12 CFR 324.34 - OTC derivative contracts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... calculating PFE. (E) The PFE of the protection provider of a credit derivative is capped at the net present... single OTC derivative contract is the greater of the mark-to-fair value of the OTC derivative contract or... with a negative mark-to-fair value, is calculated by multiplying the notional principal amount of the...
Second derivative in the model of classical binary system
NASA Astrophysics Data System (ADS)
Abubekerov, M. K.; Gostev, N. Yu.
2016-06-01
We have obtained an analytical expression for the second derivatives of the light curve with respect to geometric parameters in the model of eclipsing classical binary systems. These expressions are essentially efficient algorithm to calculate the numerical values of these second derivatives for all physical values of geometric parameters. Knowledge of the values of second derivatives of the light curve at some point provides additional information about asymptotical behaviour of the function near this point and can significantly improve the search for the best-fitting light curve through the use of second-order optimization method. We write the expression for the second derivatives in a form which is most compact and uniform for all values of the geometric parameters and so make it easy to write a computer program to calculate the values of these derivatives.
Comparison of Polar Cap (PC) index calculations.
NASA Astrophysics Data System (ADS)
Stauning, P.
2012-04-01
The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.
12 CFR 217.34 - OTC derivative contracts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... net present value of the amount of unpaid premiums. Table 1 to § 217.34—Conversion Factor Matrix for... single OTC derivative contract is the greater of the mark-to-fair value of the OTC derivative contract or... with a negative mark-to-fair value, is calculated by multiplying the notional principal amount of the...
Use of petroleum-based correlations and estimation methods for synthetic fuels
NASA Technical Reports Server (NTRS)
Antoine, A. C.
1980-01-01
Correlations of hydrogen content with aromatics content, heat of combustion, and smoke point are derived for some synthetic fuels prepared from oil and coal syncrudes. Comparing the results of the aromatics content with correlations derived for petroleum fuels shows that the shale-derived fuels fit the petroleum-based correlations, but the coal-derived fuels do not. The correlations derived for heat of combustion and smoke point are comparable to some found for petroleum-based correlations. Calculated values of hydrogen content and of heat of combustion are obtained for the synthetic fuels by use of ASTM estimation methods. Comparisons of the measured and calculated values show biases in the equations that exceed the critical statistics values. Comparison of the measured hydrogen content by the standard ASTM combustion method with that by a nuclear magnetic resonance (NMR) method shows a decided bias. The comparison of the calculated and measured NMR hydrogen contents shows a difference similar to that found with petroleum fuels.
Roche, Nicolas; Dalmay, François; Perez, Thierry; Kuntz, Claude; Vergnenègre, Alain; Neukirch, Françoise; Giordanella, Jean-Pierre; Huchon, Gérard
2008-11-01
Little is known on the long-term validity of reference equations used in the calculation of FEV(1) and FEV(1)/FVC predicted values. This survey assessed the prevalence of chronic airflow obstruction in a population-based sample and how it is influenced by: (i) the definition of airflow obstruction; and (ii) equations used to calculate predicted values. Subjects aged 45 or more were recruited in health prevention centers, performed spirometry and fulfilled a standardized ECRHS-derived questionnaire. Previously diagnosed cases and risk factors were identified. Prevalence of airflow obstruction was calculated using: (i) ATS-GOLD definition (FEV(1)/FVC<0.70); and (ii) ERS definition (FEV(1)/FVC
Thermodynamic properties by Equation of state of liquid sodium under pressure
NASA Astrophysics Data System (ADS)
Li, Huaming; Sun, Yongli; Zhang, Xiaoxiao; Li, Mo
Isothermal bulk modulus, molar volume and speed of sound of molten sodium are calculated through an equation of state of a power law form within good precision as compared with the experimental data. The calculated internal energy data show the minimum along the isothermal lines as the previous result but with slightly larger values. The calculated values of isobaric heat capacity show the unexpected minimum in the isothermal compression. The temperature and pressure derivative of various thermodynamic quantities in liquid Sodium are derived. It is discussed about the contribution from entropy to the temperature and pressure derivative of isothermal bulk modulus. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid Sodium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. By comparison with the results from experimental measurements and quasi-thermodynamic theory, the calculated values are found to be very close at melting point at ambient condition. Furthermore, several other thermodynamic quantities are also presented. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 11204200.
12 CFR 32.9 - Credit exposure arising from derivative and securities financing transactions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... current credit exposure by the mark-to-market value of the derivative contract. If the mark-to-market value is positive, then the current credit exposure equals that mark-to-market value. If the mark to market value is zero or negative, than the current credit exposure is zero. (C) Calculation of potential...
12 CFR 32.9 - Credit exposure arising from derivative and securities financing transactions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... current credit exposure by the mark-to-market value of the derivative contract. If the mark-to-market value is positive, then the current credit exposure equals that mark-to-market value. If the mark to market value is zero or negative, than the current credit exposure is zero. (C) Calculation of potential...
Fuerst-Waltl, Birgit; Fuerst, Christian; Obritzhauser, Walter; Egger-Danner, Christa
2016-12-01
To optimize breeding objectives of Fleckvieh and Brown Swiss cattle, economic values were re-estimated using updated prices, costs, and population parameters. Subsequently, the expected selection responses for the total merit index (TMI) were calculated using previous and newly derived economic values. The responses were compared for alternative scenarios that consider breeders' preferences. A dairy herd with milk production, bull fattening, and rearing of replacement stock was modeled. The economic value of a trait was derived by calculating the difference in herd profit before and after genetic improvement. Economic values for each trait were derived while keeping all other traits constant. The traits considered were dairy, beef, and fitness traits, the latter including direct health traits. The calculation of the TMI and the expected selection responses was done using selection index methodology with estimated breeding values instead of phenotypic deviations. For the scenario representing the situation up to 2016, all traits included in the TMI were considered with their respective economic values before the update. Selection response was also calculated for newly derived economic values and some alternative scenarios, including the new trait vitality index (subindex comprising stillbirth and rearing losses). For Fleckvieh, the relative economic value for the trait groups milk, beef, and fitness were 38, 16, and 46%, respectively, up to 2016, and 39, 13, and 48%, respectively, for the newly derived economic values. Approximately the same selection response may be expected for the milk trait group, whereas the new weightings resulted in a substantially decreased response in beef traits. Within the fitness block, all traits, with the exception of fertility, showed a positive selection response. For Brown Swiss, the relative economic values for the main trait groups milk, beef, and fitness were 48, 5, and 47% before 2016, respectively, whereas for the newly derived scenario they were 40, 14, and 39%. For both Brown Swiss and Fleckvieh, the fertility complex was expected to further deteriorate, whereas all other expected selection responses for fitness traits were positive. Several additional and alternative scenarios were calculated as a basis for discussion with breeders. A decision was made to implement TMI with relative economic values for milk, beef, and fitness with 38, 18, and 44% for Fleckvieh and 50, 5, and 45% for Brown Swiss, respectively. In both breeds, no positive expected selection response was predicted for fertility, although this trait complex received a markedly higher weight than that derived economically. An even higher weight for fertility could not be agreed on due to the effect on selection response of other traits. Hence, breeders decided to direct more attention toward the preselection of bulls with regard to fertility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Technical Reports Server (NTRS)
Rogers, J. D.; Hillman, J. J.
1982-01-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Astrophysics Data System (ADS)
Rogers, J. D.; Hillman, J. J.
1982-04-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
Higher order alchemical derivatives from coupled perturbed self-consistent field theory.
Lesiuk, Michał; Balawender, Robert; Zachara, Janusz
2012-01-21
We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics
12 CFR 3.34 - OTC derivative contracts.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., notional principal amount is the net receipts to each party falling due on each value date in each currency... calculating PFE. (E) The PFE of the protection provider of a credit derivative is capped at the net present... the greater of the mark-to-fair value of the OTC derivative contract or zero. (ii) PFE. (A) The PFE...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David A
Derived air concentration (DAC) values for 175 radionuclides* produced at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS), but not listed in Appendix A of 10 CFR 835 (01/01/2009 version), are presented. The proposed DAC values, ranging between 1 E-07 {micro}Ci/mL and 2 E-03 {micro}Ci/mL, were calculated in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and are intended to support an exemption request seeking regulatory relief from the 10 CFR 835, Appendix A, requirement to apply restrictive DACs of 2E-13 {micro}Ci/mL and 4E-11 {micro}Ci/mL and for non-listed alpha and non-alpha-emitting radionuclides, respectively.
Enthalpies of Formation of Hydrazine and Its Derivatives.
Dorofeeva, Olga V; Ryzhova, Oxana N; Suchkova, Taisiya A
2017-07-20
Enthalpies of formation, Δ f H 298 ° , in both the gas and condensed phase, and enthalpies of sublimation or vaporization have been estimated for hydrazine, NH 2 NH 2 , and its 36 various derivatives using quantum chemical calculations. The composite G4 method has been used along with isodesmic reaction schemes to derive a set of self-consistent high-accuracy gas-phase enthalpies of formation. To estimate the enthalpies of sublimation and vaporization with reasonable accuracy (5-20 kJ/mol), the method of molecular electrostatic potential (MEP) has been used. The value of Δ f H 298 ° (NH 2 NH 2 ,g) = 97.0 ± 3.0 kJ/mol was determined from 75 isogyric reactions involving about 50 reference species; for most of these species, the accurate Δ f H 298 ° (g) values are available in Active Thermochemical Tables (ATcT). The calculated value is in excellent agreement with the reported results of the most accurate models based on coupled cluster theory (97.3 kJ/mol, the average of six calculations). Thus, the difference between the values predicted by high-level theoretical calculations and the experimental value of Δ f H 298 ° (NH 2 NH 2 ,g) = 95.55 ± 0.19 kJ/mol recommended in the ATcT and other comprehensive reference sources is sufficiently large and requires further investigation. Different hydrazine derivatives have been also considered in this work. For some of them, both the enthalpy of formation in the condensed phase and the enthalpy of sublimation or vaporization are available; for other compounds, experimental data for only one of these properties exist. Evidence of accuracy of experimental data for the first group of compounds was provided by the agreement with theoretical Δ f H 298 ° (g) value. The unknown property for the second group of compounds was predicted using the MEP model. This paper presents a systematic comparison of experimentally determined enthalpies of formation and enthalpies of sublimation or vaporization with the results of calculations. Because of relatively large uncertainty in the estimated enthalpies of sublimation, it was not always possible to evaluate the accuracy of the experimental values; however, this model allowed us to detect large errors in the experimental data, as in the case of 5,5'-hydrazinebistetrazole. The enthalpies of formation and enthalpies of sublimation or vaporization have been predicted for the first time for ten hydrazine derivatives with no experimental data. A recommended set of self-consistent experimental and calculated gas-phase enthalpies of formation of hydrazine derivatives can be used as reference Δ f H 298 ° (g) values to predict the enthalpies of formation of various hydrazines by means of isodesmic reactions.
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.
1988-01-01
Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; Obrien, T. K.
1987-01-01
Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.
ERIC Educational Resources Information Center
LoPresto, Michael C.
2013-01-01
In a previous article in this journal, we reported on a laboratory activity in which students used a derivation from the Stefan-Boltzmann law to calculate planetary temperatures and compare them to measured values from various (mostly online) sources. The calculated temperatures matched observed values very well with the exceptions of Venus and…
Approximate relations and charts for low-speed stability derivatives of swept wings
NASA Technical Reports Server (NTRS)
Toll, Thomas A; Queijo, M J
1948-01-01
Contains derivations, based on a simplified theory, of approximate relations for low-speed stability derivatives of swept wings. Method accounts for the effects and, in most cases, taper ratio. Charts, based on the derived relations, are presented for the stability derivatives of untapered swept wings. Calculated values of the derivatives are compared with experimental results.
Measuring Teacher Effectiveness with the Pennsylvania Value-Added Assessment System
ERIC Educational Resources Information Center
Bowen, Naomi
2017-01-01
The purpose of this research was to determine if the Pennsylvania Value-Added Assessment System Average Growth Index (PVAAS AGI) scores, derived from standardized tests and calculated for Pennsylvania schools, provide a valid and reliable assessment of teacher effectiveness, as these scores are currently used to derive 15% of the annual…
NASA Technical Reports Server (NTRS)
Staubert, R.
1985-01-01
Methods for calculating the statistical significance of excess events and the interpretation of the formally derived values are discussed. It is argued that a simple formula for a conservative estimate should generally be used in order to provide a common understanding of quoted values.
NASA Astrophysics Data System (ADS)
Madhavi Latha, T.; Peddi Naidu, P.; Madhusudhana Rao, D. N.; Indira Devi, M.
2012-11-01
Electron density profiles for the International Reference Ionosphere (IRI) 2001 and 2007 models have been utilized in evaluating the D-region conductivity parameter in earth ionosphere wave guide calculations. The day to night shift in reflection height of very low frequency (VLF) waves has been calculated using D-region conductivities derived from IRI models and the results are compared with those obtained from phase variation measurements of VLF transmissions from Rugby (England) made at Visakhapatnam (India). The values derived from the models are found to be much lower than those obtained from the experimental measurements. The values derived from the IRI models are in good agreement with those obtained from exponential conductivity model.
NASA Astrophysics Data System (ADS)
Fatma, Shaheen; Bishnoi, Abha; Verma, Anil Kumar; Singh, Vineeta; Srivastava, Krishna
2018-04-01
This work presents the synthesis of 5-(4-chlorobenzylidene)thiazolidine-2,4-dione (CTD) by Claisen condensation of thiazolidine-2,4-dione and mannich product of CTD, 5-(4-chlorobenzylidene)-3-(morpholinomethyl)thiazolidine-2,4-dione (CMTD). The static first hyperpolarizability values for thiazolidine-2,4-dione derivatives have been calculated as 10.28 × 10-30 esu for CTD and 19.42 × 10-30 esu for CMTD. The gradual increase in hyperpolarizability values of synthesized thiazolidine-2,4-dione derivatives from CTD to CMTD is due to the blockage of sbnd NH group on CTD by mannich reaction. The structures of these compounds have been derived by spectroscopic(IR, UV, Mass, 1H and 13C NMR) analysis as well as with the help of theoretical studies. The high values of first static hyperpolarizability indicate that the synthesized derivatives are suitable as non-linear optical (NLO) material. CTD with MIC value of 12.5 μg/mL can be developed as an alternative drug for the treatment of enteric fever. Calculated frontier orbital gap values suggest that the CMTD is a soft molecule with high chemical reactivity and is more polarizable as compared to the CTD. Molecular electrostatic potential is calculated for the optimized geometry of the molecules to estimate their chemical reactivity. The inhibitor CTD forms a stable complex with 3-dehydroquinase enzyme of Salmonella typhi. It is evident from the ligand receptor interactions and a binding affinity value of -5.88 kcal/mol and an inhibition constant of 49.22 μM. This is further confirmed by the experimental biological data. The molecular docking studies are supportive of the antibacterial activity of CTD exhibiting high inhibition constant and binding energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ödén, Jakob; Zimmerman, Jens; Nowik, Patrik
2015-09-15
Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simplemore » Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni’s or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2) simple Bragg additivity can be reasonably assumed for compound materials; (3) if simple Bragg additivity is assumed, then the I-value for water should be calculated in a consistent manner to that of the tissue of interest (rather than using an experimentally derived value); (4) the ICRU Report 37 I-values may provide a better agreement with experiment than Janni’s tables.« less
On computing Laplace's coefficients and their derivatives.
NASA Astrophysics Data System (ADS)
Gerasimov, I. A.; Vinnikov, E. L.
The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.
NASA Technical Reports Server (NTRS)
Sternfield, Leonard
1951-01-01
A theoretical investigation has been made to determine the effect of nonlinear stability derivatives on the lateral stability of an airplane. Motions were calculated on the assumption that the directional-stability and the damping-in-yawing derivatives are functions of the angle of sideslip. The application of the Laplace transform to the calculation of an airplane motion when certain types of nonlinear derivatives are present is described in detail. The types of nonlinearities assumed correspond to the condition in which the values of the directional-stability and damping-in-yawing derivatives are zero for small angle of sideslip.
Zafar, Shaista; Akhtar, Shamim; Tariq, Talat; Mushtaq, Noushin; Akram, Arfa; Ahmed, Ahsaan; Arif, Muhammad; Naeem, Sabahat; Anwar, Sana
2014-07-01
Dissociation constant (pKa) of ten novel phenacyl derivatives of piperidine were determined by potentiometric titration method in aqueous medium at room temperature (25 ±0.5°C). The sample solutions were prepared in deionized water with ionic strength 0.01M and titrated with 0.1M NaOH solution. In addition, ΔG values were also calculated. Different prediction software programs were used to calculate pKa values too and compared to the experimentally observed pKa values. The experimental and theoretical values were found in close agreement. The results obtained in this research would help to predict the good absorption of the studied compounds and can be selected as lead molecules for the synthesis of CNS active agents because of their lipophilic nature especially compound VII.
Mohammad Al Alfy, Ibrahim
2018-01-01
A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Wakeham, S. G.; Hayes, J. M.
1994-01-01
Carbon isotopic compositions were determined for individual hydrocarbons in water column and sediment samples from the Cariaco Trench and Black Sea. In order to identify hydrocarbons derived from phytoplankton, the isotopic compositions expected for biomass of autotrophic organisms living in surface waters of both localities were calculated based on the concentrations of CO2(aq) and the isotopic compositions of dissolved inorganic carbon. These calculated values are compared to measured delta values for particulate organic carbon and for individual hydrocarbon compounds. Specifically, we find that lycopane is probably derived from phytoplankton and that diploptene is derived from the lipids of chemoautotrophs living above the oxic/anoxic boundary. Three acyclic isoprenoids that have been considered markers for methanogens, pentamethyleicosane and two hydrogenated squalenes, have different delta values and apparently do not derive from a common source. Based on the concentration profiles and isotopic compositions, the C31 and C33 n-alkanes and n-alkenes have a similar source, and both may have a planktonic origin. If so, previously assigned terrestrial origins of organic matter in some Black Sea sediments may be erroneous.
NASA Astrophysics Data System (ADS)
Hudson, Brian D.; George, Ashley R.; Ford, Martyn G.; Livingstone, David J.
1992-04-01
Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.
Novel mathematical algorithm for pupillometric data analysis.
Canver, Matthew C; Canver, Adam C; Revere, Karen E; Amado, Defne; Bennett, Jean; Chung, Daniel C
2014-01-01
Pupillometry is used clinically to evaluate retinal and optic nerve function by measuring pupillary response to light stimuli. We have developed a mathematical algorithm to automate and expedite the analysis of non-filtered, non-calculated pupillometric data obtained from mouse pupillary light reflex recordings, obtained from dynamic pupillary diameter recordings following exposure of varying light intensities. The non-filtered, non-calculated pupillometric data is filtered through a low pass finite impulse response (FIR) filter. Thresholding is used to remove data caused by eye blinking, loss of pupil tracking, and/or head movement. Twelve physiologically relevant parameters were extracted from the collected data: (1) baseline diameter, (2) minimum diameter, (3) response amplitude, (4) re-dilation amplitude, (5) percent of baseline diameter, (6) response time, (7) re-dilation time, (8) average constriction velocity, (9) average re-dilation velocity, (10) maximum constriction velocity, (11) maximum re-dilation velocity, and (12) onset latency. No significant differences were noted between parameters derived from algorithm calculated values and manually derived results (p ≥ 0.05). This mathematical algorithm will expedite endpoint data derivation and eliminate human error in the manual calculation of pupillometric parameters from non-filtered, non-calculated pupillometric values. Subsequently, these values can be used as reference metrics for characterizing the natural history of retinal disease. Furthermore, it will be instrumental in the assessment of functional visual recovery in humans and pre-clinical models of retinal degeneration and optic nerve disease following pharmacological or gene-based therapies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Development of water quality criteria and screening benchmarks for 2,4,6 trinitrotoluene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmage, S.S.; Opresko, D.M.
1995-12-31
Munitions compounds and their degradation products are present at many Army Ammunition Plant Superfund sites. Neither Water Quality Criteria (WQC) for aquatic organisms nor safe soil levels for terrestrial plants and animals have been developed for munitions compounds including trinitrotoluene (TNT). Data are available for the calculation of an acute WQC for TNT according to US EPA guidelines but are insufficient to calculate a chronic criterion. However, available data can be used to determine a Secondary Chronic Value (SCV) and to determine lowest chronic values for fish and daphnids (used by EPA in the absence of criteria). Based on datamore » from eight genera of aquatic organisms, an acute WOC of 0.566 mg/L was calculated. Using available data, a SCV of 0.137 mg/L was calculated. Lowest chronic values for fish and for daphnids are 0.04 mg/L and 1.03 mg/L, respectively. The lowest concentration that affected the growth of aquatic plants was 1.0 mg/L. For terrestrial animals, data from studies of laboratory animals can be extrapolated to derive screening benchmarks in the same way in which human toxicity values are derived from laboratory animal data. For terrestrial animals, a no-observed-adverse-effect-level (NOAEL) for reproductive effects of 1.60 mg/kg/day was determined from a subchronic laboratory feeding study with rats. By scaling the test NOAEL on the basis of differences in body size, screening benchmarks were calculated for oral intake for selected mammalian wildlife species. Screening benchmarks were also derived for protection of benthic organisms in sediment, for soil invertebrates, and for terrestrial plants.« less
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.
Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro
2015-01-01
Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553
Matsui, Toru; Baba, Takeshi; Kamiya, Katsumasa; Shigeta, Yasuteru
2012-03-28
We report a scheme for estimating the acid dissociation constant (pK(a)) based on quantum-chemical calculations combined with a polarizable continuum model, where a parameter is determined for small reference molecules. We calculated the pK(a) values of variously sized molecules ranging from an amino acid to a protein consisting of 300 atoms. This scheme enabled us to derive a semiquantitative pK(a) value of specific chemical groups and discuss the influence of the surroundings on the pK(a) values. As applications, we have derived the pK(a) value of the side chain of an amino acid and almost reproduced the experimental value. By using our computing schemes, we showed the influence of hydrogen bonds on the pK(a) values in the case of tripeptides, which decreases the pK(a) value by 3.0 units for serine in comparison with those of the corresponding monopeptides. Finally, with some assumptions, we derived the pK(a) values of tyrosines and serines in chignolin and a tryptophan cage. We obtained quite different pK(a) values of adjacent serines in the tryptophan cage; the pK(a) value of the OH group of Ser13 exposed to bulk water is 14.69, whereas that of Ser14 not exposed to bulk water is 20.80 because of the internal hydrogen bonds.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2016-01-01
Calculated numerical values for some aerodynamic terms and stability Derivatives for several different wings in unseparated inviscid incompressible flow were made using a discrete vortex method involving a limited number of horseshoe vortices. Both longitudinal and lateral-directional derivatives were calculated for steady conditions as well as for sinusoidal oscillatory motions. Variables included the number of vortices used and the rotation axis/moment center chordwise location. Frequencies considered were limited to the range of interest to vehicle dynamic stability (kb <.24 ). Comparisons of some calculated numerical results with experimental wind-tunnel measurements were in reasonable agreement in the low angle-of-attack range considering the differences existing between the mathematical representation and experimental wind-tunnel models tested. Of particular interest was the presence of induced drag for the oscillatory condition.
HUMAN BODY SHAPE INDEX BASED ON AN EXPERIMENTALLY DERIVED MODEL OF HUMAN GROWTH
Lebiedowska, Maria K.; Alter, Katharine E.; Stanhope, Steven J.
2009-01-01
Objectives To test the assumption of geometrically similar growth by developing experimentally derived models of human body growth during the age interval of 5–18 years; to use the derived growth models to establish a new Human Body Shape Index (HBSI) based on natural age related changes in HBS; and to compare various metrics of relative body weight (body mass index, ponderal index, HBSI) in a sample of 5–18 year old children. Study design Non-disabled Polish children (N=847) participated in this descriptive study. To model growth, the best fit between body height (H) and body mass (M) was calculated for each sex with the allometric equation M= miHχ. HBSI and HBSI were calculated separately for girls and boys, using sex-specific values for χ and a general HBSI from combined data. The customary body mass and ponderal indices were calculated and compared to HBSI values. Results The models of growth were M=13.11H2.84 (R2=.90) and M=13.64H2.68 (R2=.91) for girls and boys respectively. HBSI values contained less inherent variability and were influenced least by growth (age and height) than customary indices. Conclusion Age-related growth during childhood is sex-specific and not geometrically similar. Therefore, indices of human body shape formulated from experimentally derived models of human growth are superior to customary geometric similarity-based indices for the characterization of human body shape in children during the formative growth years. PMID:18154897
Human body shape index based on an experimentally derived model of human growth.
Lebiedowska, Maria K; Alter, Katharine E; Stanhope, Steven J
2008-01-01
To test the assumption of geometrically similar growth by developing experimentally derived models of human body growth during the age interval of 5 to 18 years; to use these derived growth models to establish a new human body shape index (HBSI) based on natural age-related changes in human body shape (HBS); and to compare various metrics of relative body weight (body mass index [BMI], ponderal index [PI], and HBSI) in a sample of 5- to 18-year-old children. Nondisabled Polish children (n = 847) participated in this descriptive study. To model growth, the best fit between body height (H) and body mass (M) was calculated for each sex using the allometric equation M = m(i) H(chi). HBSI was calculated separately for girls and boys, using sex-specific values for chi and a general HBSI from combined data. The customary BMI and PI were calculated and compared with HBSI values. The models of growth were M = 13.11H(2.84) (R2 = 0.90) for girls and M = 13.64H(2.68) (R2 = 0.91) for boys. HBSI values contained less inherent variability and were less influenced by growth (age and height) compared with BMI and PI. Age-related growth during childhood is sex-specific and not geometrically similar. Therefore, indices of HBS formulated from experimentally derived models of human growth are superior to customary geometric similarity-based indices for characterizing HBS in children during the formative growth years.
Derivatives of random matrix characteristic polynomials with applications to elliptic curves
NASA Astrophysics Data System (ADS)
Snaith, N. C.
2005-12-01
The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.
Antiplasmodial Drugs in the Gas Phase: A CID and DFT Study of Quinolon-4( 1H)-Imine Derivatives
NASA Astrophysics Data System (ADS)
Amorim Madeira, Paulo J.; Sitoe, Ana Raquel Fernandes; Gonçalves, Daniel; Rodrigues, Tiago; Guedes, Rita C.; Lopes, Francisca; Moreira, Rui; Bronze, M. Rosário
2014-09-01
The gas-phase behavior of 12 quinolon-4( 1H)-imine derivatives with antiplasmodial activity was investigated using electrospray ionization tandem mass spectrometry together with collision induced dissociation and density functional theory (DFT) calculations. The most probable protonation site was predicted by calculating the proton affinity (PA) values for each possible protonation site and it was found to be the imine nitrogen for all compounds under study. Fragmentation pathways of the protonated molecules were proposed and the assignment of product ion structures was performed taking into account theoretical calculations. The nature of the quinoline substituent was found to influence the gas-phase behavior of the compounds under study. The data acquired allowed to bracket the proton affinity of the quinolin-4-imine scaffold, which can be a useful starting point to choose appropriate references for determining PA values of this scaffold.
Metric Scale Calculation for Visual Mapping Algorithms
NASA Astrophysics Data System (ADS)
Hanel, A.; Mitschke, A.; Boerner, R.; Van Opdenbosch, D.; Hoegner, L.; Brodie, D.; Stilla, U.
2018-05-01
Visual SLAM algorithms allow localizing the camera by mapping its environment by a point cloud based on visual cues. To obtain the camera locations in a metric coordinate system, the metric scale of the point cloud has to be known. This contribution describes a method to calculate the metric scale for a point cloud of an indoor environment, like a parking garage, by fusing multiple individual scale values. The individual scale values are calculated from structures and objects with a-priori known metric extension, which can be identified in the unscaled point cloud. Extensions of building structures, like the driving lane or the room height, are derived from density peaks in the point distribution. The extension of objects, like traffic signs with a known metric size, are derived using projections of their detections in images onto the point cloud. The method is tested with synthetic image sequences of a drive with a front-looking mono camera through a virtual 3D model of a parking garage. It has been shown, that each individual scale value improves either the robustness of the fused scale value or reduces its error. The error of the fused scale is comparable to other recent works.
Calculating Free Energies Using Average Force
NASA Technical Reports Server (NTRS)
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1990-01-01
The variation of the velocity-derivative skewness of a Navier-Stokes flow as the Reynolds number goes toward zero is calculated numerically. The value of the skewness, which has been somewhat controversial, is shown to become small at low Reynolds numbers.
NASA Astrophysics Data System (ADS)
Purushothaman, Gayathri; Thiruvenkatam, Vijay
2017-11-01
Oximes are building block of organic synthesis and they have wide range applications in laboratories, industries, and pharmaceutical as antidotes. Herein we report the crystal structures of oxime derivative Beta-p-Dimethylaminodeoxybenzionoxime (I) and o-Chloro-p-dimethylaminodeoxybenzion (II) the precursor molecule of o-Chloro-p-dimethylaminodeoxybenzionoxime and their intermolecular interactions studies through Hirshfeld surface & 2D-fingerprint plot analysis along with PIXELC and DFT calculations. The packing arrangements in I and II are driven by Osbnd H⋯N and Osbnd H⋯C interactions respectively. The Osbnd H⋯N hydrogen bonding in I facilitates the formation of the dimer with the motif of R (22(6)), whereas in II absence of oxime moiety (dbnd NOH) restricts the dimer formation. The 2D-fingerprint plot shows the close contacts for the intermolecular interactions in I & II. The PIXELC calculation of II suggests Osbnd H⋯C contributes for intermolecular interaction that stabilizes the crystal packing with the total energy value of 60.4 kcal/mol. The DFT calculation using B3LYP with 6-311G (d, p) functional set for both the derivatives shows a small deviation in the benzene ring (I) and chlorobenzene ring (II) with the RMSD value of 0.5095 Å and 0.8472 Å respectively.
Average value of the shape and direction factor in the equation of refractive index
NASA Astrophysics Data System (ADS)
Zhang, Tao
2017-10-01
The theoretical calculation of the refractive indices is of great significance for the developments of new optical materials. The calculation method of refractive index, which was deduced from the electron-cloud-conductor model, contains the shape and direction factor 〈g〉. 〈g〉 affects the electromagnetic-induction energy absorbed by the electron clouds, thereby influencing the refractive indices. It is not yet known how to calculate 〈g〉 value of non-spherical electron clouds. In this paper, 〈g〉 value is derived by imaginatively dividing the electron cloud into numerous little volume elements and then regrouping them. This paper proves that 〈g〉 = 2/3 when molecules’ spatial orientations distribute randomly. The calculations of the refractive indices of several substances validate this equation. This result will help to promote the application of the calculation method of refractive index.
Flammability of gas mixtures. Part 1: fire potential.
Schröder, Volkmar; Molnarne, Maria
2005-05-20
International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.
Wolever, Thomas M S
2004-02-01
To evaluate the suitability for glycaemic index (GI) calculations of using blood sampling schedules and methods of calculating area under the curve (AUC) different from those recommended, the GI values of five foods were determined by recommended methods (capillary blood glucose measured seven times over 2.0 h) in forty-seven normal subjects and different calculations performed on the same data set. The AUC was calculated in four ways: incremental AUC (iAUC; recommended method), iAUC above the minimum blood glucose value (AUCmin), net AUC (netAUC) and iAUC including area only before the glycaemic response curve cuts the baseline (AUCcut). In addition, iAUC was calculated using four different sets of less than seven blood samples. GI values were derived using each AUC calculation. The mean GI values of the foods varied significantly according to the method of calculating GI. The standard deviation of GI values calculating using iAUC (20.4), was lower than six of the seven other methods, and significantly less (P<0.05) than that using netAUC (24.0). To be a valid index of food glycaemic response independent of subject characteristics, GI values in subjects should not be related to their AUC after oral glucose. However, calculating GI using AUCmin or less than seven blood samples resulted in significant (P<0.05) relationships between GI and mean AUC. It is concluded that, in subjects without diabetes, the recommended blood sampling schedule and method of AUC calculation yields more valid and/or more precise GI values than the seven other methods tested here. The only method whose results agreed reasonably well with the recommended method (ie. within +/-5 %) was AUCcut.
Thermodynamic properties of anthophyllite and talc: corrections and discussion of calorimetric data
Hemingway, B.S.
1991-01-01
Arithmetic errors in calculating heat capacity values (Krupka, 1984; Krupka et al, 1985a) for anthophyllite and several errors in the Hess cycles utilized to derive enthalpies of formation of anthophyllite and talc are identified, and revised values are reported. -from Author
Naska, A; Trichopoulou, A
2001-08-01
The EU-supported project entitled: "Compatibility of household budget and individual nutrition surveys and disparities in food habits" aimed at comparing individualised household budget survey (HBS) data with food consumption values derived from individual nutrition surveys (INS). The present paper provides a brief description of the methodology applied for rendering the datasets at a comparable level. Results of the preliminary evaluation of their compatibility are also presented. A non parametric modelling approach was used for the individualisation (age and gender-specific) of the food data collected at household level, in the context of the national HBSs and the bootstrap technique was used for the derivation of 95% confidence intervals. For each food group, INS and HBS-derived mean values were calculated for twenty-four research units, jointly defined by country (four countries involved), gender (male, female) and age (younger, middle-aged and older). Pearson correlation coefficients were calculated. The results of this preliminary analysis show that there is considerable scope in the nutritional information derived from HBSs. Additional and more sophisticated work is however required, putting particular emphasis on addressing limitations present in both surveys and on deriving reliable individual consumption point and interval estimates, on the basis of HBS data.
Gamma shielding properties of Tamoxifen drug
NASA Astrophysics Data System (ADS)
Kanberoglu, Gulsah Saydan; Oto, Berna; Gulebaglan, Sinem Erden
2017-02-01
Tamoxifen (MW=371 g/mol) is an endocrine therapeutic drug widely prescribed as chemopreventive in women to prevent and to treat all stages of breast cancer. It is also being studied for other types of cancer. In this study, we have calculated some gamma shielding parameters such as mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) for Tamoxifen drug. The values of μρ were calculated using WinXCom computer program and then the values of Zeff and Nel were derived using μρ values in the wide energy range (1 keV - 100 GeV).
The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering
NASA Technical Reports Server (NTRS)
Finn, G. D.; Jefferies, J. T.
1974-01-01
Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.
Stochastic optimal operation of reservoirs based on copula functions
NASA Astrophysics Data System (ADS)
Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen
2018-02-01
Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.
A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
Bartzsch, Stefan; Oelfke, Uwe
2013-11-01
The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques. In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived. The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV. The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.
[Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].
Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan
2010-04-01
Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.
An analytic formula for H-infinity norm sensitivity with applications to control system design
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Lim, Kyong B.
1992-01-01
An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.
Thomas H. Epps; Daniel R. Hitchcock; Anand D. Jayakaran; Drake R. Loflin; Thomas M. Williams; Devendra M. Amatya
2013-01-01
The objective of this study was to assess curve number (CN) values derived for two forested headwater catchments in the Lower Coastal Plain (LCP) of South Carolina using a three-year period of storm event rainfall and runoff data in comparison with results obtained from CN method calculations. Derived CNs from rainfall/runoff pairs ranged from 46 to 90 for the Upper...
Multiscale analysis of the CMB temperature derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es
2017-02-01
We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected,more » the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.« less
Silva, Ana L R; Freitas, Vera L S; Ribeiro da Silva, Maria D M C
2014-07-01
A combined experimental and computational study was developed to evaluate and understand the energetics and reactivity of formyl and methoxy α-naphthalene derivatives. Static bomb combustion calorimetry and the Calvet microcalorimetry were the experimental techniques used to determine the standard (p(o)=0.1 MPa) molar enthalpies of formation, in the liquid phase, ΔfHm(o)(l), and of vaporization, Δl(g)Hm(o), at T=298.15K, respectively, of the two liquid naphthalene derivatives. Those experimental values were used to derive the values of the experimental standard molar enthalpies of formation, in the gaseous phase, ΔfHm(o)(g), of 1-methoxynaphthalene, (-3.0 ± 3.1)kJmol(-1), and of 1-formylnaphthalene, (36.3 ± 4.1)kJ mol(-1). High-level quantum chemical calculations at the composite G3(MP2)//B3LYP level were performed to estimate the values of the ΔfHm(o)(g) of the two compounds studied resulting in values in very good agreement with experimental ones. Natural bond orbital (NBO) calculations were also performed to determine more about the structure and reactivity of this class of compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne
2003-01-01
A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.
Bayesian model checking: A comparison of tests
NASA Astrophysics Data System (ADS)
Lucy, L. B.
2018-06-01
Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.
A summary of lateral-stability derivatives calculated for wing plan forms in supersonic flow
NASA Technical Reports Server (NTRS)
Jones, Arthur L; Alksne, Alberta
1951-01-01
A compilation of theoretical values of the lateral-stability derivatives for wings at supersonic speeds is presented in the form of design charts. The wing plan forms for which this compilation has been prepared include a rectangular, two trapezoidal, two triangular, a fully-tapered swept-back, a sweptback hexagonal, an unswept hexagonal, and a notched triangular plan form. A full set of results, that is, values for all nine of the lateral-stability derivatives for wings, was available for the first six of these plan forms only. The reasons for the incompleteness of the results available for other plan forms are discussed.
Exposure to pesticides residues from consumption of Italian blood oranges.
Fallico, B; D'Urso, M G; Chiappara, E
2009-07-01
This paper reports the results of a 5-year study to evaluate pesticide levels, derived from orchard activities, on Italy's most common orange cultivar (Citrus sinensis, L. Osbeck, cv. Tarocco). Using a Bayesian approach, the study allowed both the qualitative (number) and quantitative distributions (amount) of pesticides to be determined with its own probability value. Multi-residue analyses of 460 samples highlighted the presence of ethyl and methyl chlorpyrifos, dicofol, etofenprox, fenazaquin, fenitrothion, imazalil, malathion and metalaxil-m. A total of 30.5% of samples contained just one pesticide, 2.16% two pesticides and 0.65% of samples had three pesticides present simultaneously. The most common residue was ethyl chlorpyrifos followed by methyl chlorpyrifos. Estimated daily intake (EDI) values for ethyl and methyl chlorpyrifos, as well as the distance from the safety level (non-observed adverse effect level, NOAEL), were calculated. The risk was differentiated (1) to take account of the period of actual citrus consumption (180 days) and (2) to discriminate the risk derived from eating oranges containing a certain level of chlorpyrifos from unspecified pesticides. The most likely EDI values for ethyl chlorpyrifos derived from Italian blood orange consumption are 0.01 and 0.006 mg/day calculated for 180 and 365 days, respectively. Considering the probability of the occurrence of ethyl chlorpyrifos, these EDI values are reduced to 2.6 x 10(-3) and 1.3 x 10(-3) mg/day, respectively. For methyl chlorpyrifos, the most likely EDI values are 0.09 and 0.04 mg/day, respectively; considering the probability of its occurrence, the EDI values decrease to 6.7 x 10(-3) and 3.4 x 10(-3) mg/day, respectively. The results confirmed that levels of pesticides in Italian Tarocco oranges derived from a known controlled chain of production are safe.
Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R
2016-04-01
The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Development of an Automatic Differentiation Version of the FPX Rotor Code
NASA Technical Reports Server (NTRS)
Hu, Hong
1996-01-01
The ADIFOR2.0 automatic differentiator is applied to the FPX rotor code along with the grid generator GRGN3. The FPX is an eXtended Full-Potential CFD code for rotor calculations. The automatic differentiation version of the code is obtained, which provides both non-geometry and geometry sensitivity derivatives. The sensitivity derivatives via automatic differentiation are presented and compared with divided difference generated derivatives. The study shows that automatic differentiation method gives accurate derivative values in an efficient manner.
NASA Astrophysics Data System (ADS)
Jiménez, Pilar; Roux, María Victoria; Dávalos, Juan Z.; Temprado, Manuel; Ribeiro da Silva, Manuel A. V.; Ribeiro da Silva, Maria Das Dores M. C.; Amaral, Luísa M. P. F.; Cabildo, Pilar; Claramunt, Rosa M.; Mó, Otilia; Yáñez, Manuel; Elguero, José
The enthalpies of combustion, heat capacities, enthalpies of sublimation and enthalpies of formation of 2-methylbenzimidazole (2MeBIM) and 2-ethylbenzimidazole (2EtBIM) are reported and the results compared with those of benzimidazole itself (BIM). Theoretical estimates of the enthalpies of formation were obtained through the use of atom equivalent schemes. The necessary energies were obtained in single-point calculations at the B3LYP/6-311+G(d,p) on B3LYP/6-31G* optimized geometries. The comparison of experimental and calculated values of benzenes, imidazoles and benzimidazoles bearing H (unsubstituted), methyl and ethyl groups shows remarkable homogeneity. The energetic group contribution transferability is not followed, but either using it or adding an empirical interaction term, it is possible to generate an enormous collection of reasonably accurate data for different substituted heterocycles (pyrazole-derivatives, pyridine-derivatives, etc.) from the large amount of values available for substituted benzenes and those of the parent (pyrazole, pyridine) heterocycles.
DFT calculation of pKa’s for dimethoxypyrimidinylsalicylic based herbicides
NASA Astrophysics Data System (ADS)
Delgado, Eduardo J.
2009-03-01
Dimethoxypyrimidinylsalicylic derived compounds show potent herbicidal activity as a result of the inhibition of acetohydroxyacid synthase, the first common enzyme in the biosynthetic pathway of the branched-chain aminoacids (valine, leucine and isoleucine) in plants, bacteria and fungi. Despite its practical importance, this family of compounds have been poorly characterized from a physico-chemical point of view. Thus for instance, their pK a's have not been reported earlier neither experimentally nor theoretically. In this study, the acid-dissociation constants of 39 dimethoxypyrimidinylsalicylic derived herbicides are calculated by DFT methods at B3LYP/6-31G(d,p) level of theory. The calculated values are validated by two checking tests based on the Hammett equation.
EFFECT OF NONZERO θ13 ON THE MEASUREMENT OF θ23
NASA Astrophysics Data System (ADS)
Raut, Sushant K.
2013-06-01
The moderately large measured value of θ13 signals a departure from the approximate two-flavor oscillation framework. As a consequence, the relation between the value of θ23 in nature, and the mixing angle measured in νμ disappearance experiments is nontrivial. In this paper, we calculate this relation analytically. We also derive the correct conversion between degenerate values of θ23 in the two octants. Through simulations of a νμ disappearance experiment, we show that there are observable consequences of not using the correct relation in calculating oscillation probabilities. These include a wrong best-fit value for θ23, and spurious sensitivity to the octant of θ23.
Einstein coefficients and oscillator strengths for low lying state of CO molecules
NASA Astrophysics Data System (ADS)
Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.
2018-04-01
Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.
USDA-ARS?s Scientific Manuscript database
Introduction: Dietary glycemic index (GI) and glycemic load (GL) values have been calculated using data derived from instruments designed to estimate daily food intake. Since the absolute amount of carbohydrate (CHO) and combination of CHO with other macronutrients and fiber is highly variable among...
Fluorescence properties of 6-aryl-2‧-deoxy-furanouridine and -pyrrolocytidine and their derivatives
NASA Astrophysics Data System (ADS)
Ro, Jong Jin; Go, Gui Han; Wilhelmsson, L. Marcus; Hyean Kim, Byeang
2018-01-01
2‧-deoxyfuranouridine derivatives presenting various aryl groups have been synthesized through Cu(I)-catalyzed intramolecular cyclizations. Moreover, corresponding pyrrolo-dC derivatives have been synthesized and both families of compounds thoroughly characterized using UV/vis and fluorescence spectroscopy as well as time-dependent density functional theory calculations. The photophysical characterization, show that our newly synthesized derivatives of the important pyrrolo-dC family have high fluorescence quantum yields (QYs) and brightness values. Pyrrolo-dC derivative, 3a, shows an environment sensitive QY of up to >60% and brightness of almost 3000, in low polarity solvents and excitation and emission maxima between 365-381 nm and 479-510 nm, respectively, in solvents of different polarities. Two other derivatives, 3b and 3c, show high QYs and brightness values of up to 3300 that are fairly insensitive to their microenvironment. These promising photophysical features suggest future applicability as fluorescent nucleobase analogs.
Nasiri, Hamid Reza; Panisch, Robin; Madej, M Gregor; Bats, Jan W; Lancaster, C Roy D; Schwalbe, Harald
2009-06-01
2-methyl-1,4-naphtoquinone 1 (vitamin K(3), menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E(1/2)) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (E(A)). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (E(A)) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.
NASA Astrophysics Data System (ADS)
Luis, Josep M.; Duran, Miquel; Andrés, José L.
1997-08-01
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values.
NASA Technical Reports Server (NTRS)
Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.
1995-01-01
The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.
Facile synthesis, structural elucidation and spectral analysis of pyrrole 4-imidazole derivatives
NASA Astrophysics Data System (ADS)
Singh, R. N.; Rawat, Poonam; Baboo, Vikas
2015-12-01
In this work pyrrole 4-imidazole derivatives (3A-3D): benzimidazoles and pyrrole 4-imidazoline have been synthesized by condensation, cyclization and oxidation of ethyl 4-formyl-3,5-dimethyl-1H-pyrrole carboxylate and phenylene diamine derivatives/ethylene diamine. The structure of these biheterocyclic compounds have been derived by elemental and spectroscopic - IR, UV, MS, 1H and 13C NMR analysis as well as theoretical study. The static first hyperpolarizability, β0 values for pyrrole 4-imidazole derivatives, (3A-3D) have been calculated as 10.901 × 10-31, 19.607 × 10-31, 40.323 × 10-31, 5.686 × 10-31 esu, respectively. The gradual increase in β0 value of synthesized pyrrole-benzimidazole derivatives from 3A to 3C is due to addition of acceptors -Cl atom in 3B to -NO2 group in 3C on benzimidazole side. The experimental absorption spectra found to be in UV region and the high β0 values show that the synthesized pyrrole-imidazoles are suitable as non-linear optical (NLO) materials.
NASA Technical Reports Server (NTRS)
Bever, G. A.
1981-01-01
The flight test data requirements at the NASA Dryden Flight Research Center increased in complexity, and more advanced instrumentation became necessary to accomplish mission goals. This paper describes the way in which an airborne computer was used to perform real-time calculations on critical flight test parameters during a flight test on a winglet-equipped KC-135A aircraft. With the computer, an airborne flight test engineer can select any sensor for airborne display in several formats, including engineering units. The computer is able to not only calculate values derived from the sensor outputs but also to interact with the data acquisition system. It can change the data cycle format and data rate, and even insert the derived values into the pulse code modulation (PCM) bit stream for recording.
Berlin, M F; Faber, B P; Berlin, L M; Budzynski, M R
1997-11-01
Relative value unit (RVU) cost accounting which uses the resource-based relative value scale (RBRVS), can be used to determine the cost to produce given services and determine appropriate physician fees. The calculations derived from RVU costing have additional applications, such as analyzing fee schedules, evaluating the profitability of third-party payer reimbursement, calculating a floor capitation rate, and allocating capitation payments within the group. The ability to produce this information can help group practice administrators determine ways to manage the cost of providing services, set more realistic fees, and negotiate more profitable contracts.
Jayabharathi, Jayaraman; Thanikachalam, Venugopal; Venkatesh Perumal, Marimuthu
2012-09-01
The synthesized imidazole derivative 2-(2,4-difluorophenyl)-1-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (dfpmpip) has been characterized using IR, mass, (1)H, (13)C NMR and elemental analysis. The photophysical properties of dfpmpip have been studied using UV-visible and fluorescence spectroscopy in different solvents. The solvent effect on the absorption and fluorescence bands has been analyzed by a multi-component linear regression. Theoretically calculated bond lengths, bond angles and dihedral angles are found to be slightly higher than that of X-ray Diffraction (XRD) values of its parent compound. The charge distribution has been calculated from the atomic charges by non-linear optical (NLO) and natural bond orbital (NBO) analysis. Since the synthesized imidazole derivative has the largest μ(g)β(0) value, the reported imidazole can be used as potential NLO material. The energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and the molecular electrostatic potential (MEP) energy surface studies evidenced the existence of intramolecular charge transfer (ICT) within the molecule. Theoretical calculations regarding the chemical potential (μ), hardness (η) and electrophilicity index (ω) have also been calculated. Copyright © 2012 Elsevier B.V. All rights reserved.
Chandran, Asha; Varghese, Hema Tresa; Mary, Y Sheena; Panicker, C Yohannan; Manojkumar, T K; Van Alsenoy, Christian; Rajendran, G
2012-02-15
FT-IR and FT-Raman spectra of (E)-N-Carbamimidoyl-4-((naphthalen-1-yl-methylene)amino)benzene sulfonamide were recorded and analyzed. The vibrational wavenumbers were computing at various levels of theory. The data obtained from theoretical calculations are used to assign vibrational bands obtained experimentally. The results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and structural parameters. The calculated first hyperpolarizability is comparable with reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound are in agreement with that of similar derivatives. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2015-01-01
This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.
NASA Astrophysics Data System (ADS)
Lesiuk, Michał; Moszynski, Robert
2014-12-01
In this paper we consider the calculation of two-center exchange integrals over Slater-type orbitals (STOs). We apply the Neumann expansion of the Coulomb interaction potential and consider calculation of all basic quantities which appear in the resulting expression. Analytical closed-form equations for all auxiliary quantities have already been known but they suffer from large digital erosion when some of the parameters are large or small. We derive two differential equations which are obeyed by the most difficult basic integrals. Taking them as a starting point, useful series expansions for small parameter values or asymptotic expansions for large parameter values are systematically derived. The resulting expansions replace the corresponding analytical expressions when the latter introduce significant cancellations. Additionally, we reconsider numerical integration of some necessary quantities and present a new way to calculate the integrand with a controlled precision. All proposed methods are combined to lead to a general, stable algorithm. We perform extensive numerical tests of the introduced expressions to verify their validity and usefulness. Advances reported here provide methodology to compute two-electron exchange integrals over STOs for a broad range of the nonlinear parameters and large angular momenta.
PREDICTION OF PERFORMANCE CHARACTERISTICS OF HICKMAN-BADGER CENTRIFUGAL BOILER COMPRESSION STILL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, L.A.
1958-02-01
Equations are derived to predict the operating characteristics of the Hickman-Badger still and the optimum conditions of opertion. Included are tables of values for use in performance calculations. (J.R.D.)
The value of using DNA markers for beef bull selection in the seedstock sector.
Van Eenennaam, A L; van der Werf, J H J; Goddard, M E
2011-02-01
The objective of this study was to estimate the value derived from using DNA information to increase the accuracy of beef sire selection in a closed seedstock herd. Breeding objectives for commercial production systems targeting 2 diverse markets were examined using multiple-trait selection indexes developed for the Australian cattle industry. Indexes included those for both maternal (self-replacing) and terminal herds targeting either a domestic market, where steers are finished on pasture, or the export market, where steers are finished on concentrate rations in feedlots and marbling has a large value. Selection index theory was used to predict the response to conventional selection based on phenotypic performance records, and this was compared with including information from 2 hypothetical marker panels. In 1 case the marker panel explained a percentage of additive genetic variance equal to the heritability for all traits in the breeding objective and selection criteria, and in the other case to one-half of this amount. Discounted gene flow methodology was used to calculate the value derived from the use of superior bulls selected using DNA test information and performance recording over that derived from conventional selection using performance recording alone. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator. The DNA testing using these hypothetical marker panels increased the selection response between 29 to 158%. The value of this improvement above that obtained using traditional performance recording ranged from $89 to 565 per commercial bull, and $5,332 to 27,910 per stud bull. Assuming that the entire bull calf crop was tested to achieve these gains, the value of the genetic gain derived from DNA testing ranged from $204 to 1,119 per test. All values assumed that the benefits derived from using superior bulls were efficiently transferred along the production chain to the seedstock producer incurring the costs of genotyping. These results suggest that the development of greater-accuracy DNA tests for beef cattle selection could be beneficial from an industry-wide perspective, but the commercial viability will strongly depend on price signaling throughout the production chain.
Ni, Hui; He, Guo-qing; Ruan, Hui; Chen, Qi-he; Chen, Feng
2005-01-01
A derivative ratio spectrophotometric method was used for the simultaneous determination of β-carotene and astaxanthin produced from Phaffia rhodozyma. Absorbencies of a series of the standard carotenoids in the range of 441 nm to 490 nm demonstrated that their absorptive spectra accorded with Beer’s law and that the additivity when the concentrations of β-carotene and astaxanthin and their mixture were within the range of 0 to 5 µg/ml, 0 to 6 µg/ml, and 0 to 6 µg/ml, respectively. When the wavelength interval (Δλ) at 2 nm was selected to calculate the first derivative ratio spectra values, the first derivative amplitudes at 461 nm and 466 nm were suitable for quantitatively determining β-carotene and astaxanthin, respectively. Effect of divisor on derivative ratio spectra could be neglected; any concentration used as divisor in range of 1.0 to 4.0 µg/ml is ideal for calculating the derivative ratio spectra values of the two carotenoids. Calibration graphs were established for β-carotene within 0–6.0 µg/ml and for astaxanthin within 0–5.0 µg/ml with their corresponding regressive equations in: y=−0.0082x−0.0002 and y=0.0146x−0.0006, respectively. R-square values in excess of 0.999 indicated the good linearity of the calibration graphs. Sample recovery rates were found satisfactory (>99%) with relative standard deviations (RSD) of less than 5%. This method was successfully applied to simultaneous determination of β-carotene and astaxanthin in the laboratory-prepared mixtures and the extract from the Phaffia rhodozyma culture. PMID:15909336
Alberer, Martin; Hoefele, Julia; Benz, Marcus R; Bökenkamp, Arend; Weber, Lutz T
2017-01-01
Measurement of inulin clearance is considered to be the gold standard for determining kidney function in children, but this method is time consuming and expensive. The glomerular filtration rate (GFR) is on the other hand easier to calculate by using various creatinine- and/or cystatin C (Cys C)-based formulas. However, for the determination of serum creatinine (Scr) and Cys C, different and non-interchangeable analytical methods exist. Given the fact that different analytical methods for the determination of creatinine and Cys C were used in order to validate existing GFR formulas, clinicians should be aware of the type used in their local laboratory. In this study, we compared GFR results calculated on the basis of different GFR formulas and either used Scr and Cys C values as determined by the analytical method originally employed for validation or values obtained by an alternative analytical method to evaluate any possible effects on the performance. Cys C values determined by means of an immunoturbidimetric assay were used for calculating the GFR using equations in which this analytical method had originally been used for validation. Additionally, these same values were then used in other GFR formulas that had originally been validated using a nephelometric immunoassay for determining Cys C. The effect of using either the compatible or the possibly incompatible analytical method for determining Cys C in the calculation of GFR was assessed in comparison with the GFR measured by creatinine clearance (CrCl). Unexpectedly, using GFR equations that employed Cys C values derived from a possibly incompatible analytical method did not result in a significant difference concerning the classification of patients as having normal or reduced GFR compared to the classification obtained on the basis of CrCl. Sensitivity and specificity were adequate. On the other hand, formulas using Cys C values derived from a compatible analytical method partly showed insufficient performance when compared to CrCl. Although clinicians should be aware of applying a GFR formula that is compatible with the locally used analytical method for determining Cys C and creatinine, other factors might be more crucial for the calculation of correct GFR values.
Hard-spin mean-field theory: A systematic derivation and exact correlations in one dimension
Kabakcioglu
2000-04-01
Hard-spin mean-field theory is an improved mean-field approach which has proven to give accurate results, especially for frustrated spin systems, with relatively little computational effort. In this work, the previous phenomenological derivation is supplanted by a systematic and generic derivation that opens the possibility for systematic improvements, especially for the calculation of long-range correlation functions. A first level of improvement suffices to recover the exact long-range values of the correlation functions in one dimension.
Trotsko, Nazar; Przekora, Agata; Zalewska, Justyna; Ginalska, Grażyna; Paneth, Agata; Wujec, Monika
2018-12-01
In our present research, we synthesised new thiazolidine-2,4-diones (12-28). All the newly synthesised compounds were evaluated for antiproliferative and antibacterial activity. Antiproliferative evaluation was carried out using normal human skin fibroblasts and tumour cell lines: A549, HepG2, and MCF-7. The IC 50 values were determined for tested compounds revealing antiproliferative activity. Moreover, safety index (SI) was calculated. Among all tested derivatives, the compound 18 revealed the highest antiproliferative activity against human lung, breast, and liver cancer cells. More importantly, the derivative 18 showed meaningfully lower IC 50 values when compared to the reference substance, irinotecan, and relatively high SI values. Moreover, newly synthesised compounds were screened for the bacteria growth inhibition in vitro. According to our screening results, most active compound was the derivative 18 against Gram-positive bacteria. Therefore, it may be implied that the novel compound 18 appears to be a very promising agent for anticancer treatment.
Isotopic abundances of Hg in mercury stars inferred from the Hg II line at 3984 A
NASA Technical Reports Server (NTRS)
White, R. E.; Vaughan, A. H., Jr.; Preston, G. W.; Swings, J. P.
1976-01-01
Wavelengths of the Hg II absorption feature at 3984 A in 30 Hg stars are distributed uniformly from the value for the terrestrial mix to a value that corresponds to nearly pure Hg-204. The wavelengths are correlated loosely with effective temperatures inferred from Q(UBV). Relative isotopic abundances derived from partially resolved profiles of the 3984-A line in iota CrB, chi Lup, and HR 4072 suggest that mass-dependent fractionation has occurred in all three stars. It is supposed that such fractionation occurs in all Hg stars, and a scheme whereby isotopic compositions can be inferred from a comparison of stellar wavelengths and equivalent widths with those calculated for a family of fractionated isotopic mixes. Theoretical profiles calculated for the derived isotopic composition agree well with high-resolution interferometric profiles obtained for three of the stars.
Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio
2017-01-10
The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
Rasheed, Tabish; Ahmad, Shabbir
2010-10-01
Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.
Percent area coverage through image analysis
NASA Astrophysics Data System (ADS)
Wong, Chung M.; Hong, Sung M.; Liu, De-Ling
2016-09-01
The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.
Analysis of the effects of wing interference on the tail contributions to the rolling derivatives
NASA Technical Reports Server (NTRS)
Michael, William H , Jr
1952-01-01
An analysis of the effects of wing interference on the tail contributions to the rolling stability derivatives of complete airplane configurations is made by calculating the angularity of the air stream at the vertical tail due to rolling and determining the resulting forces and moments. Some of the important factors which affect the resultant angularity on the vertical tail are wing aspect ratio and sweepback, vertical-tail span, and considerations associated with angle of attack and airplane geometry. Some calculated sidewash results for a limited range of plan forms and vertical-tail sizes are presented. Equations taking into account the sidewash results are given for determining the tail contributions to the rolling derivatives. Comparisons of estimated and experimental results indicate that a consideration of wing interference effects improves the estimated values of the tail contributions to the rolling derivatives and that fair agreement with available experimental data is obtained.
A GIS application for assessing, mapping, and quantifying the social values of ecosystem services
Sherrouse, Benson C.; Clement, Jessica M.; Semmens, Darius J.
2011-01-01
As human pressures on ecosystems continue to increase, research involving the effective incorporation of social values information into the context of comprehensive ecosystem services assessments is becoming more important. Including quantified, spatially explicit social value metrics in such assessments will improve the analysis of relative tradeoffs among ecosystem services. This paper describes a GIS application, Social Values for Ecosystem Services (SolVES), developed to assess, map, and quantify the perceived social values of ecosystem services by deriving a non-monetary Value Index from responses to a public attitude and preference survey. SolVES calculates and maps the Value Index for social values held by various survey subgroups, as distinguished by their attitudes regarding ecosystem use. Index values can be compared within and among survey subgroups to explore the effect of social contexts on the valuation of ecosystem services. Index values can also be correlated and regressed against landscape metrics SolVES calculates from various environmental data layers. Coefficients derived through these analyses were applied to their corresponding data layers to generate a predicted social value map. This map compared favorably with other SolVES output and led to the addition of a predictive mapping function to SolVES for value transfer to areas where survey data are unavailable. A more robust application is being developed as a public domain tool for decision makers and researchers to map social values of ecosystem services and to facilitate discussions among diverse stakeholders involving relative tradeoffs among different ecosystem services in a variety of physical and social contexts.
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Q.; Boulet, C.; Tipping, R. H.
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS{sub 1} − S{sub 2} introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonalmore » elements do not require extra correlation functions of the S-circumflex operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters’ two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C{sub 2}H{sub 2} broadened by N{sub 2}. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.« less
NASA Astrophysics Data System (ADS)
Emirik, Mustafa; Karaoğlu, Kaan; Serbest, Kerim; Menteşe, Emre; Yilmaz, Ismail
2016-02-01
A new ferrocenyl-substituted heterocyclic hydrazide ligand and its Cu(II) complex were prepared. The DFT calculations were performed to determine the electronic and molecular structures of the title compounds. The electronic spectra were calculated by using time-dependent DFT method, and the transitions were correlated with the molecular orbitals of the compounds. The bands assignments of IR spectra were achieved in the light of the theoretical vibrational spectral data and total energy distribution values calculated at DFT/B3LYP/6-311++G(d,p) level. The redox behaviors of the ferrocene derivatives were investigated by cyclic voltammetry. The compounds show reversible redox couple assignable to Fc+/Fc couple. The copper(II) complex behaves as an effective catalyst towards oxidation of 3,5-di-tert-butylcatechol to its corresponding quinone derivative in DMF saturated with O2. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers 2.32 × 103.
Rusakova, Irina L; Rusakov, Yuriy Yu; Krivdin, Leonid B
2017-06-29
Four-component relativistic calculations of 125 Te NMR chemical shifts were performed in the series of 13 organotellurium compounds, potential precursors of the biologically active species, at the density functional theory level under the nonrelativistic and four-component fully relativistic conditions using locally dense basis set scheme derived from relativistic Dyall's basis sets. The relativistic effects in tellurium chemical shifts were found to be of as much as 20-25% of the total calculated values. The vibrational and solvent corrections to 125 Te NMR chemical shifts are about, accordingly, 6 and 8% of their total values. The PBE0 exchange-correlation functional turned out to give the best agreement of calculated tellurium shifts with their experimental values giving the mean absolute percentage error of 4% in the range of ∼1000 ppm, provided all corrections are taken into account.
Pharmacokinetic-pharmacodynamic analysis of mnesic effects of lorazepam in healthy volunteers.
Blin, O; Jacquet, A; Callamand, S; Jouve, E; Habib, M; Gayraud, D; Durand, A; Bruguerolle, B; Pisano, P
1999-10-01
To describe the pharmacokinetic-pharmacodynamic modelling of the psychomotor and mnesic effects of a single 2 mg oral dose of lorazepam in healthy volunteers. This was a randomized double-blind, placebo-controlled two-way cross-over study. The effect of lorazepam was examined with the following tasks: choice reaction time, immediate and delayed cued recall of paired words and immediate and delayed free recall and recognition of pictures. The mean calculated EC50 values derived from the PK/PD modelling of the different tests ranged from 12.2 to 15.3 ng ml-1. On the basis of the statistical comparison of the EC50 values, the delayed recall trials seemed to be more impaired than the immediate recall trials; similar observations were made concerning the recognition vs recall tasks. The parameter values derived from PK/PD modelling, and especially the EC50 values, may provide sensitive indices that can be used, rather than the raw data derived from pharmacodynamic measurements, to compare CNS effects of benzodiazepines.
NASA Technical Reports Server (NTRS)
Hou, Jean W.
1985-01-01
The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.
Influence of different dose calculation algorithms on the estimate of NTCP for lung complications.
Hedin, Emma; Bäck, Anna
2013-09-06
Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose-volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient-specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm-specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction-based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman-Kutcher-Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm-specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB to PBC, AAA, or CC. Moving from the PB to the PBC algorithm did not require new model parameters; however, moving from PB to AAA or CC did require a change in the NTCP model parameters, with CC requiring the largest change. It was shown that the new model parameters for a given algorithm are different for the different treatment types.
Substituent effect on photophysical properties of bi-1,3,4-oxadiazole derivatives in solution
NASA Astrophysics Data System (ADS)
Chen, Fangyi; Tian, Taiji; Zhao, Chengxiao; Bai, Binglian; Li, Min; Wang, Haitao
2016-04-01
A series of phenyl substituted bi-1,3,4-oxadiazole derivatives were designed and synthesized; the effect of substituent on the photophysical properties and molecular electronic structures was fully studied by the combination of experimental techniques and theoretical calculations. Compared to parent compound without any substituent (BOXD), fluoro-substituent shows little effect on the absorption and emission spectra, whilst a little larger spectral red-shift could be observed for methoxy-, nitro-substituted derivatives and thienyl-substituted bi-1,3,4-oxadiazole (TBOXD). These spectral changes can be well explained by theoretically calculated HOMO and LUMO energy level changes. All these molecules show high fluorescence quantum yield except for nitro-substituted derivative in dilute solutions. The quantum yield of BOXD changes with the concentration and exhibits a high value at the concentrated solution. This work revealed the influence of substituent on the photophysical properties of bi-1,3,4-oxadizaole derivatives in dilute solutions and provided guidance for designing molecules with potential application.
Adsorption Isotherms and Surface Reaction Kinetics
ERIC Educational Resources Information Center
Lobo, L. S.; Bernardo, C. A.
1974-01-01
Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, K; Bostani, M; McNitt-Gray, M
2014-06-15
Purpose: To demonstrate the feasibility of using existing data stored within the DICOM header of certain CT localizer radiographs as a patient size metric for calculating CT size-specific dose estimates (SSDE). Methods: For most Siemens CT scanners, the CT localizer radiograph (topogram) contains a private DICOM field that stores an array of numbers describing AP and LAT attenuation-based measures of patient dimension. The square root of the product of the AP and LAT size data, which provides an estimate of water-equivalent-diameter (WED), was calculated retrospectively from topogram data of 20 patients who received clinically-indicated abdomen/pelvis (n=10) and chest (n=10) scansmore » (WED-topo). In addition, slice-by-slice water-equivalent-diameter (WED-image) and effective diameter (ED-image) values were calculated from the respective image data. Using TG-204 lookup tables, size-dependent conversion factors were determined based upon WED-topo, WED-image and ED-image values. These conversion factors were used with the reported CTDIvol to calculate slice-by-slice SSDE for each method. Averaging over all slices, a single SSDE value was determined for each patient and size metric. Patientspecific SSDE and CTDIvol values were then compared with patientspecific organ doses derived from detailed Monte Carlo simulations of fixed tube current scans. Results: For abdomen/pelvis scans, the average difference between liver dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 18.70%, 8.17%, 6.84%, and 7.58%, respectively. For chest scans, the average difference between lung dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 25.80%, 3.33%, 4.11%, and 7.66%, respectively. Conclusion: SSDE calculated using WED derived from data in the DICOM header of the topogram was comparable to SSDE calculated using WED and ED derived from axial images; each of these estimated organ dose to within 10% for both abdomen/pelvis and chest CT examinations. The topogrambased method has the advantage that WED data are already provided and therefore available without additional post-processing of the image data. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less
Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N
2017-03-28
To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume <0.5 cm3. Variability across race/ethnicity was found in the univariable analysis for all PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives' ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.
1997-01-01
Potential evaporation (E(0)) has been found to be useful in many practical applications and in research for setting a reference level for actual evaporation. All previous estimates of regional or global E(0) are based upon empirical formulae using climatologic meteorologic measurements at isolated stations (i.e., point data). However, the Penman-Monteith equation provides a physically based approach for computing E(0), and by comparing 20 different methods of estimating E(0), Jensen et al. (1990) showed that the Penman-Monteith equation provides the most accurate estimate of monthly E(0) from well-watered grass or alfalfa. In the present study, monthly total E(0) for 24 months (January 1987 to December 1988) was calculated from the Penman-Monteith equation, with prescribed albedo of 0.23 and surface resistance of 70 s/m, which are considered to be representative of actively growing well-watered grass covering the ground. These calculations have been done using spatially representative data derived from satellite observations and data assimilation results. Satellite observations were used to obtain solar radiation, fractional cloud cover, air temperature, and vapor pressure, while four-dimensional data assimilation results were used to calculate the aerodynamic resistance. Meteorologic data derived from satellite observations were compared with the surface measurements to provide a measure of accuracy. The accuracy of the calculated E(0) values was assessed by comparing with lysimeter observations for evaporation from well-watered grass at 35 widely distributed locations, while recognizing that the period of present calculations was not concurrent with the lysimeter measurements and the spatial scales of these measurements and calculations are vastly different. These comparisons suggest that the error in the calculated E(0) values may not be exceeded, on average, 20% for any month or location, but are more likely to be about 15%. These uncertainties are difficult to quantify for mountainous areas or locations close to extensive water bodies. The difference between the calculated and observed E(0) is about 5% when all month and locations were considered. Errors are expected to be less than 15% for averages of E(0) over large areas or several months. Further comparisons with lysimeter observations could provide a better appraisal of the calculated values. Global pattern of E(0) was presented, together with zonal average values.
Deriving proper measurement uncertainty from Internal Quality Control data: An impossible mission?
Ceriotti, Ferruccio
2018-03-30
Measurement uncertainty (MU) is a "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used". In the clinical laboratory the most convenient way to calculate MU is the "top down" approach based on the use of Internal Quality Control data. As indicated in the definition, MU depends on the information used for its calculation and so different estimates of MU can be obtained. The most problematic aspect is how to deal with bias. In fact bias is difficult to detect and quantify and it should be corrected including only the uncertainty derived from this correction. Several approaches to calculate MU starting from Internal Quality Control data are presented. The minimum requirement is to use only the intermediate precision data, provided to include 6 months of results obtained with a commutable quality control material at a concentration close to the clinical decision limit. This approach is the minimal requirement and it is convenient for all those measurands that are especially used for monitoring or where a reference measurement system does not exist and so a reference for calculating the bias is lacking. Other formulas including the uncertainty of the value of the calibrator, including the bias from a commutable certified reference material or from a material specifically prepared for trueness verification, including the bias derived from External Quality Assessment schemes or from historical mean of the laboratory are presented and commented. MU is an important parameter, but a single, agreed upon way to calculate it in a clinical laboratory is not yet available. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the MSX/UVISI satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Effective optical constants of anisotropic materials
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.
1980-01-01
The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.
On isochronous derivatives of the first and second order in space dynamics tasks
NASA Technical Reports Server (NTRS)
Bakshiyan, B. T.; Sukhanov, A. A.
1979-01-01
The first and second isochronous derivatives are calculated from the vector of state of dynamic system using its initial value. Use is made of the method of finding a fundamental solution of conjugate variational equations. This solution and the corresponding universal relationship for isochronous derivatives are found for the two-body problem in a form which is simple and suitable for computer programming. The form of these relationships was obtained for motion which differs from parabolic motion. Formulas are given for isochronous derivatives using the gravitational parameter in the two-body problem.
The FERRUM Project: Experimental Transition Probabilities of [Fe II] and Astrophysical Applications
NASA Technical Reports Server (NTRS)
Hartman, H.; Derkatch, A.; Donnelly, M. P.; Gull, T.; Hibbert, A.; Johannsson, S.; Lundberg, H.; Mannervik, S.; Norlin, L. -O.; Rostohar, D.
2002-01-01
We report on experimental transition probabilities for thirteen forbidden [Fe II] lines originating from three different metastable Fe II levels. Radiative lifetimes have been measured of two metastable states by applying a laser probing technique on a stored ion beam. Branching ratios for the radiative decay channels, i.e. M1 and E2 transitions, are derived from observed intensity ratios of forbidden lines in astrophysical spectra and compared with theoretical data. The lifetimes and branching ratios are combined to derive absolute transition probabilities, A-values. We present the first experimental lifetime values for the two Fe II levels a(sup 4)G(sub 9/2) and b(sup 2)H(sub 11/2) and A-values for 13 forbidden transitions from a(sup 6)S(sub 5/2), a(sup 4)G(sub 9/2) and b(sup 4)D(sub 7/2) in the optical region. A discrepancy between the measured and calculated values of the lifetime for the b(sup 2)H(sub 11/2) level is discussed in terms of level mixing. We have used the code CIV3 to calculate transition probabilities of the a(sup 6)D-a(sup 6)S transitions. We have also studied observational branching ratios for lines from 5 other metastable Fe II levels and compared them to calculated values. A consistency in the deviation between calibrated observational intensity ratios and theoretical branching ratios for lines in a wider wavelength region supports the use of [Fe II] lines for determination of reddening.
Oxygen Measurements in Liposome Encapsulated Hemoglobin
NASA Astrophysics Data System (ADS)
Phiri, Joshua Benjamin
Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.
Thermophysical fundamentals of cyclonic recirculating heating devices
NASA Astrophysics Data System (ADS)
Karpov, S. V.; Zagoskin, A. A.
2017-10-01
This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.
NASA Astrophysics Data System (ADS)
Aqra, Fathi; Ayyad, Ahmed
2011-09-01
An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.
Decreasing Kd uncertainties through the application of thermodynamic sorption models.
Domènech, Cristina; García, David; Pękala, Marek
2015-09-15
Radionuclide retardation processes during transport are expected to play an important role in the safety assessment of subsurface disposal facilities for radioactive waste. The linear distribution coefficient (Kd) is often used to represent radionuclide retention, because analytical solutions to the classic advection-diffusion-retardation equation under simple boundary conditions are readily obtainable, and because numerical implementation of this approach is relatively straightforward. For these reasons, the Kd approach lends itself to probabilistic calculations required by Performance Assessment (PA) calculations. However, it is widely recognised that Kd values derived from laboratory experiments generally have a narrow field of validity, and that the uncertainty of the Kd outside this field increases significantly. Mechanistic multicomponent geochemical simulators can be used to calculate Kd values under a wide range of conditions. This approach is powerful and flexible, but requires expert knowledge on the part of the user. The work presented in this paper aims to develop a simplified approach of estimating Kd values whose level of accuracy would be comparable with those obtained by fully-fledged geochemical simulators. The proposed approach consists of deriving simplified algebraic expressions by combining relevant mass action equations. This approach was applied to three distinct geochemical systems involving surface complexation and ion-exchange processes. Within bounds imposed by model simplifications, the presented approach allows radionuclide Kd values to be estimated as a function of key system-controlling parameters, such as the pH and mineralogy. This approach could be used by PA professionals to assess the impact of key geochemical parameters on the variability of radionuclide Kd values. Moreover, the presented approach could be relatively easily implemented in existing codes to represent the influence of temporal and spatial changes in geochemistry on Kd values. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap
2016-04-01
Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.
Calculating a Continuous Metabolic Syndrome Score Using Nationally Representative Reference Values.
Guseman, Emily Hill; Eisenmann, Joey C; Laurson, Kelly R; Cook, Stephen R; Stratbucker, William
2018-02-26
The prevalence of metabolic syndrome in youth varies on the basis of the classification system used, prompting implementation of continuous scores; however, the use of these scores is limited to the sample from which they were derived. We sought to describe the derivation of the continuous metabolic syndrome score using nationally representative reference values in a sample of obese adolescents and a national sample obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2012. Clinical data were collected from 50 adolescents seeking obesity treatment at a stage 3 weight management center. A second analysis relied on data from adolescents included in NHANES 2011-2012, performed for illustrative purposes. The continuous metabolic syndrome score was calculated by regressing individual values onto nationally representative age- and sex-specific standards (NHANES III). Resultant z scores were summed to create a total score. The final sample included 42 obese adolescents (15 male and 35 female subjects; mean age, 14.8 ± 1.9 years) and an additional 445 participants from NHANES 2011-2012. Among the clinical sample, the mean continuous metabolic syndrome score was 4.16 ± 4.30, while the NHANES sample mean was quite a bit lower, at -0.24 ± 2.8. We provide a method to calculate the continuous metabolic syndrome by comparing individual risk factor values to age- and sex-specific percentiles from a nationally representative sample. Copyright © 2018 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.
ERIC Educational Resources Information Center
Lloyd, William G.; Davenport, Derek A.
1980-01-01
Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)
Kawashima, Hiroko; Miyati, Tosiaki; Ohno, Naoki; Ohno, Masako; Inokuchi, Masafumi; Ikeda, Hiroko; Gabata, Toshifumi
2018-04-01
To investigate whether the parameters derived from intravoxel incoherent motion (IVIM) MRI could differentiate phyllodes tumours (PTs) from fibroadenomas (FAs) by comparing the apparent diffusion coefficient (ADC) values. This retrospective study included 7 FAs, 10 benign PTs (BPTs), 4 borderline PTs, and one malignant PT. Biexponential analyses of IVIM were performed using a 3 T MRI scanner. Quantitative IVIM parameters [pure diffusion coefficient (D), perfusion-related diffusion coefficient (D*), and fraction (f)] were calculated. The ADC was also calculated using monoexponential fitting. The D and ADC values showed an increasing tendency in the order of FA, BPT, and borderline or malignant PT (BMPT). No significant difference was found in the D value among the three groups. The ADC value of the BMPT group was significantly higher than that of the FA group (p = 0.048). The D* value showed an increasing tendency in the order of BMPT, BPT, and FA, and the D* value of the BMPT group was significantly lower than that of the FA group (p = 0.048). The D* derived from IVIM and the ADC were helpful for differentiating between FA and BMPT. Advances in knowledge: IVIM MRI examination showed that the perfusion-related diffusion coefficient is lower in borderline and malignant PTs than in FAs and the opposite is true for the ADC.
Horsager, Jacob; Munk, Ole Lajord; Sørensen, Michael
2015-01-01
Metabolic liver function can be measured by dynamic PET/CT with the radio-labelled galactose-analogue 2-[(18)F]fluoro-2-deoxy-D-galactose ((18)F-FDGal) in terms of hepatic systemic clearance of (18)F-FDGal (K, ml blood/ml liver tissue/min). The method requires arterial blood sampling from a radial artery (arterial input function), and the aim of this study was to develop a method for extracting an image-derived, non-invasive input function from a volume of interest (VOI). Dynamic (18)F-FDGal PET/CT data from 16 subjects without liver disease (healthy subjects) and 16 patients with liver cirrhosis were included in the study. Five different input VOIs were tested: four in the abdominal aorta and one in the left ventricle of the heart. Arterial input function from manual blood sampling was available for all subjects. K*-values were calculated using time-activity curves (TACs) from each VOI as input and compared to the K-value calculated using arterial blood samples as input. Each input VOI was tested on PET data reconstructed with and without resolution modelling. All five image-derived input VOIs yielded K*-values that correlated significantly with K calculated using arterial blood samples. Furthermore, TACs from two different VOIs yielded K*-values that did not statistically deviate from K calculated using arterial blood samples. A semicircle drawn in the posterior part of the abdominal aorta was the only VOI that was successful for both healthy subjects and patients as well as for PET data reconstructed with and without resolution modelling. Metabolic liver function using (18)F-FDGal PET/CT can be measured without arterial blood samples by using input data from a semicircle VOI drawn in the posterior part of the abdominal aorta.
Archer, Edward; Hand, Gregory A; Hébert, James R; Lau, Erica Y; Wang, Xuewen; Shook, Robin P; Fayad, Raja; Lavie, Carl J; Blair, Steven N
2013-12-01
To validate the PAR protocol, a novel method for calculating population-level estimated energy requirements (EERs) and average physical activity ratio (APAR), in a nationally representative sample of US adults. Estimates of EER and APAR values were calculated via a factorial equation from a nationally representative sample of 2597 adults aged 20 and 74 years (US National Health and Nutrition Examination Survey; data collected between January 1, 2005, and December 31, 2006). Validation of the PAR protocol-derived EER (EER(PAR)) values was performed via comparison with values from the Institute of Medicine EER equations (EER(IOM)). The correlation between EER(PAR) and EER(IOM) was high (0.98; P<.001). The difference between EER(PAR) and EER(IOM) values ranged from 40 kcal/d (1.2% higher than EER(IOM)) in obese (body mass index [BMI] ≥30) men to 148 kcal/d (5.7% higher) in obese women. The 2005-2006 EERs for the US population were 2940 kcal/d for men and 2275 kcal/d for women and ranged from 3230 kcal/d in obese (BMI ≥30) men to 2026 kcal/d in normal weight (BMI <25) women. There were significant inverse relationships between APAR and both obesity and age. For men and women, the APAR values were 1.53 and 1.52, respectively. Obese men and women had lower APAR values than normal weight individuals (P¼.023 and P¼.015, respectively) [corrected], and younger individuals had higher APAR values than older individuals (P<.001). The PAR protocol is an accurate method for deriving nationally representative estimates of EER and APAR values. These descriptive data provide novel quantitative baseline values for future investigations into associations of physical activity and health. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
System for adjusting frequency of electrical output pulses derived from an oscillator
Bartholomew, David B.
2006-11-14
A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.
Evolution of collectivity in the N =100 isotones near 170Yb
NASA Astrophysics Data System (ADS)
Karayonchev, V.; Régis, J.-M.; Jolie, J.; Blazhev, A.; Altenkirch, R.; Ansari, S.; Dannhoff, M.; Diel, F.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Moschner, K.; Müller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Warr, N.; Zell, K. O.
2017-03-01
An experiment using the electronic γ -γ fast-timing technique was performed to measure lifetimes of the yrast states in 170Yb. The lifetime of the yrast 2+ state was determined using the slope method. The value of τ =2.33 (3 ) ns is in good agreement with the lifetimes measured using other techniques. The lifetimes of the first 4+ and 6+ states are determined using the generalized centroid difference method. The derived B (E 2 ) values are compared to calculations done using the confined beta soft model and show good agreement with the experimental values. These calculations were extended to the isotonic chain N =100 around 170Yb and show a good quantitative description of the collectivity observed along it.
Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha
2018-02-01
The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.
Detailed Modeling and Analysis of the CPFM Dataset
NASA Technical Reports Server (NTRS)
Swartz, William H.; Lloyd, Steven A.; DeMajistre, Robert
2004-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The principal objective of this study is to cross-validate j-values from the Composition and Photodissociative Flux Measurement (CPFM) instrument during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) and SAGE I11 Ozone Loss and Validation Experiment (SOLVE) field campaigns with model calculations and other measurements and to use this detailed analysis to improve our ability to determine j-values. Another objective is to analyze the spectral flux from the CPFM (not just the j-values) and, using a multi-wavelength/multi-species spectral fitting technique, determine atmospheric composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Peter; Seuntjens, Jan
Purpose: We present a formalism for calculating the absorbed dose to water from a miniature x-ray source (The INTRABEAM system, Carl Zeiss), using a parallel-plate ionization chamber calibrated in terms of air-kerma. Monte Carlo calculations were performed to derive a chamber conversion factor (C{sub Q}) from reference air-kerma to dose to water for the INTRABEAM. C{sub Q} was investigated as a function of depth in water, and compared with the manufacturer’s reported value. The effect of chamber air cavity dimension tolerance was also investigated. Methods: Air-kerma (A{sub k}) from a reference beam was calculated using the EGSnrc user code cavity.more » Using egs-chamber, a model of a PTW 34013 parallel-plate ionization chamber was created according to manufacturer specifications. The dose to the chamber air cavity (D{sub gas}) was simulated both in-air (with reference beam) and in-water (with INTRABEAM source). Dose to a small water voxel (D{sub w}) was also calculated. C{sub Q} was derived from these quantities. Results: C{sub Q} was found to vary by up to 15% (1.30 vs 1.11) between chamber dimension extremes. The agreement between chamber C{sub Q} was found to improve with increasing depth in water. However, in all cases investigated, C{sub Q} was larger than the manufacturer reported value of 1.054. Conclusions: Our results show that cavity dimension tolerance has a significant effect on C{sub Q}, with differences as large as 15%. In all cases considered, C{sub Q} was found to be larger than the reported value of 1.054. This suggests that the recommended calculation underestimates the dose to water.« less
Xu, Zhongnan; Joshi, Yogesh V; Raman, Sumathy; Kitchin, John R
2015-04-14
We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1984-01-01
Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.
1980-12-01
to sound pressure level in decibels assuming a fre- quency of 1000 Hz. 249 The perceived noisiness values are derived from a formula specified in...Analyses .......... 244 6.i.16 Perceived Noise Level Analysis .............249 6.1.17 Acoustic Weighting Networks ................250 6.2 DERIVATIONS...BAND ANALYSIS BASIC STATISTICAL ANALYSES: *OCTAVE ANALYSIS MEAN *THIRD OCTAVE ANALYSIS VARIANCE *PERCEIVED NOISE LEVEL STANDARD DEVIATION CALCULATION
Recoilless fractions calculated with the nearest-neighbour interaction model by Kagan and Maslow
NASA Astrophysics Data System (ADS)
Kemerink, G. J.; Pleiter, F.
1986-08-01
The recoilless fraction is calculated for a number of Mössbauer atoms that are natural constituents of HfC, TaC, NdSb, FeO, NiO, EuO, EuS, EuSe, EuTe, SnTe, PbTe and CsF. The calculations are based on a model developed by Kagan and Maslow for binary compounds with rocksalt structure. With the exception of SnTe and, to a lesser extent, PbTe, the results are in reasonable agreement with the available experimental data and values derived from other models.
Issack, Bilkiss B; Roy, Pierre-Nicholas
2005-08-22
An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.
Orgován, Zoltán; Ferenczy, György G; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M
2018-02-01
Optimization of fragment size D-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.
NASA Astrophysics Data System (ADS)
Orgován, Zoltán; Ferenczy, György G.; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M.
2018-02-01
Optimization of fragment size d-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.
Li, Hong-Lei; Li, Xiao-Ming; Mándi, Attila; Antus, Sándor; Li, Xin; Zhang, Peng; Liu, Yang; Kurtán, Tibor; Wang, Bin-Gui
2017-10-06
Four new cladosporol derivatives, cladosporols F-I (1-4), the known cladosporol C (5), and its new epimer, cladosporol J (6), were isolated and identified from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399. Their structures were determined by detailed interpretation of NMR and MS data, and the absolute configurations were established on the basis of TDDFT-ECD and OR calculations. The configurational assignment of cladosporols F (1) and G (2) showed that the previously reported absolute configuration of cladosporol A and all the related cladosporols need to be revised from (4'R) to (4'S). Compounds 1-6 showed antibacterial activity against Escherichia coli, Micrococcus luteus, and Vibrio harveyi with MIC values ranging from 4 to 128 μg/mL. Compound 3 showed significant cytotoxicity against A549, Huh7, and LM3 cell lines with IC 50 values of 5.0, 1.0, and 4.1 μM, respectively, and compound 5 showed activity against H446 cell line with IC 50 value of 4.0 μM.
Angell, Robin A; Kullman, Steve; Shrive, Emma; Stephenson, Gladys L; Tindal, Miles
2012-11-01
Ecological tier 1 Canada-wide standards (CWS) for petroleum hydrocarbon (PHC) fraction 2 (F2; >nC10-C16) in soil were derived using ecotoxicological assessment endpoints (effective concentrations [ECs]/lethal concentrations [LCs]/inhibitory concentrations, 25% [IC25s]) with freshly spiked (fresh) fine- and coarse-grained soils. These soil standards might be needlessly conservative when applied to field samples with weathered hydrocarbons. The purpose of the present study was to assess the degradation and toxicity of weathered PHC F2 in a fine-grained soil and to derive direct soil contact values for ecological receptors. Fine-grained reference soils were spiked with distilled F2 and weathered for 183 d. Toxicity tests using plants and invertebrates were conducted with the weathered F2-spiked soils. Endpoint EC/IC25s were calculated and used to derive soil standards for weathered F2 in fine-grained soil protective of ecological receptors exposed via direct soil contact. The values derived for weathered F2 were less restrictive than current ecological tier 1 CWS for F2 in soil. Copyright © 2012 SETAC.
Computational Studies on Optoelectronic and Nonlinear Properties of Octaphyrin Derivatives
Islam, Nasarul; Lone, Irfan H.
2017-01-01
The electronic and nonlinear optical (NLO) properties of octaphyrin derivatives were studied by employing the DFT/TDFT at CAM-B3LYP/6-311++G (2d, 2p) level of the theory. Thiophene, phenyl, methyl and cyano moieties were substituted on the molecular framework of octaphyrin core, in order to observe the change in optoelectronic and nonlinear response of these systems. The frontier molecular orbital studies and values of electron affinity reveals that the studied compounds are stable against the oxygen and moisture present in air. The calculated ionization energies, adiabatic electron affinity and reorganization energy values indicate that octaphyrin derivatives can be employed as effective n-type material for Organic Light Emitting Diodes (OLEDs). This character shows an enhancement with the introduction of an electron withdrawing group in the octaphyrin framework. The polarizability and hyperpolarizability values of octaphyrin derivatives demonstrate that they are good candidates for NLO devices. The nonlinear response of these systems shows enhancement on the introduction of electron donating groups on octaphyrin moiety. However, these claims needs further experimental verification. PMID:28321394
NASA Astrophysics Data System (ADS)
Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg
2015-05-01
In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.
Hydroxyl X2Pi pure rotational transitions
NASA Astrophysics Data System (ADS)
Goorvitch, D.; Goldman, A.; Dothe, Hoang; Tipping, R. H.; Chackerian, C., Jr.
1992-12-01
We present a list of frequencies, term values, Einstein A values, and assignments for the pure rotational transitions of the X2Pi state of the OH molecule. This list includes transitions from 3 to 2015/cm for Delta-v = 0, v-double-prime = 0-4, and J-double-prime = 0.5-49.5. The A values were computed using recent advances in calculating wave functions for a coupled system and an experimentally derived electric dipole moment function (Nelson et al., 1990) which exhibits curvature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malík, M., E-mail: michal.malik@tul.cz; Primas, J.; Kopecký, V.
2014-01-15
This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measuredmore » value are compared. The authors found a good agreement between the results of both approaches.« less
NASA Technical Reports Server (NTRS)
Jacobsen, Richard T.; Stewart, Richard B.
1973-01-01
Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.
NASA Technical Reports Server (NTRS)
Livingston, John M.; Kapustin, Vladimir N.; Schmid, Beat; Russell, Philip B.; Quinn, Patricia K.; Bates, Timothy S.; Durkee, Philip A.; Smith, Peter J.; Freudenthaler, Volker; Wiegner, Matthias;
2000-01-01
Analyses of aerosol optical depth (AOD) and colurnmn water vapor (CWV) measurements acquired with NASA Ames Research Center's 6-channel Airborne Tracking Sunphotometer (AATS-6) operated aboard the R/V Professor Vodyanitskiy during the 2nd Aerosol Characterization Experiment (ACE-2) are discussed. Data are compared with various in situ and remote measurements for selected cases. The focus is on 10 July, when the Pelican airplane flew within 70 km of the ship near the time of a NOAA-14/AVHRR satellite overpass and AOD measurements with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) above the marine boundary layer (MBL) permitted calculation of AOD within the MBL from the AATS-6 measurements. A detailed column closure test is performed for MBL AOD on 10 July by comparing the AATS-6 MBL AODs with corresponding values calculated by combining shipboard particle size distribution measurements with models of hygroscopic growth and radiosonde humidity profiles (plus assumptions on the vertical profile of the dry particle size distribution and composition). Large differences (30-80% in the mid-visible) between measured and reconstructed AODs are obtained, in large part because of the high sensitivity of the closure methodology to hygroscopic growth models, which vary considerably and have not been validated over the necessary range of particle size/composition distributions. The wavelength dependence of AATS-6 AODs is compared with the corresponding dependence of aerosol extinction calculated from shipboard measurements of aerosol size distribution and of total scattering mearured by a shipboard integrating nephelometer for several days. Results are highly variable, illustrating further the great difficulty of deriving column values from point measurements. AATS-6 CWV values are shown to agree well with corresponding values derived from radiosonde measurements during 8 soundings on 7 days and also with values calculated from measurements taken on 10 July with the AATS-14 and the University of Washington Passive Humidigraph aboard the Pelican.
PROCEDURES FOR THE DERIVATION OF EQUILIBRIUM ...
This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations for 32 nonionic organic chemicals in sediment which are protective of the presence of freshwater and marine benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it accounts for the varying biological availability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms. EqP can be used to calculate ESBs for any toxicity endpoint for which there are water-only toxicity data; it is not limited to any single effect endpoint. For the purposes of this document, ESBs for 32 nonionic organic chemicals, including several low molecular weight aliphatic and aromatic compounds, pesticides, and phthalates, were derived using Final Chronic Values (FCV) from Water Quality Criteria (WQC) or Secondary Chronic Values (SCV) derived from existing toxicological data using the Great Lakes Water Quality Initiative (GLI) or narcosis theory approaches. These values are intended to be the concentration of each chemical in water that is protective of the presence of aquatic life. For nonionic organic chemicals demonstrating a narcotic mode of action, ESBs derived using the GLI approach specifically for fres
Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp.
Song, Ren-Yu; Wang, Xiao-Bing; Yin, Guo-Ping; Liu, Rui-Huan; Kong, Ling-Yi; Yang, Ming-Hua
2017-10-01
Five new isocoumarin derivatives, pestalactone A-C (1-3) and pestapyrone D-E (4-5), together with two known compounds (6-7) were isolated from the solid cultures of the endophytic fungus Pestalotiopsis sp. obtained from Photinia frasery. Their structures were mainly determined by extensive spectroscopic analysis, Mo 2 (OCOCH 3 ) 4 -induced electronic circular dichroism (ECD), and ECD calculation. Compounds 1 and 2 were rare isocoumarin derivatives and derived from distinctive polyketide pathways. Compound 3 exhibited potent antifungal activity against Candida glabrata (ATCC 90030) with an MIC 50 value of 3.49±0.21μg/mL. Copyright © 2017. Published by Elsevier B.V.
Sixth- and eighth-order Hermite integrator for N-body simulations
NASA Astrophysics Data System (ADS)
Nitadori, Keigo; Makino, Junichiro
2008-10-01
We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei
NASA Astrophysics Data System (ADS)
Saleh Ahmed, Saad M.
2017-06-01
The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 < Z < 114, 111 < N < 174. This probability was calculated using the energy-dependent formula derived from the formulation of clusterisation states representation (CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.
Preliminary remediation goals for use at the U.S. Department of Energy Oak Ridge Operations Office
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This report presents Preliminary Remediation Goals (PRGs) for use in human health risk assessment efforts under the United States Department of Energy, Oak Ridge Operations Office Environmental Restoration (ER) Division. Chemical-specific PRGs are concentration goals for individual chemicals for specific medium and land use combinations. The PRGs are referred to as risk-based because they have been calculated using risk assessment procedures. Risk-based calculations set concentration limits using both carcinogenic or noncarcinogenic toxicity values under specific exposure pathways. The PRG is a concentration that is derived from a specified excess cancer risk level or hazard quotient. This report provides the ERmore » Division with standardized PRGs which are integral to the Remedial Investigation/Feasibility Study process. By managing the assumptions and systems used in PRG derivation, the Environmental Restoration Risk Assessment Program will be able to control the level of quality assurance associated with these risk-based guideline values.« less
Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).
Bag, Arijit; Ghorai, Pradip Kr
2016-05-01
Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A review of lung-to-blood absorption rates for radon progeny.
Marsh, J W; Bailey, M R
2013-12-01
The International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) treats clearance of materials from the respiratory tract as a competitive process between absorption into blood and particle transport to the alimentary tract and lymphatics. The ICRP recommended default absorption rates for lead and polonium (Type M) in ICRP Publication 71 but stated that the values were not appropriate for short-lived radon progeny. This paper reviews and evaluates published data from volunteer and laboratory animal experiments to estimate the HRTM absorption parameter values for short-lived radon progeny. Animal studies showed that lead ions have two phases of absorption: ∼10 % absorbed with a half-time of ∼15 min, the rest with a half-time of ∼10 h. The studies also indicated that some of the lead ions were bound to respiratory tract components. Bound fractions, f(b), for lead were estimated from volunteer and animal studies and ranged from 0.2 to 0.8. Based on the evaluations of published data, the following HRTM absorption parameter values were derived for lead as a decay product of radon: f(r) = 0.1, s(r) = 100 d(-1), s(s) = 1.7 d(-1), f(b) = 0.5 and s(b) = 1.7 d(-1). Effective doses calculated assuming these absorption parameter values instead of a single absorption half-time of 10 h with no binding (as has generally been assumed) are only a few per cent higher. However, as there is some conflicting evidence on the absorption kinetics for radon progeny, dose calculations have been carried out for different sets of absorption parameter values derived from different studies. The results of these calculations are discussed.
Thermodynamic properties, melting temperature and viscosity of the mantles of Super Earths
NASA Astrophysics Data System (ADS)
Stamenkovic, V.; Spohn, T.; Breuer, D.
2010-12-01
The recent dicscovery of extrasolar planets with radii of about twice the Earth radius and masses of several Earth masses such as e.g., Corot-7b (approx 5Mearth and 1.6Rearth, Queloz et al. 2009) has increased the interest in the properties of rock at extremely high pressures. While the pressure at the Earth’s core-mantle boundary is about 135GPa, pressures at the base of the mantles of extraterrestrial rocky planets - if these are at all differentiated into mantles and cores - may reach Tera Pascals. Although the properties and the mineralogy of rock at extremely high pressure is little known there have been speculations about mantle convection, plate tectonics and dynamo action in these “Super-Earths”. We assume that the mantles of these planets can be thought of as consisting of perovskite but we discuss the effects of the post-perovskite transition and of MgO. We use the Keane equation of state and the Slater relation (see e.g., Stacey and Davies 2004) to derive an infinite pressure value for the Grüneisen parameter of 1.035. To derive this value we adopted the infinite pressure limit for K’ (pressure derivative of the bulk modulus) of 2.41 as derived by Stacey and Davies (2004) by fitting PREM. We further use the Lindeman law to calculate the melting curve. We gauge the melting curve using the available experimental data for pressures up to 120GPa. The melting temperature profile reaches 6000K at 135GPa and increases to temperatures between 12,000K and 24,000K at 1.1TPa with a preferred value of 21,000K. We find the adiabatic temperature increase to reach 2,500K at 135GPa and 5,400K at 1.1TPa. To calculate the pressure dependence of the viscosity we assume that the rheology is diffusion controlled and calculate the partial derivative with respect to pressure of the activation enthalpy. We cast the partial derivative in terms of an activation volume and use the semi-empirical homologous temperature scaling (e.g., Karato 2008). We find that the activation volume decreases from 2.4cm^3/mol at 135GPa to 1.6cm^3/mol at 1.1TPa. An estimate of the viscosity increase across the mantle to a pressure of 1.1TPa using the adiabat calculated above results in an increase of the viscosity of 19 orders of magnitude. This value raises questions about the differentiation of these planets, heat transfer in their deep interiors, and magnetic field generation.(Ref.: Karato, S. 2008. Deformation of Earth Materials, Cambridge University Press.; Stacey, F.D., Davies, P.M. 2004. PEPI 142: 137; Queloz, D. et al., 2009. Astronomy and Astrophysics 506: 303.)
Quantifying tolerance indicator values for common stream fish species of the United States
Meador, M.R.; Carlisle, D.M.
2007-01-01
The classification of fish species tolerance to environmental disturbance is often used as a means to assess ecosystem conditions. Its use, however, may be problematic because the approach to tolerance classification is based on subjective judgment. We analyzed fish and physicochemical data from 773 stream sites collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program to calculate tolerance indicator values for 10 physicochemical variables using weighted averaging. Tolerance indicator values (TIVs) for ammonia, chloride, dissolved oxygen, nitrite plus nitrate, pH, phosphorus, specific conductance, sulfate, suspended sediment, and water temperature were calculated for 105 common fish species of the United States. Tolerance indicator values for specific conductance and sulfate were correlated (rho = 0.87), and thus, fish species may be co-tolerant to these water-quality variables. We integrated TIVs for each species into an overall tolerance classification for comparisons with judgment-based tolerance classifications. Principal components analysis indicated that the distinction between tolerant and intolerant classifications was determined largely by tolerance to suspended sediment, specific conductance, chloride, and total phosphorus. Factors such as water temperature, dissolved oxygen, and pH may not be as important in distinguishing between tolerant and intolerant classifications, but may help to segregate species classified as moderate. Empirically derived tolerance classifications were 58.8% in agreement with judgment-derived tolerance classifications. Canonical discriminant analysis revealed that few TIVs, primarily chloride, could discriminate among judgment-derived tolerance classifications of tolerant, moderate, and intolerant. To our knowledge, this is the first empirically based understanding of fish species tolerance for stream fishes in the United States.
MacGregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D.
2007-01-01
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ?? 5.7 dB km-1) is somewhat lower than the value derived from radar profiles (25.3 ?? 1.1 dB km-1). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ?? 2.2 dB km-1. This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet. Copyright 2007 by the American Geophysical Union.
Wahl, Joachim; Furuishi, Takayuki; Yonemochi, Etsuo; Meinel, Lorenz; Holzgrabe, Ulrike
2017-04-01
To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte-cyclodextrin-complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β-cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x-reciprocal, y-reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β-cyclodextrin, (2-hydroxypropyl)-β-cyclodextrin, methyl-β-cyclodextrin and 6-O-α-maltosyl-β-cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer-cyclodextrin-complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β-cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper
NASA Technical Reports Server (NTRS)
Kashiwagi, Takashi; Nambu, Hidesaburo
1992-01-01
Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.
Influence of different dose calculation algorithms on the estimate of NTCP for lung complications
Bäck, Anna
2013-01-01
Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose‐volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient‐specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm‐specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction‐based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman‐Kutcher‐Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm‐specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB to PBC, AAA, or CC. Moving from the PB to the PBC algorithm did not require new model parameters; however, moving from PB to AAA or CC did require a change in the NTCP model parameters, with CC requiring the largest change. It was shown that the new model parameters for a given algorithm are different for the different treatment types. PACS numbers: 87.53.‐j, 87.53.Kn, 87.55.‐x, 87.55.dh, 87.55.kd PMID:24036865
Measuring digit lengths with 3D digital stereophotogrammetry: A comparison across methods.
Gremba, Allison; Weinberg, Seth M
2018-05-09
We compared digital 3D stereophotogrammetry to more traditional measurement methods (direct anthropometry and 2D scanning) to capture digit lengths and ratios. The length of the second and fourth digits was measured by each method and the second-to-fourth ratio was calculated. For each digit measurement, intraobserver agreement was calculated for each of the three collection methods. Further, measurements from the three methods were compared directly to one another. Agreement statistics included the intraclass correlation coefficient (ICC) and technical error of measurement (TEM). Intraobserver agreement statistics for the digit length measurements were high for all three methods; ICC values exceeded 0.97 and TEM values were below 1 mm. For digit ratio, intraobserver agreement was also acceptable for all methods, with direct anthropometry exhibiting lower agreement (ICC = 0.87) compared to indirect methods. For the comparison across methods, the overall agreement was high for digit length measurements (ICC values ranging from 0.93 to 0.98; TEM values below 2 mm). For digit ratios, high agreement was observed between the two indirect methods (ICC = 0.93), whereas indirect methods showed lower agreement when compared to direct anthropometry (ICC < 0.75). Digit measurements and derived ratios from 3D stereophotogrammetry showed high intraobserver agreement (similar to more traditional methods) suggesting that landmarks could be placed reliably on 3D hand surface images. While digit length measurements were found to be comparable across all three methods, ratios derived from direct anthropometry tended to be higher than those calculated indirectly from 2D or 3D images. © 2018 Wiley Periodicals, Inc.
Parameterization of deformed nuclei for Glauber modeling in relativistic heavy ion collisions
Sorensen, P.; Tang, A. H.; Videbaek, F.; ...
2015-08-04
In this study, the density distributions of large nuclei are typically modeled with a Woods–Saxon distribution characterized by a radius R 0 and skin depth a. Deformation parameters β are then introduced to describe non-spherical nuclei using an expansion in spherical harmonics R 0(1+β 2Y 2 0+β 4Y 4 0). But when a nucleus is non-spherical, the R 0 and a inferred from electron scattering experiments that integrate over all nuclear orientations cannot be used directly as the parameters in the Woods–Saxon distribution. In addition, the β 2 values typically derived from the reduced electric quadrupole transition probability B(E2)↑ aremore » not directly related to the β 2 values used in the spherical harmonic expansion. B(E2)↑ is more accurately related to the intrinsic quadrupole moment Q 0 than to β 2. One can however calculate Q 0 for a given β 2 and then derive B(E2)↑ from Q 0. In this paper we calculate and tabulate the R 0, a , and β 2 values that when used in a Woods–Saxon distribution, will give results consistent with electron scattering data. We then present calculations of the second and third harmonic participant eccentricity (ε 2 and ε 3) with the new and old parameters. We demonstrate that ε 3 is particularly sensitive to a and argue that using the incorrect value of a has important implications for the extraction of viscosity to entropy ratio (η/s) from the QGP created in Heavy Ion collisions.« less
NASA Astrophysics Data System (ADS)
Godet, Christian; David, Denis
2017-12-01
Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged < ɛ ( q, ω) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[-1/ ɛ ( q, ω)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.
Richmond, Neil; Tulip, Rachael; Walker, Chris
2016-01-01
The aim of this work was to determine, by measurement and independent monitor unit (MU) check, the optimum method for determining collimator scatter for an Elekta Synergy linac with an Agility multileaf collimator (MLC) within Radcalc, a commercial MU calculation software package. The collimator scatter factors were measured for 13 field shapes defined by an Elekta Agility MLC on a Synergy linac with 6MV photons. The value of the collimator scatter associated with each field was also calculated according to the equation Sc=Sc(mlc)+Sc(corr)(Sc(open)-Sc(mlc)) with Sc(corr) varied between 0 and 1, where Sc(open) is the value of collimator scatter calculated from the rectangular collimator-defined field and Sc(mlc) the value using only the MLC-defined field shape by applying sector integration. From this the optimum value of the correction was determined as that which gives the minimum difference between measured and calculated Sc. Single (simple fluence modulation) and dual-arc (complex fluence modulation) treatment plans were generated on the Monaco system for prostate volumetric modulated-arc therapy (VMAT) delivery. The planned MUs were verified by absolute dose measurement in phantom and by an independent MU calculation. The MU calculations were repeated with values of Sc(corr) between 0 and 1. The values of the correction yielding the minimum MU difference between treatment planning system (TPS) and check MU were established. The empirically derived value of Sc(corr) giving the best fit to the measured collimator scatter factors was 0.49. This figure however was not found to be optimal for either the single- or dual-arc prostate VMAT plans, which required 0.80 and 0.34, respectively, to minimize the differences between the TPS and independent-check MU. Point dose measurement of the VMAT plans demonstrated that the TPS MUs were appropriate for the delivered dose. Although the value of Sc(corr) may be obtained by direct comparison of calculation with measurement, the efficacy of the value determined for VMAT-MU calculations are very much dependent on the complexity of the MLC delivery. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Double-time correlation functions of two quantum operations in open systems
NASA Astrophysics Data System (ADS)
Ban, Masashi
2017-10-01
A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the Midcourse Space Experiment(MSX)/Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
NASA Astrophysics Data System (ADS)
Liu, W.; Ning, T.; Han, X.
2015-12-01
The climate elasticity based on the Budyko curves has been widely used to evaluate the hydrological responses to climate change. The Mezentsev-Choudhury-Yang formula is one of the representative analytical equations for Budyko curves. Previous researches mostly used the variation of runoff (R) caused by the changes of annual precipitation (P) and potential evapotranspiration (ET0) as the hydrological response to climate change and evaluated it by a first-order approximation in a form of total differential, the major components of which include the partial derivatives of R to P and ET0, as well as climate elasticity on this basis. Based on analytic derivation and the characteristics of Budyko curves, this study proposed a modified formula of the first-order approximation to reduce the errors from the approximation. In the calculation of partial derivatives and climate elasticity, the values of P and ET0 were taken to the sum of their base values and half increments, respectively. The calculation was applied in 33 catchments of the Hai River basin in China and the results showed that the mean absolute value of relative error of approximated runoff change decreased from 8.4% to 0.4% and the maximum value, from 23.4% to 1.3%. Given the variation values of P, ET0 and the controlling parameter (n), the modified formula can exactly quantify the contributions of climate fluctuation and underlying surface change to runoff. Taking the Murray-Darling basin in Australia as an example of the contribution calculated by the modified formula, the reductions of mean annual runoff caused by changes of P, ET0 and n from 1895-1996 to 1997-2006 were 2.6, 0.6 and 2.9 mm, respectively, and the sum of them was 6.1 mm, which was completely consistent with the observed runoff. The modified formula of the first-order approximation proposed in this study can be not only used to assess the contributions of climate change to the runoff, but also widely used to analyze the effects of similar issues based on a certain functional relationship in hydrological and climate changes.
Tight-binding calculation of the magnetic moment of CrAs under pressure
NASA Astrophysics Data System (ADS)
Autieri, Carmine; Cuono, Giuseppe; Forte, Filomena; Noce, Canio
2018-03-01
We analyze the evolution of the local magnetic moment of the newly discovered pressure-induced superconductor CrAs, as a function of the applied pressure. Our theoretical method is based on a combination of the tight-binding approximation and the Löwdin down-folding procedure, which enables us to derive a low-energy effective Hamiltonian projected onto the Cr-subsector. We set up our calculations by considering several sets of ab initio derived hopping parameters, corresponding to different volumes of the unit cell, and use them to obtain the simulated pressure-dependence of the Cr magnetic moment, which is evaluated within a mean-field treatment of the Coulomb repulsion between the electrons at the Cr sites. Our calculations show good agreement with available experimental data, both for the normal phase measured 1.7 µB for Cr magnetic moment, and concerning the observed reduction of its amplitude for values that exceed the characteristic critical pressure.
Trnovec, Tomáš; Jusko, Todd A; Šovčíková, Eva; Lancz, Kinga; Chovancová, Jana; Patayová, Henrieta; Palkovičová, L'ubica; Drobná, Beata; Langer, Pavel; Van den Berg, Martin; Dedik, Ladislav; Wimmerová, Soňa
2013-08-01
Toxic equivalency factors (TEFs) are an important component in the risk assessment of dioxin-like human exposures. At present, this concept is based mainly on in vivo animal experiments using oral dosage. Consequently, the current human TEFs derived from mammalian experiments are applicable only for exposure situations in which oral ingestion occurs. Nevertheless, these "intake" TEFs are commonly-but incorrectly-used by regulatory authorities to calculate "systemic" toxic equivalents (TEQs) based on human blood and tissue concentrations, which are used as biomarkers for either exposure or effect. We sought to determine relative effect potencies (REPs) for systemic human concentrations of dioxin-like mixture components using thyroid volume or serum free thyroxine (FT4) concentration as the outcomes of interest. We used a benchmark concentration and a regression-based approach to compare the strength of association between each dioxin-like compound and the thyroid end points in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. REPs calculated from thyroid volume and FT4 were similar. The regression coefficient (β)-derived REP data from thyroid volume and FT4 level were correlated with the World Health Organization (WHO) TEF values (Spearman r = 0.69, p = 0.01 and r = 0.62, p = 0.03, respectively). The calculated REPs were mostly within the minimum and maximum values for in vivo REPs derived by other investigators. Our REPs calculated from thyroid end points realistically reflect human exposure scenarios because they are based on chronic, low-dose human exposures and on biomarkers reflecting body burden. Compared with previous results, our REPs suggest higher sensitivity to the effects of dioxin-like compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.com
2012-11-15
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to thatmore » of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavanello, Michele; Tung Weicheng; Adamowicz, Ludwik
2010-04-15
We have carried out an accurate determination of the quadrupole moment of the deuteron nucleus. The evaluation of the constant is achieved by combining high accuracy Born-Oppenheimer calculations of the electric field gradient at the nucleus in the H{sub 2} molecule with spectroscopic measurements of the quadrupolar splitting in D{sub 2} and HD. The derived value is Q=0.285783(30) fm{sup 2}.
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal.
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D; Hubbi, Basil; Liu, Xuan
2015-11-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue.
Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal
Wang, Yuewen; Wang, Yahui; Akansu, Ali; Belfield, Kevin D.; Hubbi, Basil; Liu, Xuan
2015-01-01
Speckle decorrelation analysis of optical coherence tomography (OCT) signal has been used in motion tracking. In our previous study, we demonstrated that cross-correlation coefficient (XCC) between Ascans had an explicit functional dependency on the magnitude of lateral displacement (δx). In this study, we evaluated the sensitivity of speckle motion tracking using the derivative of function XCC(δx) on variable δx. We demonstrated the magnitude of the derivative can be maximized. In other words, the sensitivity of OCT speckle tracking can be optimized by using signals with appropriate amount of decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle decorrelation analysis strategy to achieve motion tracking with optimized sensitivity. Briefly, we used subsequently acquired Ascans and Ascans obtained with larger time intervals to obtain multiple values of XCC and chose the XCC value that maximized motion tracking sensitivity for displacement calculation. Instantaneous motion speed can be calculated by dividing the obtained displacement with time interval between Ascans involved in XCC calculation. We implemented the above-described algorithm in real-time using graphic processing unit (GPU) and demonstrated its effectiveness in reconstructing distortion-free OCT images using data obtained from a manually scanned OCT probe. The adaptive speckle tracking method was validated in manually scanned OCT imaging, on phantom as well as in vivo skin tissue. PMID:26600996
NASA Astrophysics Data System (ADS)
Watrous, Mitchell James
1997-12-01
A new approach to the Green's-function method for the calculation of equilibrium densities within the finite temperature, Kohn-Sham formulation of density functional theory is presented, which extends the method to all temperatures. The contour of integration in the complex energy plane is chosen such that the density is given by a sum of Green's function differences evaluated at the Matsubara frequencies, rather than by the calculation and summation of Kohn-Sham single-particle wave functions. The Green's functions are written in terms of their spectral representation and are calculated as the solutions of their defining differential equations. These differential equations are boundary value problems as opposed to the standard eigenvalue problems. For large values of the complex energy, the differential equations are further simplified from second to first-order by writing the Green's functions in terms of logarithmic derivatives. An asymptotic expression for the Green's functions is derived, which allows the sum over Matsubara poles to be approximated. The method is applied to the screening of nuclei by electrons in finite temperature plasmas. To demonstrate the method's utility, and to illustrate its advantages, the results of previous wave function type calculations for protons and neon nuclei are reproduced. The method is also used to formulate a new screening model for fusion reactions in the solar core, and the predicted reaction rate enhancements factors are compared with existing models.
Streptothricin derivatives from Streptomyces sp. I08A 1776.
Gan, Maoluo; Zheng, Xudong; Gan, Lishe; Guan, Yan; Hao, Xueqin; Liu, Yishuang; Si, Shuyi; Zhang, Yuqin; Yu, Liyan; Xiao, Chunling
2011-05-27
Five new streptothricin derivatives with a carbamoyl group substituted at C-12 (1-5) and three known analogues have been isolated from the culture broth of Streptomyces sp. I08A 1776 by ion exchange and hydrophilic interaction chromatographic techniques. Their structures were determined by spectroscopic and chemical methods. Compound 3 was a streptothricin derivative possessing a cis-streptolidine moiety. Its absolute configuration was defined by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Compound 5 and streptothricin E (6) displayed antibacterial and antifungal activity with MIC values in the range 1-64 μg/mL.
Statistical analysis and use of the VAS radiance data
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1984-01-01
Special radiosonde soundings at 75 km spacings and 3 hour intervals provided an opportunity to learn more about mesoscale data and storm-environment interactions. Relatively small areas of intense convection produce major changes in surrounding fields of thermodynamic, kinematic, and energy variables. The Red River Valley tornado outbreak was studied. Satellite imagery and surface data were used to specify cloud information needed in the radiative heating/cooling calculations. A feasibility study for computing boundary layer winds from satellite-derived thermal data was completed. Winds obtained from TIROS-N retrievals compared very favorably with corresponding values from concurrent rawisonde thermal data, and both sets of thermally-derived winds showed good agreements with observed values.
An Experimental and Theoretical Study of Nitrogen-Broadened Acetylene Lines
NASA Technical Reports Server (NTRS)
Thibault, Franck; Martinez, Raul Z.; Bermejo, Dionisio; Ivanov, Sergey V.; Buzykin, Oleg G.; Ma, Qiancheng
2014-01-01
We present experimental nitrogen-broadening coefficients derived from Voigt profiles of isotropic Raman Q-lines measured in the 2 band of acetylene (C2H2) at 150 K and 298 K, and compare them to theoretical values obtained through calculations that were carried out specifically for this work. Namely, full classical calculations based on Gordon's approach, two kinds of semi-classical calculations based on Robert Bonamy method as well as full quantum dynamical calculations were performed. All the computations employed exactly the same ab initio potential energy surface for the C2H2N2 system which is, to our knowledge, the most realistic, accurate and up-to-date one. The resulting calculated collisional half-widths are in good agreement with the experimental ones only for the full classical and quantum dynamical methods. In addition, we have performed similar calculations for IR absorption lines and compared the results to bibliographic values. Results obtained with the full classical method are again in good agreement with the available room temperature experimental data. The quantum dynamical close-coupling calculations are too time consuming to provide a complete set of values and therefore have been performed only for the R(0) line of C2H2. The broadening coefficient obtained for this line at 173 K and 297 K also compares quite well with the available experimental data. The traditional Robert Bonamy semi-classical formalism, however, strongly overestimates the values of half-width for both Qand R-lines. The refined semi-classical Robert Bonamy method, first proposed for the calculations of pressure broadening coefficients of isotropic Raman lines, is also used for IR lines. By using this improved model that takes into account effects from line coupling, the calculated semi-classical widths are significantly reduced and closer to the measured ones.
NASA Astrophysics Data System (ADS)
Weibust, E.
Improvements to a missile aerodynamics program which enable it to (a) calculate aerodynamic coefficients as input for a flight mechanics model, (b) check manufacturers' data or estimate performance from photographs, (c) reduce wind tunnel testing, and (d) aid optimization studies, are discussed. Slender body theory is used for longitudinal damping derivatives prediction. Program predictions were compared to known values. Greater accuracy is required in the estimation of drag due to excrescences on actual missile configurations, the influence of a burning motor, and nonlinear effects in the stall region. Prediction of pressure centers on wings and on bodies in presence of wings must be improved.
Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.
1999-01-01
A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.
Sherrouse, Benson C.; Riegle, Jodi L.; Semmens, Darius J.
2010-01-01
In response to the need for incorporating quantified and spatially explicit measures of social values into ecosystem services assessments, the Rocky Mountain Geographic Science Center, in collaboration with Colorado State University, has developed a geographic information system application, Social Values for Ecosystem Services (SolVES). SolVES can be used to assess, map, and quantify the perceived social values of ecosystem services. SolVES derives a quantitative social values metric, the Value Index, from a combination of spatial and nonspatial responses to public attitude and preference surveys. SolVES also generates landscape metrics, such as average elevation and distance to water, calculated from spatial data layers describing the underlying physical environment. Using kernel density calculations and zonal statistics, SolVES derives and maps the 10-point Value Index and reports landscape metrics associated with each index value for social value types such as aesthetics, biodiversity, and recreation. This can be repeated for various survey subgroups as distinguished by their attitudes and preferences regarding public uses of the forests such as motorized recreation and logging for fuels reduction. The Value Index provides a basis of comparison within and among survey subgroups to consider the effect of social contexts on the valuation of ecosystem services. SolVES includes regression coefficients linking the predicted value (the Value Index) to landscape metrics. These coefficients are used to generate predicted social value maps using value transfer techniques for areas where primary survey data are not available. SolVES was developed, and will continue to be enhanced through future versions, as a public domain tool to enable decision makers and researchers to map the social values of ecosystem services and to facilitate discussions among diverse stakeholders regarding tradeoffs between different ecosystem services in a variety of physical and social contexts.
Universal algorithms and programs for calculating the motion parameters in the two-body problem
NASA Technical Reports Server (NTRS)
Bakhshiyan, B. T.; Sukhanov, A. A.
1979-01-01
The algorithms and FORTRAN programs for computing positions and velocities, orbital elements and first and second partial derivatives in the two-body problem are presented. The algorithms are applicable for any value of eccentricity and are convenient for computing various navigation parameters.
Asymptotic radiance and polarization in optically thick media: ocean and clouds.
Kattawar, G W; Plass, G N
1976-12-01
Deep in a homogeneous medium that both scatters and absorbs photons, such as a cloud, the ocean, or a thick planetary atmosphere, the radiance decreases exponentially with depth, while the angular dependence of the radiance and polarization is independent of depth. In this diffusion region, the asymptotic radiance and polarization are also independent of the incident distribution of radiation at the upper surface of the medium. An exact expression is derived for the asymptotic radiance and polarization for Rayleigh scattering. The approximate expression for the asymptotic radiance derived from the scalar theory is shown to be in error by as much as 16.4%. An exact expression is also derived for the relation between the diffusion exponent k and the single scattering albedo. A method is developed for the numerical calculation of the asymptotic radiance and polarization for any scattering matrix. Results are given for scattering from the haze L and cloud C3 distributions for a wide range of single scattering albedos. When the absorption is large, the polarization in the diffusion region approaches the values obtained for single scattered photons, while the radiance approaches the value calculated from the expression: phase function divided by (1 + kmicro), where micro is the cosine of the zenith angle. The asymptotic distribution of the radiation is of interest since it depends only on the inherent optical properties of the medium. It is, however, difficult to observe when the absorption is large because of the very low radiance values in the diffusion region.
Acetylcholinesterase inhibitory properties of some benzoic acid derivatives
NASA Astrophysics Data System (ADS)
Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan
2016-04-01
Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.
A technique using a nonlinear helicopter model for determining trims and derivatives
NASA Technical Reports Server (NTRS)
Ostroff, A. J.; Downing, D. R.; Rood, W. J.
1976-01-01
A technique is described for determining the trims and quasi-static derivatives of a flight vehicle for use in a linear perturbation model; both the coupled and uncoupled forms of the linear perturbation model are included. Since this technique requires a nonlinear vehicle model, detailed equations with constants and nonlinear functions for the CH-47B tandem rotor helicopter are presented. Tables of trims and derivatives are included for airspeeds between -40 and 160 knots and rates of descent between + or - 10.16 m/sec (+ or - 200 ft/min). As a verification, the calculated and referenced values of comparable trims, derivatives, and linear model poles are shown to have acceptable agreement.
Inverse sequential detection of parameter changes in developing time series
NASA Technical Reports Server (NTRS)
Radok, Uwe; Brown, Timothy J.
1992-01-01
Progressive values of two probabilities are obtained for parameter estimates derived from an existing set of values and from the same set enlarged by one or more new values, respectively. One probability is that of erroneously preferring the second of these estimates for the existing data ('type 1 error'), while the second probability is that of erroneously accepting their estimates for the enlarged test ('type 2 error'). A more stable combined 'no change' probability which always falls between 0.5 and 0 is derived from the (logarithmic) width of the uncertainty region of an equivalent 'inverted' sequential probability ratio test (SPRT, Wald 1945) in which the error probabilities are calculated rather than prescribed. A parameter change is indicated when the compound probability undergoes a progressive decrease. The test is explicitly formulated and exemplified for Gaussian samples.
Value of Information spreadsheet
Trainor-Guitton, Whitney
2014-05-12
This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.
El-Hout, S I; Suzuki, H; El-Sheikh, S M; Hassan, H M A; Harraz, F A; Ibrahim, I A; El-Sharkawy, E A; Tsujimura, S; Holzinger, M; Nishina, Y
2017-08-03
We propose herein initial results to develop optimum redox mediators by the combination of computational simulation and catalytic functionalization of the core structure of vitamin K 3 . We aim to correlate the calculated energy value of the LUMO of different vitamin K 3 derivatives with their actual redox potential. For this, we optimized the catalytic alkylation of 1,4-naphthoquinones with a designed Ag(i)/GO catalyst and synthesized a series of molecules.
Errors from approximation of ODE systems with reduced order models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
2016-12-30
This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.
Amagata, Taro; Johnson, Tyler A.; Cichewicz, Robert H.; Tenney, Karen; Mooberry, Susan L.; Media, Joseph; Edelstein, Matthew; Valeriote, Frederick A.; Crews, Phillip
2009-01-01
This study involved a campaign to isolate and study additional latrunculin analogs from two taxonomically unrelated sponges, Cacospongia mycofijiensis and Negombata magnifica. A total of 13 latrunculin analogs were obtained by four different ways, reisolation (1–4), our repository (5–6), new derivatives (7–12), and a synthetic analog (7a). The structures of the new metabolites were elucidated based on a combination of comprehensive 1D and 2D NMR analysis, application of DFT calculations, and the preparation of acetonide derivative 7a. The cytotoxicities against both murine and human cancer cell lines observed for 1, 2, 7, 7a, 8, 9, and 12 were significant and the IC50 value range was 0.5–10 μM. Among the cytotoxic derivatives, compound 9 did not exhibit microfilament-disrupting activity at 5 μM. The implications of this observation and the value of further therapeutic study on key latrunculin derivatives are discussed. PMID:18942825
Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane
The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less
Photolysis Rate Coefficient Calculations in Support of SOLVE II
NASA Technical Reports Server (NTRS)
Swartz, William H.
2005-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The primary objective of the present effort was the accurate calculation of j-values in the Arctic twilight along NASA DC-8 flight tracks during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II), based in Kiruna, Sweden (68 degrees N, 20 degrees E) during January-February 2003. The JHU/APL radiative transfer model was utilized to produce a large suite of j-values for photolysis processes (over 70 reactions) relevant to the upper troposphere and lower stratosphere. The calculations take into account the actual changes in ozone abundance and apparent albedo of clouds and the Earth surface along the aircraft flight tracks as observed by in situ and remote sensing platforms (e.g., EP-TOMS). A secondary objective was to analyze solar irradiance data from NCAR s Direct beam Irradiance Atmospheric Spectrometer (DIAS) on-board the NASA DC-8 and to start the development of a flexible, multi-species spectral fitting technique for the independent retrieval of O3,O2.02, and aerosol optical properties.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; Kumar, Sujay; Chien, Janety Y. L.; Riggs, George A.
2012-01-01
The Air Force Weather Agency (AFWA) -- NASA blended snow-cover product, called ANSA, utilizes Earth Observing System standard snow products from the Moderate- Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE with SWE values calculated from snow depths reported at 1500 National Climatic Data Center (NCDC) co-op stations in the Lower Great Lakes Basin. Compared to station data, the ANSA significantly underestimates SWE in densely-forested areas. We use two methods to remove some of the bias observed in forested areas to reduce the root-mean-square error (RMSE) between the ANSA- and station-derived SWE. First, we calculated a 5- year mean ANSA-derived SWE for the winters of 2005-06 through 2009-10, and developed a five-year mean bias-corrected SWE map for each month. For most of the months studied during the five-year period, the 5-year bias correction improved the agreement between the ANSA-derived and station-derived SWE. However, anomalous months such as when there was very little snow on the ground compared to the 5-year mean, or months in which the snow was much greater than the 5-year mean, showed poorer results (as expected). We also used a 7-day running mean (7DRM) bias correction method using days just prior to the day in question to correct the ANSA data. This method was more effective in reducing the RMSE between the ANSA- and co-op-derived SWE values, and in capturing the effects of anomalous snow conditions.
Fluctuations of conserved charges from imaginary chemical potential
NASA Astrophysics Data System (ADS)
Guenther, Jana N.; Borsányi, Szabolcs; Fodor, Zoltan; Katz, Sandor D.; Pásztor, Attila; Ratti, Claudia
2018-03-01
When comparing lattice calculation to experimental data from heavy ion collision experiments, the higher order fluctuations of conserved charges are important observables. An efficient way to study these fluctuations is to determine them from simulations at imaginary chemical potential. In this talk we present results up to the six order derivative in μB (with up to eighth order included in the fit), calculated on a 483 × 12 lattice with staggered fermions using different values of μB while μS = μQ = 0.
Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information
NASA Astrophysics Data System (ADS)
Haken, Hermann
2014-12-01
After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.
Stochastic approach to the derivation of emission limits for wastewater treatment plants.
Stransky, D; Kabelkova, I; Bares, V
2009-01-01
Stochastic approach to the derivation of WWTP emission limits meeting probabilistically defined environmental quality standards (EQS) is presented. The stochastic model is based on the mixing equation with input data defined by probability density distributions and solved by Monte Carlo simulations. The approach was tested on a study catchment for total phosphorus (P(tot)). The model assumes input variables independency which was proved for the dry-weather situation. Discharges and P(tot) concentrations both in the study creek and WWTP effluent follow log-normal probability distribution. Variation coefficients of P(tot) concentrations differ considerably along the stream (c(v)=0.415-0.884). The selected value of the variation coefficient (c(v)=0.420) affects the derived mean value (C(mean)=0.13 mg/l) of the P(tot) EQS (C(90)=0.2 mg/l). Even after supposed improvement of water quality upstream of the WWTP to the level of the P(tot) EQS, the WWTP emission limits calculated would be lower than the values of the best available technology (BAT). Thus, minimum dilution ratios for the meaningful application of the combined approach to the derivation of P(tot) emission limits for Czech streams are discussed.
Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N
2017-01-01
Objectives To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Results Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume <0.5 cm3. Variability across race/ethnicity was found in the univariable analysis for all PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). Materials and Methods We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Conclusions Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives’ ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer. PMID:28160549
The Sunyaev-Zel'dovich Effect in Abell 370
NASA Technical Reports Server (NTRS)
Grego, Laura; Carlstrom, John E.; Joy, Marshall K.; Reese, Erik D.; Holder, Gilbert P.; Patel, Sandeep; Holzapfel, William L.; Cooray, Asantha K.
1999-01-01
We present interferometric measurements of the Sunyaev-Zel'dovich (SZ) effect towards the galaxy cluster Abell 370. These measurements, which directly probe the pressure of the cluster's gas, show the gas is strongly aspherical, on agreement with the morphology revealed by x-ray and gravitational lensing observations. We calculate the cluster's gas mass fraction by comparing the gas mass derived from the SZ measurements to the lensing-derived gravitational mass near the critical lensing radius. We also calculate the gas mass fraction from the SZ data by deriving the total mass under the assumption that the gas is in hydrostatic equilibrium (HSE). We test the assumptions in the HSE method by comparing the total cluster mass implied by the two methods. The Hubble constant derived for this cluster, when the known systematic uncertainties are included, has a very wide range of values and therefore does not provide additional constraints on the validity of the assumptions. We examine carefully the possible systematic errors in the gas fraction measurement. The gas fraction is a lower limit to the cluster's baryon fraction and so we compare the gas mass fraction, calibrated by numerical simulations to approximately the virial radius, to measurements of the global mass fraction of baryonic matter, OMEGA(sub B)/OMEGA(sub matter). Our lower limit to the cluster baryon fraction is f(sub B) = (0.043 +/- 0.014)/h (sub 100). From this, we derive an upper limit to the universal matter density, OMEGA(sub matter) <= 0.72/h(sub 100), and a likely value of OMEGA(sub matter) <= (0.44(sup 0.15, sub -0.12)/h(sub 100).
Interpreting REACH guidance in the determination of the derived no effect level (DNEL).
Kreider, Marisa L; Spencer Williams, E
2010-11-01
Under the new European chemicals regulation, REACH, a new safety value, the Derived No Effect Level (DNEL) must be established for all chemicals manufactured, imported or used in the EU in quantities greater than 10 metric tonnes per year. The DNEL is to be calculated for all relevant exposure pathways, exposure populations, and endpoints of toxicity. The EU has published guidance on how to derive the DNEL, but this guidance has yet to be put into practice and is in some places not prescriptive. Using the Agency for Toxic Substances and Disease Registry (ATSDR) dataset, we have determined inhalation DNELs for styrene. In doing so, we considered what effect key decisions would have on the calculated DNEL. The resulting DNELs were then compared to existing risk criteria values or occupational exposure limits. General population DNELs were generally more conservative than analogous risk criteria (ranging from approximately 0.05 to 2.5 ppm). Worker DNELs are lower than existing occupational standards (ranging from approximately 0.4 to 20 ppm). To our knowledge, this work represents the first rigorous application and interpretation of the EU guidance for determination of a DNEL and will prove useful as a model for determination of other DNELs under REACH. Copyright © 2010 Elsevier Inc. All rights reserved.
Applications of Laplace transform methods to airfoil motion and stability calculations
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1979-01-01
This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.
Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein
2016-01-01
First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge e inside of a spherical static body with mass M. It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point Mc=2|e|/√{3} with corresponding temperature Tc=1/24π√{3|e|}. Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for 0< T< Tc but not for negative values which means the system is made from two subsystem. For negative temperatures entropy reaches to zero value at Tto-∞ and so takes Bose-Einstein condensation single state. Entropy increases monotonically in case 0< T< Tc. Regarding results of the work presented at Wang and Huang (Phys. Rev. D 63:124014, 2001) we calculate again the mentioned thermodynamical variables for remnant stable final state of evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is m_{final}=|e| in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).
Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J
1997-09-12
Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2017-04-01
A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).
Interaction between polymer constituents and the structure of biopolymers
NASA Technical Reports Server (NTRS)
Rein, R.
1974-01-01
The paper reviews the current status of methods for calculating intermolecular interactions between biopolymer units. The nature of forces contributing to the various domains of intermolecular separations is investigated, and various approximations applicable in the respective regions are examined. The predictive value of current theory is tested by establishing a connection with macroscopic properties and comparing the theoretical predicted values with those derived from experimental data. This has led to the introduction of a statistical model describing DNA.
Popov, Alexey A; Kareev, Ivan E; Shustova, Natalia B; Stukalin, Evgeny B; Lebedkin, Sergey F; Seppelt, Konrad; Strauss, Steven H; Boltalina, Olga V; Dunsch, Lothar
2007-09-19
The frontier orbitals of 22 isolated and characterized C(60)(CF(3))(n) derivatives, including seven reported here for the first time, have been investigated by electronic spectroscopy (n = 2 [1], 4 [1], 6 [2], 8 [5], 10 [6], 12 [3]; the number of isomers for each composition is shown in square brackets) fluorescence spectroscopy (n = 10 [4]), cyclic voltammetry under air-free conditions (all compounds with n
Stochastic-analytic approach to the calculation of multiply scattered lidar returns
NASA Astrophysics Data System (ADS)
Gillespie, D. T.
1985-08-01
The problem of calculating the nth-order backscattered power of a laser firing short pulses at time zero into an homogeneous cloud with specified scattering and absorption parameters, is discussed. In the problem, backscattered power is measured at any time less than zero by a small receiver colocated with the laser and fitted with a forward looking conical baffle. Theoretical calculations are made on the premise that the laser pulse is composed of propagating photons which are scattered and absorbed by the cloud particles in a probabilistic manner. The effect of polarization was not taken into account in the calculations. An exact formula is derived for backscattered power, based on direct physical arguments together with a rigorous analysis of random variables. It is shown that, for values of n less than or equal to 2, the obtained formula is a well-behaved (3n-4) dimensionless integral. The computational feasibility of the integral formula is demonstrated for a model cloud of isotropically scattering particles. An analytical formula is obtained for a value of n = 2, and a Monte Carlo program was used to obtain numerical results for values of n = 3, . . ., 6.
Flexibility and Project Value: Interactions and Multiple Real Options
NASA Astrophysics Data System (ADS)
Čulík, Miroslav
2010-06-01
This paper is focused on a project valuation with embedded portfolio of real options including their interactions. Valuation is based on the criterion of Net Present Value on the simulation basis. Portfolio includes selected types of European-type real options: option to expand, contract, abandon and temporarily shut down and restart a project. Due to the fact, that in reality most of the managerial flexibility takes the form of portfolio of real options, selected types of options are valued not only individually, but also in combination. The paper is structured as follows: first, diffusion models for forecasting of output prices and variable costs are derived. Second, project value is estimated on the assumption, that no real options are present. Next, project value is calculated with the presence of selected European-type options; these options and their impact on project value are valued first in isolation and consequently in different combinations. Moreover, intrinsic value evolution of given real options with respect to the time of exercising is analysed. In the end, results are presented graphically; selected statistics and risk measures (Value at Risk, Expected Shortfall) of the NPV's distributions are calculated and commented.
Temperature range of the liquid-glass transition
NASA Astrophysics Data System (ADS)
Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.
2016-02-01
It has been shown that the currently used method for calculating the temperature range of δ T g in the glass transition equation qτ g = δ T g as the difference δ T g = ( T 12- T 13) results in overestimated values, which is explained by the assumption of a constant activation energy of glass transition in deriving the calculation equation ( T 12 and T 13 are the temperatures corresponding to the logarithmic viscosity values of logη = 12 and logη = 13). The methods for the evaluation of δ T g using the Williams-Landel-Ferry equation and the model of delocalized atoms are considered, the results of which are in satisfactory agreement with the product qτ g ( q is the cooling rate of the melt and τ g is the structural relaxation time at the glass transition temperature). The calculation of τ g for inorganic glasses and amorphous organic polymers is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, W. B.; Militzer, B.
In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second-more » and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.« less
Jiang, Yanxia; Akkus, Anna; Roperto, Renato; Akkus, Ozan; Li, Bo; Lang, Lisa; Teich, Sorin
2016-09-01
Ceramic and composite resin blocks for CAD/CAM machining of dental restorations are becoming more common. The sample sizes affordable by these blocks are smaller than ideal for stress intensity factor (SIF) based tests. The J-integral measurement calls for full field strain measurement, making it challenging to conduct. Accordingly, the J-integral values of dental restoration materials used in CAD/CAM restorations have not been reported to date. Digital image correlation (DIC) provides full field strain maps, making it possible to calculate the J-integral value. The aim of this study was to measure the J-integral value for CAD/CAM restorative materials. Four types of materials (sintered IPS E-MAX CAD, non-sintered IPS E-MAX CAD, Vita Mark II and Paradigm MZ100) were used to prepare beam samples for three-point bending tests. J-integrals were calculated for different integral path size and locations with respect to the crack tip. J-integral at path 1 for each material was 1.26±0.31×10(-4)MPam for MZ 100, 0.59±0.28×10(-4)MPam for sintered E-MAX, 0.19±0.07×10(-4)MPam for VM II, and 0.21±0.05×10(-4)MPam for non-sintered E-MAX. There were no significant differences between different integral path size, except for the non-sintered E-MAX group. J-integral paths of non-sintered E-MAX located within 42% of the height of the sample provided consistent values whereas outside this range resulted in lower J-integral values. Moreover, no significant difference was found among different integral path locations. The critical SIF was calculated from J-integral (KJ) along with geometry derived SIF values (KI). KI values were comparable with KJ and geometry based SIF values obtained from literature. Therefore, DIC derived J-integral is a reliable way to assess the fracture toughness of small sized specimens for dental CAD/CAM restorative materials; however, with caution applied to the selection of J-integral path. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dracínský, Martin; Kaminský, Jakub; Bour, Petr
2009-03-07
Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.
Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections
NASA Technical Reports Server (NTRS)
Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.
1994-01-01
Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.
van Noort, Paul C M
2009-06-01
Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans.
NASA Technical Reports Server (NTRS)
Pierson, Willard J., Jr.
1989-01-01
The values of the Normalized Radar Backscattering Cross Section (NRCS), sigma (o), obtained by a scatterometer are random variables whose variance is a known function of the expected value. The probability density function can be obtained from the normal distribution. Models for the expected value obtain it as a function of the properties of the waves on the ocean and the winds that generated the waves. Point estimates of the expected value were found from various statistics given the parameters that define the probability density function for each value. Random intervals were derived with a preassigned probability of containing that value. A statistical test to determine whether or not successive values of sigma (o) are truly independent was derived. The maximum likelihood estimates for wind speed and direction were found, given a model for backscatter as a function of the properties of the waves on the ocean. These estimates are biased as a result of the terms in the equation that involve natural logarithms, and calculations of the point estimates of the maximum likelihood values are used to show that the contributions of the logarithmic terms are negligible and that the terms can be omitted.
NASA Technical Reports Server (NTRS)
Livingston, John M.; Kapustin, Vladimir N.; Schmid, Beat; Russell, Philip B.; Quinn, Patricia K.; Bates, Timothy S.; Durkee, Philip A.; Smith, Peter J.; Freudenthaler, Volker; Wiegner, Matthias
2000-01-01
Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements acquired with NASA Ames Research Center's six-channel Airborne Tracking Sunphotometer (AATS-6) operated aboard the R/V (research vehicle) Professor Vodyanitskiy during the second Aerosol Characterization Experiment (ACE-2) are discussed. Data are compared with various in situ and remote measurements for selected cases. The focus is on 10 July, when the Pelican airplane flew within 70 km of the ship near the time of a NOAA (National Oceanographic and Atmospheric Administration)-14/AVHRR (Advanced Very High Resolution Radiometer) satellite overpass and AOD measurements with the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14) above the marine boundary layer (MBL) permitted calculation of AOD within the MBL from the AATS-6 measurements. A detailed column closure test is performed for MBL AOD on 10 July by comparing the AATS-6 MBL AODs with corresponding values calculated by combining shipboard particle size distribution measurements with models of hygroscopic growth and radiosonde humidity profiles (plus assumptions on the vertical profile of the dry particle size distribution and composition). Large differences (30-80% in the mid-visible) between measured and reconstructed AODs are obtained, in large part because of the high sensitivity of the closure methodology to hygroscopic growth models, which vary considerably and have not been validated over the necessary range of particle size/composition distributions. The wavelength dependence of AATS-6 AODs is compared with the corresponding dependence of aerosol extinction calculated from shipboard measurements of aerosol size distribution and of total scattering measured by a shipboard integrating nephelometer for several days. Results are highly variable, illustrating further the great difficulty of deriving column values from point measurements. AATS-6 CWV values are shown to agree well with corresponding values derived from radiosonde measurements during eight soundings on seven days and also with values calculated from measurements taken on 10 July with the AATS-14 and the University of Washington Passive Humidigraph aboard the Pelican.
The Tremaine-Weinberg Method for Pattern Speeds Using Hα Emission from Ionized Gas
NASA Astrophysics Data System (ADS)
Beckman, J. E.; Fathi, K.; Piñol, N.; Toonen, S.; Hernandez, O.; Carignan, C.
2008-10-01
The Fabry-Perot interferometer FaNTOmM was used at the 3.6-m CFHT and the 1.6-m Mont Mégantic Telescope to obtain data cubes in Hα of 9 nearby spiral galaxies from which maps in integrated intensity, velocity, and velocity dispersion were derived. We then applied the Tremaine-Weinberg method, in which the pattern speed can be deduced from its velocity field, by finding the integrated value of the mean velocity along a slit parallel to the major axis weighted by the intensity and divided by the weighted mean distance of the velocity points from the tangent point measured along the slit. The measured variables can be used either to make separate calculations of the pattern speed and derive a mean, or in a plot of one against the other for all the points on all slits, from which a best fit value can be derived. Linear fits were found for all the galaxies in the sample. For two galaxies a clearly separate inner pattern speed with a higher value, was also identified and measured.
Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar
2015-03-01
We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔG(bind, pred)) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔG(bind, expt) (calculated from the Kd value) are consistent with the predicted value of ΔG(bind, pred) calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation.
NASA Astrophysics Data System (ADS)
Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar
2015-03-01
We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological evaluation. Treatment of mice with a daily dose of 300 mg/kg and a single dose of 600 mg/kg indicates that the compound does not induce detectable pathological abnormalities in normal tissues. Also there were no significant differences in hematological parameters between the treated and untreated groups. Hence, the newly designed noscapinoid, 5e is an orally bioavailable, safe and effective anticancer agent with a potential for the treatment of cancer and might be a candidate for clinical evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler-Moroder, David; Lee, Eleanor S.; Ward, Gregory J.
2016-08-29
The Five-Phase Method (5-pm) for simulating complex fenestration systems with Radiance is validated against field measurements. The capability of the method to predict workplane illuminances, vertical sensor illuminances, and glare indices derived from captured and rendered high dynamic range (HDR) images is investigated. To be able to accurately represent the direct sun part of the daylight not only in sensor point simulations, but also in renderings of interior scenes, the 5-pm calculation procedure was extended. The validation shows that the 5-pm is superior to the Three-Phase Method for predicting horizontal and vertical illuminance sensor values as well as glare indicesmore » derived from rendered images. Even with input data from global and diffuse horizontal irradiance measurements only, daylight glare probability (DGP) values can be predicted within 10% error of measured values for most situations.« less
Modeling of spectral signatures of littoral waters
NASA Astrophysics Data System (ADS)
Haltrin, Vladimir I.
1997-12-01
The spectral values of remotely obtained radiance reflectance coefficient (RRC) are compared with the values of RRC computed from inherent optical properties measured during the shipborne experiment near the West Florida coast. The model calculations are based on the algorithm developed at the Naval Research Laboratory at Stennis Space Center and presented here. The algorithm is based on the radiation transfer theory and uses regression relationships derived from experimental data. Overall comparison of derived and measured RRCs shows that this algorithm is suitable for processing ground truth data for the purposes of remote data calibration. The second part of this work consists of the evaluation of the predictive visibility model (PVM). The simulated three-dimensional values of optical properties are compared with the measured ones. Preliminary results of comparison are encouraging and show that the PVM can qualitatively predict the evolution of inherent optical properties in littoral waters.
Słomkiewicz, Piotr M; Szczepanik, Beata; Garnuszek, Magdalena; Rogala, Paweł; Witkiewicz, Zygfryd
2017-11-01
Chloro derivatives of aniline are commonly used in the production of dyes, pharmaceuticals, and agricultural agents. They are toxic compounds with a large accumulation ability and low natural biodegradability. Halloysite is known as an efficient adsorbent of toxic compounds, such as phenols or herbicides, from wastewater. Inverse LC was applied to measure the adsorption of aniline and 2-chloroaniline (2-CA), 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) on halloysite adsorbents. A peak division (PD) method was used to determine a Langmuir equation in accordance with the adsorption measurement results. The values of adsorption equilibrium constants and enthalpy were determined and compared by breakthrough curve and PD methods. The physical sense of the calculated adsorption enthalpy values was checked by applying Boudart's entropy criteria. Of note, adsorption enthalpy values for halloysite adsorbents decreased in the following order: aniline > 4-CA > 2-CA > 3-CA.
Thermodynamics and Human Population
NASA Astrophysics Data System (ADS)
Cordry, Sean M.
2010-09-01
This paper discusses a Fermi-problem exercise through which I take students in several of my college courses. Students work in teams, determining the average daily Caloric needs per person. Then they use insolation values to determine the size of a collection area needed to absorb the previously determined daily energy requirements. Adjustments to the size of the collection area are made based on energy absorption per biological trophic level, as well as the consideration that most diets are a mixture of plant- and animal-derived elements. Finally, using the total amount of farmland available on the planet, students calculate a maximum population value. Although the maximum population values derived herewith should not be considered authoritative, the exercise has three beneficial purposes: 1) a chance to talk about the modeling process and extrapolations, 2) an unexpected application of physics to social contexts, and 3) raising student awareness of population and energy issues.
Interactions of acylated methylglucoside derivatives with CO2: simulation and calculations.
Chang, H H; Cao, R X; Yang, C C; Wei, W L; Pang, X Y; Qiao, Y
2016-01-01
Carbohydrates have drawn considerable interest from researchers recently due to their affinity for CO2. However, most of the research in this field has focused on peracetylated derivatives. Compared with acetylated carbohydrates, which have already been studied in depth, methyl D-glucopyranoside derivatives are more stable and could have additional applications. Thus, in the present work, ab initio calculations were performed to elucidate the characteristics of the interactions of methylglucoside derivatives with CO2, and to investigate how the binding energy (ΔE) is affected by isomerization or the introduction of various acyl groups. Four methyl D-glucopyranosides (each with two anomers) bearing acetyl, propionyl, butyryl, and isobutyryl moieties, respectively, were designed as substrates, and the 1:1 complexes of a CO2 molecule with each of these sugar substrates were modeled. The results indicate that ΔE is mainly influenced by interaction distance and the number of negatively charged donors or interacting pairs in the complex; the structure of the acyl group present in the substrate is a secondary influence. Except in the case of methyl 2-O-acetyl-D-glucopyranose, the ΔE values of the α- and β-anomers of each methylglucoside were found to be almost the same. Therefore, we would expect the CO2 affinities of the four derivatives studied here to be as strong as or even stronger than that of peracetylated D-glucopyranose. Graphical Abstract The binding energy between methyl D-glucopyranoside derivatives with various substituted acyl groups and CO2 are evaluated by ab initio calculations. The strong interaction between these methyl dglucopyranoside derivatives and CO2 showed the potential of their application for CO2 capture.
First-Principles Calculation of the Third Virial Coefficient of Helium
Garberoglio, Giovanni; Harvey, Allan H.
2009-01-01
Knowledge of the pair and three-body potential-energy surfaces of helium is now sufficient to allow calculation of the third density virial coefficient, C(T), with significantly smaller uncertainty than that of existing experimental data. In this work, we employ the best available pair and three-body potentials for helium and calculate C(T) with path-integral Monte Carlo (PIMC) calculations supplemented by semiclassical calculations. The values of C(T) presented extend from 24.5561 K to 10 000 K. In the important metrological range of temperatures near 273.16 K, our uncertainties are smaller than the best experimental results by approximately an order of magnitude, and the reduction in uncertainty at other temperatures is at least as great. For convenience in calculation of C(T) and its derivatives, a simple correlating equation is presented. PMID:27504226
NASA Technical Reports Server (NTRS)
Johansson, S.; Nave, G.; Geller, M.; Sauval, A. J.; Grevesse, N.; Schoenfeld, W. G.; Change, E. S.; Farmer, C. B.
1994-01-01
The combined laboratory and solar analysis of the highly excited subconfigurations 3d(sup 6)4s((sup 6)D)4f and 3d(sup 6)4s((sup 6)D)5g of Fe I has allowed us to classify 87 lines of the 4f-5g supermultiplet in the spectral region 2545-2585 per cm. The level structure of these JK-coupled configurations is predicted by semiempirical calculations and the quardrupolic approximation. Semiempirical gf-values have been calculated and are compared to gf-values derived from the solar spectrum. The solar analysis has shown that these lines, which should be much less sensitive than lower excitation lines to departures from Local Thermal Equilibrium (LTE) and to temperature uncertanties, lead to a solar abundance of iron which is consistent with the meteoritic value (A(sub Fe) = 7.51).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H.
The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Paulimore » (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.« less
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena
2016-04-01
Presently, physical-mathematical models such as SVAT (Soil-Vegetation-Atmosphere-Transfer) developed with varying degrees of detail are one of the most effective tools to evaluate the characteristics of the water and heat regimes of vegetation covered territories. The produced SVAT model is designed to calculate the soil water content, evapotranspiration (evaporation from bare soil and transpiration), infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat regime characteristics as well as vegetation and soil surface temperatures and the temperature and soil moisture distributions in depth. The model is adapted to satellite-derived estimates of precipitation, land surface temperatures and vegetation cover characteristics. The case study has been carried out for the located in the forest-steppe zone territory of part of the agricultural Central Black Earth Region of Russia with coordinates 49° 30'-54° N and 31° -43° E and area of 227 300 km2 for years 2011-2014 vegetation seasons. The soil and vegetation characteristics are used as the model parameters and the meteorological characteristics are considered to be input variables. These values have been obtained from ground-based observations and satellite-based measurements by radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/MSG-2,-3 (Meteosat-9, -10). To provide the retrieval of meteorological and vegetation cover characteristics the new and pre-existing methods and technologies of above radiometer thematic processing data have been developed or refined. From AVHRR data there have been derived estimates of precipitation P, efficient land surface temperature (LST) Ts.eff and emissivity E, surface-air temperature at a level of vegetation cover Ta, normalized difference vegetation index NDVI, leaf area index LAI and vegetation cover fraction B. The remote sensing products LST Tls, E, NDVI, LAI derived from MODIS data and covering the study area have been downloaded from LP DAAC web-site for the same vegetation seasons. The SEVIRI data have been used to retrieve P (every three hours and daily), Tls, E, Ta (at daylight and nighttime), LAI, and B (daily). All named technologies have been adapted to the territory of interest. To verify exactness of assessing AVHRR- and MODIS-based LST (Ts.eff, Ta and Tls) the error statistics of their derivation has been investigated for various samples using comparison with in-situ measurements during the all considered vegetation seasons. When developing the method to derive LST from the SEVIRI data its validation has been carried out through comparison of given Tls retrievals with independent collocated Tls estimates generated at LSA SAF (Lisbon, Portugal).The later check of SEVIRI-derived Tls and Ta estimates has been performed by their comparing with ground-based observation data. Correctness of LAI and B estimates has been confirmed when comparing time behavior of satellite- and ground-based LAI and B during each vegetation season. The all-important part of the study is to improve the developed Multi Threshold Method (MTM) intended for assessing daily and monthly rainfall from AVHRR and SEVIRI data, to check the correctness of carried out calculations for the considered territory and to develop procedures of utilizing obtained satellite-derived estimates of precipitation in the SVAT model. The MTM allows automatic pixel-by-pixel classifying AVHRR- and SEVIRI-measured data for the cloud detection, identification of its types, allocation of precipitation zones, and determination of instantaneous maximum intensities of precipitation in the pixel range around the clock throughout the year independently of land surface type. Measurement data from 5 AVHRR and 11 SEVIRI channels as well as their differences are used in the MTM as predictors. Calibration and verification of the MTM have been carried out using observation data on daily precipitation at agricultural meteorological stations of the region. In the frame of this approach the transition from the rainfall intensity estimation to the calculation of their daily sums has been fulfilled at that two variants of this calculation have been realized which focusing on climate researches and operational monitoring. Such transition has required verifying the accuracy of the estimates obtained in both variants at each time step. This verification has included comparison of area distributions of satellite-derived precipitation estimates and analogous estimates obtained by the interpolation of ground-based observation data. The probability of correct precipitation zone detection from satellite data when comparing with ground-based meteorological observations has amounted 75-85 %. In both variants of calculating precipitation for the region of interest in addition to the fields of daily rainfall the fields of their monthly and annual sums have been built. All three sums are consistent with each other and with a ground-based observation data although the satellite-derived estimates are more "smooth" in comparison with ground-based ones. Their discrepancies are in the range of the rainfall estimation errors using the MTM and they are peculiar to the local maxima for which satellite-derived rainfall is less than ground-measured values. This may be due to different scales of space-averaged satellite and point-wise ground-based estimates. To utilize satellite-derived estimates of meteorological and vegetation characteristics in the SVAT model the procedures of replacing the ground-based values of precipitation, LST, LAI and B by corresponding satellite-derived values have been developed taking into account spatial heterogeneity of their fields. The correctness of such replacement has been confirmed by the results of comparing the values of soil water content W and evapotranspiration Ev modeled and measured at agricultural meteorological stations. In particular, when the difference of precipitation sums for the vegetation season resulted from the model calculation in both above variants having been 20% the discrepancy between corresponding modeled values of W for the same period has not exceeded 8% and the discrepancy between values of E has been within 15%. Such discrepancies are within the limits of the standard W and Ev estimation errors. The final results of the SVAT model calculation utilizing satellite data are the fields of soil water content W, evapotranspiration Ev, vertical water and heat fluxes, land surface temperatures and other water and heat regime characteristics area-distributed over the territory of interest in their dynamics for the year 2011-2014 vegetation seasons. Discrepancies between Ev and W calculation results and observation data (~ 20-25 and 10-15%) have not exceeded the standard error of their estimation which corresponds to the adopted accuracy criteria of such estimates.
Spherical aberration of an optical system and its influence on depth of focus.
Mikš, Antonín; Pokorný, Petr
2017-06-10
This paper analyzes the influence of spherical aberration on the depth of focus of symmetrical optical systems for imaging of axial points. A calculation of a beam's caustics is discussed using ray equations in the image plane and considering longitudinal spherical aberration as well. Concurrently, the influence of aberration coefficients on extremes of such a curve is presented. Afterwards, conditions for aberration coefficients are derived if the Strehl definition should be the same in two symmetrically placed planes with respect to the paraxial image plane. Such conditions for optical systems with large aberrations are derived with the use of geometric-optical approximation where the gyration diameter of the beam in given planes of the optical system is evaluated. Therefore, one can calculate aberration coefficients in such a way that the optical system generates a beam of rays that has the gyration radius in a given interval smaller than the defined limit value. Moreover, one can calculate the maximal depth of focus of the optical system respecting the aforementioned conditions.
Piezo-optic tensor of crystals from quantum-mechanical calculations.
Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.
Piezo-optic tensor of crystals from quantum-mechanical calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R.; Ruggiero, M. T.
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of themore » full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.« less
Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice
NASA Astrophysics Data System (ADS)
Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.
2016-10-01
Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.
Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
1990-01-01
A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.
Hagedorn Temperature of AdS5/CFT4 via Integrability
NASA Astrophysics Data System (ADS)
Harmark, Troels; Wilhelm, Matthias
2018-02-01
We establish a framework for calculating the Hagedorn temperature of AdS5/CFT4 via integrability. Concretely, we derive the thermodynamic Bethe ansatz equations that yield the Hagedorn temperature of planar N =4 super Yang-Mills theory at any value of the 't Hooft coupling. We solve these equations perturbatively at weak coupling via the associated Y system, confirming the known results at tree level and one-loop order as well as deriving the previously unknown two-loop Hagedorn temperature. Finally, we comment on solving the equations at finite coupling.
Ren, Hui; Yu, Weiting; Salciccioli, Michael; Chen, Ying; Huang, Yulin; Xiong, Ke; Vlachos, Dionisios G; Chen, Jingguang G
2013-05-01
Which cleavage do you prefer? With a combination of density functional theory (DFT) calculations, surface science studies, and reactor evaluations, Mo(2)C is identified as a highly selective HDO catalyst to selectively convert biomass-derived oxygenates to unsaturated hydrocarbons through selective C-O bond scissions without C-C bond cleavage. This provides high-value HDO products for utilization as feedstocks for chemicals and fuels; this also reduces the overall consumption of H2 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya
2015-06-01
In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.
Fukushima Daiichi Radionuclide Inventories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoni, Jeffrey N.; Jankovsky, Zachary Kyle
Radionuclide inventories are generated to permit detailed analyses of the Fukushima Daiichi meltdowns. This is necessary information for severe accident calculations, dose calculations, and source term and consequence analyses. Inventories are calculated using SCALE6 and compared to values predicted by international researchers supporting the OECD/NEA's Benchmark Study on the Accident at Fukushima Daiichi Nuclear Power Station (BSAF). Both sets of inventory information are acceptable for best-estimate analyses of the Fukushima reactors. Consistent nuclear information for severe accident codes, including radionuclide class masses and core decay powers, are also derived from the SCALE6 analyses. Key nuclide activity ratios are calculated asmore » functions of burnup and nuclear data in order to explore the utility for nuclear forensics and support future decommissioning efforts.« less
NASA Technical Reports Server (NTRS)
Chamberlain, D. M.; Elliot, J. L.
1997-01-01
We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.
NASA Astrophysics Data System (ADS)
Akgemci, Emine Guler; Saf, Ahmet Ozgur; Tasdemir, Halil Ugur; Türkkan, Ercan; Bingol, Haluk; Turan, Suna Ozbas; Akkiprik, Mustafa
2015-02-01
In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.
NASA Astrophysics Data System (ADS)
Pehlivan Rhodin, A.; Belmonte, M. T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J. C.; Clear, C.; Quinet, P.; Fivet, V.; Palmeri, P.
2017-12-01
The lifetimes of 17 even-parity levels (3d5s, 3d4d, 3d6s and 4p2) in the region 57 743-77 837 cm-1 of singly ionized scandium (Sc II) were measured by two-step time-resolved laser induced fluorescence spectroscopy. Oscillator strengths of 57 lines from these highly excited upper levels were derived using a hollow cathode discharge lamp and a Fourier transform spectrometer. In addition, Hartree-Fock calculations where both the main relativistic and core-polarization effects were taken into account were carried out for both low- and high-excitation levels. There is a good agreement for most of the lines between our calculated branching fractions and the measurements of Lawler & Dakin in the region 9000-45 000 cm-1 for low excitation levels and with our measurements for high excitation levels in the region 23 500-63 100 cm-1. This, in turn, allowed us to combine the calculated branching fractions with the available experimental lifetimes to determine semi-empirical oscillator strengths for a set of 380 E1 transitions in Sc II. These oscillator strengths include the weak lines that were used previously to derive the solar abundance of scandium. The solar abundance of scandium is now estimated to logε⊙ = 3.04 ± 0.13 using these semi-empirical oscillator strengths to shift the values determined by Scott et al. The new estimated abundance value is in agreement with the meteoritic value (logεmet = 3.05 ± 0.02) of Lodders, Palme & Gail.
Development of an inpatient operational pharmacy productivity model.
Naseman, Ryan W; Lopez, Ben R; Forrey, Ryan A; Weber, Robert J; Kipp, Kris M
2015-02-01
An innovative model for measuring the operational productivity of medication order management in inpatient settings is described. Order verification within a computerized prescriber order-entry system was chosen as the pharmacy workload driver. To account for inherent variability in the tasks involved in processing different types of orders, pharmaceutical products were grouped by class, and each class was assigned a time standard, or "medication complexity weight" reflecting the intensity of pharmacist and technician activities (verification of drug indication, verification of appropriate dosing, adverse-event prevention and monitoring, medication preparation, product checking, product delivery, returns processing, nurse/provider education, and problem-order resolution). The resulting "weighted verifications" (WV) model allows productivity monitoring by job function (pharmacist versus technician) to guide hiring and staffing decisions. A 9-month historical sample of verified medication orders was analyzed using the WV model, and the calculations were compared with values derived from two established models—one based on the Case Mix Index (CMI) and the other based on the proprietary Pharmacy Intensity Score (PIS). Evaluation of Pearson correlation coefficients indicated that values calculated using the WV model were highly correlated with those derived from the CMI-and PIS-based models (r = 0.845 and 0.886, respectively). Relative to the comparator models, the WV model offered the advantage of less period-to-period variability. The WV model yielded productivity data that correlated closely with values calculated using two validated workload management models. The model may be used as an alternative measure of pharmacy operational productivity. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.
1995-01-01
A methodology is presented for estimating the urban bias of surface shelter temperatures due to the effect of the urban heat island. Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate, site-specific data to represent the local landscape, and satellite-derived data -- the normalized difference vegetation index (NDVI) and the Defense Meteorological Satellite Program (DMSP) nighttime brightness data -- to represent the urban and rural landscape. Local NDVI and DMSP values were calculated for each station using the mean NDVI and DMSP values from a 3 km x 3 km area centered over the given station. Regional NDVI and DMSP values were calculated to represent a typical rural value for each station using the mean NDVI and DMSP values from a 1 deg x 1 deg latitude-longitude area in which the given station was located. Models for the United States were then developed for monthly maximum, mean, and minimum temperatures using data from over 1000 stations in the U.S. Cooperative (COOP) Network and for monthly mean temperatures with data from over 1150 stations in the Global Historical Climate Network (GHCN). Local biases, or the differences between the model predictions using the observed NDVI and DMSP values, and the predictions using the background regional values were calculated and compared with the results of other research. The local or urban bias of U.S. temperatures, as derived from all U.S. stations (urban and rural) used in the models, averaged near 0.40 C for monthly minimum temperatures, near 0.25 C for monthly mean temperatures, and near 0.10 C for monthly maximum temperatures. The biases of monthly minimum temperatures for individual stations ranged from near -1.1 C for rural stations to 2.4 C for stations from the largest urban areas. The results of this study indicate minimal problems for global application once global NDVI and DMSP data become available.
NASA Astrophysics Data System (ADS)
Nordiana, A. N.; Nordiana, M. M.; Jia, Teoh Ying; Hisham, Hazrul; Sulaiman, Nabila; Maslinda, Umi; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Afiq Saharudin, Muhamad
2017-04-01
The study location was at Bukit Kukus, Kuala Ketil, Kedah, Malaysia where the geological outcrop of this Semanggol Formation comprises of chert, mudstone, and volcanic tuff. The study was conducted using two geophysical methods, which are 2-D Resistivity and Ground Penetrating Radar (GPR). The objectives of the study are to correlate both of the geophysical methods through the value of conductivity and to identify the physical properties of rocks through the value of porosity and permeability. The data acquisition for both methods was conducted on the same line. For 2-D Resistivity method, the length of the line is 60 m with 1.5 m electrode spacing and the array used was Wenner-Schlumberger. For GPR method, the survey line was on top of the resistivity line, and the frequency of the antenna used is 250 MHz. A good correlation exists between both of the GPR signature and contour maps for resistivity from the surfer 10 software with the outcrop feature. Conductivity value from both GPR and Resistivity method was compared and the range value of conductivity obtained from GPR method almost equivalent with Resistivity method based on derivation and calculation for the sedimentary rocks, which are 0.037 to 0.574 miliSiemens per metre (mS/m) for chert and 0.186 to 10.142 miliSiemens per metre (mS/m) for mudstone. Two types of rock samples were taken, and several geotechnical tests were conducted, but only the value of permeability, K and porosity, ɸ of chert can be calculated, which are 1.95E-22 m2 (original condition) and 2.27E-22 m2 (dry condition) and 3 percent respectively as the sample of mudstone was damaged. The parameter of the 2-D resistivity method derived from Archie’s law was used to calculate the porosity, ɸf value using the Formation Factor equation. The range values of porosity, ɸf for chert mostly in the range of 5 to 25 percent, which is 6.26 to 13.36 percent but slightly out of range for mudstone, which is 14.12 to 36.02 percent.
NASA Astrophysics Data System (ADS)
Werner, Micha; Blyth, Eleanor; Schellekens, Jaap
2016-04-01
Global hydrological and land-surface models are becoming increasingly available, and as the resolution of these improves, as well how hydrological processes are represented, so does their potential. These offer consistent datasets at the global scale, which can be used to establish water balances and derive policy relevant indicators in medium to large basins, including those that are poorly gauged. However, differences in model structure, model parameterisation, and model forcing may result in quite different indicator values being derived, depending on the model used. In this paper we explore indicators developed using four land surface models (LSM) and five global hydrological models (GHM). Results from these models have been made available through the Earth2Observe project, a recent research initiative funded by the European Union 7th Research Framework. All models have a resolution of 0.5 arc degrees, and are forced using the same WATCH-ERA-Interim (WFDEI) meteorological re-analysis data at a daily time step for the 32 year period from 1979 to 2012. We explore three water resources indicators; an aridity index, a simplified water exploitation index; and an indicator that calculates the frequency of occurrence of root zone stress. We compare indicators derived over selected areas/basins in Europe, Colombia, Southern Africa, the Indian Subcontinent and Australia/New Zealand. The hydrological fluxes calculated show quite significant differences between the nine models, despite the common forcing dataset, with these differences reflected in the indicators subsequently derived. The results show that the variability between models is related to the different climates types, with that variability quite logically depending largely on the availability of water. Patterns are also found in the type of models that dominate different parts of the distribution of the indicator values, with LSM models providing lower values, and GHM models providing higher values in some climates, and vice versa in others. How important this variability is in supporting a policy decision, depends largely on how a decision thresholds are set. For example in the case of the aridity index, with areas being denoted as arid with an index of 0.6 or above, we show that the variability is primarily of interest in transitional climates, such as the Mediterranean The analysis shows that while both LSM's and GHM's provide useful data, indices derived to support water resources management planning may differ substantially, depending on the model used. The analysis also identifies in which climates improvements to the models are particularly relevant to support the confidence with which decisions can be taken based on derived indicators.
A Naturally-Calibrated Flow Law for Quartz
NASA Astrophysics Data System (ADS)
Lusk, A. D.; Platt, J. P.
2017-12-01
Flow laws for power-law behavior of quartz deforming by crystal-plastic processes with grain size sensitive creep included take the general form: ė = A σn f(H2O) exp(-Q/RT) dmWhere A - prefactor; σ - differential stress; n - stress exponent; f(H2O) - water fugacity; Q - activation energy; R - gas constant; T - temperature (K); d - grain size sensitivity raised to power m. Assuming the dynamically recrystallized grain size for quartz follows the peizometric relationship, substitute dm = (K σ-p)m, where K - piezometric constant; σ - differential stress; p - piezometric exponent. Rearranging the above flow law: ė = A K σ(n-pm) f(H2O) exp(-Q/RT)We use deformation temperatures, paleo-stresses, and strain rates calculated from rocks deformed in the Caledonian Orogeny, NW Scotland, along with existing experimental data, to compare naturally-calibrated values of stress exponent (n-pm) and activation energy (Q) to those determined experimentally. Microstructures preserved in the naturally-strained rocks closely resemble those produced by experimental work, indicating that quartz was deformed by the same mechanism(s). These observations validate the use of predetermined values for A as well as the addition of experimental data to calculate Q. Values for f(H2O) are based on calculated pressure and temperature conditions. Using the abovementioned constraints, we compare results, discuss challenges, and explore implications of naturally- vs. experimentally-derived flow laws for dislocation creep in quartz. Rocks used for this study include quartzite and quartz-rich psammite of the Cambrian-Ordovician shelf sequence and tectonically overlying Moine Supergroup. In both cases, quartz is likely the primary phase that controlled rheological behavior. We use the empirically derived piezometer for the dynamically recrystallized grain size of quartz to calculate the magnitude of differential stress, along with the Ti-in-quartz thermobarometer and the c-axis opening angle thermometer to determine temperatures of deformation. Tensor strain rates are calculated from plate convergence rate, based on total displacement and duration of thrusting within the Moine thrust zone, and shear zone thickness calculated from four detailed structural and microstructural transects taken parallel to the direction of displacement.
Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu
2018-03-01
Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2 g -1 ) than pyrolized carbon (PC) (334 m 2 g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers
NASA Technical Reports Server (NTRS)
Chung, Paul M.; Viegas, John R.
1961-01-01
The flow and heat transfer are analyzed at the reattachment zone of two-dimensional separated laminar boundary layers. The fluid is considered to be flowing normal to the wall at reattachment. An approximate expression is derived for the heat transfer in the reattachment region and a calculated value is compared with an experimental measurement.
Equations of State of Elements Based on the Generalized Fermi-Thomas Theory
DOE R&D Accomplishments Database
Feynman, R. P.; Metropolis, N.; Teller, E.
1947-04-28
The Fermi-Thomas model has been used to derive the equation of state of matter at high pressures and at various temperatures. Calculations have been carried out both without and with the exchange terms. Discussion of similarity transformations lead to the virial theorem and to correlation of solutions for different Z-values.
Kusano, Maggie; Caldwell, Curtis B
2014-07-01
A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.
Jamal, Muhammad Asghar; Rashad, Muhammad; Khosa, Muhammad Kaleem; Bhatti, Haq Nawaz
2015-04-15
Densities and ultrasonic velocity values for aqueous solutions of sodium saccharin (SS) has been measured as a function of concentration at 20.0-45.0 °C and atmospheric pressure using DSA-5000 M. The density and ultrasonic velocity values have been further used to calculate apparent molar volume, apparent specific volume, isentropic apparent molar compressibility and compressibility hydration numbers and reported. The values for apparent molar volume obtained at given temperatures showed negative deviations from Debye-Hückel limiting law and used as a direct measure of the ion-ion and ion-solvent interactions. The apparent specific volumes of the solute were calculated and it was found that these values of the investigated solutions lie on the borderline between the values reported for sweet substances. The sweetness response of the sweeteners is then explained in terms of their solution behaviours. Furthermore, the partial molar expansibility, its second derivative, (∂(2)V°/∂T(2)) as Hepler's constant and thermal expansion coefficient have been estimated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enabling quaternion derivatives: the generalized HR calculus
Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.
2015-01-01
Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555
Enabling quaternion derivatives: the generalized HR calculus.
Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P
2015-08-01
Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.
NASA Astrophysics Data System (ADS)
Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty
2017-09-01
Simultaneous determination of miconazole (MIC), mometasone furaoate (MF), and gentamicin (GEN) in their pharmaceutical combination. Gentamicin determination is based on derivatization with of o-phthalaldehyde reagent (OPA) without any interference of other cited drugs, while the spectra of MIC and MF are resolved using both successive and progressive resolution techniques. The first derivative spectrum of MF is measured using constant multiplication or spectrum subtraction, while its recovered zero order spectrum is obtained using derivative transformation. Beside the application of constant value method. Zero order spectrum of MIC is obtained by derivative transformation after getting its first derivative spectrum by derivative subtraction method. The novel method namely, differential amplitude modulation is used to get the concentration of MF and MIC, while the novel graphical method namely, concentration value is used to get the concentration of MIC, MF, and GEN. Accuracy and precision testing of the developed methods show good results. Specificity of the methods is ensured and is successfully applied for the analysis of pharmaceutical formulation of the three drugs in combination. ICH guidelines are used for validation of the proposed methods. Statistical data are calculated, and the results are satisfactory revealing no significant difference regarding accuracy and precision.
O'Brien, D J; León-Vintró, L; McClean, B
2016-01-01
The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.
NASA Astrophysics Data System (ADS)
Avallone, Linnea M.; Toohey, Darin W.
2001-05-01
In situ observations of the halogen oxides ClO and BrO made from the NASA ER-2 during the Airborne Arctic Stratospheric Expedition (AASE) I and II missions are used to test current understanding of photochemical parameters. Measurements of ClO obtained during AASE I in the dark perturbed polar vortex are analyzed with respect to temperature to derive the equilibrium expression for the ClO/Cl2O2 system. Assuming photochemical steady state and complete activation of chlorine (ClO + 2Cl2O2 = Cly), observations of ClO made during AASE II are used to derive the photolysis rate of Cl2O2. The photolysis rate derived from atmospheric observations is compared to J values calculated with a photochemical model and various values for the absorption cross section of Cl2O2. The photolysis rate calculated with the cross section of Huder and DeMore [1995] is shown to be systematically too small, while those of Burkholder et al. [1990] and Cox and Hayman [1988] are too large to be consistent with atmospheric observations. Observations of BrO made during AASE II indicate that our understanding of the inorganic bromine budget in the polar regions is incomplete. A possible role for the adduct BrOOCl is investigated.
Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment
Van Meter, E.; Lawson, A.B.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A.D.
2010-01-01
Spatial accessibility is of increasing interest in the health sciences. This paper addresses the statistical use of spatial accessibility and availability indices. These measures are evaluated via an extensive simulation based on cluster models for local food outlet density. We derived Monte Carlo critical values for several statistical tests based on the indices. In particular we are interested in the ability to make inferential comparisons between different study areas where indices of accessibility and availability are to be calculated. We derive tests of mean difference as well as tests for differences in Moran's I for spatial correlation for each of the accessibility and availability indices. We also apply these new statistical tests to a data example based on two counties in South Carolina for various accessibility and availability measures calculated for food outlets, stores, and restaurants. PMID:21499528
NASA Astrophysics Data System (ADS)
Fitts, Jeffrey P.; Machesky, Michael L.; Wesolowski, David J.; Shang, Xiaoming; Kubicki, James D.; Flynn, George W.; Heinz, Tony F.; Eisenthal, Kenneth B.
2005-08-01
The pH of zero net surface charge (pH pzc) of the α-TiO 2 (1 1 0) surface was characterized using second-harmonic generation (SHG) spectroscopy. The SHG response was monitored during a series of pH titrations conducted at three NaNO 3 concentrations. The measured pH pzc is compared with a pH pzc value calculated using the revised MUltiSIte Complexation (MUSIC) model of surface oxygen protonation. MUSIC model input parameters were independently derived from ab initio calculations of relaxed surface bond lengths for a hydrated surface. Model (pH pzc 4.76) and experiment (pH pzc 4.8 ± 0.3) agreement establishes the incorporation of independently derived structural parameters into predictive models of oxide surface reactivity.
NASA Astrophysics Data System (ADS)
Marciniak, B.; Koput, J.; Kozubek, H.
1990-08-01
The influence of solvent on the UV-visible absorption and luminescence spectra of some highly fluorescent vitamin B1 derivatives, the products of the reaction of N-methylated vitamin B1 with cytidine (I), adenosine (II) and 2-amino-4-methylpyridine (III) is studied. Spectroscopic manifestations of protonation of I and II are also investigated using a semiempirical INDO/S CI method. Singlet and triplet energy levels of the free ion and several protonated species are calculated, and transition energies and oscillator strengths are compared with the experimental spectra. Calculated charge densities on heteroatoms in the ground and excited singlet and triplet states are correlated with changes of the experimental pKa values with excitation. The results for I and II are compared with those for the trimethylated pyrichrominium ion (III) previously studied
The mixing length parameter alpha. [in stellar structure calculations
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1990-01-01
The standard mixing length theory, MLT, treats turbulent eddies as if they were isotropic, while the largest eddies that carry most of the flux are highly anisotropic. Recently, an anisotropic MLT was constructed, and the relevant equations derived. It is shown that these new equations can actually be cast in a form that is formally identical to that of the standard isotropic MLT, provided the mixing length parameter, derived from stellar structure calculations, is interpreted as an intermediate, auxiliary function alpha(x), where x, the degree of anisotropy is given as a function of the thermodynamic variables of the problem. The relation between alpha(x) and the physically relevant alpha(l = Hp) is also given. Once the value alpha is deduced, it is found to be a function of the local thermodynamic quantities, as expected.
Süleymanoğlu, Nevin; Ustabaş, Reşat; Alpaslan, Yelda Bingöl; Eyduran, Fatih; Ozyürek, Cengiz; Iskeleli, Nazan Ocak
2011-12-01
In this work, 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione C(10)H(16)N(2)O(2) (I), was synthesized and characterized by (13)C NMR, (1)H NMR, FT-IR, UV-vis spectroscopy and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set has been used to calculate the optimized geometrical parameters, atomic charges, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values are compared with experimental FT-IR and NMR spectra. The results of the calculation shows good agreement between experimental and calculated values of the compound I. The existence of N-H⋯O type intermolecular ve C-H⋯O type intramolecular hydrogen bonds can be deduced from differences between experimental and calculated results of FT-IR and NMR. In addition, the molecular electrostatic potential map and frontier molecular orbitals and electronic absorption spectra were performed at B3LYP/6-31G(d,p) level of theory. HOMO-LUMO electronic transition of 4.90 eV are derived from the contribution of the bands π→π* and n→π* The spectral results obtained from FT-IR, NMR and X-ray of I revealed that the compound I is in predominantly enamine tautomeric form, which was supported by DFT calculations. Copyright © 2011 Elsevier B.V. All rights reserved.
Capillary fluctuations of surface steps: An atomistic simulation study for the model Cu(111) system
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
2017-10-01
Molecular dynamics (MD) simulations are employed to investigate the capillary fluctuations of steps on the surface of a model metal system. The fluctuation spectrum, characterized by the wave number (k ) dependence of the mean squared capillary-wave amplitudes and associated relaxation times, is calculated for 〈110 〉 and 〈112 〉 steps on the {111 } surface of elemental copper near the melting temperature of the classical potential model considered. Step stiffnesses are derived from the MD results, yielding values from the largest system sizes of (37 ±1 ) meV/A ˚ for the different line orientations, implying that the stiffness is isotropic within the statistical precision of the calculations. The fluctuation lifetimes are found to vary by approximately four orders of magnitude over the range of wave numbers investigated, displaying a k dependence consistent with kinetics governed by step-edge mediated diffusion. The values for step stiffness derived from these simulations are compared to step free energies for the same system and temperature obtained in a recent MD-based thermodynamic-integration (TI) study [Freitas, Frolov, and Asta, Phys. Rev. B 95, 155444 (2017), 10.1103/PhysRevB.95.155444]. Results from the capillary-fluctuation analysis and TI calculations yield statistically significant differences that are discussed within the framework of statistical-mechanical theories for configurational contributions to step free energies.
[Definition and validation of a comfort index calculation method for office seats].
Taboga, P; Marcolin, F; Bordignon, M; Antonutto, G
2012-01-01
Among its other required features, a highly comfortable chair should adapt its contact surfaces, namely the seat and the back rest, to the shape of the body of the person sitting on it. However, "comfort" is not usually perceived as an absolute value, but is derived from a subjective comparison between two or more chairs. The purpose of this research was the definition of an objective comfort index (IC), i.e., derived from instrumental measurements, and which would also represent an absolute comfort value. Analytical evaluation of the distribution of body weight, by means of a barometric matrix, shows that a comfortable chair tends to minimize peak and average values of pressure at the level of the contact areas located between the body and the seat and the back of the chair. To define a comparison parameter for determining an absolute comfort value, a reference chair (SDR) was developed. The seat and the back of this chair are rigid, with poor compliance. A comfort value of zero was, by definition, assigned to this chair. Therefore, the Comfort index (IC) was obtained by the mathematical calculation of the ratios of averages, peaks and gradients of pressure, appropriately weighted, and the corresponding values measured on the tested chair and on the SDR. It is shown that the anthropometric characteristics of each subject are irrelevant to the assessment of the IC, which depends only on the compliance characteristics of the seat and back surfaces of the tested chair IC can be improved through analysis of a larger number of seats, which would thus constitute the basis for the use of an objective evaluation of seating comfort.
Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes
NASA Astrophysics Data System (ADS)
El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.
2014-05-01
We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.
A GPU-Accelerated Parameter Interpolation Thermodynamic Integration Free Energy Method.
Giese, Timothy J; York, Darrin M
2018-03-13
There has been a resurgence of interest in free energy methods motivated by the performance enhancements offered by molecular dynamics (MD) software written for specialized hardware, such as graphics processing units (GPUs). In this work, we exploit the properties of a parameter-interpolated thermodynamic integration (PI-TI) method to connect states by their molecular mechanical (MM) parameter values. This pathway is shown to be better behaved for Mg 2+ → Ca 2+ transformations than traditional linear alchemical pathways (with and without soft-core potentials). The PI-TI method has the practical advantage that no modification of the MD code is required to propagate the dynamics, and unlike with linear alchemical mixing, only one electrostatic evaluation is needed (e.g., single call to particle-mesh Ewald) leading to better performance. In the case of AMBER, this enables all the performance benefits of GPU-acceleration to be realized, in addition to unlocking the full spectrum of features available within the MD software, such as Hamiltonian replica exchange (HREM). The TI derivative evaluation can be accomplished efficiently in a post-processing step by reanalyzing the statistically independent trajectory frames in parallel for high throughput. We also show how one can evaluate the particle mesh Ewald contribution to the TI derivative evaluation without needing to perform two reciprocal space calculations. We apply the PI-TI method with HREM on GPUs in AMBER to predict p K a values in double stranded RNA molecules and make comparison with experiments. Convergence to under 0.25 units for these systems required 100 ns or more of sampling per window and coupling of windows with HREM. We find that MM charges derived from ab initio QM/MM fragment calculations improve the agreement between calculation and experimental results.
Mebane, Christopher A.
2006-01-01
In 2001, the U.S. Environmental Protection Agency (EPA) released updated aquatic life criteria for cadmium. Since then, additional data on the effects of cadmium to aquatic life have become available from studies supported by the EPA, Idaho Department of Environmental Quality (IDEQ), and the U.S. Geological Survey, among other sources. Updated data on the effects of cadmium to aquatic life were compiled and reviewed and low-effect concentrations were estimated. Low-effect values were calculated using EPA's guidelines for deriving numerical national water-quality criteria for the protection of aquatic organisms and their uses. Data on the short-term (acute) effects of cadmium on North American freshwater species that were suitable for criteria derivation were located for 69 species representing 57 genera and 33 families. For longer-term (chronic) effects of cadmium on North American freshwater species, suitable data were located for 28 species representing 21 genera and 17 families. Both the acute and chronic toxicity of cadmium were dependent on the hardness of the test water. Hardness-toxicity regressions were developed for both acute and chronic datasets so that effects data from different tests could be adjusted to a common water hardness. Hardness-adjusted effects values were pooled to obtain species and genus mean acute and chronic values, which then were ranked by their sensitivity to cadmium. The four most sensitive genera to acute exposures were, in order of increasing cadmium resistance, Oncorhynchus (Pacific trout and salmon), Salvelinus ('char' trout), Salmo (Atlantic trout and salmon), and Cottus (sculpin). The four most sensitive genera to chronic exposures were Hyalella (amphipod), Cottus, Gammarus (amphipod), and Salvelinus. Using the updated datasets, hardness dependent criteria equations were calculated for acute and chronic exposures to cadmium. At a hardness of 50 mg/L as calcium carbonate, the criterion maximum concentration (CMC, or 'acute' criterion) was calculated as 0.75 mug/L cadmium using the hardness-dependent equation CMC = e(0.8403 ? ln(hardness)-3.572) where the 'ln hardness' is the natural logarithm of the water hardness. Likewise, the criterion continuous concentration (CCC, or 'chronic' criterion) was calculated as 0.37 mug/L cadmium using the hardness-dependent equation CCC = (e(0.6247 ? ln(hardness)-3.384)) ? (1.101672 - ((ln hardness) ? 0.041838))). Using data that were independent of those used to derive the criteria, the criteria concentrations were evaluated to estimate whether adverse effects were expected to the biological integrity of natural waters or to selected species listed as threatened or endangered. One species was identified that would not be fully protected by the derived CCC, the amphipod Hyalella azteca. Exposure to CCC conditions likely would lead to population decreases in Hyalella azteca, the food web consequences of which probably would be slight if macroinvertebrate communities were otherwise diverse. Some data also suggested adverse behavioral changes are possible in fish following long-term exposures to low levels of cadmium, particularly in char (genus Salvelinus). Although ambiguous, these data indicate a need to periodically review the literature on behavioral changes in fish following metals exposure as more information becomes available. Most data reviewed indicated that criteria conditions were unlikely to contribute to overt adverse effects to either biological integrity or listed species. If elevated cadmium concentrations that approach the chronic criterion values occur in ambient waters, careful biological monitoring of invertebrate and fish assemblages would be prudent to validate the prediction that the assemblages would not be adversely affected by cadmium at criterion concentrations.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Newhauser, Wayne D.
2009-03-01
In proton therapy, the radiological thickness of a material is commonly expressed in terms of water equivalent thickness (WET) or water equivalent ratio (WER). However, the WET calculations required either iterative numerical methods or approximate methods of unknown accuracy. The objective of this study was to develop a simple deterministic formula to calculate WET values with an accuracy of 1 mm for materials commonly used in proton radiation therapy. Several alternative formulas were derived in which the energy loss was calculated based on the Bragg-Kleeman rule (BK), the Bethe-Bloch equation (BB) or an empirical version of the Bethe-Bloch equation (EBB). Alternative approaches were developed for targets that were 'radiologically thin' or 'thick'. The accuracy of these methods was assessed by comparison to values from an iterative numerical method that utilized evaluated stopping power tables. In addition, we also tested the approximate formula given in the International Atomic Energy Agency's dosimetry code of practice (Technical Report Series No 398, 2000, IAEA, Vienna) and stopping power ratio approximation. The results of these comparisons revealed that most methods were accurate for cases involving thin or low-Z targets. However, only the thick-target formulas provided accurate WET values for targets that were radiologically thick and contained high-Z material.
Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K
1990-08-01
A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.
Alperin, Noam; Lee, Sang H; Bagci, Ahmet M
2015-10-01
To add the hydrostatic component of the cerebrospinal fluid (CSF) pressure to magnetic resonance imaging (MRI)-derived intracranial pressure (ICP) measurements in the upright posture for derivation of pressure value in a central cranial location often used in invasive ICP measurements. Additional analyses were performed using data previously collected from 10 healthy subjects scanned in supine and sitting positions with a 0.5T vertical gap MRI scanner (GE Medical). Pulsatile blood and CSF flows to and from the brain were quantified using cine phase-contrast. Intracranial compliance and pressure were calculated using a previously described method. The vertical distance between the location of the CSF flow measurement and a central cranial location was measured manually in the mid-sagittal T1 -weighted image obtained in the upright posture. The hydrostatic pressure gradient of a CSF column with similar height was then added to the MR-ICP value. After adjustment for the hydrostatic component, the mean ICP value was reduced by 7.6 mmHg. Mean ICP referenced to the central cranial level was -3.4 ± 1.7 mmHg compared to the unadjusted value of +4.3 ± 1.8 mmHg. In the upright posture, the hydrostatic pressure component needs to be added to the MRI-derived ICP values for compatibility with invasive ICP at a central cranial location. © 2015 Wiley Periodicals, Inc.
Heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) and their cations.
Lee, Edmond P F; Wright, Timothy G
2005-10-08
The heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) have been studied by high-level ab initio calculations. The RCCSD(T) method has been employed, combined with large flexible valence basis sets. All-electron basis sets are used for potassium and sulfur, with effective core potentials being used for the other metals, describing the core electrons. Potential-energy curves are calculated for the lowest two neutral and cationic states: all neutral monosulfide species have a (2)Pi ground state, in contrast with the alkali-metal monoxide species, which undergo a change in the electronic ground state from (2)Pi to (2)Sigma(+) as the group is descended. In the cases of KS, RbS, and CsS, spin-orbit curves are also calculated. We also calculate potential-energy curves for the lowest (3)Sigma(-) and (3)Pi states of the cations. From the potential-energy curves, spectroscopic constants are derived, and for KS the spectroscopic results are compared to experimental spectroscopic values. Ionization energies, dissociation energies, and heats of formation are also calculated; for KS, we explore the effects of relativity and basis set extrapolation on these values.
NASA Astrophysics Data System (ADS)
Williamson, Andrew; Arnold, Neil; Banwell, Alison; Willis, Ian
2017-04-01
Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) influence ice dynamics if draining rapidly by hydrofracture, which can occur in under 24 hours. MODerate-resolution Imaging Spectroradiometer (MODIS) data are often used to investigate SGLs, including calculating SGL area changes through time, but no existing work presents a method that tracks changes in individual (and total) SGL volume in MODIS imagery over a melt season. Here, we present such a method. First, we tested three automated approaches to derive SGL areas from MODIS imagery by comparing calculated areas for the Paakitsoq and Store Glacier regions in West Greenland with areas derived from Landsat-8 (LS8) images. Second, we applied a physically-based depth-calculation algorithm to the pixels within the SGL boundaries from the best performing method, and validated the resultant depths with those calculated using the same method applied to LS8 imagery. Our results indicated that SGL areas are most accurately generated using dynamic thresholding of MODIS band 1 (red) with a 0.640 threshold value. Calculated SGL area, depth and volume values from MODIS were closely comparable to those derived from LS8. The best performing area- and depth-detection methods were then incorporated into a Fully Automated SGL Tracking ("FAST") algorithm that tracks individual SGLs between successive MODIS images. It identified 43 (Paakitsoq) and 19 (Store Glacier) rapidly draining SGLs during 2014, representing 21% and 15% of the respective total SGL populations, including some clusters of rapidly draining SGLs. We found no relationship between the water volumes contained within these rapidly draining SGLs and the ice thicknesses beneath them, indicating that a critical water volume linearly related to ice thickness cannot explain the incidence of rapid drainage. The FAST algorithm, which we believe to be the most comprehensive SGL tracking algorithm developed to date, has the potential to investigate statistical relationships between SGL areas, volumes and drainage events over wide areas of the GrIS, and over multiple seasons. It could also allow further insights into factors that may trigger rapid SGL drainage.
NASA Technical Reports Server (NTRS)
Usry, J. W.
1983-01-01
Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.
Miliutina, Mariia; Ejaz, Syeda Abida; Khan, Shafi Ullah; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter
2017-01-27
New and convenient methods for the functionalization of the 4-quinolone scaffold at positions C-1, C-3 and C-6 were developed. The 4-quinolone derivatives were evaluated for their inhibitory potential on alkaline phosphatase isozymes. Most of the compounds exhibit excellent inhibitory activity and moderate selectivity. The IC 50 values on tissue non-specific alkaline phosphatase (TNAP) were in the range of 1.34 ± 0.11 to 44.80 ± 2.34 μM, while the values on intestinal alkaline phosphatase (IAP) were in the range of 1.06 ± 0.32 to 192.10 ± 3.78 μM. The most active derivative exhibits a potent inhibition on IAP with a ≈14 fold higher selectivity as compared to TNAP. Furthermore, molecular docking calculations were performed for the most potent inhibitors to show their binding interactions within the active site of the respective enzymes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Bayesian Regression of Thermodynamic Models of Redox Active Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Katherine
Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from themore » model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).« less
Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical
NASA Astrophysics Data System (ADS)
Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.
2017-12-01
The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.
Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine.
Garcia, Santos N; Foster, Michael; Constantine, Lisa A; Huggett, Duane B
2012-10-01
Understanding the potential for human and veterinary pharmaceuticals to accumulate in the tissues of biota is a topic of increasing importance in the pharmaceutical risk assessment process. However, few data are available in the literature that compare the ability of laboratory bioconcentration studies to predict field tissue concentrations. To begin to address this data gap, bioconcentration factors (BCF) for carbamazepine (CBZ), a human anticonvulsant that modulates Na+ channels, were determined using laboratory experiments with Pimephales notatus and Ictalurus punctatus. These data were compared to field derived bioaccumulation factors (BAFs) for Oreochromis niloticus from the Denton, Texas Wastewater Treatment Plant. The 42 d kinetic BCFs (BCFk) for white muscle and liver of P. notatus were 1.9 and 4.6, respectively, while the white muscle, liver, brain, and plasma BCFk's of I. punctatus were 1.8, 1.5, 1.6, and 7.1, respectively. Field derived BAF values (2.5-3.8) for O. niloticus were similar to those derived in laboratory studies. Partitioning values between blood plasma and individual tissues were calculated for I. punctatus and O. niloticus, with the values indicating that tissue levels of carbamazepine are similar or slightly higher than plasma concentrations. Collectively these data suggest that the fish laboratory BCF and field derived BCF/BAF values for carbamazepine are similar and much lower than the European Union regulatory threshold of 2000 for designation of a "B" substance. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander
2017-04-01
The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of vegetation cover (taken for vegetation temperature) Ta and efficient radiation temperature Ts.eff, as well as land surface emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, and leaf area index LAI. The SEVIRI-based retrievals have included precipitation, LST Tls and Ta, E at daylight and nighttime, LAI (daily), and B. From the MSU-MR data there have been retrieved values of all the same characteristics as from the AVHRR data. The MSU-MR-based daily and monthly sums of precipitation have been calculated using the developed earlier and modified Multi Threshold Method (MTM) intended for the cloud detection and identification of its types around the clock as well as allocation of precipitation zones and determination of instantaneous maximum rainfall intensities for each pixel at that the transition from assessing rainfall intensity to estimating their daily values is a key element of the MTM. Measurement data from 3 IR MSU-MR channels (3.8, 11 i 12 μm) as well as their differences have been used in the MTM as predictors. Controlling the correctness of the MSU-MR-derived rainfall estimates has been carried out when comparing with analogous AVHRR- and SEVIRI-based retrievals and with precipitation amounts measured at the agricultural meteorological station of the study region. Probability of rainfall zones determination from the MSU-MR data, to match against the actual ones, has been 75-85% as well as for the AVHRR and SEVIRI data. The time behaviors of satellite-derived and ground-measured daily and monthly precipitation sums for vegetation season and yeaŗ correspondingly, have been in good agreement with each other although the first ones have been smoother than the latter. Discrepancies have existed for a number of local maxima for which satellite-derived precipitation estimates have been less than ground-measured values. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. Some spatial displacement of the satellite-determined rainfall maxima and minima regarding to ground-based data can be explained by the discrepancy between the cloud location on satellite images and in reality at high angles of the satellite sightings and considerable altitudes of the cloud tops. Reliability of MSU-MR-derived rainfall estimates at each time step obtained using the MTM has been verified by comparing their values determined from the MSU-MR, AVHRR and SEVIRI measurements and distributed over the study area with similar estimates obtained by interpolation of ground observation data. The MSU-MR-derived estimates of temperatures Tsg, Ts.eff, and Ta have been obtained using computational algorithm developed on the base of the MTM and matured on AVHRR and SEVIRI data for the region under investigation. Since the apparatus MSU-MR is similar to radiometer AVHRR, the developed methods of satellite estimating Tsg, Ts.eff, and Ta from AVHRR data could be easily transferred to the MSU-MR data. Comparison of the ground-measured and MSU-MR-, AVHRR- and SEVIRI-derived LSTs has shown that the differences between all the estimates for the vast majority of observation terms have not exceed the RMSE of these quantities built from the AVHRR data. The similar conclusion has been also made from the results of building the time behavior of the MSU-MR-derived value of LAI for vegetation season. Satellite-based estimates of precipitation, LST, LAI and B have been utilized in the model with the help of specially developed procedures of replacing these values determined from observations at agricultural meteorological stations by their satellite-derived values taking into account spatial heterogeneity of their fields. Adequacy of such replacement has been confirmed by the results of comparing modeled and ground-measured values of soil moisture content W and evapotranspiration Ev. Discrepancies between the modeled and ground-measured values of W and Ev have been in the range of 10-15 and 20-25 %, correspondingly. It may be considered as acceptable result. Resulted products of the model calculations using satellite data have been spatial fields of W, Ev, vertical sensible and latent heat fluxes and other water and heat regime characteristics for the region of interest over the year 2012-2015 vegetation seasons. Thus, there has been shown the possibility of utilizing MSU-MR/Meteor-M №2 data jointly with those of other satellites in the LSM to calculate characteristics of water and heat regimes for the area under consideration. Besides the first trial estimations of the soil surface moisture from ASCAT scatterometers data for the study region have been obtained for the years 2014-2015 vegetation seasons, their comparison has been performed with the results of modeling for several agricultural meteorological stations of the region that has been carried out utilizing ground-based and satellite data, specific requirements for the obtained information have been formulated. To date, estimates of surface moisture built from ASCAT data can be used for the selection of the model soil parameter values and the initial soil moisture conditions for the vegetation season.
NASA Astrophysics Data System (ADS)
Kalinichenko, A. A.; Perepelkin, S. S.; Strel'nitskij, V. E.
2015-04-01
The formula derivation for calculation of intrinsic stress in diamond-like coatings deposited from the ion flux in modes of continuous and pulsed potentials in view of process of defects formation is given. The criterion of applicability of obtained formula allowing to determine critical parameters of the pulsed potential mode is suggested. Results of calculation of stresses in diamond-like coatings at deposition of low-energy ions C+ from filtered vacuum arc plasma are adduced. The influence of the bias potential, repetition frequency and pulse duration, on the value of intrinsic stress is discussed. Qualitative agreement of calculated stress and experimental data is stated. The important role of deposition temperature in control of intrinsic stress in deposited coating is noted.
Li, Haibin; He, Yun; Nie, Xiaobo
2018-01-01
Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
NASA Astrophysics Data System (ADS)
Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish
2018-05-01
We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.
Implications of tachyon-like matter for superdense stars.
NASA Technical Reports Server (NTRS)
Bhatia, M. S.; Pande, L. K.
1972-01-01
Derivation of a new equation of state of superdense matter by treating superdense matter as a perfect, degenerate tachyon gas. Model calculations for superdense stars based on this equation of state are presented. By appropriately choosing a certain parameter, dynamical stability can be achieved for arbitrarily large central densities. Also, a somewhat larger than usual value for the maximum mass is obtained.
Richard A. Johnson; James W. Evans; David W. Green
2003-01-01
Ratios of strength properties of lumber are commonly used to calculate property values for standards. Although originally proposed in terms of means, ratios are being applied without regard to position in the distribution. It is now known that lumber strength properties are generally not normally distributed. Therefore, nonparametric methods are often used to derive...
Systematics of Ni, Co, Cr and V in Olivine from Planetary Melt Systems: Martian Basalts
NASA Technical Reports Server (NTRS)
Herd, C. D. K.; Jones, J. H.; Shearer, C. K.; Papike, J. J.
2001-01-01
Secondary Ion Mass Spectrometry (SIMS) data for Ni, Co, Cr, and V in olivine in martian basalts is compared to data from lunar and terrestrial basalts. We use experimentally-derived and published D values to calculate as-yet unsampled, olivine-bearing, non-cumulus melt compositions. Additional information is contained in the original extended abstract.
Synthesis and characterization of nanosized lithium manganate and its derivatives
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Javed; Zahoor, Sabia
Spinel lithium manganese oxide, LiMn 2O 4 and its derivatives are prepared by the sol-gel method. The lattice constant of the pure material is calculated as 8.23 Å. Different transition metal cations of chromium, iron, cobalt, nickel, copper and zinc (0.05 and 0.15 M) are doped in place of manganese in the LiMn 2O 4. X-ray powder diffraction data show that the spinel framework preserved its integrity upon doping. Formation of a single phase and the purity of the samples are confirmed by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The crystallite size of the samples is calculated by use of the Scherrer formula and is found to be within a range of 43-66 nm. The electrical conductivity of the samples is determined over a temperature range of 200-300 K by means of four-point probe method. An increasing trend of conductivity with increase in temperature is noted for all the samples. The parent compound LiMn 2O 4 has a conductivity value of 3.47 × 10 -4 ohm -1 cm -1 at room temperature. This value increases on doping with the above-mentioned transition metal cations.
[Health-related quality of life in Chilean patients with chronic obstructive pulmonary disease].
Collado-Mateo, Daniel; Adsuar, José C; Olivares, Pedro R; García-Gordillo, Miguel Ángel
2017-02-01
Chronic obstructive pulmonary disease (COPD) has a relevant impact on health-related quality of life (HRQoL). Short Form 6 dimensions (SF-6D) quality of life tool allows researchers to calculate preference-based utilities using data from SF-12 or SF-36 questionnaires. To provide normative values of SF-6D derived from SF-12 for Chilean patients with COPD. SF-6D utility index was calculated using data from the 2009/2010 Chilean National Health Survey. Sixty-nine male and 120 female patients with COPD participated in the survey. Data was stratified by gender, age, region, marital status, smoking status, monthly incomes, educational level and area. The mean (± SD) SF-6D utility index for Chilean patients with COPD was 0.65 ± 0.15. The scores for men and women were 0.68 ± 0.15 and 0.64 ± 0.15, respectively. Patients with high incomes and educational level reported higher SF-6D scores. Ceiling effect was not a limitation when SF-6D was used in these Chilean patients. The current study provides normative values of SF-6D derived from SF-12 for Chilean patients with COPD.
NASA Astrophysics Data System (ADS)
Wang, Linjuan; Abeyaratne, Rohan
2018-07-01
The peridynamic model of a solid does not involve spatial gradients of the displacement field and is therefore well suited for studying defect propagation. Here, bond-based peridynamic theory is used to study the equilibrium and steady propagation of a lattice defect - a kink - in one dimension. The material transforms locally, from one state to another, as the kink passes through. The kink is in equilibrium if the applied force is less than a certain critical value that is calculated, and propagates if it exceeds that value. The kinetic relation giving the propagation speed as a function of the applied force is also derived. In addition, it is shown that the dynamical solutions of certain differential-equation-based models of a continuum are the same as those of the peridynamic model provided the micromodulus function is chosen suitably. A formula for calculating the micromodulus function of the equivalent peridynamic model is derived and illustrated. This ability to replace a differential-equation-based model with a peridynamic one may prove useful when numerically studying more complicated problems such as those involving multiple and interacting defects.
Petrology, chemistry, and chronology of 14078 - Chemical constraints on the origin of KREEP
NASA Technical Reports Server (NTRS)
Mckay, G. A.; Nyquist, L. E.; Wiesmann, H.; Wooden, J. L.; Bansal, B. M.
1978-01-01
Petrographic, chemical and isotopic similarities between 14078 and other Apollo-14 KREEP basalts suggest that these samples were derived from the same parent liquid and possibly from the same cooling unit. The liquid was probably generated via meteorite impact. Subtle differences are noted in the shapes of REE patterns of KREEP-rich samples from different landing sites; the origin of these differences is not well understood. Calculated Ti/Sm values in liquids parental to primitive cumulate samples are similar to values proposed for the whole moon.
Calibrant-Free Analyte Quantitation via a Variable Velocity Flow Cell.
Beck, Jason G; Skuratovsky, Aleksander; Granger, Michael C; Porter, Marc D
2017-01-17
In this paper, we describe a novel method for analyte quantitation that does not rely on calibrants, internal standards, or calibration curves but, rather, leverages the relationship between disparate and predictable surface-directed analyte flux to an array of sensing addresses and a measured resultant signal. To reduce this concept to practice, we fabricated two flow cells such that the mean linear fluid velocity, U, was varied systematically over an array of electrodes positioned along the flow axis. This resulted in a predictable variation of the address-directed flux of a redox analyte, ferrocenedimethanol (FDM). The resultant limiting currents measured at a series of these electrodes, and accurately described by a convective-diffusive transport model, provided a means to calculate an "unknown" concentration without the use of calibrants, internal standards, or a calibration curve. Furthermore, the experiment and concentration calculation only takes minutes to perform. Deviation in calculated FDM concentrations from true values was minimized to less than 0.5% when empirically derived values of U were employed.
Improved solution of the lidar equation utilizing particle counter measurements
NASA Technical Reports Server (NTRS)
Jaeger, H.; Hofmann, D. J.; Jaeger, H.; Hofmann, D. J.
1986-01-01
The extraction of particle backscattering from incoherent lidar measurements poses some problems. In the case of measurements of the stratospheric aerosol layer the solution of the lidar equation is based on two assumptions which are necessary to normalize the measured signal and to correct it with the two-way transmission of the laser pulse. Normalization and transmission are tackled by adding the information contained in aerosol particle counter measurements of the University of Wyoming to the ruby lidar measurements at Garmisch-Partenkirchen. Calculated backscattering from height levels above 25 km for the El Chichon period will be compared with lidar measurements and necessary corrections. The calculated backscatter-to-extinction ratios are compared to those, which were derived from a comparison of published extinction values to measured lidar backscattering at Garmisch. These ratios were used to calculate the Garmisch lidar returns. For the period 4 to 12 months after the El Chichon eruption a backscater-to-extinction ratio of 0.026 1/sr was applied with smaller values before and after that time.
El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G
2015-05-15
A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.
Hughes, V K; Ellis, P S; Burt, T; Langlois, N E I
2004-01-01
Aims: To develop a non-invasive method to demonstrate the presence of haemoglobin and its degradation products in bruises in live human subjects for the purposes of objectively assisting in the determination of the age of a bruise. Methods: The cuvette holder unit of a Cary 100 Bio UV-Visible Spectrophotometer was replaced with the manufacture’s fibre optic cable and optical reflectance probe. The probe was placed on the skin surface. The absorption spectrum from 780 to 380 nm was collected and transformed into the first derivative. Calculation of the first derivative permits absorption attributed to haemoglobin degradation (primarily to bilirubin, but also haemosiderin) to be separated from absorption by haemoglobin. First derivative and colorimetry values, expressed as CIEL*a*b data, were derived from scans of 50 bruises. Results: The fibre optic cable and probe allowed the spectrophotometer to collect reproducible absorption spectra of bruises in the skin of living subjects. A bruise at three days has greater negative first derivative values at 480 and 490 nm than does a fresh bruise, indicating the local degradation of haemoglobin. Correlation between the first derivative and the CIEL*a*b “b” values in a series of bruises indicates that the yellow colour in a bruise is proportional to the amount of local haemoglobin breakdown. Conclusion: The ability to demonstrate the presence of haemoglobin and measure its degradation in bruises in living human subjects by a non-invasive method has not been described previously, and may be of use in the objective ageing of bruises for forensic purposes. PMID:15047735
NASA Astrophysics Data System (ADS)
Timuhins, Andrejs; Bethers, Uldis; Bethers, Peteris; Klints, Ilze; Sennikovs, Juris; Frishfelds, Vilnis
2017-04-01
In a changing climate it is essential to estimate its impacts on different economic fields. In our study we tried to create a framework for climate change assessment and climate change impact estimation for the territory of Latvia and to create results which are also understandable for non-scientists (stakeholder, media and public). This approach allowed us to more carefully assess the presentation and interpretation of results and their validation, for public viewing. For the presentation of our work a website was created (www.modlab.lv/klimats) containing two types of documents in a unified framework, meteorological parameter analysis of different easily interpretable derivative values. Both of these include analysis of the current situation as well as illustrate the projection for future time periods. Derivate values are calculated using two data sources: the bias corrected regional climate data and meteorological observation data. Derivative documents contain description of derived value, some interesting facts and conclusions. Additionally, all results may be viewed in temporal and spatial graphs and maps, for different time periods as well as different seasons. Bias correction (Sennikovs and Bethers, 2009) for the control period 1961-1990 is applied to RCM data series. Meteorological observation data of the Latvian Environment, Geology, and Meteorology Agency and ENSEMBLES project daily data of 13 RCM runs for the period 1960-2100 are used. All the documents are prepared in python notebooks, which allow for flexible changes. At the moment following derivative values have been published: forest fire risk index, wind energy, phenology (Degree days), road condition (friction, ice conditions), daily minimal meteorological visibility, headache occurrence rate, firs snow date and meteorological parameter analysis: temperature, precipitation, wind speed, relative humidity, and cloudiness. While creating these products RCM ability to represent the actual climate was analysed from different perspectives, for example, we found that forest fire index has qualitative differences depending on the data used in calculation either using observed data or RCM data, which could be caused by the differences in precipitation and temperature cross correlation (Bethers, P., Sennikovs, J. and Timuhins, A. 2011) The present work has been funded by the Latvian National Research Program on the "The value and dynamic of Latvia's ecosystems under changing climate" (EVIDEnT). References Sennikovs, J. and Bethers, U. (2009), Statistical downscaling method of regional climate model results for hydrological modelling. 18th World IMACS / MODSIM Congress, Cairns, Australia Bethers, P., Sennikovs, J. and Timuhins, A. (2011), Skill assessment of regional climate models:T/P correlations impacts on hydrological modeling. Geophysical Research Abstracts Vol. 13, EGU2011-7068, 2011 EGU General Assembly 2011
Pan, H; Huang, G P; Ren, R; Lei, F; Tang, X D
2016-05-24
To evaluate the diagnosis value of photoplethysmography (PPG)-based device for detecting obstructive sleep apnea syndrome. Patients who visited sleep medicine center in West China hospital from March 2014 to March 2015 with a main complain of snoring were selected into this study, and they were simultaneously monitored with the PPG-based device while undergoing polysomnography (PSG). Using PSG as"gold standard", the sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) as well as corresponding areas under the receiver operator curves for an apnea hypopnea index (AHI) ≥5/h, ≥15/h and ≥30/h were calculated for PPG. Valid results were available for 93 subjects, among them there were 64 men and 29 women with a mean age of (44±13) years old.There were no significant difference between total sleep time, wake time after sleep onset, AHI and oxygen saturation derived by PPG and PSG.Positive correlation was found between PPG-derived and PSG-derived AHI (r=0.945). For AHI≥5/h, ≥15/h and ≥30/h respectively according PSG, sensitivity was 93%, 88%, 92%, specificity was 79%, 93%, 95%, PPV was 95%, 97%, 96%, NPV 75%, 76%, 91% for PPG. The corresponding areas under the receiver operator characteristic curves were 0.981, 0.996 and 0.995 respectively. PPG-derived data is consistent with simultaneous in-lab PSG in the diagnosis of obstructive sleep apnea syndrome.
Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya
2015-06-15
In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes. Copyright © 2015 Elsevier B.V. All rights reserved.
Penicyclones A-E, Antibacterial Polyketides from the Deep-Sea-Derived Fungus Penicillium sp. F23-2.
Guo, Wenqiang; Zhang, Zhenzhen; Zhu, Tianjiao; Gu, Qianqun; Li, Dehai
2015-11-25
Five new ambuic acid analogues, penicyclones A-E (1-5), were isolated from the extract of the deep-sea-derived fungus Penicillium sp. F23-2. The structures including the absolute configurations were established by interpretation of NMR and MS data, as well as the application of ECD, X-ray crystallography, and a chemical conversion, as well as the TDDFT-ECD calculations. Penicyclones A-E (1-5) exhibited antimicrobial activity against the Gram-positive bacterium Staphylococcus aureus with MIC values ranging from 0.3 to 1.0 μg/mL.
Quantum mechanics on Laakso spaces
NASA Astrophysics Data System (ADS)
Kauffman, Christopher J.; Kesler, Robert M.; Parshall, Amanda G.; Stamey, Evelyn A.; Steinhurst, Benjamin A.
2012-04-01
We first review the spectrum of the Laplacian operator on a general Laakso space before considering modified Hamiltonians for the infinite square well, parabola, and Coulomb potentials. Additionally, we compute the spectrum for the Laplacian and its multiplicities when certain regions of a Laakso space are compressed or stretched and calculate the Casimir force experienced by two uncharged conducting plates by imposing physically relevant boundary conditions and then analytically regularizing the resulting zeta function. Lastly, we derive a general formula for the spectral zeta function and its derivative for Laakso spaces with strict self-similar structure before listing explicit spectral values for some special cases
Hammer, Jort; Haftka, Joris J-H; Scherpenisse, Peter; Hermens, Joop L M; de Voogt, Pim W P
2017-02-01
To predict the fate and potential effects of organic contaminants, information about their hydrophobicity is required. However, common parameters to describe the hydrophobicity of organic compounds (e.g., octanol-water partition constant [K OW ]) proved to be inadequate for ionic and nonionic surfactants because of their surface-active properties. As an alternative approach to determine their hydrophobicity, the aim of the present study was therefore to measure the retention of a wide range of surfactants on a C 18 stationary phase. Capacity factors in pure water (k' 0 ) increased linearly with increasing number of carbon atoms in the surfactant structure. Fragment contribution values were determined for each structural unit with multilinear regression, and the results were consistent with the expected influence of these fragments on the hydrophobicity of surfactants. Capacity factors of reference compounds and log K OW values from the literature were used to estimate log K OW values for surfactants (log KOWHPLC). These log KOWHPLC values were also compared to log K OW values calculated with 4 computational programs: KOWWIN, Marvin calculator, SPARC, and COSMOThermX. In conclusion, capacity factors from a C 18 stationary phase are found to better reflect hydrophobicity of surfactants than their K OW values. Environ Toxicol Chem 2017;36:329-336. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
NASA Astrophysics Data System (ADS)
Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.
NASA Astrophysics Data System (ADS)
Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.
2017-10-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.
NASA Astrophysics Data System (ADS)
Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.
2017-12-01
Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.
Reddy, M Rami; Singh, U C; Erion, Mark D
2004-05-26
Free-energy perturbation (FEP) is considered the most accurate computational method for calculating relative solvation and binding free-energy differences. Despite some success in applying FEP methods to both drug design and lead optimization, FEP calculations are rarely used in the pharmaceutical industry. One factor limiting the use of FEP is its low throughput, which is attributed in part to the dependence of conventional methods on the user's ability to develop accurate molecular mechanics (MM) force field parameters for individual drug candidates and the time required to complete the process. In an attempt to find an FEP method that could eventually be automated, we developed a method that uses quantum mechanics (QM) for treating the solute, MM for treating the solute surroundings, and the FEP method for computing free-energy differences. The thread technique was used in all transformations and proved to be essential for the successful completion of the calculations. Relative solvation free energies for 10 structurally diverse molecular pairs were calculated, and the results were in close agreement with both the calculated results generated by conventional FEP methods and the experimentally derived values. While considerably more CPU demanding than conventional FEP methods, this method (QM/MM-based FEP) alleviates the need for development of molecule-specific MM force field parameters and therefore may enable future automation of FEP-based calculations. Moreover, calculation accuracy should be improved over conventional methods, especially for calculations reliant on MM parameters derived in the absence of experimental data.
Ghumare, Eshwar; Schrooten, Maarten; Vandenberghe, Rik; Dupont, Patrick
2015-08-01
Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.
Thermodynamic properties derived from the free volume model of liquids
NASA Technical Reports Server (NTRS)
Miller, R. I.
1974-01-01
An equation of state and expressions for the isothermal compressibility, thermal expansion coefficient, heat capacity, and entropy of liquids have been derived from the free volume model partition function suggested by Turnbull. The simple definition of the free volume is used, and it is assumed that the specific volume is directly related to the cube of the intermolecular separation by a proportionality factor which is found to be a function of temperature and pressure as well as specific volume. When values of the proportionality factor are calculated from experimental data for real liquids, it is found to be approximately constant over ranges of temperature and pressure which correspond to the dense liquid phase. This result provides a single-parameter method for calculating dense liquid thermodynamic properties and is consistent with the fact that the free volume model is designed to describe liquids near the solidification point.
NASA Astrophysics Data System (ADS)
Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.
2014-05-01
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
NASA Technical Reports Server (NTRS)
Fox, J. L.
1984-01-01
The vibrational distribution of O2(+) in the atmospheres of Venus and Mars was investigated to compare with analogous values in the Earth's atmosphere. The dipole moment of the Z(2) Pi sub u - X(2) Pi sub g transition of O2(+) is calculated as a function of internuclear distance. The band absorption oscillator strengths and band transition probabilities of the second negative system are derived. The vibrational distribution of O2(+) in the ionosphere of Venus is calculated for a model based on data from the Pioneer Venus neutral mass spectrometer.
S-193 scatterometer transfer function analysis for data processing
NASA Technical Reports Server (NTRS)
Johnson, L.
1974-01-01
A mathematical model for converting raw data measurements of the S-193 scatterometer into processed values of radar scattering coefficient is presented. The argument is based on an approximation derived from the Radar Equation and actual operating principles of the S-193 Scatterometer hardware. Possible error sources are inaccuracies in transmitted wavelength, range, antenna illumination integrals, and the instrument itself. The dominant source of error in the calculation of scattering coefficent is accuracy of the range. All other ractors with the possible exception of illumination integral are not considered to cause significant error in the calculation of scattering coefficient.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey
2015-04-01
To date, physical-mathematical modeling processes of land surface-atmosphere interaction is considered to be the most appropriate tool for obtaining reliable estimates of water and heat balance components of large territories. The model of these processes (Land Surface Model, LSM) developed for vegetation period is destined for simulating soil water content W, evapotranspiration Ev, vertical latent LE and heat fluxes from land surface as well as vertically distributed soil temperature and moisture, soil surface Tg and foliage Tf temperatures, and land surface skin temperature (LST) Ts. The model is suitable for utilizing remote sensing data on land surface and meteorological conditions. In the study these data have been obtained from measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/geostationary satellites Meteosat-9, -10 (MSG-2, -3). The heterogeneity of the land surface and meteorological conditions has been taken into account in the model by using soil and vegetation characteristics as parameters and meteorological characteristics as input variables. Values of these characteristics have been determined from ground observations and remote sensing information. So, AVHRR data have been used to build the estimates of effective land surface temperature (LST) Ts.eff and emissivity E, vegetation-air temperature (temperature at the vegetation level) Ta, normalized vegetation index NDVI, vegetation cover fraction B, the leaf area index LAI, and precipitation. From MODIS data the values of LST Tls, Å, NDVI, LAI have been derived. From SEVIRI data there have been retrieved Tls, E, Ta, NDVI, LAI and precipitation. All named retrievals covered the vast territory of the part of the agricultural Central Black Earth Region located in the steppe-forest zone of European Russia. This territory with coordinates 49°30'-54°N, 31°-43°E and a total area of 227,300 km2 has been chosen for investigation. It has been carried out for years 2009-2013 vegetation seasons. To provide the retrieval of Ts.eff, E, Ta, NDVI, B, and LAI the previously developed technologies of AVHRR data processing have been refined and adapted to the region of interest. The updated linear regression estimators for Ts.eff and Tà have been built using representative training samples compiled for above vegetation seasons. The updated software package has been applied for AVHRR data processing to generate estimates of named values. To verify the accuracy of these estimates the error statistics of Ts.eff and Ta derivation has been investigated for various days of named seasons using comparison with in-situ ground-based measurements. On the base of special technology and Internet resources the remote sensing products Tls, E, NDVI, LAI derived from MODIS data and covering the study area have been extracted from LP DAAC web-site for the same vegetation seasons. The reliability of the MODIS-derived Tls estimates has been confirmed via comparison with analogous and collocated ground-, AVHRR-, and SEVIRI-based ones. The prepared remote sensing dataset has also included the SEVIRI-derived estimates of Tls, E, NDVI, Ta at daylight and night-time and daily estimates of LAI. The Tls estimates has been built utilizing the method and technology developed for the retrieval of Tls and E from 15 minutes time interval SEVIRI data in IR channels 10.8 and 12.0 µm (classified as 100% cloud-free and covering the area of interest) at three successive times without accurate a priori knowledge of E. Comparison of the SEVIRI-based Tls retrievals with independent collocated Tls estimates generated at the Land Surface Analysis Satellite Applications Facility (LSA SAF, Lisbon, Portugal) has given daily- or monthly-averaged values of RMS deviation in the range of 2°C for various dates and months during the mentioned vegetation seasons which is quite acceptable result. The reliability of the SEVIRI-based Tls estimates for the study area has been also confirmed by comparing with AVHRR- and MODIS-derived LST estimates for the same seasons. The SEVIRI-derived values of Ta considered as the temperature of the vegetation cover has been obtained using Tls estimates and a previously found multiple linear regression relationship between Tls and Ta formulated accounting for solar zenith angle and land elevation. A comparison with ground-based collocated Ta observations has given RMS errors of 2.5°C and lower. It can be treated as a proof of the proposed technique's functionality. SEVIRI-derived LAI estimates have been retrieved at LSA SAF from measurements by this sensor in channels 0.6, 0.8, and 1.6 μm under cloud-free conditions at that when using data in the channel 1.6 μm the accuracy of these estimates has increased. In the study the AVHRR- and SEVIRI-derived estimates of daily and monthly precipitation sums for the territory under investigation for the years 2009 - 2013 vegetation seasons have been also used. These estimates have been obtained by the improved integrated Multi Threshold Method (MTM) providing detection and identification of cloud types around the clock throughout the year as well as identification of precipitation zones and determination of instantaneous precipitation maximum intensity within the pixel using the measurement data in different channels of named sensors as predictors. Validation of the MTM has been performed by comparing the daily and monthly precipitation sums with appropriate values resulted from ground-based observations at the meteorological stations of the region. The probability of detecting precipitation zones from satellite data corresponding to the actual ones has been amounted to 70-80%. AVHRR- and SEVIRI-derived daily and monthly precipitation sums have been in reasonable agreement with each other and with results of ground-based observations although they are smoother than the last values. Discrepancies have been noted only for local maxima for which satellite-based estimates of precipitation have been much less than ground-based ones. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. To utilize satellite-derived vegetation and meteorological characteristics in the model the special procedures have been developed including: - replacement of ground-based LAI and B estimates used as model parameters by their satellite-derived estimates from AVHRR, MODIS and SEVIRI data. Correctness of such replacement has been confirmed by comparing the time behavior of LAI over the period of vegetation as well as modeled and measured values of evapotranspiration Ev and soil moisture content W; - entering AVHRR-, MODIS- and SEVIRI-derived estimates of Ts.eff Tls, and Ta into the model as input variables instead of ground-measured values with verification of adequacy of model operation under such a change through comparison of the calculated and measured values of W and Ev; - inputing satellite-derived estimates of precipitation during vegetation period retrieved from AVHRR and SEVIRI data using the MTM into the model as input variables. When developing given procedure algorithms and programs have been created to transit from assessment of the rainfall intensity to evaluation of its daily values. The implementation of such a transition requires controlling correctness of the estimates built at each time step. This control includes comparison of areal distributions of three-hour, daily and monthly precipitation amounts obtained from satellite data and calculated by interpolation of standard network observation data; - taking into account spatial heterogeneity of fields of satellite AVHRR-, MODIS- and SEVIRI-derived estimates of LAI, B, LST and precipitation. This has involved the development of algorithms and software for entering the values of all named characteristics into the model in each computational grid node. Values of evapotranspiration E, soil water content W, vertical latent and sensible heat fluxes and other water and heat balance components as well as land surface temperature and moisture area-distributed over the territory of interest have been resulted from the model calculations for the years 2009-2013 vegetation seasons. These calculations have been carried out utilizing satellite-derived estimates of the vegetation characteristics, LST and precipitation. E and W calculation errors have not exceeded the standard values.
Further developments in orbit ephemeris derived neutral density
NASA Astrophysics Data System (ADS)
Locke, Travis
There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.
Plyku, Donika; Loeb, David M.; Prideaux, Andrew R.; Baechler, Sébastien; Wahl, Richard L.; Sgouros, George
2015-01-01
Abstract Purpose: Dosimetric accuracy depends directly upon the accuracy of the activity measurements in tumors and organs. The authors present the methods and results of a retrospective tumor dosimetry analysis in 14 patients with a total of 28 tumors treated with high activities of 153Sm-ethylenediaminetetramethylenephosphonate (153Sm-EDTMP) for therapy of metastatic osteosarcoma using planar images and compare the results with three-dimensional dosimetry. Materials and Methods: Analysis of phantom data provided a complete set of parameters for dosimetric calculations, including buildup factor, attenuation coefficient, and camera dead-time compensation. The latter was obtained using a previously developed methodology that accounts for the relative motion of the camera and patient during whole-body (WB) imaging. Tumor activity values calculated from the anterior and posterior views of WB planar images of patients treated with 153Sm-EDTMP for pediatric osteosarcoma were compared with the geometric mean value. The mean activities were integrated over time and tumor-absorbed doses were calculated using the software package OLINDA/EXM. Results: The authors found that it was necessary to employ the dead-time correction algorithm to prevent measured tumor activity half-lives from often exceeding the physical decay half-life of 153Sm. Measured half-lives so long are unquestionably in error. Tumor-absorbed doses varied between 0.0022 and 0.27 cGy/MBq with an average of 0.065 cGy/MBq; however, a comparison with absorbed dose values derived from a three-dimensional analysis for the same tumors showed no correlation; moreover, the ratio of three-dimensional absorbed dose value to planar absorbed dose value was 2.19. From the anterior and posterior activity comparisons, the order of clinical uncertainty for activity and dose calculations from WB planar images, with the present methodology, is hypothesized to be about 70%. Conclusion: The dosimetric results from clinical patient data indicate that absolute planar dosimetry is unreliable and dosimetry using three-dimensional imaging is preferable, particularly for tumors, except perhaps for the most sophisticated planar methods. The relative activity and patient kinetics derived from planar imaging show a greater level of reliability than the dosimetry. PMID:26560193
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Uspensky, Sergey
2014-05-01
At present physical-mathematical modeling processes of water and heat exchange between vegetation covered land surfaces and atmosphere is the most appropriate method to describe peculiarities of water and heat regime formation for large territories. The developed model of such processes (Land Surface Model, LSM) is intended for calculation evaporation, transpiration by vegetation, soil water content and other water and heat regime characteristics, as well as distributions of the soil temperature and humidity in depth utilizing remote sensing data from satellites on land surface and meteorological conditions. The model parameters and input variables are the soil and vegetation characteristics and the meteorological characteristics, correspondingly. Their values have been determined from ground-based observations or satellite-based measurements by radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10. The case study has been carried out for the part of the agricultural Central Black Earth region with coordinates 49.5 deg. - 54 deg. N, 31 deg. - 43 deg. E and a total area of 227,300 km2 located in the steppe-forest zone of the European Russia for years 2009-2012 vegetation seasons. From AVHRR data there have been derived the estimates of three types of land surface temperature (LST): land surface skin temperature Tsg, air-foliage temperature Ta and efficient radiation temperature Ts.eff, emissivity E, normalized vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, cloudiness and precipitation. From MODIS data the estimates of LST Tls, E, NDVI and LAI have been obtained. The SEVIRI data have been used to build the estimates of Tls, Ta, E, LAI and precipitation. Previously developed method and technology of above AVHRR-derived estimates have been improved and adapted to the study area. To check the reliability of the Ts.eff and Ta estimations for named seasons the error statistics of their definitions has been analyzed through comparison with data of observations at agricultural meteorological stations of the study region. The mentioned MODIS-based remote sensing products for the same vegetation seasons have been built using data downloaded from the website LP DAAC (NASA). Reliability of the MODIS-derived Tls estimates have been confirmed by results of comparison with similar estimates from synchronous AVHRR, SEVIRI and ground-based data. To retrieve Tls and E from SEVIRI data at daylight and nighttime there have been developed the method and technology of thematic processing these data in IR channels NN 9, 10 (10.8 and 12.0 nm) at three successive times under cloud-free conditions without using exact values of E. This technology has been also adapted to the study area. Analysis of reliability of Tls estimation have been carried out through comparing with synchronous SEVIRI-derived Tls estimates obtained at Land Surface Analysis Satellite Applications Facility (LSA SAF, Lisbon, Portugal) and MODIS-derived Tls estimates. When the first comparison daily - or monthly-averaged values of RMS deviation have not been exceeded 2 deg. C for various dates and months during years 2009-2012 vegetation seasons. RMS deviation of Tls(SEVIRI) from Tls(MODIS) has been in the range of 1.0-3.0 deg. C. The method and technology have been also developed and tested to define Ta values from SEVIRI data at daylight and nighttime. This method is based on using satellite-derived estimates of Tls and regression relationship between Tls and ground-measured values of Ta. Comparison of satellite-based Ta estimates with data of synchronous standard term ground-based observations at the network of meteorological stations of the study area for summer periods of 2009-2012 has given RMS deviation values in the range of 1.8-3.0 deg. C. Formed archive of satellite products has been also supplemented with array of LAI estimates retrieved from SEVIRI data at LSA SAF for the study area and growing seasons 2011-2012. The possibility is shown to use the developed Multi Threshold Method (MTM) for generating the AVHRR- and SEVIRI-based estimates of daily and monthly precipitation amounts for the region of interest The MTM provides the cloud detection and identification of cloud types, estimation of the maximum liquid water content and cloud layer water content, allocation of precipitation zones and determination of instantaneous maximum of precipitation intensities in the pixel range around the clock throughout the year independently of the land surface type. In developing procedures of utilizing satellite estimates of precipitation during the vegetation season in the model there have been built up algorithms and programs of transition from estimating the rainfall intensity to assessment of their daily values. The comparison of the daily, monthly and seasonal AVHRR- and SEVIRI-derived precipitation sums with similar values retrieved from network ground-based observations using weighting interpolation procedure have been carried out. Agreement of all three evaluations is satisfactory. To assimilate remote sensing products into the model the special techniques have been developed including: 1) replacement of ground-measured model parameters LAI and B by their satellite-derived estimates. The possibility of such replacement has been confirmed through various comparisons of: a) LAI behavior for ground- and satellite-derived values; b) modeled values of Ts and Tf , satellite-based estimates of Ts.eff, Tls and Ta and ground-based measurements of LST; c) modeled and measured values of soil water content W and evapotranspiration Ev; 2) utilization of satellite-derived values of LSTs Ts.eff, Tls and Ta, and estimates of precipitation as the input model variables instead of the respective ground-measured temperatures and rainfall when assessing the accuracy of soil water content, evapotranspiration and soil temperature calculations; 3) accounting for the spatial variability of satellite-based LAI, B, LST and precipitation estimates by entering their area-distributed values into the model. For years 2009-2012 vegetation seasons there have been calculated the characteristics of the water and heat regimes of the region under investigation utilizing satellite estimates of vegetation characteristics, LST and precipitation in the model. The calculation results have shown that the discrepancies of evapotranspiration and soil water content values are within acceptable limits.
NASA Astrophysics Data System (ADS)
Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.
2018-03-01
Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.
Multipole expansions and Fock symmetry of the hydrogen atom
NASA Astrophysics Data System (ADS)
Meremianin, A. V.; Rost, J.-M.
2006-10-01
The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.
Antileishmanial activity study and theoretical calculations for 4-amino-1,2,4-triazole derivatives
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ünver, Yasemin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Gökhan
2017-09-01
4-amino-1,2,4-triazole derivatives; 4-amino-1-((5-mercapto-1,3,4-oxadiazole-2-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (1) and 4-amino-1-((4-amino-5 mercapto-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (2) were studied theoretically by Density Functional Theory (DFT) method with 6-311++G(d,p) basis set, structural and some spectroscopic parameters were determined. Significant differences between the experimental and calculated values of vibrational frequencies and chemical shifts were explained by the presence of intermolecular (Ssbnd H⋯O and Ssbnd H⋯N type) hydrogen bonds in structures. The Molecular Electrostatic Potential (MEP) maps obtained at B3LYP/6-311G++(d,p) support the existence of hydrogen bonds. Compounds were tested against to Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. Antileishmanial activity of 4-amino-1,2,4-triazole derivative (2) is remarkable.
Simplex volume analysis for finding endmembers in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Li, Hsiao-Chi; Song, Meiping; Chang, Chein-I.
2015-05-01
Using maximal simplex volume as an optimal criterion for finding endmembers is a common approach and has been widely studied in the literature. Interestingly, very little work has been reported on how simplex volume is calculated. It turns out that the issue of calculating simplex volume is much more complicated and involved than what we may think. This paper investigates this issue from two different aspects, geometric structure and eigen-analysis. The geometric structure is derived from its simplex structure whose volume can be calculated by multiplying its base with its height. On the other hand, eigen-analysis takes advantage of the Cayley-Menger determinant to calculate the simplex volume. The major issue of this approach is that when the matrix is ill-rank where determinant is desired. To deal with this problem two methods are generally considered. One is to perform data dimensionality reduction to make the matrix to be of full rank. The drawback of this method is that the original volume has been shrunk and the found volume of a dimensionality-reduced simplex is not the real original simplex volume. Another is to use singular value decomposition (SVD) to find singular values for calculating simplex volume. The dilemma of this method is its instability in numerical calculations. This paper explores all of these three methods in simplex volume calculation. Experimental results show that geometric structure-based method yields the most reliable simplex volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich
2013-05-10
Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels.more » The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.« less
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippi, Claudia, E-mail: c.filippi@utwente.nl; Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr; Moroni, Saverio, E-mail: moroni@democritos.it
2016-05-21
We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, inmore » both all-electron and pseudopotential calculations.« less
NASA Technical Reports Server (NTRS)
Bennett, R. M.; Bland, S. R.; Redd, L. T.
1973-01-01
Computer programs for calculating the stability characteristics of a balloon tethered in a steady wind are presented. Equilibrium conditions, characteristic roots, and modal ratios are calculated for a range of discrete values of velocity for a fixed tether-line length. Separate programs are used: (1) to calculate longitudinal stability characteristics, (2) to calculate lateral stability characteristics, (3) to plot the characteristic roots versus velocity, (4) to plot the characteristic roots in root-locus form, (5) to plot the longitudinal modes of motion, and (6) to plot the lateral modes for motion. The basic equations, program listings, and the input and output data for sample cases are presented, with a brief discussion of the overall operation and limitations. The programs are based on a linearized, stability-derivative type of analysis, including balloon aerodynamics, apparent mass, buoyancy effects, and static forces which result from the tether line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastore, S.; Wiringa, Robert B.; Pieper, Steven C.
2014-08-01
We report quantum Monte Carlo calculations of electromagnetic transitions inmore » $^8$Be. The realistic Argonne $$v_{18}$$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.« less
NASA Astrophysics Data System (ADS)
Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya
2018-02-01
We have explored the optoelectronic structure and related thermoelectric properties of Bi2OX 2 (X = S, Se, Te) using density functional theory and spin-orbit coupling (SOC). We report herein calculations of the bandgap of these bismuth sulfides/oxysulfides to participate in the recent debate regarding such values. The generalized gradient approximation calculations corrected using the SOC scheme estimated bandgaps of 0.950 eV, 0.635 eV, and 0.441 eV for Bi2OS2, Bi2OSe2, and Bi2OTe2, respectively, in close agreement with experimental results and showing better accuracy compared with available theoretical calculations. This bandgap range shows the potential use of Bi2OX 2 for solar cell applications. Hence, we derived their optical and thermoelectric properties. Similarly to one of the parent materials, Bi2S3, a semiconductor with special photovoltaic and thermoelectric properties, the present derivatives Bi2OX 2 show promising characteristics for exploration in the near future for use in solar cells and thermoelectric devices.
Shape sensitivity analysis of flutter response of a laminated wing
NASA Technical Reports Server (NTRS)
Bergen, Fred D.; Kapania, Rakesh K.
1988-01-01
A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.
Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques
NASA Astrophysics Data System (ADS)
Consoli, S.; Russo, A.; Snyder, R.
2006-08-01
Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2017-12-01
The relations to calculate the maximum value of strains in processes of bending tubes on benders, in stretched layers of tubes, are presented in this work on the basis of the EU-Directive concerning production of pressure equipment. It has been shown that for large deformations that occur during bending of the pipes on knees, logarithmic strain measures (real) and relative strain measures give different values of strain but equal wall thicknesses in the bending zone. Logarithmic measures are frequently used in engineering practice and are valid for large and small deformations. Reverse expressions were also derived to calculate the required initial wall thickness of the tube to be bent, in order to obtain the desired wall thickness of the knee after bending.
Soft silicone rubber in phononic structures: Correct elastic moduli
NASA Astrophysics Data System (ADS)
Still, Tim; Oudich, M.; Auerhammer, G. K.; Vlassopoulos, D.; Djafari-Rouhani, B.; Fytas, G.; Sheng, P.
2013-09-01
We report on a combination of experiments to determine the elastic moduli of a soft poly (dimethylsiloxane) rubber that was utilized in a smart experiment on resonant phononic modes [Liu , ScienceSCIEAS0036-807510.1126/science.289.5485.1734 289, 1734 (2000)] and whose reported moduli became widely used as a model system in theoretical calculations of phononic materials. We found that the most peculiar hallmark of these values, an extremely low longitudinal sound velocity, is not supported by our experiments. Anyhow, performing theoretical band structure calculations, we can reproduce the surprising experimental findings of Liu even utilizing the correct mechanical parameters. Thus, the physical conclusions derived in the theoretical works do not require the use of an extremely low longitudinal velocity, but can be reproduced assuming only a low value of the shear modulus, in agreement with our experiments.
Wang, Jun-Feng; Liang, Rui; Liao, Sheng-Rong; Yang, Bin; Tu, Zheng-Chao; Lin, Xiu-Ping; Wang, Bin-Gui; Liu, Yonghong
2017-07-01
Ten new salicyloid derivatives, namely vaccinols J-S (1-10), along with five known compounds (11-15) were isolated from Pestalotiopsis vaccinii (cgmcc3.9199) endogenous with the mangrove plant Kandelia candel (L.) Druce (Rhizophoraceae). Their structures including absolute configurations were established on the basis of spectroscopic analysis, optical rotation, CD spectra, quantum ECD calculations. To the best of our knowledge, vaccinol J (1) is the first example of salicyloid derivatives containing 2-methylfuran moiety. All of the new compounds were tested for their anti-enterovirus 7l (EV71) and cytotoxic activities. Among them, vaccinol J (1) exhibited in vitro anti-EV71 with IC 50 value of 30.7μM (IC 50 177.0μM for the positive control ribavirin). Copyright © 2017. Published by Elsevier B.V.
Antichlamydial Dimeric Indole Derivatives from Marine Actinomycete Rubrobacter radiotolerans.
Li, Jian Lin; Chen, Dandan; Huang, Lei; Ni, Min; Zhao, Yu; Fan, Huizhou; Bao, Xiaofeng
2017-06-01
Chlamydiae are widely distributed pathogens of human populations, which can lead to serious reproductive and other health problems. In our search for novel antichlamydial metabolites from marine derived-microorganisms, one new ( 1 ) and two known ( 2, 3 ) dimeric indole derivatives were isolated from the sponge-derived actinomycete Rubrobacter radiotolerans . The chemical structures of these metabolites were elucidated by NMR spectroscopic data as well as CD calculations. All three metabolites suppressed chlamydial growth in a concentration-dependent manner. Among them, compound 1 exhibited the most effective antichlamydial activity with IC 50 values of 46.6 ~ 96.4 µM in the production of infectious progeny. Compounds appeared to target the mid-stage of the chlamydial developmental cycle by interfering with reticular body replication, but not directly inactivating the infectious elementary body. Georg Thieme Verlag KG Stuttgart · New York.
Transition probabilities for the 3s2 3p(2P0)-3s3p2(4P) intersystem lines of Si II
NASA Technical Reports Server (NTRS)
Calamai, Anthony G.; Smith, Peter L.; Bergeson, S. D.
1993-01-01
Intensity ratios of lines of the spin-changing 'intersystem' multiplet of S II (4P yields 2P0) at 234 nm have been used to determine electron densities and temperatures in a variety of astrophysical environments. However, the accuracy of these diagnostic calculations have been limited by uncertainties associated with the available atomic data. We report the first laboratory measurement, using an ion-trapping technique, of the radiative lifetimes of the three metastable levels of the 3s3p2 4P term of Si II. Our results are 104 +/- 16, 406 +/- 33, and 811 +/- 77 micro-s for lifetimes of the J = 1/2, 5/2, and 3/2 levels, respectively. A-values were derived from our lifetimes by use of measured branching fractions. Our A-values, which differ from calculated values by 30 percent or more, should give better agreement between modeled and observed Si II line ratios.
The Dynamics of Glomerular Ultrafiltration in the Rat
Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.
1971-01-01
Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578
NASA Astrophysics Data System (ADS)
Luis, Josep M.; Martí, Josep; Duran, Miquel; Andrés, JoséL.
1997-04-01
Electronic and nuclear contributions to the static molecular electrical properties, along with the Stark tuning rate ( δνE ) and the infrared cross section changes ( δSE) have been calculated at the SCF level and at different correlated levels of theory, using a TZ2P basis set and finite field techniques. Nuclear contributions to these molecular properties have also been calculated using a recent analytical approach that allow both to check the accuracy of the finite field values, and to evaluate the importance of higher-order derivatives. The HF, CO, H 2O, H 2CO, and CH 4 molecules have been studied and the results compared to experimental date when available. The paper shows that nuclear relaxation and vibrational contributions must be included in order to obtain accurate values of the static electrical properties. Two different, combined approaches are proposed to predict experimental values of the electrical properties to an error smaller than 5%.
Low altitude wind shear statistics derived from measured and FAA proposed standard wind profiles
NASA Technical Reports Server (NTRS)
Dunham, R. E., Jr.; Usry, J. W.
1984-01-01
Wind shear statistics were calculated for a simulated data set using wind profiles proposed as a standard and compared to statistics derived from measured wind profile data. Wind shear values were grouped in altitude bands of 100 ft between 100 and 1400 ft, and in wind shear increments of 0.025 kt/ft between + or - 0.600 kt/ft for the simulated data set and between + or - 0.200 kt/ft for the measured set. No values existed outside the + or - 0.200 kt/ft boundaries for the measured data. Frequency distributions, means, and standard deviations were derived for each altitude band for both data sets, and compared. Also, frequency distributions were derived for the total sample for both data sets and compared. Frequency of occurrence of a given wind shear was about the same for both data sets for wind shears, but less than + or 0.10 kt/ft, but the simulated data set had larger values outside these boundaries. Neglecting the vertical wind component did not significantly affect the statistics for these data sets. The frequency of occurrence of wind shears for the flight measured data was essentially the same for each altitude band and the total sample, but the simulated data distributions were different for each altitude band. The larger wind shears for the flight measured data were found to have short durations.
Has, Recep; Akel, Esra Gilbaz; Kalelioglu, Ibrahim H; Dural, Ozlem; Yasa, Cenk; Esmer, Aytül Corbacioglu; Yuksel, Atıl; Yildirim, Alkan; Ibrahimoglu, Lemi; Ermis, Hayri
2016-02-01
The aim of this prospective observational study was to identify the best method for use in diagnosing fetal nasal bone (NB) hypoplasia in the second trimester as a means of predicting trisomy 21 (Down syndrome). The NB length (NBL), NBL percentiles, and NBL multiple-of-median (MoM) values and the biparietal diameter-to-NBL ratios were calculated and compared in an attempt to identify the best predictive method and most appropriate cutoff value. Predictive values for several cutoff points were calculated. Receiver operating characteristic curves at a fixed 5% false-positive rate were used to compare the four methods. NBL measurements were obtained from 2,211 (95.6%) of a total of 2,314 fetuses. Data from 1,689 of those 2,211 fetuses were used to obtain reference ranges, derive a linear regression equation, and calculate NBL percentiles and MoM values. Using a fixed 5% false-positive rate, we found 25.5% sensitivity for NBL (95% confidence interval [CI], 15-39.1) and 23.5% sensitivity for NBL percentiles (95% CI, 13.4-37), NBL MoM values (95% CI, 13.4-37), and biparietal diameter-to-NBL ratios (95% CI, 13.4-37). Our study demonstrated that all four methods can be used in the second trimester for diagnosing fetal NB hypoplasia as a means of predicting trisomy 21 because their predictive values are similar at a fixed 5% false-positive rate. For simplicity of use, we recommend using 3 mm as the NBL cutoff value. © 2015 Wiley Periodicals, Inc.
Study on bridge checking evaluation based on deformation-Stress data
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Cheng, Ying Jie
2018-06-01
Bridge structure plays a very important role in human traffic. The evaluation of bridge structure after a certain period of operation has always been the focus of the bridge. Based on the data collected from the health inspection system of a continuous rigid frame bridge on a highway in Yunnan, China, it is found that there is a certain linear relationship between the deformation and stress of the bridge structure. In view of a specific section of the structure, the stress value of this section can be derived according to its deformation value. The coefficient K can be calculated by comparing the estimated value to the actual measured value. According to the range of the K value, the structural state of the bridge can be evaluated to a certain extent.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
Chlorophyll-a retrieval in the Philippine waters
NASA Astrophysics Data System (ADS)
Perez, G. J. P.; Leonardo, E. M.; Felix, M. J.
2017-12-01
Satellite-based monitoring of chlorophyll-a (Chl-a) concentration has been widely used for estimating plankton biomass, detecting harmful algal blooms, predicting pelagic fish abundance, and water quality assessment. Chl-a concentrations at 1 km spatial resolution can be retrieved from MODIS onboard Aqua and Terra satellites. However, with this resolution, MODIS has scarce Chl-a retrieval in coastal and inland waters, which are relevant for archipelagic countries such as the Philippines. These gaps on Chl-a retrieval can be filled by sensors with higher spatial resolution, such as the OLI of Landsat 8. In this study, assessment of Chl-a concentration derived from MODIS/Aqua and OLI/Landsat 8 imageries across the open, coastal and inland waters of the Philippines was done. Validation activities were conducted at eight different sites around the Philippines for the period October 2016 to April 2017. Water samples filtered on the field were processed in the laboratory for Chl-a extraction. In situ remote sensing reflectance was derived from radiometric measurements and ancillary information, such as bathymetry and turbidity, were also measured. Correlation between in situ and satellite-derived Chl-a concentration using the blue-green ratio yielded relatively high R2 values of 0.51 to 0.90. This is despite an observed overestimation for both MODIS and OLI-derived values, especially in turbid and coastal waters. The overestimation of Chl-a may be attributed to inaccuracies in i) remote sensing reflectance (Rrs) retrieval and/or ii) empirical model used in calculating Chl-a concentration. However, a good 1:1 correspondence between the satellite and in situ maximum Rrs band ratio was established. This implies that the overestimation is largely due to the inaccuracies from the default coefficients used in the empirical model. New coefficients were then derived from the correlation analysis of both in situ-measured Chl-a concentration and maximum Rrs band ratio. This results to a significant improvement on calculated RMSE of satellite-derived Chl-a values. Meanwhile, it was observed that the blue-green band ratio has low Chl-a predictive capability in turbid waters. A more accurate estimation was found using the NIR and red band ratios for turbid waters with covarying Chl-a concentration and low sediment load.
Beyer, W. Nelson; Sample, Bradley E.
2017-01-01
When performing screening-level and baseline risk assessments, assessors usually compare estimated exposures of wildlife receptor species with toxicity reference values (TRVs). We modeled the exposure of American robins (Turdus migratorius) to 10 elements (As, Cd, Cr, Cu, Hg, Mn, Pb, Se, Zn, and V) in spring and early summer, a time when earthworms are the preferred prey. We calculated soil benchmarks associated with possible toxic effects to these robins from 6 sets of published TRVs. Several of the resulting soil screening-level benchmarks were inconsistent with each other and less than soil background concentrations. Accordingly, we examined the derivations of the TRVs as a possible source of error. In the case of V, a particularly toxic chemical compound (ammonium vanadate) containing V, not normally present in soil, had been used to estimate a TRV. In the cases of Zn and Cu, use of uncertainty values of 10 in estimating TRVs led to implausibly low soil screening values. In the case of Pb, a TRV was calculated from studies demonstrating reductions in egg production in Japanese quail (Coturnix coturnix japonica) exposed to Pb concentrations well below than those causing toxic effects in other species of birds. The results on quail, which were replicated in additional trials, are probably not applicable to other, unrelated species, although we acknowledge that only a small fraction of all species of birds has been tested. These examples underscore the importance of understanding the derivation and relevance of TRVs before selecting them for use in screening or in ecological risk assessment.
Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels
NASA Astrophysics Data System (ADS)
Dai, Kaiju; Wang, Bo; Xue, Fei; Liu, Shanshan; Huang, Junkai; Zhang, Jieyu
2018-04-01
The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid-liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure P_{{N2 }} = 40P^{Θ} , the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.
NASA Astrophysics Data System (ADS)
Findlay, R. P.; Dimbylow, P. J.
2006-05-01
Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ~130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ~120 MHz and ~160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ~180 and ~600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.
Findlay, R P; Dimbylow, P J
2006-05-07
Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.
TaylUR 3, a multivariate arbitrary-order automatic differentiation package for Fortran 95
NASA Astrophysics Data System (ADS)
von Hippel, G. M.
2010-03-01
This new version of TaylUR is based on a completely new core, which now is able to compute the numerical values of all of a complex-valued function's partial derivatives up to an arbitrary order, including mixed partial derivatives. New version program summaryProgram title: TaylUR Catalogue identifier: ADXR_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXR_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv2 No. of lines in distributed program, including test data, etc.: 6750 No. of bytes in distributed program, including test data, etc.: 19 162 Distribution format: tar.gz Programming language: Fortran 95 Computer: Any computer with a conforming Fortran 95 compiler Operating system: Any system with a conforming Fortran 95 compiler Classification: 4.12, 4.14 Catalogue identifier of previous version: ADXR_v2_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 710 Does the new version supersede the previous version?: Yes Nature of problem: Problems that require potentially high orders of partial derivatives with respect to several variables or derivatives of complex-valued functions, such as e.g. momentum or mass expansions of Feynman diagrams in perturbative QFT, and which previous versions of this TaylUR [1,2] cannot handle due to their lack of support for mixed partial derivatives. Solution method: Arithmetic operators and Fortran intrinsics are overloaded to act correctly on objects of a defined type taylor, which encodes a function along with its first few partial derivatives with respect to the user-defined independent variables. Derivatives of products and composite functions are computed using multivariate forms [3] of Leibniz's rule D(fg)=∑{ν!}/{μ!(μ-ν)!}DfDg where ν=(ν,…,ν), |ν|=∑j=1dν, ν!=∏j=1dν!, Df=∂f/(∂x⋯∂x), and μ<ν iff either |μ|<|ν| or |μ|=|ν|,μ=ν,…,μ=ν,μ<ν for some k∈{0,…,d-1}, and of Fàa di Bruno's formula D(f○g)=∑p=1|ν|(f○g)∑s=1|ν|∑,…,k;λ,…,λ)}ν!/(∏j=1sk!λ!)(g)k where the sum is over {(k,…,k;λ,…,λ)∈Z:k>0,0<λ<⋯<λ, ∑i=1sk=p,∑i=1skλ=ν}. An indexed storage system is used to store the higher-order derivative tensors in a one-dimensional array. The relevant indices (k,…,k;λ,…,λ) and the weights occurring in the sums in Leibniz's and Fàa di Bruno's formula are precomputed at startup and stored in static arrays for later use. Reasons for new version: The earlier version lacked support for mixed partial derivatives, but a number of projects of interest required them. Summary of revisions: The internal representation of a taylor object has changed to a one-dimensional array which contains the partial derivatives in ascending order, and in lexicographic order of the corresponding multiindex within the same order. The necessary mappings between multiindices and indices into the taylor objects' internal array are computed at startup. To support the change to a genuinely multivariate taylor type, the DERIVATIVE function is now implemented via an interface that accepts both the older format derivative(f,mu,n)=∂μnf and also a new format derivative(f,mu(:))=Df that allows access to mixed partial derivatives. Another related extension to the functionality of the module is the HESSIAN function that returns the Hessian matrix of second derivatives of its argument. Since the calculation of all mixed partial derivatives can be very costly, and in many cases only some subset is actually needed, a masking facility has been added. Calling the subroutine DEACTIVATE_DERIVATIVE with a multiindex as an argument will deactivate the calculation of the partial derivative belonging to that multiindex, and of all partial derivatives it can feed into. Similarly, calling the subroutine ACTIVATE_DERIVATIVE will activate the calculation of the partial derivative belonging to its argument, and of all partial derivatives that can feed into it. Moreover, it is possible to turn off the computation of mixed derivatives altogether by setting Diagonal_taylors to .TRUE.. It should be noted that any change of Diagonal_taylors or Taylor_order invalidates all existing taylor objects. To aid the better integration of TaylUR into the HPSrc library [4], routines SET_DERIVATIVE and SET_ALL_DERIVATIVES are provided as a means of manually constructing a taylor object with given derivatives. Restrictions: Memory and CPU time constraints may restrict the number of variables and Taylor expansion order that can be achieved. Loss of numerical accuracy due to cancellation may become an issue at very high orders. Unusual features: These are the same as in previous versions, but are enumerated again here for clarity. The complex conjugation operation assumes all independent variables to be real. The functions REAL and AIMAG do not convert to real type, but return a result of type taylor (with the real/imaginary part of each derivative taken) instead. The user-defined functions VALUE, REALVALUE and IMAGVALUE, which return the value of a taylor object as a complex number, and the real and imaginary part of this value, respectively, as a real number are also provided. Fortran 95 intrinsics that are defined only for arguments of real type ( ACOS, AINT, ANINT, ASIN, ATAN, ATAN2, CEILING, DIM, FLOOR, INT, LOG10, MAX, MAXLOC, MAXVAL, MIN, MINLOC, MINVAL, MOD, MODULO, NINT, SIGN) will silently take the real part of taylor-valued arguments unless the module variable Real_args_warn is set to .TRUE., in which case they will return a quiet NaN value (if supported by the compiler) when called with a taylor argument whose imaginary part exceeds the module variable Real_args_tol. In those cases where the derivative of a function becomes undefined at certain points (as for ABS, AINT, ANINT, MAX, MIN, MOD, and MODULO), while the value is well defined, the derivative fields will be filled with quiet NaN values (if supported by the compiler). Additional comments: This version of TaylUR is released under the second version of the GNU General Public License (GPLv2). Therefore anyone is free to use or modify the code for their own calculations. As part of the licensing, it is requested that any publications including results from the use of TaylUR or any modification derived from it cite Refs. [1,2] as well as this paper. Finally, users are also requested to communicate to the author details of such publications, as well as of any bugs found or of required or useful modifications made or desired by them. Running time: The running time of TaylUR operations grows rapidly with both the number of variables and the Taylor expansion order. Judicious use of the masking facility to drop unneeded higher derivatives can lead to significant accelerations, as can activation of the Diagonal_taylors variable whenever mixed partial derivatives are not needed. Acknowledgments: The author thanks Alistair Hart for helpful comments and suggestions. This work is supported by the Deutsche Forschungsgemeinschaft in the SFB/TR 09. References:G.M. von Hippel, TaylUR, an arbitrary-order diagonal automatic differentiation package for Fortran 95, Comput. Phys. Comm. 174 (2006) 569. G.M. von Hippel, New version announcement for TaylUR, an arbitrary-order diagonal automatic differentiation package for Fortran 95, Comput. Phys. Comm. 176 (2007) 710. G.M. Constantine, T.H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (2) (1996) 503. A. Hart, G.M. von Hippel, R.R. Horgan, E.H. Müller, Automated generation of lattice QCD Feynman rules, Comput. Phys. Comm. 180 (2009) 2698, doi:10.1016/j.cpc.2009.04.021, arXiv:0904.0375.
NASA Astrophysics Data System (ADS)
Ávila, Janaína N.; Ireland, Trevor R.; Lugaro, Maria; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Holden, Peter; Rauscher, Thomas
2013-05-01
Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of ~1.5-3 M ⊙ carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The 151Eu fractions [fr(151Eu) = 151Eu/(151Eu+153Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr(151Eu) values derived from our measurements agree well with fr(151Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr(151Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr(151Eu) values. The SiC aggregate yields a fr(151Eu) value within the range observed in the single grains and provides a more precise result (fr(151Eu) = 0.54 ± 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the 151Sm(n, γ) stellar reaction rate.
An empirical formula to calculate the full energy peak efficiency of scintillation detectors.
Badawi, Mohamed S; Abd-Elzaher, Mohamed; Thabet, Abouzeid A; El-khatib, Ahmed M
2013-04-01
This work provides an empirical formula to calculate the FEPE for different detectors using the effective solid angle ratio derived from experimental measurements. The full energy peak efficiency (FEPE) curves of the (2″(*)2″) NaI(Tl) detector at different seven axial distances from the detector were depicted in a wide energy range from 59.53 to 1408keV using standard point sources. The distinction was based on the effects of the source energy and the source-to-detector distance. A good agreement was noticed between the measured and calculated efficiency values for the source-to-detector distances at 20, 25, 30, 35, 40, 45 and 50cm. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Böhm, Stanislav; Makrlík, Emanuel; Vaňura, Petr
2017-07-01
By using quantum chemical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril-ClO4-, dodecabenzylbambus[6]uril-MnO4-, dodecabenzylbambus[6]uril-TcO4- and dodecabenzylbambus[6]uril-ReO4- were derived. In these four complexes, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. Further, the corresponding interaction energies of the investigated four anionic complexes were calculated; the absolute values of these calculated energies increase in the series of ReO4- < TcO4- < MnO4- < ClO4-.
Effects of NN potentials on p Nuclides in the A ˜100-120 region
NASA Astrophysics Data System (ADS)
Lahiri, C.; Biswal, S. K.; Patra, S. K.
2016-02-01
Microscopic optical potentials for low-energy proton reactions have been obtained by folding density dependent M3Y (DDM3Y) interaction derived from nuclear matter calculation with densities from mean field approach to study astrophysically important proton rich nuclei in mass 100-120 region. We compare S factors for low-energy (p,γ) reactions with available experimental data and further calculate astrophysical reaction rates for (p,γ) and (p,n) reactions. Again, we choose some nonlinear R3Y (NR3Y) interactions from relativistic mean field (RMF) calculation and folded them with corresponding RMF densities to reproduce experimental S-factor values in this mass region. Finally, the effect of nonlinearity on our result is discussed.
Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T
2014-01-01
Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Development of Scatterometer-Derived Surface Pressures
NASA Astrophysics Data System (ADS)
Hilburn, K. A.; Bourassa, M. A.; O'Brien, J. J.
2001-12-01
SeaWinds scatterometer-derived wind fields can be used to estimate surface pressure fields. The method to be used has been developed and tested with Seasat-A and NSCAT wind measurements. The method involves blending two dynamically consistent values of vorticity. Geostrophic relative vorticity is calculated from an initial guess surface pressure field (AVN analysis in this case). Relative vorticity is calculated from SeaWinds winds, adjusted to a geostrophic value, and then blended with the initial guess. An objective method applied minimizes the differences between the initial guess field and scatterometer field, subject to regularization. The long-term goal of this project is to derive research-quality pressure fields from the SeaWinds winds for the Southern Ocean from the Antarctic ice sheet to 30 deg S. The intermediate goal of this report involves generation of pressure fields over the northern hemisphere for testing purposes. Specifically, two issues need to be addressed. First, the most appropriate initial guess field will be determined: the pure AVN analysis or the previously assimilated pressure field. The independent comparison data to be used in answering this question will involve data near land, ship data, and ice data that were not included in the AVN analysis. Second, the smallest number of pressure observations required to anchor the assimilated field will be determined. This study will use Neumann (derivative) boundary conditions on the region of interest. Such boundary conditions only determine the solution to within a constant that must be determined by a number of anchoring points. The smallness of the number of anchoring points will demonstrate the viability of the general use of the scatterometer as a barometer over the oceans.
Chang, W-K; Chao, Y-C; Mcclave, S-A; Yeh, M-K
2005-10-01
Gastric residual volumes are widely used to evaluate gastric emptying for patients receiving enteral feeding, but controversy exists about what constitutes gastric residual volume. We have developed a method by using refractometer and derived mathematical equations to calculate the formula concentration, total residual volume (TRV), and formula volume. In this study, we like to validate these mathematical equations before they can be implemented for clinical patient care. Four dietary formulas were evaluated in two consecutive validation experiments. Firstly, dietary formula volume of 50, 100, 200, and 400 ml were diluted with 50 ml water, and then the Brix value (BV) was measured by the refractometer. Secondly, 50 ml of water, then 100 ml of dietary formula were infused into a beaker, and followed by the BV measurement. After this, 50 ml of water was infused and followed by the second BV measurement. The entire procedure of infusing of dietary formula (100 ml) and waster (50 ml) was repeated twice and followed by the BV measurement. The formula contents (formula concentration, TRV, and formula volume) were calculated by mathematical equations. The calculated formula concentrations, TRVs, and formula volumes measured from mathematic equations were strongly close to the true values in the first and second validation experiments (R2>0.98, P<0.001). Refractometer and the derived mathematical equations may be used to accurately measure the formula concentration, TRV, and formula volume and served as a tool to monitor gastric emptying for patients receiving enteral feeding.
Sim, Siong Fong; Chai, Hui Ping; Nyanti, Lee; Ling, Teck Yee; Grinang, Jongkar
2016-09-01
Quantitative indices are classically employed to evaluate the contamination status of metals with reference to the baseline concentrations. The baselines vary considerably across different geographical zones. It is imperative to determine the local geochemical baseline to evaluate the contamination status. No study has been done to establish the background concentrations in tropical rivers of this region. This paper reports the background concentrations of metals in water and sediment of the Baleh River, Sarawak, derived based on the statistical methods where the areas possibly disturbed are distinguished from the undisturbed area. The baseline levels of six elements in water determined were Al (0.34 mg/L), Fe (0.51 mg/L), Mn (0.12 mg/L), Cu (0.01 mg/L), Pb (0.03 mg/L), and Zn (0.05 mg/L). Arsenic and selenium were below the detection limit. For sediment, the background values were established according to statistical methods including (mean + 2σ), iterative 2σ, cumulative distribution frequency, interquartile, and calculation distribution function. The background values derived using the iterative 2σ algorithm and calculated distribution function were relatively lower. The baseline levels calculated were within the range reported in the literatures mainly from tropical and sub-tropical regions. The upper limits proposed for nine elements in sediment were Al (100,879 mg/kg), Cr (75.45 mg/kg), Cu (34.59 mg/kg), Fe (37,823 mg/kg), Mn (793 mg/kg), Ni (22.88 mg/kg), Pb (27.26 mg/kg), Zn (70.64 mg/kg), and Hg (0.33 mg/kg). Quantitative indices calculated suggest low risk of contamination at the Baleh River.
Multipinhole SPECT helical scan parameters and imaging volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Rutao, E-mail: rutaoyao@buffalo.edu; Deng, Xiao; Wei, Qingyang
Purpose: The authors developed SPECT imaging capability on an animal PET scanner using a multiple-pinhole collimator and step-and-shoot helical data acquisition protocols. The objective of this work was to determine the preferred helical scan parameters, i.e., the angular and axial step sizes, and the imaging volume, that provide optimal imaging performance. Methods: The authors studied nine helical scan protocols formed by permuting three rotational and three axial step sizes. These step sizes were chosen around the reference values analytically calculated from the estimated spatial resolution of the SPECT system and the Nyquist sampling theorem. The nine helical protocols were evaluatedmore » by two figures-of-merit: the sampling completeness percentage (SCP) and the root-mean-square (RMS) resolution. SCP was an analytically calculated numerical index based on projection sampling. RMS resolution was derived from the reconstructed images of a sphere-grid phantom. Results: The RMS resolution results show that (1) the start and end pinhole planes of the helical scheme determine the axial extent of the effective field of view (EFOV), and (2) the diameter of the transverse EFOV is adequately calculated from the geometry of the pinhole opening, since the peripheral region beyond EFOV would introduce projection multiplexing and consequent effects. The RMS resolution results of the nine helical scan schemes show optimal resolution is achieved when the axial step size is the half, and the angular step size is about twice the corresponding values derived from the Nyquist theorem. The SCP results agree in general with that of RMS resolution but are less critical in assessing the effects of helical parameters and EFOV. Conclusions: The authors quantitatively validated the effective FOV of multiple pinhole helical scan protocols and proposed a simple method to calculate optimal helical scan parameters.« less
Cawello, Willi; Schäfer, Carina
2014-08-01
Frequent plasma sampling to monitor pharmacokinetic (PK) profile of antiepileptic drugs (AEDs), is invasive, costly and time consuming. For drugs with a well-defined PK profile, such as AED lacosamide, equations can accurately approximate PK parameters from one steady-state plasma sample. Equations were derived to approximate steady-state peak and trough lacosamide plasma concentrations (Cpeak,ss and Ctrough,ss, respectively) and area under concentration-time curve during dosing interval (AUCτ,ss) from one plasma sample. Lacosamide (ka: ∼2 h(-1); ke: ∼0.05 h(-1), corresponding to half-life of 13 h) was calculated to reach Cpeak,ss after ∼1 h (tmax,ss). Equations were validated by comparing approximations to reference PK parameters obtained from single plasma samples drawn 3-12h following lacosamide administration, using data from double-blind, placebo-controlled, parallel-group PK study. Values of relative bias (accuracy) between -15% and +15%, and root mean square error (RMSE) values≤15% (precision) were considered acceptable for validation. Thirty-five healthy subjects (12 young males; 11 elderly males, 12 elderly females) received lacosamide 100mg/day for 4.5 days. Equation-derived PK values were compared to reference mean Cpeak,ss, Ctrough,ss and AUCτ,ss values. Equation-derived PK data had a precision of 6.2% and accuracy of -8.0%, 2.9%, and -0.11%, respectively. Equation-derived versus reference PK values for individual samples obtained 3-12h after lacosamide administration showed correlation (R2) range of 0.88-0.97 for AUCτ,ss. Correlation range for Cpeak,ss and Ctrough,ss was 0.65-0.87. Error analyses for individual sample comparisons were independent of time. Derived equations approximated lacosamide Cpeak,ss, Ctrough,ss and AUCτ,ss using one steady-state plasma sample within validation range. Approximated PK parameters were within accepted validation criteria when compared to reference PK values. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah, Amish P.
The need for improved patient-specificity of skeletal dose estimates is widely recognized in radionuclide therapy. Current clinical models for marrow dose are based on skeletal mass estimates from a variety of sources and linear chord-length distributions that do not account for particle escape into cortical bone. To predict marrow dose, these clinical models use a scheme that requires separate calculations of cumulated activity and radionuclide S values. Selection of an appropriate S value is generally limited to one of only three sources, all of which use as input the trabecular microstructure of an individual measured 25 years ago, and the tissue mass derived from different individuals measured 75 years ago. Our study proposed a new modeling approach to marrow dosimetry---the Paired Image Radiation Transport (PIRT) model---that properly accounts for both the trabecular microstructure and the cortical macrostructure of each skeletal site in a reference male radionuclide patient. The PIRT model, as applied within EGSnrc, requires two sets of input geometry: (1) an infinite voxel array of segmented microimages of the spongiosa acquired via microCT; and (2) a segmented ex-vivo CT image of the bone site macrostructure defining both the spongiosa (marrow, endosteum, and trabeculae) and the cortical bone cortex. Our study also proposed revising reference skeletal dosimetry models for the adult male cancer patient. Skeletal site-specific radionuclide S values were obtained for a 66-year-old male reference patient. The derivation for total skeletal S values were unique in that the necessary skeletal mass and electron dosimetry calculations were formulated from the same source bone site over the entire skeleton. We conclude that paired-image radiation-transport techniques provide an adoptable method by which the intricate, anisotropic trabecular microstructure of the skeletal site; and the physical size and shape of the bone can be handled together, for improved compilation of reference radionuclide S values. We also conclude that this comprehensive model for the adult male cancer patient should be implemented for use in patient-specific calculations for radionuclide dosimetry of the skeleton.
Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E
2018-07-01
In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kinematics of our Galaxy from the PMA and TGAS catalogues
NASA Astrophysics Data System (ADS)
Velichko, Anna B.; Akhmetov, Volodymyr S.; Fedorov, Peter N.
2018-04-01
We derive and compare kinematic parameters of the Galaxy using the PMA and Gaia TGAS data. Two methods are used in calculations: evaluation of the Ogorodnikov-Milne model (OMM) parameters by the least square method (LSM) and a decomposition on a set of vector spherical harmonics (VSH). We trace dependencies on the distance of the derived parameters including the Oort constants A and B and the rotational velocity of the Galaxy V rot at the Solar distance for the common sample of stars of mixed spectral composition of the PMA and TGAS catalogues. The distances were obtained from the TGAS parallaxes or from reduced proper motions for fainter stars. The A, B and V rot parameters derived from proper motions of both catalogues used show identical behaviour but the values are systematically shifted by about 0.5 mas/yr. The Oort B parameter derived from the PMA sample of red giants shows gradual decrease with increasing the distance while the Oort A has a minimum at about 2 kpc and then gradually increases. As for models chosen for calculations, first, we confirm conclusions of other authors about the existence of extra-model harmonics in the stellar velocity field. Secondly, not all parameters of the OMM are statistically significant, and the set of parameters depends on the stellar sample used.
Debris flow risk mapping on medium scale and estimation of prospective economic losses
NASA Astrophysics Data System (ADS)
Blahut, Jan; Sterlacchini, Simone
2010-05-01
Delimitation of potential zones affected by debris flow hazard, mapping of areas at risk, and estimation of future economic damage provides important information for spatial planners and local administrators in all countries endangered by this type of phenomena. This study presents a medium scale (1:25 000 - 1: 50 000) analysis applied in the Consortium of Mountain Municipalities of Valtellina di Tirano (Italian Alps, Lombardy Region). In this area a debris flow hazard map was coupled with the information about the elements at risk to obtain monetary values of prospective damage. Two available hazard maps were obtained from GIS medium scale modelling. Probability estimations of debris flow occurrence were calculated using existing susceptibility maps and two sets of aerial images. Value to the elements at risk was assigned according to the official information on housing costs and land value from the Territorial Agency of Lombardy Region. In the first risk map vulnerability values were assumed to be 1. The second risk map uses three classes of vulnerability values qualitatively estimated according to the debris flow possible propagation. Risk curves summarizing the possible economic losses were calculated. Finally these maps of economic risk were compared to maps derived from qualitative evaluation of the values of the elements at risk.
Freshwater Mussel Shell δ13C Values as a Proxy for δ13CDIC in a Polluted, Temperate River
NASA Astrophysics Data System (ADS)
Graniero, L. E.; Gillikin, D. P.; Surge, D. M.
2017-12-01
Freshwater mussel shell δ13C values have been examined as an indicator of ambient δ13C composition of dissolved inorganic carbon (DIC) in temperate rivers. However, shell δ13C values may be obscured by the assimilation of respired, metabolic carbon (CM) derived from the organism's diet. Water δ18O and δ13CDIC values were collected fortnightly from August 2015 through July 2017 from three sites (one agricultural, one downstream of a wastewater treatment plant, one urban) in the Neuse River, NC to test the reliability of Elliptio complanata shell δ13C values as a proxy for δ13CDIC values. Muscle, mantle, gill, and stomach δ13C values were analyzed to approximate the %CM incorporated into the shell. All tissue δ13C values were within 2‰ of each other, which equates to a ±1% difference in calculated %CM. As such, muscle tissue δ13C values will be used for calculating the %CM, because they have the slowest turnover rate of the tissues sampled. Water temperature and δ18O values were used to calculate predicted aragonite shell δ18O values (δ18Oar) based on the aragonite-water fractionation relationship. To assign dates to each shell microsample, predicted δ18Oar values were compared to high-resolution serially sampled shell values. Consistent with previous studies, E. complanata cease growth in winter when temperatures are below about 12ºC. Preliminary results indicate that during the growing season, shell δ13C values are lower than expected equilibrium values, reflecting the assimilation of 15% CM, on average. Shell δ13C values are not significantly different than δ13CDIC values, but do not capture the full range of δ13CDIC values during each growing season. Thus, δ13C values of E. complanata shells can be used to reliably reconstruct past δ13CDIC values within 2‰ of coeval values. Further research will investigate how differing land-use affects the relationship between shell δ13C, CM, and δ13CDIC values.
A trade-off solution between model resolution and covariance in surface-wave inversion
Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.
2010-01-01
Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.
Ma, Q; Tipping, R H; Boulet, C
2006-01-07
By introducing the coordinate representation, the derivation of the perturbation expansion of the Liouville S matrix is formulated in terms of classically behaved autocorrelation functions. Because these functions are characterized by a pair of irreducible tensors, their number is limited to a few. They represent how the overlaps of the potential components change with a time displacement, and under normal conditions, their magnitudes decrease by several orders of magnitude when the displacement reaches several picoseconds. The correlation functions contain all dynamical information of the collision processes necessary in calculating half-widths and shifts and can be easily derived with high accuracy. Their well-behaved profiles, especially the rapid decrease of the magnitude, enables one to transform easily the dynamical information contained in them from the time domain to the frequency domain. More specifically, because these correlation functions are well time limited, their continuous Fourier transforms should be band limited. Then, the latter can be accurately replaced by discrete Fourier transforms and calculated with a standard fast Fourier transform method. Besides, one can easily calculate their Cauchy principal integrations and derive all functions necessary in calculating half-widths and shifts. A great advantage resulting from introducing the coordinate representation and choosing the correlation functions as the starting point is that one is able to calculate the half-widths and shifts with high accuracy, no matter how complicated the potential models are and no matter what kind of trajectories are chosen. In any case, the convergence of the calculated results is always guaranteed. As a result, with this new method, one can remove some uncertainties incorporated in the current width and shift studies. As a test, we present calculated Raman Q linewidths for the N2-N2 pair based on several trajectories, including the more accurate "exact" ones. Finally, by using this new method as a benchmark, we have carried out convergence checks for calculated values based on usual methods and have found that some results in the literature are not converged.
Interpreting benthic oxygen levels in mudrocks: A new approach
NASA Astrophysics Data System (ADS)
Wignall, Paul B.; Myers, Keith J.
1988-05-01
Quantified paleoecology and gamma-ray spectrometry have been applied in the analysis of the Kimmeridge Clay, a highly organic-rich British Jurassic mudrock. Decreasing benthic oxygen trends are reflected in decreasing species richness and dominance-diversity values. Similarly, the degree of fragmentation of the benthos reflects the benthic energy levels and covaries with benthic oxygen. The calculation of authigenic uranium values from data gathered by gamma-ray spectrometry shows enrichment in more oxygen-deficient environments. The good correlation between the independently derived paleoecological and authigenic U data indicates the importance of these techniques in environmental analysis of marine petroleum source rocks.
Hemingway, B.S.; Robie, R.A.; Apps, J.A.
1991-01-01
Heat capacity measurements are reported for a well-characterized boehmite that differ significantly from results reported earlier by Shomate and Cook (1946) for a monohydrate of alumina. It is suggested that the earlier measurements were made on a sample that was a mixture of phases and that use of that heat-capacity and derived thermodynamic data be discontinued. The entropy of boehmite derived in this study is 37.19 ?? 0.10 J/(mol.K) at 298.15 K. Based on our value for the entropy and accepting the recommended Gibbs free energy for Al(OH)-4, the Gibbs free energy and enthalpy of formation of boehmite are calculated to be -918.4 ?? 2.1 and -996.4 ?? 2.2 kJ/mol, respectively, from solubility data for boehmite. The Gibbs energy for boehmite is unchanged from that given by Hemingway et al. (1978). -from Authors
NASA Astrophysics Data System (ADS)
Tanaka, Masaomi; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Shinji; Takechi, Maya; Mihara, Mototsugu; Matsuta, Kensaku; Morita, Yusuke; Kamisho, Yasuto; Ohno, Junichi; Kanbe, Ryosuke; Yamaoka, Shintaro; Watanabe, Kota; Ohtsubo, Takashi; Izumikawa, Takuji; Nagashima, Masayuki; Honma, Akira; Murooka, Daiki; Suzuki, Takashi; Yamaguchi, Takayuki; Kohno, Junpei; Yamaki, Sayaka; Matsunaga, Satoshi; Kinno, Shunpei; Taguchi, Yoshimasa; Kitagawa, Atsushi; Fukuda, Shigekazu; Sato, Shinji
We utilized the proton-neutron asymmetry of nucleon-nucleon total cross sections in the intermediate energy region (σ pn ne σ pp( nn )) to obtain the information of proton and neutron distributions respectively. We have measured reaction cross sections (σR) for 14B and 8He on proton targets as isospin asymmetric targets in addition to symmetric ones. Proton and neutron density distributions were derived respectively through the χ2-fitting procedure with the modified Glauber calculation. The result suggests a necessity for 14B of a long tail, and also a necessity for 8He of a neutron tail. Root-mean-square proton, neutron and matter radii for 14B and 8He are also derived. Each radius is consistent with some of the other experimental values and also with some of the several theoretical values.
NASA Astrophysics Data System (ADS)
Backofen, Joseph E.
2005-07-01
This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.
Short communication; Formula for the calculation of ground temperature at 1 M depth in Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tezcan, A.K.
1992-06-01
This paper reports that the formula has been found by using the yearly averages of the temperatures at 1 m depth measured in 193 meteorological stations, distributed all over Turkey. It has thus become possible to determine the regional temperature value at 1 m depth at any point in Turkey, if the latitude, longitude and elevation are known. The values, calculated by the formula, can contribute to geothermal exploration in Turkey by providing values that can be compared with the observed ones, and, by becoming second values for the calculation of geothermal gradients where only single downhole temperatures are available.more » The formula has been evolved by expressing the temperatures as the linear function of latitude (La), longitude (Lo) and elevation (H): T = a + b [center dot] La + c [center dot] Lo + d [center dot] H. The derived four least square equations are a [center dot] n + b [center dot] [Sigma](La) + c [center dot] [Sigma](lo) + d [center dot] [Sigma]H = [Sigma]T a [center dot] [Sigma](La) + b [center dot] [Sigma](La)[sup 2] + c [center dot] [Sigma](La)(Lo) + d [center dot] [Sigma]H(La) =[Sigma]T(La) a [center dot] [Sigma](Lo) + b [center dot] [Sigma](La)(Lo) + c [center dot] [Sigma](Lo)[sup 2] + d [center dot] [Sigma]H(Lo) = [Sigma]T(Lo) a[center dot] [Sigma]H + b [center dot] [Sigma]H(La) + c [center dot] [Sigma](Lo) + d [center dot] [Sigma]H[sup 2] = [Sigma]TH where n is the number of data sets. The calculation of sigma values and the solution of the set of equations have been performed by means of a personal computer. The resulting formula is: T = 57.487 [minus] 1.078 La + 0.102 Lo [minus] 0.00488H where latitude and longitude are expressed in degrees, and elevation in meters. The regional value at Ankara (latitude 39.9[degrees], longitude 32.9[degrees], elevation 894 m) is calculated as 13.5[degrees]C (the measured value at 1 m depth is 14.6[degrees]C) and at Adana.« less
Sundar, Lalith Ks; Muzik, Otto; Rischka, Lucas; Hahn, Andreas; Rausch, Ivo; Lanzenberger, Rupert; Hienert, Marius; Klebermass, Eva-Maria; Füchsel, Frank-Günther; Hacker, Marcus; Pilz, Magdalena; Pataraia, Ekaterina; Traub-Weidinger, Tatjana; Beyer, Thomas
2018-01-01
Absolute quantification of PET brain imaging requires the measurement of an arterial input function (AIF), typically obtained invasively via an arterial cannulation. We present an approach to automatically calculate an image-derived input function (IDIF) and cerebral metabolic rates of glucose (CMRGlc) from the [18F]FDG PET data using an integrated PET/MRI system. Ten healthy controls underwent test-retest dynamic [18F]FDG-PET/MRI examinations. The imaging protocol consisted of a 60-min PET list-mode acquisition together with a time-of-flight MR angiography scan for segmenting the carotid arteries and intermittent MR navigators to monitor subject movement. AIFs were collected as the reference standard. Attenuation correction was performed using a separate low-dose CT scan. Assessment of the percentage difference between area-under-the-curve of IDIF and AIF yielded values within ±5%. Similar test-retest variability was seen between AIFs (9 ± 8) % and the IDIFs (9 ± 7) %. Absolute percentage difference between CMRGlc values obtained from AIF and IDIF across all examinations and selected brain regions was 3.2% (interquartile range: (2.4-4.3) %, maximum < 10%). High test-retest intravariability was observed between CMRGlc values obtained from AIF (14%) and IDIF (17%). The proposed approach provides an IDIF, which can be effectively used in lieu of AIF.
NASA Astrophysics Data System (ADS)
Braud, A.; Girard, S.; Doualan, J. L.; Thuau, M.; Moncorgé, R.; Tkachuk, A. M.
2000-02-01
Energy-transfer processes have been quantitatively studied in various Tm:Yb-doped fluoride crystals. A comparison between the three host crystals which have been examined (KY3F10, LiYF4, and BaY2F8) shows clearly that the efficiency of the Yb-->Tm energy transfers is larger in KY3F10 than in LiYF4 or BaY2F8. The dependence of the energy-transfer parameters upon the codopant concentrations has been experimentally measured and compared with the results calculated on the basis of migration-assisted energy-transfer models. Using these energy-transfer parameters and a rate equation model, we have performed a theoretical calculation of the laser thresholds for the 3H4-->3F4 and 3H4-->3H5 laser transitions of the Tm ion around 1.5 and 2.3 μm, respectively. Laser experiments performed at 1.5 μm in Yb:Tm:LiYF4 then led to laser threshold values in good agreement with those derived theoretically. Based on these results, optimized values for the Yb and Tm dopant concentrations for typical values of laser cavity and pump modes were finally derived to minimize the threshold pump powers for the laser transitions around 1.5 and 2.3 μm.
Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf
2015-09-01
The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 μM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 μM) and Ki' (53 μM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT.
Lamare, Frederic; Hinz, Rainer; Gaemperli, Oliver; Pugliese, Francesca; Mason, Justin C; Spinks, Terence; Camici, Paolo G; Rimoldi, Ornella E
2011-01-01
We investigated whether PET/CT angiography using 11C-(R)-PK11195, a selective ligand for the translocator protein (18 kDa) expressed in activated macrophages, could allow imaging and quantification of arterial wall inflammation in patients with large-vessel vasculitis. Seven patients with systemic inflammatory disorders (3 symptomatic patients with clinical suspicion of active vasculitis and 4 asymptomatic patients) underwent PET with 11C-(R)-PK11195 and CT angiography to colocalize arterial wall uptake of 11C-(R)-PK11195. Tissue regions of interest were defined in bone marrow, lung parenchyma, wall of the ascending aorta, aortic arch, and descending aorta. Blood-derived and image-derived input functions (IFs) were generated. A reversible 1-tissue compartment with 2 kinetic rate constants and a fractional blood volume term were used to fit the time-activity curves to calculate total volume of distribution (VT). The correlation between VT and standardized uptake values was assessed. VT was significantly higher in symptomatic than in asymptomatic patients using both image-derived total plasma IF (0.55±0.15 vs. 0.27±0.12, P=0.009) and image-derived parent plasma IF (1.40±0.50 vs. 0.58±0.25, P=0.018). A good correlation was observed between VT and standardized uptake value (R=0.79; P=0.03). 11C-(R)-PK11195 imaging allows visualization of macrophage infiltration in inflamed arterial walls. Tracer uptake can be quantified with image-derived IF without the need for metabolite corrections and evaluated semiquantitatively with standardized uptake values.
Robinson, Angela; Spencer, Anne; Moffatt, Peter
2015-04-01
There has been recent interest in using the discrete choice experiment (DCE) method to derive health state utilities for use in quality-adjusted life year (QALY) calculations, but challenges remain. We set out to develop a risk-based DCE approach to derive utility values for health states that allowed 1) utility values to be anchored directly to normal health and death and 2) worse than dead health states to be assessed in the same manner as better than dead states. Furthermore, we set out to estimate alternative models of risky choice within a DCE model. A survey was designed that incorporated a risk-based DCE and a "modified" standard gamble (SG). Health state utility values were elicited for 3 EQ-5D health states assuming "standard" expected utility (EU) preferences. The DCE model was then generalized to allow for rank-dependent expected utility (RDU) preferences, thereby allowing for probability weighting. A convenience sample of 60 students was recruited and data collected in small groups. Under the assumption of "standard" EU preferences, the utility values derived within the DCE corresponded fairly closely to the mean results from the modified SG. Under the assumption of RDU preferences, the utility values estimated are somewhat lower than under the assumption of standard EU, suggesting that the latter may be biased upward. Applying the correct model of risky choice is important whether a modified SG or a risk-based DCE is deployed. It is, however, possible to estimate a probability weighting function within a DCE and estimate "unbiased" utility values directly, which is not possible within a modified SG. We conclude by setting out the relative strengths and weaknesses of the 2 approaches in this context. © The Author(s) 2014.
Jupiter's Great Red Spot as a shallow water system
NASA Technical Reports Server (NTRS)
Dowling, Timothy E.; Ingersoll, Andrew P.
1989-01-01
Voyager cloud-top velocity data for Jupiter's Great Red Spot (GRS) is used to derive the bottom topography up to a constant that depends on the unknown radius of deformation. The bottom topography is inferred from the Bernoulli streamfunction, kinetic energy per unit mass, and absolute vorticity values derived from the velocity data. The results are used to calculate potential vorticity versus latitude far from the vortex. It is found that the deep atmosphere is in differential motion and that the far-field potential vorticity gradient changes sign at several latitudes. Numerical experiments are conducted to study the time-dependent behavior of the shallow water analog of Jupiter's analog.
NASA Astrophysics Data System (ADS)
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.
2018-01-01
We discuss the q-deformed algebra and study the Schrödinger equation in commutative and noncommutative spaces, under an external magnetic field. In this work, we obtain the energy spectrum by an analytical method and the thermodynamic properties of the system by using the q-deformed superstatistics are calculated. Actually, we derive a generalized version of the ordinary superstatistic for the non-equilibrium systems. Also, different effective Boltzmann factor descriptions are derived. In addition, we discuss about the results for various values of θ in commutative and noncommutative spaces and, to illustrate the results, some figures are plotted.
Similarity Laws for the Lines of Ideal Free Energy and Chemical Potential in Supercritical Fluids.
Apfelbaum, E M; Vorob'ev, V S
2017-09-21
We have found the curves on the density-temperature plane, along which the values of free energy and chemical potential correspond to ideal gas quantities. At first, we have applied the van der Waals equation to construct them and to derive their equations. Then we have shown that the same lines for real substances (Ar, N 2 , CH 4 , SF 6 , H 2 , H 2 O) and for the model Lennard-Jones system constructed on the basis of the measurements data and calculations are well matched with the derived equations. The validity and deviations from the obtained similarity laws are discussed.
Design-Parameters Setup for Power-Split Dual-Regime IVT
NASA Astrophysics Data System (ADS)
Preda, Ion; Ciolan, Gheorghe; Covaciu, Dinu
2017-10-01
To analyze the working possibilities of power-split infinitely variable transmissions (IVTs) it is necessary to follow a systematic approach. The method proposed in this paper consists of generating a block diagram of the transmission and then, based on this diagram, to derive the kinematics and dynamics equations of the transmission. For an actual numerical case, the derived equations are used to find characteristic values of the transmission components (gear and chain drives, planetary units) necessary to calculate the speed ratios, the speeds, torques and powers acting on the shafts and coupling (control) elements, and even to estimate the overall efficiency of the transmission.
A Coupled Human-Natural Systems Approach to Valuing Natural Capital
NASA Astrophysics Data System (ADS)
Fenichel, E. P.; Abbott, J.; Fujitani, M.
2012-12-01
The idea that geological and biological natural resources provide ecosystem services and that the physical geological and biological stocks, referred to as ecological stocks, are forms of capital is not new, but has attracted increased attention since the Millennium Ecosystem Assessment was released in 2005. Yet, the exact meaning of these terms, the connection between natural capital and ecosystem services, and the broader links between biophysical science and economics is often vague. The conceptual connection between ecosystem services and natural capital is that ecosystem services are the flow of goods and services that people receive from natural resources, and these flows are generated by an endowment of ecological stocks. While individuals derive benefits from a flow of services, the extent that people value the underlying natural capital asset depends on institutional arrangements in addition to the ecological properties of the stocks, because the value of capital relates to the future flow of services. A coupled human-natural systems modeling approach can help understand the value of natural capital in addition to helping scientist and policy makers better manage earth's resources. The value of a capital asset is the net present value of the flow of service, often calculated by the NPV rule. The NPV rule almost always assumes perfectly functioning markets for services and capital, but for many important ecosystem services such markets simply do not exist. The NPV rule can be derived by maximizing the net present value of capital. Indeed, the NPV rule comes from the adjoint condition of an optimal control problem where the flow of services from the capital asset are the benefits, and the dynamics of the capital stock are the constraints. Yet, trying to apply the traditional NPV rule to ecosystem services and natural capital can be frustrated by not knowing where pieces of the puzzle fit. We compare the standard NPV rule with a modified NPV rule derived by maximizing the net present value of ecosystem services generated outside a market. To do this, we develop a formal bioeconomic model. Our approach enables us to show explicitly how ecological dynamics and the discount rate matter directly for the value of natural capital, even if they do not directly factor into the ecosystem service value. Our approach also highlights where human behavior and institutions factor into a modified NPV rule applicable to ecosystem services and natural capital. Our analysis clarifies the links between ecosystem services, as a measure of value; ecological dynamics and their link to the discount rate; and how the NPV rule is modified for natural capital. We use recreational fisheries as an example of a coupled human-natural system to explore the implications of our findings. First, our derivation of an NPV rule for natural capital shows how standard non-market valuation techniques can be combined with ecological knowledge about a system to calculate the value of the natural capital. We emphasize that the value of natural capital maybe substantially different from the value of the ecosystem service. Furthermore, the value of increasing holdings in a recovering ecosystem is greater than increasing holdings in pristine ecosystems, all else equal. We also show how different institutional arrangements may strongly influence the social value of natural capital.
The varying cosmological constant: a new approximation to the Friedmann equations and universe model
NASA Astrophysics Data System (ADS)
Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.
2018-05-01
We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.
Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P
2010-03-18
This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.
Zhang, Peng; Li, Xiao-Ming; Mao, Xin-Xin; Mándi, Attila; Kurtán, Tibor; Wang, Bin-Gui
2016-01-01
A new indolyl-6,10b-dihydro-5a H -[1]benzofuro[2,3- b ]indole derivative, varioloid A ( 1 ), was isolated from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Its structure was elucidated on the basis of extensive analysis of 1D and 2D NMR data and the absolute configuration was determined by time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculations. A similar compound, whose planar structure was previously described but the relative and absolute configurations and 13 C NMR data were not reported, was also identified and was tentatively named as varioloid B ( 2 ). Both compounds 1 and 2 exhibited cytotoxicity against A549, HCT116, and HepG2 cell lines, with IC 50 values ranging from 2.6 to 8.2 µg/mL.
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.
2002-01-01
An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Holographic superconductivity from higher derivative theory
NASA Astrophysics Data System (ADS)
Wu, Jian-Pin; Liu, Peng
2017-11-01
We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.
Sangeetha, S; Sujatha, C M; Manamalli, D
2014-01-01
In this work, anisotropy of compressive and tensile strength regions of femur trabecular bone are analysed using quaternion wavelet transforms. The normal and abnormal femur trabecular bone radiographic images are considered for this study. The sub-anatomic regions, which include compressive and tensile regions, are delineated using pre-processing procedures. These delineated regions are subjected to quaternion wavelet transforms and statistical parameters are derived from the transformed images. These parameters are correlated with apparent porosity, which is derived from the strength regions. Further, anisotropy is also calculated from the transformed images and is analyzed. Results show that the anisotropy values derived from second and third phase components of quaternion wavelet transform are found to be distinct for normal and abnormal samples with high statistical significance for both compressive and tensile regions. These investigations demonstrate that architectural anisotropy derived from QWT analysis is able to differentiate normal and abnormal samples.
NASA Astrophysics Data System (ADS)
Godin, Paul J.; Le Bris, Karine; Strong, Kimberly
2017-12-01
Absorption cross-sections of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) were derived from Fourier transform infrared spectra recorded from 530 to 3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 300-362 K. These results were compared to previously published experimental measurements made at room temperature and to a theoretical spectrum from density functional theory (DFT) calculations. Good agreement is found between the experimentally derived results, DFT calculations, and previously published data. The only temperature dependence observed was in the amplitude of some of the absorption peaks due to the changing ratio of the stable conformations of HFIP. This temperature dependence does not result in a significant trend in integrated band strength as a function of temperature. The average value for integrated band strength is found to be (2.649 ± 0.065)x10-16 cm molecule-1 for HFIP over the spectral range of 595 to 3010 cm-1. Radiative efficiency (RE) and the global warming potential (GWP) for HFIP were also derived. A RE of 0.293 ± 0.059 Wm-2ppbv-1 is derived, which leads to a GWP100 of 188 in the range of 530 to 3000 cm-1. The DFT calculation is linearly adjusted to match the experimental spectrum. Using this adjusted DFT spectrum to expand the range below 530 to 0 cm-1 , increases the RE to 0.317 ± 0.063 Wm-2ppbv-1 and the GWP100 to 203.
Measurements of (60)Co in massive steel samples exposed to the Hiroshima atomic bomb explosion.
Gasparro, Joël; Hult, Mikael; Marissens, Gerd; Hoshi, Masaharu; Tanaka, Kenichi; Endo, Satoru; Laubenstein, Matthias; Dombrowski, Harald; Arnold, Dirk
2012-04-01
To study discrepancies in retrospective Hiroshima dosimetry, the specific activity of (60)Co in 16 steel samples from Hiroshima was measured using gamma-ray spectrometry in underground laboratories. There is general agreement between these new activity measurements and the specific activities derived from previously calculated dose values on the one hand and former measurements of samples gathered at distances less than 1,000 m from the center of the explosion (< 1,000 m slant range) on the other. It was found that activities at long range (> 1,300 m slant range) were mainly cosmogenically induced. Furthermore, at long range, these results are in disagreement with older measurements whose specific activity values were 10 to 100 times higher than predicted by computer model calculations in DS86 and DS02. As a consequence, the previously reported discrepancy is not confirmed.
Nitric oxide concentration near the mesopause as deduced from ionospheric absorption measurements
NASA Astrophysics Data System (ADS)
Lastovicka, J.
The upper-D-region NO concentration is calculated on the basis of published 2775-kHz-absorption, Lyman-alpha (OSO-5), and X-ray (Solrad-9) data obtained over Central Europe in June-August 1969, 1970, and 1972. Ionization-rate and radio-wave-absorption profiles for solar zenith angles of 60, 70 and 40 deg are computed, presented graphically, and compared with model calculations to derive the NO-concentration correction coefficients necessary to make the Lyman-alpha/X-ray flux ratios of the models of Meira (1971), Baker et al. (1977), Tohmatsu and Iwagami (1976), and Tisone (1973) agree with the observed ratios. Values of the corrected NO concentration include 6.5 and 8.5 x 10 to the 13th/cu m at 78 and 90 km, respectively. The values are shown to be higher than those of standard models but within the range of observed concentrations.
Single and double beta decays in the A=100, A=116 and A=128 triplets of isobars
NASA Astrophysics Data System (ADS)
Suhonen, J.; Civitarese, O.
2014-04-01
In this paper we analyze the ground-state-to-ground-state two-neutrino double beta (2νββ) decays and single EC and β- decays for the A=100 (100Mo-100Tc-100Ru), A=116 (116Cd-116In-116Sn) and A=128 (128Te-128I-128Xe) triplets of isobars. We use the proton-neutron quasiparticle random-phase approximation (pnQRPA) with realistic G-matrix-derived effective interactions in very large single-particle bases. The purpose is to access the effective value of the axial-vector coupling constant gA in the pnQRPA calculations. We show that the three triplets of isobars represent systems with different characteristics of orbital occupancies and cumulative 2νββ nuclear matrix elements. Our analysis points to a considerably quenched averaged effective value of
Onset of η-nuclear binding in a pionless EFT approach
NASA Astrophysics Data System (ADS)
Barnea, N.; Bazak, B.; Friedman, E.; Gal, A.
2017-08-01
ηNNN and ηNNNN bound states are explored in stochastic variational method (SVM) calculations within a pionless effective field theory (EFT) approach at leading order. The theoretical input consists of regulated NN and NNN contact terms, and a regulated energy dependent ηN contact term derived from coupled-channel models of the N* (1535) nucleon resonance. A self consistency procedure is applied to deal with the energy dependence of the ηN subthreshold input, resulting in a weak dependence of the calculated η-nuclear binding energies on the EFT regulator. It is found, in terms of the ηN scattering length aηN, that the onset of binding η 3He requires a minimal value of ReaηN close to 1 fm, yielding then a few MeV η binding in η 4He. The onset of binding η 4He requires a lower value of ReaηN, but exceeding 0.7 fm.
Hamaker constants of iron oxide nanoparticles.
Faure, Bertrand; Salazar-Alvarez, German; Bergström, Lennart
2011-07-19
The Hamaker constants for iron oxide nanoparticles in various media have been calculated using Lifshitz theory. Expressions for the dielectric responses of three iron oxide phases (magnetite, maghemite, and hematite) were derived from recently published optical data. The nonretarded Hamaker constants for the iron oxide nanoparticles interacting across water, A(1w1) = 33 - 39 zJ, correlate relatively well with previous reports, whereas the calculated values in nonpolar solvents (hexane and toluene), A(131) = 9 - 29 zJ, are much lower than the previous estimates, particularly for magnetite. The magnitude of van der Waals interactions varies significantly between the studied phases (magnetite < maghemite < hematite), which highlights the importance of a thorough characterization of the particles. The contribution of magnetic dispersion interactions for particle sizes in the superparamagnetic regime was found to be negligible. Previous conjectures related to colloidal stability and self-assembly have been revisited on the basis of the new Lifshitz values of the Hamaker constants.
NASA Astrophysics Data System (ADS)
Dolai, Bholanath; Bhaumik, Atanu; Pramanik, Nabakumar; Ghosh, Kalyan Sundar; Atta, Ananta Kumar
2018-07-01
Naphthaldimine-based glucose derivatives 1 and 3 have been designed, synthesized and characterized. In aqueous media, glucose derivative 1, exhibited high selectivity and sensitivity towards Cu2+ ion in comparison with various cations and anions. In presence of Cu2+, sensor 1 has provided significant naked-eye detectable color change. The formation of 1-Cu2+ complex has been analyzed by UV-vis spectroscopy, 1H NMR titration experiments, mass spectrometry and DFT (density functional theory) calculations. Limit of detection of 1 as a colorimetric sensor for Cu2+ ion is found to be 0.23 μM, much lower than recommended value of World Health Organization (WHO), which makes to Cu2+ sensor 1 more effective and useful.
A Probabilistic Approach to Uncertainty Analysis in NTPR Radiation Dose Assessments
2009-11-01
Zeman, members of the Subcommittee on Dose Reconstruction of the Veterans’ Advisory Board on Dose Reconstruction (VBDR) for their critical review of...production and decay of fission products, activation products, and actinides . (It is generally assumed in these calculations that no 30 Time...histories”), and on each history selecting random values from each of the pdf’s, they were able to conduct “numerical experiments” and derive critical
Hofland, J; Tenbrinck, R; van Eijck, C H J; Eggermont, A M M; Gommers, D; Erdmann, W
2003-04-01
Agreement between continuously measured oxygen consumption during quantitative closed system anaesthesia and intermittently Fick-derived calculated oxygen consumption was assessed in 11 patients undergoing simultaneous occlusion of the aorta and inferior vena cava for hypoxic treatment of pancreatic cancer. All patients were mechanically ventilated using a quantitative closed system anaesthesia machine (PhysioFlex) and had pulmonary and radial artery catheters inserted. During the varying haemodynamic conditions that accompany this procedure, 73 paired measurements were obtained. A significant correlation between Fick-derived and closed system-derived oxygen consumption was found (r = 0.78, p = 0.006). Linear regression showed that Fick-derived measure = [(1.19 x closed system derived measure) - 72], with the overall closed circuit-derived values being higher. However, the level of agreement between the two techniques was poor. Bland-Altman analysis found that the bias was 36 ml.min(-1), precision 39 ml.min(-1), difference between 95% limits of agreement 153 ml.min(-1). Therefore, we conclude that the two measurement techniques are not interchangeable in a clinical setting.
Gnaiger, E; Bitterlich, G
1984-06-01
Carbohydrate, lipid, and protein compositions are stoichiometrically related to organic CHN (carbon, hydrogen, nitrogen) contents. Elemental CHN analyses of total biomass and ash, therefore, provide a basis for the calculation of proximate biochemical composition and bomb caloric value. The classical nitrogen to protein conversion factor (6.25) should be replaced by 5.8±0.13. A linear relation exists between the mass fraction of non-protein carbon and the carbohydrate and lipid content. Residual water in dry organic matter can be estimated with the additional information derived from hydrogen measurements.The stoichiometric CHN method and direct biochemical analysis agreed within 10% of ash-free dry biomass (for muscle, liver and fat tissue of silver carp; gut contents composed of detritus and algae; commercial fish food). The detrital material, however, had to be corrected for non-protein nitrogen.A linear relationship between bomb caloric value and organic carbon fractions was derived on the basis of thermodynamic and stoichiometric principles, in agreement with experimental data published for bacteria, algae, protozoa and invertebrates. The highly automatic stoichiometric CHN method for the separation of nutrient contents in biomass extends existing ecophysiological concepts for the construction of balanced carbon and nitrogen, as well as biochemical and energy budgets.
Determination of solute descriptors by chromatographic methods.
Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K
2009-10-12
The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.
Chou, I.-Ming; Seal, R.R.
2003-01-01
Epsomite (MgSO(4).7H(2)O) and hexahydrite (MgSO(4).6H(2)O) are common minerals found in marine evaporite deposits, in saline lakes as precipitates, in weathering zones of coal and metallic deposits, in some soils and their efflorescences, and possibly on the surface of Europa as evaporite deposits. Thermodynamic properties of these two minerals reported in the literature are in poor agreement. In this study, epsomite-hexahydrite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 25 and 45 degrees C. Results obtained for the reaction epsomite = hexahydrite + H(2)O, as demonstrated by very tight reversals along each humidity buffer, can be represented by ln K(+/- 0.012) = 20.001 - 7182.07/T, where K is the equilibrium constant, and T is temperature in Kelvin. The derived standard Gibbs free energy of reaction is 10.13 +/- 0.07 kJ/mol, which is essentially the same value as that calculated from vapor pressure measurements reported in the literature. However, this value is at least 0.8 kJ/mol lower than those calculated from the data derived mostly from calorimetric measurements.
Traas, T P; Luttik, R; Jongbloed, R H
1996-08-01
In previous studies, the risk of toxicant accumulation in food chains was used to calculate quality criteria for surface water and soil. A simple algorithm was used to calculate maximum permissable concentrations [MPC = no-observed-effect concentration/bioconcentration factor(NOEC/BCF)]. These studies were limited to simple food chains. This study presents a method to calculate MPCs for more complex food webs of predators. The previous method is expanded. First, toxicity data (NOECs) for several compounds were corrected for differences between laboratory animals and animals in the wild. Second, for each compound, it was assumed these NOECs were a sample of a log-logistic distribution of mammalian and avian NOECs. Third, bioaccumulation factors (BAFs) for major food items of predators were collected and were assumed to derive from different log-logistic distributions of BAFs. Fourth, MPCs for each compound were calculated using Monte Carlo sampling from NOEC and BAF distributions. An uncertainty analysis for cadmium was performed to identify the most uncertain parameters of the model. Model analysis indicated that most of the prediction uncertainty of the model can be ascribed to uncertainty of species sensitivity as expressed by NOECs. A very small proportion of model uncertainty is contributed by BAFs from food webs. Correction factors for the conversion of NOECs from laboratory conditions to the field have some influence on the final value of MPC5, but the total prediction uncertainty of the MPC is quite large. It is concluded that the uncertainty in species sensitivity is quite large. To avoid unethical toxicity testing with mammalian or avian predators, it cannot be avoided to use this uncertainty in the method proposed to calculate MPC distributions. The fifth percentile of the MPC is suggested as a safe value for top predators.
NASA Astrophysics Data System (ADS)
Soltanmohammadi, Hossein; Osanloo, Morteza; Aghajani Bazzazi, Abbas
2009-08-01
This study intends to take advantage of a previously developed framework for mined land suitability analysis (MLSA) consisted of economical, social, technical and mine site factors to achieve a partial and also a complete pre-order of feasible post-mining land-uses. Analysis by an outranking multi-attribute decision-making (MADM) technique, called PROMETHEE (preference ranking organization method for enrichment evaluation), was taken into consideration because of its clear advantages on the field of MLSA as compared with MADM ranking techniques. Application of the proposed approach on a mined land can be completed through some successive steps. First, performance of the MLSA attributes is scored locally by each individual decision maker (DM). Then the assigned performance scores are normalized and the deviation amplitudes of non-dominated alternatives are calculated. Weights of the attributes are calculated by another MADM technique namely, analytical hierarchy process (AHP) in a separate procedure. Using the Gaussian preference function beside the weights, the preference indexes of the land-use alternatives are obtained. Calculation of the outgoing and entering flows of the alternatives and one by one comparison of these values will lead to partial pre-order of them and calculation of the net flows, will lead to a ranked preference for each land-use. At the final step, utilizing the PROMETHEE group decision support system which incorporates judgments of all the DMs, a consensual ranking can be derived. In this paper, preference order of post-mining land-uses for a hypothetical mined land has been derived according to judgments of one DM to reveal applicability of the proposed approach.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
NASA Astrophysics Data System (ADS)
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
Samin, Oliver A.; Civil, Ian D.
1999-01-01
Retrospectively calculated NISS was compared with the prospectively calculated ISS from data derived from the trauma registry of the Trauma Services of the Auckland Hospital as to which test is a better predictor of patient outcome, which is defined as the likelihood of death. The area under the curve (AUC) for ISS and NISS were computed using the non-parametric approach. AUC for ISS = 0.95835, and AUC for NISS = 0.97350, p <0.012. Misclassification rate for ISS was 2.77% and the value for NISS was 2.43%.
Sample size and power for cost-effectiveness analysis (part 1).
Glick, Henry A
2011-03-01
Basic sample size and power formulae for cost-effectiveness analysis have been established in the literature. These formulae are reviewed and the similarities and differences between sample size and power for cost-effectiveness analysis and for the analysis of other continuous variables such as changes in blood pressure or weight are described. The types of sample size and power tables that are commonly calculated for cost-effectiveness analysis are also described and the impact of varying the assumed parameter values on the resulting sample size and power estimates is discussed. Finally, the way in which the data for these calculations may be derived are discussed.
Computational study on hydroxybenzotriazoles as reagents for ester hydrolysis.
Kumar, V Praveen; Ganguly, Bishwajit; Bhattacharya, Santanu
2004-12-10
1-Hydroxybenzotriazole (1) and several of its derivatives (2-5) demonstrate potent esterolytic activity toward activated esters such as p-nitrophenyl diphenyl phosphate (PNPDPP) and p-nitrophenyl hexanoate (PNPH) in cationic micelles at pH 8.2 and 25 degrees C. The deprotonated anionic forms of such reagents act as reactive species in the hydrolysis of ester. To rationalize the origin of their nucleophilic character, a detailed ab initio/DFT computational study has been performed on 1-5 along with additional hydroxybenzotriazole derivatives (6-13). The geometries of 1-hydroxybenzotriazoles (1-13) and their corresponding bases are discussed in detail. All calculations were carried out using different methods, i.e., restricted Hartree-Fock (RHF) and hybrid ab initio/DFT (B3LYP) using 6-31G and 6-31+G basis sets. Free energy of protonation ("fep") of the 1-hydroxybenzotriazoles (1-13), free energy of solvation DeltaG(aq), and the corresponding pK(a) values have been calculated. Solvation-free energies were calculated using density functional theory and the polarizable continuum model. In addition, to examine the reliability of calculated fep, benzaldehyde oxime (14) and 2-methyl propionaldehyde oxime (15) have been computed as reference systems using different methods and basis sets, the experimental feps of which are known. Our experimental finding shows that the compound 4 is the most effective catalyst for the hydrolytic cleavages of PNPDPP and PNPH. This has been predicted from our calculated fep, pK(a), and natural charge analysis results as well. In general, the introduction of electron-withdrawing substituents on 1-hydroxybenzotriazoles facilitates the lowering of pK(a) and fep. As the pK(a) values are lowered, a greater percentage of such hydroxybenzotriazoles remain in their deprotonated, anionic forms at pH 8.2. Since the anionic forms are nucleophilic, pK(a) lowering should enhance their ester cleaving capacity. However, such substitution also decreases the charge density on the catalytically active oxido atom (O(7)). Taking these two factors together, the derivatives are only modestly better nucleophiles in comparison to the parent 1-hydroxybenzotriazole. Interestingly, the introduction of electron-donating groups does not significantly enhance the charge accumulation on the oxido atom (O(7)) of 1-hydroxybenzotriazoles.
Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki
2015-09-01
Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.
Finding Planets in K2: A New Method of Cleaning the Data
NASA Astrophysics Data System (ADS)
Currie, Miles; Mullally, Fergal; Thompson, Susan E.
2017-01-01
We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.
2015-01-01
Elastic and inelastic close-coupling (CC) calculations have been used to extract information about the corrugation amplitude and the surface vibrational atomic displacement by fitting to several experimental diffraction patterns. To model the three-dimensional interaction between the He atom and the Bi(111) surface under investigation, a corrugated Morse potential has been assumed. Two different types of calculations are used to obtain theoretical diffraction intensities at three surface temperatures along the two symmetry directions. Type one consists of solving the elastic CC (eCC) and attenuating the corresponding diffraction intensities by a global Debye–Waller (DW) factor. The second one, within a unitary theory, is derived from merely solving the inelastic CC (iCC) equations, where no DW factor is necessary to include. While both methods arrive at similar predictions for the peak-to-peak corrugation value, the variance of the value obtained by the iCC method is much better. Furthermore, the more extensive calculation is better suited to model the temperature induced signal asymmetries and renders the inclusion for a second Debye temperature for the diffraction peaks futile. PMID:26257838
Calculation of Compressible Flows past Aerodynamic Shapes by Use of the Streamline Curvature
NASA Technical Reports Server (NTRS)
Perl, W
1947-01-01
A simple approximate method is given for the calculation of isentropic irrotational flows past symmetrical airfoils, including mixed subsonic-supersonic flows. The method is based on the choice of suitable values for the streamline curvature in the flow field and the subsequent integration of the equations of motion. The method yields limiting solutions for potential flow. The effect of circulation is considered. A comparison of derived velocity distributions with existing results that are based on calculation to the third order in the thickness ratio indicated satisfactory agreement. The results are also presented in the form of a set of compressibility correction rules that lie between the Prandtl-Glauert rule and the von Karman-Tsien rule (approximately). The different rules correspond to different values of the local shape parameter square root sign YC sub a, in which Y is the ordinate and C sub a is the curvature at a point on an airfoil. Bodies of revolution, completely supersonic flows, and the significance of the limiting solutions for potential flow are also briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostou, T; Papadimitroulas, P; Kagadis, GC
2014-06-15
Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less
Lin, Blossom Yen-Ju; Chao, Te-Hsin; Yao, Yuh; Tu, Shu-Min; Wu, Chun-Ching; Chern, Jin-Yuan; Chao, Shiu-Hsiung; Shaw, Keh-Yuong
2007-04-01
Previous studies have shown the advantages of using activity-based costing (ABC) methodology in the health care industry. The potential values of ABC methodology in health care are derived from the more accurate cost calculation compared to the traditional step-down costing, and the potentials to evaluate quality or effectiveness of health care based on health care activities. This project used ABC methodology to profile the cost structure of inpatients with surgical procedures at the Department of Colorectal Surgery in a public teaching hospital, and to identify the missing or inappropriate clinical procedures. We found that ABC methodology was able to accurately calculate costs and to identify several missing pre- and post-surgical nursing education activities in the course of treatment.
NASA Astrophysics Data System (ADS)
He, Yuping
2015-03-01
We present calculations of the thermal transport coefficients of Si-based clathrates and solar perovskites, as obtained from ab initio calculations and models, where all input parameters derived from first principles. We elucidated the physical mechanisms responsible for the measured low thermal conductivity in Si-based clatherates and predicted their electronic properties and mobilities, which were later confirmed experimentally. We also predicted that by appropriately tuning the carrier concentration, the thermoelectric figure of merit of Sn and Pb based perovskites may reach values ranging between 1 and 2, which could possibly be further increased by optimizing the lattice thermal conductivity through engineering perovskite superlattices. Work done in collaboration with Prof. G. Galli, and supported by DOE/BES Grant No. DE-FG0206ER46262.
A new method to identify the foot of continental slope based on an integrated profile analysis
NASA Astrophysics Data System (ADS)
Wu, Ziyin; Li, Jiabiao; Li, Shoujun; Shang, Jihong; Jin, Xiaobin
2017-06-01
A new method is proposed to identify automatically the foot of the continental slope (FOS) based on the integrated analysis of topographic profiles. Based on the extremum points of the second derivative and the Douglas-Peucker algorithm, it simplifies the topographic profiles, then calculates the second derivative of the original profiles and the D-P profiles. Seven steps are proposed to simplify the original profiles. Meanwhile, multiple identification methods are proposed to determine the FOS points, including gradient, water depth and second derivative values of data points, as well as the concave and convex, continuity and segmentation of the topographic profiles. This method can comprehensively and intelligently analyze the topographic profiles and their derived slopes, second derivatives and D-P profiles, based on which, it is capable to analyze the essential properties of every single data point in the profile. Furthermore, it is proposed to remove the concave points of the curve and in addition, to implement six FOS judgment criteria.
QSAR Analysis of 2-Amino or 2-Methyl-1-Substituted Benzimidazoles Against Pseudomonas aeruginosa
Podunavac-Kuzmanović, Sanja O.; Cvetković, Dragoljub D.; Barna, Dijana J.
2009-01-01
A set of benzimidazole derivatives were tested for their inhibitory activities against the Gram-negative bacterium Pseudomonas aeruginosa and minimum inhibitory concentrations were determined for all the compounds. Quantitative structure activity relationship (QSAR) analysis was applied to fourteen of the abovementioned derivatives using a combination of various physicochemical, steric, electronic, and structural molecular descriptors. A multiple linear regression (MLR) procedure was used to model the relationships between molecular descriptors and the antibacterial activity of the benzimidazole derivatives. The stepwise regression method was used to derive the most significant models as a calibration model for predicting the inhibitory activity of this class of molecules. The best QSAR models were further validated by a leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. To confirm the predictive power of the models, an external set of molecules was used. High agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the derived QSAR models. PMID:19468332
NASA Astrophysics Data System (ADS)
Shi, Yarui; Wei, Huiling; Liu, Yufang
2015-03-01
Tetraazaperopyrenes (TAPPs) derivatives are high-performance n-type organic semiconductor material families with the remarkable long-term stabilities. The charge carrier mobilities in TAPPs derivatives crystals were calculated by the density functional theory (DFT) method combined with the Marcus-Hush electron-transfer theory. The existence of considerable C-H…F-C bonding defines the conformation of the molecular structure and contributes to its stability. We illustrated how it is possible to control the electronic and charge-transport parameters of TAPPs derivatives as a function of the positions, a type of the substituents. It is found that the core substitution of TAPPs has a drastic influence on the charge-transport mobilities. The maximum electron mobility value of the core-brominated 2,9-bis (perfluoroalkyl)-substituted TAPPs is 0.521 cm2 V-1 s-1, which appear in the orientation angle 95° and 275°. The results demonstrate that the TAPPs with bromine substituents in ortho positions exhibit the best charge-transfer efficiency among the four different TAPP derivatives.
Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential
NASA Astrophysics Data System (ADS)
Hrtánková, Jaroslava; Mareš, Jiří
2018-01-01
An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.
Nonlinear multilayers as optical limiters
NASA Astrophysics Data System (ADS)
Turner-Valle, Jennifer Anne
1998-10-01
In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Janice M.; Department of Radiation Oncology, Wayne State University, Detroit, MI; Wong, C. Oliver
2009-05-01
Purpose: To evaluate a patient-specific single photon emission computed tomography (SPECT)-based method of dose calculation for treatment planning of yttrium-90 ({sup 90}Y) microsphere selective internal radiotherapy (SIRT). Methods and Materials: Fourteen consecutive {sup 90}Y SIRTs for colorectal liver metastasis were retrospectively analyzed. Absorbed dose to tumor and normal liver tissue was calculated by partition methods with two different tumor/normal liver vascularity ratios: an average 3:1 and a patient-specific ratio derived from pretreatment technetium-99m macroaggregated albumin SPECT. Tumor response was quantitatively evaluated from fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography scans. Results: Positron emission tomography showed a significant decrease in total tumor standardizedmore » uptake value (average, 52%). There was a significant difference in the tumor absorbed dose between the average and specific methods (p = 0.009). Response vs. dose curves fit by linear and linear-quadratic modeling showed similar results. Linear fit r values increased for all tumor response parameters with the specific method (+0.20 for mean standardized uptake value). Conclusion: Tumor dose calculated with the patient-specific method was more predictive of response in liver-directed {sup 90}Y SIRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik
Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2Zr 2O 7. In a recentmore » neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2Th 2O 7'' fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. Finally, the results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.« less
Fugacity ratio estimations for high-melting rigid aromatic compounds.
Van Noort, Paul C M
2004-07-01
Prediction of the environmental fate of organic compounds requires knowledge of their tendency to stay in the gas and water phase. Vapor pressure and aqueous solubility are commonly used descriptors for these processes. Depending on the type of distribution process, values for either the pure solid state or the (subcooled) liquid state have to be used. Values for the (subcooled) liquid state can be calculated from those for the solid state, and vice versa, using the fugacity ratio. Fugacity ratios are usually calculated from the entropy of fusion and the melting point. For polycyclic aromatic hydrocarbons, chlorobenzenes, chlorodibenzofuranes, and chlorodibenzo(p)dioxins, fugacity ratios calculated using experimental entropies of fusion were systematically less than those obtained from a thermodynamically more rigorous approach using heat capacity data. The deviation was more than 1 order of magnitude at the highest melting point. The use of a universal value for the entropy of fusion of 56 J/molK resulted in either over or underestimation by up to more than 1 order of magnitude. A simple correction factor, based on the melting point only, was derived. This correction factor allowed the fugacity ratios to be estimated from experimental entropies of fusion and melting point with an accuracy better than 0.1-0.2 log units. Copyright 2004 Elsevier Ltd.
Zhou, Yu; Pearson, John E; Auerbach, Anthony
2005-12-01
We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.
Geffertová, Denisa; Ali, Syed Tahir; Šolínová, Veronika; Krečmerová, Marcela; Holý, Antonín; Havlas, Zdeněk; Kašička, Václav
2017-01-06
Capillary electrophoresis (CE) and quantum mechanical density functional theory (DFT) were applied to the investigation of the acid-base and electromigration properties of important compounds: newly synthesized derivatives of 5-azacytosine - analogs of efficient antiviral drug cidofovir. These compounds exhibit a strong antiviral activity and they are considered as potential new antiviral agents. For their characterization and application, it is necessary to know their acid-base properties, particularly the acidity constants (pK a ) of their ionogenic groups (the basic N 3 atom of the triazine ring and the acidic phosphonic acid group in the alkyl chain). First, the mixed acidity constants (pK a mix ) of these ionogenic groups and the ionic mobilities of these compounds were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities. Effective mobilities were measured by CE in a series of background electrolytes in a wide pH range (2.0-10.5), at constant ionic strength (25mM) and constant temperature (25°C). Subsequently, the pK a mix values were recalculated to thermodynamic pK a values using the Debye-Hückel theory. The thermodynamic pK a value of the NH + moiety at the N 3 atom of the triazine ring was found to be in the range 2.82-3.30, whereas the pK a of the hydrogenphosphonate group reached values from 7.19 to 7.47, depending on the structure of the analyzed compounds. These experimentally determined pK a values were in good agreement with those calculated by quantum mechanical DFT. In addition, DFT calculations revealed that from the four nitrogen atoms in the 5-azacytosine moiety, the N 3 atom of the triazine ring is preferentially protonated. Effective charges of analyzed compounds ranged from zero or close-to-zero values at pH 2 to -2 elementary charges at pH≥9. Ionic mobilities were in the range (-16.7 to -19.1)×10 -9 m 2 V -1 s -1 for univalent anions and in the interval (-26.9 to -30.3)×10 -9 m 2 V -1 s -1 for divalent anions. Copyright © 2016 Elsevier B.V. All rights reserved.
Borai, Anwar; Ichihara, Kiyoshi; Al Masaud, Abdulaziz; Tamimi, Waleed; Bahijri, Suhad; Armbuster, David; Bawazeer, Ali; Nawajha, Mustafa; Otaibi, Nawaf; Khalil, Haitham; Kawano, Reo; Kaddam, Ibrahim; Abdelaal, Mohamed
2016-05-01
This study is a part of the IFCC-global study to derive reference intervals (RIs) for 28 chemistry analytes in Saudis. Healthy individuals (n=826) aged ≥18 years were recruited using the global study protocol. All specimens were measured using an Architect analyzer. RIs were derived by both parametric and non-parametric methods for comparative purpose. The need for secondary exclusion of reference values based on latent abnormal values exclusion (LAVE) method was examined. The magnitude of variation attributable to gender, ages and regions was calculated by the standard deviation ratio (SDR). Sources of variations: age, BMI, physical exercise and smoking levels were investigated by using the multiple regression analysis. SDRs for gender, age and regional differences were significant for 14, 8 and 2 analytes, respectively. BMI-related changes in test results were noted conspicuously for CRP. For some metabolic related parameters the ranges of RIs by non-parametric method were wider than by the parametric method and RIs derived using the LAVE method were significantly different than those without it. RIs were derived with and without gender partition (BMI, drugs and supplements were considered). RIs applicable to Saudis were established for the majority of chemistry analytes, whereas gender, regional and age RI partitioning was required for some analytes. The elevated upper limits of metabolic analytes reflects the existence of high prevalence of metabolic syndrome in Saudi population.
The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are currently over 200 chemicals with high GWP reported by the Intergovernmental Panel on Climate Change, World Meteorological Organization, or Environmental Protection Agency, there may be hundreds of additional chemicals that may also have significant GWP. Evaluation of various approaches to estimate radiative efficiency (RE) and atmospheric lifetime will help to refine GWP estimates for compounds where no measured IR spectrum is available. This study compares values of RE calculated using computational chemistry techniques for 235 chemical compounds against the best available values. It is important to assess the reliability of the underlying computational methods for computing RE to understand the sources of deviations from the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models. The values derived using these models are found to be in reasonable agreement with reported RE values (though significant improvement is obtained through scaling). The effect of varying the computational method and basis set used to calculate the frequency data is also discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed values of RE in this study. Deviations of
NASA Technical Reports Server (NTRS)
Platnick, Steven; Oreopoulos, Lazaros
2008-01-01
Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model cloud properties used for indirect effect studies. MODIS-derived global distributions of cloud susceptibility and radiative forcing calculations are presented in a companion paper.
Beyer, W Nelson; Sample, Bradley E
2017-03-01
When performing screening-level and baseline risk assessments, assessors usually compare estimated exposures of wildlife receptor species with toxicity reference values (TRVs). We modeled the exposure of American robins (Turdus migratorius) to 10 elements (As, Cd, Cr, Cu, Hg, Mn, Pb, Se, Zn, and V) in spring and early summer, a time when earthworms are the preferred prey. We calculated soil benchmarks associated with possible toxic effects to these robins from 6 sets of published TRVs. Several of the resulting soil screening-level benchmarks were inconsistent with each other and less than soil background concentrations. Accordingly, we examined the derivations of the TRVs as a possible source of error. In the case of V, a particularly toxic chemical compound (ammonium vanadate) containing V, not normally present in soil, had been used to estimate a TRV. In the cases of Zn and Cu, use of uncertainty values of 10 in estimating TRVs led to implausibly low soil screening values. In the case of Pb, a TRV was calculated from studies demonstrating reductions in egg production in Japanese quail (Coturnix coturnix japonica) exposed to Pb concentrations well below than those causing toxic effects in other species of birds. The results on quail, which were replicated in additional trials, are probably not applicable to other, unrelated species, although we acknowledge that only a small fraction of all species of birds has been tested. These examples underscore the importance of understanding the derivation and relevance of TRVs before selecting them for use in screening or in ecological risk assessment. Integr Environ Assess Manag 2017;13:352-359. © 2016 SETAC. © 2016 SETAC.
Chemla, Denis; Lau, Edmund M T; Hervé, Philippe; Millasseau, Sandrine; Brahimi, Mabrouk; Zhu, Kaixian; Sattler, Caroline; Garcia, Gilles; Attal, Pierre; Nitenberg, Alain
2017-12-01
Systemic vascular resistance (SVR) and total arterial compliance (TAC) modulate systemic arterial load, and their product is the time constant (Tau) of the Windkessel. Previous studies have assumed that aortic pressure decays towards a pressure asymptote (P∞) close to 0mmHg, as right atrial pressure is considered the outflow pressure. Using these assumptions, aortic Tau values of ∼1.5seconds have been documented. However, a zero P∞ may not be physiological because of the high critical closing pressure previously documented in vivo. To calculate precisely the Tau and P∞ of the Windkessel, and to determine the implications for the indices of systemic arterial load. Aortic pressure decay was analysed using high-fidelity recordings in 16 subjects. Tau was calculated assuming P∞=0mmHg, and by two methods that make no assumptions regarding P∞ (the derivative and best-fit methods). Assuming P∞=0mmHg, we documented a Tau value of 1372±308ms, with only 29% of Windkessel function manifested by end-diastole. In contrast, Tau values of 306±109 and 353±106ms were found from the derivative and best-fit methods, with P∞ values of 75±12 and 71±12mmHg, and with ∼80% completion of Windkessel function. The "effective" resistance and compliance were ∼70% and ∼40% less than SVR and TAC (area method), respectively. We did not challenge the Windkessel model, but rather the estimation technique of model variables (Tau, SVR, TAC) that assumes P∞=0. The study favoured a shorter Tau of the Windkessel and a higher P∞ compared with previous studies. This calls for a reappraisal of the quantification of systemic arterial load. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.
Wind velocity-change (gust rise) criteria for wind turbine design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cliff, W.C.; Fichtl, G.H.
1978-07-01
A closed-form equation is derived for root mean square (rms) value of velocity change (gust rise) that occurs over the swept area of wind turbine rotor systems and an equation for rms value of velocity change that occurs at a single point in space. These formulas confirm the intuitive assumption that a large system will encounter a less severe environment than a small system when both are placed at the same location. Assuming a normal probability density function for the velocity differences, an equation is given for calculating the expected number of velocity differences that will occur in 1 hrmore » and will be larger than an arbitrary value. A formula is presented that gives the expected number of velocity differences larger than an arbitrary value that will be encountered during the design life of a wind turbine. In addition, a method for calculating the largest velocity difference expected during the life of a turbine and a formula for estimating the risk of exceeding a given velocity difference during the life of the structure are given. The equations presented are based upon general atmospheric boundary-layer conditions and do not include information regarding events such as tornados, hurricanes, etc.« less
Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates
NASA Astrophysics Data System (ADS)
den Otter, W. K.
2000-05-01
A generalized formulation of the thermodynamic integration (TI) method for calculating the free energy along a reaction coordinate is derived. Molecular dynamics simulations with a constrained reaction coordinate are used to sample conformations. These are then projected onto conformations with a higher value of the reaction coordinate by means of a vector field. The accompanying change in potential energy plus the divergence of the vector field constitute the derivative of the free energy. Any vector field meeting some simple requirements can be used as the basis of this TI expression. Two classes of vector fields are of particular interest here. The first recovers the conventional TI expression, with its cumbersome dependence on a full set of generalized coordinates. As the free energy is a function of the reaction coordinate only, it should in principle be possible to derive an expression depending exclusively on the definition of the reaction coordinate. This objective is met by the second class of vector fields to be discussed. The potential of mean constraint force (PMCF) method, after averaging over the unconstrained momenta, falls in this second class. The new method is illustrated by calculations on the isomerization of n-butane, and is compared with existing methods.
Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD
NASA Astrophysics Data System (ADS)
Hasan, Nesreen; Green, Jeremy; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Negele, John; Pochinsky, Andrew; Syritsyn, Sergey
2018-02-01
We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0 . This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z -expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
Energetic studies and phase diagram of thioxanthene.
Freitas, Vera L S; Monte, Manuel J S; Santos, Luís M N B F; Gomes, José R B; Ribeiro da Silva, Maria D M C
2009-11-19
The molecular stability of thioxanthene, a key species from which very important compounds with industrial relevance are derived, has been studied by a combination of several experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpy of formation of crystalline thioxanthene (117.4 +/- 4.1 kJ x mol(-1)) was determined from the experimental standard molar energy of combustion, in oxygen, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The enthalpy of sublimation was determined by a direct method, using the vacuum drop microcalorimetric technique, and also by an indirect method, using a static apparatus, where the vapor pressures at different temperatures were measured. The latter technique was used for both crystalline and undercooled liquid samples, and the phase diagram of thioxanthene near the triple point was obtained (triple point coordinates T = 402.71 K and p = 144.7 Pa). From the two methods, a mean value for the standard (p degrees = 0.1 MPa) molar enthalpy of sublimation, at T = 298.15 K (101.3 +/- 0.8 kJ x mol(-1)), was derived. From the latter value and from the enthalpy of formation of the solid, the standard (p degrees = 0.1 MPa) enthalpy of formation of gaseous thioxanthene was calculated as 218.7 +/- 4.2 kJ x mol(-1). Standard ab initio molecular orbital calculations were performed using the G3(MP2)//B3LYP composite procedure and several homodesmotic reactions in order to derive the standard molar enthalpy of formation of thioxanthene. The ab initio results are in excellent agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman
2014-05-01
Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.
NASA Astrophysics Data System (ADS)
Saloman, Edward B.; Kramida, Alexander
2017-08-01
The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V II, have been compiled. The experimentally derived energy levels belong to the configurations 3d 4, 3d 3 ns (n = 4, 5, 6), 3d 3 np, and 3d 3 nd (n = 4, 5), 3d 34f, 3d 24s 2, and 3d 24s4p. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g-factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm-1, corresponding to 14.634(7) eV. This is 130 cm-1 higher than the previously recommended value from Iglesias et al.
Armendáriz-Vidales, Georgina; Frontana, Carlos
2014-09-07
An electrochemical and theoretical analysis of a series of shikonin derivatives in aprotic media is presented. Results showed that the first electrochemical reduction signal is a reversible monoelectronic transfer, generating a stable semiquinone intermediate; the corresponding E(I)⁰ values were correlated with calculated values of electroaccepting power (ω(+)) and adiabatic electron affinities (A(Ad)), obtained with BH and HLYP/6-311++G(2d,2p) and considering the solvent effect, revealing the influence of intramolecular hydrogen bonding and the substituting group at position C-2 in the experimental reduction potential. For the second reduction step, esterified compounds isobutyryl and isovalerylshikonin presented a coupled chemical reaction following dianion formation. Analysis of the variation of the dimensionless cathodic peak potential values (ξ(p)) as a function of the scan rate (v) functions and complementary experiments in benzonitrile suggested that this process follows a dissociative electron transfer, in which the rate of heterogeneous electron transfer is slow (~0.2 cm s(-1)), and the rate constant of the chemical process is at least 10(5) larger.
On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Painelli, Anna
1997-05-01
A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.
Calculating LOAEL/NOAEL uncertainty factors for wildlife species in ecological risk assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suedel, B.C.; Clifford, P.A.; Ludwig, D.F.
1995-12-31
Terrestrial ecological risk assessments frequently require derivation of NOAELs or toxicity reference values (TRVS) against which to compare exposure estimates. However, much of the available information from the literature is LOAELS, not NOAELS. Lacking specific guidance, arbitrary factors of ten are sometimes employed for extrapolating NOAELs from LOAELs. In this study, the scientific literature was searched to obtain chronic and subchronic studies reporting NOAEL and LOAEL data for wildlife and laboratory species. Results to date indicate a mean conversion factor of 4.0 ({+-} 2.61 S.D.), with a minimum of 1. 6 and a maximum of 10 for 106 studies acrossmore » several classes of compounds (I.e., metals, pesticides, volatiles, etc.). These data suggest that an arbitrary factor of 10 conversion factor is unnecessarily restrictive for extrapolating NOAELs from LOAELs and that a factor of 4--5 would be more realistic for deriving toxicity reference values for wildlife species. Applying less arbitrary and more realistic conversion factors in ecological risk assessments will allow for a more accurate estimate of NOAEL values for assessing risk to wildlife populations.« less
Measuring the effects of heat wave episodes on the human body's thermal balance
NASA Astrophysics Data System (ADS)
Katavoutas, George; Theoharatos, George; Flocas, Helena A.; Asimakopoulos, Dimosthenis N.
2009-03-01
During the peak of an extensive heat wave episode on 23-25 July 2007, simultaneous thermophysiological measurements were made in two non-acclimated healthy adults of different sex in a suburban area of Greater Athens, Greece. Based on experimental measurements of mean skin temperature and metabolic heat production, heat fluxes to and from the human body were calculated, and the biometeorological index heat load (HL) produced was determined according to the heat balance equation. Comparing experimental values with those derived from theoretical estimates revealed a great heat stress for both individuals, especially the male, while theoretical values underestimated heat stress. The study also revealed that thermophysiological factors, such as mean skin temperature and metabolic heat production, play an important role in determining heat fluxes patterns in the heat balance equation. The theoretical values of mean skin temperature as derived from an empirical equation may not be appropriate to describe the changes that take place in a non-acclimated individual. Furthermore, the changes in metabolic heat production were significant even for standard activity.
NASA Astrophysics Data System (ADS)
Langford, Ben; Cash, James; Acton, W. Joe F.; Valach, Amy C.; Hewitt, C. Nicholas; Fares, Silvano; Goded, Ignacio; Gruening, Carsten; House, Emily; Kalogridis, Athina-Cerise; Gros, Valérie; Schafers, Richard; Thomas, Rick; Broadmeadow, Mark; Nemitz, Eiko
2017-12-01
Biogenic emission algorithms predict that oak forests account for ˜ 70 % of the total European isoprene budget. Yet the isoprene emission potentials (IEPs) that underpin these model estimates are calculated from a very limited number of leaf-level observations and hence are highly uncertain. Increasingly, micrometeorological techniques such as eddy covariance are used to measure whole-canopy fluxes directly, from which isoprene emission potentials can be calculated. Here, we review five observational datasets of isoprene fluxes from a range of oak forests in the UK, Italy and France. We outline procedures to correct the measured net fluxes for losses from deposition and chemical flux divergence, which were found to be on the order of 5-8 and 4-5 %, respectively. The corrected observational data were used to derive isoprene emission potentials at each site in a two-step process. Firstly, six commonly used emission algorithms were inverted to back out time series of isoprene emission potential, and then an average
isoprene emission potential was calculated for each site with an associated uncertainty. We used these data to assess how the derived emission potentials change depending upon the specific emission algorithm used and, importantly, on the particular approach adopted to derive an average site-specific emission potential. Our results show that isoprene emission potentials can vary by up to a factor of 4 depending on the specific algorithm used and whether or not it is used in a big-leaf
or canopy environment (CE) model
format. When using the same algorithm, the calculated average isoprene emission potential was found to vary by as much as 34 % depending on how the average was derived. Using a consistent approach with version 2.1 of the Model for Emissions of Gases and Aerosols from Nature (MEGAN), we derive new ecosystem-scale isoprene emission potentials for the five measurement sites: Alice Holt, UK (10 500 ± 2500 µg m-2 h-1); Bosco Fontana, Italy (1610 ± 420 µg m-2 h-1); Castelporziano, Italy (121 ± 15 µg m-2 h-1); Ispra, Italy (7590 ± 1070 µg m-2 h-1); and the Observatoire de Haute Provence, France (7990 ± 1010 µg m-2 h-1). Ecosystem-scale isoprene emission potentials were then extrapolated to the leaf-level and compared to previous leaf-level measurements for Quercus robur and Quercus pubescens, two species thought to account for 50 % of the total European isoprene budget. The literature values agreed closely with emission potentials calculated using the G93 algorithm, which were 85 ± 75 and 78 ± 25 µg g-1 h-1 for Q. robur and Q. pubescens, respectively. By contrast, emission potentials calculated using the G06 algorithm, the same algorithm used in a previous study to derive the European budget, were significantly lower, which we attribute to the influence of past light and temperature conditions. Adopting these new G06 specific emission potentials for Q. robur (55 ± 24 µg g-1 h-1) and Q. pubescens (47 ± 16 µg g-1 h-1) reduced the projected European budget by ˜ 17 %. Our findings demonstrate that calculated isoprene emission potentials vary considerably depending upon the specific approach used in their calculation. Therefore, it is our recommendation that the community now adopt a standardised approach to the way in which micrometeorological flux measurements are corrected and used to derive isoprene, and other biogenic volatile organic compounds, emission potentials.
Xue, Hua-dan; Liu, Wei; Sun, Hao; Wang, Xuan; Chen, Yu; Su, Bai-yan; Sun, Zhao-yong; Chen, Fang; Jin, Zheng-yu
2010-12-01
To analyze the clinical value of multiple sequences derived from dual-source computed tomography (DSCT) dual-energy scan mode in detecting pancreatic adenocarcinoma. Totally 23 patients with clinically or pathologically diagnosed pancreatic cancer were enrolled in this retrospective study. DSCT (Definition Flash) was used and dual-energy scan mode was used in their pancreatic parenchyma phase scan (100kVp/230mAs and Sn140kVp/178mAs) . Mono-energetic 60kev, mono-energetic 80kev, mono-energetic 100kev, mono-energetic 120kev, linear blend image, non-linear blend image, and iodine map were acquired. pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were calculated. One-way ANOVA was used for the comparison of diagnostic values of the above eight different dual-energy derived sequences for pancreatic cancer. The pancreatic parenchyma-tumor CT value difference, ratio of tumor to pancreatic parenchyma, and pancreatic parenchyma-tumor contrast to noise ratio were significantly different among eight sequences (P<0.05) . Mono-energetic 60kev image showed the largest parenchyma-tumor CT value [ (77.53 ± 23.42) HU] , and iodine map showed the lowest tumor/parenchyma enhancement ratio (0.39?0.12) and the largest contrast to noise ratio (4.08 ± 1.46) . Multiple sequences can be derived from dual-energy scan mode with DSCT via multiple post-processing methods. Integration of these sequences may further improve the sensitivity of the multislice spiral CT in the diagnosis of pancreatic cancer.
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Suchaneck, Andre; Puente León, Fernando
2014-01-01
Depending on the actual battery temperature, electrical power demands in general have a varying impact on the life span of a battery. As electrical energy provided by the battery is needed to temper it, the question arises at which temperature which amount of energy optimally should be utilized for tempering. Therefore, the objective function that has to be optimized contains both the goal to maximize life expectancy and to minimize the amount of energy used for obtaining the first goal. In this paper, Pontryagin's maximum principle is used to derive a causal control strategy from such an objective function. The derivation of the causal strategy includes the determination of major factors that rule the optimal solution calculated with the maximum principle. The optimization is calculated offline on a desktop computer for all possible vehicle parameters and major factors. For the practical implementation in the vehicle, it is sufficient to have the values of the major factors determined only roughly in advance and the offline calculation results available. This feature sidesteps the drawback of several optimization strategies that require the exact knowledge of the future power demand. The resulting strategy's application is not limited to batteries in electric vehicles.
NASA Astrophysics Data System (ADS)
Hamylton, S.
2011-12-01
This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).
NASA Astrophysics Data System (ADS)
Seredyński, M.; Rebow, M.; Banaszek, J.
2016-09-01
The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors' attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt's analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed.
Substitution determination of Fmoc‐substituted resins at different wavelengths
Kley, Markus; Bächle, Dirk; Loidl, Günther; Meier, Thomas; Samson, Daniel
2017-01-01
In solid‐phase peptide synthesis, the nominal batch size is calculated using the starting resin substitution and the mass of the starting resin. The starting resin substitution constitutes the basis for the calculation of a whole set of important process parameters, such as the number of amino acid derivative equivalents. For Fmoc‐substituted resins, substitution determination is often performed by suspending the Fmoc‐protected starting resin in 20% (v/v) piperidine in DMF to generate the dibenzofulvene–piperidine adduct that is quantified by ultraviolet–visible spectroscopy. The spectrometric measurement is performed at the maximum absorption wavelength of the dibenzofulvene–piperidine adduct, that is, at 301.0 nm. The recorded absorption value, the resin weight and the volume are entered into an equation derived from Lambert–Beer's law, together with the substance‐specific molar absorption coefficient at 301.0 nm, in order to calculate the nominal substitution. To our knowledge, molar absorption coefficients between 7100 l mol−1 cm−1 and 8100 l mol−1 cm−1 have been reported for the dibenzofulvene–piperidine adduct at 301.0 nm. Depending on the applied value, the nominal batch size may differ up to 14%. In this publication, a determination of the molar absorption coefficients at 301.0 and 289.8 nm is reported. Furthermore, proof is given that by measuring the absorption at 289.8 nm the impact of wavelength accuracy is reduced. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. PMID:28635051
Gastric residual volume (GRV) and gastric contents measurement by refractometry.
Chang, Wei-Kuo; McClave, Stephen A; Hsieh, Chung-Bao; Chao, You-Chen
2007-01-01
Traditional use of gastric residual volumes (GRVs), obtained by aspiration from a nasogastric tube, is inaccurate and cannot differentiate components of the gastric contents (gastric secretion vs delivered formula). The use of refractometry and 3 mathematical equations has been proposed as a method to calculate the formula concentration, GRV, and formula volume. In this paper, we have validated these mathematical equations so that they can be implemented in clinical practice. Each of 16 patients receiving a nasogastric tube had 50 mL of water followed by 100 mL of dietary formula (Osmolite HN, Abbott Laboratories, Columbus, OH) infused into the stomach. After mixing, gastric content was aspirated for the first Brix value (BV) measurement by refractometry. Then, 50 mL of water was infused into the stomach and a second BV was measured. The procedure of infusion of dietary formula (100 mL) and then water (50 mL) was repeated and followed by subsequent BV measurement. The same procedure was performed in an in vitro experiment. Formula concentration, GRV, and formula volume were calculated from the derived mathematical equations. The formula concentrations, GRVs, and formula volumes calculated by using refractometry and the mathematical equations were close to the true values obtained from both in vivo and in vitro validation experiments. Using this method, measurement of the BV of gastric contents is simple, reproducible, and inexpensive. Refractometry and the derived mathematical equations may be used to measure formula concentration, GRV, and formula volume, and also to serve as a tool for monitoring the gastric contents of patients receiving nasogastric feeding.
Determining Surface Roughness in Urban Areas Using Lidar Data
NASA Technical Reports Server (NTRS)
Holland, Donald
2009-01-01
An automated procedure has been developed to derive relevant factors, which can increase the ability to produce objective, repeatable methods for determining aerodynamic surface roughness. Aerodynamic surface roughness is used for many applications, like atmospheric dispersive models and wind-damage models. For this technique, existing lidar data was used that was originally collected for terrain analysis, and demonstrated that surface roughness values can be automatically derived, and then subsequently utilized in disaster-management and homeland security models. The developed lidar-processing algorithm effectively distinguishes buildings from trees and characterizes their size, density, orientation, and spacing (see figure); all of these variables are parameters that are required to calculate the estimated surface roughness for a specified area. By using this algorithm, aerodynamic surface roughness values in urban areas can then be extracted automatically. The user can also adjust the algorithm for local conditions and lidar characteristics, like summer/winter vegetation and dense/sparse lidar point spacing. Additionally, the user can also survey variations in surface roughness that occurs due to wind direction; for example, during a hurricane, when wind direction can change dramatically, this variable can be extremely significant. In its current state, the algorithm calculates an estimated surface roughness for a square kilometer area; techniques using the lidar data to calculate the surface roughness for a point, whereby only roughness elements that are upstream from the point of interest are used and the wind direction is a vital concern, are being investigated. This technological advancement will improve the reliability and accuracy of models that use and incorporate surface roughness.
March, F.A.; Dwyer, F.J.; Augspurger, T.; Ingersoll, C.G.; Wang, N.; Mebane, C.A.
2007-01-01
The state of Oklahoma has designated several areas as freshwater mussel sanctuaries in an attempt to provide freshwater mussel species a degree of protection and to facilitate their reproduction. We evaluated the protection afforded freshwater mussels by the U.S. Environmental Protection Agency (U.S. EPA) hardness-based 1996 ambient copper water quality criteria, the 2007 U.S. EPA water quality criteria based on the biotic ligand model and the 2005 state of Oklahoma copper water quality standards. Both the criterion maximum concentration and criterion continuous concentration were evaluated. Published acute and chronic copper toxicity data that met American Society for Testing and Materials guidance for test acceptability were obtained for exposures conducted with glochidia or juvenile freshwater mussels. We tabulated toxicity data for glochidia and juveniles to calculate 20 species mean acute values for freshwater mussels. Generally, freshwater mussel species mean acute values were similar to those of the more sensitive species included in the U.S. EPA water quality derivation database. When added to the database of genus mean acute values used in deriving 1996 copper water quality criteria, 14 freshwater mussel genus mean acute values included 10 of the lowest 15 genus mean acute values, with three mussel species having the lowest values. Chronic exposure and sublethal effects freshwater mussel data available for four species and acute to chronic ratios were used to evaluate the criterion continuous concentration. On the basis of the freshwater mussel toxicity data used in this assessment, the hardness-based 1996 U.S. EPA water quality criteria, the 2005 Oklahoma water quality standards, and the 2007 U.S. EPA water quality criteria based on the biotic ligand model might need to be revised to afford protection to freshwater mussels. ?? 2007 SETAC.
NASA Astrophysics Data System (ADS)
Huang, Xiao-Wen; Zhou, Mei-Fu; Beaudoin, Georges; Gao, Jian-Feng; Qi, Liang; Lyu, Chuan
2018-01-01
The Yamansu Fe deposit (32 Mt at 51% Fe) in the Eastern Tianshan Orogenic Belt of NW China is hosted in early Carboniferous volcano-sedimentary rocks and spatially associated with skarn. The paragenetic sequence includes garnet-diopside (I), magnetite (II), hydrous silicate-sulfide (III), and calcite-quartz (IV) stages. Pyrite associated with magnetite has a Re-Os isochron age of 322 ± 7 Ma, which represents the timing of pyrite and, by inference, magnetite mineralization. Pyrite has δ 34SVCDT values of - 2.2 to + 2.9‰, yielding δ 34SH2S values of - 3.1 to 2‰, indicating the derivation of sulfur from a magmatic source. Calcite from stages II and IV has δ 13CVPDB values from - 2.5 to - 1.2‰, and - 1.1 to 1.1‰, and δ 18OVSMOW values from 11.8 to 12.0‰ and - 7.7 to - 5.2‰, respectively. Calculated δ 13C values of fluid CO2 and water δ 18O values indicate that stage II hydrothermal fluids were derived from magmatic rocks and that meteoric water mixed with the hydrothermal fluids in stage IV. Some ores contain magnetite with obvious chemical zoning composed of dark and light domains in BSE images. Dark domains have higher Mg, Al, Ca, Mn, and Ti but lower Fe and Cr contents than light domains. The chemical zoning resulted from a fluctuating fluid composition and/or physicochemical conditions (oscillatory zoning), or dissolution-precipitation (irregular zoning) via infiltration of magmatic-hydrothermal fluids diluted by late meteoric water. Iron was mainly derived from fluids similar to that in skarn deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suter, G.W. II; Tsao, C.L.
1996-06-01
This report presents potential screening benchmarks for protection of aquatic life form contaminants in water. Because there is no guidance for screening for benchmarks, a set of alternative benchmarks is presented herein. This report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility. Also included is the updates of benchmark values where appropriate, new benchmark values, secondary sources are replaced by primary sources, and a more completemore » documentation of the sources and derivation of all values are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K., E-mail: prafullaj@yahoo.com
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in themore » dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.« less
NASA Astrophysics Data System (ADS)
Bade, Tahseen S.; Ebrahimi, Hossein Pasha; Alsalim, Tahseen A.; Titinchi, Salam J. J.; Abbo, Hanna S.; Bolandnazar, Zeinab; Ebrahimi, Amirpasha
2017-06-01
A novel series of 1, 4-Dihydropyridine (DHP) thiazolidin-4-one compounds derived from dihydropyridine hydrazones Schiff bases with thioglycolic acid were synthesized through an efficient Hantzsch reaction and experimentally characterized by spectral methods using IR, 1H NMR, 13C NMR, and mass spectroscopic methods. Herein, DHPs were synthesized by an improved Hantzsch procedure in the excellent yields by three different conditions including reflux condensation, fusion, and the microwave irradiation. An additional comparison of applied methodology routes was used to confirm the advantages including short reaction time, good yields, and operational simplicity. Furthermore, the structural and electronic properties of the studied molecules were theoretically investigated by performing density functional theory (DFT) to access reliable results to the experimental values. The molecular geometry, HOMO, and LUMO of the studied compounds were calculated. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained.
b matrix errors in echo planar diffusion tensor imaging
Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel
2001-01-01
Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015
A New Method for Determining the Equation of State of Aluminized Explosive
NASA Astrophysics Data System (ADS)
Zhou, Zheng-Qing; Nie, Jian-Xin; Guo, Xue-Yong; Wang, Qiu-Shi; Ou, Zhuo-Cheng; Jiao, Qing-Jie
2015-01-01
The time-dependent Jones—Wilkins—Lee equation of state (JWL-EOS) is applied to describe detonation state products for aluminized explosives. To obtain the time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydrocode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.
Revisit submergence of ice blocks in front of ice cover—an experimental study
NASA Astrophysics Data System (ADS)
Wang, Jun; Wu, Yi-fan; Sui, Jueyi
2018-04-01
The present paper studies the stabilities of ice blocks in front of an ice cover based on experiments carried out in laboratory by using four types of ice blocks with different dimensions. The forces acting on the ice blocks in front of the ice cover are analyzed. The critical criteria for the entrainment of ice blocks in front of the ice cover are established by considering the drag force caused by the flowing water, the collision force, and the hydraulic pressure force. Formula for determining whether or not an ice block will be entrained under the ice cover is derived. All three dimensions of the ice block are considered in the proposed formula. The velocities calculated by using the developed formula are compared with those of calculated by other formulas proposed by other researchers, as well as the measured flow velocities for the entrainment of ice blocks in laboratory. The fitting values obtained by using the derived formula agree well with the experimental results.
Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction
Muckerman, James T.; Achord, Patrick; Creutz, Carol; Polyansky, Dmitry E.; Fujita, Etsuko
2012-01-01
We have developed a correlation between experimental and density functional theory-derived results of the hydride-donating power, or “hydricity”, of various ruthenium, rhenium, and organic hydride donors. This approach utilizes the correlation between experimental hydricity values and their corresponding calculated free-energy differences between the hydride donors and their conjugate acceptors in acetonitrile, and leads to an extrapolated value of the absolute free energy of the hydride ion without the necessity to calculate it directly. We then use this correlation to predict, from density functional theory-calculated data, hydricity values of ruthenium and rhenium complexes that incorporate the pbnHH ligand—pbnHH = 1,5-dihydro-2-(2-pyridyl)-benzo[b]-1,5-naphthyridine—to model the function of NADPH. These visible light-generated, photocatalytic complexes produced by disproportionation of a protonated-photoreduced dimer of a metal-pbn complex may be valuable for use in reducing CO2 to fuels such as methanol. The excited-state lifetime of photoexcited [Ru(bpy)2(pbnHH)]2+ is found to be about 70 ns, and this excited state can be reductively quenched by triethylamine or 1,4-diazabicyclo[2.2.2]octane to produce the one-electron-reduced [Ru(bpy)2(pbnHH)]+ species with half-life exceeding 50 μs, thus opening the door to new opportunities for hydride-transfer reactions leading to CO2 reduction by producing a species with much increased hydricity. PMID:22826261
Haba, Tomonobu; Kondo, Shimpei; Hayashi, Daiki; Koyama, Shuji
2013-07-01
Detective quantum efficiency (DQE) is widely used as a comprehensive metric for X-ray image evaluation in digital X-ray units. The incident photon fluence per air kerma (SNR²(in)) is necessary for calculating the DQE. The International Electrotechnical Commission (IEC) reports the SNR²(in) under conditions of standard radiation quality, but this SNR²(in) might not be accurate as calculated from the X-ray spectra emitted by an actual X-ray tube. In this study, we evaluated the error range of the SNR²(in) presented by the IEC62220-1 report. We measured the X-ray spectra emitted by an X-ray tube under conditions of standard radiation quality of RQA5. The spectral photon fluence at each energy bin was multiplied by the photon energy and the mass energy absorption coefficient of air; then the air kerma spectrum was derived. The air kerma spectrum was integrated over the whole photon energy range to yield the total air kerma. The total photon number was then divided by the total air kerma. This value is the SNR²(in). These calculations were performed for various measurement parameters and X-ray units. The percent difference between the calculated value and the standard value of RQA5 was up to 2.9%. The error range was not negligibly small. Therefore, it is better to use the new SNR²(in) of 30694 (1/(mm(2) μGy)) than the current [Formula: see text] of 30174 (1/(mm(2) μGy)).
Sławuta, P; Glińska-Suchocka, K; Cekiera, A
2015-01-01
Apart from the HH equation, the acid-base balance of an organism is also described by the Stewart model, which assumes that the proper insight into the ABB of the organism is given by an analysis of: pCO2, the difference of concentrations of strong cations and anions in the blood serum - SID, and the total concentration of nonvolatile weak acids - Acid total. The notion of an anion gap (AG), or the apparent lack of ions, is closely related to the acid-base balance described according to the HH equation. Its value mainly consists of negatively charged proteins, phosphates, and sulphates in blood. In the human medicine, a modified anion gap is used, which, including the concentration of the protein buffer of blood, is, in fact, the combination of the apparent lack of ions derived from the classic model and the Stewart model. In brachycephalic dogs, respiratory acidosis often occurs, which is caused by an overgrowth of the soft palate, making it impossible for a free air flow and causing an increase in pCO2--carbonic acid anhydride The aim of the present paper was an attempt to answer the question whether, in the case of systemic respiratory acidosis, changes in the concentration of buffering ions can also be seen. The study was carried out on 60 adult dogs of boxer breed in which, on the basis of the results of endoscopic examination, a strong overgrowth of the soft palate requiring a surgical correction was found. For each dog, the value of the anion gap before and after the palate correction procedure was calculated according to the following equation: AG = ([Na+ mmol/l] + [K+ mmol/l])--([Cl- mmol/l]+ [HCO3- mmol/l]) as well as the value of the modified AG--according to the following equation: AGm = calculated AG + 2.5 x (albumins(r)--albumins(d)). The values of AG calculated for the dogs before and after the procedure fell within the limits of the reference values and did not differ significantly whereas the values of AGm calculated for the dogs before and after the procedure differed from each other significantly. 1) On the basis of the values of AGm obtained it should be stated that in spite of finding respiratory acidosis in the examined dogs, changes in ion concentration can also be seen, which, according to the Stewart theory, compensate metabolic ABB disorders 2) In spite of the fact that all the values used for calculation of AGm were within the limits of reference values, the values of AGm in dogs before and after the soft palate correction procedure differed from each other significantly, which proves high sensitivity and usefulness of the AGm calculation as a diagnostic method.
School system evaluation by value added analysis under endogeneity.
Manzi, Jorge; San Martín, Ernesto; Van Bellegem, Sébastien
2014-01-01
Value added is a common tool in educational research on effectiveness. It is often modeled as a (prediction of a) random effect in a specific hierarchical linear model. This paper shows that this modeling strategy is not valid when endogeneity is present. Endogeneity stems, for instance, from a correlation between the random effect in the hierarchical model and some of its covariates. This paper shows that this phenomenon is far from exceptional and can even be a generic problem when the covariates contain the prior score attainments, a typical situation in value added modeling. Starting from a general, model-free definition of value added, the paper derives an explicit expression of the value added in an endogeneous hierarchical linear Gaussian model. Inference on value added is proposed using an instrumental variable approach. The impact of endogeneity on the value added and the estimated value added is calculated accurately. This is also illustrated on a large data set of individual scores of about 200,000 students in Chile.
Endarti, Dwi; Riewpaiboon, Arthorn; Thavorncharoensap, Montarat; Praditsitthikorn, Naiyana; Hutubessy, Raymond; Kristina, Susi Ari
2018-05-01
To gain insight into the most suitable foreign value set among Malaysian, Singaporean, Thai, and UK value sets for calculating the EuroQol five-dimensional questionnaire index score (utility) among patients with cervical cancer in Indonesia. Data from 87 patients with cervical cancer recruited from a referral hospital in Yogyakarta province, Indonesia, from an earlier study of health-related quality of life were used in this study. The differences among the utility scores derived from the four value sets were determined using the Friedman test. Performance of the psychometric properties of the four value sets versus visual analogue scale (VAS) was assessed. Intraclass correlation coefficients and Bland-Altman plots were used to test the agreement among the utility scores. Spearman ρ correlation coefficients were used to assess convergent validity between utility scores and patients' sociodemographic and clinical characteristics. With respect to known-group validity, the Kruskal-Wallis test was used to examine the differences in utility according to the stages of cancer. There was significant difference among utility scores derived from the four value sets, among which the Malaysian value set yielded higher utility than the other three value sets. Utility obtained from the Malaysian value set had more agreements with VAS than the other value sets versus VAS (intraclass correlation coefficients and Bland-Altman plot tests results). As for the validity, the four value sets showed equivalent psychometric properties as those that resulted from convergent and known-group validity tests. In the absence of an Indonesian value set, the Malaysian value set was more preferable to be used compared with the other value sets. Further studies on the development of an Indonesian value set need to be conducted. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Safari, M.; Vacca, G. P.
2018-02-01
We employ perturbative renormalization group and ɛ -expansion to study multicritical single-scalar field theories with higher derivative kinetic terms of the form ϕ (-□)kϕ . We focus on those with a Z2-symmetric critical point which are characterized by an upper critical dimension dc=2 n k /(n -1 ) accumulating at even integers. We distinguish two types of theories depending on whether or not the numbers k and n -1 are relatively prime. When they are, the critical theory involves a marginal powerlike interaction ϕ2 n and the deformations admit a derivative expansion that at leading order involves only the potential. In this case we present the beta functional of the potential and use this to calculate some anomalous dimensions and operator product expansion coefficients. These confirm some conformal field theory data obtained using conformal-block techniques, while giving new results. In the second case where k and n -1 have a common divisor, the theories show a much richer structure induced by the presence of marginal derivative operators at criticality. We study the case k =2 with odd values of n , which fall in the second class, and calculate the functional flows and spectrum. These theories have a phase diagram characterized at leading order in ɛ by four fixed points which apart from the Gaussian UV fixed point include an IR fixed point with a purely derivative interaction.
NASA Technical Reports Server (NTRS)
Martindale, W. R.; Carter, L. D.
1975-01-01
Pitot pressure and total-temperature measurements were made in the windward surface shock layer of two 0.0175-scale space shuttle orbiter models at simulated re-entry conditions. Corresponding surface static pressure measurements were also made. Flow properties at the edge of the model boundary layer were derived from these measurements and compared with values calculated using conventional methods.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey
2010-05-01
The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the range 2.0-2.6, 2.5-3.7, and 3.5-4.9°C respectively. The dataset of remote sensing products has been compiled on the base of special technology using Internet resources, that includes MODIS-based estimates of land surface temperature (LST) Tsg, E, NDVI, LAI for the region of interest and the same vegetation seasons. Two types of MODIS-based Тsg and E estimates have been extracted from LP DAAC web-site (for separate dates of 2003-2009 time period): LST/E Daily L3 product (MOD11В1) with spatial resolution ~ 4.8 km and LST/E 5-Min L2 product (MOD11_L2) with spatial resolution ~ 1 km. The verification of Tsg estimates has been performed via comparison with analogous and collocated AVHRR-based ones. Along with this the sample of SEVIRI-based Tsg and E estimates has been accumulated for the Kursk area and surrounding territories for the time interval of several days during 2009 vegetation season. To retrieve Тsg and Е from SEVIRI/Meteosat-8, -9 data the new method has been developed. Being designed as the combination of well-known Split Window Technique and Two Temperature Method algorithms it provides the derivation of Тsg from SEVIRI/Meteosat-9 measurements carried out at three successive times (classified as 100% cloud-free) and covering the region under consideration without accurate a priory knowledge of E. Comparison of the SEVIRI-based Tsg retrievals with the independent collocated Tsg estimates gives the values of RMS deviation in the range of 0.9-1.4°C and it proves (indirectly) the efficiency of proposed approach. To assimilate satellite-derived estimates of vegetation characteristics and LST in the SVAT model some procedures have been developed. These procedures have included: 1) the replacement of LAI and B ground and point-wise estimates by their AVHRR- or MODIS-based analogues. The efficiency of such approach has been proved through comparison between satellite-derived and ground-based seasonal time behaviors of LAI and B, between satellite-derived, modeled, and in-situ measured temperatures as well as through comparison the modeled and actual values of evapotranspiration Ev and soil water content W for one meter soil layer. The discrepancies between mentioned temperatures do not exceed the RMS errors of satellite-derived estimates Ta, Ts.eff and Tsg while the modeled and measured values of Ev and W have been found close to each other within their standard estimation error; 2) the treating AVHRR- or MODIS-based LST as the input model variable within the SVAT model instead their standard ground-based estimates if the satisfactory time-matching of satellite and ground-based observations takes place. The SEVIRI-derived Tsg can be also used for these aims. Permissibility of such replacement has been verified while comparing remote sensed, modeled and ground-based temperatures as well as calculated and measured values of W and Ev. The SEVIRI-based Tsg estimates were found to be very informative and useful due to their high temporal resolution. Moreover the approach has been developed to account for space variability of vegetation cover parameters and meteorological characteristics. This approach includes the development of algorithms and programs for entering AVHRR- and MODIS-derived LAI and B, all named satellite-based LSTs as well as ground-based precipitation, air temperature and humidity data prepared by Inverse Distance Weighted Average Method into the model in each calculation grid unit. The calculations of vertical water and heat fluxes, soil water and heat contents and other water and heat balance components for Kursk region have been carried out with the help of the SVAT model using fields of AVHRR/3- and MODIS-derived LAI and B and AVHRR/3-, MODIS, and SEVIRI-derived LST for various vegetation seasons of 2003-2009. The acceptable accuracy levels of above values assessment have been achieved under all scenarios of parameter and input model variable specification. Thus, the results of this study confirm the opportunity of using area distributed satellite-derived estimates of land surface characteristics for the model calculations of water and heat balance components for large territories especially under the lack of ground observation data. The present study was carried out with support of the Russian Foundation of Basic Researches - grant N 10-05-00807.
NASA Astrophysics Data System (ADS)
Zou, C.; Zhao, J.; Zhang, X.; Peng, C.; Zhang, S.
2017-12-01
Continental Scientific Drilling Project of Songliao Basin is a drilling project under the framework of ICDP. It aims at detecting Cretaceous environmental/climate changes and exploring potential resources near or beneath the base of the basin. The main hole, SK-2 East Borehole, has been drilled to penetrate through the Cretaceous formation. A variety of geophysical log data were collected from the borehole, which provide a great opportunity to analyze thermal properties of in-situ rock surrounding the borehole.The geothermal gradients were derived directly from temperature logs recorded 41 days after shut-in. The matrix and bulk thermal conductivity of rock were calculated with the geometric-mean model, in which mineral/rock contents and porosity were required as inputs (Fuchs et. al., 2014). Accurate mineral contents were available from the elemental capture spectroscopy logs and porosity data were derived from conventional logs (density, neutron and sonic). The heat production data were calculated by means of the concentrations of uranium, thorium and potassium determined from natural gamma-ray spectroscopy logs. Then, the heat flow was determined by using the values of geothermal gradients and thermal conductivity.The thermal parameters of in-situ rock over the depth interval of 0 4500m in the borehole were derived from geophysical logs. Statistically, the numerical ranges of thermal parameters are in good agreement with the measured values from both laboratory and field in this area. The results show that high geothermal gradient and heat flow exist over the whole Cretaceous formation, with anomalously high values in the Qingshankou formation (1372.0 1671.7m) and the Quantou formation (1671.7 2533.5m). It is meaningful for characterization of geothermal regime and exploration of geothermal resources in the basin. Acknowledgment: This work was supported by the "China Continental Scientific Drilling Program of Cretaceous Songliao Basin (CCSD-SK)" of China Geological Survey Projects (NO. 12120113017600).
Fractal Properties of Some Machined Surfaces
NASA Astrophysics Data System (ADS)
Thomas, T. R.; Rosén, B.-G.
Many surface profiles are self-affine fractals defined by fractal dimension D and topothesy Λ. Traditionally these parameters are derived laboriously from the slope and intercept of the profile's structure function. Recently a quicker and more convenient derivation from standard roughness parameters has been suggested. Based on this derivation, it is shown that D and Λ depend on two dimensionless numbers: the ratio of the mean peak spacing to the rms roughness, and the ratio of the mean local peak spacing to the sampling interval. Using this approach, values of D and Λ are calculated for 125 profiles produced by polishing, plateau honing and various single-point machining processes. Different processes are shown to occupy different regions in D-Λ space, and polished surfaces show a relationship between D and Λ which is independent of the surface material.
Thermoelectric properties of n-type SrTiO 3
Sun, Jifeng; Singh, David J.
2016-05-26
We present an investigation of the thermoelectric properties of cubic perovskite SrTiO 3. The results are derived from a combination of calculated transport functions obtained from Boltzmann transport theory in the constant scattering time approximation based on the electronic structure and existing experimental data for La-doped SrTiO 3. The figure of merit ZT is modeled with respect to carrier concentration and temperature. The model predicts a relatively high ZT at optimized doping and suggests that the ZT value can reach 0.7 at T = 1400 K. Thus ZT can be improved from the current experimental values by carrier concentration optimization.
Pauling, Linus
1978-01-01
An equation for the bond angles OC—M—CO for tetracarbonyl groups in which the transition metal atom M is enneacovalent, derived from the simple theory of hybrid sp3d5 bond orbitals, is tested by comparison of the calculated values of the angles with the experimental values reported for many compounds containing M(CO)4 groups, especially those with M = Fe, Mn, Re, Cr, or Mo. The importance of the energy of resonance of single bonds and double bonds in stabilizing octahedral complexes of chromium and manganese with carbonyl, phosphine, arsine, and thio groups is also discussed. PMID:16592490
Efficiency degradation due to tracking errors for point focusing solar collectors
NASA Technical Reports Server (NTRS)
Hughes, R. O.
1978-01-01
An important parameter in the design of point focusing solar collectors is the intercept factor which is a measure of efficiency and of energy available for use in the receiver. Using statistical methods, an expression of the expected value of the intercept factor is derived for various configurations and control law implementations. The analysis assumes that a radially symmetric flux distribution (not necessarily Gaussian) is generated at the focal plane due to the sun's finite image and various reflector errors. The time-varying tracking errors are assumed to be uniformly distributed within the threshold limits and allows the expected value calculation.
Thermoelectric properties of n-type SrTiO3
NASA Astrophysics Data System (ADS)
Sun, Jifeng; Singh, David J.
2016-10-01
We present an investigation of the thermoelectric properties of cubic perovskite SrTiO3. The results are derived from a combination of calculated transport functions obtained from Boltzmann transport theory in the constant scattering time approximation based on the electronic structure and existing experimental data for La-doped SrTiO3. The figure of merit ZT is modeled with respect to carrier concentration and temperature. The model predicts a relatively high ZT at optimized doping and suggests that the ZT value can reach 0.7 at T = 1400 K. Thus ZT can be improved from the current experimental values by carrier concentration optimization.
Braking distance algorithm for autonomous cars using road surface recognition
NASA Astrophysics Data System (ADS)
Kavitha, C.; Ashok, B.; Nanthagopal, K.; Desai, Rohan; Rastogi, Nisha; Shetty, Siddhanth
2017-11-01
India is yet to accept semi/fully - autonomous cars and one of the reasons, was loss of control on bad roads. For a better handling on these roads we require advanced braking and that can be done by adapting electronics into the conventional type of braking. In Recent years, the automation in braking system led us to various benefits like traction control system, anti-lock braking system etc. This research work describes and experiments the method for recognizing road surface profile and calculating braking distance. An ultra-sonic surface recognition sensor, mounted underneath the car will send a high frequency wave on to the road surface, which is received by a receiver with in the sensor, it calculates the time taken for the wave to rebound and thus calculates the distance from the point where sensor is mounted. A displacement graph will be plotted based on the output of the sensor. A relationship can be derived between the displacement plot and roughness index through which the friction coefficient can be derived in Matlab for continuous calculation throughout the distance travelled. Since it is a non-contact type of profiling, it is non-destructive. The friction coefficient values received in real-time is used to calculate optimum braking distance. This system, when installed on normal cars can also be used to create a database of road surfaces, especially in cities, which can be shared with other cars. This will help in navigation as well as making the cars more efficient.
Stephens, P J; McCann, D M; Devlin, F J; Smith, A B
2006-07-01
The determination of the absolute configurations (ACs) of chiral molecules using the chiroptical techniques of optical rotation (OR), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) has been revolutionized by the development of density functional theory (DFT) methods for the prediction of these properties. Here, we demonstrate the significance of these advances for the stereochemical characterization of natural products. Time-dependent DFT (TDDFT) calculations of the specific rotations, [alpha](D), of four cytotoxic natural products, quadrone (1), suberosenone (2), suberosanone (3), and suberosenol A acetate (4), are used to assign their ACs. TDDFT calculations of the ECD of 1 are used to assign its AC. The VCD spectrum of 1 is reported and also used, together with DFT calculations, to assign its AC. The ACs of 1 derived from its [alpha](D), ECD, and VCD are identical and in agreement with the AC previously determined via total synthesis. The previously undetermined ACs of 2-4, derived from their [alpha](D) values, have absolute configurations of their tricyclic cores identical to that of 1. Further studies of the ACs of these molecules using ECD and, especially, VCD are recommended to establish more definitively this finding. Our studies of the OR, ECD, and VCD of quadrone are the first to utilize DFT calculations of all three properties for the determination of the AC of a chiral natural product molecule.
Dahlgren, Björn; Reif, Maria M; Hünenberger, Philippe H; Hansen, Niels
2012-10-09
The raw ionic solvation free energies calculated on the basis of atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [Kastenholz, M. A.; Hünenberger, P. H. J. Chem. Phys.2006, 124, 224501 and Reif, M. M.; Hünenberger, P. H. J. Chem. Phys.2011, 134, 144104], the application of an appropriate correction scheme allows for a conversion of the methodology-dependent raw data into methodology-independent results. In this work, methodology-independent derivative thermodynamic hydration and aqueous partial molar properties are calculated for the Na(+) and Cl(-) ions at P° = 1 bar and T(-) = 298.15 K, based on the SPC water model and on ion-solvent Lennard-Jones interaction coefficients previously reoptimized against experimental hydration free energies. The hydration parameters considered are the hydration free energy and enthalpy. The aqueous partial molar parameters considered are the partial molar entropy, volume, heat capacity, volume-compressibility, and volume-expansivity. Two alternative calculation methods are employed to access these properties. Method I relies on the difference in average volume and energy between two aqueous systems involving the same number of water molecules, either in the absence or in the presence of the ion, along with variations of these differences corresponding to finite pressure or/and temperature changes. Method II relies on the calculation of the hydration free energy of the ion, along with variations of this free energy corresponding to finite pressure or/and temperature changes. Both methods are used considering two distinct variants in the application of the correction scheme. In variant A, the raw values from the simulations are corrected after the application of finite difference in pressure or/and temperature, based on correction terms specifically designed for derivative parameters at P° and T(-). In variant B, these raw values are corrected prior to differentiation, based on corresponding correction terms appropriate for the different simulation pressures P and temperatures T. The results corresponding to the different calculation schemes show that, except for the hydration free energy itself, accurate methodological independence and quantitative agreement with even the most reliable experimental parameters (ion-pair properties) are not yet reached. Nevertheless, approximate internal consistency and qualitative agreement with experimental results can be achieved, but only when an appropriate correction scheme is applied, along with a careful consideration of standard-state issues. In this sense, the main merit of the present study is to set a clear framework for these types of calculations and to point toward directions for future improvements, with the ultimate goal of reaching a consistent and quantitative description of single-ion hydration thermodynamics in molecular dynamics simulations.
The compressible aerodynamics of rotating blades based on an acoustic formulation
NASA Technical Reports Server (NTRS)
Long, L. N.
1983-01-01
An acoustic formula derived for the calculation of the noise of moving bodies is applied to aerodynamic problems. The acoustic formulation is a time domain result suitable for slender wings and bodies moving at subsonic speeds. A singular integral equation is derived in terms of the surface pressure which must then be solved numerically for aerodynamic purposes. However, as the 'observer' is moved onto the body surface, the divergent integrals in the acoustic formulation are semiconvergent. The procedure for regularization (or taking principal values of divergent integrals) is explained, and some numerical examples for ellipsoids, wings, and lifting rotors are presented. The numerical results show good agreement with available measured surface pressure data.
CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler
NASA Astrophysics Data System (ADS)
Motamed-Jahromi, Leila; Hatami, Mohsen
2018-04-01
In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.
Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study
NASA Astrophysics Data System (ADS)
Silva, D. L.; De Boni, L.; Correa, D. S.; Costa, S. C. S.; Hidalgo, A. A.; Zilio, S. C.; Canuto, S.; Mendonca, C. R.
2012-05-01
Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects.
Irrigation water demand: A meta-analysis of price elasticities
NASA Astrophysics Data System (ADS)
Scheierling, Susanne M.; Loomis, John B.; Young, Robert A.
2006-01-01
Metaregression models are estimated to investigate sources of variation in empirical estimates of the price elasticity of irrigation water demand. Elasticity estimates are drawn from 24 studies reported in the United States since 1963, including mathematical programming, field experiments, and econometric studies. The mean price elasticity is 0.48. Long-run elasticities, those that are most useful for policy purposes, are likely larger than the mean estimate. Empirical results suggest that estimates may be more elastic if they are derived from mathematical programming or econometric studies and calculated at a higher irrigation water price. Less elastic estimates are found to be derived from models based on field experiments and in the presence of high-valued crops.
Assessing exclusionary power of a paternity test involving a pair of alleged grandparents.
Scarpetta, Marco A; Staub, Rick W; Einum, David D
2007-02-01
The power of a genetic test battery to exclude a pair of individuals as grandparents is an important consideration for parentage testing laboratories. However, a reliable method to calculate such a statistic with short-tandem repeat (STR) genetic markers has not been presented. Two formulae describing the random grandparents not excluded (RGPNE) statistic at a single genetic locus were derived: RGPNE = a(4 - 6a + 4a(2)- a(3)) when the paternal obligate allele (POA) is defined and RGPNE = 2[(a + b)(2 - a - b)][1 - (a + b)(2 - a - b)] + [(a + b)(2 - a - b)] when the POA is ambiguous. A minimum number of genetic markers required to yield cumulative RGPNE values of not greater than 0.01 was calculated with weighted average allele frequencies of the CODIS STR loci. RGPNE data for actual grandparentage cases are also presented to empirically examine the exclusionary power of routine casework. A comparison of RGPNE and random man not excluded (RMNE) values demonstrates the increased difficulty involved in excluding two individuals as grandparents compared to excluding a single alleged parent. A minimum of 12 STR markers is necessary to achieve RGPNE values of not greater than 0.01 when the mother is tested; more than 25 markers are required without the mother. Cumulative RGPNE values for each of 22 nonexclusionary grandparentage cases were not more than 0.01 but were significantly weaker when calculated without data from the mother. Calculation of the RGPNE provides a simple means to help minimize the potential of false inclusions in grandparentage analyses. This study also underscores the importance of testing the mother when examining the parents of an unavailable alleged father (AF).
Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.
2013-03-01
We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for smaller phantoms due to the shorter inter-organ distances compared to the bigger phantoms. By testing sensitivity of S values to random sampling and voxel resolution, we confirmed that the lymph node model is reasonably stable and consistent for different random samplings and voxel resolutions.
The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters
Tobias, C.R.; Böhlke, J.K.; Harvey, J.W.
2007-01-01
We examined the utility of ??18O2 measurements in estimating gross primary production (P), community respiration (R), and net metabolism (P:R) through diel cycles in a productive agricultural stream located in the midwestern U.S.A. Large diel swings in O2 (??200 ??mol L-1) were accompanied by large diel variation in ??18O2 (??10???). Simultaneous gas transfer measurements and laboratory-derived isotopic fractionation factors for O2 during respiration (??r) were used in conjunction with the diel monitoring of O2 and ??18O2 to calculate P, R, and P:R using three independent isotope-based methods. These estimates were compared to each other and against the traditional "open-channel diel O2-change" technique that lacked ??18O2. A principal advantage of the ??18O2 measurements was quantification of diel variation in R, which increased by up to 30% during the day, and the diel pattern in R was variable and not necessarily predictable from assumed temperature effects on R. The P, R, and P:R estimates calculated using the isotope-based approaches showed high sensitivity to the assumed system fractionation factor (??r). The optimum modeled ??r values (0.986-0.989) were roughly consistent with the laboratory-derived values, but larger (i.e., less fractionation) than ??r values typically reported for enzyme-limited respiration in open water environments. Because of large diel variation in O2, P:R could not be estimated by directly applying the typical steady-state solution to the O2 and 18O-O2 mass balance equations in the absence of gas transfer data. Instead, our results indicate that a modified steady-state solution (the daily mean value approach) could be used with time-averaged O2 and ??18O2 measurements to calculate P:R independent of gas transfer. This approach was applicable under specifically defined, net heterotrophic conditions. The diel cycle of increasing daytime R and decreasing nighttime R was only partially explained by temperature variation, but could be consistent with the diel production/consumption of labile dissolved organic carbon from photosynthesis. ?? 2007, by the American Society of Limnology and Oceanography, Inc.
In vivo estimates of NO and CO conductance for haemoglobin and for lung transfer in humans.
Guénard, Hervé Jean-Pierre; Martinot, Jean-Benoit; Martin, Sebastien; Maury, Bertrand; Lalande, Sophie; Kays, Christian
2016-07-01
Membrane conductance (Dm) and capillary lung volume (Vc) derived from NO and CO lung transfer measurements in humans depend on the blood conductance (θ) values of both gases. Many θ values have been proposed in the literature. In the present study, measurements of CO and NO transfer while breathing 15% or 21% O2 allowed the estimation of θNO and the calculation of the optimal equation relating 1/θCO to pulmonary capillary oxygen pressure (PcapO2). In 10 healthy subjects, the mean calculated θNO value was similar to the θNO value previously reported in the literature (4.5mmHgmin(-1)) provided that one among three θCO equations from the literature was chosen. Setting 1/θCO=a·PcapO2+b, optimal values of a and b could be chosen using two methods: 1) by minimizing the difference between Dm/Vc ratios for any PcapO2, 2) by establishing a linear equation relating a and b. Using these methods, we are proposing the equation 1/θCO=0.0062·PcapO2+1.16, which is similar to two equations previously reported in the literature. With this set of θ values, DmCO reached the morphometric range. Copyright © 2016 Elsevier B.V. All rights reserved.
Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.
Park, Jung-Hoon; Choi, Nak-Sam
2017-02-01
For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Baschieri, Andrea; Pulvirenti, Luana; Muccilli, Vera; Amorati, Riccardo; Tringali, Corrado
2017-07-26
Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (k inh ) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the k inh value, being 2.4 × 10 5 M -1 s -1 and 3.3 × 10 5 M -1 s -1 for the mono and the dihydroxy derivatives respectively (k inh of magnolol is 6.1 × 10 4 M -1 s -1 ). The di-methoxylated derivative is less reactive than magnolol (k inh = 1.1 × 10 4 M -1 s -1 ), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 10 4 M -1 s -1 ). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.
Synthesis, spectroscopic analysis and theoretical study of new pyrrole-isoxazoline derivatives
NASA Astrophysics Data System (ADS)
Rawat, Poonam; Singh, R. N.; Baboo, Vikas; Niranjan, Priydarshni; Rani, Himanshu; Saxena, Rajat; Ahmad, Sartaj
2017-02-01
In the present work, we have efficiently synthesized the pyrrole-isoxazoline derivatives (4a-d) by cyclization of substituted 4-chalconylpyrrole (3a-d) with hydroxylamine hydrochloride. The reactivity of substituted 4-chalconylpyrrole (3a-d), towards nucleophiles hydroxylamine hydrochloride was evaluated on the basis of electrophilic reactivity descriptors (fk+, sk+, ωk+) and they were found to be high at unsaturated β carbon of chalconylpyrrole indicating its more proneness to nucleophilic attack and thereby favoring the formation of reported new pyrrole-isoxazoline compounds (4a-d). The structures of newly synthesized pyrrole-isoxazoline derivatives were derived from IR, 1H NMR, Mass, UV-Vis and elemental analysis. All experimental spectral data corroborate well with the calculated spectral data. The FT-IR analysis shows red shifts in vN-H and vC = O stretching due to dimer formation through intermolecular hydrogen bonding. On basis set superposition error correction, the intermolecular interaction energy for (4a-d) is found to be 10.10, 9.99, 10.18, 11.01 and 11.19 kcal/mol respectively. The calculated first hyperpolarizability (β0) values of (4a-d) molecules are in the range of 7.40-9.05 × 10-30 esu indicating their suitability for non-linear optical (NLO) applications. Experimental spectral results, theoretical data, analysis of chalcone intermediates and pyrrole-isoxazolines find usefulness in advancement of pyrrole-azole chemistry.
Pauling, Linus; Kamb, Barclay
1986-01-01
An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698
Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths
NASA Astrophysics Data System (ADS)
Monreal, Pedro; Calvo, Iván; Sánchez, Edilberto; Parra, Félix I.; Bustos, Andrés; Könies, Axel; Kleiber, Ralf; Görler, Tobias
2016-04-01
In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations performed with the Gene and EUTERPE codes. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-12-01
Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33
Retrieval of Aerosol Absorption Properties from Satellite Observations
NASA Technical Reports Server (NTRS)
Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo
2012-01-01
The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.
Boyer, Doug M; Seiffert, Erik R
2013-07-01
A laterally sloping fibular facet of the astragalus (=talus) has been proposed as one of few osteological synapomorphies of strepsirrhine primates, but the feature has never been comprehensively quantified. We describe a method for calculating fibular facet orientation on digital models of astragali as the angle between the planes of the fibular facet and the lateral tibial facet. We calculated this value in a sample that includes all major extant primate clades, a diversity of Paleogene primates, and nonprimate euarchontans (n = 304). Results show that previous characterization of a divide between extant haplorhines and strepsirrhines is accurate, with little overlap even when individual data points are considered. Fibular facet orientation is conserved in extant strepsirrhines despite major differences in locomotion and body size, while extant anthropoids are more variable (e.g., low values for catarrhines relative to non-callitrichine platyrrhines). Euprimate outgroups exhibit a mosaic of character states with Cynocephalus having a more obtuse strepsirrhine-like facet and sampled treeshrews and plesiadapiforms having more acute haplorhine-like facets. Surprisingly, the earliest species of the adapiform Cantius have steep haplorhine-like facets as well. We used a Bayesian approach to reconstruct the evolution of fibular facet orientation as a continuous character across a supertree of living and extinct primates. Mean estimates for crown Primatomorpha (97.9°), Primates (99.5°), Haplorhini (98.7°), and Strepsirrhini (108.2°) support the hypothesis that the strepsirrhine condition is derived, while lower values for crown Anthropoidea (92.8°) and Catarrhini (88.9°) are derived in the opposite direction. Copyright © 2013 Wiley Periodicals, Inc.
Coupled thermal stresses analysis in the composite elastic-plastic cylinder
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Dats, E. P.
2018-04-01
The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.
NASA Astrophysics Data System (ADS)
Dilek Özçelik, Nefise; Tunç, Tuncay; Çatak Çelik, Raziye; Erzengin, Mahmut; Özışık, Hacı
2017-05-01
We report in this paper the synthesis, spectroscopic, crystal structure, biological activities and theoretical results of the title compound. The crystal structure was defined by the X-ray diffraction (XRD) method. In addition, this newly synthesized hydrazone derivative was also subjected to its possible antioxidant activity with free radical scavenging ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals using butylated hydroxytoluene (BHT) as standard antioxidant. The structural calculations were performed by the density functional theory using the B3LYP method with 6-311++G(2d,2p) basis set. The calculated values were compared with experimental results.
Calculating depths to shallow magnetic sources using aeromagnetic data from the Tucson Basin
Casto, Daniel W.
2001-01-01
Using gridded high-resolution aeromagnetic data, the performance of several automated 3-D depth-to-source methods was evaluated over shallow control sources based on how close their depth estimates came to the actual depths to the tops of the sources. For all three control sources, only the simple analytic signal method, the local wavenumber method applied to the vertical integral of the magnetic field, and the horizontal gradient method applied to the pseudo-gravity field provided median depth estimates that were close (-11% to +14% error) to the actual depths. Careful attention to data processing was required in order to calculate a sufficient number of depth estimates and to reduce the occurrence of false depth estimates. For example, to eliminate sampling bias, high-frequency noise and interference from deeper sources, it was necessary to filter the data before calculating derivative grids and subsequent depth estimates. To obtain smooth spatial derivative grids using finite differences, the data had to be gridded at intervals less than one percent of the anomaly wavelength. Before finding peak values in the derived signal grids, it was necessary to remove calculation noise by applying a low-pass filter in the grid-line directions and to re-grid at an interval that enabled the search window to encompass only the peaks of interest. Using the methods that worked best over the control sources, depth estimates over geologic sites of interest suggested the possible occurrence of volcanics nearly 170 meters beneath a city landfill. Also, a throw of around 2 kilometers was determined for a detachment fault that has a displacement of roughly 6 kilometers.
NASA Astrophysics Data System (ADS)
Franz, K.; Dziubanski, D.; Helmers, M. J.
2015-12-01
The simplicity of the Curve Number (CN) method, which summarizes an area's hydrologic soil group, land cover, treatment, and hydrologic condition into a single number, make it a consistently popular choice for modelers. When multiple land cover types are present, a weighted average of the CNs is used. However, the weighted CN does not account for the spatial distribution of different land cover types within the watershed. To overcome this limitation, it becomes necessary to discretize the model into homogenous subunits, perhaps even to the hillslope scale, leading to a more complex model application. The objective of this study is to empirically derive CN values that reflect the effects of placements of native prairie vegetation (NPV) within agricultural landscapes. We derived CN values using precipitation and runoff data from (May 1 - Sept 30 over a 7 year period (2008 - 2014) for 9 ephemeral watersheds in Iowa (USA) ranging from 0.47 to 3.19 ha. The watersheds were planted with varying extents of NPV (0%, 10%, 20%) in different watershed positions (footslope vs. contour strips), with the rest of the watershed as row crop. The derived CN values from watersheds with all row crop were consistent with published values and watersheds with NPV had an average CN reduction of 6.4%, with a maximum reduction of 11.6%. Four of the six sites with treatment had a lower CN than one calculated using a weighted average of look-up values, indicating that accounting for placement of vegetation within the landscape is important for modeling runoff with the CN method. The derived CNs were verified using the leave-one-year-out method (computing CN using data from 6 of the 7 years, and then estimating runoff on the seventh year with that CN). Nash-Sutcliffe Efficiency (NSE) values for the estimated runoff typically ranged from 0.4-0.6. Our results suggest that the new CNs could confidently be used in future modeling studies to explore the hydrologic impacts of the NPV treatments at increasingly larger watershed scales.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy.
Wieser, H P; Hennig, P; Wahl, N; Bangert, M
2017-11-10
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order [Formula: see text] to [Formula: see text] for the expectation value and from [Formula: see text] to [Formula: see text] for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are [Formula: see text]99.15% for the expectation value and [Formula: see text]94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy
NASA Astrophysics Data System (ADS)
Wieser, H. P.; Hennig, P.; Wahl, N.; Bangert, M.
2017-12-01
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order O(V × B^2) to O(V × B) for the expectation value and from O(V × B^4) to O(V × B^2) for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are > 99.15% for the expectation value and > 94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Kawashima, Hiroko; Miyati, Tosiaki; Ohno, Naoki; Ohno, Masako; Inokuchi, Masafumi; Ikeda, Hiroko; Gabata, Toshifumi
2017-12-01
The study aimed to investigate whether intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) can differentiate luminal-B from luminal-A breast cancer MATERIALS AND METHODS: Biexponential analyses of IVIM and DCE MRI were performed using a 3.0-T MRI scanner, involving 134 patients with 137 pathologically confirmed luminal-type invasive breast cancers. Luminal-type breast cancer was categorized as luminal-B breast cancer (LBBC, Ki-67 ≧ 14%) or luminal-A breast cancer (LABC, Ki-67 < 14%). Quantitative parameters from IVIM (pure diffusion coefficient [D], perfusion-related diffusion coefficient [D*], and fraction [f]) and DCE MRI (initial percentage of enhancement and signal enhancement ratio [SER]) were calculated. The apparent diffusion coefficient (ADC) was also calculated using monoexponential fitting. We correlated these data with the Ki-67 status. The D and ADC values of LBBC were significantly lower than those of LABC (P = 0.028, P = 0.037). The SER of LBBC was significantly higher than that of LABC (P = 0.004). A univariate analysis showed that a significantly lower D (<0.847 x 10 -3 mm 2 /s), lower ADC (<0.960 × 10 -3 mm 2 /s), and higher SER (>1.071) values were associated with LBBC (all P values <0.01), compared to LABC. In a multivariate analysis, a higher SER (>1.071; odds ratio: 3.0099, 95% confidence interval: 1.4246-6.3593; P = 0.003) value and a lower D (<0.847 × 10 -3 mm 2 /s; odds ratio: 2.6878, 95% confidence interval: 1.0445-6.9162; P = 0.040) value were significantly associated with LBBC, compared to LABC. The SER derived from DCE MRI and the D derived from IVIM are associated independently with the Ki-67 status in patients with luminal-type breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023
2015-06-24
A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less
Bose Condensation at He-4 Interfaces
NASA Technical Reports Server (NTRS)
Draeger, E. W.; Ceperley, D. M.
2003-01-01
Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.
Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.
Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S
2013-03-01
A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Pueschel, R. F.; Srivastava, V.; Clarke, A. D.; Rothermel, J.; Spinhirne, J. D.; Menzies, R. T.
1996-01-01
Aerosol concentrations and size distributions in the middle and upper troposphere over the remote Pacific Ocean were measured with a forward scattering spectrometer probe (FSSP) on the NASA DC-8 aircraft during NASA's Global Backscatter Experiment (GLOBE) in May-June 1990. The FSSP size channels were recalibrated based on refractive index estimates from flight-level aerosol volatility measurements with a collocated laser optical particle counter (LOPC). The recalibrated FSSP size distributions were averaged over 100-s intervals, fitted with lo-normal distributions and used to calculate aerosol backscatter coefficients at selected wavelengths. The FSSP-derived backscatter estimates were averaged over 300-s intervals to reduce large random fluctuations. The smoothed FSSP aerosol backscatter coefficients were then compared with LOPC-derived backscatter values and with backscatter measured at or near flight level from four lidar systems operating at 0.53, 1.06, 9.11, 9.25, and 10.59 micrometers. Agreement between FSSP-derived and lidar-measured backscatter was generally best at flight level in homogeneous aerosol fields and at high backscatter values. FSSP data often underestimated low backscatter values especially at the longer wavelengths due to poor counting statistics for larger particles (greater than 0.8 micrometers diameter) that usually dominate aerosol backscatter at these wavelengths. FSSP data also underestimated backscatter at shorter wavelengths when particles smaller than the FSSP lower cutoff diameter (0.35 micrometers) made significant contributions to the total backscatter.
Isoelectric focusing of dansylated amino acids in immobilized pH gradients
NASA Technical Reports Server (NTRS)
Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan
1986-01-01
The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.
Puncher, M; Zhang, W; Harrison, J D; Wakeford, R
2017-06-26
Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients.
Madeira, Paulo J Amorim; Morais, Tânia S; Silva, Tiago J L; Florindo, Pedro; Garcia, M Helena
2012-08-15
The gas-phase behaviour of six Ru(II) cyclopentadienyl-derived complexes with N-coordinated ligands, compounds with antitumor activities against several cancer lines, was studied. This was performed with the intent of establishing fragmentation pathways and to determine the Ru-L(N) and Ru-L(P) ligand bond dissociation energies. Such knowledge can be an important tool for the postulation of the mechanisms of action of these anticancer drugs. Two types of instruments equipped with electrospray ionisation were used (ion trap and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer). The dissociation energies were determined using energy-variable collision-induced dissociation measurements in the ion trap. The FTICR instrument was used to perform MS(n) experiments on one of the compounds and to obtain accurate mass measurements. Theoretical calculations were performed at the density functional theory (DFT) level using two different functionals (B3LYP and M06L) to estimate the dissociation energies of the complexes under study. The influence of the L(N) on the bond dissociation energy (D) of RuCp compounds with different nitrogen ligands was studied. The lability order of L(N) was: imidazole<1-butylimidazole<5-phenyl-1H-tetrazole<1-benzylimidazole. Both the functionals used gave the following ligand lability order: imidazole<1-benzylimidazole<5-phenyl-1H-tetrazole<1-butylimidazole. It is clear that there is an inversion between 1-benzylimidazole and 1-butylimidazole for the experimental and theoretical lability orders. The M06L functional afforded values of D closer to the experimental values. The type of phosphane (L(P) ) influenced the dissociation energies, with values of D being higher for Ru-L(N) with 1-butylimidazole when the phosphane was 1,2-bis(diphenylphosphino)ethane. The Ru-L(P) bond dissociation energy for triphenylphosphane was independent of the type of complex. The D values of Ru-L(N) and Ru-L(P) were determined for all six compounds and compared with the values calculated by the DFT method. For the imidazole-derived ligands the energy trend was rationalized in terms of the increasing extension of the σ-donation/π-backdonation effect. The bond dissociation energy of Ru-PPh(3) was independent of the fragmentations. Copyright © 2012 John Wiley & Sons, Ltd.
Röhling, Steffi; Dunger, Karsten; Kändler, Gerald; Klatt, Susann; Riedel, Thomas; Stümer, Wolfgang; Brötz, Johannes
2016-12-01
The German greenhouse gas inventory in the land use change sector strongly depends on national forest inventory data. As these data were collected periodically 1987, 2002, 2008 and 2012, the time series on emissions show several "jumps" due to biomass stock change, especially between 2001 and 2002 and between 2007 and 2008 while within the periods the emissions seem to be constant due to the application of periodical average emission factors. This does not reflect inter-annual variability in the time series, which would be assumed as the drivers for the carbon stock changes fluctuate between the years. Therefore additional data, which is available on annual basis, should be introduced into the calculations of the emissions inventories in order to get more plausible time series. This article explores the possibility of introducing an annual rather than periodical approach to calculating emission factors with the given data and thus smoothing the trajectory of time series for emissions from forest biomass. Two approaches are introduced to estimate annual changes derived from periodic data: the so-called logging factor method and the growth factor method. The logging factor method incorporates annual logging data to project annual values from periodic values. This is less complex to implement than the growth factor method, which additionally adds growth data into the calculations. Calculation of the input variables is based on sound statistical methodologies and periodically collected data that cannot be altered. Thus a discontinuous trajectory of the emissions over time remains, even after the adjustments. It is intended to adopt this approach in the German greenhouse gas reporting in order to meet the request for annually adjusted values.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.
2000-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.
Effective field theory, electric dipole moments and electroweak baryogenesis
NASA Astrophysics Data System (ADS)
Balazs, Csaba; White, Graham; Yue, Jason
2017-03-01
Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.
NASA Technical Reports Server (NTRS)
Camarda, C. J.; Adelman, H. M.
1984-01-01
The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.
Remote Measurement of Heat Flux from Power Plant Cooling Lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel
2013-06-01
Laboratory experiments have demonstrated a correlation between the rate of heat loss q" from an experimental fluid to the air above and the standard deviation σ of the thermal variability in images of the fluid surface. These experimental results imply that q" can be derived directly from thermal imagery by computing σ. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q" and σ when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- andmore » helicopter-based imagery collections had correlation coefficients between σ and q" of 0.45 and 0.76, respectively. Values of q" computed from a function of σ and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q" (0.84 and 0.89). Finally, this research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.« less
NASA Astrophysics Data System (ADS)
Ricca, Alessandra; Tronchet, Jean M. J.; Weber, Jacques
1992-12-01
The cytotoxic activities of a series of sugar derivatives bearing electrophilic groups (1-cyanovinyl, 4-cyanochromen-2-yl and 3-nitrochromen-2-yl) have been correlated with their electrophilic properties. To this end, an electrophilic index was defined as an isovalue surface where the interaction energy with an incoming model nucelophile (H-) was equal to a predefined value. This index, calculated from extended Hückel wave functions, allows one to quantify the electrophilic character of the substrates and to describe its spatial localization within the molecular volume (at Michael acceptor sites or on other parts of the molecules). Only sugars for which Michael acceptor reactivity was predicted were retained, and they were subdivided into two groups: those showing antiviral activity against a retrovirus and those devoid of such activity. Under these conditions, good correlations between cytotoxic activity and electrophilic reactivity-positive for the first group, negative for the second-were found. In addition, the ratio electrophilicity/sum of the absolute value of the dipole plus its projection along the principal axis of inertia, Z, of the molecule allows one to predict to which of these groups a sugar derivative belongs.
Natural Resources Research Program. Annotated Bibliography for Regional Recreation Demand Models
1991-01-01
to gain decreases in hunter density. A study of cross-country skiers in Colorado established willingness-to-pay values for a day of skiing, and...peo- ple derive from the use of public beaches? How can knowledge of these rela- tionships improve public beach management? A model was developed and...commodity. The pilot calculation ascertained what basic data are required. A knowledge of a county’s popula- tion, population density, distance from the
Applications of Generalized Derivatives to Viscoelasticity.
1979-11-01
Integration Used to Evaluate the Inverse Transform 78 B-i Schematic of the Half-Space of Newtonian Fluid Bounded by a "Wetted" Surface 96 C-I The...of the response at discrete frequencies. The inverse transform of the response is evaluated numerically to produce the time history. The major drawback...of this method is the arduous task of calculating the inverse transform for every point in time at which the value of the response is required. The
2010-06-01
or IVOS) Sperm Analyzer, Version 12.1 Final Report, Toxicology Report No. 87-XE-06ED-05, January 2005−January 2010 7 (Hamilton-Thorne Research...vas deferens were not different across treatments (F = 1.46; df = 5, 48; p = 0.221, data not shown). Sperm counts calculated as number per vas...in species with simple gastrointestinal structures and short retention times; whereas, species with expanded gut physiologies and retention times
Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu
2015-04-01
An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®
Lemieux, Christine L; Long, Alexandra S; Lambert, Iain B; Lundstedt, Staffan; Tysklind, Mats; White, Paul A
2015-02-03
Here we evaluate the excess lifetime cancer risk (ELCR) posed by 10 PAH-contaminated soils using (i) the currently advocated, targeted chemical-specific approach that assumes dose additivity for carcinogenic PAHs and (ii) a bioassay-based approach that employs the in vitro mutagenic activity of the soil fractions to determine levels of benzo[a]pyrene equivalents and, by extension, ELCR. Mutagenic activity results are presented in our companion paper.1 The results show that ELCR values for the PAH-containing fractions, determined using the chemical-specific approach, are generally (i.e., 8 out of 10) greater than those calculated using the bioassay-based approach; most are less than 5-fold greater. Only two chemical-specific ELCR estimates are less than their corresponding bioassay-derived values; differences are less than 10%. The bioassay-based approach, which permits estimation of ELCR without a priori knowledge of mixture composition, proved to be a useful tool to evaluate the chemical-specific approach. The results suggest that ELCR estimates for complex PAH mixtures determined using a targeted, chemical-specific approach are reasonable, albeit conservative. Calculated risk estimates still depend on contentious PEFs and cancer slope factors. Follow-up in vivo mutagenicity assessments will be required to validate the results and their relevance for human health risk assessment of PAH-contaminated soils.
Pyrrole Derivatives and Diterpene Alkaloids from the South China Sea Sponge Agelas nakamurai.
Chu, Mei-Jun; Tang, Xu-Li; Qin, Guo-Fei; Sun, Yan-Ting; Li, Lei; de Voogd, Nicole J; Li, Ping-Lin; Li, Guo-Qiang
2017-07-01
Two pairs of new non-brominated racematic pyrrole derivatives, (±)-nakamurine D (1) and (±)-nakamurine E (2), two new diterpene alkaloids, isoagelasine C (16) and isoagelasidine B (21), together with 13 known pyrrole derivatives ((±)-3 - 15), five known diterpene alkaloids (17 - 20, 22) were isolated from the South China Sea sponge Agelas nakamurai. The racemic mixtures, compounds 1 - 4, were resolved into four pairs of enantiomers, (+)-1 and (-)-1, (+)-2 and (-)-2, (+)-3 and (-)-3, and (+)-4 and (-)-4, by chiral HPLC. The structures and absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses, quantum chemical calculations, quantitative measurements of molar rotations, application of van't Hoff's principle of optical superposition, and comparison with the literature data. The NMR and MS data of compound 3 are reported for the first time, as the structure was listed in SciFinder Scholar with no associated reference. These non-brominated pyrrole derivatives were found in this species for the first time. Compound 18 showed valuable cytotoxicities against HL-60, K562, and HCT-116 cell lines with IC 50 values of 12.4, 16.0, and 19.8 μm, respectively. Compounds 16 - 19, 21, and 22 showed potent antifungal activities against Candida albicans with MIC values ranging from 0.59 to 4.69 μg/ml. Compounds 16 - 19 exhibited moderate antibacterial activities against Proteusbacillus vulgaris (MIC values ranging from 9.38 to 18.75 μg/ml). © 2017 Wiley-VHCA AG, Zurich, Switzerland.
The intensity of segregation of the OH-Isoprene reaction -measurements above the amazon rain forest-
NASA Astrophysics Data System (ADS)
Sörgel, Matthias; Berger, Martina; Dlugi, Ralph; Harder, Hartwig; Kesselmeier, Jürgen; Mallik, Chinmay; Marno, Daniel; Tsokankunku, Anywhere; Wolff, Stefan; Yanez-Serrano, Ana-Maria; Zelger, Michael
2017-04-01
Incomplete mixing (segregation) causes reduced reaction rates compared to laboratory values derived for well mixed conditions. The dominant contribution to atmospheric chemistry is given by the most important oxidizing agent, the OH-radical, which is regarded as the detergent of the atmosphere as it reacts with the majority of atmospheric pollutants and therefore accelerates their removal from the atmosphere. Hence, to understand atmospheric self-cleansing, we need to quantify and understand the budgets (sources and sinks) of OH. Budgets are generally derived by measuring mixing ratios of known source molecules (either primary or recycling) and the total sink for OH of which isoprene is an important part in the pristine rain forest. The production and loss terms are calculated by using the measured mixing ratios and the laboratory derived kinetic values. If reactants are not well mixed their actual reaction rates are lower in the atmosphere than in the laboratory. Therefore, segregation might play a substantial role in quantifying and understanding the derived budgets. We measured OH-radicals, isoprene and other species (O3, NOx, HO2, H2O) with high time resolution (1-10 Hz) shortly above a rain forest canopy (41 m above ground level) at the ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W). The site is characterized by high isoprene (up to 20 ppb) and low NO (50 ppt - 500 ppt). Simultaneous measurements of OH and isoprene with high time resolution (necessary to directly calculate the intensity of segregation) are sparse. To our knowledge this is now the third dataset for OH-isoprene segregation but the first from a tropical rain forest. The results will be compared to modeling results from different environments and the effect of trace gas exchange driven by coherent structures on the intensity of segregation will be evaluated as well.
Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G
2012-09-01
The accuracy of tumor plasma volume and K(trans) estimates obtained with DCE MR imaging may have inaccuracies introduced by a poor estimation of the VIF. In this study, we evaluated the diagnostic accuracy of a novel technique by using a phase-derived VIF and "bookend" T1 measurements in the preoperative grading of patients with suspected gliomas. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. Both magnitude and phase images were acquired during DCE MR imaging for estimates of K(trans)_φ and V(p_)φ (calculated from a phase-derived VIF and bookend T1 measurements) as well as K(trans)_SI and V(p_)SI (calculated from a magnitude-derived VIF without T1 measurements). Median K(trans)_φ values were 0.0041 minutes(-1) (95 CI, 0.00062-0.033), 0.031 minutes(-1) (0.011-0.150), and 0.088 minutes(-1) (0.069-0.110) for grade II, III, and IV gliomas, respectively (P ≤ .05 for each). Median V(p_)φ values were 0.64 mL/100 g (0.06-1.40), 0.98 mL/100 g (0.34-2.20), and 2.16 mL/100 g (1.8-3.1) with P = .15 between grade II and III gliomas and P = .015 between grade III and IV gliomas. In differentiating low-grade from high-grade gliomas, AUCs for K(trans)_φ, V(p_φ), K(trans)_SI, and V(p_)SI were 0.87 (0.73-1), 0.84 (0.69-0.98), 0.81 (0.59-1), and 0.84 (0.66-0.91). The differences between the AUCs were not statistically significant. K(trans)_φ and V(p_)φ are parameters that can help in differentiating low-grade from high-grade gliomas.
Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
NASA Astrophysics Data System (ADS)
Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian
2014-08-01
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝aN,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Solomon, Jonathan M; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark
2016-12-12
Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho 2 Zr 2 O 7 . In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE 2 Th 2 O 7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.
NASA Astrophysics Data System (ADS)
Solomon, Jonathan M.; Shamblin, Jacob; Lang, Maik; Navrotsky, Alexandra; Asta, Mark
2016-12-01
Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.
2001-01-01
This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.