Thermochemical properties of flame gases from fine wildland fuels
Frank A. Albini
1979-01-01
Describes a theoretical model for calculating thermochemical properties of the gaseous fuel that burns in the free flame at the edge of a spreading fire in fine forest fuels. Predicted properties are the heat of combustion, stoichiometric air/fuel mass ratio, mass-averaged temperature, and mass fraction of unburned fuel in the gas mixture emitted from the flame-...
Microcomputer Calculation of Thermodynamic Properties from Molecular Parameters of Gases.
ERIC Educational Resources Information Center
Venugopalan, Mundiyath
1990-01-01
Described in this article is a problem-solving activity which integrates the application of microcomputers with the learning of physical chemistry. Students use the program with spectroscopic data to calculate the thermodynamic properties and compare them with the values from the thermochemical tables. (Author/KR)
NASA Astrophysics Data System (ADS)
Mendoza-Wilson, Ana María.; Lardizabal-Gutiérrez, Daniel; Torres-Moye, Enrique; Fuentes-Cobas, Luis; Balandrán-Quintana, René R.; Camacho-Dávila, Alejandro; Quintero-Ramos, Armando; Glossman-Mitnik, Daniel
2007-12-01
The purpose of this work was to evaluate the accuracy of the CHIH(medium)-DFT model chemistry (PBEg/CBSB2 ∗∗//PBEg/CBSB4) in the determination of the optimized structure and thermochemical properties of heterocyclic systems of medium size such as flavonoids, wherefore were selected three of the most abundant flavonoids in vegetable tissues, and which posses the higher antioxidant activity: quercetin, (+)-catechin and cyanidin. As reference systems were employed three cyclic compounds: phenol, catechol and resorcinol. The thermochemical properties evaluated were enthalpy of formation, bond dissociation enthalpy (BDE) and ionization potential (IP), following the scheme of isodesmic reactions. The theoretical results were compared with experimental data generated by X-ray diffraction and calorimetric techniques realized in part by us, whereas other data were taken from the literature. The results obtained in this work reveal that the CHIH(medium)-DFT model chemistry represents an accurate computational tool to calculate structural and thermochemical properties in the studied flavonoid and reference compounds. The average absolute deviation of enthalpy of formation for reference compounds was 3.0 kcal/mol, 2.64 kcal/mol for BDE, and 2.97 kcal/mol for IP.
Approximate thermochemical tables for some C-H and C-H-O species
NASA Technical Reports Server (NTRS)
Bahn, G. S.
1973-01-01
Approximate thermochemical tables are presented for some C-H and C-H-O species and for some ionized species, supplementing the JANAF Thermochemical Tables for application to finite-chemical-kinetics calculations. The approximate tables were prepared by interpolation and extrapolation of limited available data, especially by interpolations over chemical families of species. Original estimations have been smoothed by use of a modification for the CDC-6600 computer of the Lewis Research Center PACl Program which was originally prepared for the IBM-7094 computer Summary graphs for various families show reasonably consistent curvefit values, anchored by properties of existing species in the JANAF tables.
Hemingway, B.S.; Robie, R.A.
1984-01-01
Measured heat capacities between 15 and 305 K and calculated heat capacities, entropies, enthalpy functions and Gibbs energy functions are reported and analysed for phillipsite and clinoptilolite. - J.A.Z.
Boltalin, A I; Korenev, Yu M; Sipachev, V A
2007-07-19
Molecular constants of MPbF3 (M=Li, Na, K, Rb, and Cs) were calculated theoretically at the MP2(full) and B3LYP levels with the SDD (Pb, K, Rb, and Cs) and cc-aug-pVQZ (F, Li, and Na) basis sets to determine the thermochemical characteristics of the substances. Satisfactory agreement with experiment was obtained, including the unexpected nonmonotonic dependence of substance dissociation energies on the alkali metal atomic number. The bond lengths of the theoretical CsPbF3 model were substantially elongated compared with experimental estimates, likely because of errors in both theoretical calculations and electron diffraction data processing.
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-02-18
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-01-01
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438
Yannick J. Bomble, Ph.D. | NREL
Yannick.Bomble@nrel.gov | 303-384-7729 Research Interests Development of thermophilic bacteria for improved Quantum chemical calculations for the study of thermochemical properties and processes Affiliated Research ©matiques Superieures, Lycée Faidherbe, Lille, France, 1998 Professional Experience Senior Research
NASA Astrophysics Data System (ADS)
Badawi, Michael; Xerri, Bertrand; Canneaux, Sébastien; Cantrel, Laurent; Louis, Florent
2012-01-01
Ab initio electronic structure calculations at the coupled cluster level with a correction for the triples extrapolated to the complete basis set limit have been made for the estimation of the thermochemical properties of Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I). The standard enthalpies of formation and standard molar entropies at 298 K, and the temperature dependence of the heat capacities at constant pressure were evaluated. The calculated thermochemical properties are in good agreement with their literature counterparts. For Cs 2, CsH, CsOH, Cs 2(OH) 2, CsCl, Cs 2Cl 2, CsBr, CsI, and Cs 2I 2, the calculated ΔfH298K∘ values are within chemical accuracy of the most recent experimental values. Based on the excellent agreement observed between our calculated ΔfH298K∘ values and their literature counterparts, the standard enthalpies of formation at 298 K are estimated to be the following: ΔfH298K∘ (CsO) = 17.0 kJ mol -1 and ΔfH298K∘ (Cs 2Br 2) = -575.4 kJ mol -1.
Microscopic approaches to liquid nitromethane detonation properties.
Hervouët, Anaïs; Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard
2008-04-24
In this paper, thermodynamic and chemical properties of nitromethane are investigated using microscopic simulations. The Hugoniot curve of the inert explosive is computed using Monte Carlo simulations with a modified version of the adaptative Erpenbeck equation of state and a recently developed intermolecular potential. Molecular dynamic simulations of nitromethane decomposition have been performed using a reactive potential, allowing the calculation of kinetic rate constants and activation energies. Finally, the Crussard curve of detonation products as well as thermodynamic properties at the Chapman-Jouguet (CJ) point are computed using reactive ensemble Monte Carlo simulations. Results are in good agreement with both thermochemical calculations and experimental measurements.
NASA Astrophysics Data System (ADS)
André, Laurie; Abanades, Stéphane; Cassayre, Laurent
2017-09-01
Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.
NASA Technical Reports Server (NTRS)
Bade, W. L.; Yos, J. M.
1975-01-01
A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.
Sun, Hongyan; Law, Chung K
2007-05-17
The reaction kinetics for the thermal decomposition of monomethylhydrazine (MMH) was studied with quantum Rice-Ramsperger-Kassel (QRRK) theory and a master equation analysis for pressure falloff. Thermochemical properties were determined by ab initio and density functional calculations. The entropies, S degrees (298.15 K), and heat capacities, Cp degrees (T) (0 < or = T/K < or = 1500), from vibrational, translational, and external rotational contributions were calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for internal rotations were calculated at the B3LYP/6-311G(d,p) level, and hindered rotational contributions to S degrees (298.15 K) and Cp degrees (T) were calculated by solving the Schrödinger equation with free rotor wave functions, and the partition coefficients were treated by direct integration over energy levels of the internal rotation potentials. Enthalpies of formation, DeltafH degrees (298.15 K), for the parent MMH (CH3NHNH2) and its corresponding radicals CH3N*NH2, CH3NHN*H, and C*H2NHNH2 were determined to be 21.6, 48.5, 51.1, and 62.8 kcal mol(-1) by use of isodesmic reaction analysis and various ab initio methods. The kinetic analysis of the thermal decomposition, abstraction, and substitution reactions of MMH was performed at the CBS-QB3 level, with those of N-N and C-N bond scissions determined by high level CCSD(T)/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) calculations. Rate constants of thermally activated MMH to dissociation products were calculated as functions of pressure and temperature. An elementary reaction mechanism based on the calculated rate constants, thermochemical properties, and literature data was developed to model the experimental data on the overall MMH thermal decomposition rate. The reactions of N-N and C-N bond scission were found to be the major reaction paths for the modeling of MMH homogeneous decomposition at atmospheric conditions.
NASA Technical Reports Server (NTRS)
Hartung, Lin C.; Hassan, H. A.
1992-01-01
A moment method for computing 3-D radiative transport is applied to axisymmetric flows in thermochemical nonequilibrium. Such flows are representative of proposed aerobrake missions. The method uses the P-1 approximation to reduce the governing system of integro-di erential equations to a coupled set of partial di erential equations. A numerical solution method for these equations given actual variations of the radiation properties in thermochemical nonequilibrium blunt body flows is developed. Initial results from the method are shown and compared to tangent slab calculations. The agreement between the transport methods is found to be about 10 percent in the stagnation region, with the difference increasing along the flank of the vehicle.
Thermochemical factors affecting the dehalogenation of aromatics.
Sadowsky, Daniel; McNeill, Kristopher; Cramer, Christopher J
2013-12-17
Halogenated aromatics are one of the largest chemical classes of environmental contaminants, and dehalogenation remains one of the most important processes by which these compounds are degraded and detoxified. The thermodynamic constraints of aromatic dehalogenation reactions are thus important for understanding the feasibility of such reactions and the redox conditions necessary for promoting them. Accordingly, the thermochemical properties of the (poly)fluoro-, (poly)chloro-, and (poly)bromobenzenes, including standard enthalpies of formation, bond dissociation enthalpies, free energies of reaction, and the redox potentials of Ar-X/Ar-H couples, were investigated using a validated density functional protocol combined with continuum solvation calculations when appropriate. The results highlight the fact that fluorinated aromatics stand distinct from their chloro- and bromo- counterparts in terms of both their relative thermodynamic stability toward dehalogenation and how different substitution patterns give rise to relevant properties, such as bond strengths and reduction potentials.
Canneaux, Sébastien; Vandeputte, Romain; Hammaecher, Catherine; Louis, Florent; Ribaucour, Marc
2012-01-12
o-Xylene could be a good candidate to represent the family of aromatic hydrocarbons in a surrogate fuel. This study uses computational chemistry to calculate standard enthalpies of formation at 298 K, Δ(f)H°(298 K), standard entropies at 298 K, S°(298 K), and standard heat capacities C(p)°(T) over the temperature range 300 K to 1500 K for ten target species present in the low-temperature oxidation mechanism of o-xylene: o-xylene (1), 2-methylbenzyl radical (2), 2-methylbenzylperoxy radical (3), 2-methylbenzyl hydroperoxide (4), 2-(hydroperoxymethyl)benzyl radical (5), 2-(hydroperoxymethyl)benzaldehyde (6), 1-ethyl-2-methylbenzene (7), 2,3-dimethylphenol (8), 2-hydroxybenzaldehyde (9), and 3-hydroxybenzaldehyde (10). Δ(f)H°(298 K) values are weighted averages across the values calculated using five isodesmic reactions and five composite calculation methods: CBS-QB3, G3B3, G3MP2, G3, and G4. The uncertainty in Δ(f)H°(298 K) is also evaluated. S°(298 K) and C(p)°(T) values are calculated at B3LYP/6-311G(d,p) level of theory from molecular properties and statistical thermodynamics through evaluation of translational, rotational, vibrational, and electronic partition functions. S°(298 K) and C(p)°(300 K) values are evaluated using the rigid-rotor-harmonic-oscillator model. C(p)°(T) values at T ≥ 400 K are calculated by treating separately internal rotation contributions and translational, external rotational, vibrational, and electronic contributions. The thermochemical properties of six target species are used to develop six new additivity groups taking into account the interaction between two substituents in ortho (ORT/CH2OOH/ME, ORT/ET/ME, ORT/CHO/OH, ORT/CHO/CH2OOH) or meta (MET/CHO/OH) positions, and the interaction between three substituents (ME/ME/OH123) located one beside the other (positions numbered 1, 2, 3) for two- or three-substituted benzenic species. Two other additivity groups are also developed using the thermochemical properties of benzenic species taken from the literature: the C/CB/H2/OO and the CB/CO groups. These groups extend the capacities of the group additivity method to deal with substituted benzenic species.
NASA Technical Reports Server (NTRS)
Ratliff, A. W.; Smith, S. D.; Penny, N. M.
1972-01-01
A summary is presented of the various documents that discuss and describe the computer programs and analysis techniques which are available for rocket nozzle and exhaust plume calculations. The basic method of characteristics program is discussed, along with such auxiliary programs as the plume impingement program, the plot program and the thermochemical properties program.
Klippenstein, Stephen J; Harding, Lawrence B; Ruscic, Branko
2017-09-07
The fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds to essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2 , CH 4 , H 2 O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zero-point energy, core-valence, relativistic, and diagonal Born-Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0-1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko
Here, the fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds tomore » essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2, CH 4, H 2O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zeropoint energy, core–valence, relativistic, and diagonal Born–Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0–1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.« less
Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko
2017-07-31
Here, the fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds tomore » essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H 2, CH 4, H 2O, and NH 3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zeropoint energy, core–valence, relativistic, and diagonal Born–Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0–1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.« less
A kinetic and thermochemical database for organic sulfur and oxygen compounds.
Class, Caleb A; Aguilera-Iparraguirre, Jorge; Green, William H
2015-05-28
Potential energy surfaces and reaction kinetics were calculated for 40 reactions involving sulfur and oxygen. This includes 11 H2O addition, 8 H2S addition, 11 hydrogen abstraction, 7 beta scission, and 3 elementary tautomerization reactions, which are potentially relevant in the combustion and desulfurization of sulfur compounds found in various fuel sources. Geometry optimizations and frequencies were calculated for reactants and transition states using B3LYP/CBSB7, and potential energies were calculated using CBS-QB3 and CCSD(T)-F12a/VTZ-F12. Rate coefficients were calculated using conventional transition state theory, with corrections for internal rotations and tunneling. Additionally, thermochemical parameters were calculated for each of the compounds involved in these reactions. With few exceptions, rate parameters calculated using the two potential energy methods agreed reasonably, with calculated activation energies differing by less than 5 kJ mol(-1). The computed rate coefficients and thermochemical parameters are expected to be useful for kinetic modeling.
Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals
NASA Astrophysics Data System (ADS)
Philipps, Katharina; Stoffel, Ralf Peter; Dronskowski, Richard; Conradt, Reinhard
2017-02-01
A combined quantum-mechanical and thermodynamic approach to the mechanical properties of multicomponent silicate glasses is presented. Quantum chemical calculations based on density-functional theory (DFT) on various silicate systems were performed to explore the crystalline polymorphs existing for a given chemical composition. These calculations reproduced the properties of known polymorphs even in systems with extensive polymorphism, like MgSiO3. Properties resting on the atomic and electronic structure, i.e., molar volumes (densities) and bulk moduli were predicted correctly. The theoretical data (molar equilibrium volumes, bulk moduli) were then used to complement the available experimental data. In a phenomenological evaluation, experimental data of bulk moduli, a macroscopic property resting on phononic structure, were found to linearly scale with the ratios of atomic space demand to actual molar volume in a universal way. Silicates ranging from high-pressure polymorphs to glasses were represented by a single master line. This suggests that above the Debye limit (in practice: above room temperature), the elastic waves probe the short range order coordination polyhedra and their next-neighbor linkage only, while the presence or absence of an extended translational symmetry is irrelevant. As a result, glasses can be treated - with respect to the properties investigated - as commensurable members of polymorphic series. Binary glasses fit the very same line as their one-component end-members, again both in the crystalline and glassy state. Finally, it is shown that the macroscopic properties of multicomponent glasses also are linear superpositions of the properties of their constitutional phases (as determined from phase diagrams or by thermochemical calculations) taken in their respective glassy states. This is verified experimentally for heat capacities and Young’s moduli of industrial glass compositions. It can be concluded, that the combined quantum mechanical and thermochemical approach is a truly quantitative approach for the design of glasses with desired mechanical properties, e.g., for the development of high-modulus glasses.
TEA: A Code Calculating Thermochemical Equilibrium Abundances
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but withmore » higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.« less
NASA Astrophysics Data System (ADS)
Smith, William R.; Jirsák, Jan; Nezbeda, Ivo; Qi, Weikai
2017-07-01
The calculation of caloric properties such as heat capacity, Joule-Thomson coefficients, and the speed of sound by classical force-field-based molecular simulation methodology has received scant attention in the literature, particularly for systems composed of complex molecules whose force fields (FFs) are characterized by a combination of intramolecular and intermolecular terms. The calculation of a thermodynamic property for a system whose molecules are described by such a FF involves the calculation of the residual property prior to its addition to the corresponding ideal-gas property, the latter of which is separately calculated, either using thermochemical compilations or nowadays accurate quantum mechanical calculations. Although the simulation of a volumetric residual property proceeds by simply replacing the intermolecular FF in the rigid molecule case by the total (intramolecular plus intermolecular) FF, this is not the case for a caloric property. We describe the correct methodology required to perform such calculations and illustrate it in this paper for the case of the internal energy and the enthalpy and their corresponding molar heat capacities. We provide numerical results for cP, one of the most important caloric properties. We also consider approximations to the correct calculation procedure previously used in the literature and illustrate their consequences for the examples of the relatively simple molecule 2-propanol, CH3CH(OH)CH3, and for the more complex molecule monoethanolamine, HO(CH2)2NH2, an important fluid used in carbon capture.
NASA Astrophysics Data System (ADS)
Zhang, DaDi; Yang, Xiaolong; Zheng, Xiao; Yang, Weitao
2018-04-01
Electron affinity (EA) is the energy released when an additional electron is attached to an atom or a molecule. EA is a fundamental thermochemical property, and it is closely pertinent to other important properties such as electronegativity and hardness. However, accurate prediction of EA is difficult with density functional theory methods. The somewhat large error of the calculated EAs originates mainly from the intrinsic delocalisation error associated with the approximate exchange-correlation functional. In this work, we employ a previously developed non-empirical global scaling correction approach, which explicitly imposes the Perdew-Parr-Levy-Balduz condition to the approximate functional, and achieve a substantially improved accuracy for the calculated EAs. In our approach, the EA is given by the scaling corrected Kohn-Sham lowest unoccupied molecular orbital energy of the neutral molecule, without the need to carry out the self-consistent-field calculation for the anion.
M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.
2015-09-01
Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less
Computational Chemistry Comparison and Benchmark Database
National Institute of Standards and Technology Data Gateway
SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access) The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.
Hla, San Shwe; Roberts, Daniel
2015-07-01
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermodynamic properties of minerals
Robie, Richard A.
1962-01-01
In the ten years since the publication of the national Bureau of Standards comprehensive tables of thermochemical properties, by Rossini and other (1952), a very large body of modern calorimetric and equilibrium data has become available. Because of the complex interrelations among many thermochemical data and the necessity for internal consistency among these values, a complete revision of this standard reference is required. This is also true of the summaries of thermochemical data for the sulfides (Richardson and Jeffes 1952) and for the oxides (Coughlin 1954). The following tables present critically selected values for the heat and free energy of formation, the logarithm of the equilibrium constant of formation Log Kf, the entropy and the molar volume, at 298.15°K (25.0°C) and one atmosphere for minerals.
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
NASA Astrophysics Data System (ADS)
You, Y.; Yan, M. F.
2013-05-01
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.
Interfacial Reaction Studies Using ONIOM
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2003-01-01
In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.
Ability of thermochemical calculation to treat organic peroxides
NASA Astrophysics Data System (ADS)
Osmont, Antoine; Baudin, Gérard; Genetier, Marc
2017-06-01
Since 3 years, the CEA Gramat is developing a new thermochemical code, called SIAME, funded by DGA to help French defense industry at conceiving new explosives compositions. It enables the calculation of CJ detonation and deflagration points and combustion of explosives. The accuracy of the code has been checked on several compositions containing PETN, RDX, HMX, TNT, NTO. The error on the velocity of detonation is 3%. To enlarge the domain of validity of the code, organic peroxides have been considered. It is known that thermochemical simulation is in failure regarding compounds as simple as hydrogen peroxide. The computed velocity of detonation is 5720 m/s when shock planar impact gives 6150 m/s. The same discrepancy is found for TATP, with a calculated value at 5870 m/s when 5290 has been measured. Detonation velocity of TATP has been measured at two different densities. These velocities agree with other published values. A closer look at the enthalpy of formation of TATP has revealed that it comes from an article of 1932. Ab initio computations have given a totally different value, leading to better agreement with experiment.
A thermochemical model of radiation damage and annealing applied to GaAs solar cells
NASA Technical Reports Server (NTRS)
Conway, E. J.; Walker, G. H.; Heinbockel, J. H.
1981-01-01
Calculations of the equilibrium conditions for continuous radiation damage and thermal annealing are reported. The calculations are based on a thermochemical model developed to analyze the incorporation of point imperfections in GaAs, and modified by introducing the radiation to produce native lattice defects rather than high-temperature and arsenic atmospheric pressure. The concentration of a set of defects, including vacancies, divacancies, and impurity vacancy complexes, are calculated as a function of temperature. Minority carrier lifetimes, short circuit current, and efficiency are deduced for a range of equilibrium temperatures. The results indicate that GaAs solar cells could have a mission life which is not greatly limited by radiation damage.
New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons
NASA Astrophysics Data System (ADS)
Dubois, Vincent; Pineau, Nicolas
2016-01-01
We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.
Analysis of thermo-chemical nonequilibrium models for carbon dioxide flows
NASA Technical Reports Server (NTRS)
Rock, Stacey G.; Candler, Graham V.; Hornung, Hans G.
1992-01-01
The aerothermodynamics of thermochemical nonequilibrium carbon dioxide flows is studied. The chemical kinetics models of McKenzie and Park are implemented in separate three-dimensional computational fluid dynamics codes. The codes incorporate a five-species gas model characterized by a translational-rotational and a vibrational temperature. Solutions are obtained for flow over finite length elliptical and circular cylinders. The computed flowfields are then employed to calculate Mach-Zehnder interferograms for comparison with experimental data. The accuracy of the chemical kinetics models is determined through this comparison. Also, the methodology of the three-dimensional thermochemical nonequilibrium code is verified by the reproduction of the experiments.
Roy, Swadipta; Ramana, C V
2018-02-05
We report on the tunable and controlled dielectric properties of iron (Fe)-doped gallium oxide (Ga 2 O 3 ; Ga 1.9 Fe 0.1 O 3 , referred to as GFO) inorganic compounds. The GFO materials were synthesized using a standard high-temperature, solid-state chemical reaction method by varying the thermochemical processing conditions, namely, different calcination and sintering environments. Structural characterization by X-ray diffraction revealed that GFO compounds crystallize in the β-Ga 2 O 3 phase. The Fe doping has induced slight lattice strain in GFO, which is evident in structural analysis. The effect of the sintering temperature (T sint ), which was varied in the range of 900-1200 °C, is significant, as revealed by electron microscopy analysis. T sint influences the grain size and microstructure evolution, which, in turn, influences the dielectric and electrical properties of GFO compounds. The energy-dispersive X-ray spectrometry and mapping data demonstrate the uniform distribution of the elemental composition over the microstructure. The temperature- and frequency-dependent dielectric measurements indicate the characteristic features that are specifically due to Fe doping in Ga 2 O 3 . The spreading factor and relaxation time, calculated using Cole-Cole plots, are in the ranges of 0.65-0.76 and 10 -4 s, respectively. The results demonstrate that densification and control over the microstructure and properties of GFO can be achieved by optimizing T sint .
CHEETAH: A next generation thermochemical code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L.; Souers, P.
1994-11-01
CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0. We have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. We find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. CHEETAH will make the use of thermochemical codes more attractivemore » to practical explosive formulators. We have also made an extensive effort to improve over the results of TIGER. CHEETAH`s version of the BKW equation of state (BKWC) is able to accurately reproduce energies from cylinder tests; something that other BKW parameter sets have been unable to do. Calculations performed with BKWC execute very quickly; typical run times are under 10 seconds on a workstation. In the future we plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.« less
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A
2008-10-23
This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.
Biomass for thermochemical conversion: targets and challenges
Tanger, Paul; Field, John L.; Jahn, Courtney E.; DeFoort, Morgan W.; Leach, Jan E.
2013-01-01
Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment. PMID:23847629
Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.; Charnley, Steven B.
2011-01-01
We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.
JAGUAR Procedures for Detonation Behavior of Silicon Containing Explosives
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Baker, Ernest; Capellos, Christos; Poulos, William; Pincay, Jack
2007-06-01
Improved relationships for the thermodynamic properties of solid and liquid silicon and silicon oxide for use with JAGUAR thermo-chemical equation of state routines were developed in this study. Analyses of experimental melting temperature curves for silicon and silicon oxide indicated complex phase behavior and that improved coefficients were required for solid and liquid thermodynamic properties. Advanced optimization routines were utilized in conjunction with the experimental melting point data to establish volumetric coefficients for these substances. The new property libraries resulted in agreement with available experimental values, including Hugoniot data at elevated pressures. Detonation properties were calculated with JAGUAR using the revised property libraries for silicon containing explosives. Constants of the JWLB equation of state were established for varying extent of silicon reaction. Supporting thermal heat transfer analyses were conducted for varying silicon particle sizes to establish characteristic times for melting and silicon reaction.
NASA Astrophysics Data System (ADS)
Yu, Li-Juan; Wan, Wenchao; Karton, Amir
2016-11-01
We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.
Thermochemical characterization of some thermally stable thermoplastic and thermoset polymers
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Gilwee, W. J., Jr.; Parker, J. A.
1979-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated include polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated include epoxy, bismaleimide, a modified phenolic, and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass-reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented, and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
Hudzik, Jason M; Castillo, Álvaro; Bozzelli, Joseph W
2015-09-24
Exo-tricyclo[5.2.1.0(2,6)]decane (TCD) or exo-tetrahydrodicyclopentadiene is an interesting strained ring compound and the single-component high-energy density hydrocarbon fuel known as JP-10. Important initial reactions of TCD at high temperatures could cleave a strained carbon-carbon (C-C) bond in the ring system creating diradicals also constrained by the remaining ring system. This study determines the thermochemical properties of these diradicals (TCD-H2 mJ-nJ where m and n correspond to the cleaved carbons sites) including the carbon-carbon bond dissociation energy (C-C BDE) corresponding to the cleaved TCD site. Thermochemical properties including enthalpies (ΔH°f298), entropies (S(T)), heat capacities (Cp(T)), and C-H and C-C BDEs for the parent (TCD-H2 m-n), radical (TCD-H2 mJ-n and m-nJ), diradical (TCD-H2 mJ-nJ), and carbene (TCD-H2 mJJ-n and m-nJJ) species are determined. Structures, vibrational frequencies, moments of inertia, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Standard enthalpies of formation in the gas phase for the TCD-H2 m-n parent and radical species are determined using the B3LYP density functional theory and the higher level G3MP2B3 and CBS-QB3 composite methods. For singlet and triplet TCD diradicals and carbenes, M06-2X, ωB97X-D, and CCSD(T) methods are included in the analysis to determine ΔH°f298 values. The C-C BDEs are further calculated using CASMP2(2,2)/aug-cc-pvtz//CASSCF(2,2)/cc-pvtz and with the CASMP2 energies extrapolated to the complete basis set limit. The bond energies calculated with these methods are shown to be comparable to the other calculation methods. Isodesmic work reactions are used for enthalpy analysis of these compounds for effective cancelation of systematic errors arising from ring strain. C-C BDEs range from 77.4 to 84.6 kcal mol(-1) for TCD diradical singlet species. C-H BDEs for the parent TCD-H2 m-n carbon sites range from 93 to 101 kcal mol(-1) with a similar range seen for loss of the second hydrogen to generate the diradical singlet species. A wider range for C-C BDEs is seen for the carbenes from about 77 to 100 kcal mol(-1) as compared to the diradicals. Results from the DFT methods for the parents, radicals, diradicals, and carbenes are in good agreement with results from the composite methods using our sets of work reactions.
Radiation Effects on Flow Characteristics in Combustion Chambers
NASA Technical Reports Server (NTRS)
Brewster, M. Q.; Gross, Klaus W.
1989-01-01
A JANNAF sponsored workshop was held to discuss the importance and role of radiative heat transfer in rocket combustion chambers. The potential impact of radiative transfer on hardware design, reliability, and performance was discussed. The current state of radiative transfer prediction capability in CFD modeling was reviewed and concluded to be substantially lacking in both the physical models used and the radiative property data available. There is a clear need to begin to establish a data base for making radiation calculations in rocket combustion chambers. A natural starting point for this effort would be the NASA thermochemical equilibrium code (CEC).
2008-07-01
PRF-5606H, ...................76 FTM 791C, method 36003) 168 hrs. @ 70ºC using NBR -L (AMS3217/2B Rubber specimens. 42. MLO-06...0275: Rubber Swell Test (MIL-PRF-5606H, .................77 FTM 791C, method 3603) 168 hrs. @ 70ºC using NBR -L...NUMBER MLO-05-421 Rubber Swell Test (MIL-PRF-5606H, FTM 791C, method 36003) 168 Hours @ 70°C (158°F) using NBR -L(AMS 3217/2B) rubber specimens
a Protocol for High-Accuracy Theoretical Thermochemistry
NASA Astrophysics Data System (ADS)
Welch, Bradley; Dawes, Richard
2017-06-01
Theoretical studies of spectroscopy and reaction dynamics including the necessary development of potential energy surfaces rely on accurate thermochemical information. The Active Thermochemical Tables (ATcT) approach by Ruscic^{1} incorporates data for a large number of chemical species from a variety of sources (both experimental and theoretical) and derives a self-consistent network capable of making extremely accurate estimates of quantities such as temperature dependent enthalpies of formation. The network provides rigorous uncertainties, and since the values don't rely on a single measurement or calculation, the provenance of each quantity is also obtained. To expand and improve the network it is desirable to have a reliable protocol such as the HEAT approach^{2} for calculating accurate theoretical data. Here we present and benchmark an approach based on explicitly-correlated coupled-cluster theory and vibrational perturbation theory (VPT2). Methyldioxy and Methyl Hydroperoxide are important and well-characterized species in combustion processes and begin the family of (ethyl-, propyl-based, etc) similar compounds (much less is known about the larger members). Accurate anharmonic frequencies are essential to accurately describe even the 0 K enthalpies of formation, but are especially important for finite temperature studies. Here we benchmark the spectroscopic and thermochemical accuracy of the approach, comparing with available data for the smallest systems, and comment on the outlook for larger systems that are less well-known and characterized. ^{1}B. Ruscic, Active Thermochemical Tables (ATcT) values based on ver. 1.118 of the Thermochemical Network (2015); available at ATcT.anl.gov ^{2}A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton. JCP 121, (2004): 11599.
Moon, Jiwon; Kim, Joonghan
2016-09-29
Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.
NASA Astrophysics Data System (ADS)
Sadigh Vishkaee, Teherh; Fazaeli, Reza
2018-06-01
Quantum chemical calculations using MPW1PW91 method were applied to analyze the solvent effect on the structural, spectral, and thermochemical parameters for a platinum-based anticancer drug trans-(NHC)PtI2Py complex. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on Polarizable Continuum Model (PCM). The linear correlations between the solvation energies, HOMO-LUMO gaps, IR-active stretching vibration of Pt-N bonds and N-H of NHC ligand with dielectric constants of solvents were studied. The wave numbers of these IR-active stretching vibrations in different solvents were correlated with the Kirkwood-Bauer-Magat equation (KBM). The thermodynamic activation parameter such free energy of solvation, enthalpy of solvation were also calculated.
Nonequilibrium thermo-chemical calculations using a diagonal implicit scheme
NASA Technical Reports Server (NTRS)
Imlay, Scott T.; Roberts, Donald W.; Soetrisno, Moeljo; Eberhardt, Scott
1991-01-01
A recently developed computer program for hypersonic vehicle flow analysis is described. The program uses a diagonal implicit algorithm to solve the equations of viscous flow for a gas in thermochemical nonequilibrium. The diagonal scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The program uses multiple zones of grids patched together and includes radiation wall and rarefied gas boundary conditions. Solutions are presented for hypersonic flows of air and hydrogen air mixtures.
Haussener, Sophia; Steinfeld, Aldo
2012-01-01
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039
Numeric Databases in Chemical Thermodynamics at the National Institute of Standards and Technology
Chase, Malcolm W.
1989-01-01
During the past year the activities of the Chemical Thermodynamics Data Center and the JANAF Thermochemical Tables project have been combined to obtain an extensive collection of thermodynamic information for many chemical species, including the elements. Currently available are extensive bibliographic collections and data files of heat capacity, enthalpy, vapor pressure, phase transitions, etc. Future plans related to materials science are to improve the metallic oxide temperature dependent tabulations, upgrade the recommended values periodically, and maintain the bibliographic citations and the thermochemical data current. The recommended thermochemical information is maintained on-line, and tied to the calculational routines within the data center. Recent thermodynamic evaluations on the elements and oxides will be discussed, as well as studies in related activities at NIST. PMID:28053395
Assessment of relative flammability and thermochemical properties of some thermoplastic materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.
Renewable hydrogen production via thermochemical/electrochemical coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosini, Andrea; Babiniec, Sean Michael; Miller, James E.
A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material ismore » reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.« less
Detonation Velocity Calculations of Explosives with Slowly-Burning Constituents
NASA Astrophysics Data System (ADS)
Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.
1997-07-01
The thermochemical code Equilbrium CHEETAH has been modified to allow partial reaction of constituents and partial flow of heat. Solid or liquid reactants are described by Einstein oscillators, whose temperatures can be changed to allow heat transfer. Hydroxy-terminated-poly-budadiene, mixed with RDX or HMX, does not react, as shown by the effect on the calculated detonation velocity. Aluminum and ammonium perchlorate in composites also do not react. Only partial heat flow also takes place in the unreacted materials. These results show that the usual assumption of total burn in a thermochemical code is probably incorrect, at least in the sonic reaction zone that drives the detonation velocity. A kinetic code would be the logical extension of this work.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2017-05-01
The integral enthalpies of dissolution Δsol H m for N-acetylglycine in aqueous solutions of glycerol, ethylene glycol and 1,2-propylene glycol are measured via solution calorimetry. The standard enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) for N-acetylglycine from water to aqueous solutions of polyhydric alcohols are calculated from experimental data. Positive values of enthalpy coefficients of pair interactions h xy for amino acids and polyol molecules are calculated using the McMillan-Mayer theory. The results are discussed using an approach for evaluating different types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical characteristics of N-acetylglycine dissolution.
Chan, Wei Ping; Wang, Jing-Yuan
2016-08-01
Recently, sludge attracted great interest as a potential feedstock in thermochemical conversion processes. However, compositions and thermal degradation behaviours of sludge were highly complex and distinctive compared to other traditional feedstock led to a need of fundamental research on sludge. Comprehensive characterisation of sludge specifically for thermochemical conversion was carried out for all existing Water Reclamation Plants in Singapore. In total, 14 sludge samples collected based on the type, plant, and batch categorisation. Existing characterisation methods for physical and chemical properties were analysed and reviewed using the collected samples. Qualitative similarities and quantitative variations of different sludge samples were identified and discussed. Oxidation of inorganic in sludge during ash forming analysis found to be causing significant deviations on proximate and ultimate analysis. Therefore, alternative parameters and comparison basis including Fixed Residues (FR), Inorganic Matters (IM) and Total Inorganics (TI) were proposed for better understanding on the thermochemical characteristics of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
FY06 L2C2 HE program report Zaug et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Crowhurst, J C; Howard, W M
2008-08-01
The purpose of this project is to advance the improvement of LLNL thermochemical computational models that form the underlying basis or input for laboratory hydrodynamic simulations. Our general work approach utilizes, by design, tight experimental-theoretical research interactions that allow us to not empirically, but rather more scientifically improve LLNL computational results. The ultimate goal here is to confidently predict through computer models, the performance and safety parameters of currently maintained, modified, and newly designed stockpile systems. To attain our goal we make relevant experimental measurements on candidate detonation products constrained under static high-pressure and temperature conditions. The reduced information frommore » these measurements is then used to construct analytical forms that describe the potential surface (repulsive energy as a function of interatomic separation distance) of single and mixed fluid or detonation product species. These potential surface shapes are also constructed using input from well-trusted shock wave physics and assorted thermodynamic data available in the open literature. Our potential surfaces permit one to determine the equations of state (P,V,T), the equilibrium chemistry, phase, and chemical interactions of detonation products under a very wide range of extreme pressure temperature conditions. Using our foundation of experimentally refined potential surfaces we are in a position to calculate, with confidence, the energetic output and chemical speciation occurring from a specific combustion and/or detonation reaction. The thermochemical model we developed and use for calculating the equilibrium chemistry, kinetics, and energy from ultrafast processes is named 'Cheetah'. Computational results from our Cheetah code are coupled to laboratory ALE3D hydrodynamic simulation codes where the complete response behavior of an existing or proposed system is ultimately predicted. The Cheetah thermochemical code is also used by well over 500 U.S. government DoD and DOE community users who calculate the chemical properties of detonated high explosives, propellants, and pyrotechnics. To satisfy the growing needs of LLNL and the general user community we continue to improve the robustness of our Cheetah code. The P-T range of current speed of sound experiments will soon be extended by a factor of four and our recently developed technological advancements permit us to, for the first time, study any chemical specie or fluid mixture. New experiments will focus on determining the miscibility or coexistence curves of detonation product mixtures. Our newly constructed ultrafast laser diagnostics will permit us to determine what chemical species exist under conditions approaching Chapman-Jouguet (CJ) detonation states. Furthermore we will measure the time evolution of candidate species and use our chemical kinetics data to develop new and validate existing rate laws employed in future versions of our Cheetah thermochemical code.« less
Dielectric properties of biomass and biochar mixtures for bioenergy applications
USDA-ARS?s Scientific Manuscript database
Biomass is an abundant and renewable energy resource, which may be converted into energy-dense products through thermochemical processes such as pyrolysis and gasification. Since microwave heating depends on the dielectric properties of the biomass material, these properties were measured at freque...
A first-principles study on new high-pressure metastable polymorphs of MoO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Nils; Dronskowski, Richard; Jülich-Aachen Research Alliance
The pressure-dependence of the stabilities of several MoO{sub 2} phases has been investigated by density-functional theory (GGA/PBE/PAW). Out of a set of 15 MX{sub 2} structures, the [SnO{sub 2}(II)], [α-PbO{sub 2}], and a modified rutile structure type were identified as possible metastable MoO{sub 2} polymorphs based on the analysis of thermodynamic properties and dynamic stability. High-pressure calculations suggest an orthorhombic TiO{sub 2} structure, dubbed [ortho-TiO{sub 2}], as a high-pressure polymorph at around 25 GPa. Furthermore, we find that the previously reported rutile-type MoO{sub 2} may be understood as a modified rutile type similar to the [VO{sub 2}] structure. - Graphicalmore » abstract: First-principles electronic structure and thermochemical calculations reveal four structure candidates as possible metastable polymorphs of MoO{sub 2}. Most promising is a distorted rutile-type similar to the known [VO{sub 2}] structure. An orthorhombic polymorph is proposed as a high-pressure polymorph. Display Omitted - Highlights: • Three possible metastable structure candidates for MoO{sub 2}. • Undistorted rutile type is improbable, a new distorted rutile-type MoO{sub 2} was suggested. • Orthorhombic phase of MoO{sub 2} (ortho-TiO{sub 2} type) should form at 25 GPa. • ab initio thermochemical data provided for MoO{sub 2}.« less
Uncertainty quantification of crustal scale thermo-chemical properties in Southeast Australia
NASA Astrophysics Data System (ADS)
Mather, B.; Moresi, L. N.; Rayner, P. J.
2017-12-01
The thermo-chemical properties of the crust are essential to understanding the mechanical and thermal state of the lithosphere. The uncertainties associated with these parameters are connected to the available geophysical observations and a priori information to constrain the objective function. Often, it is computationally efficient to reduce the parameter space by mapping large portions of the crust into lithologies that have assumed homogeneity. However, the boundaries of these lithologies are, in themselves, uncertain and should also be included in the inverse problem. We assimilate geological uncertainties from an a priori geological model of Southeast Australia with geophysical uncertainties from S-wave tomography and 174 heat flow observations within an adjoint inversion framework. This reduces the computational cost of inverting high dimensional probability spaces, compared to probabilistic inversion techniques that operate in the `forward' mode, but at the sacrifice of uncertainty and covariance information. We overcome this restriction using a sensitivity analysis, that perturbs our observations and a priori information within their probability distributions, to estimate the posterior uncertainty of thermo-chemical parameters in the crust.
The Thermochemical Stability of Ionic Noble Gas Compounds.
ERIC Educational Resources Information Center
Purser, Gordon H.
1988-01-01
Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…
NASA Astrophysics Data System (ADS)
Montoya, Javier A.; Goncharov, Alexander F.
2012-06-01
The time-dependent temperature distribution in the laser-heated diamond anvil cell (DAC) is examined using finite element simulations. Calculations are carried out for the practically important case of a surface-absorbing metallic plate (coupler) surrounded by a thermally insulating transparent medium. The time scales of the heat transfer in the DAC cavity are found to be typically on the order of tens of microseconds depending on the geometrical and thermochemical parameters of the constituent materials. The use of much shorter laser pulses (e.g., on the order of tens of nanoseconds) creates sharp radial temperature gradients, which result in a very intense and abrupt axial conductive heat transfer that exceeds the radiative heat transfer by several orders of magnitude in the practically usable temperature range (<12 000 K). In contrast, the use of laser pulses with several μs duration provides sufficiently uniform spatial heating conditions suitable for studying the bulk sample. The effect of the latent heat of melting on the temperature distribution has been examined in the case of iron and hydrogen for both pulsed and continuous laser heating. The observed anomalies in temperature-laser power dependencies cannot be due to latent heat effects only. Finally, we examine the applicability of a modification to the plate geometry Ångström method for measurements of the thermal diffusivity in the DAC. The calculations show substantial effects of the thermochemical parameters of the insulating medium on the amplitude change and phase shift between the surface temperature variations of the front and back of the sample, which makes this method dependent on the precise knowledge of the properties of the medium.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Rohlfing, Celeste MCM.; Rice, Julia E.
1992-01-01
Quantum mechanical computational methods are employed for an ab initio investigation of: (1) the molecular properties of the lowest isomers of the ClO dimer; and (2) predicted molecular and thermochemical properties. Techniques employed include electron correlation and particularly singles and doubles coupled-cluster (CCSD) theory with or without perturbational estimates of the effects of connected triple excitations. The isomers ClOClO and ClClO2 are found to have higher energies than the ClOOCl isomer, and the theoretical vibrational frequencies of the isomers are well correlated with experimental data. Experimental values of the heat of formation for the isomers are also compared with calculations based on an isodesmic reaction with Cl2O, H2O, and HOOH.
NASA Astrophysics Data System (ADS)
Ghiorso, M. S.
2013-12-01
Internally consistent thermodynamic databases are critical resources that facilitate the calculation of heterogeneous phase equilibria and thereby support geochemical, petrological, and geodynamical modeling. These 'databases' are actually derived data/model systems that depend on a diverse suite of physical property measurements, calorimetric data, and experimental phase equilibrium brackets. In addition, such databases are calibrated with the adoption of various models for extrapolation of heat capacities and volumetric equations of state to elevated temperature and pressure conditions. Finally, these databases require specification of thermochemical models for the mixing properties of solid, liquid, and fluid solutions, which are often rooted in physical theory and, in turn, depend on additional experimental observations. The process of 'calibrating' a thermochemical database involves considerable effort and an extensive computational infrastructure. Because of these complexities, the community tends to rely on a small number of thermochemical databases, generated by a few researchers; these databases often have limited longevity and are universally difficult to maintain. ThermoFit is a software framework and user interface whose aim is to provide a modeling environment that facilitates creation, maintenance and distribution of thermodynamic data/model collections. Underlying ThermoFit are data archives of fundamental physical property, calorimetric, crystallographic, and phase equilibrium constraints that provide the essential experimental information from which thermodynamic databases are traditionally calibrated. ThermoFit standardizes schema for accessing these data archives and provides web services for data mining these collections. Beyond simple data management and interoperability, ThermoFit provides a collection of visualization and software modeling tools that streamline the model/database generation process. Most notably, ThermoFit facilitates the rapid visualization of predicted model outcomes and permits the user to modify these outcomes using tactile- or mouse-based GUI interaction, permitting real-time updates that reflect users choices, preferences, and priorities involving derived model results. This ability permits some resolution of the problem of correlated model parameters in the common situation where thermodynamic models must be calibrated from inadequate data resources. The ability also allows modeling constraints to be imposed using natural data and observations (i.e. petrologic or geochemical intuition). Once formulated, ThermoFit facilitates deployment of data/model collections by automated creation of web services. Users consume these services via web-, excel-, or desktop-clients. ThermoFit is currently under active development and not yet generally available; a limited capability prototype system has been coded for Macintosh computers and utilized to construct thermochemical models for H2O-CO2 mixed fluid saturation in silicate liquids. The longer term goal is to release ThermoFit as a web portal application client with server-based cloud computations supporting the modeling environment.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1977-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burcat, A.; Ruscic, B.; Chemistry
2005-07-29
The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available onmore » the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.« less
Review of chemical-kinetic problems of future NASA missions. I - Earth entries
NASA Technical Reports Server (NTRS)
Park, Chul
1993-01-01
A number of chemical-kinetic problems related to phenomena occurring behind a shock wave surrounding an object flying in the earth atmosphere are discussed, including the nonequilibrium thermochemical relaxation phenomena occurring behind a shock wave surrounding the flying object, problems related to aerobraking maneuver, the radiation phenomena for shock velocities of up to 12 km/sec, and the determination of rate coefficients for ionization reactions and associated electron-impact ionization reactions. Results of experiments are presented in form of graphs and tables, giving data on the reaction rate coefficients for air, the ionization distances, thermodynamic properties behind a shock wave, radiative heat flux calculations, Damkoehler numbers for the ablation-product layer, together with conclusions.
Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion
NASA Astrophysics Data System (ADS)
Pashchenko, D. I.
2013-06-01
In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.
The NATA code; theory and analysis. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Bade, W. L.; Yos, J. M.
1975-01-01
The NATA code is a computer program for calculating quasi-one-dimensional gas flow in axisymmetric nozzles and rectangular channels, primarily to describe conditions in electric archeated wind tunnels. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. The shear and heat flux on the nozzle wall are calculated and boundary layer displacement effects on the inviscid flow are taken into account. The program contains compiled-in thermochemical, chemical kinetic and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It calculates stagnation conditions on axisymmetric or two-dimensional models and conditions on the flat surface of a blunt wedge. Included in the report are: definitions of the inputs and outputs; precoded data on gas models, reactions, thermodynamic and transport properties of species, and nozzle geometries; explanations of diagnostic outputs and code abort conditions; test problems; and a user's manual for an auxiliary program (NOZFIT) used to set up analytical curvefits to nozzle profiles.
Yommee, Suriyakit; Bozzelli, Joseph W
2016-01-28
Cyclopentadienone has one carbonyl and two olefin groups resulting in 4n + 2 π-electrons in a cyclic five-membered ring structure. Thermochemical and kinetic parameters for the initial reactions of cyclopentadienone radicals with O2 and the thermochemical properties for cyclopentadienone-hydroperoxides, alcohols, and alkenyl, alkoxy, and peroxy radicals were determined by use of computational chemistry. The CBS-QB3 composite and B3LYP density functional theory methods were used to determine the enthalpies of formation (ΔfH°298) using the isodesmic reaction schemes with several work reactions for each species. Entropy and heat capacity, S°(T) and Cp°(T) (50 K ≤ T ≤ 5000 K) are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations. Standard enthalpies of formation are reported for parent molecules as cyclopentadienone, cyclopentadienone with alcohol, hydroperoxide substituents, and the cyclopentadienone-yl vinylic, alkoxy, and peroxy radicals corresponding to loss of a hydrogen atom from the carbon and oxygen sites. Entropy and heat capacity vs temperature also are reported for the parent molecules and for radicals. The thermochemical analysis shows The R(•) + O2 well depths are deep, on the order of 50 kcal mol(-1), and the R(•) + O2 reactions to RO + O (chain branching products) for cyclopentadienone-2-yl and cyclopentadienone-3-yl have unusually low reaction (ΔHrxn) enthalpies, some 20 or so kcal/mol below the entrance channels. Chemical activation kinetics using quantum RRK analysis for k(E) and master equation for falloff are used to show that significant chain branching as a function of temperature and pressure can occur when these vinylic radicals are formed.
Oxidative vaporization kinetics of chromium (III) oxide in oxygen from 1270 to 1570 K
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.
1974-01-01
Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at 0.115 torr for temperatures from 1270 to 1570 K. Reaction controlled rates were obtained from experimental rates by a gold calibration technique. These rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporation reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data by using boundary layer theory.
Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000 to 1300 C
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.
1974-01-01
Rates of oxidative vaporization of Cr2O3 on preoxidized resistively heated chromium were determined in flowing oxygen at a pressure of 0.115 Torr for temperatures from 1000 to 1300 C. Reaction controlled rates were obtained from experimental rates by a gold calibration technique, and these rates were shown to agree with those predicted by thermochemical analysis. The activation energy obtained for the oxidative vaporization reaction corresponded numerically with the thermochemical enthalpy of the reaction. A theoretical equation is given for calculating the rate from thermodynamic data using boundary-layer theory.
Soot and Spectral Radiation Modeling in ECN Spray A and in Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, Daniel C; Ferreyro-Fernandez, Sebastian; Paul, Chandan
The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gasmore » radiation and spectral radiation properties are important for engine-relevant conditions.« less
Additive erosion reduction influences in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1981-05-01
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Observations and Thermochemical Calculations for Hot-Jupiter Atmospheres
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver; Cubillos, Patricio; Stemm, Madison
2015-01-01
I present Spitzer eclipse observations for WASP-14b and WASP-43b, an open source tool for thermochemical equilibrium calculations, and components of an open source tool for atmospheric parameter retrieval from spectroscopic data. WASP-14b is a planet that receives high irradiation from its host star, yet, although theory does not predict it, the planet hosts a thermal inversion. The WASP-43b eclipses have signal-to-noise ratios of ~25, one of the largest among exoplanets. To assess these planets' atmospheric composition and thermal structure, we developed an open-source Bayesian Atmospheric Radiative Transfer (BART) code. My dissertation tasks included developing a Thermochemical Equilibrium Abundances (TEA) code, implementing the eclipse geometry calculation in BART's radiative transfer module, and generating parameterized pressure and temperature profiles so the radiative-transfer module can be driven by the statistical module.To initialize the radiative-transfer calculation in BART, TEA calculates the equilibrium abundances of gaseous molecular species at a given temperature and pressure. It uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA, written in Python, is modular, documented, and available to the community via the open-source development site GitHub.com.Support for this work was provided by NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX12AL83H, by NASA through an award issued by JPL/Caltech, and through the Science Mission Directorate's Planetary Atmospheres Program, grant NNX12AI69G.
NASA Astrophysics Data System (ADS)
Morishima, Shin-Ichi; Wariishi, Koji; Mikoshiba, Hisashi; Inagaki, Yoshio; Shibata, Michihiro; Hashimoto, Hirokazu; Kubo, Hiroshi
To reduce thermal interference between adjacent recording marks on a recordable digital versatile disc, we examined the thermochemical behavior of oxonol dyes for digital versatile disc recordable (DVD-R). We found that oxonol dyes with Meldrum's acid skeleton exhibited an abrupt reduction in weight with increasing temperature without generating excessive heat that is the fundamental cause of thermal interference. DVD-R with the oxonol dyes suppressed fluctuation in the shapes of recorded marks, thereby attaining compatibility with high-speed recording.
Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)
2002-01-01
The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.
Threshold collision-induced dissociation and theoretical study of protonated azobenzene
NASA Astrophysics Data System (ADS)
Rezaee, Mohammadreza; McNary, Christopher P.; Armentrout, P. B.
2017-10-01
Protonated azobenzene (AB), H+(C6H5N2C6H5), has been studied using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Product channels observed are C6H5N2+ + C6H6 and C6H5+ + N2 + C6H6. The experimental kinetic energy-dependent cross sections were analyzed using a statistical model that accounts for internal and kinetic energy distributions of the reactants, multiple collisions, and kinetic shifts. From this analysis, the activation energy barrier height of 2.02 ± 0.11 eV for benzene loss is measured. To identify the transition states (TSs) and intermediates (IMs) for these dissociations, relaxed potential energy surface (PES) scans were performed at the B3LYP/aug-cc-pVTZ level of theory. The PES indicates that there is a substantial activation energy along the dissociation reaction coordinate that is the rate-limiting step for benzene loss and at some levels of theory, for subsequent N2 loss as well. Relative energies of the reactant, TSs, IMs, and products were calculated at B3LYP, wB97XD, M06, PBEPBE, and MP2(full) levels of theory using both 6-311++G(2d,2p) and aug-cc-pVTZ basis sets. Comparison of the experimental results with theoretical values from various computational methods indicates how well these theoretical methods can predict thermochemical properties. In addition to these density functional theory and MP2 methods, several high accuracy multi-level calculations such as CBS-QB3, G3, G3MP2, G3B3MP2, G4, and G4MP2 were performed to determine the thermochemical properties of AB including the proton affinity and gas-phase basicity, and to compare the performance of different theoretical methods.
NASA Astrophysics Data System (ADS)
Ghiorso, M. S.
2014-12-01
Computational thermodynamics (CT) has now become an essential tool of petrologic and geochemical research. CT is the basis for the construction of phase diagrams, the application of geothermometers and geobarometers, the equilibrium speciation of solutions, the construction of pseudosections, calculations of mass transfer between minerals, melts and fluids, and, it provides a means of estimating materials properties for the evaluation of constitutive relations in fluid dynamical simulations. The practical application of CT to Earth science problems requires data. Data on the thermochemical properties and the equation of state of relevant materials, and data on the relative stability and partitioning of chemical elements between phases as a function of temperature and pressure. These data must be evaluated and synthesized into a self consistent collection of theoretical models and model parameters that is colloquially known as a thermodynamic database. Quantitative outcomes derived from CT reply on the existence, maintenance and integrity of thermodynamic databases. Unfortunately, the community is reliant on too few such databases, developed by a small number of research groups, and mostly under circumstances where refinement and updates to the database lag behind or are unresponsive to need. Given the increasing level of reliance on CT calculations, what is required is a paradigm shift in the way thermodynamic databases are developed, maintained and disseminated. They must become community resources, with flexible and assessable software interfaces that permit easy modification, while at the same time maintaining theoretical integrity and fidelity to the underlying experimental observations. Advances in computational and data science give us the tools and resources to address this problem, allowing CT results to be obtained at the speed of thought, and permitting geochemical and petrological intuition to play a key role in model development and calibration.
Thermochemical properties for isooctane and carbon radicals: computational study.
Snitsiriwat, Suarwee; Bozzelli, Joseph W
2013-01-17
Thermochemical properties for isooctane, its internal rotation conformers, and radicals with corresponding bond energies are determined by use of computational chemistry. Enthalpies of formation are determined using isodesmic reactions with B3LYP density function theory and composite CBS-QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the isooctane parent and for the primary, secondary, and tertiary radicals in order to identify isomer energies. Intramolecular interactions are shown to have a significant effect on the enthalpy of formation of the isooctane parent and its radicals. The computed standard enthalpy of formation for the lowest energy conformers of isooctane from this study is -54.40 ± 1.60 kcal mol(-1), which is 0.8 kcal mol(-1) lower than the evaluated experimental value -53.54 ± 0.36 kcal mol(-1). The standard enthalpy of formation for the primary radical for a methyl on the quaternary carbon is -5.00 ± 1.69 kcal mol(-1), for the primary radical on the tertiary carbon is -5.18 ± 1.69 kcal mol(-1), for the secondary isooctane radical is -9.03 ± 1.84 kcal mol(-1), and for the tertiary isooctane radical is -12.30 ± 2.02 kcal mol(-1). Bond energy values for the isooctane radicals are 100.64 ± 1.73, 100.46 ± 1.73, 96.41 ± 1.88 and 93.14 ± 2.05 kcal mol(-1) for C3•CCCC2, C3CCCC2•, C3CC•CC2, and C3CCC•C2, respectively. Entropy and heat capacity values are reported for the lowest energy homologues.
NASA Astrophysics Data System (ADS)
Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.
2017-10-01
This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan; Piro, Markus H.A.
Thermochimica is a software library that determines a unique combination of phases and their compositions at thermochemical equilibrium. Thermochimica can be used for stand-alone calculations or it can be directly coupled to other codes. This release of the software does not have a graphical user interface (GUI) and it can be executed from the command line or from an Application Programming Interface (API). Also, it is not intended for thermodynamic model development or for constructing phase diagrams. The main purpose of the software is to be directly coupled with a multi-physics code to provide material properties and boundary conditions formore » various physical phenomena. Significant research efforts have been dedicated to enhance computational performance through advanced algorithm development, such as improved estimation techniques and non-linear solvers. Various useful parameters can be provided as output from Thermochimica, such as: determination of which phases are stable at equilibrium, the mass of solution species and phases at equilibrium, mole fractions of solution phase constituents, thermochemical activities (which are related to partial pressures for gaseous species), chemical potentials of solution species and phases, and integral Gibbs energy (referenced relative to standard state). The overall goal is to provide an open source computational tool to enhance the predictive capability of multi-physics codes without significantly impeding computational performance.« less
Nonmetallic materials handbook. Volume 1: Epoxy materials
NASA Technical Reports Server (NTRS)
Podlaseck, S. E.
1979-01-01
Thermochemical and other properties data is presented for the following types of epoxy materials: adhesives, coatings finishes, inks, electrical insulation, encapsulants, sealants, composite laminates, tapes, and thermal insulators.
Wang, Heng; Castillo, Álvaro; Bozzelli, Joseph W
2015-07-23
Enthalpies of formation for 14 C2–C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(–1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(–1) K(–1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods.
Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.
1980-01-01
A computerized chemical model, WATEQ2, has resulted from extensive additions to and revision of the WATEQ model of Truesdell and Jones (Truesdell, A. H., and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: J. Res. U. S. Geol, Survey, v. 2, p. 233-274). The model building effort has necessitated searching the literature and selecting thermochemical data pertinent to the reactions added to the model. This supplementary report manes available the details of the reactions added to the model together with the selected thermochemical data and their sources. Also listed are details of program operation and a brief description of the output of the model. Appendices-contain a glossary of identifiers used in the PL/1 computer code, the complete PL/1 listing, and sample output from three water analyses used as test cases.
Pelletizing properties of torrefied spruce
Wolfgang Stelte; Craig Clemons; Jens K. Holm; Anand R. Sanadi; Jesper Ahrenfeldt; Lei Shang; Ulrik B. Henriksen
2011-01-01
Torrefaction is a thermo-chemical conversion process improving the handling, storage and combustion properties of wood. To save storage space and transportation costs, it can be compressed into fuel pellets of high physical and energetic density. The resulting pellets are relatively resistant to moisture uptake, microbiological decay and easy to comminute into small...
NASA Technical Reports Server (NTRS)
Chambers, Lin Hartung
1994-01-01
The theory for radiation emission, absorption, and transfer in a thermochemical nonequilibrium flow is presented. The expressions developed reduce correctly to the limit at equilibrium. To implement the theory in a practical computer code, some approximations are used, particularly the smearing of molecular radiation. Details of these approximations are presented and helpful information is included concerning the use of the computer code. This user's manual should benefit both occasional users of the Langley Optimized Radiative Nonequilibrium (LORAN) code and those who wish to use it to experiment with improved models or properties.
Kinetics of thermochemical gas-solid reactions important in the Venus sulfur cycle
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.
1988-01-01
The thermochemical net reaction CaCO3 + SO2 yields CaSO4 + CO is predicted to be an important sink for incorporation of SO2 into the Venus crust. The reaction rate law was established to understand the dependence of rate on experimental variables such as temperature and partial pressure of SO2, CO2, and O2. The experimental approach was a variant of the thermogravimetric method often employed to study the kinetics of thermochemical gas-solid reactions. Clear calcite crystals were heated at constant temperature in SO2-bearing gas streams for varying time periods. Reaction rate was determined by three independent methods. A weighted linear least squares fit to all rate data yielded a rate equation. Based on the Venera 13, 14 and Vega 2 observations of CaO content of the Venus atmosphere, SO2 at the calculated rate would be removed from the Venus atmosphere in about 1,900,00 years. The most plausible endogenic source of the sulfur needed to replenish atmospheric SO2 is volcanism. The annual amount of erupted material needed for the replenishment depends on sulfur content; three ratios are used to calculate rates ranging from 0.4 to 11 cu km/year. This geochemically derived volcanism rate can be used to test if geophysically derived rates are correct. The work also suggests that Venus is less volcanically active than the Earth.
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, Matthew O.; Cubillos, Patricio E.; Stemm, Madison; Foster, Andrew
2014-11-01
We present a new, open-source, Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. TEA uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. It initializes the radiative-transfer calculation in our Bayesian Atmospheric Radiative Transfer (BART) code. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA is written in Python and is available to the community via the open-source development site GitHub.com. We also present BART applied to eclipse depths of WASP-43b exoplanet, constraining atmospheric thermal and chemical parameters. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
NASA Astrophysics Data System (ADS)
Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Basa, A.; Jadach, R.; Sitarz, M.; Dorosz, D.
2018-05-01
A series of erbium doped SGS antimony-germanate glass embedding silver (Ag0) nanoparticles have been synthesized by a one-step melt-quench thermochemical reduction technique. The effect of NPs concentration and annealing time on the structural and photoluminescent (PL) properties were investigated. The Raman spectra as a function of temperature measured in-situ allow to determine the structural changes in vicinity of Ag+ ions and confirmed thermochemical reduction of Ag+ ions by Sb3+ ions. The surface plasmon resonance absorption band was evidenced near 450 nm. The impact of local field effect generated by Ag0 nanoparticles (NPs) and energy transfer from surface of silver NPs to trivalent erbium ions on near-infrared and up-conversion luminescence was described in terms of enhancement and quench phenomena.
NASA Astrophysics Data System (ADS)
Cobden, L. J.
2017-12-01
Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
2013-01-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
NASA Astrophysics Data System (ADS)
Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman
2013-04-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.
Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman
2013-04-20
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
The thermodynamic properties of benzothiazole and benzoxazole
NASA Astrophysics Data System (ADS)
Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.
1991-08-01
This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.
Reaction path of energetic materials using THOR code
NASA Astrophysics Data System (ADS)
Duraes, L.; Campos, J.; Portugal, A.
1997-07-01
The method of predicting reaction path, using a thermochemical computer code, named THOR, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using a thermal equation of state (EoS). The used HL EoS is a new EoS developed in previous works. HL EoS is supported by a Boltzmann EoS, taking α =13.5 to the exponent of the intermolecular potential and θ=1.4 to the adimensional temperature. This code allows now the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, described, calculated and discussed - Ammonium Nitrate based explosives and Nitromethane - because they are very known explosives and their equivalence ratio is respectively near and greater than the stoicheiometry. Predictions of detonation properties of other condensed explosives, as a function of energy release, present results in good correlation with experimental values.
Estimating Equivalency of Explosives Through A Thermochemical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L
2002-07-08
The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less
Mohallem, José R
2008-04-14
Recent post-Hartree-Fock calculations of the diagonal-Born-Oppenheimer correction empirically show that it behaves quite similar to atomic nuclear mass corrections. An almost constant contribution per electron is identified, which converges with system size for specific series of organic molecules. This feature permits pocket-calculator evaluation of the corrections within thermochemical accuracy (10(-1) mhartree or kcal/mol).
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Smirnov, V. I.
2013-01-01
The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.
NASA Astrophysics Data System (ADS)
Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech
2017-11-01
We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.
Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.
Sebbar, N; Bozzelli, J W; Bockhorn, H
2014-01-09
Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.
NASA Astrophysics Data System (ADS)
Cavalié, T.; Venot, O.; Selsis, F.; Hersant, F.; Hartogh, P.; Leconte, J.
2017-07-01
Thermochemical models have been used in the past to constrain the deep oxygen abundance in the gas and ice giant planets from tropospheric CO spectroscopic measurements. Knowing the oxygen abundance of these planets is a key to better understand their formation. These models have widely used dry and/or moist adiabats to extrapolate temperatures from the measured values in the upper troposphere down to the level where the thermochemical equilibrium between H2O and CO is established. The mean molecular mass gradient produced by the condensation of H2O stabilizes the atmosphere against convection and results in a vertical thermal profile and H2O distribution that departs significantly from previous estimates. We revisit O/H estimates using an atmospheric structure that accounts for the inhibition of the convection by condensation. We use a thermochemical network and the latest observations of CO in Uranus and Neptune to calculate the internal oxygen enrichment required to satisfy both these new estimates of the thermal profile and the observations. We also present the current limitations of such modeling.
Mass spectrometer measurements of test gas composition in a shock tunnel
NASA Technical Reports Server (NTRS)
Skinner, K. A.; Stalker, R. J.
1995-01-01
Shock tunnels afford a means of generating hypersonic flow at high stagnation enthalpies, but they have the disadvantage that thermochemical effects make the composition of the test flow different to that of ambient air. The composition can be predicted by numerical calculations of the nozzle flow expansion, using simplified thermochemical models and, in the absence of experimental measurements, it has been necessary to accept the results given by these calculations. This note reports measurements of test gas composition, at stagnation enthalpies up to 12.5 MJ.kg(exp -1), taken with a time-of-flight mass spectrometer. Limited results have been obtained in previous measurements. These were taken at higher stagnation enthalpies, and used a quadruple mass spectrometer. The time-of-flight method was preferred here because it enabled a number of complete mass spectra to be obtained in each test, and because it gives good mass resolution over the range of interest with air (up to 50 a.m.a.).
Enthalpy characteristics of L-proline dissolution in certain water-organic mixtures at 298.15 K
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Smirnov, V. I.
2017-01-01
A thermochemical study of the processes of L-proline dissolution in aqueous solutions of acetonitrile, 1,4-dioxane, acetone, dimethyl sulfoxide, nitromethane and tetrahydrofuran at T = 298.15 K in the range of organic solvent concentrations x2 = 0-0.25 mole fractions is performed. Standard values of the enthalpies of solution and transfer of L-proline from water to mixed solvent, and the enthalpy coefficients of pairwise interactions between L-proline and molecules of organic solvents, are calculated. The effect the composition of a water-organic mixture and the structure of organic solvents have on the enthalpy characteristics of L-proline dissolution and transfer is examined. The effect the energy properties of intermolecular interactions between components of a mixed solvent has on the intermolecular interactions between L-proline and molecules of cosolvent is estimated. The correlation between the enthalpy characteristics of L-proline dissolution and electron-donor properties of organic cosolvent in aqueous solutions is determined.
A thermochemical explanation for the stability of NaCl3 and NaCl7
NASA Astrophysics Data System (ADS)
Fernandes de Farias, Robson
2017-03-01
Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.
NASA Astrophysics Data System (ADS)
Akaogi, Masaki; Ito, Eiji; Navrotsky, Alexandra
1989-11-01
The olivine(α)-modified spinel(β)-spinel (γ) transitions in the system Mg2SiO4-Fe2SiO4 were studied by high-temperature solution calorimetry. Enthalpies of the β-γ and a α-γ transitions in Mg2SiO4 at 975 K and of the α-γ transition in Fe2SiO4 at 298 K were measured. The γ solid solution showed a positive enthalpy of mixing. Phase relations at high pressures and high temperatures were calculated from these thermochemical data including correction for the effect of nonideality of α, β, and γ solid solutions. The calculated phase diagrams agree well with those determined experimentally by Katsura and Ito very recently. The α - (Mg0.89, Fe0.11)2SiO4 transforms to β through a region of α+β without passing through the α+γ phase field at around 400 km depth in the mantle with an interval of about 18(±5) km. Temperatures at 390 and 650 km depths are estimated to be about 1673 and 1873 K, respectively, assuming an adiabatic geotherm.
Dynamics of Compressible Convection and Thermochemical Mantle Convection
NASA Astrophysics Data System (ADS)
Liu, Xi
The Earth's long-wavelength geoid anomalies have long been used to constrain the dynamics and viscosity structure of the mantle in an isochemical, whole-mantle convection model. However, there is strong evidence that the seismically observed large low shear velocity provinces (LLSVPs) in the lowermost mantle are chemically distinct and denser than the ambient mantle. In this thesis, I investigated how chemically distinct and dense piles influence the geoid. I formulated dynamically self-consistent 3D spherical convection models with realistic mantle viscosity structure which reproduce Earth's dominantly spherical harmonic degree-2 convection. The models revealed a compensation effect of the chemically dense LLSVPs. Next, I formulated instantaneous flow models based on seismic tomography to compute the geoid and constrain mantle viscosity assuming thermochemical convection with the compensation effect. Thermochemical models reconcile the geoid observations. The viscosity structure inverted for thermochemical models is nearly identical to that of whole-mantle models, and both prefer weak transition zone. Our results have implications for mineral physics, seismic tomographic studies, and mantle convection modelling. Another part of this thesis describes analyses of the influence of mantle compressibility on thermal convection in an isoviscous and compressible fluid with infinite Prandtl number. A new formulation of the propagator matrix method is implemented to compute the critical Rayleigh number and the corresponding eigenfunctions for compressible convection. Heat flux and thermal boundary layer properties are quantified in numerical models and scaling laws are developed.
Solar thermochemical splitting of water to generate hydrogen
Rao, C. N. R.; Dey, Sunita
2017-01-01
Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the high-temperature two-step process. It is noteworthy that the multistep process based on the Mn(II)/Mn(III) oxide system can be carried out at 700 °C or 750 °C. The two-step process has been achieved at 1,300 °C/900 °C by using yttrium-based rare earth manganites. It seems possible to render this high-temperature process as an isothermal process. Thermodynamics and kinetics of H2O splitting are largely controlled by the inherent redox properties of the materials. Interestingly, under the conditions of H2O splitting in the high-temperature process CO2 can also be decomposed to CO, providing a feasible method for generating the industrially important syngas (CO+H2). Although carbonate formation can be addressed as a hurdle during CO2 splitting, the problem can be avoided by a suitable choice of experimental conditions. The choice of the solar reactor holds the key for the commercialization of thermochemical fuel production. PMID:28522461
Lee, Xin Jiat; Lee, Lai Yee; Gan, Suyin; Thangalazhy-Gopakumar, Suchithra; Ng, Hoon Kiat
2017-07-01
This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin -1 N 2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg -1 ) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrothermal carbonization: modeling, final properties design and applications: a review
USDA-ARS?s Scientific Manuscript database
Active research on biomass hydrothermal carbonization (HTC) continues to demonstrate its advantages over other thermochemical processes, in particular the interesting benefits associated with carbonaceous solid products called hydrochar (HC). The areas of applications of HC range from biofuel to dop...
NASA Astrophysics Data System (ADS)
Verma, Anand Mohan; Kishore, Nanda
2017-02-01
The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.
Thermochemical Compatibility and Oxidation Resistance of Advanced LWR Fuel Cladding
Besmann, T. M.; Yamamoto, Y.; Unocic, K. A.
2016-06-21
We assessed the thermochemical compatibility of potential replacement cladding materials for zirconium alloys in light water reactors. Considered were FeCrAl steel (similar to Kanthal APMT), Nb-1%Zr (similar to PWC-11), and a hybrid SiC-composite with a metallic barrier layer. The niobium alloy was also seen as requiring an oxidation protective layer, and a diffusion silicide was investigated. Metallic barrier layers for the SiC-composite reviewed included a FeCrAl alloy, Nb-1%Zr, and chromium. Thermochemical calculations were performed to determine oxidation behavior of the materials in steam, and for hybrid SiC-composites possible interactions between the metallic layer and SiC. Additionally, experimental exposures of SiC-alloymore » reaction couples at 673K, 1073K, and 1273K for 168 h in an inert atmosphere were made and microanalysis performed. Whereas all materials were determined to oxidize under higher oxygen partial pressures in the steam environment, these varied by material with expected protective oxides forming. Finally, the computed and experimental results indicate the formation of liquid phase eutectic in the FeCrAl-SiC system at the higher temperatures.« less
Giant onsite electronic entropy enhances the performance of ceria for water splitting.
Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.
Oyeyemi, Victor B; Pavone, Michele; Carter, Emily A
2011-12-09
Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: 1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; 2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and 3) DFT-B3LYP calculations of minimum-energy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of CC and CH bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermochemical Users Facility | Bioenergy | NREL
collaborate on research and development efforts or to use our equipment to test their materials and processes NREL's thermochemical process integration, scale-up, and piloting research. Schematic diagram of NRELs about NREL's thermochemical process integration, scale-up, and piloting research. Thermochemical
AB INITIO STUDIES ON THERMOCHEMICAL PROPERTIES OF OXIRANE, OXITANE AND OXIRENE. (R824970)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Carlos Murilo Romero; Morgon, Nelson Henrique; Custodio, Rogério, E-mail: roger@iqm.unicamp.br
2013-11-14
G3(MP2)//B3 theory was modified to incorporate compact effective potential (CEP) pseudopotentials, providing a theoretical alternative referred to as G3(MP2)//B3-CEP for calculations involving first-, second-, and third-row representative elements. The G3/05 test set was used as a standard to evaluate the accuracy of the calculated properties. G3(MP2)//B3-CEP theory was applied to the study of 247 standard enthalpies of formation, 104 ionization energies, 63 electron affinities, 10 proton affinities, and 22 atomization energies, comprising 446 experimental energies. The mean absolute deviations compared with the experimental data for all thermochemical results presented an accuracy of 1.4 kcal mol{sup −1} for G3(MP2)//B3 and 1.6more » kcal mol{sup −1} for G3(MP2)//B3-CEP. Approximately 75% and 70% of the calculated properties are found with accuracy between ±2 kcal mol{sup −1} for G3(MP2)//B3 and G3(MP2)//B3-CEP, respectively. Considering a confidence interval of 95%, the results may oscillate between ±4.2 kcal mol{sup −1} and ±4.6 kcal mol{sup −1}, respectively. The overall statistical behavior indicates that the calculations using pseudopotential present similar behavior with the all-electron theory. Of equal importance to the accuracy is the CPU time, which was reduced by between 10% and 40%.« less
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-01-01
Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering. PMID:28772836
NASA Astrophysics Data System (ADS)
Ramenskaya, L. M.; Grishina, E. P.; Kudryakova, N. O.
2018-01-01
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around -40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at -91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of -19.3°C forms upon slow cooling.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-04-28
Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering.
Evaluation of biochars by temperature programmed oxidation/mass spectrometry
Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom
2013-01-01
Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...
CFD studies on biomass thermochemical conversion.
Wang, Yiqun; Yan, Lifeng
2008-06-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
CFD Studies on Biomass Thermochemical Conversion
Wang, Yiqun; Yan, Lifeng
2008-01-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
NASA Astrophysics Data System (ADS)
Ramabhadran, Raghunath Ozhapakkam
In a concise display of the power and diversity of electronic structure theory (EST), the work presented herein involves the development of new computational methods to advance the practical utility of quantum chemistry, as well as solving different types of challenging chemical problems by applying existing EST tools. The research presented is highly interdisciplinary in nature and features synergistic collaborations to solve real-life problems such as regulating toxic chemicals and generating alternative sources of energy. In the first chapter of this dissertation, the solution to a long-standing problem in theoretical thermochemistry is accomplished by the development of the automated, chemically intuitive and generalized thermochemical hierarchy, Connectivity-Based Hierarchy (CBH) to accurately predict the thermochemical properties of organic molecules. The extension of the hierarchy to predict the enthalpies of formations of biomonomers such as amino acids is also presented. The development of a computationally efficient protocol to accurately extrapolate to high CCSD(T) energies based on MP2 and DFT energies using CBH is presented in the second chapter, thus merging theoretical thermochemistry with fragment-based methods in quantum chemistry. This merger drastically reduces the computational cost involved in a CCSD(T) calculation, while retaining the impeccable accuracy it offers. The practical utility of the CH hydrogen bond, commonly thought as being too weak to be used in supramolecular applications has been demonstrated by DFT calculations (along with experimental results from the Flood group) in the third chapter. This is accomplished by systematically studying the binding of monoatomic chloride, diatomic and toxic cyanide and the polyatomic bi-fluoride anions for the first time using only CH hydrogen bonds within a triazolophane macrocycle. The fourth chapter contains the introduction of the concept of fluxionality in the chemical reactions of transition metal oxide clusters. This is useful to develop a systematic paradigm for discussing the mechanisms in the reactions of larger transition metal oxide clusters with small molecules. Additionally, DFT calculations (along with experimental results from the C. C. Jarrold group) are shown to be useful to provide new insights on hydrogen liberation from water, thus aiding in the generation of alternative sources of energy.
Gonzalez Rodriguez, Pablo; Dral, A Petra; van den Nieuwenhuijzen, Karin J H; Lette, Walter; Schipper, Dik J; Ten Elshof, Johan E
2018-01-24
In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging organic groups, were synthesized by a sol-gel process. The influence of carbon content, crosslink density, rotational freedom of incorporated hydrocarbon groups, and network connectivity on the high temperature friction properties of the polymer was studied for condensed materials from silicon alkoxide precursors with terminating organic groups, i.e., methyltrimethoxysilane, propyltrimethoxysilane, diisopropyldimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane and 4-biphenylyltriethoxysilane networks, as well as precursors with organic bridging groups between Si centers, i.e., 1,4-bis(triethoxysilyl)benzene and 4,4'-bis(triethoxysilyl)-1,1'-biphenyl. Pin-on-disc measurements were performed using all selected solid lubricants. It was found that materials obtained from phenyltrimethoxysilane and cyclohexyltrimethoxysilane precursors showed softening above 120 °C and performed best in terms of friction reduction, reaching friction coefficients as low as 0.01. This value is lower than that of graphite films (0.050 ± 0.005), a common bench mark for solid lubricants.
Thermochemical Stability and Friction Properties of Soft Organosilica Networks for Solid Lubrication
Gonzalez Rodriguez, Pablo; van den Nieuwenhuijzen, Karin J. H.; Lette, Walter; Schipper, Dik J.
2018-01-01
In view of their possible application as high temperature solid lubricants, the tribological and thermochemical properties of several organosilica networks were investigated over a range of temperatures between 25 and 580 °C. Organosilica networks, obtained from monomers with terminal and bridging organic groups, were synthesized by a sol-gel process. The influence of carbon content, crosslink density, rotational freedom of incorporated hydrocarbon groups, and network connectivity on the high temperature friction properties of the polymer was studied for condensed materials from silicon alkoxide precursors with terminating organic groups, i.e., methyltrimethoxysilane, propyltrimethoxysilane, diisopropyldimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane and 4-biphenylyltriethoxysilane networks, as well as precursors with organic bridging groups between Si centers, i.e., 1,4-bis(triethoxysilyl)benzene and 4,4′-bis(triethoxysilyl)-1,1′-biphenyl. Pin-on-disc measurements were performed using all selected solid lubricants. It was found that materials obtained from phenyltrimethoxysilane and cyclohexyltrimethoxysilane precursors showed softening above 120 °C and performed best in terms of friction reduction, reaching friction coefficients as low as 0.01. This value is lower than that of graphite films (0.050 ± 0.005), a common bench mark for solid lubricants. PMID:29364164
Kinetic calculations of explosives with slow-burning constituents
NASA Astrophysics Data System (ADS)
Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.
1998-07-01
The equilibrium thermochemical code CHEETAH V1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.
NASA Astrophysics Data System (ADS)
Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.
1981-08-01
A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.
NASA Astrophysics Data System (ADS)
Khalili, Behzad; Rimaz, Mehdi
2017-06-01
In this study the different class of tunable and high nitrogen content ionic liquids termed TAMATILs (Tunable Aryl Methyl Amino Tetrazolium based Ionic Liquids) were designed. The physicochemical properties of the nanostructured TAMATILs composed of para substituted phenyl methyl amino tetrazolium cations [(4-X)PMAT]+ (X = H, Me, OCH3, OH, NH2, NO2, F, CN, CHO, CF3, COMe and CO2Me) and dicyanimide anion [N(CN)2]- were fully investigated using M06-2X functional in conjunction with the 6-311++G(2d,2p) basis set. For all of the studied nanostructured ILs the structural parameters, interaction energy, cation's enthalpy of formation, natural charges, charge transfer values and topological properties were calculated and discussed. The substituent effect on the interaction energy and physicochemical properties also is taking into account. The results showed that the strength of interaction has a linear correlation with electron content of the phenyl ring in a way the substituents with electron withdrawing effects lead to make more stable ion pairs with higher interaction energies. Some of the main physical properties of ILs such as surface tension, melting point, critical-point temperature, electrochemical stability and conductivity are discussed and estimated for studying ion pairs using quantum chemical computationally obtained thermochemical data. Finally the enthalpy and Gibbs free energy of formation for twelve nanostructured individual cations with the general formula of [(4-X)PMAT]+ (X = 4-H, 4-Me, 4-OMe, 4-OH, 4-NH2, 4-NO2, 4-F, 4-CN, 4-CHO, 4-CF3, 4-COMe and 4-CO2Me) are calculated.
Silver(II) Oxide or Silver(I,III) Oxide?
ERIC Educational Resources Information Center
Tudela, David
2008-01-01
The often called silver peroxide and silver(II) oxide, AgO or Ag[subscript 2]O[subscript 2], is actually a mixed oxidation state silver(I,III) oxide. A thermochemical cycle, with lattice energies calculated within the "volume-based" thermodynamic approach, explain why the silver(I,III) oxide is more stable than the hypothetical silver(II) oxide.…
Detonation Properties Measurements for Inorganic Explosives
NASA Astrophysics Data System (ADS)
Morgan, Brent A.; Lopez, Angel
2005-03-01
Many commonly available explosive materials have never been quantitatively or theoretically characterized in a manner suitable for use in analytical models. This includes inorganic explosive materials used in spacecraft ordnance, such as zirconium potassium perchlorate (ZPP). Lack of empirical information about these materials impedes the development of computational techniques. We have applied high fidelity measurement techniques to experimentally determine the pressure and velocity characteristics of ZPP, a previously uncharacterized explosive material. Advances in measurement technology now permit the use of very small quantities of material, thus yielding a significant reduction in the cost of conducting these experiments. An empirical determination of the explosive behavior of ZPP derived a Hugoniot for ZPP with an approximate particle velocity (uo) of 1.0 km/s. This result compares favorably with the numerical calculations from the CHEETAH thermochemical code, which predicts uo of approximately 1.2 km/s under ideal conditions.
3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils.
Ciesielski, Peter N; Matthews, James F; Tucker, Melvin P; Beckham, Gregg T; Crowley, Michael F; Himmel, Michael E; Donohoe, Bryon S
2013-09-24
Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils.
Heat storage in alloy transformations
NASA Technical Reports Server (NTRS)
Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.
1981-01-01
The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.
Enthalpy characteristics of the dissolution of L-valine in water/formamide mixtures at 298.15 K
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Badelin, V. G.
2016-11-01
The thermochemical dissolution of L-valine in solvent mixtures H2O + (formamide, N-methylformamide, and N, N-dimethylformamide) is studied at an organic component concentration of x 2 = 0-0.35 molar fractions and a temperature of 298.15 K. The experimental data are used to calculate standard enthalpies of dissolution, the transferring of L-valine from water to a mixed solvent, and the enthalpy coefficients of pairwise interactions ( h xy ) with organic solvent molecules. The correlation between the enthalpy characteristics of the dissolution of L-valine with the composition of aqueous organic mixtures and the nature of the organic solvent (its physicochemical properties) is determined. A comparative analysis of the values of h xy of a number of aliphatic L-amino acids in similar solvent mixtures with the hydrophobicity parameters of their side chains is performed.
Modeling the gas-phase thermochemistry of organosulfur compounds.
Vandeputte, Aäron G; Sabbe, Maarten K; Reyniers, Marie-Françoise; Marin, Guy B
2011-06-27
Key to understanding the involvement of organosulfur compounds in a variety of radical chemistries, such as atmospheric chemistry, polymerization, pyrolysis, and so forth, is knowledge of their thermochemical properties. For organosulfur compounds and radicals, thermochemical data are, however, much less well documented than for hydrocarbons. The traditional recourse to the Benson group additivity method offers no solace since only a very limited number of group additivity values (GAVs) is available. In this work, CBS-QB3 calculations augmented with 1D hindered rotor corrections for 122 organosulfur compounds and 45 organosulfur radicals were used to derive 93 Benson group additivity values, 18 ring-strain corrections, 2 non-nearest-neighbor interactions, and 3 resonance corrections for standard enthalpies of formation, standard molar entropies, and heat capacities for organosulfur compounds and organosulfur radicals. The reported GAVs are consistent with previously reported GAVs for hydrocarbons and hydrocarbon radicals and include 77 contributions, among which 26 radical contributions, which, to the best of our knowledge, have not been reported before. The GAVs allow one to estimate the standard enthalpies of formation at 298 K, the standard entropies at 298 K, and standard heat capacities in the temperature range 300-1500 K for a large set of organosulfur compounds, that is, thiols, thioketons, polysulfides, alkylsulfides, thials, dithioates, and cyclic sulfur compounds. For a validation set of 26 organosulfur compounds, the mean absolute deviation between experimental and group additively modeled enthalpies of formation amounts to 1.9 kJ mol(-1). For an additional set of 14 organosulfur compounds, it was shown that the mean absolute deviations between calculated and group additively modeled standard entropies and heat capacities are restricted to 4 and 2 J mol(-1) K(-1), respectively. As an alternative to Benson GAVs, 26 new hydrogen-bond increments are reported, which can also be useful for the prediction of radical thermochemistry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Soil amendment of char products (biochar) from thermochemical processing (slow/fast pyrolysis and gasification) of biomass for biofuel production has received considerable interests for contaminant sorption, soil fertilization, and carbon sequestration. Of potential sites for biochar application, h...
Sulfuric Acid and Water: Paradoxes of Dilution
ERIC Educational Resources Information Center
Leenson, I. A.
2004-01-01
On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…
USDA-ARS?s Scientific Manuscript database
The effects of thermochemical hydrolysis of corn fiber gum (CFG) and conjugation of the resulting oligomers with sodium caseinate in presence of transglutaminase was studied. The dynamic interfacial tension at the oil-water interface was studied and the molecular characteristics were determined by h...
Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J
2012-10-01
In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1988-01-01
This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1994-01-01
Research was performed in the area of computational modeling and application of hypersonic, high-enthalpy, thermo-chemical nonequilibrium flow (Aerothermodynamics) problems. A number of computational fluid dynamic (CFD) codes were developed and applied to simulate high altitude rocket-plume, the Aeroassist Flight Experiment (AFE), hypersonic base flow for planetary probes, the single expansion ramp model (SERN) connected with the National Aerospace Plane, hypersonic drag devices, hypersonic ramp flows, ballistic range models, shock tunnel facility nozzles, transient and steady flows in the shock tunnel facility, arc-jet flows, thermochemical nonequilibrium flows around simple and complex bodies, axisymmetric ionized flows of interest to re-entry, unsteady shock induced combustion phenomena, high enthalpy pulsed facility simulations, and unsteady shock boundary layer interactions in shock tunnels. Computational modeling involved developing appropriate numerical schemes for the flows on interest and developing, applying, and validating appropriate thermochemical processes. As part of improving the accuracy of the numerical predictions, adaptive grid algorithms were explored, and a user-friendly, self-adaptive code (SAGE) was developed. Aerothermodynamic flows of interest included energy transfer due to strong radiation, and a significant level of effort was spent in developing computational codes for calculating radiation and radiation modeling. In addition, computational tools were developed and applied to predict the radiative heat flux and spectra that reach the model surface.
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
Computer-Aided Process Model For Carbon/Phenolic Materials
NASA Technical Reports Server (NTRS)
Letson, Mischell A.; Bunker, Robert C.
1996-01-01
Computer program implements thermochemical model of processing of carbon-fiber/phenolic-matrix composite materials into molded parts of various sizes and shapes. Directed toward improving fabrication of rocket-engine-nozzle parts, also used to optimize fabrication of other structural components, and material-property parameters changed to apply to other materials. Reduces costs by reducing amount of laboratory trial and error needed to optimize curing processes and to predict properties of cured parts.
Kolmann, Stephen J; Jordan, Meredith J T
2010-02-07
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Kolmann, Stephen J.; Jordan, Meredith J. T.
2010-02-01
One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.
NASA Astrophysics Data System (ADS)
Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.
2013-10-01
Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
Chemsheet as a Simulation Platform for Pyrometallurgical Processes
NASA Astrophysics Data System (ADS)
Penttilä, Karri; Salminen, Justin; Tripathi, Nagendra; Koukkari, Pertti
ChemSheet is a thermodynamic multi-phase multi-component simulation software, which is used as an Add-in in Microsoft Excel. In ChemSheet, the unique Constrained Gibbs free energy method can be used to include dynamic constraints and reaction rates of kinetically slow reactions, yet retaining full consistency of the multiphase thermodynamic model. With appropriate data, ChemSheet models can be used to simulate reactors and processes in all fields of thermochemistry. The presentation will cover off-line modeling of Cu-flash smelters and advanced thermochemical simulation coupled with on-line process control of Cu-Ni smelting. The presentation will describe an off-line model of Cu-smelter based on critically assessed properties of the Al-Ca-Cu-Fe-O-S-Si -system (slag, matte and liquid metal) by using the quasichemical model. A four-stage reactor model (shaft, settler, uptake and bath) is used for optimizing process parameters and feed particle distribution. As a second example, an advanced thermochemical model of a Ni-Cu sulphide smelting plant will be given. The on-line model covers the operation of treating Ni-Cu-S concentrate via roasters, electric furnace and converters, producing a high grade Bessemer matte product for further refining. The model integrates the thermochemistry of the roasters and electric furnace, and predicts important process parameters such as degree of sulphur elimination in the fluid-bed roasters, matte grade, iron metallization, slag losses and the iron to silica ratio in the electric furnace slag. Both models can be used to assist process engineers and operators in calculating the addition rates of coke, flux and air for different feed scenarios.
Albayrak, Çiğdem; Kaştaş, Gökhan; Odabaşoğlu, Mustafa; Frank, René
2012-09-01
In this study, (E)-2-[(4-bromophenylimino)methyl]-5-(diethylamino)phenol compound was investigated by mainly focusing on conformational isomerism. For this purpose, molecular structure and spectroscopic properties of the compound were experimentally characterized by X-ray diffraction, FT-IR and UV-Vis spectroscopic techniques, and computationally by DFT method. The X-ray diffraction analysis of the compound shows the formation of two conformers (anti and eclipsed) related to the ethyl groups of the compound. The two conformers are connected to each other by non-covalent C-H⋯Br and C-H⋯π interactions. The combination of these interactions is resulted in fused R(2)(2)(10) and R(2)(4)(20) synthons which are responsible for the tape structure of crystal packing arrangement. The X-ray diffraction and FT-IR analyses also reveal the existence of enol form in the solid state. From thermochemical point of view, the computational investigation of isomerism includes three studies: the calculation of (a) the rate constants for transmission from anti or eclipsed conformations to transition state by using Eyring equation, (b) the activation energy needed for isomerism by using Arrhenius equation, (c) the equilibrium constant from anti conformer to eclipsed conformer by using the equation including the change in Gibbs free energy. The dependence of tautomerism on solvent types was studied on the basis of UV-Vis spectra recorded in different organic solvents. The results showed that the compound exists in enol form in all solvents except ethyl alcohol. Copyright © 2012 Elsevier B.V. All rights reserved.
Zheng, X L; Sun, H Y; Law, C K
2005-10-13
In recognition of the importance of the isobutene oxidation reaction in the preignition chemistry associated with engine knock, the thermochemistry, chemical reaction pathways, and reaction kinetics of the isobutenyl radical oxidation at low to intermediate temperature range were computationally studied, focusing on both the first and the second O2 addition to the isobutenyl radical. The geometries of reactants, important intermediates, transition states, and products in the isobutenyl radical oxidation system were optimized at the B3LYP/6-311G(d,p) and MP2(full)/6-31G(d) levels, and the thermochemical properties were determined on the basis of ab initio, density functional theory, and statistical mechanics. Enthalpies of formation for several important intermediates were calculated using isodesmic reactions at the DFT and the CBS-QB3 levels. The kinetic analysis of the first O2 addition to the isobutenyl radical was performed using enthalpies at the CBS-QB3 and G3(MP2) levels. The reaction forms a chemically activated isobutenyl peroxy adduct which can be stabilized, dissociate back to reactants, cyclize to cyclic peroxide-alkyl radicals, and isomerize to the 2-hydroperoxymethyl-2-propenyl radical that further undergoes another O2 addition. The reaction channels for isomerization and cyclization and further dissociation on this second O2 addition were analyzed using enthalpies at the DFT level with energy corrections based on similar reaction channels for the first O2 addition. The high-pressure limit rate constants for each reaction channel were determined as functions of temperature by the canonical transition state theory for further kinetic model development.
López-Carballeira, Diego; Ruipérez, Fernando
2016-04-01
The evaluation of four high-level composite methods based on the modification of Gaussian-3 (G3) theory for radicals and 18 exchange-correlation density functionals, including modern long-range and dispersion-corrected functionals, in the modelization of singlet diradicals has been performed in this work. Structural parameters and properties such as singlet-triplet gaps, electron affinities, ionization potentials, dipole moments, enthalpies of formation, and bond dissociation energies have been calculated in a set of six well-characterized singlet diradicals, and benchmarked against experimental data and wavefunction-based CASSCF/CASPT2 calculations. The complexity of the open-shell singlet ground state is revealed in the difficulties to properly represent the diradical character reported by some DFT functionals, specially those that do not comprise a certain amount of Hartree-Fock exchange in their formulation. We find that STGs, EAs, dipole moments, and thermochemical properties are, in general, satisfactorily calculated, while for IPs larger deviations with respect to the experiments are found in all cases. The best overall performance is accounted for by hybrid functionals, including some of the long-range corrected functionals, but also pure functionals, comprising the kinetic energy density in their formulation, are found to be competent. Composite methods perform satisfactorily, especially G3(MP2)-RAD and G3X(MP2)-RAD, which calculate singlet-triplet gaps and electron affinities more accurately. On the other hand, G3-RAD and G3X-RAD provide better ionization potentials. This study emphasizes that the use of recently developed functionals, within the broken symmetry approximation, is an appropriate tool for the simulation of organic singlet diradicals, with similar accuracy compared to more expensive composite methods. Nevertheless, suitable selection of the methodology is still crucial for the accomplishment of accurate results.
A Comparison of Methods for Modeling Geochemical Variability in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Kellogg, J. B.; Tackley, P. J.
2004-12-01
Numerial models of isotopic and chemical heterogeneity of the Earth's mantle fall into three categories, in decreasing order of computational demand. First, several authors have used chemical tracers within a full thermo-chemical convection calculation (e.g., Christensen and Hofmann, 1994, van Keken and Ballentine, 1999; Xie and Tackley, 2004). Second, Kellogg et al. (2002) proposed an extension of the traditional geochemical box model calculations in which numerous subreservoirs were tracked within the bulk depleted mantle reservoir. Third, Allègre and Lewin (1995) described a framework in which the variance in chemical and isotopic ratios were treated as quantities intrinsic to the bulk reservoirs, complete with sources and sinks. Results from these three methods vary, particularly with respect to conclusions drawn about the meaning of the Pb-Pb pseudo-isochron. We revisit these methods in an attempt to arrive at a common understanding. By considering all three we better identify the strengths and weaknesses of each approach and allow each to inform the other. Finally, we present results from a new hybrid model that combines the complexity and regional-scale variability of the thermochemical convection models with the short length-scale sensitivity of the Kellogg et al. approach.
Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body
NASA Astrophysics Data System (ADS)
Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.
2018-02-01
Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.
Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project
NASA Astrophysics Data System (ADS)
Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane
2017-06-01
This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise will the thermal and optical characterization of the influence that these parameters represent in the solar reactor. The experimental and theoretical results obtained for each redox system will be compared and analyzed to determine the cycle with the highest potential. Advances on simulation, design, construction and experimentation on solar reactors to conduct thermochemical splitting water reactions are presented.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Combination of biochar and poultry litter impact on soil properties and corn yield
USDA-ARS?s Scientific Manuscript database
Biochar, a by-product of a thermochemical process called pyrolysis, which involves burning of any agricultural and animal waste (biomass) under high temperature and absence of oxygen. It is assumed that since biochar is very high in aromatic carbon, which persists in soil environment for very long ...
High-temperature Y267 EPDM elastomer: field and laboratory experiences, August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.
1982-03-01
Experiences which indicate the superiority of Y267 EPDM elastomer for high-temperature brines and other environments uses are summarized. Its good processing qualities, extremely good thermochemical stability, extremely good mechanical properties, its low-cost constituents, and its good performance in hydrocarbons are described in some case histories. (MCW)
de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...
2016-08-01
CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
Changala, P Bryan; Nguyen, T Lam; Baraban, Joshua H; Ellison, G Barney; Stanton, John F; Bross, David H; Ruscic, Branko
2017-11-22
The adiabatic ionization energy of hydrogen peroxide (HOOH) is investigated, both by means of theoretical calculations and theoretically assisted reanalysis of previous experimental data. Values obtained by three different approaches: 10.638 ± 0.012 eV (purely theoretical determination), 10.649 ± 0.005 eV (reanalysis of photoelectron spectrum), and 10.645 ± 0.010 eV (reanalysis of photoionization spectrum) are in excellent mutual agreement. Further refinement of the latter two values to account for asymmetry of the rotational profile of the photoionization origin band leads to a reduction of 0.007 ± 0.006 eV, which tends to bring them into even closer alignment with the purely theoretical value. Detailed analysis of this fundamental quantity by the Active Thermochemical Tables approach, using the present results and extant literature, gives a final estimate of 10.641 ± 0.006 eV.
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide
Changala, P. Bryan; Nguyen, T. Lam; Baraban, Joshua H.; ...
2017-09-07
The adiabatic ionization energy of hydrogen peroxide (HOOH) is investigated, both by means of theoretical calculations and theoretically-assisted reanalysis of previous experimental data. Values obtained by three different approaches: 10.638 ± 0.012 eV (purely theoretical determination), 10.649 ± 0.005 eV (reanalysis of photoelectron spectrum) and 10.645 ± 0.010 eV (reanalysis of photoionization spectrum) are in excellent mutual agreement. Further refinement of the latter two values to account for asymmetry of the rotational profile of the photoionization origin band leads to a reduction of 0.007 ± 0.006 eV, which tends to bring them into even closer alignment with the purely theoreticalmore » value. As a result, detailed analysis of this fundamental quantity by the Active Thermochemical Tables (ATcT) approach, using the present results and extant literature, gives a final estimate of 10.641 ± 0.006 eV.« less
VUV Dissociative Photoionization of Quinoline in the 7-26 eV Photon Energy Range
NASA Astrophysics Data System (ADS)
Leach, Sydney; Jochims, Hans-Werner; Baumgärtel, Helmut; Champion, Norbert
2018-05-01
The dissociative photoionization of quinoline was studied by photoionization mass spectrometry and ion yield measurements over a synchrotron photon excitation energy range 7-26 eV. The ionic and neutral products were identified with the aid of thermochemical calculations that, in some cases, led to deeper understanding of photodissociation pathways and the determination of upper limits of heats of formation of ionic and neutral dissociation products. A detailed comparison between the 20 eV photon excitation and 70 eV electron impact mass spectra, coupled with estimation of thermochemical appearance energies, leads to assignment of the dissociative ionization cation and neutral products for each detected ion. Reaction schemes for formation of these products are proposed in a number of cases. Ion intensities in the photon and electron impact mass spectra were used to consider extending a rule of charge retention in simple bond cleavage to more complex cases of dissociative ionization.
System and process for producing fuel with a methane thermochemical cycle
Diver, Richard B.
2015-12-15
A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.
Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-29
This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.
A hybrid Reynolds averaged/PDF closure model for supersonic turbulent combustion
NASA Technical Reports Server (NTRS)
Frankel, Steven H.; Hassan, H. A.; Drummond, J. Philip
1990-01-01
A hybrid Reynolds averaged/assumed pdf approach has been developed and applied to the study of turbulent combustion in a supersonic mixing layer. This approach is used to address the 'laminar-like' treatment of the thermochemical terms that appear in the conservation equations. Calculations were carried out for two experiments involving H2-air supersonic turbulent mixing. Two different forms of the pdf were implemented. In general, the results show modest improvement from previous calculations. Moreover, the results appear to be somewhat independent of the form of the assumed pdf.
Thermo-optical properties of residential coals and combustion aerosols
NASA Astrophysics Data System (ADS)
Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán
2018-04-01
In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.
Thermochemical reactor systems and methods
Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard
2016-11-29
Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.
NASA Astrophysics Data System (ADS)
Zhong, S.; Olson, P.; Zhang, N.
2012-12-01
Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., thermochemical piles) and circum Pacific seismically fast anomalies (i.e., degree 2) in the lower mantle. Mantle convection calculations including plate motion history for the last 120 Ma suggest that these degree 2 thermochemical structures result from plate subduction history (e.g., McNamara and Zhong, 2005). Given the important controls of mantle structure and dynamics on surface tectonics and volcanism and geodynamo in the core, an important question is the long-term evolution of mantle structures, for example, was the mantle structure in the past similar to the present-day's degree 2 structure, or significantly different from the present day? To address this question, we constructed a proxy model of plate motions for the African hemisphere for the last 450 Ma using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations (e.g., Pangea assembly and breakup). Coupled with assumed oceanic plate motions for the Pacific hemisphere before 120 Ma, this proxy model for the plate motion history is used in three dimensional spherical models of mantle convection to study the evolution of mantle structure since the Early Paleozoic. Our model calculations reproduce well the present day degree 2 mantle structure including the African and Pacific thermochemical piles, and present-day surface heat flux, bathymetry and dynamic topography. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is dominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ˜230 Ma. Particularly, the last 120 Ma plate motion plays an important role in generating the African thermochemical pile. We reconstruct temporal evolution of the surface and CMB heat fluxes and continental vertical motions since the Paleozoic. The predicted vertical motion histories for the Slave and Kaapvaal cratons are consistent with those inferred from thermochronology studies. The predicted CMB heat fluxes were used as time-dependent boundary conditions for geodynamo simulations. And the geodynamo modelling shows that the time-dependent CMB heat fluxes may explain to the first order the frequencies of geomagnetic polarity reversals (e.g., superchrons).
Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ (0.04 ≤ x ≤ 0.60)
NASA Astrophysics Data System (ADS)
Yoon, Songhak; Gaul, Michael; Sharma, Sitansh; Son, Kwanghyo; Hagemann, Hans; Ziegenbalg, Dirk; Schwingenschlogl, Udo; Widenmeyer, Marc; Weidenkaff, Anke
2018-04-01
Cr-substituted polycrystalline Ba2(In2-xCrx)O5·(H2O)δ powders (0.04 ≤ x ≤ 0.60) were synthesized by solid state reaction to investigate the relation of crystal structure, thermochemical, magnetic, and optical properties. The Cr-substitution results in an unit cell expansion and formation of the higher-symmetric tetragonal phase together with increased oxygen and hydrogen contents. Magnetic property measurements reveal that the diamagnetic pristine Ba2In2O5·(H2O)δ becomes magnetically ordered upon Cr-substitution. By UV-vis spectroscopy a gradual shift of the absorption-edge energy to lower values was observed. Numerical calculations showed that the observed bandgap narrowing was ascribed to the Cr induced states near the Fermi level. The correlation between the changes of crystal chemistry, magnetic, and optical properties of Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ can be explained by the replacement of In by Cr. Consequently, an enhanced photocatalytic CO2 reduction activity was observed with increasing Cr substitution, compatible with the state-of-the-art high surface area TiO2 photocatalyst (P-25).
Progress Toward a Multidimensional Representation of Mortar Interior Ballistics
2009-06-01
reached, act as rigid bodies within the chamber. Using computational particles to represent the propellant charge permits a host of modeling features...walls are represented by special Lagrange particles, which remain impermeable (hence the charges act as rigid bodies ) until a specified wall...composition, and table 2 provides the thermochemical calculations done using Cheetah (14), the basis of which is discussed in Schmidt and Nusca (12
Mostafa, Ahmad; Medraj, Mamoun
2017-01-01
Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis. PMID:28773034
Physical Vapor Transport of Lead Telluride
NASA Technical Reports Server (NTRS)
Palosz, W.
1997-01-01
Mass transport properties of physical vapor transport of PbTe are investigated. Thermochemical analysis of the system and its implications for the growth conditions are discussed. The effect of the material preparation and pre-processing on the stoichiometry and residual gas pressure and composition, and on related mass flux is shown. A procedure leading to high mass transport rates is presented.
Jenkins, H Donald Brooke; Glasser, Leslie
2004-12-08
We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent
USDA-ARS?s Scientific Manuscript database
Biochar is the solid residual remaining after the thermo-chemical transformation of biomass and, because of its numerous properties; it has been proposed to be used as soil amendment. In this work, the effect of soil amendment with six biochars from different feedstocks, production, and post-product...
Thermochemical cycle analysis using linked CECS72 and HYDRGN computer programs
NASA Technical Reports Server (NTRS)
Donovan, L. F.
1977-01-01
A combined thermochemical cycle analysis computer program was designed. Input to the combined program is the same as input to the thermochemical cycle analysis program except that the extent of the reactions need not be specified. The combined program is designed to be run interactively from a computer time-sharing terminal. This mode of operation allows correction or modification of the cycle to take place during cycle analysis. A group of 13 thermochemical cycles was used to test the combined program.
Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P
2010-03-18
This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.
1994-04-06
Structure. Texture , Properties and Applications. M. Parker. K. Barmak. R. Sinclair. D.A. Smith. J. Floro. 1994. ISBN: 1-55899-243-X Volume 344- Materials...Schematic of the tensile Fractography revealed that the Ni specimen, layer in the Ni-Al composites necked to a knife edge and multiple cracks formed...fibers. Thermochemical and mechanical properties, as well as fractography and microstructure will be presented. INTRODUCTION Polycrystalline silicon
Zen, E.-A.
1973-01-01
Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the oxide-sum estimate but the deviation is nearly the same as that of grossularite, referring to a comparable set of oxide standard states. The Gibbs free energy Gf,A0 (298, 1) is -1192.36??4 kcal, and the enthalpy Hf,A0 (298, 1) is -1273.56??5 kcal. ?? 1973 Springer-Verlag.
Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou
2015-12-01
Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties
Tonoyan, Anahit; Schiсk, Christoph; Davtyan, Sevan
2009-01-01
High temperature superconducting (SC) nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.
Thermochemical Conversion Techno-Economic Analysis | Bioenergy | NREL
Conversion Techno-Economic Analysis Thermochemical Conversion Techno-Economic Analysis NREL's Thermochemical Conversion Analysis team focuses on the conceptual process design and techno-economic analysis , detailed process models, and TEA developed under this project provide insights into the potential economic
NASA Astrophysics Data System (ADS)
Viana, Rommel B.; Ribeiro, Gabriela L. O.; Valencia, Leidy J.; Varela, Jaldyr J. G.; Viana, Anderson B.; da Silva, Albérico B. F.; Moreno-Fuquen, Rodolfo
2016-12-01
The aim of this study was to report the spectroscopic and electronic properties of 2,5-dimethyl-benzyl benzoate. FT-IR and Raman vibrational spectral analyses were performed, while a computational approach was used to elucidate the vibrational frequency couplings. The electronic properties were predicted using the Density Functional Theory, while the G3MP2 method was employed in the thermochemical calculation. A conformational analysis, frontier orbitals, partial atomic charge distribution and the molecular electrostatic potential were also estimated. Concerning to the dihedral angles in the ester group, a conformational analysis showed a barrier energy of 10 kcal mol-1, while other small barriers (below 0.6 kcal mol-1) were predicted within the potential surface energy investigation. Insights into the relative stability among the different positions of methyl groups in the phenyl ring demonstrated that the energy gaps were lower than 1 kcal mol-1 among the regioisomers. In addition, the Quantum Theory of Atoms in Molecules (QTAIM) was used to understand the intramolecular CH⋯O interaction in the title compound, while various methodologies were applied in the atomic charge distribution to evaluate the susceptibility to the population method.
The effect of carbon-chain oxygenation in the carbon-carbon dissociation.
Dos Santos, Lisandra Paulino; Baptista, Leonardo
2018-06-01
Currently, there is a trend of moving away from the use of fossil fuels to the use of biofuels. This modification changes the molecular structure of gasoline and diesel constituents, which should impact pollutant emissions and engine efficiency. An important property of automotive fuels is the resistance to autoignition. The goal of the present work is to evaluate thermochemical and kinetic parameters that govern the carbon-carbon bond dissociation and relate these parameters, in conjunction with molecular properties, to autoignition resistance. Three model reactions were investigated in the present work: dissociation of ethane, ethanol, and ethanal. All studies were conducted at the multiconfigurational level of theory, and the rate coefficients were evaluated from 300 to 2000 K. The comparison of dissociation energies and Arrhenius expressions indicates that autoignition resistance is related to the kinetic control of dissociation reactions and it is possible to relate the higher octane number of ethanol based fuels to the kinetics parameters of carbon-carbon bond fission. Graphical abstract Effect of the functional group in the Arrhenius parameters of the C-C dissociation. Arrhenius curves calculated at NEVPT2(6,6)/6-311G(2df,2pd).
Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles
NASA Technical Reports Server (NTRS)
Stewart, David A.
1997-01-01
Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.
Theoretical study of the thermodynamics and kinetics of hydrogen abstractions from hydrocarbons.
Vandeputte, Aäron G; Sabbe, Maarten K; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B
2007-11-22
Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of comparison with experimental data or with results obtained from computationally demanding high level of theory calculations. For this benchmark study two composite methods (CBS-QB3 and G3B3) and two density functional theory (DFT) methods, MPW1PW91/6-311G(2d,d,p) and BMK/6-311G(2d,d,p), were selected. All four methods succeeded well in describing the thermochemical properties of the five studied hydrogen abstraction reactions. High-level Weizmann-1 (W1) calculations indicated that CBS-QB3 succeeds in predicting the most accurate reaction barrier for the hydrogen abstraction of methane by methyl but tends to underestimate the reaction barriers for reactions where spin contamination is observed in the transition state. Experimental rate coefficients were most accurately predicted with CBS-QB3. Therefore, CBS-QB3 was selected to investigate the influence of both the 1D hindered internal rotor treatment about the forming bond (1D-HR) and tunneling on the rate coefficients for a set of 21 hydrogen abstraction reactions. Three zero curvature tunneling (ZCT) methods were evaluated (Wigner, Skodje & Truhlar, Eckart). As the computationally more demanding centrifugal dominant small curvature semiclassical (CD-SCS) tunneling method did not yield significantly better agreement with experiment compared to the ZCT methods, CD-SCS tunneling contributions were only assessed for the hydrogen abstractions by methyl from methane and ethane. The best agreement with experimental rate coefficients was found when Eckart tunneling and 1D-HR corrections were applied. A mean deviation of a factor 6 on the rate coefficients is found for the complete set of 21 reactions at temperatures ranging from 298 to 1000 K. Tunneling corrections play a critical role in obtaining accurate rate coefficients, especially at lower temperatures, whereas the hindered rotor treatment only improves the agreement with experiment in the high-temperature range.
NASA Astrophysics Data System (ADS)
Tararykov, A. V.; Garyaev, A. B.
2017-11-01
The possibility of increasing the energy efficiency of production processes by converting the initial fuel - natural gas to synthesized fuel using the heat of the exhaust gases of plants involved in production is considered. Possible applications of this technology are given. A mathematical model of the processes of heat and mass transfer occurring in a thermochemical reactor is developed taking into account the nonequilibrium nature of the course of chemical reactions of fuel conversion. The possibility of using microchannel reaction elements and facilities for methane conversion in order to intensify the process and reduce the overall dimensions of plants is considered. The features of the course of heat and mass transfer processes under flow conditions in microchannel reaction elements are described. Additions have been made to the mathematical model, which makes it possible to use it for microchannel installations. With the help of a mathematical model, distribution of the parameters of mixtures along the length of the reaction element of the reactor-temperature, the concentration of the reacting components, the velocity, and the values of the heat fluxes are obtained. The calculations take into account the change in the thermophysical properties of the mix-ture, the type of the catalytic element, the rate of the reactions, the heat exchange processes by radiation, and the lon-gitudinal heat transfer along the flow of the reacting mixture. The reliability of the results of the application of the mathematical model is confirmed by their comparison with the experimental data obtained by Grasso G., Schaefer G., Schuurman Y., Mirodatos C., Kuznetsov V.V., Vitovsky O.V. on similar installations.
Spada, Rene F K; Ferrão, Luiz F A; Roberto-Neto, Orlando; Lischka, Hans; Machado, Francisco B C
2015-12-24
The kinetics of the reaction of N2H4 with oxygen depends sensitively on the initial conditions used. In oxygen-rich systems, the rate constant shows a conventional positive temperature dependence, while in hydrazine-rich setups the dependence is negative in certain temperature ranges. In this study, a theoretical model is presented that adequately reproduces the experimental results trend and values for hydrazine-rich environment, consisting of the hydrogen abstraction from the hydrazine (N2H4) dimer by an oxygen atom. The thermochemical properties of the reaction were computed using two quantum chemical approaches, the coupled cluster theory with single, double, and noniterative triple excitations (CCSD(T)) and the M06-2X DFT approach with the aug-cc-pVTZ and the maug-cc-pVTZ basis sets, respectively. The kinetic data were calculated with the improved canonical variational theory (ICVT) using a dual-level methodology to build the reaction path. The tunneling effects were considered by means of the small curvature tunneling (SCT) approximation. Potential wells on both sides of the reaction ((N2H4)2 + O → N2H4···N2H3 + OH) were determined. A reaction path with a negative activation energy was found leading, in the temperature range of 250-423 K, to a negative dependence of the rate constant on the temperature, which is in good agreement with the experimental measurements. Therefore, the consideration of the hydrazine dimer model provides significantly improved agreement with the experimental data and should be included in the mechanism of the global N2H4 combustion process, as it can be particularly important in hydrazine-rich systems.
Jae-Won Lee; Thomas W. Jeffries
2011-01-01
Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...
NASA Astrophysics Data System (ADS)
Dostovalov, A. V.; Korolkov, V. P.; Babin, S. A.
2017-01-01
The formation of thermochemical laser-induced periodic surface structures (TLIPSS) on 400-nm Ti films deposited onto a glass substrate is investigated under irradiation by a femtosecond laser with a wavelength of 1026 nm, pulse duration of 232 fs, repetition rate of 200 kHz, and with different spot sizes of 4-21 μm. The optimal fluence for TLIPSS formation reduces monotonously with increasing the spot diameter in the range. It is found that the standard deviation of the TLIPSS period depends significantly on the beam size and reaches approximately 2% when the beam diameter is in the range of 10-21 μm. In addition to TLIPSS formation with the main period slightly smaller than the laser wavelength, an effect of TLIPSS spatial frequency doubling is detected. The optical properties of TLIPSS (reflection spectrum and diffraction efficiency at different incident angles and polarizations) are investigated and compared with theoretical ones to give a basis for the development of an optical inspecting method. The refractive index and absorption coefficient of oxidized ridges of the TLIPSS are theoretically estimated by simulation of the experimental reflection spectrum in the zeroth diffraction order.
Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale
2011-01-01
Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...
Cesium Neonide: Molecule or Thermochemical Exercise?
ERIC Educational Resources Information Center
Blake, P. G.; Clack, D. W.
1982-01-01
Thermochemical cycles are used to decide which hypothetical compounds might exist and, if not, what is the factor that condemns them to non-existence. Hypothetical compounds of rare gases provide examples of the approach with added historical interest that thermochemical considerations led to prediction and demonstration that XePtF-6 was stable.…
NASA Astrophysics Data System (ADS)
Farag, A. A. M.; Roushdy, N.; Halim, Shimaa Abdel; El-Gohary, Nasser M.; Ibrahim, Magdy A.; Said, Sara
2018-02-01
Base catalysed ring opening ring closure (RORC) reaction of 6-methylchromone-3-carbonitrile (1) with 1,3-cyclohexanedione afforded 8-methyl-1,2-dihydro-4H-chromeno[2,3-b]quinoline-4,6(3H)-dione (MDCQD). Theoretical calculations by Density Functional Theory (DFT) at the B3LYP/6-311G (d,p) level of theory was utilized to illustrate the equilibrium geometries of MDCQD. Also, the nonlinear optical properties, simple harmonic vibrational frequencies, thermo-chemical parameters and Mullikan atomic charges were calculated. In addition, the electronic absorption spectra in polar and non polar solvents were discussed on the basis of TD-DFT calculations. A nanofiber-like structure with high aggregation was resolved by using scanning electron microscopy images and its particle sizes were measured by particle size analyzer. The spectroscopic characteristics of the prepared thin film of MDCQD were studied in a wide spectral range of 200-2500 nm. The analysis of the absorption edges affords two direct optical band gaps with energies of 1.00 and 2.76 eV. A characteristic emission peak of photoluminescence spectrum in the visible region was detected and has a red-shift as a result of solvent polarity. The MDCQD film based heterojunction showed rectification behavior and diode-like characteristics. The photovoltaic characteristics under illumination of 100 mW/cm2 were studied. The open-circuit voltage and short-circuit current were found to be 0.22 V and 4.25 × 10- 7 A/cm2, respectively. Moreover, the prepared heterojunction showed remarkable phototransient characteristics which afford the probability for the operation as a photodiode.
Farag, A A M; Roushdy, N; Halim, Shimaa Abdel; El-Gohary, Nasser M; Ibrahim, Magdy A; Said, Sara
2018-02-15
Base catalysed ring opening ring closure (RORC) reaction of 6-methylchromone-3‑carbonitrile (1) with 1,3-cyclohexanedione afforded 8-methyl-1,2-dihydro-4H-chromeno[2,3-b]quinoline-4,6(3H)-dione (MDCQD). Theoretical calculations by Density Functional Theory (DFT) at the B3LYP/6-311G (d,p) level of theory was utilized to illustrate the equilibrium geometries of MDCQD. Also, the nonlinear optical properties, simple harmonic vibrational frequencies, thermo-chemical parameters and Mullikan atomic charges were calculated. In addition, the electronic absorption spectra in polar and non polar solvents were discussed on the basis of TD-DFT calculations. A nanofiber-like structure with high aggregation was resolved by using scanning electron microscopy images and its particle sizes were measured by particle size analyzer. The spectroscopic characteristics of the prepared thin film of MDCQD were studied in a wide spectral range of 200-2500nm. The analysis of the absorption edges affords two direct optical band gaps with energies of 1.00 and 2.76eV. A characteristic emission peak of photoluminescence spectrum in the visible region was detected and has a red-shift as a result of solvent polarity. The MDCQD film based heterojunction showed rectification behavior and diode-like characteristics. The photovoltaic characteristics under illumination of 100mW/cm 2 were studied. The open-circuit voltage and short-circuit current were found to be 0.22V and 4.25×10 -7 A/cm 2 , respectively. Moreover, the prepared heterojunction showed remarkable phototransient characteristics which afford the probability for the operation as a photodiode. Copyright © 2017. Published by Elsevier B.V.
Giant onsite electronic entropy enhances the performance of ceria for water splitting
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Search for New Highly Energetic Phases under Compression and Shear
2015-05-01
bar barn British thermal unit (thermochemical) calorie (thermochemical) cal (thermochemical/cm ) curie degree (angle) degree Fahrenheit...corresponding finite element algorithms and subroutines are developed. (c) Problems on compression and shear of a sample in rotational diamond anvil...element algorithms and subroutines are developed. Model problems on martensitic microstructure evolution are solved. (f) Experimental approaches to study
NASA Astrophysics Data System (ADS)
Dostovalov, A. V.; Korolkov, V. P.; Terentyev, V. S.; Okotrub, K. A.; Dultsev, F. N.; Babin, S. A.
2017-07-01
The formation of femtosecond laser-induced periodic surface structures (LIPSS's) on Cr, Ti, Ni and NiCr films (with different Cr contents) is investigated. It is established that thermochemical LIPSS's with periods of 950, 930 and 980 nm are formed, respectively, on the surfaces of titanium, chromium, and nichrome (with a chromium content of 20%); however, thermochemical LIPSS's are not formed on the surfaces of nickel and nichrome with a low chromium content, although Raman data indicate that oxidation occurs in all cases. A weakly ordered ablated structure with a period of 250-300 nm is found to be formed on oxidised areas of thermochemical LIPSS's in the case of chromium and nichrome (80/20). Experimental data on selective etching of thermochemical LIPSS's on titanium and chromium films are presented.
Review of alternative fuels data bases
NASA Technical Reports Server (NTRS)
Harsha, P. T.; Edelman, R. B.
1983-01-01
Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.
NASA Astrophysics Data System (ADS)
Moses, Julianne I.; Zolotov, Mikhail Yu.; Fegley, Bruce
2002-03-01
To determine how active volcanism might affect the standard picture of sulfur dioxide photochemistry on Io, we have developed a one-dimensional atmospheric model in which a variety of sulfur-, oxygen-, sodium-, potassium-, and chlorine-bearing volatiles are volcanically outgassed at Io's surface and then evolve due to photolysis, chemical kinetics, and diffusion. Thermochemical equilibrium calculations in combination with recent observations of gases in the Pele plume are used to help constrain the composition and physical properties of the exsolved volcanic vapors. Both thermochemical equilibrium calculations (Zolotov and Fegley 1999, Icarus141, 40-52) and the Pele plume observations of Spencer et al. (2000; Science288, 1208-1210) suggest that S 2 may be a common gas emitted in volcanic eruptions on Io. If so, our photochemical models indicate that the composition of Io's atmosphere could differ significantly from the case of an atmosphere in equilibrium with SO 2 frost. The major differences as they relate to oxygen and sulfur species are an increased abundance of S, S 2, S 3, S 4, SO, and S 2O and a decreased abundance of O and O 2 in the Pele-type volcanic models as compared with frost sublimation models. The high observed SO/SO 2 ratio on Io might reflect the importance of a contribution from volcanic SO rather than indicate low eddy diffusion coefficients in Io's atmosphere or low SO "sticking" probabilities at Io's surface; in that case, the SO/SO 2 ratio could be temporally and/or spatially variable as volcanic activity fluctuates. Many of the interesting volcanic species (e.g., S 2, S 3, S 4, and S 2O) are short lived and will be rapidly destroyed once the volcanic plumes shut off; condensation of these species near the source vent is also likely. The diffuse red deposits associated with active volcanic centers on Io may be caused by S 4 radicals that are created and temporarily preserved when sulfur vapor (predominantly S 2) condenses around the volcanic vent. Condensation of SO across the surface and, in particular, in the polar regions might also affect the surface spectral properties. We predict that the S/O ratio in the torus and neutral clouds might be correlated with volcanic activity—during periods when volcanic outgassing of S 2 (or other molecular sulfur vapors) is prevalent, we would expect the escape of sulfur to be enhanced relative to that of oxygen, and the S/O ratio in the torus and neutral clouds could be correspondingly increased.
1986-09-01
26-30, 1964. 17. D.R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd Ed., NSRDS- NBS-37, June 1957. 18. A.A. Zenin, "Structure of... Dean P.O. Box 48 1 Hercules, Inc. Linden, NJ 07036 Bacchus Works ATTN: K.P. McCarty Ford Aerospace and P.O. Box 98 Communications Corp. Magna, UT 84044
The Formation and Thermochemical Properties of Multiligand Complexes
1987-08-25
SUBJECT TERMS (Continue on revers, if necessary and identify by block numoer) FIELD GROUP SUB-GROUP Ion-molecule reactions, clusters, multiligand...mercaptans, and phosphonates for which the results may be useful in the development of detection techniques that employ ion mobility analyzers or... field involve the use of ion mobility and mass spectrometers. Detection of a species by such instruments in an atmospheric environment requires that the
USDA-ARS?s Scientific Manuscript database
Manure storages, and in particular those storing digested manure, are a source of ammonia (NH3) emissions. Permeable manure storage covers can reduce NH3 emissions, however performance can decline as they degrade. Thermochemical conversion of biomass through pyrolysis and steam treatment could incre...
Harris, Peter W; Schmidt, Thomas; McCabe, Bernadette K
2017-11-01
This work aimed to enhance the anaerobic digestion of fat-rich dissolved air flotation (DAF) sludge through chemical, thermobaric, and thermochemical pre-treatment methods. Soluble chemical oxygen demand was enhanced from 16.3% in the control to 20.84% (thermobaric), 40.82% (chemical), and 50.7% (thermochemical). Pre-treatment altered volatile fatty acid concentration by -64% (thermobaric), 127% (chemical) and 228% (thermochemical). Early inhibition was reduced by 20% in the thermochemical group, and 100% in the thermobaric group. Specific methane production was enhanced by 3.28% (chemical), 8.32% (thermobaric), and 8.49% (thermochemical) as a result of pre-treatment. Under batch digestion, thermobaric pre-treatment demonstrated the greatest improvement in methane yield with respect to degree of pre-treatment applied. Thermobaric pre-treatment was also the most viable for implementation at slaughterhouses, with potential for heat-exchange to reduce pre-treatment cost. Further investigation into long-term impact of pre-treatments in semi-continuous digestion experiments will provide additional evaluation of appropriate pre-treatment options for high-fat slaughterhouse wastewater. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho
2011-11-18
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coherent Anti-stokes Raman Spectroscopy (CARS) of gun propellant flames
NASA Technical Reports Server (NTRS)
Mcilwain, M. E.; Harris, L. E.
1980-01-01
Temperature measurements were made in a slightly fuel rich, premixed propane/air reference flame and nitrate ester propellant flames burning in air at atmospheric pressure using coherent anti-stokes raman scattering (CARS). Both single and multiple pulse VARS spectra of nitrogen in the reference flame were in good agreement with calculated and reported values. Single pulse CARS nitrogen spectra obtained in the propellant flames were analyzed to give temperatures consistent with values calculated using the NASA-Lewis thermochemical calculation. Comparison of a 0.1 second separated sequence of single pulse CARS spectra indicate turbulent air mixing in these propellant flames. The CARS spectral results demonstrate that temporal and spatially resolved temperature measurements could be determined in transient, turbulent flames.
Spectroscopic notes of Methyl Red (MR) dye.
El-Mansy, M A M; Yahia, I S
2014-09-15
In the present work, a combined experimental and theoretical study on molecular structure and vibrational frequencies of MR were reported. The FT-IR spectrum of MR is recorded in the solid phase. The equilibrium geometries, harmonic vibrational frequencies, thermo-chemical parameters, total dipole moment and HOMO-LUMO energies are calculated by DFT/B3LYP utilizing 6-311G(d,p) basis set. Results showed that MR is highly recommended to be a promising structure for many applications in optoelectronic devices due to its high calculated dipole moment value (7.2 Debye) and lower HOMO-LUMO energy gap of 3.5 eV. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattrick Calderoni
2010-09-01
Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactormore » that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.« less
Biomass thermochemical gasification: Experimental studies and modeling
NASA Astrophysics Data System (ADS)
Kumar, Ajay
The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For corn stover, the selling price of electricity was 0.1351/kWh. For DDGS, the selling price of electricity was 0.1287/kWh.
NASA Astrophysics Data System (ADS)
Bouffard, M.
2016-12-01
Convection in the Earth's outer core is driven by the combination of two buoyancy sources: a thermal source directly related to the Earth's secular cooling, the release of latent heat and possibly the heat generated by radioactive decay, and a compositional source due to the crystallization of the growing inner core which releases light elements into the liquid outer core. The dynamics of fusion/crystallization being dependent on the heat flux distribution, the thermochemical boundary conditions are coupled at the inner core boundary which may affect the dynamo in various ways, particularly if heterogeneous conditions are imposed at one boundary. In addition, the thermal and compositional molecular diffusivities differ by three orders of magnitude. This can produce significant differences in the convective dynamics compared to pure thermal or compositional convection due to the potential occurence of double-diffusive phenomena. Traditionally, temperature and composition have been combined into one single variable called codensity under the assumption that turbulence mixes all physical properties at an "eddy-diffusion" rate. This description does not allow for a proper treatment of the thermochemical coupling and is certainly incorrect within stratified layers in which double-diffusive phenomena can be expected. For a more general and rigorous approach, two distinct transport equations should therefore be solved for temperature and composition. However, the weak compositional diffusivity is technically difficult to handle in current geodynamo codes and requires the use of a semi-Lagrangian description to minimize numerical diffusion. We implemented a "particle-in-cell" method into a geodynamo code to properly describe the compositional field. The code is suitable for High Parallel Computing architectures and was successfully tested on two benchmarks. Following the work by Aubert et al. (2008) we use this new tool to perform dynamo simulations including thermochemical coupling at the inner core boundary as well as exploration of the infinite Lewis number limit to study the effect of a heterogeneous core mantle boundary heat flow on the inner core growth.
Removal of Oxygen from Electronic Materials by Vapor-Phase Processes
NASA Technical Reports Server (NTRS)
Palosz, Witold
1997-01-01
Thermochemical analyses of equilibrium partial pressures over oxides with and without the presence of the respective element condensed phase, and hydrogen, chalcogens, hydrogen chalcogenides, and graphite are presented. Theoretical calculations are supplemented with experimental results on the rate of decomposition and/or sublimation/vaporization of the oxides under dynamic vacuum, and on the rate of reaction with hydrogen, graphite, and chalcogens. Procedures of removal of a number of oxides under different conditions are discussed.
Ramos, Fernando; Flores, Henoc; Hernández-Pérez, Julio M; Sandoval-Lira, Jacinto; Camarillo, E Adriana
2018-01-11
The intramolecular hydrogen bond of the N-H···S type has been investigated sparingly by thermochemical and computational methods. In order to study this interaction, the standard molar enthalpies of formation in gaseous phase of diphenyl disulfide, 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide at T = 298.15 K were determined by experimental thermochemical methods and computational calculations. The experimental enthalpies of formation in gas-phase were obtained from enthalpies of formation in crystalline phase and enthalpies of sublimation. Enthalpies of formation in crystalline phase were obtained using rotatory bomb combustion calorimetry. By thermogravimetry, enthalpies of vaporization were obtained, and by combining them with enthalpies of fusion, the enthalpies of sublimation were calculated. The Gaussian-4 procedure and the atomization method were applied to obtain enthalpies of formation in gas-phase of the compounds under study. Theoretical and experimental values are in good agreement. Through natural bond orbital (NBO) analysis and a topological analysis of the electronic density, the intramolecular hydrogen bridge (N-H···S) in the 2,2'-diaminodiphenyl disulfide was confirmed. Finally, an enthalpic difference of 11.8 kJ·mol -1 between the 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide was found, which is attributed to the intramolecular N-H···S interaction.
NASA Astrophysics Data System (ADS)
Monajjemi, M.; Razavian, M. H.; Mollaamin, F.; Naderi, F.; Honarparvar, B.
2008-12-01
Quantum-chemical solvent effect theories describe the electronic structure of a molecular subsystem embedded in a solvent or other molecular environment. The solvation of biomolecules is important in molecular biology, since numerous processes involve proteins interacting in changing solvent-solute systems. In this theoretical study, we focus on mRNA-tRNA base pairs as a fundamental step in protein synthesis influenced by hydrogen bonding between two antiparallel trinucleotides, namely, the mRNA codon and tRNA anticodon. We use the mean reaction field theories, which describe electrostatic and polarization interactions between solute and solvent in the AAA, UUU, AAG, and UUC triplex sequences optimized in various solvent media such as water, dimethylsulfoxide, methanol, ethanol, and cyclopean using the self-consistent reaction field model. This process depends on either the reaction potential function of the solvent or charge transfer operators that appear in solute-solvent interaction. Because of codon and anticodon biological criteria, we performed nonempirical quantum-mechanical calculations at the BLYP and B3LYP/3-21G, 6-31G, and 6-31G* levels of theory in the gas phase and five solvents at three temperatures. Finally, to obtain more information, we calculated thermochemical parameters to find that the dielectric constant of solvents plays an important role in the displacement of amino acid sequences on codon-anticodon residues in proteins, which can cause some mutations in humans.
Chemical state of chromium in sewage sludge ash based phosphorus-fertilisers.
Vogel, Christian; Adam, Christian; Kappen, Peter; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don
2014-05-01
Sewage sludge ash (SSA) based P-fertilisers were produced by thermochemical treatment of SSA with Cl-donors at approximately 1000°C. During this thermochemical process heavy metals are separated as heavy metal chlorides via the gas phase. Chromium cannot be separated under normal conditions. The risk of the development of toxic Cr(VI) during the thermochemical process was investigated. X-ray Absorption Spectroscopy measurements showed that SSA and thermochemically treated SSA with CaCl2, MgCl2 and NaCl contain Cr(III) compounds only. In contrast, treating SSA with elevated quantities of Na2CO3, to enhance the plant-availability of the phosphate phases of the fertiliser, developed approximately 10-15% Cr(VI). Furthermore, Raman microspectroscopy showed that using Mg-carbonate reduces the risk of a Cr(VI) development during thermochemical treatment. Additionally, leaching tests showed that only a Cr-water solubility>10% is an indicator for Cr(VI) in SSA based P-fertilisers. Copyright © 2013 Elsevier Ltd. All rights reserved.
An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water
NASA Technical Reports Server (NTRS)
Chao, R. E.; Cox, K. E.
1975-01-01
A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.
NASA Astrophysics Data System (ADS)
Peng, Xinyue; Maravelias, Christos T.; Root, Thatcher W.
2017-06-01
Thermochemical energy storage (TCES), with high energy density and wide operating temperature range, presents a potential solution for CSP plant energy storage. We develop a general optimization based process model for CSP plants employing a wide range of TCES systems which allows us to assess the plant economic feasibility and energy efficiency. The proposed model is applied to a 100 MW CSP plant employing ammonia or methane TCES systems. The methane TCES system with underground gas storage appears to be the most promising option, achieving a 14% LCOE reduction over the current two-tank molten-salt CSP plants. For general TCES systems, gas storage is identified as the main cost driver, while the main energy driver is the compressor electricity consumption. The impacts of separation and different reaction parameters are also analyzed. This study demonstrates that the realization of TCES systems for CSP plants is contingent upon low storage cost and a reversible reaction with proper reaction properties.
NASA Astrophysics Data System (ADS)
Mendoza-Wilson, Ana María; Sotelo-Mundo, Rogerio R.; Balandrán-Quintana, René R.; Glossman-Mitnik, Daniel; Sántiz-gómez, Marco a.; García-orozco, karina D.
2010-09-01
Quercetin has a great antioxidant potential due to its large capacity for free radical scavenging. Although it has been found that conformational changes have a profound effect on its chemical properties, there are few studies where conformation is associated with the antioxidant activity. The aim of this investigation was to explore the kinetic and the thermochemical abilities of two quercetin conformers for the free radical scavenging. Quercetin unhydrate (QUH) and quercetin dihydrate (QDH) conformers were studied employing 2,2-diphenyl-1-picrylhydrazyl (DPPH rad ) as in vitro radical model, and catechol and 4-hexyl-resorcinol as reference systems, for identifying the oxidation products. QDH showed to be most effective under conditions of free radical excess, while QUH was most effective when the flavonoid far exceeds the concentration of free radical. It was found, by means of experimental and computational methods, that 4'-OH, 3-OH and 3'-OH are the main reactive sites of both conformers.
Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio
2018-04-27
Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.
Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; ...
2015-01-01
Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal and thesemore » demonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe 2 O 4 , MgFe 2 O 4 , CoFe 2 O 4 , and MnFe 2 O 4 ) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10 wt.% CoFe 2 O 4 in 8YSZ produced the highest and most consistent yields of O 2 and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials.« less
CHEETAH: A fast thermochemical code for detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L.E.
1993-11-01
For more than 20 years, TIGER has been the benchmark thermochemical code in the energetic materials community. TIGER has been widely used because it gives good detonation parameters in a very short period of time. Despite its success, TIGER is beginning to show its age. The program`s chemical equilibrium solver frequently crashes, especially when dealing with many chemical species. It often fails to find the C-J point. Finally, there are many inconveniences for the user stemming from the programs roots in pre-modern FORTRAN. These inconveniences often lead to mistakes in preparing input files and thus erroneous results. We are producingmore » a modern version of TIGER, which combines the best features of the old program with new capabilities, better computational algorithms, and improved packaging. The new code, which will evolve out of TIGER in the next few years, will be called ``CHEETAH.`` Many of the capabilities that will be put into CHEETAH are inspired by the thermochemical code CHEQ. The new capabilities of CHEETAH are: calculate trace levels of chemical compounds for environmental analysis; kinetics capability: CHEETAH will predict chemical compositions as a function of time given individual chemical reaction rates. Initial application: carbon condensation; CHEETAH will incorporate partial reactions; CHEETAH will be based on computer-optimized JCZ3 and BKW parameters. These parameters will be fit to over 20 years of data collected at LLNL. We will run CHEETAH thousands of times to determine the best possible parameter sets; CHEETAH will fit C-J data to JWL`s,and also predict full-wall and half-wall cylinder velocities.« less
Online residence time distribution measurement of thermochemical biomass pretreatment reactors
Sievers, David A.; Kuhn, Erik M.; Stickel, Jonathan J.; ...
2015-11-03
Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous saltmore » concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.« less
Design and cost analysis for an ammonia-based solar thermochemical cavity absorber
NASA Astrophysics Data System (ADS)
Williams, O. M.
1980-01-01
A design and cost analysis is introduced for a solar thermochemical cavity absorber operated at the focus of a tracking paraboloidal concentrator and based on the ammonia dissociation reaction. The absorber design consists of a catalyst-filled nickel alloy tube wound into a spiral forming the inner cavity wall and shaped to match the incident power density profile to the reactor heat requirements. The reactor tube is welded to a coaxial counterflow heat exchanger. The relationships among the power density profile, the reaction thermodynamics and kinetics, and the heat transfer characteristics are examined in detail and it is shown that an installed cost goal of typically 10 U.S. dollars per square meter of solar collector area can be achieved through use of high activity ammonia dissociation catalyst. The optimum absorber size for a given paraboloidal dish area is calculated for a system pressure of 20 MPa and it is shown that a cost effective absorber suitable for 100,000-hr operation would operate at 90% efficiency at 750 C wall temperature.
Stochastic effects in a thermochemical system with Newtonian heat exchange.
Nowakowski, B; Lemarchand, A
2001-12-01
We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.
Çepelioğullar, Özge; Pütün, Ayşe E
2014-10-01
In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. © The Author(s) 2014.
Reliability Estimating Procedures for Electric and Thermochemical Propulsion Systems. Volume 2
1977-02-01
final form. For some components, the parameters are calculated from design factors (e.g., design life) that must be input when requested. Each component...Components Components are regarded as statis- tically identical if they are drawn from the same production lot because the initial and sub- sequent...table yields b 0.0023 The - factors are obtained from Tables 2.2.4-1 through 2.2.4-5: Factor Value rE Space, flight 1 JANTXV quality 0.5 7A Small signal
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.
1977-01-01
Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.
The Chemistry of Meteoric Metals in the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Balasubramanian, Rajasekhar
The metals Na, Li, K, Ca and Fe have been observed around 90 km in the earth's upper atmosphere. Meteoric ablation is believed to be the source of these metals. The mesospheric chemistry of these metals and their impact on the general chemistry of the atmosphere are poorly understood. Therefore, a detailed investigation of processes affecting the gas -phase chemistry of these metals was undertaken. Both kinetic and photochemical studies were carried out using the techniques of pulsed photolysis of a suitable metal precursor and laser induced fluorescence of the resulting metal atoms. Ab initio calculations were also carried out to study the geometries of the metallic species and calculate their thermochemical properties. Kinetic investigations on the recombination reactions of the alkali metals with O_2 were performed over an extended temperature range (230-1100 K) in an attempt to understand their different seasonal behavior. The three reactions have very similar temperature dependences over the experimental temperature range. Use of the Troe formalism indicates that this dependency will continue into the mesospheric temperature range (140-240 K). The similarity suggests that differences in the temperature dependence of these reactions are not responsible for the different seasonal behavior of the alkali metals. The lower limits for the bond energies of the alkali superoxides were estimated from the kinetic decays obtained at 1100 K, and then combined with ab initio calculations to yield recommended bond energies. These values are of use in the Troe formalism and the mesospheric models. To assess the effectiveness of NaO_2 as a daytime sink, the absolute cross-section for photodissociation of NaO_2 was measured at 230 K. The photolysis rate of NaO_2 was derived above 70 km. The results indicate that above 85 km the reaction between NaO_2 and O is a more important loss term for NaO _2 than daytime photolysis and that between 80 and 65 km the photolysis of NaO_2 is the dominant loss term. From the photolysis experiment, an atmospherically important new Na species, NaO _4, was identified. The bimolecular reactions of Na with HCl/DCl, N_2O, and Li with H_2 O were investigated. The possible role of the reaction between NaCl and H in the chlorine catalyzed destruction of O_3 was explored. Finally, the role of the reactions of dissociative electron attachment to NaHCO_3 and NaCO_3 in the formation of sudden sodium layers above 90 km was examined by ab initio and thermochemical calculations. The results indicate that NaHCO_3, an unreactive species in the mesosphere, can result in the formation of SSLs on collision with energetic auroral electrons.
Plummer, Niel; Jones, Blair F.; Truesdell, Alfred Hemingway
1976-01-01
WATEQF is a FORTRAN IV computer program that models the thermodynamic speciation of inorganic ions and complex species in solution for a given water analysis. The original version (WATEQ) was written in 1973 by A. H. Truesdell and B. F. Jones in Programming Language/one (PL/1.) With but a few exceptions, the thermochemical data, speciation, coefficients, and general calculation procedure of WATEQF is identical to the PL/1 version. This report notes the differences between WATEQF and WATEQ, demonstrates how to set up the input data to execute WATEQF, provides a test case for comparison, and makes available a listing of WATEQF. (Woodard-USGS)
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Gnoffo, Peter A.
1992-01-01
A procedure which reduces the memory requirements for computing the viscous flow over a modified Orbiter geometry at a hypersonic flight condition is presented. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code which incorporates a thermochemical nonequilibrium chemistry model, a finite rate catalytic wall boundary condition and wall temperature distribution based on radiation equilibrium is used in this study. In addition, the effect of choice of 'min mod' function, eigenvalue limiter and grid density on surface heating is investigated. The surface heating from a flowfield calculation at Mach number 22, altitude of 230,000 ft and 40 deg angle of attack is compared with flight data from three Orbiter flights.
Interaction of tetraethoxysilane with OH-terminated SiO2 (0 0 1) surface: A first principles study
NASA Astrophysics Data System (ADS)
Deng, Xiaodi; Song, Yixu; Li, Jinchun; Pu, Yikang
2014-06-01
First principles calculates have been performed to investigate the surface reaction mechanism of tetraethoxysilane (TEOS) with fully hydroxylated SiO2(0 0 1) substrate. In semiconductor industry, this is the key step to understand and control the SiO2 film growth in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes. During the calculation, we proposed a model which breaks the surface dissociative chemisorption into two steps and we calculated the activation barriers and thermochemical energies for each step. Our calculation result for step one shows that the first half reaction is thermodynamically favorable. For the second half reaction, we systematically studied the two potential reaction pathways. The comparing result indicates that the pathway which is more energetically favorable will lead to formation of crystalline SiO2 films while the other will lead to formation of disordered SiO2 films.
NASA Astrophysics Data System (ADS)
Zhang, Jiaheng; He, Xin; Gao, Haixiang
2011-10-01
In the current work, we report a combined experimental and theoretical study on the molecular conformation, vibrational spectra, and nuclear magnetic resonance (NMR) spectra of mequindox (MEQ) and 1,4-bisdesoxymequindox (1,4-BDM). The geometric structure and vibrational frequencies of MEQ and 1,4-BDM have been calculated by density functional theory employing the B3LYP functional and 6-311++G(d,p) basis set. The 1H and 13C NMR chemical shifts have been calculated by gauge-including atomic orbital method with B3LYP 6-311++G(2df,2pd) approach. The calculation results have been applied to simulate the infrared and NMR spectra of the compounds. The theoretical results agree well with the observed spectra. The bond dissociation enthalpy of MEQ and the heat of formation of MEQ and 1,4-BDM have also been computed.
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.
Chemical Stability of the Fiber Coating/Matrix Interface in Silicon-Based Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Jacobson, Nathan S.
1995-01-01
Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and microstructural examination. In the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating.
Determining the Basis of Homodesmotic Reactions of Cyclic Organic Compounds by Means of Graph Theory
NASA Astrophysics Data System (ADS)
Khursan, S. L.; Ismagilova, A. S.; Akhmetyanova, A. I.
2018-07-01
Comparative calculations based on the use of a homodesmotic reaction (HDR)—an isodesmic process with the additional requirement for group balance—is used to analyze the thermochemical characteristics of cyclic organic compounds exemplified by bicyclo[2.1.0]pentene-2. To avoid confusion in selecting HDRs, an algorithm is developed for determining the HDR basis, i.e., the set of all possible independent homodesmotic reactions. The algorithm for constructing the set of HDRs is based on an analysis and transformations of the bond graph of groups for the investigated chemical compound. The use of graph theory allows us to automate the procedure for deriving the basis of homodesmotic reactions, and to obtain a visual geometric interpretation of the basis, which is important for subsequent physicochemical analysis. The energetics of bicyclo[2.1.0]pentene-2 is investigated using the proposed approach, and the independent basis of HDRs is found to include 19 formal transformations. Standard enthalpies for the test compound and the participants of homodesmotic reactions are calculated using the G3 composite approach. Thermochemical analysis of the obtained data allows us to determine the standard enthalpy of formation of the bicycle (Δf H° = 336.4 kJ/mol) and value Δf H° of a number of cyclic and acyclic alkenes and alkadienes that are products of theoretical decomposition of the test compound. The proposed method is shown to be extremely effective in analyzing the effects of nonbonded interactions in the structure of organic molecules. The ring strain energy of the bicycle is calculated or the test compound: E S = 295.2± 2.2 kJ/mol.
Thermochemical Production of Hydrogen from Water.
ERIC Educational Resources Information Center
Bamberger, C. E.; And Others
1978-01-01
Discusses the possible advantages of decomposing water by means of thermochemical cycles. Explains that, if energy consumption can be minimized, this method is capable of producing hydrogen more efficiently than electrolysis. (GA)
2011 Biomass Program Platform Peer Review. Thermochemical Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, Paul E.
This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.
Hudzik, Jason M; Bozzelli, Joseph W; Simmie, John M
2014-10-09
Standard enthalpies of formation (ΔH°f 298) of methyl, ethyl, primary and secondary propyl, and n-butyl radicals are evaluated and used in work reactions to determine internal consistency. They are then used to calculate the enthalpy of formation for the tert-butyl radical. Other thermochemical properties including standard entropies (S°(T)), heat capacities (Cp(T)), and carbon-hydrogen bond dissociation energies (C-H BDEs) are reported for n-pentane, n-heptane, 2-methylhexane, 2,3-dimethylpentane, and several branched higher carbon number alkanes and their radicals. ΔH°f 298 and C-H BDEs are calculated using isodesmic work reactions at the B3LYP (6-31G(d,p) and 6-311G(2d,2p) basis sets), CBS-QB3, CBS-APNO, and G3MP2B3 levels of theory. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level for contributions to entropy and heat capacities. Enthalpy calculations for these hydrocarbon radical species are shown to have consistency with the CBS-QB3 and CBS-APNO methods using all work reactions. Our recommended ideal gas phase ΔH°f 298 values are from the average of all CBS-QB3, CBS-APNO, and for G3MP2B3, only where the reference and target radical are identical types, and are compared with literature values. Calculated values show agreement between the composite calculation methods and the different work reactions. Secondary and tertiary C-H bonds in the more highly branched alkanes are shown to have bond energies that are several kcal mol(-1) lower than the BDEs in corresponding smaller molecules often used as reference species. Entropies and heat capacities are calculated and compared to literature values (when available) when all internal rotors are considered.
García, Carlos A; Peña, Álvaro; Betancourt, Ramiro; Cardona, Carlos A
2018-06-15
Forest residues are an important source of biomass. Among these, Coffee Cut-Stems (CCS) are an abundant wood waste in Colombia obtained from coffee crops renovation. However, only low quantities of these residues are used directly in combustion processes for heating and cooking in coffee farms where their energy efficiency is very low. In the present work, an energy and environmental assessment of two bioenergy production processes (ethanol fermentation and gasification) using CCS as raw material was performed. Biomass gasification seems to be the most promising thermochemical method for bioenergy production whereas, ethanol fermentation is a widely studied biochemical method to produce biofuels. Experimental runs of the CCS gasification were carried out and the synthesis gas composition was monitored. Prior to the fermentation process, a treatment of the CCS is required from which sugar content was determined and then, in the fermentation process, the ethanol yield was calculated. Both processes were simulated in order to obtain the mass and energy balance that are used to assess the energy efficiency and the potential environmental impact (PEI). Moderate high energy efficiency and low environmental impacts were obtained from the CCS gasification. In contrast, high environmental impacts in different categories and low energy efficiencies were calculated from the ethanolic fermentation. Biomass gasification seems to be the most promising technology for the use of Coffee Cut-Stems with high energy yields and low environmental issues. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lordi, J. A.; Vidal, R. J.; Johnson, C. B.
1973-01-01
A theoretical study was made to delineate the effects of thermochemical nonequilibrium in the inviscid flow field of a representative space shuttle orbiter configuration. The study was based on experimental pressure data which was used as an input to a stream tube computer program. The pressure data from two configurations are tabulated. Calculations were restricted to the windward plane of symmetry and the calculations covered an altitude range from 200,000 to 250,000 feet at velocities of 16,000 to 24,000 feet per second respectively. Angles of attack of 20 and 40 degrees were included. The calculations show that the nonequilibrium effects are confined largely to the entropy layer expect at the highest altitude, where significant nonequilibrium effects are observed in the entire inviscid flow field.
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
NASA Astrophysics Data System (ADS)
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
Bioactive macroporous titanium implants highly interconnected.
Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier
2016-10-01
Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.
The relative fire resistance of select thermoplastic materials. [for aircraft interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1978-01-01
The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.
Process modeling for carbon-phenolic nozzle materials
NASA Technical Reports Server (NTRS)
Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.
1989-01-01
A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.
Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids
NASA Technical Reports Server (NTRS)
Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.
2005-01-01
Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.
Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids
NASA Technical Reports Server (NTRS)
Devarakonda, Angirasa; Anderson, William G.
2004-01-01
Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.
Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures
NASA Astrophysics Data System (ADS)
Genetier, M.; Osmont, A.; Baudin, G.
2014-05-01
The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP - air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.
Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures
NASA Astrophysics Data System (ADS)
Genetier, Marc; Osmont, Antoine; Baudin, Gerard
2013-06-01
The objective is to compare ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes into account only the detonation, the secondary combustion DP - air being not considered. To solve this problem a secondary combustion model has been developed to take into account the OB effect. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Biddy, Mary; Jones, Susanne
24 biomass-derived compounds and mixtures, identified based on their physical properties, that could be blended into fuels to improve spark ignition engine fuel economy were assessed for their economic, technology readiness, and environmental viability. These bio-blendstocks were modeled to be produced biochemically, thermochemically, or through hybrid processes. To carry out the assessment, 17 metrics were developed for which each bio-blendstock was determined to be favorable, neutral, or unfavorable. Cellulosic ethanol was included as a reference case. Overall, bio-blendstock yields in biochemical processes were lower than in thermochemical processes, in which all biomass, including lignin, is converted to a product. Bio-blendstockmore » yields were a key determinant in overall viability. Key knowledge gaps included the degree of purity needed for use as a bio-blendstock as compared to a chemical. Less stringent purification requirements for fuels could cut processing costs and environmental impacts. Additionally, more information is needed on the blendability of many of these bio-blendstocks with gasoline to support the technology readiness evaluation. Overall, the technology to produce many of these blendstocks from biomass is emerging and as it matures, these assessments must be revisited. Importantly, considering economic, environmental, and technology readiness factors in addition to physical properties of blendstocks that could be used to boost fuel economy can help spotlight those most likely to be viable in the near term.« less
Assessment of relative flammability and thermochemical properties of some thermoplastic materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1977-01-01
Thermomechanical properties, flammability, oxygen index, relative toxicity of pyrolysis effluents, and char yields were studied for 12 advanced polymers which are candidates for use in aircraft interiors as decorative films, compression- and injection-molded parts and thermoplastic parts. Polymers sampled included polyphenylene sulfide, 9,9 bis (4-hydroxyphenol) fluorene polycarbonate-poly (dimethylsiloxane), polyether sulfone, polyvinyl fluoride and polyvinylidene fluoride. Availability of these samples, whether in commercial form or in test quantities, is specified. An estimate of relative fire resistance for the materials was obtained; the five polymers listed above were found to be the most fire resistant of the 12 sampled.
Bond additivity corrections for quantum chemistry methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. F. Melius; M. D. Allendorf
1999-04-01
In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method duemore » to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.« less
Recalibration of the sphalerite cosmobarometer: Experimental and theoretical treatment
NASA Astrophysics Data System (ADS)
Balabin, Alexey I.; Urusov, Vadim S.
1995-04-01
Temperature dependence of the composition of sphalerite in equilibrium with troilite + metallic iron has been determined experimentally from 400 to 840°C at 1 bar. The high-temperature runs (660-840°C) were conducted in evacuated silica tubes; a new version of the recrystallization in anhydrous halide flux technique was used for attaining equilibrium at 600-400°C. The zero-pressure solvus of sphalerite proved to be at higher FeS contents than was located by Barton and Toulmin (1966). Detailed calculations, based on updated thermochemical appraisal of the sphalerite (Zn,Fe)S solution, have shown the new solvus to be in apparent consistency with the high-pressure experimental data of Hutchison and Scott (1983 ). An improved calibration of the cosmobarometer is presented, based on our experimental results and those of Hutchison and Scott (1983) ; the calibration takes into account some inferences regarding thermodynamic properties of sphalerite solution and low-temperature polymorphism in FeS. Recently published metallographic cooling rates of iron meteorites (Saikumar and Goldstein, 1988) provide estimates of blocking temperatures for Fe diffusion in sphalerite, which fall in the range 205-217°C. Pressures of formation of these meteorites calculated from available sphalerite compositions range from 0 for Landes to 1.8 kbar for Toluca. The most reliable of the pressure estimates exhibit a linear relationship with wt% Ni of the meteorite.
Macrocycles inserted in graphene: from coordination chemistry on graphene to graphitic carbon oxide.
NASA Astrophysics Data System (ADS)
Liu, Wei; Liu, Jingyao; Miao, Maosheng
Tuning the electronic structure and the chemical properties of graphene by binding with metals has become a focus in the area of two dimension materials. Despite many interesting results and promising potentials, the approach suffers from weak binding and the high reactivity of the metal atoms. On the other hand, many macrocyclic molecules such as crown ether show strong and selective binding with metal atoms. The alliance of the two substances will largely benefit the two parallel fields: it will provide a scaffold for coordination chemistry as well as a controllable method for tuning the electronic structure of graphene through strong binding with metals. Here, using crown ether as an example, we demonstrate by first principles calculations that the embedment of macrocyclic molecules into graphene honeycomb lattice can be very thermochemically favored. The embedment of crown ether on graphene can form a family of new two-dimensional materials that possess varying band gaps and band edges. The one with highest O composition (C2O), with similar structure features as graphilic C3N4, shows strong potentials for photolysis and as true two-dimensional superconductor while binding with alkali metals. Calculations are performed on NSF-funded XSEDE resources (TG-DMR130005). This research is also supported by National Natural Science Foundation of China (Grants No. 21373098) in China.
Constraints on core-mantle boundary topography from models of thermal and thermochemical convection
NASA Astrophysics Data System (ADS)
Deschamps, Frédéric; Rogister, Yves; Tackley, Paul J.
2018-01-01
Mantle flow induces dynamic topography at the core-mantle boundary (CMB), with distribution and amplitude that depend on details of the flow. To assess whether observations of CMB topography can give constraints on deep mantle structure, we determine CMB dynamic topography associated with different models of mantle convection, including thermochemical and purely thermal models. We investigate the influence of key controlling parameters, specifically the thermal viscosity ratio (ΔηT) and, for thermochemical models, the density contrast (ΔρC) and viscosity ratio (ΔηC) between primordial and regular materials. In purely thermal models, plume clusters induce positive topography with an amplitude that decreases with increasing ΔηT. In thermochemical models with moderate density contrasts, around 100-200 kg m-3, reservoirs of dense material induce depressions in CMB topography, surrounded by a ridge of positive topography. The average depression depth and ridge height increase with increasing ΔρC and ΔηC, but decrease with increasing ΔηT. We find that for purely thermal models or thermochemical models with ΔρC ˜ 90 kg m-3 and less, the long-wavelength (spherical harmonic degrees up to l = 4) dynamic topography and shear wave velocity anomalies predicted by thermochemical distributions anticorrelate. By contrast, for models with ΔρC ≥ 100 kg m-3 and ΔηC > 1, long-wavelength dynamic topography and shear wave velocity anomalies correlate well. This potentially provides a test to infer the nature, that is, either purely or mostly thermal (ΔρC ≤ 100 kg m-3 m-3) or strongly thermochemical (ΔρC ≥ 100 kg m-3), of the low shear wave velocity provinces observed by global tomographic images. The presence of post-perovskite, provided that its viscosity is similar to that of bridgmanite, does not alter these conclusions.
NASA Technical Reports Server (NTRS)
Baker, C. E.
1977-01-01
A pure thermochemical cycle is a system of linked regenerative chemical reactions which accepts only water and heat and produces hydrogen. Thermochemical cycles are potentially a more efficient and cheaper means of producing hydrogen from water than is the generation of electricity followed by electrolysis. The Energy Storage Systems Division of the Department of Energy is currently funding a national program on thermochemical hydrogen production. The National Aeronautics and Space Administration is responsible for the technical management of this program. The goal is to develop a cycle which can potentially operate with an efficiency greater than 40% using a heat source providing a maximum available temperature of 1150 K. A closed bench-scale demonstration of such a cycle would follow. This cycle would be labeled a 'reference cycle' and would serve as a baseline against which future cycles would be compared.
Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui
2016-10-01
The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Warren, Jeffrey J.; Mayer, James M.
2010-01-01
Ascorbate (Vitamin C) is a ubiquitous biological cofactor. While its aqueous solution chemistry has long been studied, many in vivo reactions of ascorbate occur in enzyme active sites or at membrane interfaces, which have varying local environments. This report shows that the rate and driving force of oxidations of two ascorbate derivatives by the TEMPO radical (2,2′-6,6′-tetramethylpiperidine-1-oxyl) in acetonitrile are very sensitive to the presence of various additives. These reactions proceed by the transfer of a proton and an electron (a hydrogen atom), as is typical of biological ascorbate reactions. The measured rate and equilibrium constants vary substantially with added water or other polar solutes in acetonitrile solutions, indicating large shifts in the reducing power of ascorbate. The correlation of rate and equilibrium constants indicates that this effect has a thermochemical origin rather than being a purely kinetic effect. This contrasts with previous examples of solvent effects on hydrogen atom transfer reactions. Potential biological implications of this apparently unique effect are discussed. PMID:20476757
The iron-isotope fractionation dictated by the carboxylic functional: An ab-initio investigation
NASA Astrophysics Data System (ADS)
Ottonello, G.; Vetuschi Zuccolini, M.
2008-12-01
The ground-state geometries, electronic energies and vibrational properties of carboxylic complexes of iron were investigated both in vacuo and under the effect of a reaction field, to determine thermodynamic properties of iron-acetates and the role of the carboxylic functional on the isotopic imprinting of this metal in metalorganic complexation. The electronic energy, zero point corrections and thermal corrections of these substances at variational state were investigated at the DFT/B3LYP level of theory with different basis set expansions and the effect of the reaction field on the variational structures was investigated through the Polarized Continuun Model. Thermochemical cycle calculations, combined with solvation energy calculations and appropriate scaling from absolute to conventional properties allowed to compute the Gibbs free energy of formation from the elements of the investigated aqueous species and to select the best procedure to be applied in the successive vibrational analysis. The best compliance with the few existing thermodynamic data for these substances was obtained by coupling the gas phase calculations at DFT/B3LYP level with the [6-31G(d,p)]-[6-31G+(d,p)] (for cations and neutral molecules - anions; respectively) with solvation calculations adopting atomic radii optimized for the HF/6-31G(d) level of theory (UAHF). A vibrational analysis conducted on 54Fe, 56Fe, 57Fe and 58Fe gaseous isotopomers yielded reduced partition function ratios which increased not only with the nominal valence of the central cation, as expected, but, more importantly, with the extent of the complexation operated by the organic functional. Coupling thermodynamic data with separative effects it was shown that this last is controlled, as expected, by the relative bond strength of the complex in both aggregation states. Through the Integral Equation Formalism of the Polarized Continuum Model (IEFPCM) the effect of the ionic strength of the solution and of a T-dependent permittivity on the energy and separative effects of the solvated metalorganic complexes were analyzed in detail. The solvent effect in the standard state (hypothetical one-molal solution referred to infinite dilution; T = 298.15 K, P = 1 bar) is a limited reduction of the separative effects of all the isotopomeric couples. With an increase in T (and the concomitant decrease in the dielectric constant of the solvent) this effect diminishes progressively.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2015-12-01
Integral enthalpies of solution Δsol H m of diglycylglycine in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol are measured via solution calorimetry. The experimental data are used to calculate the standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of the tripeptide from water to aqueous solutions of polyatomic alcohols. The enthalpic pairwise coefficients h xy of interactions between the tripeptide and polyatomic alcohol molecules are calculated using the McMillan-Mayer solution theory and are found to have positive values. The findings are discussed using the theory of estimating various types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical parameters of diglycylglycine dissolution.
3D nozzle flow simulations including state-to-state kinetics calculation
NASA Astrophysics Data System (ADS)
Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.
2014-12-01
In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.
Metallized gelled monopropellants
NASA Technical Reports Server (NTRS)
Nieder, Erin G.; Harrod, Charles E.; Rodgers, Frederick C.; Rapp, Douglas C.; Palaszewski, Bryan A.
1992-01-01
Thermochemical calculations of seven metallized monopropellants were conducted to quantify theoretical specific impulse and density specific impulse performance. On the basis of theoretical performance, commercial availability of formulation constituents, and anticipated viscometric behavior, two metallized monopropellants were selected for formulation characterization: triethylene glycol dinitrate, ammonium perchlorate, aluminum and hydrogen peroxide, aluminum. Formulation goals were established, and monopropellant formulation compatibility and hazard sensitivity were experimentally determined. These experimental results indicate that the friction sensitivity, detonation susceptibility, and material handling difficulties of the elevated monopropellant formulations and their constituents pose formidable barriers to their future application as metallized monopropellants.
Eigenvalue Detonation of Combined Effects Aluminized Explosives
NASA Astrophysics Data System (ADS)
Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.
2007-12-01
Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.
Methods of calculating engineering parameters for gas separations
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1980-01-01
A group additivity method has been generated which makes it possible to estimate, from the structural formulas alone, the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. From these two parameters and appropriate thermodynamic relationships it is then possible to predict the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids. The data are then used to evaluate organic and some inorganic liquids for use in gas separation stages or as heat exchange fluids in prospective thermochemical cycles for hydrogen production.
Structure, Stability, and Thermochemistry of the Fullerene Derivatives C64X6 (X = H, F, Cl)
NASA Astrophysics Data System (ADS)
Xu, Lei; Shao, Xueguang; Cai, Wensheng
2009-09-01
The geometrical structures, electronic properties, and stabilities of the unconventional fullerene derivatives C64X6 (X = H, F, Cl) have been systematically studied by the first-principle calculations based on the density functional theory. The fullerene derivatives 1911(2)-C64X6 generated from the pineapple-shaped C64X4 are predicted to possess the lowest energies. The other two X atoms are added to the carbon atoms with the highest local strain assessed by the pyramidalization angles. The calculations of the nucleus-independent chemical shifts suggest that the aromaticity of C64X6 affects the stability order of the derivative isomers. To address why C64H6 was not observed in the experimental study of Wang et al. (J. Am. Chem. Soc. 2006, 128, 6605) and if the halogenated derivatives C64X6 (X = F, Cl) can be synthesized, thermochemical analysis of the reaction C64X4 + X2 → C64X6 was also performed. The results indicate that the formation of C64H6 and C64Cl6 is not favored at high temperatures. The former may be a reason why C64H6 was not found in the experiment. In sharp contrast, the Gibbs free energy change to form C64F6 is found to be -23.29 kcal/mol at 2000 K, suggesting that this compound may be formed and detected in experiments. The NMR and IR spectra of 1911(2)-C64F6 are sequentially calculated and presented to facilitate future experimental identification.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Errors found in the original edition are corrected. Refinement was made in procedures for solving the conservation relations for an incident (moving), standing, and reflected normal shock, as well as in computational methods for determining thermochemical-equilibrium hydrogen properties. A six-species hydrogen model replaces the original four-species model, and the heat of formation and spectroscopic constants used in this six-species model are listed in appendix A. In appendix B, comparisons are made between a number of methods for determining equilibrium thermodynamic properties for hydrogen for several values of pressure and temperatures to 50000 K. A comparison is also performed between the present method and a second method for determining thermodynamic properties and flow velocity behind an incident shock into pure hydrogen and behind a reflected shock.
Fire-Retardant Decorative Inks For Aircraft Interiors
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.
1988-01-01
Report describes testing of commercial and experimental fire retardants for incorporation into acrylic printing inks used on aircraft-interior sandwich panels. Films of acrylic ink containing fire-retardant additives prepared by casting on glass plates. Solvent evaporated in vacuum, cast films cured at 80 to 100 degree C for 30 minutes in air-circulating oven. Thermochemical properties of films examined by thermogravimetric analysis and differential scanning calorimetry (DSC). Samples of inks cast on sheets of polyvinylfloride (PVF), and their limiting oxygen indices and smoke evolution measured.
National Institute of Standards and Technology Data Gateway
SRD 69 NIST Chemistry WebBook (Web, free access) The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.
Application of thermochemical modeling to aircraft interior polymeric materials
DOT National Transportation Integrated Search
1982-06-01
This report summarizes the results from a twelve-month study of the feasibility of applying certain basic concepts in the thermochemical modeling to aircraft cabin fire safety. The concepts developed earlier on a NASA-sponsored program were applied t...
NASA Astrophysics Data System (ADS)
Lany, Stephan
2018-02-01
The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.
Lany, Stephan
2018-02-21
The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan
The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.
NASA Astrophysics Data System (ADS)
Wettermark, G.
1980-10-01
Energy storage problems are explored. Tomorrow's energy sources will provide a continuous flow of energy. Matching supply and demand will necessitate a wide range of storage capabilities. For storing heat thermochemical and economic solutions may take advantage of the various options inherent in this kind of storage, namely heat pumping, transport of heat and direct conversion to other desired forms of energy such as electricity and mechanical work. There is a need to regularly summarize the knowledge and research in the field of thermochemical energy storage in different parts of the world.
Ndiaye, L G; Caillat, S; Chinnayya, A; Gambier, D; Baudoin, B
2010-07-01
In order to simulate granular materials structure in a rotary kiln under the steady-state regime, a mathematical model has been developed by Saeman (1951). This model enables the calculation of the bed profiles, the axial velocity and solids flow rate along the kiln. This model can be coupled with a thermochemical model, in the case of a reacting moving bed. This dynamic model was used to calculate the bed profile for an industrial size kiln and the model projections were validated by measurements in a 4 m diameter by 16 m long industrial rotary kiln. The effect of rotation speed under solids bed profile and the effect of the feed rate under filling degree were established. On the basis of the calculations and the experimental results a phenomenological relation for the residence time estimation was proposed for the rotary kiln. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Carbonate thermochemical cycle for the production of hydrogen
Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis, Jr, Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN
2010-02-23
The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.
Mohamed, Sameera; van der Merwe, Elizabet M; Altermann, Wladyslaw; Doucet, Frédéric J
2016-04-01
Mine tailings can represent untapped secondary resources of non-ferrous, ferrous, precious, rare and trace metals. Continuous research is conducted to identify opportunities for the utilisation of these materials. This preliminary study investigated the possibility of extracting major elements from South African tailings associated with the mining of Platinum Group Metals (PGM) at the Two Rivers mine operations. These PGM tailings typically contain four major elements (11% Al2O3; 12% MgO; 22% Fe2O3; 34% Cr2O3), with lesser amounts of SiO2 (18%) and CaO (2%). Extraction was achieved via thermochemical treatment followed by aqueous dissolution, as an alternative to conventional hydrometallurgical processes. The thermochemical treatment step used ammonium sulphate, a widely available, low-cost, recyclable chemical agent. Quantification of the efficiency of the thermochemical process required the development and optimisation of the dissolution technique. Dissolution in water promoted the formation of secondary iron precipitates, which could be prevented by leaching thermochemically-treated tailings in 0.6M HNO3 solution. The best extraction efficiencies were achieved for aluminium (ca. 60%) and calcium (ca. 80%). 35% iron and 32% silicon were also extracted, alongside chromium (27%) and magnesium (25%). Thermochemical treatment using ammonium sulphate may therefore represent a promising technology for extracting valuable elements from PGM tailings, which could be subsequently converted to value-added products. However, it is not element-selective, and major elements were found to compete with the reagent to form water-soluble sulphate-metal species. Further development of this integrated process, which aims at achieving the full potential of utilisation of PGM tailings, is currently underway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mapping the Earth's thermochemical and anisotropic structure using global surface wave data
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J. A. D.
2011-01-01
We have inverted global fundamental mode and higher-order Love and Rayleigh wave dispersion data jointly, to find global maps of temperature, composition, and radial seismic anisotropy of the Earth's mantle as well as their uncertainties via a stochastic sampling-based approach. We apply a self-consistent thermodynamic method to systematically compute phase equilibria and physical properties (P and S wave velocity, density) that depend only on composition (in the Na2-CaO-FeO-MgO-Al2O3-SiO2 model system), pressure, and temperature. Our 3-D maps are defined horizontally by 27 different tectonic regions and vertically by a number of layers. We find thermochemical differences between oceans and continents to extend down to ˜250 km depth, with continents and cratons appearing chemically depleted (high magnesium number (Mg #) and Mg/Si ratio) and colder (>100°C) relative to oceans, while young oceanic lithosphere is hotter than its intermediate age and old counterparts. We find what appears to be strong radial S wave anisotropy in the upper mantle down to ˜200 km, while there seems to be little evidence for shear anisotropy at greater depths. At and beneath the transition zone, 3-D heterogeneity is likely uncorrelated with surface tectonics; as a result, our tectonics-based parameterization is tenuous. Despite this weakness, constraints on the gross average thermochemical and anisotropic structure to ˜1300 km depth can be inferred, which appear to indicate that the compositions of the upper (low Mg# and high Mg/Si ratio) and lower mantle (high Mg# and low Mg/Si ratio) might possibly be distinct.
Galileo Probe forebody thermal protection
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.
1981-01-01
Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.
Nonmetallic materials handbook. Volume 2: Epoxy and silicone materials
NASA Technical Reports Server (NTRS)
Podlaseck, S. E.
1982-01-01
Chemical and physical property test data obtained during qualification and receiving inspection testing of nonmetallic materials for the Viking Mars Lander program is presented. Thermochemical data showing degradation as a function of temperature from room temperature through 773 K is included. These data include activation energies for thermal degradation, rate constants, and exo- and/or endotherms. Thermal degradations carried out under vacuum include mass spectral data taken simultaneously during the decomposition. Many materials have supporting data such as condensation rates of degassed products and isothermal weight loss. Changes in mechanical, electrical, and thermal properties after exposure to 408 K in nitrogen for times ranging from 380 to 570 hours are included for many materials.
Intro to NREL's Thermochemical Pilot Plant
Magrini, Kim
2018-02-13
NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.
USDA-ARS?s Scientific Manuscript database
The livestock sector remains vigilant to address effective manure treatment that also safeguards natural resources. Livestock operations must balance business concerns, efficient energy management and environmental stewardship. Fortunately, thermochemical conversion technologies for converting lives...
Hybrid Thermochemical/Biological Processing
NASA Astrophysics Data System (ADS)
Brown, Robert C.
The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.
The exploration of exoplanets: What can we learn from solar system synergies?
NASA Astrophysics Data System (ADS)
Encrenaz, Therese
2015-07-01
Most of the discovered exoplanets are "exotic" with regard to the Solar system, with characteristics that are very different from our own planets. Still, we can use the experience gained in the study of the solar system planets for trying to understand the physical nature of exoplanets. The properties of their atmospheres are, as in the case of the Solar system, constrained by a few parameters: their mass and radius, the stellar radiation flux (and thus the star's properties and its distance to the planet), the planet's ellipticity, its inclination, its rotation, the presence or absence of a magnetosphere... Under some simple hypotheses (thermochemical equilibrium and absence of migration), it is possible to make simple predictions about the nature of the exoplanet's atmospheric composition, on the basis of the planet's mass and its equilibrium temperature. The study of solar system planets also tells us which other mechanisms may lead to a departure from thermochemical equilibrium, in particular photochemistry and transport-induced quenching. The study of planetary spectra is a good starting point to try to understand the spectra of exoplanets that now become available through transit spectroscopy observations. From the spectral type of the hosting star and its distance to the exoplanet, one can estimate the spectral ranges where reflected/scattered stellar radiation and thermal emission dominate. In the thermal regime, the observation of a given molecule in different bands of different intensities may provide constraints on the vertical thermal profile and the vertical distribution of the molecule.
NASA Technical Reports Server (NTRS)
1973-01-01
The procedures for predicting the aeroheating environment of Venus entry probes are outlined. After some consideration, a number of assumptions were adopted in order to make the prediction techniques tractable. Among these assumptions are thermochemical equilibrium, uncoupled radiative and convective processes, and uncoupled ablation products effects. The single strip method of integral relations, appropriately constrained, is shown to provide adequate inviscid results as a basis for heating calculations on blunt configurations. Techniques for prediction of the laminar, transitional, and turbulent convective environment are outlined and shown to agree with data. The prediction of radiative heating in C, N, and O gas mixtures is discussed and a practical scheme adopted. A comparison with LRC calculations is made.
Thermochemical conversion of waste tyres-a review.
Labaki, Madona; Jeguirim, Mejdi
2017-04-01
A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.
On the thermo-chemical origin of the stratified region at the top of the Earth's core
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi
2018-03-01
I developed a combined model of the thermal and chemical evolution of the Earth's core and investigated its influence on a thermochemically stable region beneath the core-mantle boundary (CMB). The chemical effects of the growing stable region are caused by the equilibrium chemical reaction between silicate and the metallic core. The thermal effects can be characterized by the growth of the sub-isentropic shell, which may have a rapid growth rate compared to that of the chemically stable region. When the present-day CMB heat flow was varied, the origin of the stable region changed from chemical to thermochemical to purely thermal because the rapid growth of the sub-isentropic shell can replace the chemically stable region. Physically reasonable values of the present-day CMB heat flow that can maintain the geodynamo action over 4 billion years should be between 8 and 11 TW. To constrain the thickness of the thermochemically stable region beneath the CMB, the chemical diffusivity is important and should be ∼O(10-8) m2/s to obtain a thickness of the thermochemically stable region beneath the CMB consistent with that inferred from geomagnetic secular variations (140 km). However, the strength of the stable region found in this study is too high to be consistent with the constraint on the stability of the stable region inferred from geomagnetic secular variations.
Innovative solar thermochemical water splitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.
2008-02-01
Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximitymore » and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.« less
Thermoplastic polymers for improved fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.
1976-01-01
The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers that were evaluated included: acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonatepoly (dimethyl siloxane) block polymer, phenolphthalein bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative ranking of some of the flammability, smoke, and toxicity properties are presented.
NASA Astrophysics Data System (ADS)
Geloni, Claudio; Previde Massara, Elisabetta; Di Paola, Eleonora; Ortenzi, Andrea; Gherardi, Fabrizio; Blanc, Philippe
2017-04-01
Diagenetic transformations occurring in clayey and arenaceous sediments is investigated in a number of hydrocarbon reservoirs with an integrated approach that combines mineralogical analysis, crystalchemistry, estimation of thermochemical parameters of clay minerals, and geochemical modelling. Because of the extremely variable crystalchemistry of clays, especially in the smectite - illite compositional range, the estimation of thermochemical parameters of site-specific clay-rich rocks is crucial to investigate water-rock equilibria and to predict mineralogical evolutionary patterns at the clay-sandstone interface. The task of estimating the thermochemical properties of clay minerals and predicting diagenetic reactions in natural reservoirs is accomplished through the implementation of an informatized, procedure (IP) that consists of: (i) laboratory analysis of smectite, illite and mixed layers (I/S) for the determination of their textural characteristics and chemical composition; (ii) estimation of the thermodynamic and structural parameters (enthalpy, entropy, and free energy of formation, thermal capacity, molar volume, molar weight) with a MS Excel tool (XLS) specifically developed at the French Bureau of Geological and Mining Researches (BRGM); (iii) usage of the SUPCRT (Johnson et al., 1992) software package (thereinafter, SSP) to derive log K values to be incorporated in thermodynamic databases of the standard geochemical codes; (iv) check of the consistency of the stability domains calculated with these log K values with relevant predominance diagrams; (v) final application of geochemical and reactive transport models to investigate the reactive mechanisms under different thermal conditions (40-150°C). All the simulations consider pore waters having roughly the same chemical composition of reservoir pore waters, and are performed with The Geochemist Workbench (Bethke and Yeakel, 2015), PHREEQC (Parkhurst, 1999) and TOUGHREACT (Xu, 2006). The overall procedure benefits from: (i) (minor) improvements of the I/O structure of the SSP; (ii) the development of a suite of python scripts to automate the steps needed to augment the thermodynamic database by integrating the external information provided by potential users with the XLS tool and the SSP; (iii) the creation of specific outputs to allow for more convenient handling and inspection of computed parameters of the thermodynamic database. A case study focused on non-isothermal smectite-illite transformation is presented to show the capability of our numerical models to account for clay compaction under 1D geometry conditions. This model considers fluid flow driven by the compaction of a clay layer, and chemistry-fluid flow mutual feedback with the underlying sandstone during the advancement of the diagenesis. Due to this complex interaction, as a result of the smectite-illite transformation in the clays, significant quartz cementation affects the sandstone adjacent to the compacting clay.
NASA Astrophysics Data System (ADS)
Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine
2016-04-01
Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived "primary" plumes rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial mantle material. These predictions address the geochemical and geochronological record of intraplate hotspot volcanism on the Pacific plate. In general, the parameter range spanned by models that are able to reconcile observations provides a constraint for the intrinsic density anomaly (or composition) of DDDs. We use this constraint to evaluate a possible origin of DDDs from (basal) magma ocean cumulates. The study of LLSVP compositional layering has indeed important implications for our understanding of heat and material fluxes through mantle reservoirs, as well as bulk Earth chemistry and evolution.
Zeman, Svatopluk; Bartei, Cécile
2008-06-15
This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and two dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. Thermal reactivity of these mixtures was examined by means of differential thermal analysis and the data were analyzed according to the modified Kissinger method (the peak temperature was replaced by the temperature of decomposition onset in this case). The reactivity, expressed as the EaR(-1) slopes of the Kissinger relationship, correlates with the squares of the calculated detonation velocities for the charge density of 1000 kg m(-3) of the studied energetic materials. Similarly, the relationships between the EaR(-1) values and RP have been found. While the first mentioned correlation (modified Evans-Polanyi-Semenov equation) is connected with the primary chemical micro-mechanism of the mixtures detonation, the relationships in the second case should be connected with the thermochemical aspects of this detonation.
Hydrogen uptake characteristics of mischmetal based alloy
NASA Astrophysics Data System (ADS)
Jain, Ankur; Jain, R. K.; Jain, I. P.
Hydrogen storage properties of Mm 39.2Ni 42.1Mn 4.9Al 1.25Co 10.2Fe 2.35 alloy have been systematically studied in the present work. An attempt is made to relate the content of hydrogen with change in resistance. It is found that the resistance of material increases with the increase in value of H/ M due to hydrogen absorption. Pressure composition (P-C-T) isotherm using water displacement method has been investigated in the temperature and pressure ranges of 308 ≤ T ≤ 338 K and 0.5 ≤ P ≤ 10 bar, respectively. The P-C isotherms show the presence of two single α and β regions one mixed α + β phase. The maximum H (wt%) was found to be around 1.53 at 308 K and around 6 bar. Since enthalpy is an index of thermochemical stability of metal hydride the thermo dynamical parameters viz., the relative partial molar enthalpy (Δ H) and relative partial molar entropy (Δ S) of dissolved hydrogen have been calculated by plotting the Van't Hoff plot. The variation of Δ H and Δ S with the hydrogen concentration confirm the phase boundaries.
The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting
Zhai, Shang; Rojas, Jimmy; Ahlborg, Nadia; ...
2018-01-01
We report the discovery of a new class of oxides – poly-cation oxides (PCOs) – that consist of multiple cations and can thermochemically split water in a two-step cycle to produce hydrogen (H 2 ) and oxygen (O 2 ).
1993-09-01
dependence obtained from tabulated data ( Stull 1971). p,/W = A, + A2T + A3T 2 + A4T3 + A5T4 (13) For N species only N - 1 specie equations must be solved...Calculations," AIAA Journal, Vol. 21, No. 4, April 1983, pp. 586-592. Stull , D.R., and Prophet, H., ".JANNAF Thermochemical Tables," 2nd ed., National Bureau of...Command Development and Engineering Center ATTN: AMCPNI-ABNIS. T. Dean ATTN: SMCAR-FSA-F. LTC R. Riddle Warien. MI 48092-2498 SMCAR-FSC. G. Ferdinand
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1979-01-01
A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.
Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachman, Jonathan E.; Curtiss, Larry A.; Assary, Rajeev S.
2014-09-25
Application of density functional calculations to compute electrochemical properties such as redox windows, effect of substitution by electron donating and electron withdrawing groups on redox windows, and solvation free energies for ~50 anthraquinone (AQ) derivatives are presented because of their potential as anolytes in all-organic redox flow batteries. Computations suggest that lithium ions can increase (by ~0.4 V) the reduction potential of anthraquinone due to the lithium ion pairing by forming a Lewis base-Lewis acid complex. To design new redox active species, the substitution by electron donating groups are essential to improve the reduction window of AQ with adequate oxidativemore » stability. For instance, a complete methylation of AQ can improve its reduction window by ~0.4 V. The quantum chemical studies of the ~50 AQ derivatives are used to derive a relationship that connects the computed LUMO energy and the reduction potential that can be applied as a descriptor for screening thousands of AQ derivatives. Our computations also suggest that incorporating oxy-methyl dioxolane substituents in the AQ framework can increase its interaction with non-aqueous solvent and improve its solubility. Thermochemical calculations for likely bond breaking decomposition reactions of un-substituted AQ anions suggest that the dianions are relatively stable in the solution. These studies provide ideal platform to perform further combined experimental and theoretical studies to understand the electrochemical reversibility and solubility of new quinone molecules as energy storage materials.« less
Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas
2007-04-04
Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
Drozd, Ksenia V; Manin, Alex N; Churakov, Andrei V; Perlovich, German L
2017-03-01
Experimental multistage cocrystal screening of the antituberculous drug 4-aminosalicylic acid (PASA) has been conducted with a number of coformers (pyrazinamide (PYR), nicotinamide (NAM), isonicotinamide (iNAM), isoniazid (INH), caffeine (CAF) and theophylline (TPH)). The crystal structures of 4-aminosalicylic acid cocrystals with isonicotinamide ([PASA+iNAM] (2:1)) and methanol solvate with caffeine ([PASA+CAF+MeOH] (1:1:1)) have been determined by single X-ray diffraction experiments. For the first time for PASA cocrystals it has been found that the structural unit of the [PASA+iNAM] cocrystal (2:1) is formed by 2 types of heterosynthons: acid-pyridine and acid-amide. The desolvation study of the [PASA+CAF+MeOH] cocrystal solvate (1:1:1) has been conducted. The correlation models linking the melting points of the cocrystals with the melting points of the coformers used in this paper have been developed. The thermochemical and solubility properties for all the obtained cocrystals have been studied. Cocrystallization has been shown to lead not only to PASA solubility improving but also to its higher stability against the chemical decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermochemical energy storage with ammonia: Aiming for the sunshot cost target
NASA Astrophysics Data System (ADS)
Lavine, Adrienne S.; Lovegrove, Keith M.; Jordan, Joshua; Anleu, Gabriela Bran; Chen, Chen; Aryafar, Hamarz; Sepulveda, Abdon
2016-05-01
Thermochemical energy storage has the potential to reduce the cost of concentrating solar thermal power. This paper presents recent advances in ammonia-based thermochemical energy storage (TCES), supported by an award from the U.S. Dept. of Energy SunShot program. Advances have been made in three areas: identification of promising approaches for underground containment of the gaseous products of the dissociation reaction, demonstration that ammonia synthesis can be used to generate steam for a supercritical-steam Rankine cycle, and a preliminary design for integration of the endothermic reactors within a tower receiver. Based on these advances, ammonia-based TCES shows promise to meet the 15/kWht SunShot cost target.
THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Wang, Yong
2013-06-01
At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.
Use of Tabulated Thermochemical Data for Pure Compounds
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.
1999-01-01
Thermodynamic data for inorganic compounds is found in a variety of tabulations and computer databases. An extensive listing of sources of inorganic thermodynamic data is provided. The three major tabulations are the JANAF tables. Thermodynamic Properties of Individual Substances, and the tabulation by Barin. The notation and choice of standard states is different in each of these tabulations, so combining data from the different tabulations is often a problem. By understanding the choice of standard states, it is possible to develop simple equations for conversion of the data from one form to another.
Design Principles of Perovskites for Thermochemical Oxygen Separation
Ezbiri, Miriam; Allen, Kyle M.; Gàlvez, Maria E.; Steinfeld, Aldo
2015-01-01
Abstract Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar‐driven synthesis of liquid hydrocarbon fuels from CO2, H2O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through “thermochemical pumping” of O2 against a pO2 gradient with low‐grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high‐temperature X‐ray diffraction for SrCoO3−δ, BaCoO3−δ and BaMnO3−δ perovskites and Ag2O and Cu2O references confirm the predicted performance of SrCoO3−δ, which surpasses the performance of state‐of‐the‐art Cu2O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3−δ −1 exchanged at 12.1 μmol O 2 min−1 g−1 at 600–900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. PMID:25925955
Design Principles of Perovskites for Thermochemical Oxygen Separation.
Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo
2015-06-08
Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1) g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disequilibrium in planetary atmospheres and the search for habitability
NASA Astrophysics Data System (ADS)
Simoncini, E.
It has long been observed that Earth's atmosphere is uniquely far from its thermochemical equilibrium state in terms of its chemical composition. Studying this state of disequilibrium is important for its potential role in the detection of life on other suitable planets \\citep{Lovelock_1965,Kleidon_2010,Simoncini_2015}. We developed a methodology to calculate the extent of atmospheric chemical disequilibrium\\citep{Simoncini_2015,Kondepudi_1996}. This tool allows us to understand, on a thermodynamic basis, how life affected - and still affects - geochemical processes on Earth, and if other planetary atmospheres are habitable or have a disequilibrium similar to the Earth's one. A new computational framework called KROME has been applied to atmospheric models in order to give a correct computation of reactions´ kinetics \\citep{Grassi_2015}. In this work we present a first computation of the extent of disequilibrium for the present Earth atmosphere, considering the specific contribution of the different atmospheric processes, such as thermochemical reactions, eddy diffusion, photochemistry, deposition, and the effect of the biosphere. We then assess the effect of life on atmospheric disequilibrium of the Earth and provide a useful discussion about how the study of atmospheric disequilibrium can help in finding habitable (exo)planets. We finally compare the chemical disequilibrium of Earth and Mars atmospheres, for present and early conditions.
NASA Technical Reports Server (NTRS)
Miller, C. G., III
1972-01-01
A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Zhang, Jun; Valiev, Marat
2017-01-01
Pinonic acid, a C10-monocarboxylic acid with a hydrophilic –CO 2H group and a hydrophobic hydrocarbon backbone, is a key intermediate oxidation product of α-pinene – an important monoterpene compound in biogenic emission processes that influences the atmosphere. Molecular interaction between cis-pinonic acid and water is essential for understanding its role in the formation and growth of pinene-derived secondary organic aerosols. In this work, we studied the structures, energetics, and optical properties of hydrated clusters of cis-pinonate anion (cPA–), the deprotonated form of cis-pinonic acid, by negative ion photoelectron spectroscopy and ab initio theoretical calculations. Our results show that cPA– canmore » adopt two different structural configurations – open and folded. In the absence of waters, the open configuration has the lowest energy and provides the best agreement with the experiment. The addition waters, which mainly interact with the negatively charged -CO 2– group, gradually stabilize the folded configuration and lower its energy difference relative to the most stable open-configured structure. Thermochemical and equilibrium hydrate distribution analysis suggests that the mono- and di- hydrates are likely to exist in humid atmospheric environment with high populations. The detailed molecular description of cPA– hydrated clusters unraveled in this study provides a valuable reference for understanding the initial nucleation process and aerosol formation involving organics containing both hydrophilic and hydrophobic groups, as well as for analyzing the optical properties of those organic aerosols.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Y.K.; Chen, H.T.; Helm, R.W.
1980-01-01
A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for themore » system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.« less
Hemingway, B.S.; Robie, R.A.; Kittrick, J.A.
1978-01-01
Solution calorimetric measurements compared with solubility determinations from the literature for the same samples of gibbsite have provided a direct thermochemical cycle through which the Gibbs free energy of formation of [Al(OH)4 aq-] can be determined. The Gibbs free energy of formation of [Al(OH)4 aq-] at 298.15 K is -1305 ?? 1 kJ/mol. These heat-of-solution results show no significant difference in the thermodynamic properties of gibbsite particles in the range from 50 to 0.05 ??m. The Gibbs free energies of formation at 298.15 K and 1 bar pressure of diaspore, boehmite and bayerite are -9210 ?? 5.0, -918.4 ?? 2.1 and -1153 ?? 2 kJ/mol based upon the Gibbs free energy of [A1(OH)4 aq-] calculated in this paper and the acceptance of -1582.2 ?? 1.3 and -1154.9 ?? 1.2 kJ/mol for the Gibbs free energy of formation of corundum and gibbsite, respectively. Values for the Gibbs free energy formation of [Al(OH)2 aq+] and [AlO2 aq-] were also calculated as -914.2 ?? 2.1 and -830.9 ?? 2.1 kJ/mol, respectively. The use of [AlC2 aq-] as a chemical species is discouraged. A revised Gibbs free energy of formation for [H4SiO4aq0] was recalculated from calorimetric data yielding a value of -1307.5 ?? 1.7 kJ/mol which is in good agreement with the results obtained from several solubility studies. Smoothed values for the thermodynamic functions CP0, ( HT0 - H2980) T, ( GT0 - H2980) T, ST0 - S00, ??Hf{hook},2980 kaolinite are listed at integral temperatures between 298.15 and 800 K. The heat capacity of kaolinite at temperatures between 250 and 800 K may be calculated from the following equation: CP0 = 1430.26 - 0.78850 T + 3.0340 ?? 10-4 T2 -1.85158 ?? 10-4 T2 1 2 + 8.3341 ?? 106 T-2. The thermodynamic properties of most of the geologically important Al-bearing phases have been referenced to the same reference state for Al, namely gibbsite. ?? 1978.
Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields
NASA Technical Reports Server (NTRS)
Chen, C. P.; Shang, H. M.; Huang, J.
1993-01-01
Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2013-04-01
Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.
Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach
ERIC Educational Resources Information Center
Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki
2013-01-01
A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1992-01-01
Presented is a collection of papers on research activities carried out during the funding period of October 1991 to March 1992. Topics covered include: blunt body flows in thermochemical equilibrium; thermochemical relaxation in high enthalpy nozzle flow; single expansion ramp nozzle simulations; lunar return aerobraking; line boundary problem for three dimensional grids; and unsteady shock induced combustion.
D. Mitchell; T. Elder
2010-01-01
Torrefaction is a thermo-chemical process that reduces the moisture content of wood and transforms it into a brittle, char-type material. The thermo-chemical process can reduce the mass of wood by 20-30% resulting in a denser, higher-valued product that can be transported more economically than traditional wood chips. Through torrefaction, wood may retain 90% of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hautala, R.R.; Kutal, C.R.
1977-06-15
Research on polymeric organic sensitizers and polymeric inorganic sensitizers for the conversion of norbornadine to quadricyclene and catalysts for the conversion of quadricyclene to norbornadine is described. The interconversion of norbornadine and quadricyclene is studied for its possible use for thermochemical solar energy storage. (WHK)
Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion
NASA Technical Reports Server (NTRS)
Kojima, Jun J.; Fischer, David G.
2012-01-01
We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Smialek, James L.; Robinson, Raymond C.; Fox, Dennis S.; Jacobson, Nathan S.
1998-01-01
In combustion environments, volatilization of SiO2 to Si-O-H(g) species is a critical issue. Available thermochemical data for Si-O-H(g) species were used to calculate boundary layer controlled fluxes from SiO2. Calculated fluxes were compared to volatilization rates Of SiO2 scales grown on SiC which were measured in Part 1 of this paper. Calculated volatilization rates were also compared to those measured in synthetic combustion gas furnace tests. Probable vapor species were identified in both fuel-lean and fuel-rich combustion environments based on the observed pressure, temperature and velocity dependencies as well as the magnitude of the volatility rate. Water vapor is responsible for the degradation of SiO2 in the fuel-lean environment. Silica volatility in fuel-lean combustion environments is attributed primarily to the formation of Si(OH)4(g) with a small contribution of SiO(OH)2(g).
Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-wen
2017-04-01
Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.
Detonation Performance Analyses for Recent Energetic Molecules
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Samuels, Philip; Spangler, Kimberly; Iwaniuk, Daniel; Cornell, Rodger; Baker, Ernest
2017-06-01
Detonation performance analyses were conducted for a number of evolving and potential high explosive materials. The calculations were completed for theoretical maximum densities of the explosives using the Jaguar thermo-chemical equation of state computer programs for performance evaluations and JWL/JWLB equations of state parameterizations. A number of recently synthesized materials were investigated for performance characterizations and comparisons to existing explosives, including TNT, RDX, HMX, and Cl-20. The analytic cylinder model was utilized to establish cylinder and Gurney velocities as functions of the radial expansions of the cylinder for each explosive. The densities and heats of formulation utilized in the calculations are primarily experimental values from Picatinny Arsenal and other sources. Several of the new materials considered were predicted to have enhanced detonation characteristics compared to conventional explosives. In order to confirm the accuracy of the Jaguar and analytic cylinder model results, available experimental detonation and Gurney velocities for representative energetic molecules and their formulations were compared with the corresponding calculated values. Close agreement was obtained with most of the data. Presently at NATO.
BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Melius, Carl F.
2004-09-01
In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less
NASA Astrophysics Data System (ADS)
Ulian, Gianfranco; Valdrè, Giovanni
2015-07-01
Pyrophyllite has a significant role in both geophysics as a hydrous phase, which can recycle water into the Earth's mantle, and many industrial applications, such as petroleum and civil engineering. However, very few works have been proposed to fully characterize the thermodynamic properties of this mineral, especially at atomic scale. In the present work, we report structural, vibrational, thermochemical and thermophysical properties of pyrophyllite, calculated at the density functional theory level with the hybrid B3LYP functional, all-electron Gaussian-type orbitals and taking into account a correction to include dispersive forces. V( P, T) data at 300 K fit with isothermal third-order Birch-Murnaghan equations of state and yield K T 0 = 46.57 GPa, K' = 10.51 and V 0 = 213.67 Å3, where K T 0 is the thermal bulk modulus at 0 GPa, K' is the first derivative and V 0 is the volume at zero pressure, in very good agreement with recent experimental results obtained by in situ single-crystal synchrotron XRD. The compressional behaviour is highly anisotropic, with axial compressibility in ratio β( a):β( b):β( c) = 1.218:1.000:4.188. Pyrophyllite bulk modulus, thermal expansion coefficients and heat capacity at different P- T conditions are provided. The results of this kind of analysis can be useful in both geophysical and technological applications of the mineral and expand the high-temperature and high-pressure knowledge of this phase at physical conditions that are still difficult to obtain by experimental means. The simulated vibrational spectrum can also be used as a guideline by other authors in their experimental investigation of pyrophyllite.
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Biering, Robert C.
2005-01-01
A translucent crystal concentrates and transmits energy to a heat exchanger, which in turn heats a propellant gas, working gas of a dynamic power system, or a thermopile. Materials are the limiting issue in such a system. Central is the durability of the crystal, which must maintain the required chemical, physical/optical, and mechanical properties as it is heated and cooled. This report summarizes available data to date on the materials issues with this system. We focus on the current leading candidate materials, which are sapphire (Al2O3) for higher temperatures and silica (SiO2) for lower temperatures. We use data from thermochemical calculations; laboratory coupon tests with silica and sapphire; and system tests with sapphire. The required chemical properties include low-vapor pressure and interfacial stability with supporting structural materials. Optical properties such as transmittance and index of refraction must be maintained. Thermomechanical stability is a major challenge for a large, single-crystal ceramic and has been discussed in another report. In addition to the crystal, other materials in the proposed system include refractory metals (Nb, Ta, Mo, W, and Re), carbon (C), and high-temperature ceramic insulation. The major issue here is low levels of oxygen, which lead to volatile refractory metal oxides and rapid consumption of the refractory metal. Interfacial reactions between the ceramic crystal and refractory metal are also discussed. Finally, high-temperature ceramic insulating materials are also likely to be used in this system. Outgassing is a major issue for these materials. The products of outgassing are typically reactive with the refractory metals and must be minimized.
A Computational Chemistry Database for Semiconductor Processing
NASA Technical Reports Server (NTRS)
Jaffe, R.; Meyyappan, M.; Arnold, J. O. (Technical Monitor)
1998-01-01
The concept of 'virtual reactor' or 'virtual prototyping' has received much attention recently in the semiconductor industry. Commercial codes to simulate thermal CVD and plasma processes have become available to aid in equipment and process design efforts, The virtual prototyping effort would go nowhere if codes do not come with a reliable database of chemical and physical properties of gases involved in semiconductor processing. Commercial code vendors have no capabilities to generate such a database, rather leave the task to the user of finding whatever is needed. While individual investigations of interesting chemical systems continue at Universities, there has not been any large scale effort to create a database. In this presentation, we outline our efforts in this area. Our effort focuses on the following five areas: 1. Thermal CVD reaction mechanism and rate constants. 2. Thermochemical properties. 3. Transport properties.4. Electron-molecule collision cross sections. and 5. Gas-surface interactions.
ERIC Educational Resources Information Center
Cigdemoglu, Ceyhan; Geban, Omer
2015-01-01
The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, Carlos E.
1980-01-01
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
Cascading pressure reactor and method for solar-thermochemical reactions
Ermanoski, Ivan
2017-11-14
Reactors and methods for solar thermochemical reactions are disclosed. The reactors and methods include a cascade of reduction chambers at successively lower pressures that leads to over an order of magnitude pressure decrease compared to a single-chambered design. The resulting efficiency gains are substantial, and represent an important step toward practical and efficient solar fuel production on a large scale.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, C.E.
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
Zhaojiang Wang; Menghua Qin; J.Y. Zhu; Guoyu Tian; Zongquan Li
2013-01-01
Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physicalâbiological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by...
ERIC Educational Resources Information Center
Journal of Chemical Education, 2015
2015-01-01
This paper presents the design and practical application of a laboratory inquiry at high school chemistry level for systematic chemistry learning, as exemplified by a thermochemical approach to the reaction stoichiometry of neutralization using Job's method of continuous variation. In the laboratory inquiry, students are requested to propose the…
NASA Astrophysics Data System (ADS)
André, Laurie; Abanades, Stéphane; Cassayre, Laurent
2017-06-01
Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.
NASA Astrophysics Data System (ADS)
Gridchin, S. N.; Nikol'skii, V. M.
2014-04-01
The stepwise dissociation constants of tetramethylenediamine- N,N,N', N'-tetraacetic acid (H4L) are determined by means of potentiometry at 298.15 K and ionic strength values of 0.1, 0.5, and 1.0 (KNO3). The heat effects of the dissociation of the betaine groups of the complexone are measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated via combined use of the results from thermochemical and potentiometric studies performed under identical experimental conditions. Our results are compared with the corresponding data on relative compounds.
NASA Astrophysics Data System (ADS)
Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; Atef, S. M.; El-Mansy, M. A. M.
2012-11-01
In the present work, a combined experimental and computational study for the optimized molecular structural parameters, FT-IR spectra, thermo-chemical parameters, total dipole moment and HOMO-LUMO energy gap for 2-chloro-5-(2,5-dimethoxy-benzylidene)-1,3-diethyl-dihydro-pyrimidine-4,6(1H,5H)-dione have been investigated using B3LYP/6-311G basis set. Our calculated results have showed that the investigated compound possesses a dipole moment of 4.9 Debye and HOMO-LUMO energy gap of 3 eV which indicate high recommendations for photovoltaic devices fabrication.
FT-IR spectroscopic analyses of 2-(2-furanylmethylene) propanedinitrile
NASA Astrophysics Data System (ADS)
Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; El-Mansy, M. A. M.; Atef, S. M.
2013-03-01
In the present work, a computational study for the optimized molecular structural parameters, thermo-chemical parameters, total dipole moment, HOMO-LUMO energy gap and a combined experimental and computational study for FT-IR spectra for 2-(2-furanylmethylene) propanedinitrile have been investigated using B3LYP utilizing 6-31G and 6-311G basis set. Our calculated results showed that the investigated compound possesses a dipole moment of 7.5 D and HOMO-LUMO energy gap of 3.92 eV using B3LYP/6-311G which indicates that our investigated compound is highly applicable for photovoltaic solar cell applications.
A finite element program for postbuckling calculations (PSTBKL)
NASA Technical Reports Server (NTRS)
Simitses, G. T.; Carlson, R. L.; Riff, R.
1991-01-01
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications.
NASA Technical Reports Server (NTRS)
Howe, John T.
1991-01-01
Thermochemical relaxation distances behind the strong normal shock waves associated with vehicles that enter the Earth atmosphere upon returning from a manned lunar or Mars mission are estimated. The relaxation distances for a Mars entry are estimated as well, in order to highlight the extent of the relaxation phenomena early in currently envisioned space exploration studies. The thermochemical relaxation length for the Aeroassist Flight Experiment is also considered. These estimates provide an indication as to whether finite relaxation needs to be considered in subsequent detailed analyses. For the Mars entry, relaxation phenomena that are fully coupled to the flow field equations are used. The relaxation-distance estimates can be scaled to flight conditions other than those discussed.
Effect of Blended Feedstock on Pyrolysis Oil Composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kristin M; Gaston, Katherine R
Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L.E.
1994-06-24
CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0, and a host of others will be implemented in the future. In CHEETAH 1.0 I have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. I find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with themore » new standard run command. I hope that CHEETAH makes the use of thermochemical codes more attractive to practical explosive formulators. In the future I plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. CHEETAH is currently a numerical implementation of C-J theory. It will,become an implementation of ZND theory. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.« less
NASA Astrophysics Data System (ADS)
Yang, Hee-Chul; Kim, Hyung-Ju; Lee, Si-Young; Yang, In-Hwan; Chung, Dong-Yong
2017-06-01
The thermochemical properties of uranium compounds have attracted much interest in relation to thermochemical treatments and the safe disposal of radioactive waste bearing uranium compounds. The characteristics of the thermal decomposition of uranium metaphosphate, U(PO3)4, into uranium pyrophosphate, UP2O7, have been studied from the view point of reaction kinetics and acting mechanisms. A mixture of U(PO3)4 and UP2O7 was prepared from the pyrolysis residue of uranium-bearing spent TBP. A kinetic analysis of the reaction of U(PO3)4 into UP2O7 was conducted using an isoconversional method and a master plot method on the basis of data from a non-isothermal thermogravimetric analysis. The thermal decomposition of U(PO3)4 into UP2O7 followed a single-step reaction with an activation energy of 175.29 ± 1.58 kJ mol-1. The most probable kinetic model was determined as a type of nucleation and nuclei-growth models, the Avrami-Erofeev model (A3), which describes that there are certain restrictions on nuclei growth of UP2O7 during the solid-state decomposition of U(PO3)4.
Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production.
Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo
2015-04-01
The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO 2 and H 2 O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO 2 , Ti 2 O 3 , Cu 2 O, ZnO, ZrO 2 , MoO 3 , Ag 2 O, CeO 2 , yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity.
Collioud, A; Clémence, J F; Sänger, M; Sigrist, H
1993-01-01
Light-dependent oriented and covalent immobilization of target molecules has been achieved by combining two modification procedures: light-dependent coupling of target molecules to inert surfaces and thiol-selective reactions occurring at macromolecule or substrate surfaces. For immobilization purposes the heterobifunctional reagent N-[m-[3-(trifluoromethyl)diazirin-3-yl]phenyl]-4-maleimidobutyr amide was synthesized and chemically characterized. The photosensitivity of the carbene-generating reagent and its reactivity toward thiols were ascertained. Light-induced cross-linking properties of the reagent were documented (i) by reacting first the maleimide function with a thiolated surface, followed by carbene insertion into applied target molecules, (ii) by photochemical coupling of the reagent to an inert support followed by thermochemical reactions with thiol functions, and (iii) by thermochemical modification of target molecules prior to carbene-mediated insertion into surface materials. Procedures mentioned led to light-dependent covalent immobilization of target molecules including amino acids, a synthetic peptide, and antibody-derived F(ab') fragments. Topically selective, light-dependent immobilization was attained with the bifunctional reagent by irradiation of coated surfaces through patterned masks. Glass and polystyrene served as substrates. Molecular orientation is asserted by inherently available or selectively introduced terminal thiol functions in F(ab') fragments and synthetic polypeptides, respectively.
NASA Technical Reports Server (NTRS)
Ota, K.; Conger, W. L.
1977-01-01
The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.
NASA Technical Reports Server (NTRS)
Baker, C. E.
1977-01-01
The program structure is presented. The activities of the thermochemical cycles program are grouped according to the following categories: (1) specific cycle development, (2) support research and technology, (3) cycle evaluation. Specific objectives and status of on-going activities are discussed. Chemical reaction series for the production of hydrogen are presented. Efficiency and economic evaluations are also discussed.
NASA Astrophysics Data System (ADS)
Zhong, S.; Leng, W.; Zhang, N.; McNamara, A. K.
2008-12-01
The long-wavelength structure for the present-day Earth's mantle is characterized by circum-Pacific subduction and the antipodal African and Pacific superplumes. The African and Pacific superplumes are anchored on two major thermochemical piles that extend from the core-mantle boundary (CMB) to possibly >500 km above CMB. These two superplumes are where most of large igneous provinces (LIPs) and plume-related volcanism are originated in the last 250 Ma. The thermochemical piles may provide distinct geochemical signatures observed in oceanic island basalts, although it remains controversial whether the piles consist of primordial mantle materials or recycled crust and lithosphere. Geodynamic modeling has demonstrated that the main structural features of the mantle including the circum-Pacific subduction, African and Pacific superplumes, and the thermochemical piles, are closely related to mantle convection associated with plate motion history for the last 120 Ma. However, outstanding questions remain. When did the African and Pacific superplumes and thermochemical piles start to take the current forms? How stable and stationary have they been in the mantle? How are they related to the observations of tectonics and volcanism priori to 120 Ma ago? Our recent studies on long-wavelength mantle convection and supercontinent cycles suggest that the African and Pacific superplumes and thermochemical piles are dynamic features and that they may move laterally in response to mantle flow associated with surface plate motion, such as past subduction and convergence between Laurentia and Gondwana. In particular, our studies suggest that the African superplume and pile did not form until Laurentia and Gondwana collided to form Pangea, while the Pacific anomaly may have been there for a longer time. Our results also suggest that, after lengthy convergence between Laurentia and Gondwana that pushed away the pile materials away from the African hemisphere, later subduction surrounding Pangea may not bring enough chemically dense mantle materials to form the African pile, if the pile consists of the primordial mantle, thus suggesting an origin of the recycled crust and lithosphere for the pile. While focusing on the African anomaly, we will also discuss potential ways to constrain the evolution of the Pacific superplume and pile.
The solvation of L-serine in mixtures of water with some aprotic solvents at 298.15 K
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2009-03-01
The integral enthalpies of solution Δsol H m of L-serine in mixtures of water with acetonitrile, 1,4-dioxane, dimethylsulfoxide (DMSO), and acetone were measured by solution calorimetry at organic component concentrations up to 0.31 mole fractions. The standard enthalpies of solution (Δsol H°), transfer (Δtr H°), and solvation (Δsolv H°) of L-serine from water into mixed solvents were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of aqueous-organic solvents contained extrema. The calculated enthalpy coefficients of pair interactions of the amino acid with cosolvent molecules were positive and increased in the series acetonitrile, 1,4-dioxane, DMSO, acetone. The results obtained were interpreted from the point of view of various types of interactions in solutions and the influence of the nature of organic solvents on the thermochemical characteristics of solutions.
The search for and analysis of direct samples of early Solar System aqueous fluids.
Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo
2017-05-28
We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).
Hugoniots of aerogels involving carbon and resorcinol formaldehyde
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrubesh, L H; Ree, F H; Schmidt, R D
1999-06-24
Recently, a first-order phase transition is predicted in liquid carbon using atomistic simulation and Brenner's bond order potential. There are also experimental data suggesting a possibility for a first-order phase transition. In light of this, a thermochemical equilibrium code (CHEQ) is used to provide guidance to experiments to find a liquid-liquid phase change in carbon foam and carbon-rich aerogel, resorcinol formaldehyde. Isotherms and Hugoniots were computed based on the previous analysis by van Thiel and Ree. The present calculations predict the liquid-liquid-graphite triple point to be at 5000 K and 5.2 GPa and its critical point to be at 6000more » K and 8.8 GPa. The present Hugoniot calculations suggest that the liquid-liquid phase transition may be detected by performing a shock experiment with initial density of approximately 0.15 gm/cm{sup 3}.« less
Numerical exploration of dissimilar supersonic coaxial jets mixing
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, P.; Chakraborty, Debasis
2015-06-01
Mixing of two coaxial supersonic dissimilar gases in free jet environment is numerically explored. Three dimensional RANS equations with a k-ε turbulence model are solved using commercial CFD software. Two important experimental cases (RELIEF experiments) representing compressible mixing flow phenomenon under scramjet operating conditions for which detail profiles of thermochemical variables are available are taken as validation cases. Two different convective Mach numbers 0.16 and 0.70 are considered for simulations. The computed growth rate, pitot pressure and mass fraction profiles for both these cases match extremely well with experimental values and results of other high fidelity numerical results both in far field and near field regions. For higher convective Mach number predicted growth rate matches nicely with empirical Dimotakis curve; whereas for lower convective Mach number, predicted growth rate is higher. It is shown that well resolved RANS calculation can capture the mixing of two supersonic dissimilar gases better than high fidelity LES calculations.
Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J
2016-12-15
Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency.
Sulfur Solubility In Silicate Melts: A Thermochemical Model
NASA Astrophysics Data System (ADS)
Moretti, R.; Ottonello, G.
A termochemical model for calculating sulfur solubility of simple and complex silicate melts has been developed in the framework of the Toop-Samis polymeric approach combined with a Flood - Grjotheim theoretical treatment of silicate slags [1,2]. The model allows one to compute sulfide and sulfate content of silicate melts whenever fugacity of gaseous sulphur is provided. "Electrically equivalent ion fractions" are needed to weigh the contribution of the various disproportion reactions of the type: MOmelt + 1/2S2 ,gas MSmelt+1/2O2 ,gas (1) MOmelt + 1/2S2 ,gas + 3/2O2 ,gas MSO4 ,melt (2) Eqs. 1 and 2 account for the oxide-sulfide and the oxide-sulfate disproportiona- tion in silicate melt. Electrically equivalent ion fractions are computed, in a fused salt Temkin notation, over the appropriate matrixes (anionic and cationic). The extension of such matrixes is calculated in the framework of a polymeric model previously developed [1,2,3] and based on a parameterization of acid-base properties of melts. No adjustable parameters are used and model activities follow the raoultian behavior implicit in the ion matrix solution of the Temkin notation. The model is based on a huge amount of data available in literature and displays a high heuristic capability with virtually no compositional limits, as long as the structural role assigned to each oxide holds. REFERENCES: [1] Ottonello G., Moretti R., Marini L. and Vetuschi Zuccolini M. (2001), Chem. Geol., 174, 157-179. [2] Moretti R. (2002) PhD Thesis, University of Pisa. [3] Ottonello G. (2001) J. Non-Cryst. Solids, 282, 72-85.
Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.
Puzzarini, Cristina
2011-12-28
Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.
Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu
2010-10-01
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.
Definitive Ideal-Gas Thermochemical Functions of the H216O Molecule
NASA Astrophysics Data System (ADS)
Furtenbacher, Tibor; Szidarovszky, Tamás; Hrubý, Jan; Kyuberis, Aleksandra A.; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Császár, Attila G.
2016-12-01
A much improved temperature-dependent ideal-gas internal partition function, Qint(T), of the H216O molecule is reported for temperatures between 0 and 6000 K. Determination of Qint(T) is principally based on the direct summation technique involving all accurate experimental energy levels known for H216O (almost 20 000 rovibrational energies including an almost complete list up to a relative energy of 7500 cm-1), augmented with a less accurate but complete list of first-principles computed rovibrational energy levels up to the first dissociation limit, about 41 000 cm-1 (the latter list includes close to one million bound rovibrational energy levels up to J = 69, where J is the rotational quantum number). Partition functions are developed for ortho- and para-H216O as well as for their equilibrium mixture. Unbound rovibrational states of H216O above the first dissociation limit are considered using an approximate model treatment. The effect of the excited electronic states on the thermochemical functions is neglected, as their contribution to the thermochemical functions is negligible even at the highest temperatures considered. Based on the high-accuracy Qint(T) and its first two moments, definitive results, in 1 K increments, are obtained for the following thermochemical functions: Gibbs energy, enthalpy, entropy, and isobaric heat capacity. Reliable uncertainties (approximately two standard deviations) are estimated as a function of temperature for each quantity determined. These uncertainties emphasize that the present results are the most accurate ideal-gas thermochemical functions ever produced for H216O. It is recommended that the new value determined for the standard molar enthalpy increment at 298.15 K, 9.904 04 ± 0.000 01 kJ mol-1, should replace the old CODATA datum, 9.905 ± 0.005 kJ mol-1.
NASA Astrophysics Data System (ADS)
Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu
2010-10-01
Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.
Cressman, Erik N K; Shenoi, Mithun M; Edelman, Theresa L; Geeslin, Matthew G; Hennings, Leah J; Zhang, Yan; Iaizzo, Paul A; Bischof, John C
2012-01-01
To investigate simultaneous and sequential injection thermochemical ablation in a porcine model, and compare them to sham and acid-only ablation. This IACUC-approved study involved 11 pigs in an acute setting. Ultrasound was used to guide placement of a thermocouple probe and coaxial device designed for thermochemical ablation. Solutions of 10 M acetic acid and NaOH were used in the study. Four injections per pig were performed in identical order at a total rate of 4 mL/min: saline sham, simultaneous, sequential, and acid only. Volume and sphericity of zones of coagulation were measured. Fixed specimens were examined by H&E stain. Average coagulation volumes were 11.2 mL (simultaneous), 19.0 mL (sequential) and 4.4 mL (acid). The highest temperature, 81.3°C, was obtained with simultaneous injection. Average temperatures were 61.1°C (simultaneous), 47.7°C (sequential) and 39.5°C (acid only). Sphericity coefficients (0.83-0.89) had no statistically significant difference among conditions. Thermochemical ablation produced substantial volumes of coagulated tissues relative to the amounts of reagents injected, considerably greater than acid alone in either technique employed. The largest volumes were obtained with sequential injection, yet this came at a price in one case of cardiac arrest. Simultaneous injection yielded the highest recorded temperatures and may be tolerated as well as or better than acid injection alone. Although this pilot study did not show a clear advantage for either sequential or simultaneous methods, the results indicate that thermochemical ablation is attractive for further investigation with regard to both safety and efficacy.
Methodology Report for H2SModel
2012-01-01
thermochemical) cal (thermochemical/ cm2) curie degree (angl e ) degree Fahrenheit electron volt erg erg/second foot foot- pound- force gal l... Dosimetry ) model developed by Asgharian ([7, 10]) . First, transport of H2S in the lung is modeled by the area-averaged convective-diffusion equation...performance. Technical Report DNA TR 85 52, Defense Nuclear Agency, Washington, D.C. , 1984. [10] Asgharian, B., et al. Multiple Path Particle Dosimetry
Nathaniel Anderson; J. Greg Jones; Deborah Page-Dumroese; Daniel McCollum; Stephen Baker; Daniel Loeffler; Woodam Chung
2013-01-01
Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or...
Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie; Olson, Peter
2018-04-01
The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.
Lignin structural alterations in thermochemical pretreatments with limited delignification
Pu, Yunqiao; Hu, Fan; Huang, Fang; ...
2015-08-02
Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less
Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.
Falter, Christoph; Pitz-Paal, Robert
2017-11-07
The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.
Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.
Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M
2016-03-21
The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.
Ezbiri, Miriam; Takacs, Michael; Stolz, Boris; Lungthok, Jeffrey; Steinfeld, Aldo
2017-01-01
Perovskites are attractive redox materials for thermo/electrochemical fuel synthesis. To design perovskites with balanced redox energetics for thermochemically splitting CO2, the activity of lattice oxygen vacancies and stability against crystal phase changes and detrimental carbonate formation are predicted for a representative range of perovskites by electronic structure computations. Systematic trends in these materials properties when doping with selected metal cations are described in the free energy range defined for isothermal and temperature-swing redox cycles. To confirm that the predicted materials properties root in the bulk chemical composition, selected perovskites are synthesized and characterized by X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis. On one hand, due to the oxidation equilibrium, none of the investigated compositions outperforms non-stoichiometric ceria – the benchmark redox material for CO2 splitting with temperature-swings in the range of 800–1500 °C. On the other hand, certain promising perovskites remain redox-active at relatively low oxide reduction temperatures at which ceria is redox-inactive. This trade-off in the redox energetics is established for YFeO3, YCo0.5Fe0.5O3 and LaFe0.5Ni0.5O3, identified as stable against phase changes and capable to convert CO2 to CO at 600 °C and 10 mbar CO in CO2, and to being decomposed at 1400 °C and 0.1 mbar O2 with an enthalpy change of 440–630 kJ mol–1 O2. PMID:29456856
Experimental aspects of the thermochemical conversion of solar energy - Decarbonation of CaCO3
NASA Astrophysics Data System (ADS)
Flamant, G.; Hernandez, D.; Bonet, C.; Traverse, J.-P.
1980-01-01
The feasibility of thermochemical conversion of concentrated solar energy is investigated. Consideration is given to heterogeneous systems in the range 500-1500 C. A reaction volume is on a laboratory scale about 30 cu cm. An experimental set-up selected is a fluid bed and a rotary kiln. An endothermal reaction, namely, decarbonation of CaCO3, is selected as a possible application for solar power plants.
Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review
Roeb, Martin; Neises, Martina; Monnerie, Nathalie; Call, Friedemann; Simon, Heike; Sattler, Christian; Schmücker, Martin; Pitz-Paal, Robert
2012-01-01
Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.
Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Gui, Yewei; Tang, Wei; Du, Yanxia; Liu, Lei; Xiao, Guangming; Wei, Dong
2018-06-01
This paper deals with the surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow. An interface condition with finite-rate thermochemistry was established to balance the three-dimensional Navier-Stokes solver and TPS thermal response solver, and a series of coupled simulations of chemical non-equilibrium aerothermodynamics and structure heat transfer with various surface catalycities were performed for hypersonic Mars entries. The analysis of surface thermochemistry reveals that the surface chemical reactions have great contribution to aerodynamic heating, and the temperature-dependence of finite-rate catalysis highly influences the evolution of the coupling aerodynamic heating in the coupling process. For fixed free stream parameters with proper catalytic excitation energy, a "leap" phenomenon of the TPS-coupled heat flux with the coupling time appears in the initial stage of the coupling process, due to the strong thermochemical effects on the TPS surface.
Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini
2015-04-01
The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.
Thermochemical conversion of microalgal biomass into biofuels: a review.
Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu
2015-05-01
Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1993-01-01
Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.
Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying
2011-09-28
The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.
Thermochemical water decomposition. [hydrogen separation for energy applications
NASA Technical Reports Server (NTRS)
Funk, J. E.
1977-01-01
At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.
Calculation of the recirculating compressible flow downstream a sudden axisymmetric expansion
NASA Technical Reports Server (NTRS)
Vandromme, D.; Haminh, H.; Brunet, H.
1988-01-01
Significant progress has been made during the last five years to adapt conventional Navier-Stokes solver for handling nonconservative equations. A primary type of application is to use transport equation turbulence models, but the extension is also possible for describing the transport of nonpassive scalars, such as in reactive media. Among others, combustion and gas dissociation phenomena are topics needing a considerable research effort. An implicit two step scheme based on the well-known MacCormack scheme has been modified to treat compressible turbulent flows on complex geometries. Implicit treatment of nonconservative equations (in the present case a two-equation turbulence model) opens the way to the coupled solution of thermochemical transport equations.
Assessment of analytical techniques for predicting solid propellant exhaust plumes
NASA Technical Reports Server (NTRS)
Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.
1977-01-01
The calculation of solid propellant exhaust plume flow fields is addressed. Two major areas covered are: (1) the applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size and particle size distributions, and (2) thermochemical modeling of the gaseous phase of the flow field. Comparisons of experimentally measured and analytically predicted data are made. The experimental data were obtained for subscale solid propellant motors with aluminum loadings of 2, 10 and 15%. Analytical predictions were made using a fully coupled two-phase numerical solution. Data comparisons will be presented for radial distributions at plume axial stations of 5, 12, 16 and 20 diameters.
Current evaluation of the tripropellant concept
NASA Technical Reports Server (NTRS)
Zurawski, R. L.
1986-01-01
An analytical study was conducted to determine the specific-impulse advantages of adding metals to conventional liquid-bipropellant systems. These tripropellant systems theoretically offer higher specific impulse and increased propellant density compared with bipropellant systems. Metals considered were Be, Li, and Al. Bipropellant systems were H2/O2, N2H4/N2O4, RP-1/O2, and H2/F2. Thermochemical calculations were performed for sea-level expansion from 6.895-MN/sq. m. (1000-psia) chamber pressure over a wide range of mixture ratios and propellant compositions. Three-dimensional plots characterize the specific impulse of each tripropellant system. Technology issues pertinent to metallized propellant systems are discussed.
Thermochemical Studies of Epoxides and Related Compounds
Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna
2013-01-01
Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaug, J M; Howard, W M; Fried, L E
2001-08-08
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition themore » kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Computational models are systematically improved with each addition of experimental data.« less
Calculation and synthesis of ZrC by CVD from ZrCl4-C3H6-H2-Ar system with high H2 percentage
NASA Astrophysics Data System (ADS)
Zhu, Yan; Cheng, Laifei; Ma, Baisheng; Gao, Shuang; Feng, Wei; Liu, Yongsheng; Zhang, Litong
2015-03-01
A thermodynamic calculation about the synthesis of ZrC from the ZrCl4-C3H6-H2-Ar system with high percentage of H2 was performed using the FactSage thermochemical software. According to the calculation, ZrC coating was synthesized on graphite substrates and carbon fibers by a low pressure chemical vapor deposition (LPCVD) process, and growth rate of the ZrC coating as a function of temperature was investigated. The surface diagrams of condensed-phases in this system were expressed as the functions of the deposition temperature, total pressure and reactant ratios of ZrCl4/(ZrCl4 + C3H6), H2/(ZrCl4 + C3H6), and the yield of the products was determined by the diagrams. A smooth and dense ZrC coating could be synthesized under the instruction of the calculated parameters. The morphologies of the ZrC coatings were significantly affected by temperature and gases flux. The deposition temperature is much lower than that from the ZrCl4-CH4-H2-Ar system.
Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J
2017-10-12
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both Ḣ atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.
Structure of nanoporous carbon materials for supercapacitors
NASA Astrophysics Data System (ADS)
Volperts, A.; Mironova-Ulmane, N.; Sildos, I.; Vervikishko, D.; Shkolnikov, E.; Dobele, G.
2012-08-01
Activated carbons with highly developed porous structure and nanosized pores (8 - 11 Å) were prepared from alder wood using thermochemical activation method with sodium hydroxide. Properties of the obtained activated carbons were examined by benzene and nitrogen sorption, X-Ray diffraction and Raman spectroscopy. Tests of activated carbons as electrodes in supercapacitors were performed as well. It was found that specific surface area of above mentioned activated carbons was 1800 m2/g (Dubinin - Radushkevich). Raman spectroscopy demonstrated the presence of ordered and disordered structures of graphite origin. The performance of activated carbons as electrodes in supercapacitors have shown superior results in comparison with electrodes made with commercial carbon tissues.
One- or two-electron water oxidation, hydroxyl radical, or H 2O 2 evolution
Siahrostami, Samira; Li, Guo -Ling; Viswanathan, Venkatasubramanian; ...
2017-02-23
Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H 2O 2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O 2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H 2O 2, and O 2.
Single-crystalline cubic structured InP nanosprings
NASA Astrophysics Data System (ADS)
Shen, G. Z.; Bando, Y.; Zhi, C. Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D.
2006-06-01
Cubic structured nanosprings, InP nanosprings, have been synthesized via a simple thermochemical process using InP and ZnS as the source materials. Each InP nanospring is formed by rolling up a single InP nanobelt with the growth direction along the ⟨111⟩ orientation. The formation of these novel nanostructures is mainly attributed to the minimization of the electrostatic energy due to the polar charges on the ±(002) side surfaces of cubic InP. Cathodoluminescence properties were also studied, which reveal that the InP nanosprings have three emission bands centered at ˜736, ˜920, and ˜980nm.
Development of efficient, integrated cellulosic biorefineries : LDRD final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.
2010-09-01
Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material inmore » thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.« less
Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.
da Silva, Gabriel; Kim, Chol-Han; Bozzelli, Joseph W
2006-06-29
Vinyl alcohols (enols) have been discovered as important intermediates and products in the oxidation and combustion of hydrocarbons, while methyl vinyl ethers are also thought to occur as important combustion intermediates. Vinyl alcohol has been detected in interstellar media, while poly(vinyl alcohol) and poly(methyl vinyl ether) are common polymers. The thermochemical property data on these vinyl alcohols and methyl vinyl ethers is important for understanding their stability, reaction paths, and kinetics in atmospheric and thermal hydrocarbon-oxygen systems. Enthalpies , entropies , and heat capacities (C(p)()(T)) are determined for CH(2)=CHOH, C(*)H=CHOH, CH(2)=C(*)OH, CH(2)=CHOCH(3), C(*)H=CHOCH(3), CH(2)=C(*)OCH(3), and CH(2)=CHOC(*)H(2). Molecular structures, vibrational frequencies, , and C(p)(T) are calculated at the B3LYP/6-31G(d,p) density functional calculation level. Enthalpies are also determined using the composite CBS-Q, CBS-APNO, and G3 methods using isodesmic work reactions to minimize calculation errors. Potential barriers for internal rotors are calculated at the B3LYP/6-31G(d,p) level and used to determine the hindered internal rotational contributions to entropy and heat capacity. The recommended ideal gas phase values calculated in this study are the following (in kcal mol(-1)): -30.0, -28.9 (syn, anti) for CH(2)=CHOH; -25.6, -23.9 for CH(2)=CHOCH(3); 31.3, 33.5 for C(*)H=CHOH; 27.1 for anti-CH(2)=C(*)OH; 35.6, 39.3 for C(*)H=CHOCH(3); 33.5, 32.2 for CH(2)=C(*)OCH(3); 21.3, 22.0 for CH(2)=CHOC(*)H(2). Bond dissociation energies (BDEs) and group additivity contributions are also determined. The BDEs reveal that the O-H, O-CH(3), C-OH, and C-OCH(3) bonds in vinyl alcohol and methyl vinyl ether are similar in energy to those in the aromatic molecules phenol and methyl phenyl ether, being on average around 3 kcal mol(-1) weaker in the vinyl systems. The keto-enol tautomerization enthalpy for the interconversion of vinyl alcohol to acetaldehyde is determined to be -9.7 kcal mol(-1), while the activation energy for this reaction is calculated as 55.9 kcal mol(-1); this is the simplest keto-enol tautomerization and is thought to be important in the reactions of vinyl alcohol. Formation of the formyl methyl radical (vinoxy radical/vinyloxy radical) from both vinyl alcohol and methyl vinyl ether is also shown to be important, and its reactions are discussed briefly.
Enthalpies of Formation of Hydrazine and Its Derivatives.
Dorofeeva, Olga V; Ryzhova, Oxana N; Suchkova, Taisiya A
2017-07-20
Enthalpies of formation, Δ f H 298 ° , in both the gas and condensed phase, and enthalpies of sublimation or vaporization have been estimated for hydrazine, NH 2 NH 2 , and its 36 various derivatives using quantum chemical calculations. The composite G4 method has been used along with isodesmic reaction schemes to derive a set of self-consistent high-accuracy gas-phase enthalpies of formation. To estimate the enthalpies of sublimation and vaporization with reasonable accuracy (5-20 kJ/mol), the method of molecular electrostatic potential (MEP) has been used. The value of Δ f H 298 ° (NH 2 NH 2 ,g) = 97.0 ± 3.0 kJ/mol was determined from 75 isogyric reactions involving about 50 reference species; for most of these species, the accurate Δ f H 298 ° (g) values are available in Active Thermochemical Tables (ATcT). The calculated value is in excellent agreement with the reported results of the most accurate models based on coupled cluster theory (97.3 kJ/mol, the average of six calculations). Thus, the difference between the values predicted by high-level theoretical calculations and the experimental value of Δ f H 298 ° (NH 2 NH 2 ,g) = 95.55 ± 0.19 kJ/mol recommended in the ATcT and other comprehensive reference sources is sufficiently large and requires further investigation. Different hydrazine derivatives have been also considered in this work. For some of them, both the enthalpy of formation in the condensed phase and the enthalpy of sublimation or vaporization are available; for other compounds, experimental data for only one of these properties exist. Evidence of accuracy of experimental data for the first group of compounds was provided by the agreement with theoretical Δ f H 298 ° (g) value. The unknown property for the second group of compounds was predicted using the MEP model. This paper presents a systematic comparison of experimentally determined enthalpies of formation and enthalpies of sublimation or vaporization with the results of calculations. Because of relatively large uncertainty in the estimated enthalpies of sublimation, it was not always possible to evaluate the accuracy of the experimental values; however, this model allowed us to detect large errors in the experimental data, as in the case of 5,5'-hydrazinebistetrazole. The enthalpies of formation and enthalpies of sublimation or vaporization have been predicted for the first time for ten hydrazine derivatives with no experimental data. A recommended set of self-consistent experimental and calculated gas-phase enthalpies of formation of hydrazine derivatives can be used as reference Δ f H 298 ° (g) values to predict the enthalpies of formation of various hydrazines by means of isodesmic reactions.
NASA Astrophysics Data System (ADS)
Sıdır, Yadigar Gülseven; Sıdır, İsa
2013-08-01
In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.
NASA Astrophysics Data System (ADS)
Sibrant, A.; Davaille, A.; Marques, F. O.; Hildenbrand, A.
2014-12-01
Born 200 Ma ago, the central Atlantic presents nowadays a large low seismic velocity anomaly in the lower mantle, a cluster of "hot" spots (Azores, Cape Verde, Madeira, Canary, Great Meteor), a mid-ocean ridge, and a triple junction located in the Azores. We carried out laboratory experiments to examine the possible links between mantle instabilities, plate boundary migration, and the development of the volcanism on various spatial and temporal scales. Coupled with the current knowledge of these volcanic areas (tomography, tectonics and K/Ar dating), our fluid mechanics experiments suggest that: (1) The Azores, as Canary, Cape Verde, Madeira Islands and Great Meteor seamounts might be the surface expression of a cluster of mantle instabilities rising from the top of a large thermochemical dome located in the lower mantle. However, such secondary plumes present a strong time-dependence 5-40 Myr time scale. (2) These secondary instabilities could be sufficiently weak to adapt their motions to the pre-existing force balance, and morphology and mechanical properties of the lithosphere. Based on current knowledge and modelling, we present a scenario of the Central Atlantic area evolution in the last 100 Ma combining a triple junction and decompression melting-generated buoyant material (i.e. such in volatiles and/or temperature) under a cooling and thickening lithosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.
We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximatelymore » of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.« less
Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jun; Shan, Shiyao; Yang, Lefu
2012-12-12
Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitormore » the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.« less
Thermochemical Constraints of the Old Faithful Model for Radiation-Driven Cryovolcanism on Enceladus
NASA Astrophysics Data System (ADS)
Cooper, Paul; Franzel, C. J.; Cooper, J. F.
2010-10-01
We have used a combination of thermochemical data, plume composition, and the estimated surface power flux to constrain the Old Faithful model for radiation-driven cryovolcanism on Enceladus (1). This model proposes episodic cryovolcanic activity brought about by the chemical reaction between reductants that are primordially present within Enceladus's ice, and oxidants produced by energetic particles impacting the icy surface. Assuming no limit on accumulation of oxidants in the ice crust in the billions of years since formation and subsequent magnetospheric irradiation of Enceladus, this new work extends (1) by examining limits on activity from reductant abundances. Our calculations show that an almost negligible amount of methane or ammonia, compared with the mass of Enceladus, would potentially be needed to account for the surface power flux of the gas plume over 10 million years of activity, consistent with geologic models for episodic overturn of the ice crust and heat flow (2). Limiting the permanently ejected fluid mass during this time by the volume of the topographical depression in the SPT of Enceladus, we have constrained the number ratio of reductant-to-water. Results are in support of our model. In addition, using the measured abundances of CO2 and N2 (products of CH4 and NH3 oxidation) in the plume, we have further constrained the amounts of CH4 and NH3 that could be present and these are also in line with our predictions. These calculations fully support the Old Faithful model (1). 1) Cooper, J. F., Cooper, P. D. Sittler, E. C., Sturner, S. J., Rymer, A. M., "Old Faithful Model for Radiolytic Gas-Driven Cryovolcanism at Enceladus", Planet. Space Sci., 57, 1607-1620,2009. 2) O'Neill, C., F. Nimmo, "The Role of Episodic Overturn in Generating the Surface Geology and Heat Flow on Enceladus, Nature Geosci., 3, 88-91. 2010.
Xia, Xinyu; Ellis, Geoffrey S.; Ma, Qisheng; Tang, Yongchun
2014-01-01
The possibility of autocatalysis during thermochemical sulfate reduction (TSR) by gaseous hydrocarbons was investigated by examination of previously reported laboratory and field data. This reaction was found to be a kinetically controlled non-autocatalytic process, and the apparent lack of autocatalysis is thought to be due to the absence of the required intermediate species. Kinetic parameters for chemical and carbon isotopic fractionations of gaseous hydrocarbons affected by TSR were calculated and found to be consistent with experimentally derived values for TSR involving long-chain hydrocarbons. Model predictions based on these kinetic values indicate that TSR by gaseous hydrocarbon requires high-temperature conditions. The oxidation of C2–5 hydrocarbons by sulfate reduction is accompanied by carbon isotopic fractionation with the residual C2–5 hydrocarbons becoming more enriched in 13C. Kinetic parameters were calculated for the stable carbon isotopic fractionation of gaseous hydrocarbons that have experienced TSR. Model predictions based on these kinetics indicate that it may be difficult to distinguish the effects of TSR from those of thermal maturation at lower levels of hydrocarbon oxidation; however, unusually heavy δ13C2+ values (>−10‰) can be diagnostic of high levels of conversion (>50%). Stoichiometric and stable carbon isotopic data show that methane is stable under the investigated reaction conditions and is likely a product of TSR by other gaseous hydrocarbons rather than a significant reactant. These results indicate that the overall TSR reaction mechanism for oxidation of organic substrates containing long-chain hydrocarbons involves three distinct phases as follows: (1) an initial slow and non-autocatalytic stage characterized by the reduction of reactive sulfate by long-chain saturated hydrocarbons; (2) a second autocatalytic reaction phase dominated by reactions involving reduced sulfur species and partially oxidized hydrocarbons; (3) and a final, or late-stage, TSR reaction in which hydrocarbon oxidation continues at a slower rate via the non-autocatalytic reduction of sulfate by gaseous hydrocarbons.
Mechanical and thermal properties of bulk ZrB2
NASA Astrophysics Data System (ADS)
Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke
2015-12-01
ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.
Snitsiriwat, Suarwee; Asatryan, Rubik; Bozzelli, Joseph W
2011-12-01
Structures, enthalpy (Δ(f)H°(298)), entropy (S°(T)), and heat capacity (C(p)(T)) are determined for a series of nitrocarbonyls, nitroolefins, corresponding nitrites, and their carbon centered radicals using the density functional B3LYP and composite CBS-QB3 calculations. Enthalpies of formation (Δ(f)H°(298)) are determined at the B3LYP/6-31G(d,p), B3LYP/6-31+G(2d,2p), and composite CBS-QB3 levels using several work reactions for each species. Entropy (S) and heat capacity (C(p)(T)) values from vibration, translational, and external rotational contributions are calculated using the rigid-rotor-harmonic-oscillator approximation based on the vibration frequencies and structures obtained from the density functional studies. Contribution to Δ(f)H(T), S, and C(p)(T) from the analysis on the internal rotors is included. Recommended values for enthalpies of formation of the most stable conformers of nitroacetone cc(═o)cno2, acetonitrite cc(═o)ono, nitroacetate cc(═o)no2, and acetyl nitrite cc(═o)ono are -51.6 kcal mol(-1), -51.3 kcal mol(-1), -45.4 kcal mol(-1), and -58.2 kcal mol(-1), respectively. The calculated Δ(f)H°(298) for nitroethylene c═cno2 is 7.6 kcal mol(-1) and for vinyl nitrite c═cono is 7.2 kcal mol(-1). We also found an unusual phenomena: an intramolecular transfer reaction (isomerization) with a low barrier (3.6 kcal mol(-1)) in the acetyl nitrite. The NO of the nitrite (R-ONO) in CH(3)C(═O')ONO moves to the C═O' oxygen in a motion of a stretching frequency and then a shift to the carbonyl oxygen (marked as O' for illustration purposes). © 2011 American Chemical Society
Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter
Klausner, James F.; Petrasch, Joerg
2017-06-06
A solar thermochemical reactor contains an outer member, an inner member disposed within an outer member, wherein the outer member surrounds the inner member and wherein the outer member has an aperture for receiving solar radiation. An inner cavity and an outer cavity are formed by the inner member and outer member and a reactive material that is capable of being magnetically stabilized is disposed in the outer cavity between the inner member and the outer member.
Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, R.W.
1982-11-01
This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)
Paye, Julie M. D.; Guseva, Anna; Hammer, Sarah K.; ...
2016-01-12
Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. Thus, to further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.
High Efficiency Solar Thermochemical Reactor for Hydrogen Production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Anthony H.
2017-09-30
This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.
Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2.
Hudzik, Jason M; Bozzelli, Joseph W
2017-10-05
Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol -1 , due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol -1 below the 2MF5j + O 2 reactants; this is 4-5 kcal mol -1 deeper than that of phenyl and vinyl radical plus O 2 , with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH ° f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.
Thermochemical properties of nanometer CL-20 and PETN fabricated using a mechanical milling method
NASA Astrophysics Data System (ADS)
Song, Xiaolan; Wang, Yi; An, Chongwei
2018-06-01
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and pentaerythritol tetranitrate (PETN), with mean sizes of 73.8 nm and 267.7 nm, respectively, were fabricated on a high-energy ball-mill. Scanning electron microscope (SEM) analysis was used to image the micron-scale morphology of nano-explosives, and the particle size distribution was calculated using the statistics of individual particle sizes obtained from the SEM images. Analyses, such as X-ray diffractometer (XRD), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS), were also used to confirm whether the crystal phase, molecular structure, and surface elements changed after a long-term milling process. The results were as expected. Thermal analysis was performed at different heating rates. Parameters, such as the activation energy (ES), activation enthalpy (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), and critical temperature of thermal explosion (Tb), were calculated to determine the decomposition courses of the explosives. Moreover, the thermal decomposition mechanisms of nano CL-20 and nano PETN were investigated using thermal-infrared spectrometry online (DSC-IR) analysis, by which their gas products were also detected. The results indicated that nano CL-20 decomposed to CO2 and N2O and that nano PETN decayed to NO2, which implied a remarkable difference between the decomposition mechanisms of the two explosives. In addition, the mechanical sensitivities of CL-20 and PETN were tested, and the results revealed that nano-explosives were more insensitive than raw ones, and the possible mechanism for this was discussed. Thermal sensitivity was also investigated with a 5 s bursting point test, from which the 5 s bursting point (T5s) and the activation of the deflagration were obtained.
NASA Technical Reports Server (NTRS)
Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.
1975-01-01
A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.
Detonation product EOS studies: Using ISLS to refine CHEETAH
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Fried, Larry; Hansen, Donald
2001-06-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a suite of non-ideal simple fluids and fluid mixtures. Impulsive Stimulated Light Scattering conducted in the diamond-anvil cell offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model CHEETAH. Computational models are systematically improved with each addition of experimental data. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Detonation Product EOS Studies: Using ISLS to Refine Cheetah
NASA Astrophysics Data System (ADS)
Zaug, J. M.; Howard, W. M.; Fried, L. E.; Hansen, D. W.
2002-07-01
Knowledge of an effective interatomic potential function underlies any effort to predict or rationalize the properties of solids and liquids. The experiments we undertake are directed towards determination of equilibrium and dynamic properties of simple fluids at densities sufficiently high that traditional computational methods and semi-empirical forms successful at ambient conditions may require reconsideration. In this paper we present high-pressure and temperature experimental sound speed data on a simple fluid, methanol. Impulsive Stimulated Light Scattering (ISLS) conducted on diamond-anvil cell (DAC) encapsulated samples offers an experimental approach to determine cross-pair potential interactions through equation of state determinations. In addition the kinetics of structural relaxation in fluids can be studied. We compare our experimental results with our thermochemical computational model Cheetah. Experimentally grounded computational models provide a good basis to confidently understand the chemical nature of reactions at extreme conditions.
Materials for engine applications above 3000 deg F: An overview
NASA Technical Reports Server (NTRS)
Shaw, Nancy J.; Dicarlo, James A.; Jacobson, Nathan S.; Levine, Stanley R.; Nesbitt, James A.; Probst, Hubert B.; Sanders, William A.; Stearns, Carl A.
1987-01-01
Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites.
A Study of Upgraded Phenolic Curing for RSRM Nozzle Rings
NASA Technical Reports Server (NTRS)
Smartt, Ziba
2000-01-01
A thermochemical cure model for predicting temperature and degree of cure profiles in curing phenolic parts was developed, validated and refined over several years. The model supports optimization of cure cycles and allows input of properties based upon the types of material and the process by which these materials are used to make nozzle components. The model has been refined to use sophisticated computer graphics to demonstrate the changes in temperature and degree of cure during the curing process. The effort discussed in the paper will be the conversion from an outdated solid modeling input program and SINDA analysis code to an integrated solid modeling and analysis package (I-DEAS solid model and TMG). Also discussed will be the incorporation of updated material properties obtained during full scale curing tests into the cure models and the results for all the Reusable Solid Rocket Motor (RSRM) nozzle rings.
Hwang, Hyewon; Oh, Shinyoung; Cho, Tae-Su; Choi, In-Gyu; Choi, Joon Weon
2013-12-01
TGA results indicated that the maximum decomposition temperature of the biomass decreased from 373.9 to 359.0°C with increasing potassium concentration. For fast pyrolysis, char yield of potassium impregnated biomass doubled regardless of pyrolysis temperature compared to demineralized one. The presence of potassium also affected bio-oil properties. Water content increased from 14.4 to 19.7 wt% and viscosity decreased from 34 to 16.2 cSt, but the pH value of the bio-oil remained stable. Gas chromatography/mass spectroscopy (GC/MS) analysis revealed that potassium promoted thermochemical reactions, thus causing a decrease of levoglucosan and an increase of small molecules and lignin-derived phenols in bio-oil. Additionally, various forms of aromatic hydrocarbons, probably derived from lignins, were detected in non-condensed pyrolytic gas fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan
2013-02-01
Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.
Solar hydrogen production with cerium oxides thermochemical cycle
NASA Astrophysics Data System (ADS)
Binotti, Marco; Di Marcoberardino, Gioele; Biassoni, Mauro; Manzolini, Giampaolo
2017-06-01
This paper discusses the hydrogen production using a solar driven thermochemical cycle. The thermochemical cycle is based on nonstoichiometric cerium oxides redox and the solar concentration system is a solar dish. Detailed optical and redox models were developed to optimize the hydrogen production performance as function of several design parameters (i.e. concentration ratio, reactor pressures and temperatures) The efficiency of the considered technology is compared against two commercially available technologies namely PV + electrolyzer and Dish Stirling + electrolyzer. Results show that solar-to-fuel efficiency of 21.2% can be achieved at design condition assuming a concentration ratio around 5000, reduction and oxidation temperatures of 1500°C and 1275 °C. When moving to annual performance, the annual yield of the considered approach can be as high as 16.7% which is about 43% higher than the best competitive technology. The higher performance implies that higher installation costs around 40% can be accepted for the innovative concept to achieve the same cost of hydrogen.
Thermochemical hydrogen production based on magnetic fusion
NASA Astrophysics Data System (ADS)
Krikorian, O. H.; Brown, L. C.
Preliminary results of a DoE study to define the configuration and production costs for a Tandem Mirror Reactor (TMR) heat source H2 fuel production plant are presented. The TMR uses the D-T reaction to produce thermal energy and dc electrical current, with an Li blanket employed to breed more H-3 for fuel. Various blanket designs are being considered, and the coupling of two of them, a heat pipe blanket to a Joule-boosted decomposer, and a two-temperature zone blanket to a fluidized bed decomposer, are discussed. The thermal energy would be used in an H2SO4 thermochemical cycler to produce the H2. The Joule-boosted decomposer, involving the use of electrically heated commercial SiC furnace elements to transfer process heat to the thermochemical H2 cycle, is found to yield H2 fuel at a cost of $12-14/GJ, which is the projected cost of fossil fuels in 30-40 yr, when the TMR H2 production facility would be operable.
Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko
2017-06-01
In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Equations of state for explosive detonation products: The PANDA model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerley, G.I.
1994-05-01
This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition ofmore » the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.« less
High-level ab initio enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan.
Feller, David; Simmie, John M
2012-11-29
A high-level ab initio thermochemical technique, known as the Feller-Petersen-Dixon method, is used to calculate the total atomization energies and hence the enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan itself as a means of rationalizing significant discrepancies in the literature. In order to avoid extremely large standard coupled cluster theory calculations, the explicitly correlated CCSD(T)-F12b variation was used with basis sets up to cc-pVQZ-F12. After extrapolating to the complete basis set limit and applying corrections for core/valence, scalar relativistic, and higher order effects, the final Δ(f)H° (298.15 K) values, with the available experimental values in parentheses are furan -34.8 ± 3 (-34.7 ± 0.8), 2-methylfuran -80.3 ± 5 (-76.4 ± 1.2), and 2,5-dimethylfuran -124.6 ± 6 (-128.1 ± 1.1) kJ mol(-1). The theoretical results exhibit a compelling internal consistency.
Ahu Akin, F; Ree, Jongbaik; Ervin, Kent M; Kyu Shin, Hyung
2005-08-08
The energetics and dynamics of collision-induced dissociation of O2- with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O2- bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of ArXe to the molecular axis of O2-, while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects.
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph
2012-04-12
Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.
Exoplanet Atmospheres: From Light-Curve Analyses to Radiative-Transfer Modeling
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Harrington, Joseph; Blecic, Jasmina; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Foster, Andrew S.; Loredo, Thomas J.
2015-01-01
Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the small planet-to-star constrast ratios demand a meticulous data analysis, and the limited available spectral bands can further restrain constraints, a Bayesian approach can robustly reveal what constraints can we set, given the data.We review the main aspects considered during the analysis of Spitzer time-series data by our group with an aplication to WASP-8b and TrES-1. We discuss the applicability and limitations of the most commonly used correlated-noise estimators. We describe our open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART calculates the planetary emission or transmission spectrum by solving a 1D line-by-line radiative-transfer equation. The generated spectra are integrated over determined bandpasses for comparison to the data. Coupled to our Multi-core Markov-chain Monte Carlo (MC3) statistical package, BART constrains the temperature profile and chemical abundances in the planet's atmosphere. We apply the BART retrieval code to the HD 209458b data set to estimate the planet's temperature profile and molecular abundances.This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Soliman, H S; Eid, Kh M; Ali, H A M; Atef, S M; El-Mansy, M A M
2012-11-01
In the present work, a combined experimental and computational study for the optimized molecular structural parameters, FT-IR spectra, thermo-chemical parameters, total dipole moment and HOMO-LUMO energy gap for 2-chloro-5-(2,5-dimethoxy-benzylidene)-1,3-diethyl-dihydro-pyrimidine-4,6(1H,5H)-dione have been investigated using B3LYP/6-311G basis set. Our calculated results have showed that the investigated compound possesses a dipole moment of 4.9 Debye and HOMO-LUMO energy gap of 3 eV which indicate high recommendations for photovoltaic devices fabrication. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Ruscic, Branko
2015-03-31
Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE 298) and bond dissociation energies at 0 K (D 0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CH n, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C 2H n, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHmore » n, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO 2 and H 2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.« less
NASA Astrophysics Data System (ADS)
Bourgoin-Voillard, Sandrine; Fournier, Françoise; Afonso, Carlos; Zins, Emilie-Laure; Jacquot, Yves; Pèpe, Claude; Leclercq, Guy; Tabet, Jean-Claude
2012-12-01
Numerous studies have highlighted the role of the proton donor characteristics of the phenol group of 17β-estradiol (E2) in its association with the estrogen receptor alpha (ERα). Since the substitutions at position C(11) have been reported to modulate this association, we hypothesized that such substitutions may modify the phenol acidity. Hence, phenol gas-phase acidity of nine C(11)-substituted E2-derivatives were evaluated using the extended Cooks' kinetic method, which is a method widely used to determine thermochemical properties by mass spectrometry. To enhance accuracy in data collection we recorded data from several instruments, including quadrupole ion trap, triple quadrupole, and hybrid QqTOF. Indeed, we report for the first time the use of the QqTOF instrument to provide a novel means to improve data accuracy by giving access to an intermediate effective temperature range. All experimental gas-phase acidity values were supported by theoretical calculations. Our results confirmed the ability of distant substituents at C(11) to modulate the phenol acidity through electrostatic interactions, electron withdrawing inductive effects, and mesomeric effects. However, no relationship was found between the phenol gas-phase acidity of investigated steroids and their binding affinity for ERα assessed in solution. Thus, our results highlight that the intrinsic properties of the hormone do not influence sufficiently the stabilization of the hormone/ERα complex. It is more likely that such stabilization would be more related to factors depending on the environment within the binding pocket such as hydrophobic, steric as well as direct intermolecular electrostatic effects between ERα residues and the substituted steroidal estrogens.
Behavior of graphite under heat load and in contact with a hydrogen plasma
NASA Astrophysics Data System (ADS)
Bohdansky, J.; Croessmann, C. D.; Linke, J.; McDonald, J. M.; Morse, D. H.; Pontau, A. E.; Watson, R. D.; Whitley, J. B.; Goebel, D. M.; Hirooka, Y.; Leung, K.; Conn, R. W.; Roth, J.; Ottenberger, W.; Kotzlowski, H. E.
1987-05-01
Graphite is extensively used in large tokamaks today. In these machines the material is exposed to vacuum, to intense heat loads, and to the edge plasma. The use of graphite in such machines, therefore, depends on the outgassing behavior, the heat shock resistance, and thermochemical properties in a hydrogen plasma. Investigations of these properties made at different laboratories are described here. Experiments conducted at Sandia National Laboratories (SNL), Livermore, and the Max-Planck-Institut für Plasmaphysik (IPP) in Garching showed that the outgassing behavior of fine-grain reactor-grade graphite and carbon fiber composites depends on the pretreatment (manufacturing and/or storage). However, after proper outgassing the samples tested behave similarly in the case of fine-grain graphite, but the outgassing remains high for the carbon fiber composites. Heat shock tests have been made with the Electron Beam Test System (EBTS) at SNL, Albuquerque. Directly cooled graphite samples (FE 159 graphite brazed onto Mo tubes) showed no failure at a heat load of 700 W/cm 2, 20 s; or 10 kW, 1 s. Thermal erosion due to sublimination and particle emission from the graphite surface was observed. This effect is related to the surface temperature and becomes significant at temperatures above 2500°K. Fourteen different types of graphite were tested; the main differences among these samples were the different surface temperatures obtained under the same heating conditions. Cracking due to heat shocks was observed in some of the samples, but none of the carbon fiber composites failed. Thermochemical properties have been tested in the PISCES plasma generator at UCLA for ion energies of around 100 eV. The formation of C-H compounds was observed spectroscopically at sample temperatures of around 600°C. However, this chemical reaction did not lead to erosion as observed in beam experiments but to a drastic change of the surface structure due to redeposition. Carbon-hydrogen lines were still observed at sample temperatures of around 100°C. Under these conditions the erosion yield is high and in agreement with those measured in beam experiments.
Lovestead, Tara M.; Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.
2018-01-01
Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content “best case” JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content “worst case” JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight – mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, Tk and Th, provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency. PMID:29706688
Robie, Richard A.; Bin, Zhao; Hemingway, Bruce S.; Barton, Mark D.
1987-01-01
Between 300 and 1000 K the molar heat capacity of andradite can be represented by the equation Cop,m = 809.24 - 7.025 × 10−2T− 7.403 × 103T−0.5 − 6.789 × 105T−2. We have also used our thermochemical data for andradite to estimate the Gibbs free energy of formation of hedenbergite (CaFeSi2O6) for which we obtained ΔfGom (298.15 K) = −2674.3 ± 5.8 kJ/mol.
Morphology and microhardness of TiC coatings on titanium treated with high-frequency currents
NASA Astrophysics Data System (ADS)
Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Atkin, Vsevolod S.; Galushka, Viktor V.; Zakharevich, Andrey M.; Skaptsov, Alexander A.
2018-04-01
The treatment with high frequency currents (HFC) is traditionally used to improve the mechanical properties of metal products, in particular hardness and wear resistance. A new method of carburization of titanium samples in a solid carburizer using HFC is proposed in the work. The temperature of the carburization is characterized by a wide range from 1000 to 1400 °C. As a result of thermochemical treatment, a hard coating of TiC (H ≥ 20 GPa) with a microstructure (d = 7-14 μm) consisting of nanoparticles (d = 10-12 nm) is formed on the titanium surface. These coatings are widely used in friction pairs for various purposes, including machinery, instrumentation and medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, H.L.
Much of the polymer composites industry is built around the thermochemical conversion of raw material into useful composites. The raw materials (molding compound, prepreg) often are made up of thermosetting resins and small fibers or particles. While this conversion can follow a large number of paths, only a few paths are efficient, economical and lead to desirable composite properties. Processing instrument (P/I) technology enables a computer to sense and interpret changes taking place during the cure of prepreg or molding compound. P/I technology has been used to make estimates of gel time and cure time, thermal diffusivity measurements and transitionmore » temperature measurements. Control and sensing software is comparatively straightforward. The interpretation of results with appropriate software is under development.« less
NASA Astrophysics Data System (ADS)
German, Ernst D.; Sheintuch, Moshe
2017-02-01
Microkinetic models of methane steam reforming (MSR) over bare platinum and rhodium (111) surfaces are analyzed in present work using calculated rate constants. The individual rate constants are classified into three different sets: (i) rate constants of adsorption and desorption steps of CH4, H2O, CO and of H2; (ii) rate constants of dissociation and formation of A-H bonds (A = C, O, and H), and (iii) rate constants of dissociation and formation of C-O bond. The rate constants of sets (i) and (iii) are calculated using transition state theory and published thermochemical data. The rate constants of H-dissociation reactions (set (ii)) are calculated in terms of a previously-developed approach that accounts for thermal metal lattice vibrations and for H tunneling through a potential barrier of height which depends on distance of AH from a surface. Pre-exponential factors of several group (ii) steps were calculated to be usually lower than the traditional kBT/h due to tunneling effect. Surface composition and overall MSR rates over platinum and rhodium surfaces are compared with those over nickel surface showing that operating conditions strongly affect on the activity order of the catalysts.
Mathematical Models of Human Hematopoiesis Following Acute Radiation Exposure
2014-05-01
Agency 8725 John J . Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA...eV) 1.602 177 × 10–19 joule ( J ) erg 1 × 10–7 joule ( J ) kiloton (kT) (TNT equivalent) 4.184 × 1012 joule ( J ) British thermal unit (Btu...thermochemical) 1.054 350 × 103 joule ( J ) foot-pound-force (ft lbf) 1.355 818 joule ( J ) calorie (cal) (thermochemical) 4.184 joule ( J ) Pressure
Thermochemical energy storage for a lunar base
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Mckissock, Barbara I.; Difilippo, Frank
1992-01-01
A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.
The applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.
1990-01-01
A review of the applications of chemical thermodynamics and chemical kinetics to planetary atmospheres research during the past four decades is presented with an emphasis on chemical equilibrium models and thermochemical kinetics. Several current problems in planetary atmospheres research such as the origin of the atmospheres of the terrestrial planets, atmosphere-surface interactions on Venus and Mars, deep mixing in the atmospheres of the gas giant planets, and the origin of the atmospheres of outer planet satellites all require laboratory data on the kinetics of thermochemical reactions for their solution.
Thermochemical water decomposition processes
NASA Technical Reports Server (NTRS)
Chao, R. E.
1974-01-01
Thermochemical processes which lead to the production of hydrogen and oxygen from water without the consumption of any other material have a number of advantages when compared to other processes such as water electrolysis. It is possible to operate a sequence of chemical steps with net work requirements equal to zero at temperatures well below the temperature required for water dissociation in a single step. Various types of procedures are discussed, giving attention to halide processes, reverse Deacon processes, iron oxide and carbon oxide processes, and metal and alkali metal processes. Economical questions are also considered.
Methane-methanol cycle for the thermochemical production of hydrogen
Dreyfuss, Robert M.; Hickman, Robert G.
1976-01-01
A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal: CH.sub.4 + H.sub.2 O .fwdarw. CO + 3H.sub.2 (1) co + 2h.sub.2 .fwdarw. ch.sub.3 oh (2) ch.sub.3 oh + so.sub.2 + mo .fwdarw. mso.sub.4 + ch.sub.4 (3) mso.sub.4 .fwdarw. mo + so.sub.2 + 1/2o.sub.2 (4) the net reaction is the decomposition of water into hydrogen and oxygen.
Solar thermochemical processing system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wegeng, Robert S.; Humble, Paul H.; Krishnan, Shankar
A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Optimum performance of explosives in a quasistatic detonation cycle
NASA Astrophysics Data System (ADS)
Baker, Ernest L.; Stiel, Leonard I.
2017-01-01
Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum useful work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmospheric pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT, RDX, and aluminized compositions, maximum work effects were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. Detonation to the C-J point is found to result in the maximum net work in all cases.
NASA Astrophysics Data System (ADS)
Till, J. L.; Nowaczyk, N.
2018-06-01
The iron oxyhydroxide goethite is unstable at elevated temperatures and can transform to magnetite under reducing conditions. In this study, various heating experiments were conducted to simulate Fe-mineral transformations during pyrogenic or burial diagenesis alteration in the presence of organic matter. Thermomagnetic measurements, capsule heating experiments and thermochemical remanence acquisition measurements were performed to determine the effect of organic carbon additions on samples containing synthetic microcrystalline goethite, microcrystalline hematite or nanocrystalline goethite. Changes in magnetic properties with heating were monitored to characterize the magnetic behaviour of secondary magnetite and hematite formed during the experiments. Authigenic magnetite formed in all samples containing organic C, while goethite heated without organic C altered to poorly crystalline pseudomorphic hematite. The concentration of organic matter was found to have little influence on the rate or extent of reaction or on the characteristics of the secondary phases. Authigenic magnetite formed from microcrystalline goethite and hematite dominantly behaves as interacting single-domain particles, while nanophase goethite alters to a mixture of small single-domain and superparamagnetic magnetite. Authigenic magnetite and hematite both acquire a stable thermochemical remanence on heating to temperatures between 350 and 600 °C, although the remanence intensity acquired below 500 °C is much weaker than that at higher temperatures. Reductive transformation of fine-grained goethite or hematite is therefore a potential pathway for the production of authigenic magnetite and the generation of stable chemical remanence that may be responsible for remagnetization in organic-matter-bearing sedimentary rocks.
Laser beam heat method reported
NASA Astrophysics Data System (ADS)
Tsuchiya, Hachiro; Goto, Hidekazu
1988-07-01
An outline of research involving the processing method utilizing laser-induced thermochemistry was presented, with the CO2 laser processing of ceramics in CF4 gas used as a practical processing example. It has become clear that it will be possible to conduct laser proccessing of ceramics with high efficiency and high precision by utilizing the thermochemical processes, but it is not believed that the present method is the best one and it is not clear that it can be applied to commercial processing. It is thought that the processing characteristics of this method will be greatly changed by the combination of the atmospheric gas and the material, and it is important to conduct tests on various combinations. However, it is believed that the improvement and development will become possible by theoretically confirming the basic process of the processing, especially of the the thermochemical process between the solid surface and the atmospheric gas molecule. Actually, it is believed that the thermochemical process on the solid surface is quite complicated. For example, it was confirmed that when thermochemical processing the Si monocrystal in the CF4 gas, the processing speed would change by at least 10 times through changing the gas pressure and the mixing O2 gas density. However, conversely speaking, it is believed that the fact that this method is complicated, with many unexplained points and room for research, conceals the possibility of its being applied to various fields, and also, in this sense, the quantitative confirmation of its basic process in an important problem to be solved in the future.
Rowbotham, J. S.; Dyer, P. W.; Greenwell, H. C.; Selby, D.; Theodorou, M. K.
2013-01-01
Thermochemical processing methods such as pyrolysis are of growing interest as a means of converting biomass into fuels and commodity chemicals in a sustainable manner. Macroalgae, or seaweed, represent a novel class of feedstock for pyrolysis that, owing to the nature of the environments in which they grow coupled with their biochemistry, naturally possess high metal contents. Although the impact of metals upon the pyrolysis of terrestrial biomass is well documented, their influence on the thermochemical conversion of marine-derived feeds is largely unknown. Furthermore, these effects are inherently difficult to study, owing to the heterogeneous character of natural seaweed samples. The work described in this paper uses copper(II) alginate, together with alginic acid and sodium alginate as model compounds for exploring the effects of metals upon macroalgae thermolysis. A thermogravimetric analysis–Fourier transform infrared spectroscopic study revealed that, unusually, Cu2+ ions promote the onset of pyrolysis in the alginate polymer, with copper(II) alginate initiating rapid devolatilization at 143°C, 14°C lower than alginic acid and 61°C below the equivalent point for sodium alginate. Moreover, this effect was mirrored in a sample of wild Laminaria digitata that had been doped with Cu2+ ions prior to pyrolysis, thus validating the use of alginates as model compounds with which to study the thermolysis of macroalgae. These observations indicate the varying impact of different metal species on thermochemical behaviour of seaweeds and offer an insight into the pyrolysis of brown macroalgae used in phytoremediation of metal-containing waste streams. PMID:24427515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H-atom abstraction by $$\\dot{H}$$ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures in the range 298 – 2000 K. Lastly, by incorporating our calculated rate constants for both H-atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.« less
The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.
Tackley, Paul J; Xie, Shunxing
2002-11-15
Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.
Monlau, F; Barakat, A; Steyer, J P; Carrere, H
2012-09-01
Sunflower stalks can be used for the production of methane, but their recalcitrant structure requires the use of thermo-chemical pretreatments. Two thermal (55 and 170°C) and five thermo-chemical pretreatments (NaOH, H(2)O(2), Ca(OH)(2), HCl and FeCl(3)) were carried out, followed by anaerobic digestion. The highest methane production (259 ± 6 mL CH(4)g(-1) VS) was achieved after pretreatment at 55°C with 4% NaOH for 24h. Acidic pretreatments at 170°C removed more than 90% of hemicelluloses and uronic acids whereas alkaline and oxidative pretreatments were more effective in dissolving lignin. However, no pretreatment was effective in reducing the crystallinity of cellulose. Methane production rate was positively correlated with the amount of solubilized matter whereas methane potential was negatively correlated with the amount of lignin. Considering that the major challenge is obtaining increased methane potential, alkaline pretreatments can be recommended in order to optimize the anaerobic digestion of lignocellulosic substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.
Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick
2015-11-01
Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P
2016-10-01
Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Combustion characteristics of SMX and SMX based propellants
NASA Astrophysics Data System (ADS)
Reese, David A.
This work investigates the combustion of the new solid nitrate ester 2,3-hydroxymethyl-2,3-dinitro-1,4-butanediol tetranitrate (SMX, C6H 8N6O16). SMX was synthesized for the first time in 2008. It has a melting point of 85 °C and oxygen balance of 0% to CO 2, allowing it to be used as an energetic additive or oxidizer in solid propellants. In addition to its neat combustion characteristics, this work also explores the use of SMX as a potential replacement for nitroglycerin (NG) in double base gun propellants and as a replacement for ammonium perchlorate in composite rocket propellants. The physical properties, sensitivity characteristics, and combustion behaviors of neat SMX were investigated. Its combustion is stable at pressures of up to at least 27.5 MPa (n = 0.81). The observed flame structure is nearly identical to that of other double base propellant ingredients, with a primary flame attached at the surface, a thick isothermal dark zone, and a luminous secondary flame wherein final recombination reactions occur. As a result, the burning rate and primary flame structure can be modeled using existing one-dimensional steady state techniques. A zero gas-phase activation energy approximation results in a good fit between modeled and observed behavior. Additionally, SMX was considered as a replacement for nitroglycerin in a double base propellant. Thermochemical calculations indicate improved performance when compared with the common double base propellant JA2 at SMX loadings above 40 wt-%. Also, since SMX is a room temperature solid, migration may be avoided. Like other nitrate esters, SMX is susceptible to decomposition over long-term storage due to the presence of excess acid in the crystals; the addition of stabilizers (e.g., derivatives of urea) during synthesis should be sufficient to prevent this. the addition of Both unplasticized and plasticized propellants were formulated. Thermal analysis of unplasticized propellant showed a distinct melt-recrystallization curve, which indicates that a solid phase solution is being formed between SMX and NC, and that SMX would not act as plasticizer. Analysis of propellant prepared with diethyleneglycol dinitrate (DEGDN) plasticizer indicates that the SMX is likely dissolved in the DEGDN. The plasticized material also showed similar hardness and modulus to JA2. However, both plasticized and unplasticized propellants exhibited deconsolidated burning at elevated pressures due to the high modulus of the propellant. Increased amounts of plasticizer or improved processing of the nitrocellulose should be investigated to remedy this issue. Safety characterization showed that sensitivity of the plasticized propellant is similar to JA2. In short, replacing NG with SMX results in a new family of propellants with acceptable safety characteristics and which may also offer improved theoretical performance. Finally, composite propellants based on SMX were theoretically and experimentally examined and compared to formulations based on ammonium perchlorate (AP). Thermochemical equilibrium calculations show that aluminized SMX-based formulations can achieve theoretical sea level specific impulse values upwards of 260 s-- slightly lower than an AP-based composite. Both ignition sensitivity (tested via drop weight impact, electro-static discharge, and BAM friction) and physical properties (hardness and thermal properties) are comparable to those of the AP-based formulations. However, the SMX-based formulation could be detonated using a high explosive donor charge in contact with the propellant, as do other low smoke propellants. Differential scanning calorimetry of the SMX-based propellant indicated an exotherm onset of 140 °C, which corresponds to the known decomposition temperature of SMX. The propellant has a high burning rate of 1.57 cm/s at 6.89 MPa, with a pressure exponent of 0.85. This high pressure sensitivity might be addressed using various energetic and/or stabilizing additives. With high density and performance, smokeless combustion products, and stable combustion, SMX appears to be a viable replacement for existing energetic ingredients in a wide variety of propellant, explosive, and pyrotechnic applications.
Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Zurawski, Robert L.; Rapp, Douglas C.
1987-01-01
A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.
NASA Astrophysics Data System (ADS)
Maiz, Lotfi; Trzciński, Waldemar A.; Paszula, Józef
2017-01-01
Confined and semi-closed explosions of new class of energetic composites as well as TNT and RDX charges were investigated using optical spectroscopy. These composites are considered as thermobarics when used in layered charges or enhanced blast explosives when pressed. Two methods to estimate fireball temperature histories of both homogeneous and metallized explosives from the spectroscopic data are also presented, compared and analyzed. Fireball temperature results of the charges detonated in a small explosion chamber under air and argon atmospheres, and detonated in a semi-closed bunker are presented and compared with theoretical ones calculated by a thermochemical code. Important conclusions about the fireball temperatures and the physical and chemical phenomena occurring after the detonation of homogeneous explosives and composite formulations are deduced.
Ab initio atomic recombination reaction energetics on model heat shield surfaces
NASA Technical Reports Server (NTRS)
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
Accurate ab initio quartic force fields for the ions HCO(+) and HOC(+)
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Taylor, Peter R.; Lee, Timothy J.
1993-01-01
The quartic force fields of HCO(+) and HOC(+) have been computed using augmented coupled cluster methods and basis sets of spdf and spdfg quality. Calculations on HCN, CO, and N2 have been performed to assist in calibrating the computed results. Going from an spdf to an spdfg basis shortens triple bonds by about 0.004 A, and increases the corresponding harmonic frequency by 10-20/cm, leaving bond distances about 0.003 A too long and triple bond stretching frequencies about 5/cm too low. Accurate estimates for the bond distances, fundamental frequencies, and thermochemical quantities are given. HOC(+) lies 37.8 +/- 0.5 kcal/mol (0 K) above HCO(+); the classical barrier height for proton exchange is 76.7 +/- 1.0 kcal/mol.
Modelling Simulation and Comparison of Refractory Corrosion at RHI's Technology Center
NASA Astrophysics Data System (ADS)
Gregurek, Dean; Ressler, Angelika; Franzkowiak, Anna; Spanring, Alfred
In order to determine the most suitable refractory products and improve the lining lifetime for the diverse furnaces used in the nonferrous metal industry, corrosion tests are performed at RHF's Technology Center. The practical facilities include the cup test, induction furnace, rotary kiln, and drip slag test described in this paper, which enable a comprehensive understanding of the chemo-thermal brick wear on a pilot scale. The corrosion trials are performed with actual slags generated during operations at a customer's plant. To determine the highest influencing wear parameter, every single test is combined with a detailed mineralogical investigation and thermochemical calculations performed using FactSage. Based on the results, tailored refractory solutions for the nonferrous metal industry can be provided in combination with trials conducted at the customer's site.
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
General Model for Multicomponent Ablation Thermochemistry
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)
1994-01-01
A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).
Corn fiber hulls as a food additive or animal feed
Abbas, Charles; Beery, Kyle E.; Cecava, Michael J.; Doane, Perry H.
2010-12-21
The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.
System for thermochemical hydrogen production
Werner, R.W.; Galloway, T.R.; Krikorian, O.H.
1981-05-22
Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.
Effects of Impurities and Processing on Silicon Solar Cells, Phase 3
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.
NASA Astrophysics Data System (ADS)
Danilov, P. A.; Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Litovko, E. P.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Khmelnitskii, R. A.
2017-09-01
Irradiation of optically transparent copper (I) oxide film covering a glass substrate with a tightly focused femtosecond laser pulses in the pre-ablation regime leads to film reduction to a metallic colloidal state via a single-photon absorption and its subsequent thermochemical decomposition. This effect was demonstrated by the corresponding measurement of the extinction spectrum in visible spectral range. The laser-induced formation of metallic copper nanoparticles in the focal region inside the bulk oxide film allows direct recording of individual thin-film plasmon nanostructures and optical-range metasurfaces.
Study of TLIPSS formation on different metals and alloys and their selective etching
NASA Astrophysics Data System (ADS)
Dostovalov, Alexandr V.; Korolkov, Victor P.; Terentiev, Vadim S.; Okotrub, Konstantin A.; Dultsev, Fedor N.; Nemykin, Anton; Babin, Sergey A.
2017-02-01
Experimental investigation of thermochemical laser-induced periodic surface structures (TLIPSS) formation on metal films (Ti, Cr, Ni, NiCr) at different processing conditions is presented. The hypothesis that the TLIPSS formation depends significantly on parabolic rate constant for oxide thin film growth is discussed. Evidently, low value of this parameter for Ni is the reason of TLIPSS absence on Ni and NiCr film with low Cr content. The effect of simultaneous ablative (with period ≍λ) and thermochemical (with period ≍λ) LIPSS formation was observed. The formation of structures after TLIPSS selective etching was demonstrated.
Thermochemical generation of hydrogen
NASA Technical Reports Server (NTRS)
Lawson, D. D.; Petersen, G. R. (Inventor)
1982-01-01
The direct fluid contact heat exchange with H2SO4 at about 330 C prior to high temperature decomposition at about 830 C in the oxygen release step of several thermochemical cycles for splitting water into hydrogen and oxygen provides higher heat transfer rates, savings in energy and permits use of cast vessels rather than expensive forged alloy indirect heat exchangers. Among several candidate perfluorocarbon liquids tested, only perfluoropropylene oxide polymers having a degree of polymerization from about 10 to 60 were chemically stable, had low miscibility and vapor pressure when tested with sulfuric acid at temperatures from 300 C to 400 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita
Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites ofmore » the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H{sub 2}O splitting is also achieved by the use of the Mn{sub 3}O{sub 4}-sodium carbonate system. • Thermochemical splitting of CO{sub 2} and H{sub 2}O using perovskite oxides is explained. • Mn based perovskites.« less
A composite system approach to aircraft cabin fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M.-T.
1976-01-01
The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the bismaleimide composites is detailed.
A composite system approach to aircraft cabin fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.
1976-01-01
The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.
Materials research for aircraft fire safety
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Bricker, R. W.
1976-01-01
The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of the state-of-the-art and the advanced bismaleimide composites are detailed.
Heat capacities and thermodynamic properties of braunite (Mn7 SiO12) and rhodonite (MnSiO3)
Robie, R.A.; Huebner, J.S.; Hemingway, B.S.
1995-01-01
The heat capacities, C0P, of synthetic rhodonite and braunite have been measured by adiabatic calorimetry from 6 to ~350 K. The heat capacity of braunite was also measured to ~900 K by differential scanning calorimetry. Brunite exhibits a ??-peak in C0P in the temperature region 93.4-94.2 K. Rhodonite did not show the expected peak in C0P characteristic of the co-operative ordering of the Mn2+ spins at temperatures above 6 K. A revised petrogenetic grid for the system Mn-Si-O-C at 2000 bars is presented and is consistent with both thermochemical values and occurrence of natural assemblages. -from Authors
Hernández, Ana Belén; Okonta, Felix; Freeman, Ntuli
2017-07-01
Thermochemical valorisation processes that allow energy to be recovered from sewage sludge, such as pyrolysis and gasification, have demonstrated great potential as convenient alternatives to conventional sewage sludge disposal technologies. Moreover, these processes may benefit from CO 2 recycling. Today, the scaling up of these technologies requires an advanced knowledge of the reactivity of sewage sludge and the characteristics of the products, specific to the thermochemical process. In this study the behaviour of sewage sludge during thermochemical conversion, under different atmospheres (N 2 , CO 2 and air), was studied, using TGA-FTIR, in order to understand the effects of different atmospheric gases on the kinetics of degradation and on the gaseous products. The different steps observed during the solid degradation were related with the production of different gaseous compounds. A higher oxidative degree of the atmosphere surrounding the sample resulted in higher reaction rates and a shift of the degradation mechanisms to lower temperatures, especially for the mechanisms taking place at temperatures above 400 °C. Finally, a multiple first-order reaction model was proposed to compare the kinetic parameters obtained under different atmospheres. Overall, the highest activation energies were obtained for combustion. This work proves that CO 2 , an intermediate oxidative atmosphere between N 2 and air, results in an intermediate behaviour (intermediate peaks in the derivative thermogravimetric curves and intermediate activation energies) during the thermochemical decomposition of sewage sludge. Overall, it can be concluded that the kinetics of these different processes require a different approach for their scaling up and specific consideration of their characteristic reaction temperatures and rates should be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways
Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; ...
2015-01-16
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmore » and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO 2-eq (MJ renewable diesel) -1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.« less
NASA Astrophysics Data System (ADS)
Bennion, Edward P.
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.
1985-01-01
A new trifunctional epoxy resin, Tris-(hydroxyphenyl) methane triglycidyl ether, is compared to a state-of-the-art tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM), in graphite composites. Rubber-toughened brominated formulations of the epoxy resin are compared to nonbrominated ones in terms of their mechanical performance, environmental stability, thermochemical behavior, and flame retardancy. It is shown that the new resin performs almost the same way as the TGDDM does, but has improved glass transition temperature and environmental properties. Brominated polymeric additives (BPA) of different molecular weights are tested as a Br source to flame retardant graphite epoxy composites. The optimal molecular weight of the BPA and its polymeric backbone length are derived and compared with a 10 percent rubber-toughened formulation of the epoxy resin. Results indicate that when the Br content in the graphite composite is increased without the use of rubber, the mechanical properties improved. The use of BPAs as tougheners for graphite composites is also considered.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1991-01-01
Plasma sprayed composite coating of metal-bonded chromium carbide with additions of silver and thermochemically stable fluorides were previously reported to be lubricative in pin on desk bench tests from room temperature to 900 C. An early coating formulation of this type, designated as PS-200, was successfully tested as a cylinder coating in a Stirling engine at a TRRT of 760 C in a hydrogen atmosphere, and as a backup lubricant for gas bearings to 650 C. A subsequent optimization program has shown that tribological properties are further improved by increasing the solid lubricant content. The improved coating is designated as PS-212. The same powder formulation was used to make free-standing powder metallurgy (PM-212) parts by sintering or hot isostatic pressing. The process is very attractive for making parts that cannot be readily plasma sprayed such as bushings and cylinders that have small bore diameters and/or high length to diameter ratios. The properties of coatings and free-standing parts fabricated from these powders are reviewed.
Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan
2014-08-14
In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.
Quantum and quasi-classical collisional dynamics of O{sub 2}–Ar at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulusoy, Inga S.; Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400; Andrienko, Daniil A.
A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate verymore » good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.« less
Ablation Predictions for Carbonaceous Materials Using Two Databases for Species Thermodynamics
NASA Technical Reports Server (NTRS)
Milos, F. S.; Chen, Y.-K.
2013-01-01
During previous work at NASA Ames Research Center, most ablation predictions were obtained using a species thermodynamics database derived primarily from the JANAF thermochemical tables. However, the chemical equilibrium with applications thermodynamics database, also used by NASA, is considered more up to date. In this work, ablation analyses were performed for carbon and carbon phenolic materials using both sets of species thermodynamics. The ablation predictions are comparable at low and moderate heat fluxes, where the dominant mechanism is carbon oxidation. For high heat fluxes where sublimation is important, the predictions differ, with the chemical equilibrium with applications model predicting a lower ablation rate. The disagreement is greater for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate. Sample calculations for representative Orion and Stardust environments show significant differences only in the sublimation regime. For Stardust, if the calculations include a nominal environmental uncertainty for aeroheating, then the chemical equilibrium with applications model predicts a range of recession that is consistent with measurements for both heatshield cores.
Thermochemical Degradation Mechanisms for the Reinforced Carbon/Carbon Panels on the Space Shuttle
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Rapp, Robert A.
1995-01-01
The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed.
Low energy electron attachment to cyanamide (NH{sub 2}CN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanzer, Katrin; Denifl, Stephan, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at; Pelc, Andrzej, E-mail: Andrzej.Pelc@poczta.umcs.lublin.pl, E-mail: Stephan.Denifl@uibk.ac.at
Cyanamide (NH{sub 2}CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH{sub 2}CN has been studied in a crossed electron–molecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN{sup −}, NCN{sup −}, CN{sup −}, NH{sub 2}{sup −}, NH{sup −}, and CH{sub 2}{sup −}. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels formore » all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH{sub 2}CN—carbodiimide.« less
Quantum and quasi-classical collisional dynamics of O2-Ar at high temperatures
NASA Astrophysics Data System (ADS)
Ulusoy, Inga S.; Andrienko, Daniil A.; Boyd, Iain D.; Hernandez, Rigoberto
2016-06-01
A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.
Experimental and computational thermochemical study of α-alanine (DL) and β-alanine.
da Silva, Manuel A V Ribeiro; da Silva, Maria das Dores M C Ribeiro; Santos, Ana Filipa L O M; Roux, Maria Victoria; Foces-Foces, Concepción; Notario, Rafael; Guzmán-Mejía, Ramón; Juaristi, Eusebio
2010-12-16
This paper reports an experimental and theoretical study of the gas phase standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of α-alanine (DL) and β-alanine. The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline α-alanine (DL) and β-alanine were calculated from the standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and H2O(l), measured by static-bomb combustion calorimetry at T = 298.15 K. The vapor pressures of both amino acids were measured as function of temperature by the Knudsen effusion mass-loss technique. The standard molar enthalpies of sublimation at T = 298.15 K was derived from the Clausius−Clapeyron equation. The experimental values were used to calculate the standard (p° = 0.1 MPa) enthalpy of formation of α-alanine (DL) and β-alanine in the gaseous phase, Δ(f)H(m)°(g), as −426.3 ± 2.9 and −421.2 ± 1.9 kJ·mol(−1), respectively. Standard ab initio molecular orbital calculations at the G3 level were performed. Enthalpies of formation, using atomization reactions, were calculated and compared with experimental data. Detailed inspections of the molecular and electronic structures of the compounds studied were carried out.
The equation of state of predominant detonation products
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Fried, Laurence
2009-06-01
The equation of state of detonation products, when incorporated into an experimentally grounded thermochemical reaction algorithm can be used to predict the performance of explosives. Here we report laser based Impulsive Stimulated Light Scattering measurements of the speed of sound from a variety of polar and nonpolar detonation product supercritical fluids and mixtures. The speed of sound data are used to improve the exponential-six potentials employed within the Cheetah thermochemical code. We will discuss the improvements made to Cheetah in terms of predictions vs. measured performance data for common polymer blended explosives. Accurately computing the chemistry that occurs from reacted binder materials is one important step forward in our efforts.
Thermochemical study of the system Fe-As-S
Barton, P.B.
1969-01-01
The results of Toulmin and Barton (1964) for the Fe-S system have been combined with a series of new measurements on As-bearing assemblages in the 500??-850??C temperature range to derive data on the free energies, enthalpies, and entropies of formation for arsenopyrite, loellingite, orpiment, realgar, FeAs, and Fe2As. The enthalpies and free energies of formation of orpiment and realgar are only approximately one-half as large as indicated in recent compilations of thermochemical data (Wagman et al., 1965). Data are also presented for the covariation of activity of S2(g) with temperature and composition of the sulfur-arsenic liquid. ?? 1969.
Solar thermochemical process interface study
NASA Technical Reports Server (NTRS)
1984-01-01
The design and analyses of a subsystem of a hydrogen production process are described. The process is based on solar driven thermochemical reactions. The subject subsystem receives sulfuric acid of 60% concentration at 100 C, 1 atm pressure. The acid is further concentrated, vaporized, and decomposed (at a rate of 122 g moles/sec H2SO4) into SO2, O2, and water. The produce stream is cooled to 100 C. Three subsystem options, each being driven by direct solar energy, were designed and analyzed. The results are compared with a prior study case in which solar energy was provided indirectly through a helium loop.
Process for the thermochemical production of hydrogen
Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert
1978-01-01
Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.
Thermochemical generation of hydrogen and oxygen from water
Robinson, Paul R.; Bamberger, Carlos E.
1981-01-01
A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.
Thermochemical generation of hydrogen and oxygen from water
Robinson, Paul R.; Bamberger, Carlos E.
1982-01-01
A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.
Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures
NASA Astrophysics Data System (ADS)
Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.
2018-05-01
Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.
NASA Astrophysics Data System (ADS)
Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso
2017-06-01
The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat
NASA Astrophysics Data System (ADS)
Cherednichenko, Oleksandr; Serbin, Serhiy
2018-03-01
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.
Analysis of medium-BTU gasification condensates, June 1985-June 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, D.C.
1987-05-01
This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers andmore » pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.« less
Linear actuation using milligram quantities of CL-20 and TAGDNAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snedigar, Shane; Salton, Jonathan Robert; Tappan, Alexander Smith
2009-07-01
There are numerous applications for small-scale actuation utilizing pyrotechnics and explosives. In certain applications, especially when multiple actuation strokes are needed, or actuator reuse is required, it is desirable to have all gaseous combustion products with no condensed residue in the actuator cylinder. Toward this goal, we have performed experiments on utilizing milligram quantities of high explosives to drive a millimeter-diameter actuator with a stroke of 30 mm. Calculations were performed to select proper material quantities to provide 0.5 J of actuation energy. This was performed utilizing the thermochemical code Cheetah to calculate the impetus for numerous propellants and tomore » select quantities based on estimated efficiencies of these propellants at small scales. Milligram quantities of propellants were loaded into a small-scale actuator and ignited with an ignition increment and hot wire ignition. Actuator combustion chamber pressure was monitored with a pressure transducer and actuator stroke was monitored using a laser displacement meter. Total actuation energy was determined by calculating the kinetic energy of reaction mass motion against gravity. Of the materials utilized, the best performance was obtained with a mixture of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and bis-triaminoguanidinium(3,3{prime}dinitroazotriazolate) (TAGDNAT).« less
NASA Astrophysics Data System (ADS)
Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.
2013-12-01
Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.
Chemistry resolved kinetic flow modeling of TATB based explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark
2012-03-01
Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.
Turbulence modelling of flow fields in thrust chambers
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.
Prediction of nearfield jet entrainment by an interactive mixing/afterburning model
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.; Wilmoth, R. G.
1978-01-01
The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its application to the prediction of nozzle boattail pressures, is discussed. BOAT accounts for the detailed turbulence and thermochemical processes occurring in the nearfield shear layers of jet engine (and rocket) exhaust plumes while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the model to analyze simple free shear flows is assessed by detailed comparisons with fundamental laboratory data. The overlaid methodology and the entrainment correction employed to yield the effective plume boundary conditions are assessed via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid model for determining nozzle boattail drag for subsonic/transonic external flows. Comparisons between the predictions and data on underexpanded laboratory cold air jets are presented.
QUENCHING OF CARBON MONOXIDE AND METHANE IN THE ATMOSPHERES OF COOL BROWN DWARFS AND HOT JUPITERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visscher, Channon; Moses, Julianne I., E-mail: visscher@lpi.usra.edu, E-mail: jmoses@spacescience.org
We explore CO{r_reversible}CH{sub 4} quench kinetics in the atmospheres of substellar objects using updated timescale arguments, as suggested by a thermochemical kinetics and diffusion model that transitions from the thermochemical-equilibrium regime in the deep atmosphere to a quench-chemical regime at higher altitudes. More specifically, we examine CO quench chemistry on the T dwarf Gliese 229B and CH{sub 4} quench chemistry on the hot-Jupiter HD 189733b. We describe a method for correctly calculating reverse rate coefficients for chemical reactions, discuss the predominant pathways for CO{r_reversible}CH{sub 4} interconversion as indicated by the model, and demonstrate that a simple timescale approach can bemore » used to accurately describe the behavior of quenched species when updated reaction kinetics and mixing-length-scale assumptions are used. Proper treatment of quench kinetics has important implications for estimates of molecular abundances and/or vertical mixing rates in the atmospheres of substellar objects. Our model results indicate significantly higher K{sub zz} values than previously estimated near the CO quench level on Gliese 229B, whereas current-model-data comparisons using CH{sub 4} permit a wide range of K{sub zz} values on HD 189733b. We also use updated reaction kinetics to revise previous estimates of the Jovian water abundance, based upon the observed abundance and chemical behavior of carbon monoxide. The CO chemical/observational constraint, along with Galileo entry probe data, suggests a water abundance of approximately 0.51-2.6 x solar (for a solar value of H{sub 2}O/H{sub 2} = 9.61 x 10{sup -4}) in Jupiter's troposphere, assuming vertical mixing from the deep atmosphere is the only source of tropospheric CO.« less
NASA Astrophysics Data System (ADS)
Bilardello, Dario
2015-08-01
Separating the contribution of different hematite coercivity grains to the magnetic fabric is a standing problem in rock magnetism because of the common occurrence of thermochemical alterations when measuring the anisotropy of thermal remanence. A technique that eliminates this bias is presented, which is useful when there is a need to separate the fabric of detrital from pigmentary hematite, for example. The method is based on stepwise thermal demagnetization of saturation isothermal remanent magnetizations (IRMs) applied orthogonally on three sister specimens, allowing calculation of the anisotropy tensor from the three components of each demagnetized IRM vector, avoiding the necessity of having to apply IRMs to thermochemically altered specimens. Vector subtraction allows determining the anisotropy tensor for specific unblocking-temperature ranges. The anisotropies of the pigmentary, specular and total hematite of the Mauch Chunk Formation red beds of Pennsylvania have been measured from an oriented block sample and results are compared to previous anisotropy measurements performed using the high-field anisotropy of isothermal remanence technique (hf-AIR), which measures total undifferentiated hematite. Experiments were conducted using non-saturating 1 T and fully saturating 5.5 T fields: both experimental sets seem capable of measuring the orientation of the specularite anisotropy principal axes, but 5.5 T are needed to capture the orientation of the higher coercivity pigmentary grains. The magnitudes of the principal axes, instead, are only faithfully measured using 5.5 T fields and yield somewhat higher anisotropies than those measured by hf-AIR. The fundamental requirement for this technique is homogeneous material among the three sister specimens, which is a significant limitation; homogeneity tests allow assessment of applicability of the method and reliability of the results.
NASA Astrophysics Data System (ADS)
Dobbs-Dixon, Ian; Cowan, Nicolas B.
2017-12-01
Multi-band phase variations, in principle, allow us to infer the longitudinal temperature distributions of planets as a function of height in their atmospheres. For example, 3.6 μm emission originates from deeper layers of the atmosphere than 4.5 μm due to greater water vapor absorption at the longer wavelength. Because heat transport efficiency increases with pressure, we expect thermal phase curves at 3.6 μm to exhibit smaller amplitudes and greater phase offsets than at 4.5 μm—yet this trend is not observed. Of the seven hot Jupiters with full-orbit phase curves at 3.6 and 4.5 μm, all of them have greater phase amplitude at 3.6 μm than at 4.5 μm, while four of the seven exhibit a greater phase offset at 3.6 μm. We use a 3D radiative-hydrodynamic model to calculate theoretical phase curves of HD 189733b, assuming thermo-chemical equilibrium. The model exhibits temperature, pressure, and wavelength-dependent opacity, primarily driven by carbon chemistry: CO is energetically favored on the dayside, while CH4 is favored on the cooler nightside. Infrared opacity, therefore, changes by orders of magnitude between day and night, producing dramatic vertical shifts in the wavelength-specific photospheres, which would complicate eclipse or phase mapping with spectral data. The model predicts greater relative phase amplitude and greater phase offset at 3.6 μm than at 4.5 μm, in agreement with the data. Our model qualitatively explains the observed phase curves, but it is in tension with current thermo-chemical kinetics models that predict zonally uniform atmospheric composition due to the transport of CO from the hot regions of the atmosphere.
Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality
NASA Astrophysics Data System (ADS)
Jiang, Lei; Worden, Richard H.; Yang, Changbing
2018-02-01
Interest in the creation of secondary pore spaces in petroleum reservoirs has increased because of a need to understand deeper and more complex reservoirs. The creation of new secondary porosity that enhances overall reservoir quality in deeply buried carbonate reservoirs is controversial and some recent studies have concluded it is not an important phenomenon. Here we present petrography, geochemistry, fluid inclusion data, and fluid-rock interaction reaction modeling results from Triassic Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative importance of secondary porosity due to thermochemical sulphate reduction (TSR) during deep burial diagenesis. We find that new secondary pores result from the dissolution of anhydrite and possibly from dissolution of the matrix dolomite. Assuming porosity before TSR was 16% and the percentage of anhydrite was 6%, modelling shows that, due to TSR, 1.6% additional porosity was created that led to permeability increasing from 110 mD (range 72-168 mD within a 95% confidence interval) to 264 mD (range 162-432 mD within a 95% confidence interval). Secondary porosity results from the density differences between reactant anhydrite and product calcite, the addition of new water during TSR, and the generation of acidity during the reaction of new H2S with the siderite component in pre-existing dolomite in the reservoir. Fluid pressure was high during TSR, and approached lithostatic pressure in some samples; this transient overpressure may have led to the maintenance of porosity due to the inhibition of compactional processes. An additional 1.6% porosity is significant for reserve calculations, especially considering that it occurs in conjunction with elevated permeability that results in faster flow rates to the production wells.
Wu, Xiaolin; Zheng, Minghui; Zhao, Yuyang; Yang, Hongbo; Yang, Lili; Jin, Rong; Xu, Yang; Xiao, Ke; Liu, Wenbin; Liu, Guorui
2018-01-01
Metal smelting processes are important sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The present work aims to clarify the formation characteristics of PCDD/Fs by heterogeneous mechanisms on fly ash from typical multiple secondary aluminum (SAl), secondary lead (SPb) smelting, and iron ore sintering (SNT) sources in China. The formation characteristics of PCDD/Fs on fly ash were studied in the temperature range 250-450 °C for 10-150 min. Substantial thermochemical formation of PCDD/Fs on SAl and SNT ash was observed. The maximum increase of PCDD/F concentrations under 350 °C for 30 min was 604 times greater than the initial concentration in SAl ash. The concentration of PCDD/Fs was 77 times greater than that of SNT fly ash under 350 °C for 30 min. However, the maximum increase of PCDD/F concentrations was less than 8 times that in raw SPb ash under 350 °C. Contents of total organic carbon (TOC), Cu, Al, Zn and Cl, which are widely recognized as important elements for promoting PCDD/F formation, were obviously higher in SAl and SNT ash than in SPb ash. This may explain the greater observed formation times of PCDD/Fs on SAl and SNT ash than that on SPb ash. It was found that several congeners tended to form at higher temperatures than those for SAl ash. Activation energy calculation according to the Arrhenius equations could explain the dominant formation of those congeners at much higher temperatures on SAl ash. Copyright © 2017 Elsevier Ltd. All rights reserved.
The computation of thermo-chemical nonequilibrium hypersonic flows
NASA Technical Reports Server (NTRS)
Candler, Graham
1989-01-01
Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.
Computational screening of organic polymer dielectrics for novel accelerator technologies
Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...
2018-06-18
The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less
Characterization of Spanish biomass wastes for energy use.
García, Roberto; Pizarro, Consuelo; Lavín, Antonio G; Bueno, Julio L
2012-01-01
Energy plays an important role in the world's present and future. The best way to absorb the huge increase in energy demands is through diversification. In this context biomass appears as an attractive source for a number of environmental, economical, political and social reasons. There are several techniques used to obtain energy from biomass. Among these techniques, the most commonly used throughout the world is a thermo-chemical process to obtain heat. To optimize the combustion process in adequate reactors, a comprehensive study of the characterization of biomass fuel properties is needed, which includes proximate analysis (determination of moisture, ash, volatile and fixed carbon content), ultimate analysis (C, H, N, S and O composition) and calorimetry, focusing on biomass fuels obtained in Spain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran, and Methoxyfuran.
Hudzik, Jason M; Bozzelli, Joseph W
2017-06-15
Reaction pathways are influenced by thermochemical properties, species stability, and chemical kinetics. Understanding these factors allows for an understanding of the reaction paths and formation of intermediate species. Enthalpies of formation (ΔH f,298 ° ), entropies (S 298 ° ), heat capacities (C p (T)), oxygen-hydrogen (O-H), oxygen-oxygen (O-O), and (R-O) bond dissociation energies (BDEs) are reported for hydroxyl and hydroperoxide substituted furan, methylfuran, and methoxyfuran species. Standard enthalpies of formation for parent and radical species have been determined using density functional theory B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), and M06-2X/6-31G(d,p) along with higher-level CBS-QB3 and CBS-APNO composite methods. Isodesmic work reactions were employed to improve accuracy by canceling error and show consistency between the levels of theory. Corresponding O-H and O-O BDEs are determined and compared to other similar structures. The stability of the furan moiety coupled with the double-bond-forming capability of the oxygen moiety results in a number of bond energies significantly lower than one might have expected. Substituted hydroperoxides are calculated to have ROO-H BDEs between 86.9 and 94.2 kcal mol -1 , and their RO-OH BDEs show a large 49 kcal mol -1 range of -2.3-46.8 kcal mol -1 . Substituted alcohols also show a wide 48 kcal mol -1 range with RO-H BDEs, ranging from 59.3 to 106.9 kcal mol -1 . Bond lengths of parent and radical species are presented to highlight potential bonds of interest leading to furan ring opening. Group additivity is discussed, and groups for substituted furan, methylfuran, and methoxyfuran species are derived. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the S 298 ° and C p (T) values.
Modelling the combustion of charcoal in a model blast furnace
NASA Astrophysics Data System (ADS)
Shen, Yansong; Shiozawa, Tomo; Yu, Aibing; Austin, Peter
2013-07-01
The pulverized charcoal (PCH) combustion in ironmaking blast furnaces is abstracting remarkable attention due to various benefits such as lowering CO2 emission. In this study, a three-dimensional CFD model is used to simulate the flow and thermo-chemical behaviours in this process. The model is validated against the experimental results from a pilot-scale combustion test rig for a range of conditions. The typical flow and thermo-chemical phenomena is simulated. The effect of charcoal type, i.e. VM content is examined, showing that the burnout increases with VM content in a linear relationship. This model provides an effective way for designing and optimizing PCH operation in blast furnace practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nexant, Inc., San Francisco, California
The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosenmore » for detailed study because of the available resources.« less
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Heinemann, Klaus; Boyd, Iain D.; Haas, Brian L.
1993-01-01
In this grant period, the focus has been on the effects of thermo-chemical nonequilibrium in low-density gases, and on interactions between such gases and solid surfaces. Such conditions apply to hypersonic flows of re-entry vehicles, and to the expansion plumes of small rockets. Due to the nonequilibrium nature of these flows, a particle approach has been adopted. The method continues to undergo refinement and application to typical flows of interest. A number of studies have been performed for flows in thermo-chemical nonequilibrium. The effects of vibrational nonequilibrium on the rate of dissociation were studied for diatomic nitrogen. It was found that a new model reproduced the nonequilibrium behavior observed experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katyal, S.K.; Iyer, P.V.R.
2000-05-01
Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char tomore » generate producer gas.« less
Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/
Robinson, P.R.; Bamberger, C.E.
1980-02-08
A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.
NASA Technical Reports Server (NTRS)
Cox, K. E.
1976-01-01
Coal, though abundant in certain geographical locations of the USA poses environmental problems associated with its mining and combustion. Also, nuclear fission energy appears to have problems regarding safety and radioactive waste disposal that are as yet unresolved. The paper discusses hydrogen use and market projection along with energy sources for hydrogen production. Particular attention is given to hydrogen production technology as related to electrolysis and thermochemical water decomposition. Economics of hydrogen will ultimately be determined by the price and availability of future energy carriers such as electricity and synthetic natural gas. Thermochemical methods of hydrogen production appear to offer promise largely in the efficiency of energy conversion and in capital costs over electrolytic methods.