16. Uncertainty Propagation in OMFIT

    NASA Astrophysics Data System (ADS)

    Smith, Sterling; Meneghini, Orso; Sung, Choongki

    2017-10-01

    A rigorous comparison of power balance fluxes and turbulent model fluxes requires the propagation of uncertainties in the kinetic profiles and their derivatives. Making extensive use of the python uncertainties package, the OMFIT framework has been used to propagate covariant uncertainties to provide an uncertainty in the power balance calculation from the ONETWO code, as well as through the turbulent fluxes calculated by the TGLF code. The covariant uncertainties arise from fitting 1D (constant on flux surface) density and temperature profiles and associated random errors with parameterized functions such as a modified tanh. The power balance and model fluxes can then be compared with quantification of the uncertainties. No effort is made at propagating systematic errors. A case study will be shown for the effects of resonant magnetic perturbations on the kinetic profiles and fluxes at the top of the pedestal. A separate attempt at modeling the random errors with Monte Carlo sampling will be compared to the method of propagating the fitting function parameter covariant uncertainties. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656.

  17. Calculation of ion distribution functions and neoclassical transport in the edge of single-null divertor tokamaks

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, R. H.; Xu, X. Q.

    2007-11-01

    The ion distribution function in the H-mode pedestal region and outward across the magnetic separatrix is expected to have a substantial non-Maxwellian character owing to the large banana orbits and steep gradients in temperature and density. The 4D (2r,2v) version of the TEMPEST continuum gyrokinetic code is used with a Coulomb collision model to calculate the ion distribution in a single-null tokamak geometry throughout the pedestal/scrape-off-layer regions. The mean density, parallel velocity, and energy radial profiles are shown at various poloidal locations. The collisions cause neoclassical energy transport through the pedestal that is then lost to the divertor plates along the open field lines outside the separatrix. The resulting heat flux profiles at the inner and outer divertor plates are presented and discussed, including asymmetries that depend on the B-field direction. Of particular focus is the effect on ion profiles and fluxes of a radial electric field exhibiting a deep well just inside the separatrix, which reduces the width of the banana orbits by the well-known squeezing effect.

  18. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  19. The structure of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Fox, David Charles

    When infalling gas is accreted onto a cluster of galaxies, its kinetic energy is converted to thermal energy in a shock, heating the ions. Using a self-similar spherical model, we calculate the collisional heating of the electrons by the ions, and predict the electron and ion temperature profiles. While there are significant differences between the two, they occur at radii larger than currently observable, and too large to explain observed X-ray temperature declines in clusters. Numerical simulations by Navarro, Frenk, & White (1996) predict a universal dark matter density profile. We calculate the expected number of multiply-imaged background galaxies in the Hubble Deep Field due to foreground groups and clusters with this profile. Such groups are up to 1000 times less efficient at lensing than the standard singular isothermal spheres. However, with either profile, the expected number of galaxies lensed by groups in the Hubble Deep Field is at most one, consistent with the lack of clearly identified group lenses. X-ray and Sunyaev-Zel'dovich (SZ) effect observations can be combined to determine the distance to clusters of galaxies, provided the clusters are spherical. When applied to an aspherical cluster, this method gives an incorrect distance. We demonstrate a method for inferring the three-dimensional shape of a cluster and its correct distance from X-ray, SZ effect, and weak gravitational lensing observations, under the assumption of hydrostatic equilibrium. We apply this method to simple, analytic models of clusters, and to a numerically simulated cluster. Using artificial observations based on current X-ray and SZ effect instruments, we recover the true distance without detectable bias and with uncertainties of 4 percent.

  20. Temperature dependent electrical properties of rare-earth metal Er Schottky contact on p-type InP

    NASA Astrophysics Data System (ADS)

    Rao, L. Dasaradha; Reddy, N. Ramesha; Kumar, A. Ashok; Reddy, V. Rajagopal

    2013-06-01

    The current-voltage (I-V) characteristics of the Er/p-InP Schottky barrier diodes (SBDs) have been investigated in the temperature range of 300-400K in steps of 25K. The electrical parameters such as ideality factor (n) and zero-bias barrier height (Φbo) are found to be strongly temperature dependent. It is observed that ΦI-V decreases whereas n increases with decreasing temperature. The series resistance is also calculated from the forward I-V characteristics of Er/p-InP SBD and it is found to be strongly dependent on temperature. Further, the temperature dependence of energy distribution of interface state density (NSS) profiles is determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor. It is observed that the NSS values increase with a decrease in temperature.

  1. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    NASA Astrophysics Data System (ADS)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  2. Improvements to the ion Doppler spectrometer diagnostic on the HIT-SI experiments.

    PubMed

    Hossack, Aaron; Chandra, Rian; Everson, Chris; Jarboe, Tom

    2018-03-01

    An ion Doppler spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record of 6.9 μs temporal and ≤2.8 cm spatial resolution in the midplane of each device. These allow Ciii and Oii flow, displacement, and temperature profiles to be observed simultaneously. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to a video camera, frame rates of up to ten times the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper half of the midplane. In HIT-SI3, frame rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from ≲13 to ≲5 eV (with an instrument temperature of 8-16 eV) and uncertainty in velocity from ≲2 to ≲1 km/s. Doppler shift and broadening are calculated via the Levenberg-Marquardt algorithm, after which the errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for Ciii peaked near the inboard current separatrix at ≈40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at ≈6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.

  3. Improvements to the ion Doppler spectrometer diagnostic on the HIT-SI experiments

    NASA Astrophysics Data System (ADS)

    Hossack, Aaron; Chandra, Rian; Everson, Chris; Jarboe, Tom

    2018-03-01

    An ion Doppler spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record of 6.9 μs temporal and ≤2.8 cm spatial resolution in the midplane of each device. These allow Ciii and Oii flow, displacement, and temperature profiles to be observed simultaneously. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to a video camera, frame rates of up to ten times the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper half of the midplane. In HIT-SI3, frame rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from ≲13 to ≲5 eV (with an instrument temperature of 8-16 eV) and uncertainty in velocity from ≲2 to ≲1 km/s. Doppler shift and broadening are calculated via the Levenberg-Marquardt algorithm, after which the errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for Ciii peaked near the inboard current separatrix at ≈40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at ≈6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.

  4. Improvements to the Ion Doppler Spectrometer Diagnostic on the HIT-SI Experiments

    DOE PAGES

    Hossack, Aaron; Chandra, Rian; Everson, Christopher; ...

    2018-03-09

    An Ion Doppler Spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record 6.9 µs temporal and <=2.8 cm spatial resolution in the midplane of each device. These allow C III and O II flow, displacement, and temperature profiles to be simultaneously observed. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to video camera, frame-rates of up to ten timesmore » the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper 1/2 of the midplane. In HIT-SI3 frame-rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal Decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from <=13 to <=5 eV (with an instrument temperature of 8-16 eV), and uncertainty in velocity from <=2 to <=1 km/s. Doppler shift and broadening is calculated via the Levenberg-Marquart algorithm, after which errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for C III peaked near the inboard current separatrix at approximately 40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at approximately 6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.« less

  5. Improvements to the Ion Doppler Spectrometer Diagnostic on the HIT-SI Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossack, Aaron; Chandra, Rian; Everson, Christopher

    An Ion Doppler Spectrometer diagnostic system measuring impurity ion temperature and velocity on the HIT-SI and HIT-SI3 spheromak devices has been improved with higher spatiotemporal resolution and lower error than previously described devices. Hardware and software improvements to the established technique have resulted in a record 6.9 µs temporal and <=2.8 cm spatial resolution in the midplane of each device. These allow C III and O II flow, displacement, and temperature profiles to be simultaneously observed. With 72 fused-silica fiber channels in two independent bundles, and an f/8.5 Czerny-Turner spectrometer coupled to video camera, frame-rates of up to ten timesmore » the imposed magnetic perturbation frequency of 14.5 kHz were achieved in HIT-SI, viewing the upper 1/2 of the midplane. In HIT-SI3 frame-rates of up to eight times the perturbation frequency were achieved viewing both halves of the midplane. Biorthogonal Decomposition is used as a novel filtering tool, reducing uncertainty in ion temperature from <=13 to <=5 eV (with an instrument temperature of 8-16 eV), and uncertainty in velocity from <=2 to <=1 km/s. Doppler shift and broadening is calculated via the Levenberg-Marquart algorithm, after which errors in velocity and temperature are uniquely specified. Axisymmetric temperature profiles on HIT-SI3 for C III peaked near the inboard current separatrix at approximately 40 eV are observed. Axisymmetric plasma displacement profiles have been measured on HIT-SI3, peaking at approximately 6 cm at the outboard separatrix. Both profiles agree with the upper half of the midplane observable by HIT-SI. With its complete midplane view, HIT-SI3 has unambiguously extracted axisymmetric, toroidal current dependent rotation of up to 3 km/s. Analysis of the temporal phase of the displacement uncovers a coherent structure, locked to the applied perturbation. Previously described diagnostic systems could not achieve such results.« less

  6. Modeling of Dendritic Structure and Microsegregation in Solidification of Al-Rich Quaternary Alloys

    NASA Astrophysics Data System (ADS)

    Dai, Ting; Zhu, Mingfang; Chen, Shuanglin; Cao, Weisheng

    A two-dimensional cellular automaton (CA) model is coupled with a CALPHAD tool for the simulation of dendritic growth and microsegregation in solidification of quaternary alloys. The dynamics of dendritic growth is calculated according to the difference between the local equilibrium liquidus temperature and the actual temperature, incorporating with the Gibbs—Thomson effect and preferential dendritic growth orientations. Based on the local liquid compositions determined by solving the solutal transport equation in the domain, the local equilibrium liquidus temperature and the solid concentrations at the solid/liquid (SL) interface are calculated by the CALPHAD tool. The model was validated through the comparisons of the simulated results with the Scheil predictions for the solid composition profiles as a function of solid fraction in an Al-6wt%Cu-0.6wt%Mg-1wt%Si alloy. It is demonstrated that the model is capable of not only reproducing realistic dendrite morphologies, but also reasonably predicting microsegregation patterns in solidification of Al-rich quaternary alloys.

  7. Analysis and calculation by integral methods of laminar compressible boundary-layer with heat transfer and with and without pressure gradient

    NASA Technical Reports Server (NTRS)

    Morduchow, Morris

    1955-01-01

    A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.

  8. Implantation of sodium ions into germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol', V. M., E-mail: vkorol@ctsnet.ru; Kudriavtsev, Yu.

    The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min atmore » temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.« less

  9. Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands

    USGS Publications Warehouse

    McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.

    2007-01-01

    We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.

  10. The effective temperature for the thermal fluctuations in hot Brownian motion

    NASA Astrophysics Data System (ADS)

    Srivastava, Mayank; Chakraborty, Dipanjan

    2018-05-01

    We revisit the effective parameter description of hot Brownian motion—a scenario where a colloidal particle is kept at an elevated temperature than the ambient fluid. Due to the time scale separation between heat diffusion and particle motion, a stationary halo of hot fluid is carried along with the particle resulting in a spatially varying comoving temperature and viscosity profile. The resultant Brownian motion in the overdamped limit can be well described by a Langevin equation with effective parameters such as effective temperature THBM and friction coefficient ζHBM that quantifies the thermal fluctuations and the diffusivity of the particle. These parameters can exactly be calculated using the framework of fluctuating hydrodynamics and require the knowledge of the complete flow field and the temperature field around the particle. Additionally, it was also observed that configurational and kinetic degrees of freedom admit to different effective temperatures, THB M x and THB M v, respectively, with the former predicted accurately from fluctuating hydrodynamics. A more rigorous calculation by Falasco et al. [Phys. Rev. E 90, 032131-10 (2014)] extends the overdamped description to a generalized Langevin equation where the effective temperature becomes frequency dependent and consequently, for any temperature measurement from a Brownian trajectory requires the knowledge of this frequency dependence. We use this framework to expand on the earlier work and look at the first order correction to the limiting values in the hydrodynamic limit and the kinetic limit. We use the linearized Stokes equation and a constant viscosity approximation to calculate the dissipation function in the fluid. The effective temperature is calculated from the weighted average of the temperature field with the dissipation function. Further, we provide a closed form analytical result for effective temperature in the small as well as high frequency limit. Since hot Brownian motion can be used to probe the local environment in complex systems, we have also calculated the effective diffusivity of the particle in the small frequency limit. To look into the kinetic temperature, the velocity autocorrelation function is computed from the generalized Langevin equation and the Wiener-Khinchine theorem and numerically integrated to evaluate THB M v as a function of the ratio of particle density and fluid density ρP/ρ0. The two limiting cases of ρP/ρ0 → 0 and ρP/ρ0 → ∞ is also discussed.

  11. Analysis of the WindSat Receiver Frequency Passbands

    DTIC Science & Technology

    2014-09-12

    water vapor ( PWV ) calculated for each atmospheric profile. The differences for the 18.7 and 23.8 GHz bands vary with PWV . Modeled Tb’s for receiver...precipitable water vapor ( PWV ). WindSat Receiver Frequency Passbands 11 22 24 26 28 30 32 34 36 38 40 REU Temperature (°C) 0 1 2 3 4 5 P er ce nt o f O cc

  12. Evaluation of the Mechanism of the Gold Cluster Growth during Heating of the Composite Gold-Polytetrafluoroethylene Thin Film.

    PubMed

    Grytsenko, Konstantin; Lozovski, Valeri; Strilchuk, Galyna; Schrader, Sigurd

    2012-11-07

    Nanocomposite films consisting of gold inclusions in the polytetrafluoroethylene (PTFE) matrix were obtained by thermal vacuum deposition. Annealing of the obtained films with different temperatures was used to measure varying of film morphologies. The dependence of optical properties of the films on their morphology was studied. It was established that absorption and profile of the nanocomposite film obtained by thermal vacuum deposition can be changed with annealing owing to the fact that different annealing temperatures lead to different average particle sizes. A method to calculate the optical properties of nanocomposite thin films with inclusions of different sizes was proposed. Thus, comparison of experimental optical spectra with the spectra obtained during the simulation enables estimating average sizes of inclusions. The calculations give the possibility of understanding morphological changes in the structures.

  13. Novel developments and applications of the classical adiabatic dynamics technique

    NASA Astrophysics Data System (ADS)

    Rosso, Lula

    The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is applied to a variety of model problems and extended to calculate conformational surfaces of small peptides and the chemical potential of a Lennard-Jones liquid. The comparison with established methods shows that the new approach calculates free energy profiles with greater ease and efficiency.

  14. Radiative transfer in multilayered random medium with laminar structure - Green's function approach

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1986-01-01

    For a multilayered random medium with a laminar structure a Green's function approach is introduced to obtain the emitted intensity due to an arbitrary point source. It is then shown that the approach is applicable to both active and passive remote sensing. In active remote sensing, the computed radar backscattering cross section for the multilayered medium includes the effects of both volume multiple scattering and surface multiple scattering at the layer boundaries. In passive remote sensing, the brightness temperature is obtained for arbitrary temperature profiles in the layers. As an illustration the brightness temperature and reflectivity are calculated for a bounded layer and compared with results in the literature.

  15. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    NASA Technical Reports Server (NTRS)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  16. STELLTRANS: A Transport Analysis Suite for Stellarators

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team

    2016-10-01

    The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.

  17. Winds from T Tauri stars. I - Spherically symmetric models

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Avrett, Eugene H.; Loeser, Rudolf; Calvet, Nuria

    1990-01-01

    Line fluxes and profiles are computed for a sequence of spherically symmetric T Tauri wind models. The calculations indicate that the H-alpha emission of T Tauri stars arises in an extended and probably turbulent circumstellar envelope at temperatures above about 8000 K. The models predict that Mg II resonance line emission should be strongly correlated with H-alpha fluxes; observed Mg II/H-alpha ratios are inconsistent with the models unless extinction corrections have been underestimated. The models predict that most of the Ca II resonance line and IR triplet emission arises in dense layers close to the star rather than in the wind. H-alpha emission levels suggest mass loss rates of about 10 to the -8th solar mass/yr for most T Tauri stars, in reasonable agreement with independent analysis of forbidden emission lines. These results should be useful for interpreting observed line profiles in terms of wind densities, temperatures, and velocity fields.

  18. Silicon isotopes fractionation in meteoric chemical weathering and hydrothermal alteration systems of volcanic rocks (Mayotte)

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre

    2017-04-01

    Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si bulk rocks showed linear correlations with the SiO2:Al2O3 ratios, suggesting an alternative alteration index based on Si isotopic composition.

  19. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces.« less

  20. Dual-pump CARS temperature and major species concentration measurements in counter-flow methane flames using narrowband pump and broadband Stokes lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.

    2010-07-15

    Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355more » nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for future computations. (author)« less

  1. A model of the SO2 atmosphere and ionosphere of Io

    NASA Technical Reports Server (NTRS)

    Kumar, S.

    1980-01-01

    The calculations of thermal structure for an SO2 atmosphere of Io lead to exospheric temperatures in 800-1200 K range. The Pioneer 10 electron density profiles can be fit with an SO2 surface density of 1.2 x 10 to the 11th per cu cm at 5:30 pm local time and exosphere temperature of 1030 K. Low energy electrons provide the major ionization source but the solar UV absorption dominates the heating of the atmosphere due to the long wavelength absorption threshold of SO2 and large absorption cross sections.

  2. Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP

    NASA Astrophysics Data System (ADS)

    Stancalie, Viorica; Rachlew, Elisabeth

    We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.

  3. Shapes of Spectral Lines of Nonuniform Plasma of Electric Arc Discharge Between Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Babich, Ida L.; Boretskij, Viacheslav F.; Veklich, Anatoly N.

    2007-09-01

    The radial profiles of the temperature and electron density in the plasma of the free burning electric arc between copper electrodes are studied by optical spectroscopy techniques. The electron density and the temperature in plasma as initial parameters were used in the calculation of the plasma composition in local thermodynamic equilibrium (LTE) assumption. We used the Saha's equation for copper, nitrogen and oxygen, dissociation equation for nitrogen and oxygen, the equation of plasma electrical neutrality and Dalton's law as well. So, it would be possible to determine the amounts of metal vapours in plasma.

  4. On the symmetry and crystal structures of Ba{sub 2}LaIrO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, W.T., E-mail: w.fu@chem.leidenuniv.n; Goetz, R.J.; IJdo, D.J.W.

    2010-02-15

    Accurate profile analysis of X-ray diffraction data was carried out to settle recent dispute on the symmetry and crystal structures of the double perovskite Ba{sub 2}LaIrO{sub 6}. Even through careful comparison of the full-width at half-maximum values, we found no evidence for Ba{sub 2}LaIrO{sub 6} adopting either monoclinic (I2/m) or mixed rhombohedral (R3-bar) and monoclinic (I2/m) structures at room temperature, becoming triclinic (I1-bar) at below about 200 K. The correct space group is just R3-bar at temperatures between 82 and 653 K. Furthermore, the R3-bar->Fm3-barm phase transition does occur in Ba{sub 2}LaIrO{sub 6}, but the transition temperature is found tomore » be much higher than the reported value. - Graphical abstract: Observed (crosses) and calculated (continuous line) profiles of Ba{sub 2}LaIrO{sub 6} at some selected temperature showing the region containing the basic (222), (321) and (400) reflections. Tick marks below indicate the positions of the allowed Bragg's reflections.« less

  5. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  6. A model for prediction of profile and flatness of hot and cold rolled flat products in four-high mills

    NASA Astrophysics Data System (ADS)

    Overhagen, Christian; Mauk, Paul Josef

    2018-05-01

    For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.

  7. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    NASA Astrophysics Data System (ADS)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  8. A study of photomodulated reflectance on staircase-like, n-doped GaAs/AlxGa1−xAs quantum well structures

    PubMed Central

    2012-01-01

    In this study, photomodulated reflectance (PR) technique was employed on two different quantum well infrared photodetector (QWIP) structures, which consist of n-doped GaAs quantum wells (QWs) between undoped AlxGa1−xAs barriers with three different x compositions. Therefore, the barrier profile is in the form of a staircase-like barrier. The main difference between the two structures is the doping profile and the doping concentration of the QWs. PR spectra were taken at room temperature using a He-Ne laser as a modulation source and a broadband tungsten halogen lamp as a probe light. The PR spectra were analyzed using Aspnes’ third derivative functional form. Since the barriers are staircase-like, the structure has different ground state energies; therefore, several optical transitions take place in the spectrum which cannot be resolved in a conventional photoluminescence technique at room temperature. To analyze the experimental results, all energy levels in the conduction and in the valance band were calculated using transfer matrix technique, taking into account the effective mass and the parabolic band approximations. A comparison of the PR results with the calculated optical transition energies showed an excellent agreement. Several optical transition energies of the QWIP structures were resolved from PR measurements. It is concluded that PR spectroscopy is a very useful experimental tool to characterize complicated structures with a high accuracy at room temperature. PMID:23146126

  9. A study of photomodulated reflectance on staircase-like, n-doped GaAs/AlxGa1-xAs quantum well structures.

    PubMed

    Donmez, Omer; Nutku, Ferhat; Erol, Ayse; Arikan, Cetin M; Ergun, Yuksel

    2012-11-12

    In this study, photomodulated reflectance (PR) technique was employed on two different quantum well infrared photodetector (QWIP) structures, which consist of n-doped GaAs quantum wells (QWs) between undoped AlxGa1-xAs barriers with three different x compositions. Therefore, the barrier profile is in the form of a staircase-like barrier. The main difference between the two structures is the doping profile and the doping concentration of the QWs. PR spectra were taken at room temperature using a He-Ne laser as a modulation source and a broadband tungsten halogen lamp as a probe light. The PR spectra were analyzed using Aspnes' third derivative functional form.Since the barriers are staircase-like, the structure has different ground state energies; therefore, several optical transitions take place in the spectrum which cannot be resolved in a conventional photoluminescence technique at room temperature. To analyze the experimental results, all energy levels in the conduction and in the valance band were calculated using transfer matrix technique, taking into account the effective mass and the parabolic band approximations. A comparison of the PR results with the calculated optical transition energies showed an excellent agreement. Several optical transition energies of the QWIP structures were resolved from PR measurements. It is concluded that PR spectroscopy is a very useful experimental tool to characterize complicated structures with a high accuracy at room temperature.

  10. A study of photomodulated reflectance on staircase-like, n-doped GaAs/Al x Ga1- x As quantum well structures

    NASA Astrophysics Data System (ADS)

    Donmez, Omer; Nutku, Ferhat; Erol, Ayse; Arikan, Cetin M.; Ergun, Yuksel

    2012-11-01

    In this study, photomodulated reflectance (PR) technique was employed on two different quantum well infrared photodetector (QWIP) structures, which consist of n-doped GaAs quantum wells (QWs) between undoped Al x Ga1- x As barriers with three different x compositions. Therefore, the barrier profile is in the form of a staircase-like barrier. The main difference between the two structures is the doping profile and the doping concentration of the QWs. PR spectra were taken at room temperature using a He-Ne laser as a modulation source and a broadband tungsten halogen lamp as a probe light. The PR spectra were analyzed using Aspnes' third derivative functional form. Since the barriers are staircase-like, the structure has different ground state energies; therefore, several optical transitions take place in the spectrum which cannot be resolved in a conventional photoluminescence technique at room temperature. To analyze the experimental results, all energy levels in the conduction and in the valance band were calculated using transfer matrix technique, taking into account the effective mass and the parabolic band approximations. A comparison of the PR results with the calculated optical transition energies showed an excellent agreement. Several optical transition energies of the QWIP structures were resolved from PR measurements. It is concluded that PR spectroscopy is a very useful experimental tool to characterize complicated structures with a high accuracy at room temperature.

  11. Speckle measurements of density and temperature profiles in a model gas circuit breaker

    NASA Astrophysics Data System (ADS)

    Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.

    2015-01-01

    Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.

  12. IUE observations of Si and C lines and comparison with non-LTE models

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1982-01-01

    Classical model atmosphere techniques are applied to analyze IUE spectra, and to determine abundances, effective temperatures and gravities. Measurements of the equivalent widths and other properties of the line profiles of 24 photospheric lines of Si II, Si III, Si IV, C II, C III and C IV are presented in the range of 1175-1725 A for seven B and two O stars. Observed line profiles are compared with theoretical profiles computed using non-LTE theory and models, and using line-blanketed model atmospheres. Agreement is reasonably good, although strong lines are calculated to be systematically stronger than those observed, while the reverse occurs for weak lines, and empirical profiles have smaller wings than theoretical profiles. It is concluded that the present theory of line formation when used with solar abundances, represents fairly well observed UV photospheric lines of silicon and carbon ions in the atmospheres of main sequence stars of types B5-O9.

  13. Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World

    PubMed Central

    Anderson, Alexander S.; Storlie, Collin J.; Shoo, Luke P.; Pearson, Richard G.; Williams, Stephen E.

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species’ environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species’ actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species’ responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity. PMID:23936005

  14. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world.

    PubMed

    Anderson, Alexander S; Storlie, Collin J; Shoo, Luke P; Pearson, Richard G; Williams, Stephen E

    2013-01-01

    Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.

  15. Spectroscopic investigation of the high-current phase of a pulsed GMAW process

    NASA Astrophysics Data System (ADS)

    Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.

    2010-11-01

    While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.

  16. An analysis of the Venus measurements

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Herman, J. R.

    1972-01-01

    Plots of the Mariner 5 and Venera 4, 5, and 6 pressure vs temperature show that the Venera profiles are essentially congruent with the Mariner 5 day and night profiles, but are displaced 28 percent higher in pressure. Data suggest a variability in the atmospheric water vapor content in the region from 30 to 50 km. The Venera 7 measurements are interpreted as evidence for updrafts, down-drafts, horizontal wind layers, and nonaqueous precipitation. The previously observed band of retrograde winds which circle the equator with an average speed of 110 m/s is found to extend downward to the one atmosphere level at the equatorial morning terminator. The possibility of a low altitude equator-to-pole circulation with warm gas rising at the poles is inferred. Venera 7 temperature data used with radar topography and microwaves interferometer measurements suggest that the variation of surface temperature with altitude in a band about the equator is less than 5 K/km. The available data are used to calculate a model of the structure of the Venus atmosphere for the first 75 km above the equatorial region.

  17. Analysis of Optical Emission Spectroscopy from a Long Transferred Arc for Waste Remediation

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Rogerson, J. E.; Clark, R. W.; Kepple, P.; Shamamian, V.; Sartwell, B.; Counts, D.

    1997-10-01

    The Naval Research Laboratory is investigating the application of plasma arc technology for the on-board remediation of waste material generated by sea faring ships. Part of the research component is to determine the plasma characteristics and radiation production in and near the arc under various operating conditions. In this work we present an analysis of the temperature profile in a 100 kW, 20cm long DC transferred arc for currents between 300 and 360Amps and air flow rates from 60 to 90slpm at atmospheric pressure. The working gas was seeded with hydrogen as a diagnostic. Assuming the temperature peaks at the center of the arc and LTE, the emission ratio H_α/H_β should increase radially outward, contrary to the observations. A collisional radiative equilibrium model for H and N was was developed to calculate synthetic spectra. Comparison with the data using various temperature profiles indicates that photo-pumping from the hot core leads to non-LTE populations and an inversion in the emission ratio, similar to the observed data.

  18. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing

    DOE PAGES

    Raplee, Jake B.; Plotkowski, Alex J.; Kirka, Michael M.; ...

    2017-03-03

    To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in-situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. This developed a method for properly calibrating temperature profiles from thermographic data and then determining important characteristics of the build through additional processing. The thermographic data was analyzed to determinemore » the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, we calculated the thermal gradient and solid-liquid interface velocity and correlated it to microstructural variation within the part experimentally. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.« less

  19. A comparison of radiative transfer models for predicting the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Choudhury, B. J.

    1981-01-01

    Noncoherent and coherent numerical models for predicting emission from soils are compared. Coherent models use the boundary conditions on the electric fields across the layer boundaries to calculate the radiation intensity, and noncoherent models consider radiation intensities directly. Interference may cause different results in the two approaches when coupling between soil layers in coherent models causes greater soil moisture sampling depths. Calculations performed at frequencies of 1.4 and 19.4 GHz show little difference between the models at 19.4 GHz, although differences are apparent at the lower frequency. A definition for an effective emissivity is also given for when a nonuniform temperature profile is present, and measurements made from a tower show good agreement with calculations from the coherent model.

  20. The Impact of Cycling Temperature on the Transmission of West Nile Virus.

    PubMed

    Danforth, Mary E; Reisen, William K; Barker, Christopher M

    2016-05-01

    West Nile virus (WNV) is an important cause of disease in humans and animals. Risk of WNV infection varies seasonally, with the greatest risk during the warmest parts of the year due in part to the accelerated extrinsic incubation rate of the virus in mosquitoes. Rates of extrinsic incubation have been shown in constant-temperature studies to increase as an approximately linear function of temperature, but for other vector-borne pathogens, such as malaria or dengue virus, nonlinear relationships have been demonstrated under cycling temperatures near the thermal limits of pathogen replication. Using typical daily air temperature profiles from three key periods of WNV amplification in a hyperendemic area of WNV activity in California's Central Valley, as well as a fourth temperature profile based on exposures that would result from daily mosquito host-seeking and resting behavior, we explored the impacts of cycling temperatures on WNV transmission by Culex tarsalis Coquillett, one of the principal vectors in the western United States. The daily cycling temperature ranges studied were representative of those that occur across much of California, but they did not significantly alter the extrinsic incubation period of WNV compared with estimates from mean temperatures alone. This suggests that within the relatively broad range we studied, WNV incubation rates are a simple function of mean temperature. Realistic daily temperature patterns that reflected mosquitoes' avoidance of daytime high temperatures during summer reduced transmission over time compared with air temperatures, indicating that adjustment for mosquito exposure temperatures would be prudent for calculating risk. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX

    NASA Astrophysics Data System (ADS)

    Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team

    2016-10-01

    Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  2. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  3. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  4. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI).

    NASA Astrophysics Data System (ADS)

    Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.

    2003-05-01

    The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin-Madison, Madison, Wisconsin, and deployed in the Oklahoma-Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 m at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near-real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0-3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances `plus' the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature e are provided in near-real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.

  5. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio elastograms, which provide additional valuable information for disease diagnosis. Finally, measurements of temperature dependent variables, including sound speed, attenuation coefficient, and thermal expansion in canine liver tissue, are performed. This information is necessary for the estimation of the temperature profile during ablation. A mapping function between the gradient of timeshifts and tissue temperature is calculated using this information and subsequently applied to estimate temperature profiles.

  6. In-line process control for laser welding of titanium by high dynamic range ratio pyrometry and plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.

    2014-02-01

    The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.

  7. Evidence of atmospheric gravity wave perturbations of the Brunt-Vaisala frequency in the atmosphere

    NASA Technical Reports Server (NTRS)

    Good, R. E.; Beland, R. W.; Brown, J. H.; Dewan, E. M.

    1986-01-01

    A series of high altitude, medium resolution, measurements of temperature, pressure and turbulence have been performed by the Air Force Geophysics Laboratory. These measurements were conducted using the VIZ Manufacturing Co. microsondes with attached micro-thermal probes measuring the temperature structure coefficient. A typical atmospheric temperature measurement is given. Several small temperature inversions are evident in the troposphere. The stratosphere is marked with numerous fluctuations in the temperature profile. Microsondes provide temperature and pressure measurements every 4 seconds up to a maximum altitude of 30 km (MSL). Since the average ascent rate is 5 m/s, the altitude interval between the measurement reports is 20 m. The potential temperature is calculated from the temperature and pressure. Spectral analysis of atmospheric Brunt-Vaisala frequencies reveal spectra similiar to the velocity spectra of Dewan et al. (1984), Daniels (1982), and Endlich and Singleton (1969). The Brunt-Vaisala spectra indicate the existence of separate, distinguishable wave modes.

  8. Transport characteristics of a ZnMgO/ZnO hetero junction and the effect of temperature and Mg content

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.

  9. Testing collapse models by a thermometer

    NASA Astrophysics Data System (ADS)

    Bahrami, M.

    2018-05-01

    Collapse models postulate that space is filled with a collapse noise field, inducing quantum Brownian motions, which are dominant during the measurement, thus causing collapse of the wave function. An important manifestation of the collapse noise field, if any, is thermal energy generation, thus disturbing the temperature profile of a system. The experimental investigation of a collapse-driven heating effect has provided, so far, the most promising test of collapse models against standard quantum theory. In this paper, we calculate the collapse-driven heat generation for a three-dimensional multi-atomic Bravais lattice by solving stochastic Heisenberg equations. We perform our calculation for the mass-proportional continuous spontaneous localization collapse model with nonwhite noise. We obtain the temperature distribution of a sphere under stationary-state and insulated surface conditions. However, the exact quantification of the collapse-driven heat-generation effect highly depends on the actual value of cutoff in the collapse noise spectrum.

  10. Superfluid state of atomic 6Li in a magnetic trap

    NASA Astrophysics Data System (ADS)

    Houbiers, M.; Ferwerda, R.; Stoof, H. T. C.; McAlexander, W. I.; Sackett, C. A.; Hulet, R. G.

    1997-12-01

    We report on a study of the superfluid state of spin-polarized atomic 6Li confined in a magnetic trap. Density profiles of this degenerate Fermi gas and the spatial distribution of the BCS order parameter are calculated in the local-density approximation. The critical temperature is determined as a function of the number of particles in the trap. Furthermore, we consider the mechanical stability of an interacting two-component Fermi gas, in the case of both attractive and repulsive interatomic interactions. For spin-polarized 6Li we also calculate the decay rate of the gas and show that within the mechanically stable regime of phase space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of the system might signal the presence of the superfluid state.

  11. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  12. Low-temperature transonic cooling flows in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.

    1989-01-01

    Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.

  13. Ground-Based Microwave Radiometric Remote Sensing of the Tropical Atmosphere

    NASA Astrophysics Data System (ADS)

    Han, Yong

    A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperatures to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Several methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. During this experiment, the radiometer was calibrated by using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was first applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, it was shown that the radiometric measurements with experimental noises added no more profile information to the inversion than that which was available from a climatological mean. Although successful retrievals of the geopotential heights were made, it was shown that they were determined mainly by the surface pressure measurements. The reasons why the radiometer did not contribute to the retrievals of temperature profiles and geopotential heights were discussed. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Under certain assumptions, the cloud absorption coefficients and mean radiating temperature, used in the physical or statistical inversion equation, were determined from the measurements. It was shown that significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.

  14. Effect of frost on phosphorescence for thermographic phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  15. The acoustic radiation force on a heated (or cooled) rigid sphere - Theory

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Wang, T. G.

    1984-01-01

    A finite amplitude sound wave can exert a radiation force on an object due to second-order effect of the wave field. The radiation force on a rigid small sphere (i.e., in the long wavelength limit), which has a temperature different from that of the environment, is presently studied. This investigation assumes no thermally induced convection and is relevant to material processing in the absence of gravity. Both isotropic and nonisotropic temperature profiles are considered. In this calculation, the acoustic effect and heat transfer process are essentially decoupled because of the long wavelength limit. The heat transfer information required for determining the force is contained in the parameters, which are integrals over the temperature distribution.

  16. Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.

    PubMed

    Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W

    2011-02-04

    Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.

  17. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  18. Finite temperature static charge screening in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Akbari-Moghanjoughi, M.

    2016-07-01

    The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.

  19. An assessment of 'shuffle algorithm' collision mechanics for particle simulations

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Boyd, Iain D.

    1991-01-01

    Among the algorithms for collision mechanics used at present, the 'shuffle algorithm' of Baganoff (McDonald and Baganoff, 1988; Baganoff and McDonald, 1990) not only allows efficient vectorization, but also discretizes the possible outcomes of a collision. To assess the applicability of the shuffle algorithm, a simulation was performed of flows in monoatomic gases and the calculated characteristics of shock waves was compared with those obtained using a commonly employed isotropic scattering law. It is shown that, in general, the shuffle algorithm adequately represents the collision mechanics in cases when the goal of calculations are mean profiles of density and temperature.

  20. A study of accretion discs around rapidly rotating neutron stars in general relativity and its applications to four low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sudip

    2002-02-01

    We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values of these quantities with their values inferred from EXOSAT data for four low mass X-ray binary sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state are unfavoured.

  1. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  2. A study of planetary meteorology

    NASA Technical Reports Server (NTRS)

    Ohring, G.

    1973-01-01

    Inversion techniques are applied to the few earth based observations of the Jovian emission spectrum to obtain directly the profiles of atmospheric temperature and ammonia abundance. The temperature profile is characterized by a definite tropopause region with a temperature of about 115K and a stratospheric region in which the temperature slowly increases with altitude. The derived ammonia profile indicates the presence of a saturated ammonia layer with a base temperature of approximately 14OK. The concept is described deducing the temperature and constituent profile of a planetary atmosphere from orbiter measurements of the planet's IR limb radiance profile. Analysis of the weighting functions for the Martian atmosphere indicates that a limb radiance profile in the 15 micron CO2 band can be used to determine the Martian atmospheric temperature profile from 20 to 60 km.

  3. Measurements and modeling of radio frequency field structures in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. A.; Chen, Guangye; Arefiev, A. V.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less

  4. Argonne Bubble Experiment Thermal Model Development II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buechler, Cynthia Eileen

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations.more » The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.« less

  5. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2017-01-01

    We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.

  6. Nucleosynthesis during a Thermonuclear Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Glazyrin, S. I.; Röpke, F. K.; Blinnikov, S. I.

    2018-05-01

    Supernovae are such bright objects that they can be observed even at high redshifts. Some types of such events, for example, type Ia (thermonuclear), have peculiarities of the light curve, which allows them to be used for cosmological applications. The light curve is determined by the details of the explosion dynamics and nucleosynthesis: in particular, it depends on the amount of iron-peak elements produced during the explosion. We discuss the burning processes in such objects and the peculiarities of turbulence simulations in them, which is needed for a proper hydrodynamic description of the explosion process. A direct nucleosynthesis calculation is performed for the temperature and density profiles derived in the available 3D hydrodynamic explosion simulations. We show that in the supernova progenitor model considered the calculated abundances of elements from carbon to iron-peak elements are in good agreement both with the observations and with the calculations of other authors. At the same time, no r-elements are produced even at the maximum neutron excess for this model ( Y e 0.47) due to the slow evolution of the density and temperature.

  7. DESPOTIC - a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.

    2014-01-01

    I describe DESPOTIC, a code to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. DESPOTIC represents such clouds using a one-zone model, and can calculate line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. It also includes approximate treatments of the dominant heating, cooling and chemical processes for the cold interstellar medium, including cosmic ray and X-ray heating, grain photoelectric heating, heating of the dust by infrared and ultraviolet radiation, thermal cooling of the dust, collisional energy exchange between dust and gas, and a simple network for carbon chemistry. Based on these heating, cooling and chemical rates, DESPOTIC can calculate clouds' equilibrium gas and dust temperatures, equilibrium carbon chemical state and time-dependent thermal and chemical evolution. The software is intended to allow rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms and prediction of their observable spectra across a wide range of interstellar environments. DESPOTIC is implemented as a PYTHON package, and is released under the GNU General Public License.

  8. Mercedes-Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Holovko, M. F.

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.

  9. Mercedes–Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    PubMed Central

    Urbic, T.; Holovko, M. F.

    2011-01-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334

  10. Biogenic emissions of CO2 and N2O at multiple depths increase exponentially during a simulated soil thaw for a northern prairie Mollisol

    USDA-ARS?s Scientific Manuscript database

    Soil respiration occurs at depths below the surface, but belowground data are lacking to support multilayer models of soil CO2 and N2O emissions. In particular, Q10s for CO2 and N2O within soil profiles are needed to determine if temperature sensitivities calculated at the surface are similar to th...

  11. Use of the thin sheath approximation for obtaining ion temperatures from the ISEE 1 limited aperture RPA. [for magnetosphere

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Baugher, C. R.; Chappell, C. R.

    1982-01-01

    A procedure for analyzing low-energy (less than approximately 100 eV) ion data from the plasma composition experiment on ISEE 1 is set forth. The method is based on a derived analytic expression for particle flux to a limited aperture retarding potential analyzer (RPA) in the thin sheath approximation, which makes allowance for some effects of a charged spacecraft on plasma particle trajectories. Calculations using simulated data are employed in testing the efficacy and accuracy of the technique. On the basis of an analysis of these calculation results and the mathematical model, the method is seen as being able to provide accurate ion temperatures from all good plasmaspheric RPA data. It is noted that corresponding densities and spacecraft potentials should be accurate when spacecraft potentials are negative but that they are subject to error for positive spacecraft potentials, particularly when ion Mach numbers are much less than 1. An analysis of data from a representative ISEE 1 pass produces a plasmasphere temperature profile that is consistent in overall structure with previous observations.

  12. Metabolic profile of serum and follicular fluid from postpartum dairy cows during summer and winter.

    PubMed

    Alves, Benner G; Alves, Kele A; Martins, Muller C; Braga, Lucas S; Silva, Thiago H; Alves, Bruna G; Santos, Ricarda M; Silva, Thiago V; Viu, Marco A O; Beletti, Marcello E; Jacomini, José O; Gambarini, Maria L

    2014-01-01

    This study was designed to monitor the biochemical profiles of serum and follicular fluid (FF) of postpartum dairy cows during the summer (n=30) and winter (n=30). Blood and FF (follicles ≥ 9 mm) were obtained from Girolando cows at 30, 45, 60, 75 and 90 days postpartum. The samples were collected and analysed to determine glucose, total cholesterol (TC), triglyceride (TG), urea, sodium (Na), potassium (K) and calcium (Ca) levels. Throughout the study, the following clinical variables were measured: rectal temperature (RT), respiratory rate (RR) and body condition score (BCS). In addition, the temperature humidity index (THI) was calculated for each season. During the summer season, THI was higher, BCS decreased, there was an increase in RT, and glucose, urea, Na and K serum levels were decreased (P<0.05). The levels of TC, TG, urea, K and Ca in follicular fluid increased (P<0.05). Positive correlations (P<0.05) were observed between the serum and FF levels for glucose (r=0.29), TC (r=0.24) and Ca (r=0.30). Therefore, the biochemical profile of serum and FF of dairy cows under summer heat-stress conditions demonstrates marked changes that may impair fertility during lactation.

  13. Observations and Thermochemical Calculations for Hot-Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver; Cubillos, Patricio; Stemm, Madison

    2015-01-01

    I present Spitzer eclipse observations for WASP-14b and WASP-43b, an open source tool for thermochemical equilibrium calculations, and components of an open source tool for atmospheric parameter retrieval from spectroscopic data. WASP-14b is a planet that receives high irradiation from its host star, yet, although theory does not predict it, the planet hosts a thermal inversion. The WASP-43b eclipses have signal-to-noise ratios of ~25, one of the largest among exoplanets. To assess these planets' atmospheric composition and thermal structure, we developed an open-source Bayesian Atmospheric Radiative Transfer (BART) code. My dissertation tasks included developing a Thermochemical Equilibrium Abundances (TEA) code, implementing the eclipse geometry calculation in BART's radiative transfer module, and generating parameterized pressure and temperature profiles so the radiative-transfer module can be driven by the statistical module.To initialize the radiative-transfer calculation in BART, TEA calculates the equilibrium abundances of gaseous molecular species at a given temperature and pressure. It uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA, written in Python, is modular, documented, and available to the community via the open-source development site GitHub.com.Support for this work was provided by NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX12AL83H, by NASA through an award issued by JPL/Caltech, and through the Science Mission Directorate's Planetary Atmospheres Program, grant NNX12AI69G.

  14. Pre-supernova models for massive stars produced with large nuclear reaction network by MESA

    NASA Astrophysics Data System (ADS)

    Park, Byeongchan; Kwak, Kyujin

    2018-04-01

    Core-collapsed Supernova (CCSN) is one of violent phenomena in the universe. CCSN generates heavy elements and leaves a neutron star behind. It has been known that the physical properties of CCSN depend on those of pre-supernova such as mass, metallicities including distribution of elements, and the density and temperature profile which are obtained from the stellar evolution calculation. In particular, the production of heavy elements in CCSN is sensitive to the abundance profiles in the pre-supernova models. In this study, we evolve a massive main sequence star with 15Msun and solar metallicity to the pre-supernova stage by using two different networks, small and large. The large nuclear reaction network includes more than four times isotopes than the small network. Our calculations were done by MESA (Modules for Experiments in Stellar Astrophysics) which allowed us to use the large network containing about a hundred isotopes. We compare the results obtained with two networks.

  15. Mathematical Model of Solidification During Electroslag Casting of Pilger Roll

    NASA Astrophysics Data System (ADS)

    Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin

    A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.

  16. NIMROD simulations of the IPA FRC experiment

    NASA Astrophysics Data System (ADS)

    Milroy, Richard

    2015-11-01

    The IPA experiment created a high temperature plasma by merging and compressing supersonic θ-pinch formed FRCs. The NIMROD code has been used to simulate this process. These calculations include the θ-pinch formation and acceleration of two FRC's using the dynamic formation methodology, and their translation to a central compression chamber where they merge and are magnetically compressed. Transport coefficients have been tuned so simulation results agree well with experimental observation. The inclusion of the Hall term is essential for the FRCs merge quickly, as observed experimentally through the excluded flux profiles. The inclusion of a significant anisotropic viscosity is required for the excluded flux profiles to agree well with the experiment. We plan to extend this validation work using the new ARPA-E funded Venti experiment at Helion Energy in Redmond WA. This will be a very well diagnosed experiment where two FRCs merge (like the IPA experiment) and are then compressed to near-fusion conditions. Preliminary calculations with parameters relevant to this experiment have been made, and some numerical issues identified.

  17. Titan's stratospheric temperature asymmetry: a radiative origin?

    PubMed

    Bézard, B; Coustenis, A; McKay, C P

    1995-02-01

    During the 1981 Voyager encounter, Titan's stratosphere exhibited a large thermal asymmetry, with high northern latitudes being colder than comparable southern latitudes. Given the short radiative time constant, this asymmetry would not be expected at the season of the Voyager observations (spring equinox), if the infrared and solar opacity sources were distributed symmetrically. We have investigated the radiative budget of Titan's stratosphere, using two selections of Voyager IRIS spectra recorded at symmetric northern and southern latitudes. In the region 0.1-1 mbar, temperatures are 7 K colder at 50 degrees N than at 53 degrees S and the difference reaches approximately 13 K at 5 mbar. On the other hand, the northern region is strongly enriched in nitriles and hydrocarbons, and the haze optical depth derived from the continuum emission between 8 and 15 micrometers is twice as large as in the south. Cooling rate profiles have been computed at the two locations, using the gas and haze abundances derived from the IRIS measurements. We find that, despite lower temperatures, the cooling rate profiles in the pressure range 0.15-5 mbar are 20 to 40% larger in the north than in the south, because of the enhanced concentrations of infrared radiators. Because the northern hemisphere appears darker than the southern one in the Voyager images, enhanced solar heating is also expected to take place at 50 degrees N. Solar heating rate profiles have been calculated, with two different assumptions on the origin of the hemispheric asymmetry. In the most likely case where it results from a variation in the absorbance of the haze material, the heating rates are found to be 12-15% larger at the northern location than at the southern one, a smaller increase than that in the cooling rates. If the lower albedo in the north results from an increase in the particle number density, a 55 to 75% difference is found for the pressure range 0.15-5 mbar, thus larger than that calculated for the cooling rates. Considering the uncertainties in the haze model, dynamical heat transport may significantly contribute to the meridional temperature gradients observed in the stratosphere. On the other hand, the latitudinal variation in gas and haze composition may be sufficient to explain the entire temperature asymmetry observed, without invoking a lag in the thermal response of the atmosphere due to dynamical inertia.

  18. Probing the Martian Atmosphere with MAVEN/IUVS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Gröller, H.; Yelle, R. V.; Koskinen, T.; Montmessin, F.; Lacombe, G.; Schneider, N. M.; Deighan, J.; Stewart, I. F.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; Stiepen, A.; Lefèvre, F.; McClintock, B.; Clarke, J. T.; Holsclaw, G.; Mahaffy, P. R.; Bougher, S. W.; Jakosky, B. M.

    2015-12-01

    We present the first results of FUV and MUV stellar occultations taken with the Imaging UltraViolet Spectrometer (IUVS) onboard MAVEN. The FUV and MUV channels of the IUVS together cover the spectral range from 115 to 330 nm. The first two campaigns were executed during March 24 and March 26, 2015, and during May 17 and May 18, 2015, respectively. So far 13 occultations could be used to retrieve CO2 and O2 number densities in the altitude range between 100 and 150 km from the first occultation campaign. From the second occultation campaign number densities for CO2, O3, and aerosols were obtained between 20 and 100 km altitude. Temperature profiles for the same altitude ranges were calculated by applying the constraint of hydrostatic equilibrium to the CO2 densities. With a cadence of 2.6 s, including a 2.0 s integration time, the altitude resolution of the density and temperature profiles is between 1.5 and 4.5 km, depending on the geometry of the particular occultation. The retrieved density profiles of CO2 and O2 agree with previous measurements obtained by the Mars Express SPICAM instrument and by Viking 1 and 2. The corresponding O2 mixing ratios range from 1 to 5 x 10-3, also in agreement with previous observations. The temperatures that we retrieved agree with the models in the Mars Climate Database (MCD) between 10-2 and 10-4 Pa. At lower pressures, however, the measured temperatures are on average 70 K to 100 K cooler than the temperatures predicted by the MCD. This is because the model temperatures increase steadily with altitude above the mesopause whereas the observed temperatures decrease at pressures less than 3.5 x 10-5 Pa, reaching a minimum near 7 x 10-6 Pa. The large differences between the MCD and our results indicate that global models of thermal structure around the mesopause need to be revised.

  19. Microscopic description of a drop on a solid surface.

    PubMed

    Ruckenstein, Eli; Berim, Gersh O

    2010-06-14

    Two approaches recently suggested for the treatment of macro- or nanodrops on smooth or rough, planar or curved, solid surfaces, based on fluid-fluid and fluid-solid interaction potentials are reviewed. The first one employs the minimization of the total potential energy of a drop by assuming that the drop has a well defined profile and a constant liquid density in its entire volume with the exception of the monolayer nearest to the surface where the density has a different value. As a result, a differential equation for the drop profile as well as the necessary boundary conditions are derived which involve the parameters of the interaction potentials and do not contain such macroscopic characteristics as the surface tensions. As a consequence, the macroscopic and microscopic contact angles which the drop profile makes with the surface can be calculated. The macroscopic angle is obtained via the extrapolation of the circular part of the drop profile valid at some distance from the surface up to the solid surface. The microscopic angle is formed at the intersection of the real profile (which is not circular near the surface) with the surface. The theory provides a relation between these two angles. The ranges of the microscopic parameters of the interaction potentials for which (i) the drop can have any height (volume), (ii) the drop can have a restricted height but unrestricted volume, and (iii) a drop cannot be formed on the surface were identified. The theory was also extended to the description of a drop on a rough surface. The second approach is based on a nonlocal density functional theory (DFT), which accounts for the inhomogeneity of the liquid density and temperature effects, features which are missing in the first approach. Although the computational difficulties restrict its application to drops of only several nanometers, the theory can be applied indirectly to macrodrops by calculating the surface tensions and using the Young equation to determine the contact angle. Employing the canonical ensemble version of the DFT, nanodrops on smooth and rough solid surfaces could be investigated and their characteristics, such as the drop profile, contact angle, as well as the fluid density distribution inside the drop can be determined as functions of the parameters of the interaction potentials and temperature. It was found that the contact angle of the drop has a simple (quasi)universal dependence on the energy parameter epsilon(fs) of the fluid-solid interaction potential and temperature. The main feature of this dependence is the existence of a fixed value theta(0) of the contact angle theta which separates the solid substrates (characterized by the energy parameter epsilon(fs) of the fluid-solid interaction potential) into two classes with respect to their temperature dependence. For theta>theta(0) the contact angle monotonously increases and for theta

  20. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    NASA Astrophysics Data System (ADS)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  1. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2018-07-01

    We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be deduced from the greenhouse effect of atmospheric CO2.

  2. Analysis of Co-spatial UV-optical HST/STIS Spectra of Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Henry, Richard B. C.; Balick, Bruce; Kwitter, Karen B.; Dufour, Reginald J.; Shaw, Richard A.; Corradi, Romano L. M.

    2016-10-01

    This project sought to consider two important aspects of the planetary nebula NGC 3242 using new long-slit HST/STIS spectra. First, we investigated whether this object is chemically homogeneous by spatially dividing the slit into different regions and calculating the abundances of each region. The major result is that the elements of He, C, O, and Ne are chemically homogeneous within uncertainties across the regions probed, implying that the stellar outflow was well-mixed. Second, we constrained the stellar properties using photoionization models computed by CLOUDY and tested the effects of three different density profiles on these parameters. The three profiles tested were a constant density profile, a Gaussian density profile, and a Gaussian with a power-law density profile. The temperature and luminosity were not affected significantly by the choice of density structure. The values for the stellar temperature and luminosity from our best-fit model are {89.7}-4.7+7.3 kK and log(L/L ⊙) = {3.36}-0.22+0.28, respectively. Comparing to evolutionary models on an HR diagram, this corresponds to an initial and final mass of {0.95}-0.09+0.35{M}⊙ and {0.56}-0.01+0.01{M}⊙ , respectively. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  3. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    NASA Technical Reports Server (NTRS)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  4. SU-E-T-410: Fringe Stability and Phase Shift Measurements in a Michelson Interferometer for Optical Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Martinez, E; Malin, M; DeWerd, L

    2014-06-01

    Purpose: To identify the variables limiting the resolution of a Michelson interferometer used to measure phase shifts (PS) in water as part of a radiometric calorimeter. Methods: We investigated the output stability of a He-Ne laser and a laser diode. The short and long term stability of the fringe pattern in a Michelson interferometer was tested with different types of lasers, thermal insulation arrangements, damping systems and optical mounts to optimize system performance. PS were induced by electrically heating water in a 1 cm quartz cuvette located in one of the interferometer arms. The PS was calculated from fringe intensitymore » changes and compared to a calculated PS using thermocouple-measured temperature changes in the water. Results: The intensity of the laser diode is more stable, but the gas laser’s profile is more suitable for fringe analysis and has better temporal coherence. The laser requires a warm-up time of 4 hours before its output is stabilized (SNR>95). The fringe’s stability strongly depends on the thermal insulation. When the interferometer is exposed to ambient temperature swings of 0.7 K, it is not possible to stabilize the fringe pattern. Enclosing the system in a 2.5 cm-thick Styrofoam box improves the SNR, but further insulation will be needed to increase the SNR above 50. High frequency noise is significantly reduced by damping the system.Inducing a temperature rise in water, starting at 299 K, the average temperature increase for a 2π PS is 0.29 ± 0.02 K and the proportionality constant is -21.1 ± 0.8 radians/K. This is 5.8% lower than the calculated value using the thermocouple. Conclusion: Interferometric PS measurements of temperature may provide an alternative to thermistors for water calorimetry. The resolution of the current prototype is limited by ambient temperature stability. Calculated and measured thermally-induced PS in water agreed to within 5.8%.« less

  5. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat.

  6. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Jiang, Weiwei; Song, Jinxi; Dou, Xinyi; Guo, Hongtao; Xu, Shaofeng; Zhang, Guotao; Wen, Ming; Long, Yongqing; Li, Qi

    2017-08-01

    Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity ( K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.

  7. Thermostructural Behavior of a Hypersonic Aircraft Sandwich Panel Subjected to Heating on One Side

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1997-01-01

    Thermostructural analysis was performed on a heated titanium honeycomb-core sandwich panel. The sandwich panel was supported at its four edges with spar-like substructures that acted as heat sinks, which are generally not considered in the classical analysis. One side of the panel was heated to high temperature to simulate aerodynamic heating during hypersonic flight. Two types of surface heating were considered: (1) flat-temperature profile, which ignores the effect of edge heat sinks, and (2) dome-shaped-temperature profile, which approximates the actual surface temperature distribution associated with the existence of edge heat sinks. The finite-element method was used to calculate the deformation field and thermal stress distributions in the face sheets and core of the sandwich panel. The detailed thermal stress distributions in the sandwich panel are presented, and critical stress regions are identified. The study shows how the magnitudes of those critical stresses and their locations change with different heating and edge conditions. This technical report presents comprehensive, three-dimensional graphical displays of thermal stress distributions in every part of a titanium honeycomb-core sandwich panel subjected to hypersonic heating on one side. The plots offer quick visualization of the structural response of the panel and are very useful for hot structures designers to identify the critical stress regions.

  8. PROJECT VeSElkA: ANALYSIS OF BALMER LINE PROFILES OF SLOWLY ROTATING CHEMICALLY PECULIAR STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalack, V.; LeBlanc, F., E-mail: khalack.viktor@umoncton.ca

    2015-07-15

    We present results for the estimation of gravity, effective temperature, and radial velocity of poorly studied chemically peculiar stars recently observed with the spectropolarimeter Echelle SpectroPolarimetric Device for Observations of Stars at the Canada–France–Hawaii Telescope in the frame of the Vertical Stratification of Element Abundances project. The effective temperature and surface gravity values are determined for the very first time for four of the stars from our sample (HD 23878, HD 83373, HD 95608, and HD 164584). Grids of stellar atmosphere models with the corresponding fluxes have been calculated using version 15 of the PHOENIX code for effective temperatures inmore » the range of 5000–15,000 K, for the logarithm of surface gravities in the range of 3.0–4.5 and for the metallicities from −1.0 to +1.5. We used these fluxes to fit the Balmer line profiles employing the code FITSB2 that produces estimates of the effective temperature, gravity, and radial velocity for each star. When possible, our results are compared to those previously published. The physical characteristics of 16 program stars are discussed with the future aim to study the abundance anomalies of chemical species and the possible vertical abundance stratification in their stellar atmosphere.« less

  9. Nouvelle methode d'optimisation du cout d'un vol par l'utilisation d'un systeme de gestion de vol et sa validation sur un avion Lockheed L-1011 TriStar

    NASA Astrophysics Data System (ADS)

    Gagne, Jocelyn

    Usually, flights optimization and planning will take place before flight, on ground. However, it is not always feasible to do such optimization, or sometime unpredictable events may force pilots to change the flight path. In those circumstances, the pilots can only rely on charts or their Flight Management System (FMS) in order to maintain an economic flight. However, those FMS often rely on those same charts, which will not take into consideration different parameters, such as the cost index, the length on the flight or the weather. Even if some FMS take into consideration the weather, they may only rely on manually entered or limited data that could be outdated, insufficient or incomplete. The alleviate these problems, the function program's that was developed is mainly to determine the optimum flight profile for an aircraft, or more precisely, at the lowest overall cost, considering a take-off weight and weather conditions. The total cost is based on the value of time as well as the cost of fuel, resulting in the use of a ratio called the cost index. This index allows both to prioritize either the time or fuel consumption according to the costs related to a specific flight and/or airline. Thus, from a weight, the weather (wind, temperature, pressure), and the cost index, the program will calculate from the "Performance DataBase" (PDB) of a specific airplane an optimal flight profile over a given distance. The algorithm is based on linear interpolations in the performances tables using the Lagrange method. Moreover, in order to fully optimize the flight, the current program can, according to departure date and coordinates, download the latest available forecast from environment Canada website and calculate the optimum flight accordingly. The forecast data use by the program take the form of a 0.6 × 0.6 degrees grid in which the effects of wind, pressure and temperature are interpolated according to the aircraft geographical position and time. Using these tables, performances and forecasts, the program is therefore able to calculate the optimum profile from ground, but also in flight, if any change would occur on the path. Because all data is tabulated and not calculated, the required calculation power remains low, resulting in a short calculation time. Keywords: optimization, algorithm, simulation, cost.

  10. H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems.

    PubMed

    Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S

    2002-04-20

    Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.

  11. Computational flow field in energy efficient engine (EEE)

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-11-01

    In this paper, preliminary results for the recently-updated Open National Combustor Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the Eusing different ways to introduce the fuel injection. Supported by NASA's Transformational Tools and Technologies project.

  12. Computational Flow Field in Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  13. A novel approach to making microstructure measurements in the ice-covered Arctic Ocean.

    NASA Astrophysics Data System (ADS)

    Guthrie, J.; Morison, J.; Fer, I.

    2014-12-01

    As part of the 2014 Field Season of the North Pole Environmental Observatory, a 7-day microstructure experiment was performed. A Rockland Scientific Microrider with 2 FP07 fast response thermistors and 2 SBE-7 micro-conductivity probes was attached to a Seabird 911+ Conductivity-Temperature-Depth unit to allow for calibration of the microstructure probes against the highly accurate Seabird temperature and conductivity sensors. From a heated hut, the instrument package was lowered through a 0.75-m hole in the sea ice down to 350 m depth using a lightweight winch powered with a 3-phase, frequency-controlled motor that produced a smooth, controlled lowering speed of 25 cm s-1. Focusing on temperature and conductivity microstructure and using the special winch removed many of the complications involved with the use of free-fall microstructure profilers under the ice. The slow profiling speed permits calculation of Χ, the dissipation of thermal variance, without relying on fits to theoretical spectra to account for the unresolved variance. The dissipation rate of turbulent kinetic energy, ɛ, can then be estimated using the temperature gradient spectrum and the Ruddick et al. [2001] maximum likelihood method. Outside of a few turbulent patches, thermal diffusivity ranged between O(10-7) and O(10-6) m2s-1, resulting in negligible turbulent heat fluxes. Estimated ɛ was often at or below the noise level of most shear-based microstructure profilers. The noise level of Χ is estimated at O(10-11) °C2s-1, revealing the utility and applicability of this technique in future Arctic field work.

  14. CONSERVB: A numerical method to compute soil water content and temperature profiles under a bare surface

    NASA Technical Reports Server (NTRS)

    Vanbavel, C. H. M.; Lascano, R. J.

    1982-01-01

    A comprehensive, yet fairly simple model of water disposition in a bare soil profile under the sequential impact of rain storms and other atmospheric influences, as they occur from hour to hour is presented. This model is intended mostly to support field studies of soil moisture dynamics by our current team, to serve as a background for the microwave measurements, and, eventually, to serve as a point of departure for soil moisture predictions for estimates based in part upon airborne measurements. The main distinction of the current model is that it accounts not only for the moisture flow in the soil-atmosphere system, but also for the energy flow and, hence, calculates system temperatures. Also, the model is of a dynamic nature, capable of supporting any required degree of resolution in time and space. Much critical testing of the sample is needed before the complexities of the hydrology of a vegetated surface can be related meaningfully to microwave observations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Ritu; Ghosh, Joydeep; Chowdhuri, M. B.

    Neutral particle behavior in Aditya tokamak, which has a circular poloidal ring limiter at one particular toroidal location, has been investigated using DEGAS2 code. The code is based on the calculation using Monte Carlo algorithms and is mainly used in tokamaks with divertor configuration. This code has been successfully implemented in Aditya tokamak with limiter configuration. The penetration of neutral hydrogen atom is studied with various atomic and molecular contributions and it is found that the maximum contribution comes from the dissociation processes. For the same, H α spectrum is also simulated which was matched with the experimental one. Themore » dominant contribution around 64% comes from molecular dissociation processes and neutral particle is generated by those processes have energy of ~ 2.0 eV. Furthermore, the variation of neutral hydrogen density and H α emissivity profile are analysed for various edge temperature profiles and found that there is not much changes in H α emission at the plasma edge with the variation of edge temperature (7 to 40 eV).« less

  16. Contributions of long-range and regional atmospheric transport on pesticide concentrations along a transect crossing a mountain divide.

    PubMed

    Lavin, Karen S; Hageman, Kimberly J

    2013-02-05

    Twenty-one halogenated legacy and current-use pesticides and pesticide degradation products were measured in pine needles along a coast-to-coast transect that crossed the Southern Alps of New Zealand. Concentration profiles of nine pesticides were used to determine the influence of geographic sources on the atmospheric pesticide burden at the mountain sites. Pesticide concentration profiles were calculated for each source and mountain site by normalizing concentrations (adjusted for temperature at the site and air-needle partitioning) to the sum of all pesticide concentrations at the site. Each mountain site profile was compared to varying mixtures of the potential source profiles to determine the percent contribution of each source. The highest elevation mountain sites were primarily influenced by long-range, synoptic-scale northwesterly winds. Westerly upslope winds had little influence on any of the mountain sites. Easterly upslope winds from the Canterbury Plains, an agricultural region, strongly influenced the mountain sites within close proximity and had progressively less influence with distance.

  17. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  18. Advanced analysis of thermal data observed in subsurface wells unmasks the ancient climate

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Kutasov, Izzy

    2014-05-01

    Conventional methods of studying the ancient climate history are associated with statistical processing of accomplished meteorological data. These investigations have focused attention on meteorological records of air temperature, which can provide information on the only last 100-200 years. Number of the records is absolutely insufficient and their areal coverage is limited, some oldest meteorological stations may have been affected by local warming connected with urban and industrial growth. At the same time significant climate changes are accompanied by the corresponding variations in the Earth's surface (soil) temperature. This effect is based on the known physical law that temperature waves at the surface propagate downward into the subsurface with an amplitude attenuation and time delay increasing with depth. Earth's temperature profiles, measured by precise temperature logging T(z) in boreholes to depth of about 80-300 meters, have a 'memory' on what has happened on the surface during approximately several last centuries. Knowledge of the past climate in archaeology is necessary not only for tracing some ancient events and more deep understanding some historical facts, but also for estimation of past harvests, analysis of some physical conditions of different constructions built in the past, and in many other fields (Eppelbaum, 2010; Eppelbaum et al., 2010). The first attempts to recover the past ground surface temperature history (GSTH) from measured T(z) profiles date back to the mid-1960s, however only after Lachenbruch et al. (1988) pointed out that the magnitude and timing of the ground surface warming in Alaska is consistent with models of the recent warming, the method became popular (Cermak et al., 1996). Let us assume that tx years ago from now the ground surface temperature started to increase (warming) or reduce (cooling). Prior to this moment the subsurface temperature is: Ta(z,t = 0) = T0a + Γ z, (1) where T0a is the mean ground surface temperature at the moment of time t = 0 years; z is the vertical depth and Γ is the geothermal gradient. It is also assumed that the host medium is homogeneous with constant thermal properties. Now the current (t = tx) subsurface temperature is (in case of warming): Tc(z,t = tx) = T0c +f (z), (2) where T0c is the current (at the time (date) of temperature logging) mean ground surface temperature; and f(z) is a function of depth that could be obtained from the field data. In some cases the value of T0c can be obtained by extrapolation of the function Tc to z = 0. However, in most cases, the value T0c can be estimated by trial and error method: Assuming an interval of values for T0c, calculating for each T0c value of the temperature profiles Tcfor various models of change in the ground surface temperature (GST) with time and, finally, finding a best match between calculated and field measured Tc profiles. In our study we found that a quadratic regression can be utilized to estimate the value of T0c = a0 (Kutasov et al., 2000): Tc(z,t = tx) = a0 + a1z +a2z2, (3) where a0, a1, and a2 are the coefficients. We will consider four different models (Eppelbaum et al., 2006). Apparently each of these models is more suitable (applicable) under concrete physical-geological conditions. In the first model we assumed that txC years ago the GSTvalue suddenly changed from T0 to T0c. The current temperature anomaly (the reduced temperature) is TR (z) = T0c + f(z) - T0 - Γ z (4) and the solution is ( ) TRC = TR = ΔT0Φ *(x) -;z- ,t = txC, 2 at (5) ΔT0 = T0c - T0, (6)

  19. Measurement and interpretation of electron angle at mabe beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-10-01

    This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator.« less

  20. Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.

    1995-01-01

    Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.

  1. Non-thermal distribution of O(1D) atoms in the night-time thermosphere

    NASA Technical Reports Server (NTRS)

    Yee, Jeng-Hwa

    1988-01-01

    The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.

  2. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.

    2017-10-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.

  3. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. II - Model results

    NASA Technical Reports Server (NTRS)

    Yeh, Hwa-Young M.; Prasad, N.; Mack, Robert A.; Adler, Robert F.

    1990-01-01

    In this June 29, 1986 case study, a radiative transfer model is used to simulate the aircraft multichannel microwave brightness temperatures presented in the Adler et al. (1990) paper and to study the convective storm structure. Ground-based radar data are used to derive hydrometeor profiles of the storm, based on which the microwave upwelling brightness temperatures are calculated. Various vertical hydrometeor phase profiles and the Marshall and Palmer (M-P, 1948) and Sekhon and Srivastava (S-S, 1970) ice particle size distributions are experimented in the model. The results are compared with the aircraft radiometric data. The comparison reveals that the M-P distribution well represents the ice particle size distribution, especially in the upper tropospheric portion of the cloud; the S-S distribution appears to better simulate the ice particle size at the lower portion of the cloud, which has a greater effect on the low-frequency microwave upwelling brightness temperatures; and that, in deep convective regions, significant supercooled liquid water (about 0.5 g/cu m) may be present up to the -30 C layer, while in less convective areas, frozen hydrometeors are predominant above -10 C level.

  4. Monte Carlo simulations for the free energies of C60 and C70 fullerene crystals by acceptance ratio method and expanded ensemble method

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Chang, Jaeeon; Sandler, Stanley I.

    2014-02-01

    Accurate values of the free energies of C60 and C70 fullerene crystals are obtained using expanded ensemble method and acceptance ratio method combined with the Einstein-molecule approach. Both simulation methods, when tested for Lennard-Jones crystals, give accurate results of the free energy differing from each other in the fifth significant digit. The solid-solid phase transition temperature of C60 crystal is determined from free energy profiles, and found to be 260 K, which is in good agreement with experiment. For C70 crystal, using the potential model of Sprik et al. [Phys. Rev. Lett. 69, 1660 (1992)], low-temperature solid-solid phase transition temperature is found to be 160 K determined from the free energy profiles. Whereas this is somewhat lower than the experimental value, it is in agreement with conventional molecular simulations, which validates the methodological consistency of the present simulation method. From the calculations of the free energies of C60 and C70 crystals, we note the significance of symmetry number for crystal phase needed to properly account for the indistinguishability of orientationally disordered states.

  5. Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).

    PubMed

    Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan

    2013-01-01

    Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.

  6. Shape design of internal cooling passages within a turbine blade

    NASA Astrophysics Data System (ADS)

    Nowak, Grzegorz; Nowak, Iwona

    2012-04-01

    The article concerns the optimization of the shape and location of non-circular passages cooling the blade of a gas turbine. To model the shape, four Bezier curves which form a closed profile of the passage were used. In order to match the shape of the passage to the blade profile, a technique was put forward to copy and scale the profile fragments into the component, and build the outline of the passage on the basis of them. For so-defined cooling passages, optimization calculations were carried out with a view to finding their optimal shape and location in terms of the assumed objectives. The task was solved as a multi-objective problem with the use of the Pareto method, for a cooling system composed of four and five passages. The tool employed for the optimization was the evolutionary algorithm. The article presents the impact of the population on the task convergence, and discusses the impact of different optimization objectives on the Pareto optimal solutions obtained. Due to the problem of different impacts of individual objectives on the position of the solution front which was noticed during the calculations, a two-step optimization procedure was introduced. Also, comparative optimization calculations for the scalar objective function were carried out and set up against the non-dominated solutions obtained in the Pareto approach. The optimization process resulted in a configuration of the cooling system that allows a significant reduction in the temperature of the blade and its thermal stress.

  7. Laboratory astrophysics on ASDEX Upgrade: Measurements and analysis of K-shell O, F, and Ne spectra in the 9 - 20 A region

    NASA Technical Reports Server (NTRS)

    Hansen, S. B.; Fournier, K. B.; Finkenthal, M. J.; Smith, R.; Puetterich, T.; Neu, R.

    2006-01-01

    High-resolution measurements of K-shell emission from O, F, and Ne have been performed at the ASDEX Upgrade tokamak in Garching, Germany. Independently measured temperature and density profiles of the plasma provide a unique test bed for model validation. We present comparisons of measured spectra with calculations based on transport and collisional-radiative models and discuss the reliability of commonly used diagnostic line ratios.

  8. A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaleel, Mohammad A.; Lin, Zijing; Singh, Prabhakar

    2004-05-03

    A 3D simulation tool for modeling solid oxide fuel cells is described. The tool combines the versatility and efficiency of a commercial finite element analysis code, MARC{reg_sign}, with an in-house developed robust and flexible electrochemical (EC) module. Based upon characteristic parameters obtained experimentally and assigned by the user, the EC module calculates the current density distribution, heat generation, and fuel and oxidant species concentration, taking the temperature profile provided by MARC{reg_sign} and operating conditions such as the fuel and oxidant flow rate and the total stack output voltage or current as the input. MARC{reg_sign} performs flow and thermal analyses basedmore » on the initial and boundary thermal and flow conditions and the heat generation calculated by the EC module. The main coupling between MARC{reg_sign} and EC is for MARC{reg_sign} to supply the temperature field to EC and for EC to give the heat generation profile to MARC{reg_sign}. The loosely coupled, iterative scheme is advantageous in terms of memory requirement, numerical stability and computational efficiency. The coupling is iterated to self-consistency for a steady-state solution. Sample results for steady states as well as the startup process for stacks with different flow designs are presented to illustrate the modeling capability and numerical performance characteristic of the simulation tool.« less

  9. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    PubMed

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  10. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    PubMed

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  11. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torquemore » on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.« less

  12. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  13. Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters

    NASA Astrophysics Data System (ADS)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-01-01

    A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.

  14. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    NASA Astrophysics Data System (ADS)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  15. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  16. Thermal conductance of Nb thin films at sub-kelvin temperatures.

    PubMed

    Feshchenko, A V; Saira, O-P; Peltonen, J T; Pekola, J P

    2017-02-03

    We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T 4.5 , instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.

  17. Thermal conductance of Nb thin films at sub-kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.

    2017-02-01

    We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.

  18. Modeling heat transfer and inactivation of Escherichia coli O157:H7 in precooked meat products in Argentina using the finite element method.

    PubMed

    Santos, M V; Zaritzky, N; Califano, A

    2008-07-01

    The presence of Escherichia coli is linked with sanitary deficiencies and undercooking of meat products. Recent studies have detected E. coli O157:H7 in black blood sausages. Minimum time-temperature specifications to kill the bacteria were obtained by numerical simulations of the microscopic heat conduction equation using the finite element method, and calculating the temperature profile of the sausage and the population of E. coli at the coldest point during heating. The model was validated by heating sausages in a water-bath. The effects of heat transfer coefficients and water temperatures on the required time to achieve an inactivation value (IV) of 12(log) are reported. Macroscopic heat balances were simultaneously solved to consider the temperature drop in the water batch as a function of the ratio between the mass of thermally treated sausage and the heat capacity of the system.

  19. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10-20 %.

  20. An approximate flight profile of an Ariane launch vehicle

    NASA Astrophysics Data System (ADS)

    Dijkshoorn, B.

    1983-04-01

    The flight trajectory of an Ariane launch vehicle, launched from Kourou (French Guyana) to put the satellites MARECS-B and SIRIO-2 in a geostationary transfer orbit, was approximated. The calculation was carried out to subject a panel 24 m from the nose to a heat flow, corresponding to the heat flow from the boundary layer in real flight. Height, flight speed (relative to the surrounding atmosphere) air density, dynamic pressure, air temperature, and Mach number were determined every 10 sec as a function of time from lift-off until the stopping of the rocket engines of the first stage 143.9 sec afterwards. Heat flow calculations show good agreement with published data.

  1. Calculations of the surface tensions of liquid metals

    NASA Technical Reports Server (NTRS)

    Stroud, D. G.

    1981-01-01

    The understanding of the surface tension of liquid metals and alloys from as close to first principles as possible is discussed. The two ingredients which are combined in these calculations are: the electron theory of metals, and the classical theory of liquids, as worked out within the framework of statistical mechanics. The results are a new theory of surface tensions and surface density profiles from knowledge purely of the bulk properties of the coexisting liquid and vapor phases. It is found that the method works well for the pure liquid metals on which it was tested; work is extended to mixtures of liquid metals, interfaces between immiscible liquid metals, and to the temperature derivative of the surface tension.

  2. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  3. Ion temperature profiles in front of a negative planar electrode studied by a one-dimensional two-fluid model

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Kovačič, J.

    2016-06-01

    Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .

  4. Ground-based microwave radiometric remote sensing of the tropical atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong.

    1992-01-01

    A partially developed 9-channel ground-based microwave radiometer for the Department of Meteorology at Penn State was completed and tested. Complementary units were added, corrections to both hardware and software were made, and system software was corrected and upgraded. Measurements from this radiometer were used to infer tropospheric temperature, water vapor and cloud liquid water. The various weighting functions at each of the 9 channels were calculated and analyzed to estimate the sensitivities of the brightness temperature to the desired atmospheric variables. The mathematical inversion problem, in a linear form, was viewed in terms of the theory of linear algebra. Severalmore » methods for solving the inversion problem were reviewed. Radiometric observations were conducted during the 1990 Tropical Cyclone Motion Experiment. The radiometer was installed on the island of Saipan in a tropical region. The radiometer was calibrated using tipping curve and radiosonde data as well as measurements of the radiation from a blackbody absorber. A linear statistical method was applied for the data inversion. The inversion coefficients in the equation were obtained using a large number of radiosonde profiles from Guam and a radiative transfer model. Retrievals were compared with those from local, Saipan, radiosonde measurements. Water vapor profiles, integrated water vapor, and integrated liquid water were retrieved successfully. For temperature profile retrievals, however, the radiometric measurements with experimental noises added no more profile information to the inversion than that they were determined mainly by the surface pressure measurements. A method was developed to derive the integrated water vapor and liquid water from combined radiometer and ceilometer measurements. Significant improvement on radiometric measurements of the integrated liquid water can be gained with this method.« less

  5. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of fluid in the column, contributing either to warming or cooling depending on local density and temperature. The molecular basis for this variation is described. Sample calculations of dissipation and temperature profiles of several model fluids including carbon dioxide-methanol mixtures are presented, based on the NIST REFPROP program including select equations of state and property calculation software. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Recent Line-Shape and Doppler Thermometry Studies Involving Transitions in the ν1 +ν3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Hashemi, Robab; Rozario, Hoimonti; Povey, Chad; Garber, Jolene; Derksen, Mark; Predoi-Cross, Adriana

    2014-06-01

    The line positions for transitions in the ν1 +ν3 band are often used as a frequency standard by the telecom industry and also needed for planetary atmospheric studies. Four relevant studies have been recently carried out in our group and will be discussed briefly below. (1) N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1 +ν3 band of acetylene at seven temperatures in the range 213333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. This study has been published in Molecular Physics, 110 Issue 21/22 (2012) 2645-2663. (2) Six nitrogen perturbed transitions of acetylene within the ν1 +ν3 absorption band have been recorded using a 3-channel diode laser spectrometer. We have examined C2H2 spectra using a hard collision (Rautian) profile over a range of five temperatures (213 K-333 K). From these fits we have obtained the N2-broadening and narrowing coefficients of C2H2 and examined their temperature dependence. The experimentally measured narrowing coefficients have been used to estimate the nitrogen diffusion coefficients. The broadening coefficients and corresponding temperature dependence exponents have also been compared to that of calculations completed using a classical impact approach on an ab initio potential energy surface. We have observed a good agreement between our theoretical and experimental results. This study was published in Canadian Journal of Physics 91(11) 896-905 (2013). (3) An extension of the previous study was to analyze the room temperature for the same six transitions using the Voigt, Rautian, Galatry, RautianGalatry and Correlated Rautian profiles. For the entire pressure range, we have tested the applicability of these line-shape models. Except for Voigt profile, Dicke narrowing effect has been considered in all mentioned line-shape models. The experimental results for the narrowing parameters have been compared with calculated values based on the theory of diffusion. This study is in press in press in the Journal of Quantitative Spectroscopy and Radiative Transfer. (4) In this paper we present accurate measurements of the fundamental Boltzmann constant based on a lineshape analysis of acetylene spectra in the ν1 +ν3 band recorded using a tunable diode laser. Experimental spectra recorded at low pressures have been analyzed using both the Voigt model and the Speed Dependent Voigt model that takes into account the molecular speed dependence effects. These line-shape models reproduces the experimental data with high accuracy and allow us to determine precise line-shape parameters for the transitions used, the Doppler-width and then determined the Boltzmann constant, kB. This study has been submitted for publication in the Journal of Chemical Physics. 1 1 Research described in this work was funded by NSERC, Canada.

  7. Optimal state transfer of a single dissipative two-level system

    NASA Astrophysics Data System (ADS)

    Jirari, Hamza; Wu, Ning

    2016-04-01

    Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.

  8. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-07

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. © 2011 American Institute of Physics

  9. Visualization of anomalous Ettingshausen effect in a ferromagnetic film: Direct evidence of different symmetry from spin Peltier effect

    NASA Astrophysics Data System (ADS)

    Seki, T.; Iguchi, R.; Takanashi, K.; Uchida, K.

    2018-04-01

    Spatial distribution of temperature modulation due to the anomalous Ettingshausen effect (AEE) is visualized in a ferromagnetic FePt thin film with in-plane and out-of-plane magnetizations using the lock-in thermography technique. Comparing the AEE of FePt with the spin Peltier effect (SPE) of a Pt/yttrium iron garnet junction provides direct evidence of different symmetries of AEE and SPE. Our experiments and numerical calculations reveal that the distribution of heat sources induced by AEE strongly depends on the direction of magnetization, leading to the remarkable different temperature profiles in the FePt thin film between the in-plane and perpendicularly magnetized configurations.

  10. 40 CFR 1066.950 - Fuel temperature profile.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel temperature profile. 1066.950 Section 1066.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Test Procedures for Motor Vehicles § 1066.950 Fuel temperature profile. Develop fuel temperature...

  11. Dual-level direct dynamics studies for the hydrogen abstraction reaction of 1,1-difluoroethane with O( 3P)

    NASA Astrophysics Data System (ADS)

    Liu, Jing-yao; Li, Ze-sheng; Dai, Zhen-wen; Zhang, Gang; Sun, Chia-chung

    2004-01-01

    We present dual-level direct dynamics calculations for the CH 3CHF 2 + O( 3P) hydrogen abstraction reaction in a wide temperature range, based on canonical variational transition-state theory including small curvature tunneling corrections. For this reaction, three distinct transition states, one for α-abstraction and two for β-abstraction, have been located. The potential energy surface information is obtained at the MP2(full)/6-311G(d,p) level of theory, and higher-level single-point calculations for the stationary points are preformed at several levels, namely QCISD(T)/6-311+G(3df,3pd), G2, and G3 using the MP2 geometries, as well as at the G3//MP4SDQ/6-311G(d,p) level. The energy profiles are further refined with the interpolated single-point energies method at the G3//MP2(full)/6-311G(d,p) level. The total rate constants match the experimental data reasonable well in the measured temperature range 1110-1340 K. It is shown that at low temperature α-abstraction may be the major reaction channel, while β-abstraction will have more contribution to the whole reaction rate as the temperature increases.

  12. Eddy mixing coefficient upper limit derived from the photochemical balance of O2

    NASA Technical Reports Server (NTRS)

    Rosenqvist, J.; Chassefiere, E.

    1993-01-01

    This work is based on the study of the photochemical balance of molecular oxygen in the martian atmosphere by using a one-dimensional model of photochemical reactions involving species derived from CO2 and H2O. The model is basically similar to one used previously for the study of the regulation of CO on a global scale, but the chemical rates are taken from another source. In the present scheme, the regulation of molecular oxygen is studied over timescales of the order of its photochemical lifetime (approximately equals 30 yr), which is much shorter than typical escape timescales. Thus, the escape fluxes are fixed to the values given by 3 and 4. We examine the calculated equilibrium abundances of O2 for given thermal, eddy diffusion coefficients and H2O profiles. The thermal profile is taken from in the lower atmosphere. At higher levels, in order to include the diurnal and seasonal thermal profile variability, we have also used the IRTM data. In order to study the influence of both temperature and pressure profiles on the O2 mixing ratio, we have made several tests corresponding to different martian seasons. The results show that the influence of pressure and temperature is quantitatively weak compared to the one of K and of the water vapor density (H2O). Thus, in the following we have fixed the pressure at the surface to a value of 7 mbar and we have used unique standard thermal profile corresponding to a profile roughly averaged over the year, the season, and the day: T equal 205 K at 0 km altitude, 175 K at 25 km, and 145 K at 50 km.

  13. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.

  14. Detection Identification and Quantification of Keto-Hydroperoxides in Low-Temperature Oxidation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Nils; Moshammer, Kai; Jasper, Ahren W.

    2017-07-01

    Keto-hydroperoxides are reactive partially oxidized intermediates that play a central role in chain-branching reactions during the low-temperature oxidation of hydrocarbons. In this Perspective, we outline how these short lived species can be detected, identified, and quantified using integrated experimental and theoretical approaches. The procedures are based on direct molecular-beam sampling from reactive environments, followed by mass spectrometry with single-photon ionization, identification of fragmentation patterns, and theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. Using the oxidation of neo-pentane and tetrahydrofuran as examples, the individual steps of the experimental approaches are described in depth together with amore » detailed description of the theoretical efforts. For neo-pentane, the experimental data are consistent with the calculated ionization and fragment appearance energies of the keto-hydroperoxide, thus adding confidence to the analysis routines and the employed levels of theory. For tetrahydrofuran, multiple keto-hydroperoxide isomers are possible due to the presence of nonequivalent O 2 addition sites. Despite this additional complexity, the experimental data allow for the identification of two to four keto-hydroperoxides. Mole fraction profiles of the keto-hydroperoxides, which are quantified using calculated photoionization cross sections, are provided together with estimated uncertainties as function of the temperature of the reactive mixture and can serve as validation targets for chemically detailed mechanisms.« less

  15. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  16. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  17. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  18. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  19. Theoretical studies of chromospheres and winds in cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A.

    1983-01-01

    The formation of spectral lines in expanding spherical atmospheres was determined in a physically realistic way, taking into account multilevel atomic processes, partial frequency redistribution, and other non-LTE transfer effects that affect the formation of optically thick lines. The formation of MgII and Ca II circumstellar absorption lines in late type giants and supergiants is investigated. The radiative cooling rate as a function of density and temperature was calculated from the results of plane parallel chromospheric models and these results were used to approximate the radiative cooling in an extended wind. The run of temperature was calculated along with the density and velocity profiles. The most important prediction of these models is that a warm zone in the wind must exist as a result of the wave heating. Within this zone, the Ca II and Mg II atoms can be ionized to Ca III and Mg III, so that the gas is transparent in the resonance transitions.

  20. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melissa Teague; Michael Tonks; Stephen Novascone

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISONmore » fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.« less

  1. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric analysis. Gradients in ozone and tropospheric temperature appear to be well captured by the analyses. In contrast, gradients in upper stratospheric and mesospheric temperature as well as upper tropospheric humidity are less well captured. This is likely due in part to a lack of data to specify these fields accurately in the analyses. Advanced new sounders, like AIRS, may help to better specify these fields in the future.

  2. Studies of midlatitude mesospheric temperature variability and its relationship to gravity waves, tides, and planetary waves

    NASA Astrophysics Data System (ADS)

    Beissner, Kenneth C.

    1997-10-01

    Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the model that is too weak and an increase will effectively align the model calculations with our observations.

  3. Numerical simulation of velocity and temperature fields in natural circulation loop

    NASA Astrophysics Data System (ADS)

    Sukomel, L. A.; Kaban'kov, O. N.

    2017-11-01

    Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.

  4. Identification of the significant factors in food safety using global sensitivity analysis and the accept-and-reject algorithm: application to the cold chain of ham.

    PubMed

    Duret, Steven; Guillier, Laurent; Hoang, Hong-Minh; Flick, Denis; Laguerre, Onrawee

    2014-06-16

    Deterministic models describing heat transfer and microbial growth in the cold chain are widely studied. However, it is difficult to apply them in practice because of several variable parameters in the logistic supply chain (e.g., ambient temperature varying due to season and product residence time in refrigeration equipment), the product's characteristics (e.g., pH and water activity) and the microbial characteristics (e.g., initial microbial load and lag time). This variability can lead to different bacterial growth rates in food products and has to be considered to properly predict the consumer's exposure and identify the key parameters of the cold chain. This study proposes a new approach that combines deterministic (heat transfer) and stochastic (Monte Carlo) modeling to account for the variability in the logistic supply chain and the product's characteristics. The model generates a realistic time-temperature product history , contrary to existing modeling whose describe time-temperature profile Contrary to existing approaches that use directly a time-temperature profile, the proposed model predicts product temperature evolution from the thermostat setting and the ambient temperature. The developed methodology was applied to the cold chain of cooked ham including, the display cabinet, transport by the consumer and the domestic refrigerator, to predict the evolution of state variables, such as the temperature and the growth of Listeria monocytogenes. The impacts of the input factors were calculated and ranked. It was found that the product's time-temperature history and the initial contamination level are the main causes of consumers' exposure. Then, a refined analysis was applied, revealing the importance of consumer behaviors on Listeria monocytogenes exposure. Copyright © 2014. Published by Elsevier B.V.

  5. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  6. Analysis of coronal H I Lyman alpha measurements from a rocket flight on 1979 April 13

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Noci, G.; Munro, R. H.

    1982-01-01

    It is noted that measurements of the profiles of resonantly scattered hydrogen Lyman-alpha coronal radiation have been used in determining hydrogen kinetic temperatures from 1.5 to 4 solar radii from sun center in a quiet region of the corona. Proton temperatures derived using the line widths decrease with height from 2.6 x 10 to the 6th K at 1.5 solar radii to 1.2 x 10 to the 6th K at 4 solar radii. These measurements, together with temperatures for lower heights determined from earlier Skylab and eclipse data, suggest that there is a maximum in the quiet coronal proton temperature at about 1.5 solar radii. Comparison of measured Lyman-alpha intensities with those calculated using a representative model for the radial variation of the coronal electron density yields information on the magnitude of the electron temperature gradient and suggests that the solar wind flow was subsonic for distances less than 4 solar radii.

  7. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  8. A New Inversion-Based Algorithm for Retrieval of Over-Water Rain Rate from SSM/I Multichannel Imagery

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Stettner, David R.

    1994-01-01

    This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.

  9. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  10. Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.

    2012-09-01

    Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 < z < 0.9, having an average temperature in the range 5 ≲ kT ≲ 11 keV. Aims: The main goal of this paper is to study for the first time the temperature profiles of a sample of high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ < 0.6 as CC clusters and those with σ ≥ 0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latter exhibiting a slightly flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 < z < 0.9). A comparison of our high-z sample with intermediate clusters at 0.1 < z < 0.3 showed how the CC and NCC cluster temperature profiles have experienced some sort of evolution. This can happen because higher z clusters are at a less advanced stage of their formation and did not have enough time to create a relaxed structure, which is characterized by a central temperature dip in CC clusters and by flatter profiles in NCC clusters. Conclusions: This is the first time that a systematic study of the temperature profiles of galaxy clusters at z > 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org

  11. Application of ATHLET/DYN3D coupled codes system for fast liquid metal cooled reactor steady state simulation

    NASA Astrophysics Data System (ADS)

    Ivanov, V.; Samokhin, A.; Danicheva, I.; Khrennikov, N.; Bouscuet, J.; Velkov, K.; Pasichnyk, I.

    2017-01-01

    In this paper the approaches used for developing of the BN-800 reactor test model and for validation of coupled neutron-physic and thermohydraulic calculations are described. Coupled codes ATHLET 3.0 (code for thermohydraulic calculations of reactor transients) and DYN3D (3-dimensional code of neutron kinetics) are used for calculations. The main calculation results of reactor steady state condition are provided. 3-D model used for neutron calculations was developed for start reactor BN-800 load. The homogeneous approach is used for description of reactor assemblies. Along with main simplifications, the main reactor BN-800 core zones are described (LEZ, MEZ, HEZ, MOX, blankets). The 3D neutron physics calculations were provided with 28-group library, which is based on estimated nuclear data ENDF/B-7.0. Neutron SCALE code was used for preparation of group constants. Nodalization hydraulic model has boundary conditions by coolant mass-flow rate for core inlet part, by pressure and enthalpy for core outlet part, which can be chosen depending on reactor state. Core inlet and outlet temperatures were chosen according to reactor nominal state. The coolant mass flow rate profiling through the core is based on reactor power distribution. The test thermohydraulic calculations made with using of developed model showed acceptable results in coolant mass flow rate distribution through the reactor core and in axial temperature and pressure distribution. The developed model will be upgraded in future for different transient analysis in metal-cooled fast reactors of BN type including reactivity transients (control rods withdrawal, stop of the main circulation pump, etc.).

  12. A conceptual snow model with an analytic resolution of the heat and phase change equations

    NASA Astrophysics Data System (ADS)

    Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre

    2017-04-01

    Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.

  13. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    PubMed

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Uddin, Rizwan

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modelingmore » of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.« less

  15. Vertical profile of H 2SO 4 vapor at 70-110 km on Venus and some related problems

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2011-09-01

    The vertical profile of H 2SO 4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H 2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H 2O and H 2SO 4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H 2SO 4 vapor mixing ratio is ˜10 -12 at 70 and 110 km with a deep minimum of 3 × 10 -18 at 88 km. The H 2O-H 2SO 4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H 2SO 4 is 1.6 × 10 5 cm -2 s -1 at 70 km and 23 cm -2 s -1 at 90 km. The calculated abundance of H 2SO 4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 10 6 and 10 9, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H 2SO 4 (impossible for a source of SO X), and cross sections for H 2SO 4·H 2O (impossible above the pure H 2SO 4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SO X at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SO X on Venus remains unclear and probably does not exist.

  16. Experimental analysis and modeling of ultrasound assisted freezing of potato spheres.

    PubMed

    Kiani, Hossein; Zhang, Zhihang; Sun, Da-Wen

    2015-09-01

    In recent years, innovative methods such as ultrasound assisted freezing have been developed in order to improve the freezing process. During freezing of foods, accurate prediction of the temperature distribution, phase ratios, and process time is very important. In the present study, ultrasound assisted immersion freezing process (in 1:1 ethylene glycol-water solution at 253.15K) of potato spheres (0.02 m diameter) was evaluated using experimental, numerical and analytical approaches. Ultrasound (25 kHz, 890 W m(-2)) was irradiated for different duty cycles (DCs=0-100%). A finite volume based enthalpy method was used in the numerical model, based on which temperature and liquid fraction profiles were simulated by a program developed using OpenFOAM® CFD software. An analytical technique was also employed to calculate freezing times. The results showed that ultrasound irradiation could decrease the characteristic freezing time of potatoes. Since ultrasound irradiation increased the heat transfer coefficient but simultaneously generated heat at the surface of the samples, an optimum DC was needed for the shortest freezing time which occurred in the range of 30-70% DC. DCs higher than 70% increased the freezing time. DCs lower than 30% did not provide significant effects on the freezing time compared to the control sample. The numerical model predicted the characteristic freezing time in accordance with the experimental results. In addition, analytical calculation of characteristic freezing time exhibited qualitative agreement with the experimental results. As the numerical simulations provided profiles of temperature and water fraction within potatoes frozen with or without ultrasound, the models can be used to study and control different operation situations, and to improve the understanding of the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  18. A statistical evaluation and comparison of VISSR Atmospheric Sounder (VAS) data and corresponding rawinsonde measurements

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Three mesoscale sounding data sets from the VISSR Atmospheric Sounder (VAS) produced using different retrieval techniques were evaluated of corresponding ground truth rawinsonde data for 6-7 March 1982. Mean, standard deviations, and RMS differences between the satellite and rawinsonde parameters were calculated over gridded fields in central Texas and Oklahoma. Large differences exist between each satellite data set and the ground truth data. Biases in the satellite temperature and moisture profiles seem extremely dependent upon the three dimensional structure of the atmosphere and range from 1 deg to 3 deg C for temperature and 3 deg to 6 deg C for dewpoint temperature. Atmospheric gradients of basic and derived parameters determined from the VAS data sets produced an adequate representation of the mesoscale environment but their magnitudes were often reduced by 30 to 50%.

  19. Measurement and interpretation of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-01-01

    This analysis shows that radiation measurements combined with a sophisticated simulation provides a simple but powerful tool for estimating beam temperature in intense pulsed annular electron-beam accelerators. Specifically, the mean angle of incidence of a 60 kA, 7 MeV annular electron-beam at the beam stop of the MABE accelerator and the transverse beam temperature are determined. The angle is extracted by comparing dose profiles measured downstream of the stop with that expected from a simulation of the electron/photon transport in the stop. By calculating and removing the effect on the trajectories due to the change in electric field near themore » stop, the beam temperature is determined. Such measurements help give insight to beam generation and propagation within the accelerator. 9 refs., 6 figs., 1 tab.« less

  20. Dilution Jet Behavior in the Turn Section of a Reverse Flow Combuster

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.; Lipshitz, A.; Greber, I.

    1982-01-01

    Measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The temperature measurements are presented in the form of consecutive normalized temperature profiles, and jet trajectories. Single jet trajectories were swept toward the inner wall of the turn, whether injection was from the inner or outer wall. This behavior is explained by the radially inward velocity component necessary to support irrotational flow through the turn. Comparison between experimental results and model calculations showed poor agreement due to the model's not including the radial velocity component. A widely spaced row of jets produced trajectories similar to single jets at similar test conditions, but as spacing ratio was reduced, penetration was reduced to the point where the dilution jet flow attached to the wall.

  1. Probing the band structure and local electronic properties of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Walrath, Jenna Cherie

    Low-dimensional semiconductor structures are important for a wide variety of applications, and recent advances in nanoscale fabrication are paving the way for increasingly precise nano-engineering of a wide range of materials. It is therefore essential that the physics of materials at the nanoscale are thoroughly understood to unleash the full potential of nanotechnology, requiring the development of increasingly sophisticated instrumentation and modeling. Of particular interest is the relationship between the local density of states (LDOS) of low-dimensional structures and the band structure and local electronic properties. This dissertation presents the investigation of the band structure, LDOS, and local electronic properties of nanostructures ranging from zero-dimensional (0D) quantum dots (QDs) to two-dimensional (2D) thin films, synthesizing computational and experimental approaches including Poisson-Schrodinger band structure calculations, scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and scanning thermoelectric microscopy (SThEM). A method is presented for quantifying the local Seebeck coefficient (S) with SThEM, using a quasi-3D conversion matrix approach to directly convert temperature gradient-induced voltages S. For a GaAs p-n junction, the resulting S-profile is consistent with that computed using the free carrier concentration profile. This combined computational-experimental approach is expected to enable nanoscale measurements of S across a wide variety of heterostructure interfaces. The local carrier concentration, n, is profiled across epitaxial InAs/GaAs QDs, where SThEM is used to profile the temperature gradient-induced voltage, which is converted to a profile of the local S and finally to an n profile. The S profile is converted to a conduction band-edge profile and compared with Poisson-Schrodinger band-edge simulations. The combined computational-experimental approach suggests a reduced n in the QD center in comparison to that of the 2D alloy layer. The surface composition and band structure of ordered horizontal Sb2Te3 nanowires induced by femtosecond laser irradiation of a thin film are investigated, revealing a band gap modulation between buried Sb2Te3 nanowires and the surrounding insulating material. Finally, STM and STS are used to investigate the band structure of BiSbTe alloys at room temperature, revealing both the Fermi level and Dirac point located inside the bulk bandgap, indicating bulk-like insulating behavior with accessible surface states.

  2. Direct measurements of rate coefficients for thermal decomposition of CF3I using shock—tube ARAS technique

    NASA Astrophysics Data System (ADS)

    Bystrov, N. S.; Emelianov, A. V.; Eremin, A. V.; Yatsenko, P. I.

    2018-05-01

    The kinetics of the dissociation of CF3I behind shock waves was experimentally investigated. The reaction CF3I  +  Ar  →  CF3  +  I  +  Ar was studied at temperatures between 900 and 1250 K and pressures of 2–3 bar. For this purpose, the time profiles of the concentration of atomic iodine were measured using a highly sensitive atomic resonance absorption spectroscopy method at a wavelength of 183.04 nm. From these data, the experimental value of the dissociation rate constant of CF3I was obtained: . We found that the investigated range of pressures and temperatures for the CF3I dissociation lies in the pressure transition region. Based on the Rice-Ramsperger–Kassel–Marcus theory, the threshold high and low-pressure rate constants ( and k 0) and falloff curves are calculated for the temperatures of 950–1200 K. As a result of this calculation, the threshold rate constants could be evaluated in the forms: and , and the center broadening factor, which takes into account the contribution of strong and weak collisions in the transition region, is .

  3. A Time-dependant atmospheric model of HD209458b

    NASA Astrophysics Data System (ADS)

    Iro, N.; Bézard, B.; Guillot, T.

    2004-11-01

    Charbonneau et al. (2002) conducted HST spectroscopic observations of HD209458 centered on the sodium doublet at 589.3 nm. An absorption feature was found, interpreted as an absorption from the sodium in the planet's atmosphere. However, this feature is weaker than predicted by static radiative equilibrium atmospheric models of HD209458b. We present a time-dependent radiative model of the atmosphere of HD209458b and investigate its thermal structure and chemical composition. Time-dependent temperature profiles are calculated, assuming a constant-with-height zonal wind, modelled as a solid body rotation. We predict day-night variations of the effective temperature of ˜600 K, for an equatorial rotation rate of 1 km s-1, in good agreement with the predictions by Showman & Guillot, 2002. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during a planetary transit agrees with the value reported by Charbonneau et al. (2002).

  4. Hyperthermia with implanted electrodes: in vitro and in vivo correlations.

    PubMed

    Lilly, M B; Brezovich, I A; Atkinson, W; Chakraborty, D; Durant, J R; Ingram, J; McElvein, R B

    1983-03-01

    Hyperthermia as a treatment for cancer has elicited much recent interest. However, major difficulties persist both in the technology for heating deep-seated tumors, and in thermal dosimetry. We have investigated a heating technique for deep-seated neoplasms that employs an internal implanted electrode and an external electrode to apply radiofrequency current to a tumor mass. The internal electrode consists of an array of stainless steel needles or wires which define a Faraday cage within the tumor, while the external electrode consists of a variety of electrical conductors at the skin surface. Phantom measurements have closely reproduced calculated temperature distributions. The temperature profiles within the volume enclosed by the internal electrode show relatively homogenous heating. Temperature measurements in a rat tumor model have demonstrated that significant heating within such an internal electrode array is easily obtained. The heating may extend some centimeters outside the electrode. Using a dog model we have shown that with such a treatment technique the temperature profiles obtained are reproducible both spatially and temporally. A case report of a clinical application is presented. A 5 cm bronchogenic carcinoma was easily heated without significant heating of the surrounding normal lung, and without apparent toxicity. Such a technique may be applicable to a variety of operable but unresectable neoplasms. The reproducibility and relative homogeneity of heating suggest possible usefulness in combined modality trials.

  5. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  6. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    NASA Astrophysics Data System (ADS)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory database for local zenith angle calculations to initialize path trajectory calculations. In our newest version of the retrieval algorithm, the Python programming language module PySolar is used for the path geometry calculations. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data that has been compiled every 6 hours. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm as implemented in the SciPy Python module. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment targets.

  7. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and ANFIS) has limited success.

  8. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  9. Model Atmospheres of Irradiated Exoplanets: The Influence of Stellar Parameters, Metallicity, and the C/O Ratio

    NASA Astrophysics Data System (ADS)

    Mollière, P.; van Boekel, R.; Dullemond, C.; Henning, Th.; Mordasini, C.

    2015-11-01

    Many parameters constraining the spectral appearance of exoplanets are still poorly understood. We therefore study the properties of irradiated exoplanet atmospheres over a wide parameter range including metallicity, C/O ratio, and host spectral type. We calculate a grid of 1D radiative-convective atmospheres and emission spectra. We perform the calculations with our new Pressure-Temperature Iterator and Spectral Emission Calculator for Planetary Atmospheres (PETIT) code, assuming chemical equilibrium. The atmospheric structures and spectra are made available online. We find that atmospheres of planets with C/O ratios ˜1 and {T}{{eff}} ≳ 1500 K can exhibit inversions due to heating by the alkalis because the main coolants CH4, H2O, and HCN are depleted. Therefore, temperature inversions possibly occur without the presence of additional absorbers like TiO and VO. At low temperatures we find that the pressure level of the photosphere strongly influences whether the atmospheric opacity is dominated by either water (for low C/O) or methane (for high C/O), or both (regardless of the C/O). For hot, carbon-rich objects this pressure level governs whether the atmosphere is dominated by methane or HCN. Further we find that host stars of late spectral type lead to planetary atmospheres which have shallower, more isothermal temperature profiles. In agreement with prior work we find that for planets with {T}{{eff}}\\lt 1750 K the transition between water or methane dominated spectra occurs at C/O ˜ 0.7, instead of ˜1, because condensation preferentially removes oxygen.

  10. Modelling linewidths of Kepler red giants in NGC 6819

    NASA Astrophysics Data System (ADS)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-04-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.

  11. Diffusion induced atomic islands on the surface of Ni/Cu nanolayers

    NASA Astrophysics Data System (ADS)

    Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán

    2018-05-01

    Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.

  12. Modelling linewidths of Kepler red giants in NGC 6819

    NASA Astrophysics Data System (ADS)

    Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen

    2018-07-01

    We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler light curves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the non-local convection model.

  13. Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Lin, Y.; Shiraiwa, S.; Wallace, G. M.; Wright, J. C.; Wukitch, S. J.

    2017-10-01

    High field side (HFS) placement of lower hybrid range of frequencies (LHRF) actuators is attractive from both the standpoint of a more quiescent scrape off layer (SOL) and from the improved LH wave accessibility and penetration to higher electron temperature that results from the higher magnetic field on the HFS. The resulting profiles of LH current drive (LHCD) are also more suitable for advanced tokamak (AT) operation where it is most desirable to provide a significant ( 20-30%) contribution to the total current density with a broad profile extending from r/a 0.5-0.85. Here we re-assess HFS LHCD in the ARC device using a hierarchy of LHCD models that include a combined adjoint plus ray tracing calculation, a ray tracing plus 3D Fokker Planck calculation, and a full-wave plus Fokker Planck simulation. Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and a PSFC Theory Grant under DE-FG02-91-ER54109.

  14. MOND Calculations of Bulk Dispersions and Radial Dispersion Profiles of Milky Way and Andromeda Dwarf Spheroidal Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, S. G.; Walentosky, M. J.; Messinger, Justin

    We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculatedmore » dispersion profiles for a selection of Andromeda dSph’s.« less

  15. Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; McConnochie, Timothy H.; Kass, David M.; Kleinböhl, Armin; Schofield, John T.; Heavens, Nicholas G.; McCleese, Daniel J.; Benson, Jennifer; Hinson, David P.; Bandfield, Joshua L.

    2015-05-01

    We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (Ls = 70-80°) and latitudes (55-70°N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 ± 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 ± 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 ± 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70°N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities are dissimilar; TES profiles exhibit colder temperatures when TES water ice opacities are greater than those observed by MCS. Our comparisons reveal a possible systematic offset of TES and MCS temperatures at the highest altitudes resolved in the TES retrievals; TES temperatures are consistently colder than the corresponding MCS temperatures at pressures ⩽ 1 Pa (altitudes ⩾ 58 km). We otherwise find no evidence of systematic bias between TES limb sounding and MCS retrieved atmospheric quantities between 610 Pa and 1 Pa. Inter-annual variability is noted in comparisons of latitudinal temperature gradients from 55 to 70°N, in the amplitude of inversions linked with thermal tides in the middle atmosphere, and in the abundance and vertical distribution of water ice aerosols from 55 to 70°N during the aphelion season.

  16. An ab initio study of the structure and dynamics of bulk liquid Ag and its liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Gonzalez Del Rio, Beatriz; Gonzalez Tesedo, Luis Enrique; Gonzalez Fernandez, David Jose

    Several static and dynamic properties of bulk liquid Ag at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behaviour with two different wavelenghts, as the spacing between the outer and first inner layer is different from that between the other inner layers.

  17. Determination of atomic sodium in coal combustion using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeny, P.G.; Abrahamson, H.B.; Radonovich, L.J.

    1987-01-01

    A laser-induced fluorescence spectrometer (LIFS) was assembled and sodium atom densities produced from the aspiration of solutions and direct introduction of a lignite into a flame were determined from fluorescence measurements. The average flame volume observed was 0.4mm/sup 3/. This small volume allowed the measurement of sodium concentrations as a function of vertical and horizontal flame position. Temperature profiles of the flames employed were also obtained and compared with the sodium atom densities. The sodium atom densities calculated from the fluorescence measurements (N/sub tt/) are compared with the sodium atom densities calculated from thermodynamic considerations (N/sub tt/) and sodium concentrationsmore » derived from aspiration/introduction rates (N/sub ta/).« less

  18. Correction Factor for Determining the London Penetration Depth from Strip Resonators

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1995-01-01

    A significant disagreement is often seen between the theoretical temperature dependent magnetic penetration depth profile and experimentally derived calculations based on stripline type resonators. This short paper shows that the disagreement can be attributed to the susceptance coupled into the resonator from the gap discontinuity as well as the feed line. When the effect is taken into account, the natural resonant frequency of the resonator is increased, and the frequency shift due to kinetic inductance can be calculated much more accurately. While it is necessary to include this effect to determine the penetration depth, it is shown that the impact on unloaded quality factor is generally negligible. The situation when the strip characteristic impedance is not matched to the generator is included.

  19. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  20. A 1-D Cryothermal Model of Ceres’ Megaregolith: Predictions for Surface Vapor Flux, Subsurface Temperatures and Pore Ice Distribution

    NASA Astrophysics Data System (ADS)

    Reynolds, Dylan; Wood, Stephen E.; Bapst, Jonathan; Mehlhaff, Joshua; Griffiths, Stephen G.

    2014-11-01

    We have applied a self-consistent 1-D model for heat diffusion, vapor diffusion, and ice condensation/sublimation, and surface energy balance to investigate our hypothesis for the source of the recently observed water vapor around Ceres [1]. As described in a companion presentation [2], we find that the estimated global flux of 6 kg/s can be produced by steady-state sublimation of subsurface ice driven by the “geothermal” temperature gradient for a heat flux of 1 mW/m2 - the value estimated for a chondritic abundance of heat-producing elements [3,4]. We will present a detailed description of our Ceres cryothermal diffusion model and comparisons with previous models. One key difference is the use of a new physics-based analytic model (‘MaxRTCM’) for calculating the thermal conductivity (Kth) of planetary regolith [5] that has been validated by comparisons to a wide range of laboratory data [6]. MaxRTCM predicts much lower Kth values in the upper regolith than those in previous work [3]. It also accounts for a process first modeled in a study of unstable equatorial ground ice on Mars [7,8], where vapor diffusing up from a receding ice table toward the surface can recondense at shallower depths - eventually forming a steady-state profile of pore ice volume fraction that increases with depth and maintains a constant flux of vapor at all depths [7]. Using MaxRTCM we calculate the corresponding Kth(z) profiles and will present predictions and implications of the resulting temperature profile in the upper few kilometers of Ceres’ megaregolith.References: [1] Küppers et al. (2014), Nature, 505(7484), 525-527. [2] Wood et al., 2014, this meeting. [3] Fanale & Salvail (1989) Icarus 82, 97-110. [4] McCord and Sotin (2005) JGR 110, E05009. [5] Wood (2013) LPSC Abs. 44, 3077. [6] Wood (2014), Icarus, in revision. [7] Mellon et al. (1997), JGR, 102, 19357-69. [8] Clifford (1993), JGR, 98, 10973-11016.

Top