Sample records for calculated van der

  1. Dynamical importance of van der Waals saddle and excited potential surface in C(1D)+D2 complex-forming reaction

    PubMed Central

    Shen, Zhitao; Ma, Haitao; Zhang, Chunfang; Fu, Mingkai; Wu, Yanan; Bian, Wensheng; Cao, Jianwei

    2017-01-01

    Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. PMID:28094253

  2. Quantitative Characterization of Molecular Similarity Spaces: Tools for Computational Toxicology

    DTIC Science & Technology

    2000-01-20

    numbers for hydrogen-filled molecular structure, hydrogen-suppressed molecular structure, and van der Waals volume. Van der Waals...relative covalent radii Geometrical Vw van der Waals volume 3DW 3-D Wiener number for the hydrogen-suppressed geometric distance matrix...molecular structure, and van der Waals volume. Van der Waals volume, Vw (Bondi 1964). was calculated using Sybyl 6.1 from Tripos As- sociates. Inc

  3. Calculation of Hamaker constants in non-aqueous fluid media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BELL,NELSON S.; DIMOS,DUANE B.

    2000-05-09

    Calculations of the Hamaker constants representing the van der Waals interactions between conductor, resistor and dielectric materials are performed using Lifshitz theory. The calculation of the parameters for the Ninham-Parsegian relationship for several non-aqueous liquids has been derived based on literature dielectric data. Discussion of the role of van der Waals forces in the dispersion of particles is given for understanding paste formulation. Experimental measurements of viscosity are presented to show the role of dispersant truncation of attractive van der Waals forces.

  4. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; ...

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  5. A review on data and predictions of water dielectric spectra for calculations of van der Waals surface forces.

    PubMed

    Wang, Jianlong; Nguyen, Anh V

    2017-12-01

    Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10 -20 J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  7. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  8. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  9. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  10. Communication: Determining the structure of the N{sub 2}Ar van der Waals complex with laser-based channel-selected Coulomb explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chengyin, E-mail: cywu@pku.edu.cn; Liu, Yunquan; Gong, Qihuang

    2014-04-14

    We experimentally reconstructed the structure of the N{sub 2}Ar van der Waals complex with the technique of laser-based channel-selected Coulomb explosion imaging. The internuclear distance between the N{sub 2} center of mass and the Ar atom, i.e., the length of the van der Waals bond, was determined to be 3.88 Å from the two-body explosion channels. The angle between the van der Waals bond and the N{sub 2} principal axis was determined to be 90° from the three-body explosion channels. The reconstructed structure was contrasted with our high level ab initio calculations. The agreement demonstrated the potential application of laser-basedmore » Coulomb explosion in imaging transient molecular structure, particularly for floppy van der Waals complexes, whose structures remain difficult to be determined by conventional spectroscopic methods.« less

  11. Effect of van der Waals interactions on the structural and binding properties of GaSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru; Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru; Kemerovo State University, Krasnaya 6, 650043 Kemerovo

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Semore » bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.« less

  12. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  14. Van der Waals forces in pNRQED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtabovenko, Vladyslav

    2016-01-22

    We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.

  15. van der Waals interactions between nanostructures: Some analytic results from series expansions

    NASA Astrophysics Data System (ADS)

    Stedman, T.; Drosdoff, D.; Woods, L. M.

    2014-01-01

    The van der Waals force between objects of nontrivial geometries is considered. A technique based on a perturbation series approach is formulated in the dilute limit. We show that the dielectric response and object size can be decoupled and dominant contributions in terms of object separations can be obtained. This is a powerful method, which enables straightforward calculations of the interaction for different geometries. Our results for planar structures, such as thin sheets, infinitely long ribbons, and ribbons with finite dimensions, may be applicable for nanostructured devices where the van der Waals interaction plays an important role.

  16. A variation-perturbation method for atomic and molecular interactions. I - Theory. II - The interaction potential and van der Waals molecule for Ne-HF

    NASA Astrophysics Data System (ADS)

    Gallup, G. A.; Gerratt, J.

    1985-09-01

    The van der Waals energy between the two parts of a system is a very small fraction of the total electronic energy. In such cases, calculations have been based on perturbation theory. However, such an approach involves certain difficulties. For this reason, van der Waals energies have also been directly calculated from total energies. But such a method has definite limitations as to the size of systems which can be treated, and recently ab initio calculations have been combined with damped semiempirical long-range dispersion potentials to treat larger systems. In this procedure, large basis set superposition errors occur, which must be removed by the counterpoise method. The present investigation is concerned with an approach which is intermediate between the previously considered procedures. The first step in the new approach involves a variational calculation based upon valence bond functions. The procedure includes also the optimization of excited orbitals, and an approximation of atomic integrals and Hamiltonian matrix elements.

  17. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  18. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials.

    PubMed

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-04-07

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

  19. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

    PubMed Central

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-01-01

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. PMID:28387225

  20. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

    NASA Astrophysics Data System (ADS)

    Ding, Wenjun; Zhu, Jianbao; Wang, Zhe; Gao, Yanfei; Xiao, Di; Gu, Yi; Zhang, Zhenyu; Zhu, Wenguang

    2017-04-01

    Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

  1. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-09-01

    The importance of the long-range Lifshitz{endash}van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters aremore » compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters{close_quote} circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. {copyright} {ital 1998} {ital The American Physical Society}« less

  2. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  3. Porous silicon film formation from silicon-nanoparticle inks: The possibility of effects of van der Waals interactions on uniform film formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki; Nagoya, Wataru; Moriki, Kazuya; Sato, Seiichi

    2018-02-01

    Porous Si films were formed on electrically insulative, semiconductive, and conductive substrates by depositing aqueous and nonaqueous Si nanoparticle inks. In this study, we focused on whether the Si ink deposition resulted in the formation of uniform porous Si films on various substrates. As a result of the experiments, we found that the inks showing better substrate wettabilities did not necessarily result in more uniform film formation on the substrates. This implies that the ink-solvent wettability and the nanoparticle-substrate interactions play important roles in the uniform film formation. As one of the interactions, we discussed the influence of van der Waals interactions by calculating the Hamaker constants. The calculation results indicated that the uniform film formation was hampered when the nanoparticle surface had a repulsive van der Waals interaction with the substrate.

  4. Ionic liquids: dissecting the enthalpies of vaporization.

    PubMed

    Köddermann, Thorsten; Paschek, Dietmar; Ludwig, Ralf

    2008-03-14

    We calculate the heats of vaporisation for imidazolium-based ionic liquids [C(n)mim][NTf(2)] with n=1, 2, 4, 6, 8 by means of molecular dynamics (MD) simulations and discuss their behavior with respect to temperature and the alkyl chain length. We use a force field developed recently. The different cohesive energies contributing to the overall heats of vaporisations are discussed in detail. With increasing alkyl chain length, the Coulomb contribution to the heat of vaporisation remains constant at around 80 kJ mol(-1), whereas the van der Waals interaction increases continuously. The calculated increase of about 4.7 kJ mol(-1) per CH(2)-group of the van der Waals contribution in the ionic liquid exactly coincides with the increase in the heats of vaporisation for n-alcohols and n-alkanes, respectively. The results support the importance of van der Waals interactions even in systems completely composed of ions.

  5. Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene

    NASA Astrophysics Data System (ADS)

    Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.

    2018-06-01

    The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.

  6. Application of Van Der Waals Density Functional Theory to Study Physical Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.

    2009-12-01

    An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.

  7. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    NASA Astrophysics Data System (ADS)

    Coroiu, I.

    2007-04-01

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  8. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  9. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  10. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    NASA Astrophysics Data System (ADS)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  11. Calculation of noncontact forces between silica nanospheres.

    PubMed

    Sun, Weifu; Zeng, Qinghua; Yu, Aibing

    2013-02-19

    Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.

  12. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode.

    PubMed

    Dastgeer, Ghulam; Khan, Muhammad Farooq; Nazir, Ghazanfar; Afzal, Amir Muhammad; Aftab, Sikandar; Naqvi, Bilal Abbas; Cha, Janghwan; Min, Kyung-Ah; Jamil, Yasir; Jung, Jongwan; Hong, Suklyun; Eom, Jonghwa

    2018-04-18

    Heterostructures comprising two-dimensional (2D) semiconductors fabricated by individual stacking exhibit interesting characteristics owing to their 2D nature and atomically sharp interface. As an emerging 2D material, black phosphorus (BP) nanosheets have drawn much attention because of their small band gap semiconductor characteristics along with high mobility. Stacking structures composed of p-type BP and n-type transition metal dichalcogenides can produce an atomically sharp interface with van der Waals interaction which leads to p-n diode functionality. In this study, for the first time, we fabricated a heterojunction p-n diode composed of BP and WS 2 . The rectification effects are examined for monolayer, bilayer, trilayer, and multilayer WS 2 flakes in our BP/WS 2 van der Waals heterojunction diodes and also verified by density function theory calculations. We report superior functionalities as compared to other van der Waals heterojunction, such as efficient gate-dependent static rectification of 2.6 × 10 4 , temperature dependence, thickness dependence of rectification, and ideality factor of the device. The temperature dependence of Zener breakdown voltage and avalanche breakdown voltage were analyzed in the same device. Additionally, superior optoelectronic characteristics such as photoresponsivity of 500 mA/W and external quantum efficiency of 103% are achieved in the BP/WS 2 van der Waals p-n diode, which is unprecedented for BP/transition metal dichalcogenides heterostructures. The BP/WS 2 van der Waals p-n diodes have a profound potential to fabricate rectifiers, solar cells, and photovoltaic diodes in 2D semiconductor electronics and optoelectronics.

  13. Communication: THz absorption spectrum of the CO2-H2O complex: observation and assignment of intermolecular van der Waals vibrations.

    PubMed

    Andersen, J; Heimdal, J; Mahler, D W; Nelander, B; Larsen, R Wugt

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO2-H2O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H2O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems' flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm(-1) from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm(-1) for the dissociation energy D0.

  14. Strong van der Waals attractive forces in nanotechnology

    NASA Astrophysics Data System (ADS)

    Reimers, Jeffrey

    The Dobson classification scheme for failure of London-like expressions for describing dispersion is reviewed. New ways to measure using STM data and calculate by first principles free energies of organic self-assembly processes from solution will be discussed, considering tetraalkylporphyrins on graphite. How strong van der Waals forces can compete against covalent bonding to produce new molecular isomers and reaction pathways will also be demonstrated, focusing on golds-sulfur bonds for sensors and stabilizing nanoparticles.

  15. Calculations of predissociative lifetimes of RG...Hal2 Van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, Alexei A.; Stepanov, N. F.

    1992-07-01

    Good examples of combined energy- and time-resolved techniques linked by the theoretical solution of a nuclear problem may be found in investigations of the dynamics of weakly bound Van der Waals (VdW) complexes, such as Ar-OH and He-stilbene. Our report concerns only the theoretical aspect of this complex approach. However, we shall stress the importance of energy-resolved spectroscopy for the dynamics and try to illustrate this with some numerical results.

  16. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE PAGES

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh; ...

    2017-04-14

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  17. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Garlea, V. Ovidiu; KC, Santosh

    We have investigated the crystallographic, magnetic, and transport properties of the van der Waals bonded, layered compound CrTe 3 on single-crystal and polycrystalline materials. Furthermore, the crystal structure contains layers made up of lozenge-shaped Cr 4 tetramers. Electrical resistivity measurements show the crystals to be semiconducting, with a temperature dependence consistent with a band gap of 0.3 eV. The magnetic susceptibility exhibits a broad maximum near 300 K characteristic of low dimensional magnetic systems. Weak anomalies are observed in the susceptibility and heat capacity near 55 K, and single-crystal neutron diffraction reveals the onset of long-range antiferromagnetic order at thismore » temperature. Strongly dispersive spin waves are observed in the ordered state. Significant magnetoelastic coupling is indicated by the anomalous temperature dependence of the lattice parameters and is evident in structural optimization in van der Waals density functional theory calculations for different magnetic configurations. The cleavability of the compound is apparent from its handling and is confirmed by first-principles calculations, which predict a cleavage energy 0.5 J / m 2 , similar to graphite. Based on our results, CrTe 3 is identified as a promising compound for studies of low dimensional magnetism in bulk crystals as well as magnetic order in monolayer materials and van der Waals heterostructures.« less

  18. Inflationary universe in terms of a van der Waals viscous fluid

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Elizalde, E.; Odintsov, S. D.; Timoshkin, A. V.

    The inflationary expansion of our early-time universe is considered in terms of the van der Waals equation, as equation of state for the cosmic fluid, where a bulk viscosity contribution is assumed to be present. The corresponding gravitational equations for the energy density in a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker universe are solved, and an analytic expression for the scale factor is obtained. Attention is paid, specifically, to the role of the viscosity term in the accelerated expansion; the values of the slow-roll parameters, the spectral index, and the tensor-to-scalar ratio for the van der Waals model are calculated and compared with the most recent astronomical data from the Planck satellite. By imposing reasonable restrictions on the parameters of the van der Waals equation, in the presence of viscosity, it is shown to be possible for this model to comply quite precisely with the observational data. One can therefore conclude that the inclusion of viscosity in the theory of the inflationary epoch may definitely improve the cosmological models.

  19. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  20. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  1. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Robert, C.; Semina, M. A.; Cadiz, F.; Manca, M.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Cai, H.; Tongay, S.; Lassagne, B.; Renucci, P.; Amand, T.; Marie, X.; Glazov, M. M.; Urbaszek, B.

    2018-01-01

    The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing us to extrapolate an exciton binding energy of ≈220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.

  2. Electrostatics of electron-hole interactions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  3. A combining rule calculation of the ground-state van der Waals potentials of the magnesium rare-gas complexes

    NASA Astrophysics Data System (ADS)

    Saidi, Samah; Alharzali, Nissrin; Berriche, Hamid

    2017-04-01

    The potential energy curves and spectroscopic constants of the ground-state of the Mg-Rg (Rg = He, Ne, Ar, Kr, and Xe) van der Waals complexes are generated by the Tang-Toennies potential model and a set of derived combining rules. The parameters of the model are calculated from the potentials of the homonuclear magnesium and rare-gas dimers. The predicted spectroscopic constants are comparable to other available theoretical and experimental results, except in the case of Mg-He, we note that there are large differences between various determinations. Moreover, in order to reveal relative differences between species more obviously we calculated the reduced potential of these five systems. The curves are clumped closely together, but at intermediate range the Mg-He reduced potential is clearly very different from the others.

  4. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN

    NASA Astrophysics Data System (ADS)

    Sun, Minglei; Chou, Jyh-Pin; Ren, Qingqiang; Zhao, Yiming; Yu, Jin; Tang, Wencheng

    2017-04-01

    Using first-principles calculations, we systematically investigated the electronic properties of graphene/g-GaN van der Waals (vdW) heterostructures. We discovered that the Dirac cone of graphene could be quite well preserved in the vdW heterostructures. Moreover, a transition from an n-type to p-type Schottky contact at the graphene/g-GaN interface was induced with a decreased interlayer distance from 4.5 to 2.5 Å. This relationship is expected to enable effective control of the Schottky barrier, which is an important development in the design of Schottky devices.

  5. Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide

    NASA Astrophysics Data System (ADS)

    Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar

    2016-06-01

    Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.

  6. Selective Perception for Robot Driving

    DTIC Science & Technology

    1992-05-01

    models are theories of human cognitive activity during driving. Van der Molen and Botticher recently reviewed several of these models [ van der Molen 871...how to represent driving knowledge, how to perceive traffic situations, or how to process information to obtain actions. Van der Molen and Botticher...attempted to compare the operations of various models objectively on the same task [Rothengatter 88, van der Molen 87], but the models could be

  7. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  8. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    NASA Astrophysics Data System (ADS)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  9. Scaling laws for van der Waals interactions in nanostructured materials.

    PubMed

    Gobre, Vivekanand V; Tkatchenko, Alexandre

    2013-01-01

    Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  10. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  11. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects.

    PubMed

    Dryden, Daniel M; Hopkins, Jaime C; Denoyer, Lin K; Poudel, Lokendra; Steinmetz, Nicole F; Ching, Wai-Yim; Podgornik, Rudolf; Parsegian, Adrian; French, Roger H

    2015-09-22

    The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design.

  12. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  13. Rarefaction waves in van der Waals fluids with an arbitrary number of degrees of freedom

    DOE PAGES

    Yuen, Albert; Barnard, John J.

    2015-09-30

    The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a 1D fluid model. The initial temperature and density are assumed to be in the vicinity of the critical temperature and solid density, respectively. The fluid is assumed to satisfy the van der Waals equation of state with an arbitrary number of degrees of freedom. Self-similar Riemann solutions are found. With a larger number of degrees of freedom f, depending on the initial dimensionless entropymore » $$˜\\atop{s_0}$$, a richer family of foil expansion behaviors have been found. We calculate the domain in parameter space where these behaviors occur. In total, eight types of rarefaction waves are found and described.« less

  14. The ozone acetylene reaction: concerted or non-concerted reaction mechanism? A quantum chemical investigation

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; Crehuet, Ramon; Anglada, Josep; Gräfenstein, Jürgen

    2001-10-01

    The ozone-acetylene reaction is found to proceed via an intermediate van der Waals complex (rather than a biradical), which is the precursor for a concerted symmetry-allowed [4+2] cycloaddition reaction leading to 1,2,3-trioxolene. CCSD(T)/6-311G+(2d, 2p) and CCSD(T)/CBS (complete basis set) calculations predict the ozone-acetylene van der Waals complex to be stable by 2.2 kcal mol -1, the calculated activation enthalpy for the cycloaddition reaction is 9.6 kcal mol -1 and the reaction enthalpy -55.5 kcal mol -1. Calculated kinetic data for the overall reaction ( k=0.8 l mol -1 s-1, A=1.71×10 6 l mol -1 s-1, E a=8.6 kcal mol -1) suggest that there is a need for refined kinetic measurements.

  15. The calculation of the phase equilibrium of the multicomponent hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Molchanov, D. A.

    2018-01-01

    Hydrocarbon mixtures filtration process simulation development has resulted in use of cubic equations of state of the van der Waals type to describe the thermodynamic properties of natural fluids under real thermobaric conditions. Binary hydrocarbon systems allow to simulate the fluids of different types of reservoirs qualitatively, what makes it possible to carry out the experimental study of their filtration features. Exploitation of gas-condensate reservoirs shows the possibility of existence of various two-phase filtration regimes, including self-oscillatory one, which occurs under certain values of mixture composition, temperature and pressure drop. Plotting of the phase diagram of the model mixture is required to determine these values. A software package to calculate the vapor-liquid equilibrium of binary systems using cubic equation of state of the van der Waals type has been created. Phase diagrams of gas-condensate model mixtures have been calculated.

  16. Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface.

    PubMed

    Dong, Anning; Yan, Lei; Sun, Lihuan; Yan, Shichao; Shan, Xinyan; Guo, Yang; Meng, Sheng; Lu, Xinghua

    2018-06-01

    Revealing the nature of a hydrogen-bond network in water structures is one of the imperative objectives of science. With the use of a low-temperature scanning tunneling microscope, water clusters on a Au(111) surface were directly imaged with molecular resolution by a functionalized tip. The internal structures of the water clusters as well as the geometry variations with the increase of size were identified. In contrast to a buckled water hexamer predicted by previous theoretical calculations, our results present deterministic evidence for a flat configuration of water hexamers on Au(111), corroborated by density functional theory calculations with properly implemented van der Waals corrections. The consistency between the experimental observations and improved theoretical calculations not only renders the internal structures of absorbed water clusters unambiguously, but also directly manifests the crucial role of van der Waals interactions in constructing water-solid interfaces.

  17. Thermal electron attachment to van der Waals molecules containing O/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, W.M.; Fessenden, R.W.; Bauschlicher C.W. Jr.

    1984-12-15

    Calculations on O/sub 2/xN/sub 2/ and O/sup -//sub 2/xN/sub 2/ have been carried out to explain the large enhancement in the attachment rate of thermal electrons found in van der Waals molecules containing O/sub 2/. Two geometries, T-shape and linear, are used. SCF wave functions are used to represent both the neutral molecule and the ion. The incoming electron is approximated by a plane wave. The width is determined using a shielded polarization potential. The effect of additional vibrational structures of the van der Waals molecule on the attachment process is investigated by studying the O/sub 2/--N/sub 2/ stretching modemore » using Lennard-Jones potentials. Symmetry breaking, which allows the molecule to attach a p wave electron, is shown to play a primary role. The lowering of resonance energy, due to a deeper Lennard-Jones potential of O/sup -//sub 2/xN/sub 2/ in comparison with O/sub 2/xN/sub 2/, furthers the enhancement. The calculated attachment rate is comparable to that determined by Shimamori and Fessenden, but differs from the recent values obtained by Toriumi and Hatano, who used a different set of reactions to interpret their data.« less

  18. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    NASA Astrophysics Data System (ADS)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  19. Genetics Home Reference: van der Woude syndrome

    MedlinePlus

    ... What is the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency Van der Woude syndrome is believed to occur in 1 in 35,000 to 1 in 100,000 people, based on data from Europe and Asia. Van der Woude syndrome ...

  20. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    NASA Astrophysics Data System (ADS)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  1. The measured and calculated affinity of methyl and methoxy substituted benzoquinones for the QA site of bacterial reaction centers

    PubMed Central

    Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.

    2010-01-01

    Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696

  2. Critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point using the combination of the Tompa model and the van der Waals equation.

    PubMed

    Gençaslan, Mustafa; Keskin, Mustafa

    2012-02-14

    We combine the modified Tompa model with the van der Waals equation to study critical lines for an unequal size of molecules in a binary gas-liquid mixture around the van Laar point. The van Laar point is coined by Meijer and it is the only point at which the mathematical double point curve is stable. It is the intersection of the tricritical point and the double critical end point. We calculate the critical lines as a function of χ(1) and χ(2), the density of type I molecules and the density of type II molecules for various values of the system parameters; hence the global phase diagrams are presented and discussed in the density-density plane. We also investigate the connectivity of critical lines at the van Laar point and its vicinity and discuss these connections according to the Scott and van Konynenburg classifications. It is also found that the critical lines and phase behavior are extremely sensitive to small modifications in the system parameters. © 2012 American Institute of Physics

  3. [Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].

    PubMed

    Kostiukov, V V

    2011-01-01

    The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.

  4. Effect of van der Waals interactions on the stability of SiC polytypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawanishi, Sakiko, E-mail: s-kawa@tagen.tohoku.ac.jp; Mizoguchi, Teruyasu

    2016-05-07

    Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW forcemore » increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC.« less

  5. Dynamical property analysis of fractionally damped van der pol oscillator and its application

    NASA Astrophysics Data System (ADS)

    Zhong, Qiuhui; Zhang, Chunrui

    2012-01-01

    In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.

  6. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  7. Jacobus Schroeder van der Kolk (1797-1862): his resistance against materialism.

    PubMed

    Eling, P

    1998-07-01

    Schroeder van der Kolk is regarded as the founder of Dutch psychiatry and neurology. This paper describes his vitalistic views on the relation between body and soul, as formulated by him in a series of lectures. These lectures were intended to counteract the materialistic tendencies of some of Schroeder van der Kolk's French and German contemporaries. It is argued that Schroeder van der Kolk can be regarded as the transition in Holland from the "Naturphilosophie" approach to the modern experimental approach in physiology. Copyright 1998 Academic Press.

  8. Building Cultural Capability for Full-Spectrum Operations

    DTIC Science & Technology

    2008-01-01

    Mol, Born, Willemsen, & Van der Molen , 2005; Caligiuri & Day, 2000). In addition to these broad traits, antecedents to cross-cultural competence...510-517. 18 Mol, S. T., Born, M. P., Willemsen, M. E., & Van Der Molen , H. T. (2005). Predicting expatriate job performance for selection purposes: A...et al., 2003). In addition, self-regulation has been shown to be critical for adjustment (Matsumoto et al., 2003; van Oudenhoven, Mol, & Van der Zee

  9. Interlayer excitons in a bulk van der Waals semiconductor.

    PubMed

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  10. Combination Rules for Morse-Based van der Waals Force Fields.

    PubMed

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  11. Tunable two-dimensional interfacial coupling in molecular heterostructures

    DOE PAGES

    Xu, Beibei; Chakraborty, Himanshu; Yadav, Vivek K.; ...

    2017-08-22

    Two-dimensional van der Waals heterostructures are of considerable interest for the next generation nanoelectronics because of their unique interlayer coupling and optoelectronic properties. Here, we report a modified Langmuir–Blodgett method to organize twodimensional molecular charge transfer crystals into arbitrarily and vertically stacked heterostructures, consisting of bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF)/C 60 and poly (3-dodecylthiophene-2,5-diyl) (P3DDT)/C 60 nanosheets. A strong and anisotropic interfacial coupling between the charge transfer pairs is demonstrated. The van der Waals heterostructures exhibit pressure dependent sensitivity with a high piezoresistance coefficient of -4.4 × 10 -6 Pa -1, and conductance and capacitance tunable by external stimuli (ferroelectric field and magneticmore » field). Density functional theory calculations confirm charge transfer between the n-orbitals of the S atoms in BEDT–TTF of the BEDT–TTF/C 60 layer and the π* orbitals of C atoms in C 60 of the P3DDT/C 60 layer contribute to the inter-complex CT. Thus, the two-dimensional molecular van der Waals heterostructures with tunable optical–electronic–magnetic coupling properties are promising for flexible electronic applications.« less

  12. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  13. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi

    2017-05-01

    We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.

  14. Quantum synchronization of quantum van der Pol oscillators with trapped ions.

    PubMed

    Lee, Tony E; Sadeghpour, H R

    2013-12-06

    The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.

  15. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals

    DOE PAGES

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh; ...

    2017-06-19

    CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  16. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  17. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl 3 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Michael A.; Clark, Genevieve; KC, Santosh

    CrCl 3 is a layered insulator that undergoes a crystallographic phase transition below room temperature and orders antiferromagnetically at low temperature. Weak van der Waals bonding between the layers and ferromagnetic in-plane magnetic order make it a promising material for obtaining atomically thin magnets and creating van der Waals heterostructures. In this work we have grown crystals of CrCl 3, revisited the structural and thermodynamic properties of the bulk material, and explored mechanical exfoliation of the crystals. We find two distinct anomalies in the heat capacity at 14 and 17 K confirming that the magnetic order develops in two stagesmore » on cooling, with ferromagnetic correlations forming before long-range antiferromagnetic order develops between them. This scenario is supported by magnetization data. A magnetic phase diagram is constructed from the heat capacity and magnetization results. We also find an anomaly in the magnetic susceptibility at the crystallographic phase transition, indicating some coupling between the magnetism and the lattice. First-principles calculations accounting for van der Waals interactions also indicate spin-lattice coupling, and find multiple nearly degenerate crystallographic and magnetic structures consistent with the experimental observations. Lastly, we demonstrate that monolayer and few-layer CrCl 3 specimens can be produced from the bulk crystals by exfoliation, providing a path for the study of heterostructures and magnetism in ultrathin crystals down to the monolayer limit.« less

  18. Forces dictating colloidal interactions between viruses and soil

    USGS Publications Warehouse

    Chattopadhyay, Sandip; Puls, Robert W.

    2000-01-01

    The fate and transport of viruses in soil and aquatic environments were studied with respect to the different forces involved in the process of sorption of these viruses on soil particles. In accordance with the classical DLVO theory, we have calculated the repulsive electrostatic forces and the attractive van der Waals forces. Bacteriophages have been used as model sorbates, while different clays have been used as model sorbents. The equations used for the determination of the change in free energy for the process (ΔG) takes into consideration the roughness of the sorbent surfaces. Results indicate that attractive van der Waals forces predominate the process of sorption of the selected bacteriophages on clays.

  19. Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation

    DOE PAGES

    Xie, Weiyu; Lu, Toh -Ming; Wang, Gwo -Ching; ...

    2017-11-14

    Enhanced van der Waals (vdW) epitaxy of semiconductors on a layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe 2 is a vdW layeredmaterial, first-principles calculations reveal that the bond strength at a CdTe-NbSe 2 interface is five times as large as that of vdW interactions at a CdTe-graphene interface. Finally, the unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at a CdTe surface to metallic nonbonding NbSe 2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  20. A Scalable Implementation of Van der Waals Density Functionals

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, Francois

    2010-03-01

    Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

  1. Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiyu; Lu, Toh -Ming; Wang, Gwo -Ching

    Enhanced van der Waals (vdW) epitaxy of semiconductors on a layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe 2 is a vdW layeredmaterial, first-principles calculations reveal that the bond strength at a CdTe-NbSe 2 interface is five times as large as that of vdW interactions at a CdTe-graphene interface. Finally, the unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at a CdTe surface to metallic nonbonding NbSe 2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  2. Layered uranium(VI) hydroxides: structural and thermodynamic properties of dehydrated schoepite α-UO₂(OH)₂.

    PubMed

    Weck, Philippe F; Kim, Eunja

    2014-12-07

    The structure of dehydrated schoepite, α-UO2(OH)2, was investigated using computational approaches that go beyond standard density functional theory and include van der Waals dispersion corrections (DFT-D). Thermal properties of α-UO2(OH)2, were also obtained from phonon frequencies calculated with density functional perturbation theory (DFPT) including van der Waals dispersion corrections. While the isobaric heat capacity computed from first-principles reproduces available calorimetric data to within 5% up to 500 K, some entropy estimates based on calorimetric measurements for UO3·0.85H2O were found to overestimate by up to 23% the values computed in this study.

  3. Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach

    NASA Astrophysics Data System (ADS)

    Bobaru, F.

    2007-07-01

    The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as 'long-range'. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical studies to determine a certain volume element for which the network of randomly oriented fibres becomes quasi-isotropic and insensitive to statistical variations. This qualitative study shows that the presence of van der Waals interactions and of heterogeneities (sacrificial bonds) in the strength of the bonds at the crosslinks between fibres can help in increasing the strength and toughness of the nanofibre network. Two main mechanisms appear to control the deformation of nanofibre networks: fibre reorientation (caused by deformation and breakage) and fibre accretion (due to van der Waals interaction). Similarities to the observed toughness of polymer adhesive in the abalone shell composition are explained. The author would like to dedicate this work to the 60th anniversary of Professor Subrata Mukherjee.

  4. Modified Van der Waals equation and law of corresponding states

    NASA Astrophysics Data System (ADS)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  5. Experimental Study of Turbulent Mixing and Selectivity of Competing Reactions

    DTIC Science & Technology

    1988-07-01

    polymerization reactors ( Van der Molen et al., 1982). MIixing is also recognized as a key factor affecting overall performance of a combustor--both in terms...Eng. Sci., 28, 413 (1973). Van der Molen , T. J., A. Koenen, H. H. J. Oosterwijk, and H. Th. Van der Bend. "Effect of Process Conditions on Light-Off

  6. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist

    NASA Astrophysics Data System (ADS)

    Reveil, Mardochee; Sorg, Victoria C.; Cheng, Emily R.; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O.

    2017-09-01

    This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.

  7. Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist.

    PubMed

    Reveil, Mardochee; Sorg, Victoria C; Cheng, Emily R; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O

    2017-09-01

    This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.

  8. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  9. Computational Investigation of Graphene-Carbon Nanotube-Polymer Composite

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Roth, Michael; Todde, Guido; Subramanian, Gopinath; Shukla, Manoj; Univ of Southern Mississippi Collaboration; US Army Engineer Research; Development Center 3909 Halls Ferry Road Vicksburg, MS 39180, USA Collaboration

    Graphene is a single atom thick two dimensional carbon sheet where sp2 -hybridized carbon atoms are arranged in a honeycomb structure. The functionalization of graphene and carbon nanotubes (CNTs) with polymer is a route for developing high performance nanocomposite materials. We study the interfacial interactions among graphene, CNT, and Nylon 6 polymer using computational methods based on density functional theory (DFT) and empirical force-field. Our DFT calculations are carried out using Quantum-ESPRESSO electronic structure code with van der Waals functional (vdW-DF2), whereas the empirical calculations are performed using LAMMPS with the COMPASS force-field. Our results demonstrated that the interactions between (8,8) CNT and graphene, and between CNT/graphene and Nylon 6 consist mostly of van der Waals type. The computed Young's moduli indicated that the mechanical properties of carbon nanostructures are enhanced by their interactions with polymer. The presence of Stone-Wales (SW) defects lowered the Young's moduli of carbon nanostructures.

  10. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  11. Vibration-rotation-tunneling spectroscopy of the van der Waals Bond: A new look at intermolecular forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R.C.; Saykally, R.J.

    Measurements of the low-frequency van der Waals vibrations in weakly bound complexes by high-resolution laser spectroscopy provide a means to probe intermolecular forces at unprecedented levels of detail and precision. Several new methods are presently being used to record vibration/rotation-tunneling (VRT) transitions associated with the motions of the weak bonds in van der Waals clusters. The most direct measurements are those probing only the van der Waals modes themselves, which occur at far-infrared wavelengths. This article presents a review of the information on both intramolecular forces and intramolecular dynamics that has been obtained from far-infrared VRT spectra of 18 complexesmore » during the past several years. Some rotationally resolved measurements of van der Waals modes observed in combination with electronic or vibrational excitation are also discussed. 185 refs., 15 figs., 1 tab.« less

  12. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    NASA Astrophysics Data System (ADS)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  13. Application of galvanomagnetic measurements in temperature range 70-300 K to MBE GaAs layers characterization

    NASA Astrophysics Data System (ADS)

    Wolkenberg, Andrzej; Przeslawski, Tomasz

    1996-04-01

    Galvanomagnetic measurements were performed on the square shaped samples after Van der Pauw and on the Hall bar at low electric fields app. 1.5 V/cm and magnetic induction app. 6 kG in order to make a comparison between the theoretical and experimental results of the temperature dependence of mobility and resistivity from 70 K to 300 K. A calculation method was obtained of the drift mobility and the Hall mobility in which the scatterings are applied: on ionized impurities, on polar optical phonons, on acoustic phonons (deformation potential), on acoustic phonons (piezoelectric potential) and on dislocations. The elaborated method transformed to a computer program allows us to fit experimental values of the resistivity and the Hall mobility to those calculated. The fitting procedure makes it possible to characterize the quality of the n-type GaAs MBE layer, i.e. the net electron concentration, whole ionized impurities concentration and dislocation density after Read space charge cylinders model. The calculations together with the measurements allow us to obtain compensation ratio value in the layer, too. The influence of the epitaxial layer thickness on layers measurements accuracy in the case of Van der Pauw square probe was investigated. It was stated that in the layers under 3 micrometer the bulk properties are strongly influenced by both surfaces. The results of measurements of the same layer using the Van der Pauw and the Hall bar structure were compared. It was stated that the Hall bar structure only could be used to obtain proper measurements results.

  14. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    DTIC Science & Technology

    2013-09-01

    Jacobus J M van Der Hoeven, Elsken van Der Wall, Petra van Der Groep, Paul J van Diest, Emile F I Comans, Urvi Joshi, et al. 2002. “Biologic...Leigh G Seamon, William B Farrar, and Edward W Martin . 2008. “Novel perioperative imaging with 18F-FDG PET/CT and intraoperative 18F-FDG detection...www.springerlink.com/content/n752170246r84660/. Hall, Nathan C, Stephen P Povoski, Douglas A Murrey, Michael V Knopp, and Edward W Martin . 2007. “Combined

  15. Submaximal Exercise Testing Treadmill and Floor Walking.

    DTIC Science & Technology

    1978-05-01

    Amputations," Archives of Physical Medicine and Rehabilitation, 56:67-71, 1975. 36. van der Walt, W. H., and Wyndham, C. H,, "An Equation for...C. H., van Renaburg, A. J., Rogr, G. G., Greyson, J. S.. and van der Walt, V. H., "Walk or Jog for Health: I, The Energy Cost of Walking or Running at...G., Greyson, J. S., and van der Walt, V. H., "Walk or Jog for Health: II, Iatimating the Maximi Aerobic Capacity for Exercise,* South &frIca Kedical

  16. On the Computation of Finite Invariant Sets of Mappings.

    DTIC Science & Technology

    1988-02-01

    for the calculation of such invariant cycles. We refer here only to Doedel [1], looss et al [3], Kevrekidis et al [4], Van Veldhuizen ,[6], where further... van Veldhuizen , On Polygonal Approximations of an Invariant Curve, Dept.of Mathem. and Comp. Science, Vrije Universiteit Amsterdam, Techni- cal Report 1987, Math. Comp. to appear DATE Fl .LMED ...of van der Pol’s equation " x2) x - A(l - x ) X’ + x - 0 (16) As shown, for example in [2], the solution satisfies x - 2 cos(wt)+ A (0.75 sin(wt

  17. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.

    PubMed

    Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M

    2017-01-01

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.

  18. Perception for Outdoor Navigation

    DTIC Science & Technology

    1991-12-01

    are theories of human cognitive activity during driving. Van der Molen and Botticher recently reviewed several of these models [40]. The models...represent driving knowledge, how to perceive traffic situations, or how to process information to obtain actions. Van der Molen and Botticher attempted to...Conference on Robotics and Automation. IEEE, 1987. [40] van der Molen , H.H., and Botticher, A.M.T. Risk Models for Traffic Participants: A Concerted

  19. Effective field theories for van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio

    2017-06-01

    Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by commenting on the van der Waals interactions in the hadronic case.

  20. Effective elastic properties of a van der Waals molecular monolayer at a metal surface

    NASA Astrophysics Data System (ADS)

    Sun, Dezheng; Kim, Dae-Ho; Le, Duy; Borck, Øyvind; Berland, Kristian; Kim, Kwangmoo; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Wyrick, Jonathan; Cheng, Zhihai; Einstein, T. L.; Rahman, Talat S.; Hyldgaard, Per; Bartels, Ludwig

    2010-11-01

    Adsorbing anthracene on a Cu(111) surface results in a wide range of complex and intriguing superstructures spanning a coverage range from 1 per 17 to 1 per 15 substrate atoms. In accompanying first-principles density-functional theory calculations we show the essential role of van der Waals interactions in estimating the variation in anthracene adsorption energy and height across the sample. We can thereby evaluate the compression of the anthracene film in terms of continuum elastic properties, which results in an effective Young’s modulus of 1.5 GPa and a Poisson ratio ≈0.1 . These values suggest interpretation of the molecular monolayer as a porous material—in marked congruence with our microscopic observations.

  1. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides.

    PubMed

    Yu, Hua; Wang, Mao-jun; Xuan, Nan-xia; Shang, Zhi-cai; Wu, Jun

    2015-10-01

    To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues.

  2. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  3. Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects

    NASA Astrophysics Data System (ADS)

    Malone, Walter; Matos, Jeronimo; Kara, Abdelkader

    2018-03-01

    We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.

  4. Detection of Human Fatigue

    DTIC Science & Technology

    2005-08-05

    research (Lacey, 1974; Jennings, 1992; van der Molen , 2000; Somsen, 2004) using principally fixed foreperiod reaction time tasks demonstrated that in...U.S. Department of Transportation DOT/FAA/AM-99/28. Somsen R.J., Jennings J.R., Van der Molen M.W. (Nov 2004). The cardiac cycle time effect revisited...Temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks. Psychophysiology. 41(6), pp. 941-953. Van der Molen , M

  5. Nanotechnology-Enabled Optical Molecular Imaging of Breast Cancer

    DTIC Science & Technology

    2012-07-01

    Jacobus J M van Der Hoeven, Elsken van Der Wall, Petra van Der Groep, Paul J van Diest, Emile F I Comans, Urvi Joshi, et al. 2002. “Biologic correlates...William B Farrar, and Edward W Martin . 2008. “Novel perioperative imaging with 18F-FDG PET/CT and intraoperative 18F-FDG detection using a handheld gamma...n752170246r84660/. Hall, Nathan C, Stephen P Povoski, Douglas A Murrey, Michael V Knopp, and Edward W Martin . 2007. “Combined approach of perioperative 18F-FDG PET

  6. Colossal terahertz nonlinearity of tunneling van der Waals gap (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Ji Yeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-09-01

    We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays. When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance. Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.

  7. Materials perspective on Casimir and van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  8. The Economics of van der Waals Force Engineering

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  9. Simon van der Meer (1925-2011):. A Modest Genius of Accelerator Science

    NASA Astrophysics Data System (ADS)

    Chohan, Vinod C.

    2011-02-01

    Simon van der Meer was a brilliant scientist and a true giant of accelerator science. His seminal contributions to accelerator science have been essential to this day in our quest for satisfying the demands of modern particle physics. Whether we talk of long base-line neutrino physics or antiproton-proton physics at Fermilab or proton-proton physics at LHC, his techniques and inventions have been a vital part of the modern day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics, in 1984. Van der Meer's lesserknown contributions spanned a whole range of subjects in accelerator science, from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs and controls.

  10. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  11. Cross-Cultural Skills for Deployed Air Force Personnel: Defining Cross-Cultural Performance

    DTIC Science & Technology

    2009-01-01

    Van Der Molen , 2005). However, other research shows that as a person’s fluency in a for- eign language increases, so do the expectations that the...and Van Der Molen , 2005). Changing behavior to fit cultural context. Changing behavior to fit cultural context involves adapting one’s behavior to...2003); it has also been shown to relate to job performance (Mol, Born, Willemsen, and Van Der Molen , 2005). The relationship between this behavior

  12. Naval Research Logistics Quarterly. Volume 28, Number 4,

    DTIC Science & Technology

    1981-12-01

    Fan [31 and an observation by Meijerink and van der Vorst [181 guarantee that after pivoting on any diagonal element of a diagonally dominant M- matrix...Science, 3, 255-269 (1957). 1181 Meijerink, J. and H. Van der Vorst, "An Iterative Solution Method for Linear Systems of which the Coefficient Matrix Is a...Hee, K., A. Hordijk and J. Van der Wal, "Successive Approximations for Convergent Dynamic Programming," in Markov Decision Theory, H. Tijms and J

  13. Materials perspective on Casimir and van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  14. Materials perspective on Casimir and van der Waals interactions

    DOE PAGES

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; ...

    2016-11-02

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. In such interactions these are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insightsmore » into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. Our review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. Finally, the outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.« less

  15. Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David

    2015-03-01

    The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  16. Consistent van der Waals Radii for the Whole Main Group

    PubMed Central

    Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.

    2013-01-01

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751

  17. Consistent van der Waals radii for the whole main group.

    PubMed

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  18. Thermodynamics of higher dimensional black holes with higher order thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.; Kokabi, K.; Rangyan, S.

    2017-12-01

    In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.

  19. Shape matters: The case for Ellipsoids and Ellipsoidal Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillack, Andreas F.; Robinson, Bruce H.

    We describe the shape potentials used for the van der Waals interactions between soft-ellipsoids used to coarse-grain molecular moieties in our Metropolis Monte-Carlo simulation software. The morphologies resulting from different expressions for these van der Waals interaction potentials are discussed for the case of a prolate spheroid system with a strong dipole at the ellipsoid center. We also show that the calculation of ellipsoids is, at worst, only about fivefold more expensive computationally when compared to a simple Lennard- Jones sphere. Finally, as an application of the ellipsoidal shape we parametrize water from the original SPC water model and observemore » – just through the difference in shape alone – a significant improvement of the O-O radial distribution function when compared to experimental data.« less

  20. A generalized linear factor model approach to the hierarchical framework for responses and response times.

    PubMed

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-05-01

    We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.

  1. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  2. Measurements of Propeller-Induced Unsteady Surface Force and Pressures

    DTIC Science & Technology

    1986-12-01

    investigations using foreshortened hull models in the determination of cavitating propeller-induced pressure pulses include van Manen , 46 Huse,47 van Oossanen...Nov 1974). 46. van Manen , J.D., "The Effect of Cavitation on the Interaction Between Propeller and Ship’s Hull, "International Shipbuilding Progress...and van der Kooij,48 and van der Kooij and Jonk. 49 Examples of more recent publications that have either made use of results from dummy model tests or

  3. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.

  4. The Mediation Formula: A Guide to the Assessment of Causal Pathways in Nonlinear Models

    DTIC Science & Technology

    2011-10-27

    through (25), (26) and (27), rather than going through (23) ( van der Laan and Rubin, 2006). 29 values, though disparities in parameters may not...graphs. Epidemiology 22 378–381. Petersen, M., Sinisi, S. and van der Laan, M. (2006). Estimation of direct causal effects. Epidemiology 17 276–284...and J. Halpern, eds.). College Publications, UK, 415–444. van der Laan, M. J. and Rubin, D. (2006). Targeted maximum likelihood learning. The

  5. van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Zhi

    2004-04-01

    Recently, we developed accurate van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids by using the known virial coefficients. In this paper, we derive the van der Waals-Tonks-type equations of state. We further apply these equations of state to hard-hypersphere fluids in four and five dimensions. In the low-density fluid regime, these equations of state are in good agreement with the simulation results and existing equations of state.

  6. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Concrete Block Pavements

    DTIC Science & Technology

    1983-03-01

    concrete paving block ( Van der Vlist 1980). The concrete paving block was readily accepted as a substitute for the scarce paving brick and today has...seen in Figure 4, its growth.has been steady ( Van der Vlist 1980). 20 15 0< 0. n 10 1𔃺 978 960 1 62 63 64 65 66 67 68 6970 71 72 73 74 7678 7778 79...Figure 4. Concrete paving block production in the Netherlands ( Van der Vlist 1980) 8. The use of concrete paving block in the Netherlands developedI

  8. Theory of Solid Surfaces.

    DTIC Science & Technology

    1976-05-01

    of low—energy e~1ectrons by ti ght—bi ndimg electrons ”. 3. Phys. C 8, 1087—1098. 39. IN CLESF IELD , J . E . and WIKBORG , E. “The van der Waals...very good numerical results. An alternative nt~ erical scheme which holds out promise is by Van der Avoird ’s group at T~ megen, Netherlands , where...with Van der 1~aals interactions between metals and using the experience gained at surfaces to help produc e a more consistent many body potential

  9. Reale Gase, tiefe Temperaturen

    NASA Astrophysics Data System (ADS)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  10. Excitons in one-dimensional van der Waals materials: Sb2S3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Filip, Marina R.; Giustino, Feliciano

    2015-09-01

    Antimony sulphide Sb2S3 has emerged as a promising material for a variety of energy applications ranging from solar cells to thermoelectrics and solid-state batteries. The most distinctive feature of Sb2S3 is its crystal structure, which consists of parallel 1-nm-wide ribbons held together by weak van der Waals forces. This structure clearly suggests that it should be possible to isolate individual Sb2S3 ribbons using micromechanical or liquid-phase exfoliation techniques. However, it is not clear yet how to identify the ribbons postexfoliation using standard optical probes. Using state-of-the-art first-principles calculations based on many-body perturbation theory, here we show that individual ribbons of Sb2S3 carry optical signatures clearly distinct from those of bulk Sb2S3 . In particular, we find a large blueshift of the optical absorption edge (from 1.38 to 2.30 eV) resulting from the interplay between a reduced screening and the formation of bound excitons. In addition, we observe a transition from an indirect band gap to a direct gap, suggesting an enhanced photoluminescence in the green. These unique fingerprints will enable extending the research on van der Waals materials to the case of one-dimensional chalchogenides.

  11. Van der Waals heterojunction diode composed of WS2 flake placed on p-type Si substrate

    NASA Astrophysics Data System (ADS)

    Aftab, Sikandar; Farooq Khan, M.; Min, Kyung-Ah; Nazir, Ghazanfar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Akhtar, Imtisal; Seo, Yongho; Hong, Suklyun; Eom, Jonghwa

    2018-01-01

    P-N junctions represent the fundamental building blocks of most semiconductors for optoelectronic functions. This work demonstrates a technique for forming a WS2/Si van der Waals junction based on mechanical exfoliation. Multilayered WS2 nanoflakes were exfoliated on the surface of bulk p-type Si substrates using a polydimethylsiloxane stamp. We found that the fabricated WS2/Si p-n junctions exhibited rectifying characteristics. We studied the effect of annealing processes on the performance of the WS2/Si van der Waals p-n junction and demonstrated that annealing improved its electrical characteristics. However, devices with vacuum annealing have an enhanced forward-bias current compared to those annealed in a gaseous environment. We also studied the top-gate-tunable rectification characteristics across the p-n junction interface in experiments as well as density functional theory calculations. Under various temperatures, Zener breakdown occurred at low reverse-bias voltages, and its breakdown voltage exhibited a negative coefficient of temperature. Another breakdown voltage was observed, which increased with temperature, suggesting a positive coefficient of temperature. Therefore, such a breakdown can be assigned to avalanche breakdown. This work demonstrates a promising application of two-dimensional materials placed directly on conventional bulk Si substrates.

  12. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides* #

    PubMed Central

    Yu, Hua; Wang, Mao-Jun; Xuan, Nan-Xia; Shang, Zhi-Cai; Wu, Jun

    2015-01-01

    Objective: To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Methods: Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. Results: The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. Conclusions: van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues. PMID:26465136

  13. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), andmore » ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.« less

  14. Quality of Life for Adults with Asthma in a Military Setting

    DTIC Science & Technology

    1998-05-01

    Tilley, Havstead, & Zoratti, 1997). More recently, van der Molen , et al. (1997) conducted a study comparing discriminative aspects of two generic...Symptom Management Faculty Group, UCSF. (1994). IMAGE: Journal of Nursing Scholarship, 26(4), 272-276. van der Molen , T., Postma, D., Schreuers, A...the most important (Earwood, 1996, Rutten- Van Molken, Van Doorslaer, & Rutten, 1992). Purpose of the Study When patients clarify their perceptions of

  15. MATE (Mentale Aspecten van Team Effectiviteit) (MATE (Mental Aspects of Team Effectiveness))

    DTIC Science & Technology

    2008-05-01

    0 Auteur (s) drs. J.P. van Meer drs. MI. 1 ’ IIart0 drs. 1. van der 16. Rubricering rapport Ongerubriceerd Vastgesteld door Ikol drs. L.A. de Vos...team Auteur (s) Teamntraining drs. J.P. van Meer drs. M.H.E. I Hart Programmanummer Projectnummer drs. 1. van der Beijl V406 015.34095 Rubricering...Murphy & Cleveland (1995) geven inzicht in de tearngedragingen die meetbaar zijn en de theorie over Shared Mental Models (Espevik et al, 2006) laat zien

  16. De Ontwikkeling van een PBPK Model voor VX; Stand van Zaken V013-813 en 207C (The Development of a PBPK Model for VX: Status Report)

    DTIC Science & Technology

    2006-02-01

    ing. H.C. Trap, dr. ir. M.J. van der werd zes maal gesproken over de Schans, ing. L.F. Chau, B.). Lander, invulling en de voortgang van het I.A. Cordia ...dr. ir. M.J. van der Schans, ing. L.F. Chau, J.P. Oostdijk, B.J. Lander, l.A. Cordia 25 TNO Defensie en Veiligheid, vestiging Rijswijk, Marketing en

  17. Concurrent Van der Woude syndrome and Turner syndrome: A case report.

    PubMed

    Los, Evan; Baines, Hayley; Guttmann-Bauman, Ines

    2017-01-01

    Most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome 1. Turner syndrome is caused by complete or partial absence of the second sex chromosome in girls. We describe a unique case of the two syndromes occurring concurrently though apparently independently in a girl with Van der Woude syndrome diagnosed at birth and Turner syndrome at 14 years 9 months. Short stature was initially misattributed to Van der Woude syndrome and pituitary insufficiency associated with clefts before correctly diagnosing Turner syndrome. We discuss the prevalence of delayed diagnosis of Turner syndrome, the rarity of reports of concurrent autosomal chromosome mutation and sex chromosome deletion, as well as the need to consider the diagnosis of Turner syndrome in all girls with short stature regardless of prior medical history.

  18. A Method for the Calculation of Lattice Energies of Complex Crystals with Application to the Oxides of Molybdenum

    NASA Technical Reports Server (NTRS)

    Chaney, William S.

    1961-01-01

    A theoretical study has been made of molybdenum dioxide and molybdenum trioxide in order to extend the knowledge of factors Involved in the oxidation of molybdenum. New methods were developed for calculating the lattice energies based on electrostatic valence theory, and the coulombic, polarization, Van der Waals, and repulsion energie's were calculated. The crystal structure was examined and structure details were correlated with lattice energy.

  19. Should We Stop Developing Heuristics and Only Rely on Mixed Integer Programming Solvers in Automated Test Assembly? A Rejoinder to van der Linden and Li (2016).

    PubMed

    Chen, Pei-Hua

    2017-05-01

    This rejoinder responds to the commentary by van der Linden and Li entiled "Comment on Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" on the article "Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" by Chen. Van der Linden and Li made a strong statement calling for the cessation of test assembly heuristics development, and instead encouraged embracing mixed integer programming (MIP). This article points out the nondeterministic polynomial (NP)-hard nature of MIP problems and how solutions found using heuristics could be useful in an MIP context. Although van der Linden and Li provided several practical examples of test assembly supporting their view, the examples ignore the cases in which a slight change of constraints or item pool data might mean it would not be possible to obtain solutions as quickly as before. The article illustrates the use of heuristic solutions to improve both the performance of MIP solvers and the quality of solutions. Additional responses to the commentary by van der Linden and Li are included.

  20. Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools

    NASA Astrophysics Data System (ADS)

    El Moumni, H.

    2018-01-01

    In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.

  1. Iterative combining rules for the van der Waals potentials of mixed rare gas systems

    NASA Astrophysics Data System (ADS)

    Wei, L. M.; Li, P.; Tang, K. T.

    2017-05-01

    An iterative procedure is introduced to make the results of some simple combining rules compatible with the Tang-Toennies potential model. The method is used to calculate the well locations Re and the well depths De of the van der Waals potentials of the mixed rare gas systems from the corresponding values of the homo-nuclear dimers. When the ;sizes; of the two interacting atoms are very different, several rounds of iteration are required for the results to converge. The converged results can be substantially different from the starting values obtained from the combining rules. However, if the sizes of the interacting atoms are close, only one or even no iteration is necessary for the results to converge. In either case, the converged results are the accurate descriptions of the interaction potentials of the hetero-nuclear dimers.

  2. First description and bionomic notes for the final-instar larva and pupa of an Oriental dobsonfly species, Neoneuromus sikkimmensis (van der Weele, 1907) (Megaloptera: Corydalidae).

    PubMed

    Cao, Chengquan; Tong, Chao; Chen, Shengzhi; Liu, Zhiwei; Xu, Faqiong; Liu, Qian; Liu, Xingyue

    2016-10-31

    Neoneuromus van der Weele, 1909, a member of megalopteran subfamily Corydalinae, is a common and widespread dobsonfly genus of the Oriental Region. The adult taxonomy of Neoneuromus is relatively well-known but the larvae and pupae are undescribed. In this paper we describe the last-instar larva and the pupa of N. sikkimmensis (van der Weele, 1907), representing the first detailed description of any immature stage of Neoneuromus. Information on the bionomics of this species is also reported.

  3. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  4. Bell's palsy before Bell: Cornelis Stalpart van der Wiel's observation of Bell's palsy in 1683.

    PubMed

    van de Graaf, Robert C; Nicolai, Jean-Philippe A

    2005-11-01

    Bell's palsy is named after Sir Charles Bell (1774-1842), who has long been considered to be the first to describe idiopathic facial paralysis in the early 19th century. However, it was discovered that Nicolaus Anton Friedreich (1761-1836) and James Douglas (1675-1742) preceded him in the 18th century. Recently, an even earlier account of Bell's palsy was found, as observed by Cornelis Stalpart van der Wiel (1620-1702) from The Hague, The Netherlands in 1683. Because our current knowledge of the history of Bell's palsy before Bell is limited to a few documents, it is interesting to discuss Stalpart van der Wiel's description and determine its additional value for the history of Bell's palsy. It is concluded that Cornelis Stalpart van der Wiel was the first to record Bell's palsy in 1683. His manuscript provides clues for future historical research.

  5. Spectral asymmetry of atoms in the van der Waals potential of an optical nanofiber

    NASA Astrophysics Data System (ADS)

    Patterson, B. D.; Solano, P.; Julienne, P. S.; Orozco, L. A.; Rolston, S. L.

    2018-03-01

    We measure the modification of the transmission spectra of cold 87Rb atoms in the proximity of an optical nanofiber (ONF). Van der Waals interactions between the atoms an the ONF surface decrease the resonance frequency of atoms closer to the surface. An asymmetric spectra of the atoms holds information of their spatial distribution around the ONF. We use a far-detuned laser beam coupled to the ONF to thermally excite atoms at the ONF surface. We study the change of transmission spectrum of these atoms as a function of heating laser power. A semiclassical phenomenological model for the thermal excitation of atoms in the atom-surface van der Waals bound states is in good agreement with the measurements. This result suggests that van der Waals potentials could be used to trap and probe atoms at few nanometers from a dielectric surface, a key tool for hybrid photonic-atomic quantum systems.

  6. Polarizabilities and van der Waals C{sub 6} coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick

    2016-07-14

    The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less

  7. US Air Force 1989 Research Initiation Program. Volume 2.

    DTIC Science & Technology

    1992-06-25

    University of Minnesota-Duluth Specialtv: Inorganic Chemistry Specialty: Mechanics Dr. Satish Chandra Mr. Asad Yousuf Kansas State University Savannah...the Study Van der Waals forces in capillary tubes have previously been calculated by Philip (1977b]. His study was based on the Hamaker theory, which...important in condensed media, are not taken into account by the Hamaker theory. Calculations using on the Hamaker theory are often based on an unrealistic

  8. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    NASA Astrophysics Data System (ADS)

    Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  9. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Morbec, Juliana M.; Kratzer, Peter

    2017-01-01

    Using first-principles calculations based on density-functional theory (DFT), we investigated the effects of the van der Waals (vdW) interactions on the structural and electronic properties of anthracene and pentacene adsorbed on the Ag(111) surface. We found that the inclusion of vdW corrections strongly affects the binding of both anthracene/Ag(111) and pentacene/Ag(111), yielding adsorption heights and energies more consistent with the experimental results than standard DFT calculations with generalized gradient approximation (GGA). For anthracene/Ag(111) the effect of the vdW interactions is even more dramatic: we found that "pure" DFT-GGA calculations (without including vdW corrections) result in preference for a tilted configuration, in contrast to the experimental observations of flat-lying adsorption; including vdW corrections, on the other hand, alters the binding geometry of anthracene/Ag(111), favoring the flat configuration. The electronic structure obtained using a self-consistent vdW scheme was found to be nearly indistinguishable from the conventional DFT electronic structure once the correct vdW geometry is employed for these physisorbed systems. Moreover, we show that a vdW correction scheme based on a hybrid functional DFT calculation (HSE) results in an improved description of the highest occupied molecular level of the adsorbed molecules.

  10. Rankine-Hugoniot relationships for molecular crystal explosives calculated using density functional theory based molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wixom, Ryan R.; Mattsson, Thomas R.

    2011-06-01

    Density Functional Theory (DFT) has become a crucial tool for understanding the behavior of matter. The ability to perform high-fidelity calculations is most important for cases where experiments are impossible, dangerous, and/or prohibitively expensive to perform. For molecular crystals, successful use of DFT has been hampered by an inability to correctly describe the van der Waals' dominated equilibrium state. We have explored a way of bypassing this problem by using the Armiento-Mattsson 2005 (AM05) exchange-correlation functional. This functional is highly accurate for a wide range of solids, in particular in compression. Another advantage is that AM05 does not include any van der Waals' attraction. We will demonstrate the method on the PETN Hugoniot, and discuss our confidence in the results and ongoing research aimed at improvement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. A new ab initio potential energy surface of LiClH (1A') system and quantum dynamics calculation for Li + HCl (v = 0, j = 0-2) → LiCl + H reaction

    NASA Astrophysics Data System (ADS)

    Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying

    2017-04-01

    A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.

  12. Vertical dielectric screening of few-layer van der Waals semiconductors.

    PubMed

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  13. Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.

    2018-05-01

    Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.

  14. Influence of Van der Waals interaction on the thermodynamics properties of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C.

    2016-12-01

    Equations of state (EoS) are extremely important in several scientific domains. However, many applications require EoS parameters at high pressures and temperatures. Experimental determination of these parameters is limited in such conditions and ab initio calculations have become important in computing them. Density Functional Theory (DFT) with its various approximations for exchange and correlation energy is the method of choice, but lack of a good description of the exchange-correlation energy results in large errors in EoS parameters. It is well known that the alkali halides have been problematic from the onset and the quest for DFT functionals appropriate for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate the thermal equation of state and thermodynamic properties of the B1 NaCl phase. Our results show a remarkable improvement over the performance of standard the LDA and GGA functionals. This is hardly surprising given that ions in this system have nearly closed shell configurations.

  15. Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals.

    PubMed

    Zaffran, Jeremie; Caspary Toroker, Maytal

    2016-08-09

    NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.

  16. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    PubMed

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  17. Nano-RDX Electrostatic Stabilization Mechanism Investigation Using Derjaguin-Landau and Verwey-Overbeek (DLVO) Theory

    DTIC Science & Technology

    2017-01-20

    is the same order of magnitude as the van der Waals attraction (fig. 1). At ionic strenghs (0.1 mol/ L ), the thickness is less than 1 nm. In that...c) At concentration 0.1 m/ L , the van der Waals attraction force is dominant. This explain why most charged nanoparticles agglomerate when...60 -40 -20 0 20 40 60 80 0 5 10 15 20 To ta l i nt er ac tio n En er gy in u ni ts o f k bT Distance between nanoparticles (nm) Van der Waals

  18. Anyon black holes

    NASA Astrophysics Data System (ADS)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 < α < 1) characterizes this intermediate statistics of Anyons. The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α <αc. By defining a general form of the metric for the (2 + 1) dimensional AdS black hole and considering the temperature of the black hole to be equal with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2 + 1) dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those of the Anyon Van der Waals fluid. For α <αc, the solution exhibits a quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  19. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    PubMed

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  20. DEM modeling of failure mechanisms induced by excavations on the Moon

    NASA Astrophysics Data System (ADS)

    jiang, mingjing; shen, zhifu; Utili, Stefano

    2013-04-01

    2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.

  1. Beta-catenin: A Potential Survival Marker of Breast Cancer Stem Cells

    DTIC Science & Technology

    2006-09-01

    T. C., Alexander, C. M., Georges-Labouesse, E., Van der Neut , R., Kreidberg, J. A., Jones, C. J., Sonnenberg, A. and Streuli, C. H. (2001...de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A. P., Tjon-Pon-Fong, M., Moerer, P., van den Born, M...Scherer, D. C., Willert, K., Hintz, L., Nusse, R. & Weissman, I. L. (2003) Nature 423, 409-14. 36. van de Wetering, M., Sancho, E., Verweij, C

  2. Chesapeake Bay Sediment Flux Model

    DTIC Science & Technology

    1993-06-01

    1988; Van der Molen , -88- 1991; Yoshida, 1981.) The model developed below is based on both of these approaches. It incorporates the diagenetic...288: pp. 289-333. Van der Molen , D.T. (1991): A simple, dynamic model for the simulation of the release of phosphorus from sediments in shallow...1974; Berner, 1980; van Cappellen and Berner, 1988). These relate the diagenetic production of phosphate to the resulting pore water concentration

  3. Nature of Interlayer Binding and Stacking of sp–sp 2 Hybridized Carbon Layers: A Quantum Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung

    α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less

  4. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  5. Nature of Interlayer Binding and Stacking of sp–sp 2 Hybridized Carbon Layers: A Quantum Monte Carlo Study

    DOE PAGES

    Shin, Hyeondeok; Kim, Jeongnim; Lee, Hoonkyung; ...

    2017-10-25

    α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult tomore » model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.« less

  6. Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS{sub 2}: A first principles calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.Y.; Si, M.S., E-mail: sims@lzu.edu.cn; Peng, S.L.

    2015-11-15

    Blue phosphorene (BP) was theoretically predicted to be thermally stable recently. Considering its similar in-layer hexagonal lattice to MoS{sub 2}, MoS{sub 2} could be an appropriate substrate to grow BP in experiments. In this work, the van der Waals (vdW) heterostructures are constructed by stacking BP on top of MoS{sub 2}. The thermal stability and electronic structures are evaluated based on first principles calculations with vdW-corrected exchange-correlation functional. The formation of the heterostructures is demonstrated to be exothermic and the most stable stacking configuration is confirmed. The heterostructures BP/MoS{sub 2} preserve both the properties of BP and MoS{sub 2} butmore » exhibit relatively narrower bandgaps due to the interlayer coupling effect. The band structures can be further engineered by applying external electric fields. An indirect–direct bandgap transition in bilayer BP/MoS{sub 2} is demonstrated to be controlled by the symmetry property of the built-in electric dipole fields. - Graphical abstract: An indirect-direct band gap transition occurs in van der Waals heterostructure of MoS{sub 2}/BP under external electric fields which is demonstrated to be controlled by the symmetry of the built-in electric dipole fields. - Highlights: • The stacking of heterostructures of BP/MoS{sub 2} is demonstrated to be exothermic. • This suggests that it is possible to grow BP using MoS{sub 2} as the substrate. • The band structures of the heterostructures are exploited. • It realizes an indirect–direct gap transition under external electric fields. • The symmetry of the built-in electric dipole fields controls such gap transition.« less

  7. Statistical substantiation of the van der Waals theory of inhomogeneous fluids

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.; Protsenko, S. P.; Chernykh, G. G.; Boltachev, G. Sh.

    2002-04-01

    Computer experiments on simulation of thermodynamic properties and structural characteristics of a Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics at cutoff radii of the intermolecular potential rc,1=2.6σ and rc,2=6.78σ. The phase equilibrium parameters, surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor interface. The strong dependence of these properties on the value of rc is shown. The p,ρ,T properties and correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is shown that at T>=1.1 the properties of a flat interface within the computer experimental error can be described by the van der Waals square-gradient theory with an influence parameter κ independent of the density. Taking into account the density dependence of κ through the second moment of the direct correlation function will deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher order than (∇ρ)2 to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown that taking into account terms proportional to (∇ρ)4 leaves no way of obtaining agreement between the theory and simulation data, while taking into consideration of terms proportional to (∇ρ)6 makes it possible to describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to the critical point.

  8. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    PubMed

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  9. Fabrication of functional ultrathin single-crystal nanowires from quasi-one dimensional van der Waals crystals Ta2(Pd or Pt)3Se8

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Zhu, Yibo; Sanchez, Ana; Antipina, Liubov; Sorokin, Pavel

    Micromechanical exfoliation or wet exfoliation of two-dimensional van der Waals materials has triggered an explosive interest in 2D material research. In our work, we extend this idea to 1D van der Waals material. By using micromechanical exfoliation or wet exfoliation, 1D nanowire with size as small as six molecular ribbons can be readily achieved in the Ta2(Pd or Pt)3Se8 system. The semiconducting properties of exfoliated Ta2Pd3Se8 nanowires show n-type, whereas Ta2Pt3Se8 nanowires are p-type. Our electronic band structure calculation for Ta2Pd3Se8 nanowire reveals that from multi-ribbon to single-ribbon the band gap evolves from indirect 0.5eV in bulk to direct 1eV in single-ribbon. A functional ``NOT'' gate consisting of field-effect transistors based on these two types of complementary nanowires has also been successfully realized. Moreover, the photocurrent response of Ta2Pd3Se8 nanowire transistors has been studied as well. Ta2(Pd or Pt)3Se8 system, as an intrinsic quasi-1D material, provides a viable platform for the study of low dimensional condensed matter physics. We acknowledge the financial support from DOE and BoRSF.

  10. Anisotropic instability of a stretching film

    NASA Astrophysics Data System (ADS)

    Xu, Bingrui; Li, Minhao; Deng, Daosheng

    2017-11-01

    Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.

  11. X-ray electron density investigation of chemical bonding in van der Waals materials

    NASA Astrophysics Data System (ADS)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  12. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides.

    PubMed

    Du, Ke-zhao; Wang, Xing-zhi; Liu, Yang; Hu, Peng; Utama, M Iqbal Bakti; Gan, Chee Kwan; Xiong, Qihua; Kloc, Christian

    2016-02-23

    2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3-3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.

  13. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon.

    PubMed

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-15

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues ( 35 Cl and 37 Cl), adopts a configuration in which the argon atom is located, close to the CF 2 Cl top, between the CCF and CCCl planes (the dihedral angle ∠ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH 3 CF 2 Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4kJmol -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-01

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.

  15. Analytical theory of the hydrophobic effect of solutes in water.

    PubMed

    Urbic, Tomaz; Dill, Ken A

    2017-09-01

    We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.

  16. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    NASA Astrophysics Data System (ADS)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  17. Analytical theory of the hydrophobic effect of solutes in water

    NASA Astrophysics Data System (ADS)

    Urbic, Tomaz; Dill, Ken A.

    2017-09-01

    We develop an analytical statistical-mechanical model for hydrophobic solvation in water. In this three-dimensional Mercedes-Benz-like model, two neighboring waters have three possible interaction states: a radial van der Waals interaction, a tetrahedral orientation-dependent hydrogen-bonding interaction, or no interaction. Nonpolar solutes are modeled as van der Waals particles of different radii. The model is sufficiently simple that we can calculate the partition function and thermal and volumetric properties of solvation versus temperature, pressure, and solute radius. Predictions are in good agreement with results of Monte Carlo simulations. And their trends agree with experiments on hydrophobic solute insertion. The theory shows that first-shell waters are more highly structured than bulk waters, because of hydrogen bonding, and that that structure melts out faster with temperature than it does in bulk waters. Because the theory is analytical, it can explore a broad range of solvation properties and anomalies of water, at minimal computational expense.

  18. Controlling the electronic properties of van der Waals heterostructures by applying electrostatic design

    NASA Astrophysics Data System (ADS)

    Winkler, Christian; Harivyasi, Shashank S.; Zojer, Egbert

    2018-07-01

    Van der Waals heterostructures based on the heteroassembly of 2D materials represent a recently developed class of materials with promising properties especially for optoelectronic applications. The alignment of electronic energy bands between consecutive layers of these heterostructures crucially determines their functionality. In the present paper, relying on dispersion-corrected density-functional theory calculations, we present electrostatic design as a promising tool for manipulating this band alignment. The latter is achieved by inserting a layer of aligned polar molecules between consecutive transition-metal dichalcogenide (TMD) sheets. As a consequence, collective electrostatic effects induce a shift of as much as 0.3 eV in the band edges of successive TMD layers. Building on that, the proposed approach can be used to design electronically more complex systems, like quantum cascades or quantum wells, or to change the type of band lineup between type II and type I.

  19. Communication: Multiple-property-based diabatization for open-shell van der Waals molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C., E-mail: gerritg@theochem.ru.nl

    2016-03-28

    We derive a new multiple-property-based diabatization algorithm. The transformation between adiabatic and diabatic representations is determined by requiring a set of properties in both representations to be related by a similarity transformation. This set of properties is determined in the adiabatic representation by rigorous electronic structure calculations. In the diabatic representation, the same properties are determined using model diabatic states defined as products of undistorted monomer wave functions. This diabatic model is generally applicable to van der Waals molecules in arbitrary electronic states. Application to locating seams of conical intersections and collisional transfer of electronic excitation energy is demonstrated formore » O{sub 2} − O{sub 2} in low-lying excited states. Property-based diabatization for this test system included all components of the electric quadrupole tensor, orbital angular momentum, and spin-orbit coupling.« less

  20. Deposition kinetics of colloidal particles at high ionic strengths

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare; Monti, Fabrice; Truchet, Marine; Burnouf, Jean-Pierre; Tabeling, Patrick

    Using microfluidic experiments, we describe the deposition of a fluid suspension of weakly brownian particles transported in a straight channel at small Reynolds numbers under conditions of high ionic strengths. Our studies fall in a regime where electrostatic interactions are neglected and particle-wall van der Waals interactions govern the deposition mechanism on channel walls. We calculate the deposition kinetics analytically for a wide range of physical parameters. We find that the theory agrees with numerical Langevin simulations, which both confirm the experimental results. From this analysis, we demonstrate a universal dimensionless deposition function described by contributions from advection-diffusion transport and adhesion interactions (Hamaker constant). Results show that we accurately confirm the theoretical expression for the deposition kinetics. From a surface science perspective, working in the van der Waals regime enables to measure the Hamaker constant, a task that would take much longer to perform with the standard AFM. Funding from Sanofi Recherche and ESPCI.

  1. Ab Initio Investigation of Frictional Properties of Graphene on SiC Surfaces

    NASA Astrophysics Data System (ADS)

    Sayin, Ceren; Gülseren, Oğuz

    The exact origin and nature of various nanotribological observations on graphene such as dependence of friction on layer thickness, direction and surface morphology are yet to be fully understood. In this talk, we report on the frictional properties of graphene on 4H-SiC{0001} surfaces obtained from first principles calculations. We investigate sliding of graphene layers of various thickness along different directions on both the Si- and C-terminated faces including van-der Waals interactions. We observe that upon sliding under certain conditions, the interaction between the surface and graphene layers alternates between van-der Waals and covalent forces which dramatically affects friction. We examine the relation of frictional force to applied normal load, small out-of-plane geometric deformations of graphene and electronic structure of the systems. This work is supported by TUBITAK Project No:114F162.

  2. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  3. Hypoxia, Color Vision Deficiencies, and Blood Oxygen Saturation

    DTIC Science & Technology

    2013-11-01

    Richalet, Duval-Arnould, Darnaud, Keromes, & Rutgers, 1988; Richalet et al., 1989; Brandl & Lachenmayr, 1994; Schellart, Pollen , & van der Kley...60, 105-111. Schellart, N.A., Pollen , M. & van der Kley, A. (1997). Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity

  4. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  5. Van der Waals interactions and the limits of isolated atom models at interfaces

    PubMed Central

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  6. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    PubMed

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  7. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  8. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  9. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    NASA Astrophysics Data System (ADS)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  10. Uncovering Droop Control Laws Embedded Within the Nonlinear Dynamics of Van der Pol Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.

    This paper examines the dynamics of power-electronic inverters in islanded microgrids that are controlled to emulate the dynamics of Van der Pol oscillators. The general strategy of controlling inverters to emulate the behavior of nonlinear oscillators presents a compelling time-domain alternative to ubiquitous droop control methods which presume the existence of a quasistationary sinusoidal steady state and operate on phasor quantities. We present two main results in this paper. First, by leveraging the method of periodic averaging, we demonstrate that droop laws are intrinsically embedded within a slower time scale in the nonlinear dynamics of Van der Pol oscillators. Second,more » we establish the global convergence of amplitude and phase dynamics in a resistive network interconnecting inverters controlled as Van der Pol oscillators. Furthermore, under a set of nonrestrictive decoupling approximations, we derive sufficient conditions for local exponential stability of desirable equilibria of the linearized amplitude and phase dynamics.« less

  11. Van-der-Waals interaction of atoms in dipolar Rydberg states

    NASA Astrophysics Data System (ADS)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power-12 dependence C 6( n) ∝ n 12 for the dipolar states of the Rydberg manifold.

  12. Observation of novel photochemistry in the multiphoton ionization of Mo(CO) sub 6 van der Waals clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peifer, W.R.; Garvey, J.F.

    1989-07-27

    van der Waals clusters of Mo(CO){sub 6} generated in the free-jet expansion of a pulsed beam of seeded helium are subjected to multiphoton ionization and the product ions analyzed by quadrupole mass spectrometry. Oxomolybdenum and dioxomolybdenum ions are observed to be produced with high efficiency. This behavior is in striking contrast to that of metal carbonyl monomers and covalently bound cluster carbonyls, which under complete ligand loss prior to ionization. The observed photochemistry is ascribed to reactions between a photoproduced molybdenum atom and the ligands of neighboring Mo(CO){sub 6} solvent molecules within the van der Waals cluster.

  13. European Symposium on X-Ray Topography and High Resolution Diffraction (2nd) Held in Berlin, Germany on 5-7 September 1994. Programme and Abstracts

    DTIC Science & Technology

    1994-09-07

    RELAXATION OF NANOSTRUCTURED SIGE/SI PILLARS BY HIGH-RESOLUTION X-RAY DIFFRACTION P. van der Sluis and C.W.T. Bull.-Lieuwma PLillps Research Laboratories...whereas the lattice is fully strained in large (10xlO mm2) pillars. (1] P.B. Fischer and S.Y. Chou, Appl. Phys. Lett. 62, 1414 (1993) (2) P. van der ...tIn, hi&ttttV (Thl)ttLtl Of epitaxial layers of 111I-V compoutnds, J1. Cl’ybll GIVILth, Vol. 44:1)1.5113 :-517, 1978. (2) P. van der Sluls Determination

  14. Free Energy Difference in Indolicidin Attraction to Eukaryotic and Prokaryotic Model Cell Membranes

    DTIC Science & Technology

    2012-02-16

    calculated from the charge density distribution ρq(z) obtained from the simulations using the following relationship:28,36,46 ∫ = ρ ′ ′ ε − E z z z ( ) ( ) dL ...the overall van der Waals interactions by substituting the bulkier tryptophan residues with smaller phenylalanine residues will, however, noticeably

  15. Atomically thin p-n junctions with van der Waals heterointerfaces.

    PubMed

    Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M; Chen, Wenchao; Li, Yilei; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Nuckolls, Colin; Heinz, Tony F; Guo, Jing; Hone, James; Kim, Philip

    2014-09-01

    Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

  16. Review of Radar Absorbing Materials

    DTIC Science & Technology

    2005-01-01

    Symposium, 1990. AP-S. Merging technologies for the 90’s. Digest 1990, 3, 1212. (30) Nortier, J. R., Van der Neut , C.A., Baker, D.E. Microwave Journal...1987, 219. (31) Kasevich, R. S.; Broderick, F., US Patent 5223849. 1993. (32) Van Der Plas, G., Barel, A., Schweicher, E. Antennas and Propagation

  17. Do apolipoprotein E genotype and educational attainment predict the rate of cognitive decline in normal aging? A 12-year follow-up of the Maastricht Aging Study.

    PubMed

    Van Gerven, Pascal W M; Van Boxtel, Martin P J; Ausems, Eleonora E B; Bekers, Otto; Jolles, Jelle

    2012-07-01

    We investigated suspected longitudinal interaction effects of apolipoprotein E (APOE) genotype and educational attainment on cognitive decline in normal aging. Our sample consisted of 571 healthy, nondemented adults aged between 49 and 82 years. Linear mixed-models analyses were performed with four measurement time points: baseline, 3-year, 6-year, and 12-year follow-up. Covariates included age at baseline, sex, and self-perceived physical and mental health. Dependent measures were global cognitive functioning (Mini-Mental State Examination; Folstein, Folstein, & McHugh, 1975), Stroop performance (Stroop Color-Word Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006a), set-shifting performance (Concept Shifting Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006b), cognitive speed (Letter-Digit Substitution Test; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006c), verbal learning (Verbal Learning Test: Sum of five trials; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2005), and long-term memory (Verbal Learning Test: Delayed recall). We found only faint evidence that older, high-educated carriers of the APOE-ε4 allele (irrespective of zygosity) show a more pronounced decline than younger, low-educated carriers and noncarriers (irrespective of educational attainment). Moreover, this outcome was confined to concept-shifting performance and was especially observable between 6- and 12-year follow-ups. No protective effects of higher education were found on any of the six cognitive measures. We conclude that the combination of APOE-ε4 allele and high educational attainment may be a risk factor for accelerated cognitive decline in older age, as has been reported before, but only to a very limited extent. Moreover, we conclude that, within the cognitive reserve framework, education does not have significant protective power against age-related cognitive decline.

  18. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  19. The nonlinear effect of resistive inhomogeneities on van der Pauw measurements

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2005-03-01

    The resistive weighting function [D. W. Koon and C. J. Knickerbocker, Rev. Sci. Instrum. 63, 207 (1992)] quantifies the effect of small local inhomogeneities on van der Pauw resistivity measurements, but assumes such effects to be linear. This talk will describe deviations from linearity for a square van der Pauw geometry, modeled using a 5 x 5 grid network of discrete resistors and introducing both positive and negative perturbations to local resistors, covering nearly two orders of magnitude in -δρ/ρ or -δσ/σ. While there is a relatively modest quadratic nonlinearity for inhomogeneities of decreasing conductivity, the nonlinear term for inhomogeneities of decreasing resistivity is approximately cubic and can exceed the linear term.

  20. Van der Waals interaction mediated by an optically uniaxial layer

    NASA Astrophysics Data System (ADS)

    Šarlah, A.; Žumer, S.

    2001-11-01

    We study the van der Waals interaction between macroscopic bodies separated by a thin anisotropic film with a uniaxial permittivity tensor. We describe the effect of anisotropy of the media on the magnitude and sign of the interaction. The resulting differences in the van der Waals interaction are especially important for the stability of strongly confined liquid crystals, and nanostructures characterized by highly uniaxial macroscopic molecular arrangement, such as in self-assemblies of long organic molecules forming films, membranes, colloids, etc. We introduce an improved expression for the Hamaker constant which takes into account the uniaxial symmetry of a medium. In special cases neglecting the optical anisotropy even leads to an incorrect sign of the interaction.

  1. Combat Casualty Hand Burns: Evaluating Impairment and Disability during Recovery

    DTIC Science & Technology

    2008-06-01

    impairment guidelines would correlate with disability as mea- sured by the DASH. However, a study by Mink van der Molen et al. found only a weak correlation (r...Mink van der Molen AB, Ettema AM, Hovius SER. Outcome of hand trauma: the hand injury severity scoring system (HISS) and subsequent impairment and...0.38) between AMA and DASH scores at six months after hand trauma.16 In another study, van Oosterom et al. reported no statistically significant

  2. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  3. pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.

    PubMed

    Gosika, Mounika; Maiti, Prabal K

    2018-03-07

    The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.

  4. Control of excitons in multi-layer van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.

    2016-03-07

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  5. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep

    2016-03-22

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).

  6. Combined Task and Physical Demands Analyses towards a Comprehensive Human Work Model

    DTIC Science & Technology

    2014-09-01

    new equipment or modifying tasks and providing training (van der Molen, Sluiter, Hulshof , Vink, & Frings-Dresen, 2005). List the Job Duties (the...00 1/SV, Defence Research and Development Canada. van der Molen, H. F., Sluiter, J. K., Hulshof , C. T. J. , Vink, P., & Frings-Dresen, M. H. W

  7. Optimal Item Pool Design for a Highly Constrained Computerized Adaptive Test

    ERIC Educational Resources Information Center

    He, Wei

    2010-01-01

    Item pool quality has been regarded as one important factor to help realize enhanced measurement quality for the computerized adaptive test (CAT) (e.g., Flaugher, 2000; Jensema, 1977; McBride & Wise, 1976; Reckase, 1976; 2003; van der Linden, Ariel, & Veldkamp, 2006; Veldkamp & van der Linden, 2000; Xing & Hambleton, 2004). However, studies are…

  8. Size Effects in Epitaxial Films of Magnetite

    DTIC Science & Technology

    2002-06-03

    van Eemeren , J. aan de Stegge, 1727. WJ.M. de Jonge, Surf. Sci. 373 (1997) 85. [38] J.L. Dormann, T. Merceron, P. Renaudin, VA.M. Brabers, J. [20] S.A...Metals and Semiconductors, Trans Tech, Switzerland, 1994, p. __221. [4] G.A. Prinz, Phys. Today 48 (1995) 58. 100 - [5] P.J. van der Zaag. P.J.H...Bloemen. J.M. Gaines, R.M. Wolf, -10 -8 -6 -4 -2 0 2 4 6 8 10 P.A.A. van der Heijden, R.J.M. van de Veerdonk, W.J.M. velocity [mm/s] de Jonge, J. Magn. Magn

  9. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  10. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  11. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  12. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Treesearch

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  13. Gas Adsorption and Selectivity in Zeolitic Imidazolate Frameworks from First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Ray, Keith; Olmsted, David; He, Ning; Houndonougbo, Yao; Laird, Brian; Asta, Mark

    2012-02-01

    Zeolitic Imidazolate Framework (ZIFs) are excellent candidate materials for carbon capture and gas separation. Here we employ the van der Waals density functional (vdW-DF) [1] in an analysis of the binding energetics for CO2, CH4 and N2 molecules in a set of ZIFs featuring different chemical functionalizations. We investigate multiple low-energy binding sites, which differ in their positions relative to functional groups on the imidazole linkers. In all cases an accurate treatment of van der Waals forces appears essential to provide reasonable binding energy magnitudes. We report results obtained from different parameterizations of the vdW-DF, providing comparisons between calculations and experimental values of the heat of adsorption [2]. This research is supported by the Energy Frontier Research Center ``Molecularly Engineered Energy Materials,'' funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001342. [1] M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Let. 92, 246401 (2004) [2] W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B. B. Laird, O. M. Yaghi, J. AM. CHEM. SOC. 2010, 132, 11006-11008

  14. Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules

    NASA Astrophysics Data System (ADS)

    Panigrahi, P.; Naqvi, S. R.; Hankel, M.; Ahuja, R.; Hussain, T.

    2018-06-01

    In a quest to find optimum materials for efficient storage of clean energy, we have performed first principles calculations to study the structural and energy storage properties of one-dimensional carbon nanotubes (CNTs) functionalized with polylithiated molecules (PLMs). Van der Waals corrected calculations disclosed that various PLMs like CLi, CLi2, CLi3, OLi, OLi2, OLi3, bind strongly to CNTs even at high doping concentrations ensuring a uniform distribution of dopants without forming clusters. Bader charge analysis reveals that each Li in all the PLMs attains a partial positive charge and transform into Li+ cations. This situation allows multiple H2 molecules adsorbed with each Li+ through the polarization of incident H2 molecules via electrostatic and van der Waals type of interaction. With a maximum doping concentration, that is 3CLi2/3CLi3 and 3OLi2/3OLi3 a maximum of 36 H2 molecules could be adsorbed that corresponds to a reasonably high H2 storage capacity with the adsorption energies in the range of -0.33 to -0.15 eV/H2. This suits the ambient condition applications.

  15. Thz Spectroscopy and DFT Modeling of Intermolecular Vibrations in Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, michael R. C.; Aschaffenburg, Daniel J.; Schmuttenmaer, Charles A.

    2013-06-01

    Vibrations that involve intermolecular displacements occur in molecular crystals at frequencies in the 0.5-5 THz range (˜15-165 cm^{-1}), and these motions are direct indicators of the interaction potential between the molecules. The intermolecular potential energy surface of crystalline hydrophobic amino acids is inherently interesting simply because of the wide variety of forces (electrostatic, dipole-dipole, hydrogen-bonding, van der Waals) that are present. Furthermore, an understanding of these particular interactions is immediately relevant to important topics like protein conformation and pharmaceutical polymorphism. We measured the low-frequency absorption spectra of several polycrystalline hydrophobic amino acids using THz time-domain spectroscopy, and in addition we carried out DFT calculations using periodic boundary conditions and an exchange-correlation functional that accounts for van der Waals dispersion forces. We chose to investigate a series of similar amino acids with closely analogous unit cells (leucine, isoleucine, and allo-isoleucine, in racemic or pseudo-racemic mixtures). This allows us to consider trends in the vibrational spectra as a function of small changes in molecular arrangement and/or crystal geometry. In this way, we gain confidence that peak assignments are not based on serendipitous similarities between calculated and observed features.

  16. Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid

    2017-12-01

    The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.

  17. Investigation of two and three parameter equations of state for cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Jenkins, Susan L.; Majumdar, Alok K.; Hendricks, Robert C.

    1990-01-01

    Two-phase flows are a common occurrence in cryogenic engines and an accurate evaluation of the heat-transfer coefficient in two-phase flow is of significant importance in their analysis and design. The thermodynamic equation of state plays a key role in calculating the heat transfer coefficient which is a function of thermodynamic and thermophysical properties. An investigation has been performed to study the performance of two- and three-parameter equations of state to calculate the compressibility factor of cryogenic fluids along the saturation loci. The two-parameter equations considered here are van der Waals and Redlich-Kwong equations of state. The three-parameter equation represented here is the generalized Benedict-Webb-Rubin (BWR) equation of Lee and Kesler. Results have been compared with the modified BWR equation of Bender and the extended BWR equations of Stewart. Seven cryogenic fluids have been tested; oxygen, hydrogen, helium, nitrogen, argon, neon, and air. The performance of the generalized BWR equation is poor for hydrogen and helium. The van der Waals equation is found to be inaccurate for air near the critical point. For helium, all three equations of state become inaccurate near the critical point.

  18. Van Der Waals Clusters of Aromatic Molecules Studied Using Supersonic Molecular Jet Spectroscopy.

    DTIC Science & Technology

    1987-01-01

    i n iie t ri 166 TABLE 7.5 Out-or-Plane Elgenvector Normal Modes Calculated for H2PC. Mode Elgenvector in Terms of Symmetry Coordinates a Bu1...clusters exhibit spectra and calculated geomet- ries which demonstrate that the solvent OH groups are large contributors to the spectral shifts and...10’ cluster structure. We calculate that 0.005 cm-’ resolution N-C 1.725 x 10’ I 575< 10’ would be required to resolve rotational structure for N-H

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, Luke; Baczewski, A. D.; Zhu, Z.

    Sensitive dependence of the electronic structure on the number of layers in few-layer phosphorene raises a question about the true nature of the interlayer interaction in so-called van der Waals (vdW) solids . We performed quantum Monte Carlo calculations and found that the interlayer interaction in bulk black phosphorus and related few-layer phosphorene is associated with a significant charge redistribution that is incompatible with purely dispersive forces and not captured by density functional theory calculations with different vdW corrected functionals. Lastly, these findings confirm the necessity of more sophisticated treatment of nonlocal electron correlation in total energy calculations.

  20. Dependence of Radar Backscatter on the Energetics of the Air-Sea Interface

    DTIC Science & Technology

    1990-07-01

    14 3 Figure 41a. Shematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957...O.O0 Figure 41a. Schematic Spectrum of Wind Speed Near the Ground Estimated from a Study of Van der Hoven (1957) (from Lumley and Panofsky, 1964) The...resolved is 0.6 to 8.0s. Following Der (1976), the sensors are capacitance transduction devices which produce output voltage signals proportional to surface

  1. Investigation of Luminescent Diode Arrays for Photochromic Film Recording

    DTIC Science & Technology

    1969-06-30

    usually measured by Hall effect and rev.istivity measurements using the Van der Pauw technique.) Ami an example, if GP is Initially 3 x i10 P type and...contacta and eettin% the specimen in a known magnetic field. The Van der Pauw technique Is used to meaeure the HAll coefficient. From the Hall coefficient...iraenuitive within 30 minutes after activation. Un~ der ultr’aviolet exposure, dark red ’Iuoro-cence occurs. When the activation properties of the film are

  2. Network approach towards understanding the crazing in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  3. Modeling Subsurface Storm and Tile Drain Systems in GSSHA with SUPERLINK

    DTIC Science & Technology

    2014-09-01

    side is computed as . ( )e Kq d m m L   2 0 01 2 (7) de is defined as ( van der Molen and Wesseling (1991)) ERDC/CHL TR-14-11 15...Conservation Service. Van der Molen , W.H., and J. Wesseling. 1991. A solution in closed form and a series solution to replace the tables for thickness of...effective lateral hydraulic conductivity (cm hr-1) C = 1 in the present version. Hooghoudt ( van Schilfgaarde 1974) characterized flow to cylindrical

  4. Dutch Minister of Science Visits ESO Facilities in Chile

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, who travelled to the Republic of Chile, arrived at the ESO Paranal Observatory on Friday afternoon, May 13, 2005. The Minister was accompanied, among others, by the Dutch Ambassador to Chile, Mr. Hinkinus Nijenhuis, and Mr. Cornelis van Bochove, the Dutch Director of Science. The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site, and later, with the next major world facility in sub-millimetre and millimetre astronomy, the Atacama Large Millimeter Array (ALMA). At Paranal, the guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky; the ESO Council President, Prof. Piet van der Kruit; the ESO Representative in Chile, Prof. Felix Mirabel; the Director of the La Silla Paranal Observatory, Dr. Jason Spyromilio; by one of the Dutch members of the ESO Council, Prof. Tim de Zeeuw; by the renowned astrophysicist from Leiden, Prof. Ewine van Dishoek, as well as by ESO staff members. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Minister gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the Paranal deck, the Minister visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Minister was invited to follow an observing sequence at the console of the Kueyen (UT2) and Melipal (UT3) telescopes. "I was very impressed, not just by the technology and the science, but most of all by all the people involved," expressed Mrs. Maria van der Hoeven during her visit. "An almost unique level of international cooperation is achieved at ESO, and everything is done by those who can do it best, irrespective of their country or institution. This spirit of excellence is an example for all Europe, notably for the new European Research Council." Catherine Cesarsky, ESO Director General, remarked that Dutch astronomers have been part of ESO from the beginning: "The Dutch astronomy community and industry play a major role in various aspects of the Very Large Telescope, and more particularly in its interferometric mode. With their long-based expertise in radio astronomy, Dutch astronomers greatly contribute in this field, and are now also playing a major role in the construction of ALMA. It is thus a particularly great pleasure to receive Her Excellency, Mrs. Maria van der Hoeven." ESO PR Photo 16d/05 ESO PR Photo 16d/05 Dutch Minister Maria van der Hoeven at Chajnantor - I [Preview - JPEG: 400 x 480 pix - 207k] [Normal - JPEG: 800 x 959 pix - 617k] ESO PR Photo 16e/05 ESO PR Photo 16e/05 Dutch Minister Maria van der Hoeven at Chajnantor - II [Preview - JPEG: 400 x 605 pix - 179k] [Normal - JPEG: 800 x 1210 pix - 522k] Caption: ESO PR Photo 16d/05: In front of the APEX antenna at Chajnantor. From left to right: Prof. Piet van der Kruit, Mrs. Maria van der Hoeven, Prof. Tim de Zeeuw, and Prof. Ewine van Dishoeck. ESO PR Photo 16e/05 shows the Delegation on the 5000m high Llano de Chajnantor plateau. From left to right: Dr. Leo Le Duc, Prof. Felix Mirabel, Prof. Tim de Zeeuw, Prof. Ewine van Dishoeck, Dr. Cornelius van Bochove, Mrs. Maria van der Hoeven, Mr. Hans van der Vlies, Dr. Joerg Eschwey, Mr. Hinkinus Nijenhuis, Prof. Piet van der Kruit, Mr. Hans van den Broek, and Mr. Eduardo Donoso. The delegation spent the night at the Observatory before heading further North in the Chilean Andes to San Pedro de Atacama and from there to the Operation Support Facility of the future ALMA Observatory. On Sunday, May 15, the delegation went to the 5000m Llano de Chajnantor, the future site of the large array of 12m antennas that is being build there and should be completed by 2013. The Minister in particular could visit the 12m APEX (Atacama Pathfinder Experiment) telescope and see the technical infrastructure. "I am fully confident that the worldwide cooperation in ALMA will be equally successful as the VLT, and I am convinced that the discoveries to be made here are meaningful for the Earth we live in", said Mrs. van der Hoeven. "History and future are coming together in the north of Chile, in a very special way," she added. "In the region of the ancient Atacamenos, scientists from all over the world are discovering more and more about the universe and the birth and death of stars. They even find new planets. They do that on Paranal with the VLT and soon will be doing that on the ALMA site." The Minister and her delegation left for Santiago in the afternoon.

  5. van der Pauw's Theorem on Sheet Resistance

    ERIC Educational Resources Information Center

    Bolt, Michael

    2017-01-01

    The sheet resistance of a conducting material of uniform thickness is analogous to the resistivity of a solid material and provides a measure of electrical resistance. In 1958, L. J. van der Pauw found an effective method for computing sheet resistance that requires taking two electrical measurements from four points on the edge of a simply…

  6. The Forced van der Pol Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2009-01-01

    We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…

  7. A New Statistic for Detection of Aberrant Answer Changes

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Duong, Minh Q.; Wood, Scott W.

    2017-01-01

    As noted by Fremer and Olson, analysis of answer changes is often used to investigate testing irregularities because the analysis is readily performed and has proven its value in practice. Researchers such as Belov, Sinharay and Johnson, van der Linden and Jeon, van der Linden and Lewis, and Wollack, Cohen, and Eckerly have suggested several…

  8. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    PubMed

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  9. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  10. Theory of gas hydrates: effect of the approximation of rigid water lattice.

    PubMed

    Pimpalgaonkar, Hrushikesh; Veesam, Shivanand K; Punnathanam, Sudeep N

    2011-08-25

    One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed. © 2011 American Chemical Society

  11. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    PubMed

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  12. Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface.

    PubMed

    Zheng, Qijing; Saidi, Wissam A; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V; Petek, Hrvoje; Zhao, Jin

    2017-10-11

    The van der Waals (vdW) interfaces of two-dimensional (2D) semiconductor are central to new device concepts and emerging technologies in light-electricity transduction where the efficient charge separation is a key factor. Contrary to general expectation, efficient electron-hole separation can occur in vertically stacked transition-metal dichalcogenide heterostructure bilayers through ultrafast charge transfer between the neighboring layers despite their weak vdW bonding. In this report, we show by ab initio nonadiabatic molecular dynamics calculations, that instead of direct tunneling, the ultrafast interlayer hole transfer is strongly promoted by an adiabatic mechanism through phonon excitation occurring on 20 fs, which is in good agreement with the experiment. The atomic level picture of the phonon-assisted ultrafast mechanism revealed in our study is valuable both for the fundamental understanding of ultrafast charge carrier dynamics at vdW heterointerfaces as well as for the design of novel quasi-2D devices for optoelectronic and photovoltaic applications.

  13. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  14. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    NASA Astrophysics Data System (ADS)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  15. Tunable Schottky barrier and electronic properties in borophene/g-C2N van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, J. W.; Wang, X. C.; Song, Y.; Mi, W. B.

    2018-05-01

    By stacking different layers of two dimensional (2D) monolayer materials, the electronic properties of the 2D van der Waals (vdW) heterostructures can be tailored. However, the Schottky barrier formed between 2D semiconductor and metallic electrode has greatly limited the application of 2D semiconductor in nanoelectronic and optoelectronic devices. Herewith, we investigate the electronic properties of borophene/g-C2N vdW heterostructures by first-principles calculations. The results indicate that electronic structures of borophene and g-C2N are preserved in borophene/g-C2N vdW heterostructures. Meanwhile, upon the external electric field, a transition from the n-type Schottky contact to Ohmic contact is induced, and the carrier concentration between the borophene and g-C2N interfaces can be tuned. These results are expected to provide useful insight in the nanoelectronic and optoelectronic devices based on the borophene/g-C2N vdW heterostructures.

  16. Infrared photodetectors based on graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Ryzhii, V.; Ryzhii, M.; Svintsov, D.; Leiman, V.; Mitin, V.; Shur, M. S.; Otsuji, T.

    2017-08-01

    We propose and evaluate the graphene layer (GL) infrared photodetectors (GLIPs) based on the van der Waals (vdW) heterostructures with the radiation absorbing GLs. The operation of the GLIPs is associated with the electron photoexcitation from the GL valence band to the continuum states above the inter-GL barriers (either via tunneling or direct transitions to the continuum states). Using the developed device model, we calculate the photodetector characteristics as functions of the GL-vdW heterostructure parameters. We show that due to a relatively large efficiency of the electron photoexcitation and low capture efficiency of the electrons propagating over the barriers in the inter-GL layers, GLIPs should exhibit the elevated photoelectric gain and detector responsivity as well as relatively high detectivity. The possibility of high-speed operation, high conductivity, transparency of the GLIP contact layers, and the sensitivity to normally incident IR radiation provides additional potential advantages in comparison with other IR photodetectors. In particular, the proposed GLIPs can compete with unitravelling-carrier photodetectors.

  17. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbonmore » nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.« less

  18. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers

    PubMed Central

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-Yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice. PMID:28070558

  19. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less

  1. Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field-flow fractionation.

    PubMed

    Noskov, Sergey; Scherer, Christian; Maskos, Michael

    2013-01-25

    Interaction forces between all objects are either of repulsive or attractive nature. Concerning attractive interactions, the determination of dispersion forces are of special interest since they appear in all colloidal systems and have a crucial influence on the properties and processes in these systems. One possibility to link theory and experiment is the description of the London-Van der Waals forces in terms of the Hamaker constant, which leads to the challenging problem of calculating the van der Waals interaction energies between colloidal particles. Hence, the determination of a Hamaker constant for a given material is needed when interfacial phenomena such as adhesion are discussed in terms of the total potential energy between particles and substrates. In this work, the asymmetrical flow field-flow fractionation (AF-FFF) in combination with a Newton algorithm based iteration process was used for the determination of Hamaker constants of different nanoparticles in toluene. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Van der Waals Interactions in Aspirin

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  3. Substrate Dependence in the Growth of Three-Dimensional Gold Nanoparticle Superlattices

    DTIC Science & Technology

    2001-11-01

    the Hamaker constants between gold nanoparticle assemblies and substrates through the suspension. Van der Waals interactions estimated from this...finally dialyzed to remove inorganic (Na, Cl, and B) and organic impurities. The surfactant affects the dispersion of Au nanoparticles in aqueous...be taken into account for complete understanding of the observed substrate dependency. To consider volume interactions, we calculate the Hamaker

  4. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2014-06-01

    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102 (2006) J. Rheinecker and J. M. Bowman, J. Chem. Phys. 125 133206 (2006)} S. Horvath, A. B. McCoy, B. M. Elliott, G. H. Weddle, J. R. Roscioli, and M. A. Johnson J. Phys. Chem. A 114 1556 (2010)

  5. Van der Waals equation of state revisited: importance of the dispersion correction.

    PubMed

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  6. Minimum Weight Design of Cylindrical Shell with Multiple Stiffener Sizes Under Buckling Constraint

    DTIC Science & Technology

    1977-10-01

    i.i.iiJ.i |..l.l.ll|l,«p»l|HII.I|lllB.I. SECTION I INTRODUCTION Since van der Neut (Reference 1) demonstrated the influtnce of eccentricity of...o:neral conclusions. ■■’ ■ ■■■—^-’—--^ ■ „J..,.....^ .... .a. a,-^,.,.,.. —..-.., mmmmmmmmm**** "■ REFERENCES 1. Van der Neut , A., "The General...Kicher, T. P., "Structural Synthesis of Integrally Stiffened Cylin- ders ", Journal of Spacecraft and Rockets, Vol. 5, Jan. 1968, pp. 62-67. Schmit

  7. Structural Equation Model Approach to the Use of Response Times for Improving Estimation in Item Response Models

    ERIC Educational Resources Information Center

    Sen, Rohini

    2012-01-01

    In the last five decades, research on the uses of response time has extended into the field of psychometrics (Schnikpe & Scrams, 1999; van der Linden, 2006; van der Linden, 2007), where interest has centered around the usefulness of response time information in item calibration and person measurement within an item response theory. framework.…

  8. Geometrothermodynamics of Van der Waals black hole

    NASA Astrophysics Data System (ADS)

    Hu, Yumin; Chen, Juhua; Wang, Yongjiu

    2017-12-01

    We study the geometrothermodynamics of a special asymptotically AdS black hole, i.e. Van der Waals ( VdW) black hole, in the extended phase space where the negative cosmological constant Λ can be regarded as thermodynamic pressure. Analysing some special conditions of this black hole with geometrothermodynamical method, we find a good correlation with ordinary cases according to the state equation.

  9. The first record of Pyxidium tardigradum Van der Land, 1964 (Ciliophora) in Romania.

    PubMed

    Ciobanu, Daniel Adrian; Roszkowska, Milena; Moglan, Ioan; Kaczmarek, Łukasz

    2015-04-02

    In three lichen samples collected from eastern part of Romania, three populations of Ramazzottius cf. oberhaeuseri (Doyère, 1840) infested by Pyxidium tardigradum Van der Land 1964 were found. In this short correspondence we present a first record of P. tardigradum in Romania and infestation rates in studied populations according to the different life stages.

  10. Theoretical Foundation of Zisman's Empirical Equation for Wetting of Liquids on Solid Surfaces

    ERIC Educational Resources Information Center

    Zhu, Ruzeng; Cui, Shuwen; Wang, Xiaosong

    2010-01-01

    Theories of wetting of liquids on solid surfaces under the condition that van der Waals force is dominant are briefly reviewed. We show theoretically that Zisman's empirical equation for wetting of liquids on solid surfaces is a linear approximation of the Young-van der Waals equation in the wetting region, and we express the two parameters in…

  11. Task modulation of the effects of brightness on reaction time and response force.

    PubMed

    Jaśkowski, Piotr; Włodarczyk, Dariusz

    2006-08-01

    Van der Molen and Keuss [van der Molen, M.W., Keuss, P.J.G., 1979. The relationship between reaction time and intensity in discrete auditory tasks. Quarterly Journal of Experimental Psychology 31, 95-102; van der Molen, M.W., Keuss, P.J.G., 1981. Response selection and the processing of auditory intensity. Quarterly Journal of Experimental Psychology 33, 177-184] showed that paradoxically long reaction times (RT) occur with extremely loud auditory stimuli when the task is difficult (e.g. needs a response choice). It was argued that this paradoxical behavior of RT is due to active suppression of response prompting to prevent false responses. In the present experiments, we demonstrated that such an effect can also occur for visual stimuli provided that they are large enough. Additionally, we showed that response force exerted by participants on response keys monotonically grew with intensity for large stimuli but was independent of intensity for small visual stimuli. Bearing in mind that only large stimuli are believed to be arousing this pattern of results supports the arousal interpretation of the negative effect of loud stimuli on RT given by van der Molen and Keuss.

  12. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE PAGES

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan-Sheng; ...

    2015-12-18

    The recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integration withmore » 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS2 can function as an acceptor in hybrid solar cells.« less

  13. Publisher Correction: Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells.

    PubMed

    Caires-Júnior, Luiz Carlos; Goulart, Ernesto; Melo, Uirá Souto; Araujo, Bruno Henrique Silva; Alvizi, Lucas; Soares-Schanoski, Alessandra; de Oliveira, Danyllo Felipe; Kobayashi, Gerson Shigeru; Griesi-Oliveira, Karina; Musso, Camila Manso; Amaral, Murilo Sena; daSilva, Lucas Ferreira; Astray, Renato Mancini; Suárez-Patiño, Sandra Fernanda; Ventini, Daniella Cristina; da Silva, Sérgio Gomes; Yamamoto, Guilherme Lopes; Ezquina, Suzana; Naslavsky, Michel Satya; Telles-Silva, Kayque Alves; Weinmann, Karina; van der Linden, Vanessa; van der Linden, Helio; de Oliveira, João Ricardo Mendes; Arrais, Nivia Maria Rodrigues; Melo, Adriana; Figueiredo, Thalita; Santos, Silvana; Meira, Joanna Goes Castro; Passos, Saulo Duarte; de Almeida, Roque Pacheco; Bispo, Ana Jovina Barreto; Cavalheiro, Esper Abrão; Kalil, Jorge; Cunha-Neto, Edécio; Nakaya, Helder; Andreata-Santos, Robert; de Souza Ferreira, Luis Carlos; Verjovski-Almeida, Sergio; Ho, Paulo Lee; Passos-Bueno, Maria Rita; Zatz, Mayana

    2018-03-13

    The original PDF version of this Article contained errors in the spelling of Luiz Carlos Caires-Júnior, Uirá Souto Melo, Bruno Henrique Silva Araujo, Alessandra Soares-Schanoski, Murilo Sena Amaral, Kayque Alves Telles-Silva, Vanessa van der Linden, Helio van der Linden, João Ricardo Mendes de Oliveira, Nivia Maria Rodrigues Arrais, Joanna Goes Castro Meira, Ana Jovina Barreto Bispo, Esper Abrão Cavalheiro, and Robert Andreata-Santos, which were incorrectly given as Luiz Carlos de Caires Jr., UiráSouto Melo, Bruno Silva Henrique Araujo, Alessandra Soares Schanoski, MuriloSena Amaral, Kayque Telles Alves Silva, Vanessa Van der Linden, Helio Van der Linden, João Mendes Ricardo de Oliveira, Nivia Rodrigues Maria Arrais, Joanna Castro Goes Meira, Ana JovinaBarreto Bispo, EsperAbrão Cavalheiro, and Robert Andreata Santos. Furthermore, in both the PDF and HTML versions of the Article, the top panel of Fig. 3e was incorrectly labeled '10608-1' and should have been '10608-4', and financial support from CAPES and DECIT-MS was inadvertently omitted from the Acknowledgements section. These errors have now been corrected in both the PDF and HTML versions of the Article.

  14. Theory of coherent van der Waals matter.

    PubMed

    Kulić, Igor M; Kulić, Miodrag L

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R(-6)), in contrast to the usually weak vdW three-body effects (∝R(-9)). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  15. Theory of coherent van der Waals matter

    NASA Astrophysics Data System (ADS)

    Kulić, Igor M.; Kulić, Miodrag L.

    2014-12-01

    We explain in depth the previously proposed theory of the coherent van der Waals (cvdW) interaction, the counterpart of van der Waals (vdW) force, emerging in spatially coherently fluctuating electromagnetic fields. We show that cvdW driven matter is dominated by many-body interactions, which are significantly stronger than those found in standard van der Waals (vdW) systems. Remarkably, the leading two- and three-body interactions are of the same order with respect to the distance (∝R-6) , in contrast to the usually weak vdW three-body effects (∝R-9 ). From a microscopic theory we show that the anisotropic cvdW many-body interactions drive the formation of low-dimensional structures such as chains, membranes, and vesicles with very unusual, nonlocal properties. In particular, cvdW chains display a logarithmically growing stiffness with the chain length, while cvdW membranes have a bending modulus growing linearly with their size. We argue that the cvdW anisotropic many-body forces cause local cohesion but also a negative effective "surface tension." We conclude by deriving the equation of state for cvdW materials and propose experiments to test the theory, in particular the unusual three-body nature of cvdW.

  16. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE PAGES

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan -Sheng; ...

    2015-12-10

    Here, the recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integrationmore » with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS 2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS 2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS 2 can function as an acceptor in hybrid solar cells.« less

  17. Hybrid, Gate-Tunable, van der Waals p–n Heterojunctions from Pentacene and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jariwala, Deep; Howell, Sarah L.; Chen, Kan -Sheng

    Here, the recent emergence of a wide variety of two-dimensional (2D) materials has created new opportunities for device concepts and applications. In particular, the availability of semiconducting transition metal dichalcogenides, in addition to semimetallic graphene and insulating boron nitride, has enabled the fabrication of “all 2D” van der Waals heterostructure devices. Furthermore, the concept of van der Waals heterostructures has the potential to be significantly broadened beyond layered solids. For example, molecular and polymeric organic solids, whose surface atoms possess saturated bonds, are also known to interact via van der Waals forces and thus offer an alternative for scalable integrationmore » with 2D materials. Here, we demonstrate the integration of an organic small molecule p-type semiconductor, pentacene, with a 2D n-type semiconductor, MoS 2. The resulting p–n heterojunction is gate-tunable and shows asymmetric control over the antiambipolar transfer characteristic. In addition, the pentacene/MoS 2 heterojunction exhibits a photovoltaic effect attributable to type II band alignment, which suggests that MoS 2 can function as an acceptor in hybrid solar cells.« less

  18. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yin, Lei; Wang, Zhenxing; Xu, Kai; Wang, Fengmei; Shifa, Tofik Ahmed; Huang, Yun; Wen, Yao; Jiang, Chao; He, Jun

    2016-11-01

    MoTe2 is an emerging two-dimensional layered material showing ambipolar/p-type conductivity, which makes it an important supplement to n-type two-dimensional layered material like MoS2. However, the properties based on its van der Waals heterostructures have been rarely studied. Here, taking advantage of the strong Fermi level tunability of monolayer graphene (G) and the feature of van der Waals interfaces that is free from Fermi level pinning effect, we fabricate G/MoTe2/G van der Waals heterostructures and systematically study the electronic and optoelectronic properties. We demonstrate the G/MoTe2/G FETs with low Schottky barriers for both holes (55.09 meV) and electrons (122.37 meV). Moreover, the G/MoTe2/G phototransistors show high photoresponse performances with on/off ratio, responsivity, and detectivity of ˜105, 87 A/W, and 1012 Jones, respectively. Finally, we find the response time of the phototransistors is effectively tunable and a mechanism therein is proposed to explain our observation. This work provides an alternative choice of contact for high-performance devices based on p-type and ambipolar two-dimensional layered materials.

  19. van der Waals forces in density functional theory: a review of the vdW-DF method.

    PubMed

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  20. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  1. Collisional excitation of NH(X{sup 3}Σ{sup −}) by Ne: Potential energy surface, scattering calculations, and comparison with experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhafs, Nezha; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    2015-11-14

    We present a new three-dimensional potential energy surface (PES) for the NH(X{sup 3}Σ{sup −})–Ne van der Waals system, which explicitly takes into account the NH vibrational motion. Ab initio calculations of the NH–Ne PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent quadruple zeta (aug-cc-pVQZ) basis set was employed. Mid-bond functions were also included in order to improve the accuracy in the van der Waals well. Using this new PES, we have studied the collisional excitation of NH(X{sup 3}Σ{sup −}) by Ne. Close-coupling calculations ofmore » the collisional excitation cross sections of the fine-structure levels of NH by Ne are performed for energies up to 3000 cm{sup −1}, which yield, after thermal average, rate coefficients up to 350 K. The propensity rules between fine-structure levels are reported, and it is found that F-conserving cross sections are larger than F-changing cross sections even if the propensity rules are not as strong as for the NH–He system. The calculated rate coefficients are compared with available experimental measurements at room temperature and a fairly good agreement is found between experimental and theoretical data, confirming the good quality of the scattering calculations and also the accuracy of the potential energy surface used in this work.« less

  2. The Average IQ of Sub-Saharan Africans: Comments on Wicherts, Dolan, and van der Maas

    ERIC Educational Resources Information Center

    Lynn, Richard; Meisenberg, Gerhard

    2010-01-01

    Wicherts, Dolan, and van der Maas (2009) contend that the average IQ of sub-Saharan Africans is about 80. A critical evaluation of the studies presented by WDM shows that many of these are based on unrepresentative elite samples. We show that studies of 29 acceptably representative samples on tests other than the Progressive Matrices give a…

  3. Economic Aspects of a Therapy and Support Service for People with Long-Term Stroke and Aphasia

    ERIC Educational Resources Information Center

    van der Gaag, Anna; Brooks, Richard

    2008-01-01

    Background: This paper considers some economic aspects of a therapy and support service for people with stroke and aphasia. This material was part of a broader evaluation of the service, which is reported elsewhere (van der Gaag et al. 2005, van der Gaag and Mowles 2005). Aims: The purpose of this part of the study was to investigate the…

  4. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  5. Predicting elastic properties of β-HMX from first-principles calculations.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; De, Suvranu

    2015-05-07

    We investigate the performance of van der Waals (vdW) functions in predicting the elastic constants of β cyclotetramethylene tetranitramine (HMX) energetic molecular crystals using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment-dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX when compared with experimental stress-strain data. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material.

  6. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    NASA Astrophysics Data System (ADS)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  7. Electrostatic contribution to the binding stability of protein-protein complexes.

    PubMed

    Dong, Feng; Zhou, Huan-Xiang

    2006-10-01

    To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

  8. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  9. Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    K, Ayishabi P.; Chatanathodi, Raghu

    2017-10-01

    We have studied the adsorption of benzene on three low index surfaces of platinum using plane-wave Density Functional Theory (DFT) calculations, taking into consideration van der Waals (vdW) interaction. Experimentally, it is known that benzene adsorbs at the bridge site on the (111) surface, but in case of (110) and (100), this is not known yet. Our calculations show that benzene preferably adsorbs on bridge position on Pt(111) surface, whereas on Pt(110) and Pt(100) surfaces, the hollow position is energetically more favoured. The structural and electronic modifications of molecule and the surfaces are also examined. In all cases, adsorption-induced distortions of adsorbate-substrate complex are found to be modest in character, but relatively maximum in case of the (110) facet. The molecule is bound most strongly to the (110) surface. Importantly, we find that adsorption at bridge and atop positions are energetically feasible on the (110) surface, with the canting of benzene ring at a small angle from the metal plane. We study changes in electronic structure and the net charge transfer upon adsorption of benzene on all three low index planes. Inclusion of vdW interactions is important for obtaining realistic adsorption strengths for benzene on various Pt facets.

  10. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  11. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.

    PubMed

    Paton, Robert S; Goodman, Jonathan M

    2009-04-01

    We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.

  12. Resonance dispersion interaction of alkali metal atoms in Rydberg states

    NASA Astrophysics Data System (ADS)

    Kamenski, A. A.; Mokhnenko, S. N.; Ovsyannikov, V. D.

    2017-06-01

    With the use of second-order perturbation theory in the long-range interatomic interaction for the degenerate states of two Rydberg atoms we have obtained a general formula for the dependence of atomic interaction energy on the interatomic distance R in the presence of the Förster resonance. Inside of the ‘Förster sphere’ (R < RF) this dependence transforms to the formula for electric dipole interaction energy ΔEd - d = C3/R3 and for R > RF it transforms to the formula for the van der Waals interaction energy ΔEVdW = -C6/R6. The van der Waals constant C6 is represented as an expansion in terms of irreducible components which define the dependence on the interatomic axis orientation relative to the quantisation axis of projections M of the total angular momentum J. The numerical values of the irreducible components of tensor C6 were calculated for rubidium atoms in the same Rydberg states |nlJM> with large quantum numbers n. We present the calculated resonance interaction energy of two rubidium atoms in the states |43D5/2M>, whose total energy exceeds by only 8 MHz the total energy of one of the atoms in the state |45P3/2M> and of the other in the state |41F7/2M>.

  13. Band Structure and Contact Resistance of Carbon Nanotubes Deformed by a Metal Contact.

    PubMed

    Hafizi, Roohollah; Tersoff, Jerry; Perebeinos, Vasili

    2017-11-17

    Capillary and van der Waals forces cause nanotubes to deform or even collapse under metal contacts. Using ab initio band structure calculations, we find that these deformations reduce the band gap by as much as 30%, while fully collapsed nanotubes become metallic. Moreover, degeneracy lifting due to the broken axial symmetry, and wave functions mismatch between the fully collapsed and the round portions of a CNT, lead to a 3 times higher contact resistance. The latter we demonstrate by contact resistance calculations within the tight-binding approach.

  14. A study on the anisole-water complex by molecular beam-electronic spectroscopy and molecular mechanics calculations.

    PubMed

    Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W

    2004-03-22

    An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics

  15. Interdroplet attractive forces in AOT water-in-oil microemulsions formed in subcritical and supercritical solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, J.M.; Fulton, J.L.; Smith, R.D.

    1990-03-08

    The van der Waals attractive interactions between aqueous droplets in water-in-oil type microemulsions have been investigated for a range of continuous-phase solvents including the alkanes from methane to isooctane and the noble gases, krypton and xenon. Hamaker constants for water droplets with surfactant shells of the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in subcritical and supercritical solvents were calculated by using Lifshitz theory and the resulting interaction potential calculations qualitatively account for many features of the phase behavior of these systems.

  16. Generalization of the van der Pauw Method: Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.

  17. van der Waals forces in density functional theory: a review of the vdW-DF method

    DOE PAGES

    Berland, Kristian; Cooper, Valentino R.; Lee, Kyuho; ...

    2015-05-15

    We review a density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology. The insights that led to the construction of the Rutgers–Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only formore » dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.« less

  18. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction betweenmore » 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.« less

  19. The Average IQ of Sub-Saharan Africans Assessed by the Progressive Matrices: A Reply to Wicherts, Dolan, Carlson & van der Maas

    ERIC Educational Resources Information Center

    Lynn, Richard

    2010-01-01

    Wicherts, Dolan, Carlson & van der Maas (WDCM) (2010) contend that the average IQ in sub-Saharan Africa is about 76 in relation to a British mean of 100 and sd of 15. This result is achieved by including many studies of unrepresentative elite samples. Studies of acceptably representative samples indicate a sub-Saharan Africa IQ of…

  20. Active Masks and Active Inhibition: A Comment on Lleras and Enns (2004) and on Verleger, Jaskowski, Aydemir, van der Lubbe, and Groen (2004)

    ERIC Educational Resources Information Center

    Schlaghecken, Friederike; Eimer, Martin

    2006-01-01

    Verleger, Jaskowski, Aydemir, van der Lubbe, and Groen (see record 2004-21166-002) and Lleras and Enns (see record 2004-21166-001) have argued that negative compatibility effects (NCEs) obtained with masked primes do not reflect self-inhibition processes in motor control. Instead, NCEs are assumed to reflect activation of the response opposite to…

  1. Thin Film Evaporation Model with Retarded Van Der Waals Interaction (Postprint)

    DTIC Science & Technology

    2013-11-01

    Waals interaction. The retarded van der Waals interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules...interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules for a given geometry. When combined, the governing...interaction force is the negative derivative with respect to distance of the interaction energy. The method due to Hamaker essentially sums all pair

  2. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    PubMed

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  3. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  4. Graded Interface Models for more accurate Determination of van der Waals-London Dispersion Interactions across Grain Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Benthem, Klaus; Tan, Guolong; French, Roger H

    2006-01-01

    Attractive van der Waals V London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for 5 and near- 13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analysed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The obtained results show that even in the presence ofmore » atomically structured grain boundary cores with widths of less than 1 nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals V London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals V London dispersion interactions scale significantly with local, i.e atomic length scale property variations.« less

  5. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  6. Fast Determination of the Element Excitation of an Active Phased Array Antenna

    DTIC Science & Technology

    1991-03-01

    elementenexcitatie te, bepalen: de amplitude en fase van het elektrische ven-e veld moeten gemeten warden in slechts I richting in het verre veld van de ...Page 3 rapport no FEL-91-BO38 titel Een snelle bepaling van de excitatie van de elenienten van cen actieve phased array antenne auteur(s) I. J.G. van...van der Spek Onderzoek uItgevoerd door Ir. J.G. van Hezewijk SAMENVATIING (ONGERUBRICEERD) Het verre veld stralingsdiagram van een actieve phased array

  7. High-level ab initio studies of NO(X2Π)-O2(X3Σg -) van der Waals complexes in quartet states

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2018-05-01

    Geometry optimisations were performed on nine different structures of NO(X2Π)-O2(X3Σg-) van der Waals complexes in their quartet states, using the explicitly correlated RCCSD(T)-F12b method with basis sets up to the cc-pVQZ-F12 level. For the most stable configurations, counterpoise-corrected optimisations as well as extrapolations to the complete basis set (CBS) were performed. The X structure in the 4A‧ state was found to be most stable, with a CBS binding energy of -157 cm-1. The slipped tilted structures with N closer to O2 (Slipt-N), as well as the slipped parallel structure with O of NO closer to O2 (Slipp-O) in 4A″ states have binding energies of about -130 cm-1. C2v and linear complexes are less stable. According to calculated harmonic frequencies, the X isomer is bound. Isotropic hyperfine coupling constants of the complex are compared with those of the monomers.

  8. Microscopic Description of Thermodynamics of Lipid Membrane at Liquid-Gel Phase Transition

    NASA Astrophysics Data System (ADS)

    Kheyfets, B.; Galimzyanov, T.; Mukhin, S.

    2018-05-01

    A microscopic model of the lipid membrane is constructed that provides analytically tractable description of the physical mechanism of the first order liquid-gel phase transition. We demonstrate that liquid-gel phase transition is cooperative effect of the three major interactions: inter-lipid van der Waals attraction, steric repulsion and hydrophobic tension. The model explicitly shows that temperature-dependent inter-lipid steric repulsion switches the system from liquid to gel phase when the temperature decreases. The switching manifests itself in the increase of lateral compressibility of the lipids as the temperature decreases, making phase with smaller area more preferable below the transition temperature. The model gives qualitatively correct picture of abrupt change at transition temperature of the area per lipid, membrane thickness and volume per hydrocarbon group in the lipid chains. The calculated dependence of phase transition temperature on lipid chain length is in quantitative agreement with experimental data. Steric repulsion between the lipid molecules is shown to be the only driver of the phase transition, as van der Waals attraction and hydrophobic tension are weakly temperature dependent.

  9. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    PubMed Central

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-01-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device. PMID:28387363

  10. van der Waals torque and force between anisotropic topological insulator slabs

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui

    2018-01-01

    We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically anisotropic topological insulator (TI) slabs separated by a vacuum gap in the nonretardation regime, where the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength, the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if the anisotropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for angular differences that are integer (half-integer) multiples of π . Our third finding is that the vdW torque for TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides an instance in which the vector potential appears in a calculation of the vdW interaction for which the limit is nonretarded or static.

  11. High-Performance Solid-State Thermionic Energy Conversion Based on 2D van der Waals Heterostructures: A First-Principles Study.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2018-06-18

    Two-dimensional (2D) van der Waals heterostructures (vdWHs) have shown multiple functionalities with great potential in electronics and photovoltaics. Here, we show their potential for solid-state thermionic energy conversion and demonstrate a designing strategy towards high-performance devices. We propose two promising thermionic devices, namely, the p-type Pt-G-WSe 2 -G-Pt and n-type Sc-WSe 2 -MoSe 2 -WSe 2 -Sc. We characterize the thermionic energy conversion performance of the latter using first-principles GW calculations combined with real space Green's function (GF) formalism. The optimal barrier height and high thermal resistance lead to an excellent performance. The proposed device is found to have a room temperature equivalent figure of merit of 1.2 which increases to 3 above 600 K. A high performance with cooling efficiency over 30% of the Carnot efficiency above 450 K is achieved. Our designing and characterization method can be used to pursue other potential thermionic devices based on vdWHs.

  12. Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)

    NASA Astrophysics Data System (ADS)

    Lüpke, Felix; Just, Sven; Bihlmayer, Gustav; Lanius, Martin; Luysberg, Martina; Doležal, Jiří; Neumann, Elmar; Cherepanov, Vasily; Ošt'ádal, Ivan; Mussler, Gregor; Grützmacher, Detlev; Voigtländer, Bert

    2017-07-01

    We present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1 ×1 ) surface, we find Te to form a Te/Si(111)-(1 ×1 ) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1 ×1 ) interface conductivity of σ2D Te=2.6 (5 ) ×10-7S /□ , which is small compared to the typical conductivity of topological surface states.

  13. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    PubMed

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  14. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces

    PubMed Central

    2014-01-01

    van der Waals (vdW) forces play a fundamental role in the structure and behavior of diverse systems. Because of development of functionals that include nonlocal correlation, it is possible to study the effects of vdW interactions in systems of industrial and tribological interest. Here we simulated within the framework of density functional theory (DFT) the adsorption of isooctane (2,2,4-trimethylpentane) and ethanol on an Fe(100) surface, employing various exchange–correlation functionals to take vdW forces into account. In particular, this paper discusses the effect of vdW forces on the magnitude of adsorption energies, equilibrium geometries, and their role in the binding mechanism. According to our calculations, vdW interactions increase the adsorption energies and reduce the equilibrium distances. Nevertheless, they do not influence the spatial configuration of the adsorbed molecules. Their effect on the electronic density is a nonisotropic, delocalized accumulation of charge between the molecule and the slab. In conclusion, vdW forces are essential for the adsorption of isooctane and ethanol on a bcc Fe(100) surface. PMID:25126156

  15. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    DOE PAGES

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-20

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less

  16. Resistive sensitivity functions for van der Pauw astroid and rounded crosses and cloverleafs

    NASA Astrophysics Data System (ADS)

    Koon, Daniel; Hansen, Ole

    2014-03-01

    We have calculated the sensitivity of van der Pauw resistances to local resistive variations for circular, square and astroid discs of infinitesimal thickness, as well as for the families of rounded crosses and cloverleafs, as a function of specimen parameters, using the direct formulas of our recent paper (Koon et al. 2013 J. Appl. Phys.114 163710) applied to ``reciprocally dual geometries'' (swapped Dirichlet and Neumann boundary conditions) described by Mareš et al.(2012 Meas. Sci. Technol. 23 045004). These results show that (a) the product of any such sensitivity function times differential area, and thus (b) the ratio of any two sensitivities, is invariant under conformal mapping, allowing for the pointwise determination of the conformal mapping function. The family of rounded crosses, which is bounded in parameter space by the square, the astroid and an ``infinitesimally thin'' cross, seems to represent the best geometry for focusing transport measurements on the center of the specimen while minimizing errors due to edge- or contact-effects. Made possible by an SLU Faculty research grant.

  17. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  18. Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.

    PubMed

    Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu

    2017-10-06

    A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.

  19. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Comment on "Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers"

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Martinazzo, Rocco

    2018-03-01

    It is shown that the theoretical prediction of a transient magnetization in bilayer and multilayer graphene (M. Moaied et al., Phys. Rev. B 91, 155419 (2015), 10.1103/PhysRevB.91.155419) relies on an incorrect physical scenario for adsorption, namely, one in which H atoms adsorb barrierless on graphitic substrates and form a random adsorption pattern of monomers. Rather, according to experimental evidence, H atom sticking is an activated process, and adsorption is under kinetic control, largely ruled by a preferential sticking mechanism that leads to stable, nonmagnetic dimers at all but the smallest coverages (<0.004 ). Theory and experiments are reconciled by reconsidering the hydrogen atom adsorption energetics with the help of van der Waals-inclusive density functional calculations that properly account for the basis set superposition error. It is shown that today van der Waals-density functional theory predicts a shallow physisorption well that nicely agrees with available experimental data and suggests that the hydrogen atom adsorption barrier in graphene is 180 meV high, within ˜5 meV accuracy.

  1. Sensing properties of pristine boron nitride nanostructures towards alkaloids: A first principles dispersion corrected study

    NASA Astrophysics Data System (ADS)

    Roondhe, Basant; Dabhi, Shweta D.; Jha, Prafulla K.

    2018-05-01

    To understand the underlying physics behind the interaction of biomolecules with the nanomaterials to use them practically as bio-nanomaterials is very crucial. A first principles calculation under the frame work of density functional theory is executed to investigate the electronic structures and binding properties of alkaloids (Caffeine and Nicotine) over single walled boron nitride nanotube (BNNT) and boron nitride nanoribbon (BNNR) to determine their suitability towards filtration or sensing of these molecules. We have also used GGA-PBE scheme with the inclusion of Van der Waals (vdW) interaction based on DFT-D2. Increase in the accuracy by incorporating the dispersion correction in the calculation is observed for the long range Van der Waals interaction. Binding energy range of BNNT and BNNR with both alkaloids have been found to be -0.35 to -0.76 eV and -0.45 to -0.91 eV respectively which together with the binding distance shows physisorption binding of these molecules to the both nanostructures. The transfer of charge between the BN nanostructures and the adsorbed molecule has also been analysed by using Lowdin charge analysis. The sensitivity of both nanostructures BNNT and BNNR towards both alkaloids is observed through electronic structure calculations, density of states and quantum conductance. The binding of both alkaloids with BNNR is stronger. The analysis of the calculated properties suggests absence of covalent interaction between the considered species (BNNT/BNNR) and alkaloids. The study may be useful in designing the boron nitride nanostructure based sensing device for alkaloids.

  2. Cluster-collision frequency. I. The long-range intercluster potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadon, A.S.; Marlow, W.H.

    1991-05-15

    In recent years, gas-borne atomic and molecular clusters have emerged as subjects of basic physical and chemical interest and are gaining recognition for their importance in numerous applications. To calculate the evolution of the mass distribution of these clusters, their thermal collision rates are required. For computing these collision rates, the long-range interaction energy between clusters is required and is the subject of this paper. Utilizing a formulation of the iterated van der Waals interaction over discrete molecules that can be shown to converge with increasing numbers of atoms to the Lifshitz--van der Waals interaction for condensed matter, we calculatemore » the interaction energy as a function of center-of-mass separation for identical pairs of clusters of 13, 33, and 55 molecules of carbon tetrachloride in icosahedral and dodecahedral configurations. Two different relative orientations are chosen for each pair of clusters, and the energies are compared with energies calculated from the standard formula for continuum matter derived by summing over pair interactions with the Hamaker constant calculated according to Lifshitz theory. The results of these calculations give long-range interaction energies that assume typical adhesion-type values at cluster contact, unlike the unbounded results for the Lifshitz-Hamaker model. The relative difference between the discrete molecular energies and the continuum energies vanishes for {ital r}{sup *}{approx}2, where {ital r}{sup *} is the center-of-mass separation distance in units of cluster diameter. For larger separations, the relative difference changes sign, showing a value of approximately 15%, with the difference diminishing for increasing-sized clusters.« less

  3. Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems

    NASA Astrophysics Data System (ADS)

    Demina, Maria V.

    2018-05-01

    The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2 is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-van der Pol system are constructed.

  4. Accurate van der Waals coefficients from density functional theory

    PubMed Central

    Tao, Jianmin; Perdew, John P.; Ruzsinszky, Adrienn

    2012-01-01

    The van der Waals interaction is a weak, long-range correlation, arising from quantum electronic charge fluctuations. This interaction affects many properties of materials. A simple and yet accurate estimate of this effect will facilitate computer simulation of complex molecular materials and drug design. Here we develop a fast approach for accurate evaluation of dynamic multipole polarizabilities and van der Waals (vdW) coefficients of all orders from the electron density and static multipole polarizabilities of each atom or other spherical object, without empirical fitting. Our dynamic polarizabilities (dipole, quadrupole, octupole, etc.) are exact in the zero- and high-frequency limits, and exact at all frequencies for a metallic sphere of uniform density. Our theory predicts dynamic multipole polarizabilities in excellent agreement with more expensive many-body methods, and yields therefrom vdW coefficients C6, C8, C10 for atom pairs with a mean absolute relative error of only 3%. PMID:22205765

  5. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    PubMed Central

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  6. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.

    PubMed

    Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji

    2013-01-16

    Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.

  7. Polynomial-interpolation algorithm for van der Pauw Hall measurement in a metal hydride film

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Ares, J. R.; Leardini, F.; Fernández, J. F.; Ferrer, I. J.

    2008-10-01

    We apply a four-term polynomial-interpolation extension of the van der Pauw Hall measurement technique to a 330 nm Mg-Pd bilayer during both absorption and desorption of hydrogen at room temperature. We show that standard versions of the van der Pauw DC Hall measurement technique produce an error of over 100% due to a drifting offset signal and can lead to unphysical interpretations of the physical processes occurring in this film. The four-term technique effectively removes this source of error, even when the offset signal is drifting by an amount larger than the Hall signal in the time interval between successive measurements. This technique can be used to increase the resolution of transport studies of any material in which the resistivity is rapidly changing, particularly when the material is changing from metallic to insulating behavior.

  8. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.

  9. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures.

    PubMed

    Nagler, Philipp; Ballottin, Mariana V; Mitioglu, Anatolie A; Mooshammer, Fabian; Paradiso, Nicola; Strunk, Christoph; Huber, Rupert; Chernikov, Alexey; Christianen, Peter C M; Schüller, Christian; Korn, Tobias

    2017-11-16

    Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

  10. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  11. Spin-Flavor van der Waals Forces and NN interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computedmore » either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.« less

  12. Terahertz vibration-rotation-tunneling (VRT) spectroscopy of the d6-water trimer: Complete characterization of the 2.94 THz torsional band ( kn = ±2 1 ← 0 0)

    NASA Astrophysics Data System (ADS)

    Han, Jia-xiang; Takahashi, Lynelle K.; Lin, Wei; Lee, Eddy; Keutsch, Frank N.; Saykally, Richard J.

    2006-06-01

    We report the measurement and analysis of the complete perpendicular kn = ±2 1 ← 0 0 (D 2O) 3 torsional band (origin 2940.9376(3) GHz), the upper state of which is the highest-energy (98.09912 cm -1) torsional state yet observed. All known torsional transitions were included in a new global analysis of the six observed torsional bands, using the effective Hamiltonians derived by van der Avoird et al. [M. R. Viant, M. G. Brown, J. D. Cruzan, R. J. Saykally, M. Geleijns, A. van der Avoird, J. Chem. Phys. 110 (1999) 4369; A. van der Avoird, E. H. T. Olthof, P. E. S. Wormer, J. Chem. Phys. 105 (1996) 8034]. The experimental results will facilitate the descriptions of three-body interactions in water intermolecular potential energy surfaces (IPSs).

  13. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  14. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less

  15. The potential for fast van der Waals computations for layered materials using a Lifshitz model

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Pellouchoud, Lenson A.; Reed, Evan J.

    2017-06-01

    Computation of the van der Waals (vdW) interactions plays a crucial role in the study of layered materials. The adiabatic-connection fluctuation-dissipation theorem within random phase approximation (ACFDT-RPA) has been empirically reported to be the most accurate of commonly used methods, but it is limited to small systems due to its computational complexity. Without a computationally tractable vdW correction, fictitious strains are often introduced in the study of multilayer heterostructures, which, we find, can change the vdW binding energy by as much as 15%. In this work, we employed for the first time a defined Lifshitz model to provide the vdW potentials for a spectrum of layered materials orders of magnitude faster than the ACFDT-RPA for representative layered material structures. We find that a suitably defined Lifshitz model gives the correlation component of the binding energy to within 8-20% of the ACFDT-RPA calculations for a variety of layered heterostructures. Using this fast Lifshitz model, we studied the vdW binding properties of 210 three-layered heterostructures. Our results demonstrate that the three-body vdW effects are generally small (10% of the binding energy) in layered materials for most cases, and that non-negligible second-nearest neighbor layer interaction and three-body effects are observed for only those cases in which the middle layer is atomically thin (e.g. BN or graphene). We find that there is potential for particular combinations of stacked layers to exhibit repulsive three-body van der Waals effects, although these effects are likely to be much smaller than two-body effects.

  16. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  17. The nature of the interlayer interaction in bulk and few-layer phosphorus

    DOE PAGES

    Shulenburger, Luke; Baczewski, A. D.; Zhu, Z.; ...

    2015-11-02

    Sensitive dependence of the electronic structure on the number of layers in few-layer phosphorene raises a question about the true nature of the interlayer interaction in so-called van der Waals (vdW) solids . We performed quantum Monte Carlo calculations and found that the interlayer interaction in bulk black phosphorus and related few-layer phosphorene is associated with a significant charge redistribution that is incompatible with purely dispersive forces and not captured by density functional theory calculations with different vdW corrected functionals. Lastly, these findings confirm the necessity of more sophisticated treatment of nonlocal electron correlation in total energy calculations.

  18. The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus.

    PubMed

    Shulenburger, L; Baczewski, A D; Zhu, Z; Guan, J; Tománek, D

    2015-12-09

    Sensitive dependence of the electronic structure on the number of layers in few-layer phosphorene raises a question about the true nature of the interlayer interaction in so-called "van der Waals (vdW) solids". We performed quantum Monte Carlo calculations and found that the interlayer interaction in bulk black phosphorus and related few-layer phosphorene is associated with a significant charge redistribution that is incompatible with purely dispersive forces and not captured by density functional theory calculations with different vdW corrected functionals. These findings confirm the necessity of more sophisticated treatment of nonlocal electron correlation in total energy calculations.

  19. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2014-06-14

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3{sup ¯}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to bemore » the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3{sup ¯} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.« less

  20. Vygotsky's Fragile Genius in Time and Place: Essay Review of "Understanding Vygotsky: A Quest for Synthesis" by Rene van der Veer and Jaan Valsiner.

    ERIC Educational Resources Information Center

    Youniss, James

    1994-01-01

    Briefly summarizes Vygotsky's life, the appeal and subsequent abandonment of his ideas in the 1960s, and renewal of interest in the 1970s and 1980s (often at the expense of Piaget). Praises van der Veer and Valsinger's book as a realistic picture of Vygotsky's background, life, and work, of the scientific and political context in Russia and of his…

  1. A Van der Waals-like theory of plasma double layers

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, V. A.

    1989-01-01

    A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.

  2. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    PubMed

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  3. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  4. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    NASA Astrophysics Data System (ADS)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  5. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  6. Intermolecular configurations dominated by quadrupole-quadrupole electrostatic interactions: explicit correlation treatment of the five-dimensional potential energy surface and infrared spectra for the CO-N2 complex.

    PubMed

    Liu, Jing-Min; Zhai, Yu; Zhang, Xiao-Long; Li, Hui

    2018-01-17

    A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N 2 which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V MLR ). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm -1 and 0.129 cm -1 for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N 2 -CO complex as well as the calculated energy levels for para-N 2 -CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm -1 . The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm -1 for ortho-N 2 -CO which is in excellent agreement with the experimental value of -0.739 cm -1 . The agreement with experimental values validates the high quality of the PESs and enhances our confidence to explain the observed mystery lines around 2163 cm -1 .

  7. [Leg ulcers of venous origin and their development around the year 1955].

    PubMed

    Marmasse, J

    1984-01-01

    "Eventual sclerosis of varicose veins, elastic support, methodical ambulation": the teachings of R. Tournay remains the golden rule for healing leg ulcers of venous origin. Their frequent relapse has been perceptibly reduced by the therapeutic developments of the "Sixties", and notably the phlebosurgical routine collaboration in many cases of varicose ulcers Conference on Stripping, Paris, 1960); and the use of stockings calculated scientifically to benefit healed phlebitic ulcers (Van der Molen, Passien).

  8. [Study of beta-turns in globular proteins].

    PubMed

    Amirova, S R; Milchevskiĭ, Iu V; Filatov, I V; Esipova, N G; Tumanian, V G

    2005-01-01

    The formation of beta-turns in globular proteins has been studied by the method of molecular mechanics. Statistical method of discriminant analysis was applied to calculate energy components and sequences of oligopeptide segments, and after this prediction of I type beta-turns has been drawn. The accuracy of true positive prediction is 65%. Components of conformational energy considerably affecting beta-turn formation were delineated. There are torsional energy, energy of hydrogen bonds, and van der Waals energy.

  9. On the Difference Between Additive and Subtractive QM/MM Calculations

    PubMed Central

    Cao, Lili; Ryde, Ulf

    2018-01-01

    The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e., the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic, and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended. PMID:29666794

  10. Enroute NASA/FAA low-frequency propfan test in Alabama (October 1987): A versatile atmospheric aircraft long-range noise prediction system

    NASA Astrophysics Data System (ADS)

    Tsouka, Despina G.

    In order to obtain a flight-to-static noise prediction of an advanced Turboprop (propfan) Aircraft, FAA went on an elaboration of the data that were measured during a full scale measuring program that was conducted by NASA and FAA/DOT/TSC on October 1987 in Alabama. The elaboration process was based on aircraft simulation to a point source, on an atmospheric two dimensional noise model, on the American National Standard algorithm for the calculation of atmospheric absortion, and on the DOT/TSC convention for ground reflection effects. Using the data of the Alabama measurements, the present paper examines the development of a generalized, flexible and more accurate process for the evaluation of the static and flight low-frequency long-range noise data. This paper also examines the applicability of the assumptions made by the Integrated Noise Model about linear propagation, of the three dimensional Hamiltonian Rays Tracing model and of the Weyl-Van der Pol model. The model proposes some assumptions in order to increase the calculations flexibility without significant loss of accuracy. In addition, it proposes the usage of the three dimensional Hamiltonian Rays Tracing model and the Weyl-Van der Pol model in order to increase the accuracy and to ensure the generalization of noise propagation prediction over grounds with variable impedance.

  11. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. On the difference between additive and subtractive QM/MM calculations

    NASA Astrophysics Data System (ADS)

    Cao, Lili; Ryde, Ulf

    2018-04-01

    The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e. the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended.

  13. Economic aspects of a therapy and support service for people with long-term stroke and aphasia.

    PubMed

    van der Gaag, Anna; Brooks, Richard

    2008-01-01

    This paper considers some economic aspects of a therapy and support service for people with stroke and aphasia. This material was part of a broader evaluation of the service, which is reported elsewhere (van der Gaag et al. 2005, van der Gaag and Mowles 2005). The purpose of this part of the study was to investigate the feasibility of undertaking economic appraisal in a voluntary sector service providing therapy for people with aphasia and their families. The costs of delivering therapy and support services were calculated. These costs were compared with the costs of equivalent services in the National Health Service (NHS). The EQ-5D health-related quality of life instrument was used to calculate quality-adjusted life years (QALYs). The cost of delivering therapy was lower than expected for a customized service of this nature. The study generated cost data for delivering therapy services, allowing some comparisons to be made with equivalent services in NHS settings. QALY data were generated for a sample of 25 clients on one of the programmes. The economics of speech and language therapy service delivery have received scant attention in the published literature. The paper argues that decision-making about methods of service delivery can be aided by the explicit consideration of the costs and consequences of different programmes.

  14. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  15. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  16. van der Waals-type forces in spontaneously broken supersymmetries

    NASA Astrophysics Data System (ADS)

    Radescu, E. E.

    1983-03-01

    In spontaneously broken rigid supersymmetry, Goldstone-fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low-energy theorem. The resulting van der Waals-type potential is shown to be V(r)=-Mmπ-3F-4r-7+O(r-8), where M and m are the masses of the interacting bodies while F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local symmetry is briefly discussed.

  17. Grippers Based on Opposing Van Der Waals Adhesive Pads

    NASA Technical Reports Server (NTRS)

    Parness, Aaron (Inventor); Kennedy, Brett A. (Inventor); Heverly, Matthew C (Inventor); Cutkosky, Mark R. (Inventor); Hawkes, Elliot Wright (Inventor)

    2016-01-01

    Novel gripping structures based on van der Waals adhesive forces are disclosed. Pads covered with fibers can be activated in pairs by opposite forces, thereby enabling control of the adhesive force in an ON or OFF state. Pads can be used in groups, each comprising a group of opposite pads. The adhesive structures enable anchoring forces that can resist adverse forces from different directions. The adhesive structures can be used to enable the operation of robots on surfaces of space vehicles.

  18. Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy.

    PubMed

    Zhao, Yinghe; Zhou, Qionghua; Li, Qiang; Yao, Xiaojing; Wang, Jinlan

    2017-02-01

    An effective passivation approach to protect black phosphorus (BP) from degradation based on multi-scale simulations is proposed. The self-assembly of perylene-3,4,9,10-tetracarboxylic dianhydride monolayers via van der Waals epitaxy on BP does not break the original electronic properties of BP. The passivation layer thickness is only 2 nm. This study opens up a new pathway toward fine passivation of BP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Existence of quasi-periodic solutions of fast excited van der Pol-Mathieu-Duffing equation

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Li, Xuemei

    2015-12-01

    The van der Pol-Mathieu-Duffing equation x ̈ + ( Ω0 2 + h 1 cos Ω 1 t + h 2 cos Ω 2 t ) x - ( α - β x 2 ) x ˙ - h 3 x 3 = h 4 Ω3 2 cos x cos Ω 3 t is considered in this paper, where α, β, h1, h2, h3, h4, Ω1, Ω2 are small parameters, α, β > 0, the frequency Ω3 is large compared to Ω1 and Ω2, the above parameters are real. For ∀α, β > 0, we use KAM (Kolmogorov-Arnold-Moser) theory to prove that the van der Pol-Mathieu-Duffing equation possesses quasi-periodic solutions for most of the parameters Ω0, Ω1, Ω2, Ω3, it verifies some phenomenon of Fahsi and Belhaq [Commun. Nonlinear Sci. 14, 244-253 (2009)] and can be regarded as a extension of Abouhazim et al. [Nonlinear Dyn. 39, 395-409 (2005)].

  20. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    NASA Astrophysics Data System (ADS)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  1. van der Waals three-body force shell model (VTSM) for the lattice dynamical studies of thallous bromide

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarvesh K.; Pandey, L. K.; Shukla, Lal Ji; Upadhyaya, K. S.

    2009-12-01

    The van der Waals three-body force shell model (VTSM) has been developed by modifying the three-body force shell model (TSM) for the lattice dynamics of ionic crystals with cesium chloride (CsCl) structure. This new model incorporates van der Waals interactions along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of a rigid shell model (RSM). In the present paper, VTSM has been used to study the lattice dynamics of thallous bromide (TlBr), from which adequacy of VTSM has been established. A comparative study of the dynamical behaviour of TlBr has also been done between the present model and TSM, the model over which modification has been made to obtain the present model VTSM. Good agreement has been observed between the theoretical and experimental results, which give confidence that it is an appropriate model for the complete description of ionic crystals with CsCl structure.

  2. Franckeite as a naturally occurring van der Waals heterostructure

    PubMed Central

    Molina-Mendoza, Aday J.; Giovanelli, Emerson; Paz, Wendel S.; Niño, Miguel Angel; Island, Joshua O.; Evangeli, Charalambos; Aballe, Lucía; Foerster, Michael; van der Zant, Herre S. J.; Rubio-Bollinger, Gabino; Agraït, Nicolás; Palacios, J. J.; Pérez, Emilio M.; Castellanos-Gomez, Andres

    2017-01-01

    The fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the material's electronic properties and crystal structure, and explore applications for near-infrared photodetectors. PMID:28194037

  3. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki

    2017-12-01

    Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.

  4. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials.

    PubMed

    Frisenda, Riccardo; Navarro-Moratalla, Efrén; Gant, Patricia; Pérez De Lara, David; Jarillo-Herrero, Pablo; Gorbachev, Roman V; Castellanos-Gomez, Andres

    2018-01-02

    Designer heterostructures can now be assembled layer-by-layer with unmatched precision thanks to the recently developed deterministic placement methods to transfer two-dimensional (2D) materials. This possibility constitutes the birth of a very active research field on the so-called van der Waals heterostructures. Moreover, these deterministic placement methods also open the door to fabricate complex devices, which would be otherwise very difficult to achieve by conventional bottom-up nanofabrication approaches, and to fabricate fully-encapsulated devices with exquisite electronic properties. The integration of 2D materials with existing technologies such as photonic and superconducting waveguides and fiber optics is another exciting possibility. Here, we review the state-of-the-art of the deterministic placement methods, describing and comparing the different alternative methods available in the literature, and we illustrate their potential to fabricate van der Waals heterostructures, to integrate 2D materials into complex devices and to fabricate artificial bilayer structures where the layers present a user-defined rotational twisting angle.

  5. Evaluation of van der Waals density functionals for layered materials

    NASA Astrophysics Data System (ADS)

    Tawfik, Sherif Abdulkader; Gould, Tim; Stampfl, Catherine; Ford, Michael J.

    2018-03-01

    In 2012, Björkman et al. posed the question "Are we van der Waals ready?" [T. Björkman et al., J. Phys.: Condens. Matter 24, 424218 (2012), 10.1088/0953-8984/24/42/424218] about the ability of ab initio modeling to reproduce van der Waals (vdW) dispersion forces in layered materials. The answer at that time was no, however. Here we report on a new generation of vdW dispersion models and show that one, i.e., the fractionally ionic atom theory with many-body dispersions, offers close to quantitative predictions for layered structures. Furthermore, it does so from a qualitatively correct picture of dispersion forces. Other methods, such as D3 and optB88vdW, also work well, albeit with some exceptions. We thus argue that we are nearly vdW ready and that some modern dispersion methods are accurate enough to be used for nanomaterial prediction, albeit with some caution required.

  6. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  7. Strain-engineered diffusive atomic switching in two-dimensional crystals

    PubMed Central

    Kalikka, Janne; Zhou, Xilin; Dilcher, Eric; Wall, Simon; Li, Ju; Simpson, Robert E.

    2016-01-01

    Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3–GeTe van der Waals superlattice. The number of quintuple Sb2Te3 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb2Te3–GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways. PMID:27329563

  8. Domain Hierarchy and closed Loops (DHcL): a server for exploring hierarchy of protein domain structure

    PubMed Central

    Koczyk, Grzegorz; Berezovsky, Igor N.

    2008-01-01

    Domain hierarchy and closed loops (DHcL) (http://sitron.bccs.uib.no/dhcl/) is a web server that delineates energy hierarchy of protein domain structure and detects domains at different levels of this hierarchy. The server also identifies closed loops and van der Waals locks, which constitute a structural basis for the protein domain hierarchy. The DHcL can be a useful tool for an express analysis of protein structures and their alternative domain decompositions. The user submits a PDB identifier(s) or uploads a 3D protein structure in a PDB format. The results of the analysis are the location of domains at different levels of hierarchy, closed loops, van der Waals locks and their interactive visualization. The server maintains a regularly updated database of domains, closed loop and van der Waals locks for all X-ray structures in PDB. DHcL server is available at: http://sitron.bccs.uib.no/dhcl. PMID:18502776

  9. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    NASA Astrophysics Data System (ADS)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  10. Study of interaction in silica glass via model potential approach

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  11. Investigation for Molecular Attraction Impact Between Contacting Surfaces in Micro-Gears

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Li, Xialong; Zhao, Yanfang; Yang, Haiying; Wang, Shuting; Yang, Jianming

    2013-10-01

    The aim of this research work is to provide a systematic method to perform molecular attraction impact between contacting surfaces in micro-gear train. This method is established by integrating involute profile analysis and molecular dynamics simulation. A mathematical computation of micro-gear involute is presented based on geometrical properties, Taylor expression and Hamaker assumption. In the meantime, Morse potential function and the cut-off radius are introduced with a molecular dynamics simulation. So a hybrid computational method for the Van Der Waals force between the contacting faces in micro-gear train is developed. An example is illustrated to show the performance of this method. The results show that the change of Van Der Waals force in micro-gear train has a nonlinear characteristic with parameters change such as the modulus of the gear and the tooth number of gear etc. The procedure implies a potential feasibility that we can control the Van Der Waals force by adjusting the manufacturing parameters for gear train design.

  12. Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality

    PubMed Central

    Patra, Abhirup; Bates, Jefferson E.; Sun, Jianwei; Perdew, John P.

    2017-01-01

    We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov–Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew–Burke–Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn–Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment. PMID:29042509

  13. A Diverging View of Role Modeling in Medical Education

    ERIC Educational Resources Information Center

    Sandhu, Gurjit; Rich, Jessica V.; Magas, Christopher; Walker, G. Ross

    2015-01-01

    Research in the area of role modeling has primarily focused on the qualities and attributes of exceptional role models, and less attention has been given to the act of role modeling itself (Elzubeir & Rizk, 2001; Jochemsen-van der Leeuw, van Dijk, van Etten-Jamaludin, & Wieringa-de Waard, 2013; Wright, 1996; Wright, Wong, & Newill,…

  14. On the stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kun; Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon; Chung, Kwok-wai, E-mail: makchung@cityu.edu.hk

    2013-11-15

    In this paper, we perform a stability analysis of a pair of van der Pol oscillators with delayed self-connection, position and velocity couplings. Bifurcation diagram of the damping, position and velocity coupling strengths is constructed, which gives insight into how stability boundary curves come into existence and how these curves evolve from small closed loops into open-ended curves. The van der Pol oscillator has been considered by many researchers as the nodes for various networks. It is inherently unstable at the zero equilibrium. Stability control of a network is always an important problem. Currently, the stabilization of the zero equilibriummore » of a pair of van der Pol oscillators can be achieved only for small damping strength by using delayed velocity coupling. An interesting question arises naturally: can the zero equilibrium be stabilized for an arbitrarily large value of the damping strength? We prove that it can be. In addition, a simple condition is given on how to choose the feedback parameters to achieve such goal. We further investigate how the in-phase mode or the out-of-phase mode of a periodic solution is related to the stability boundary curve that it emerges from a Hopf bifurcation. Analytical expression of a periodic solution is derived using an integration method. Some illustrative examples show that the theoretical prediction and numerical simulation are in good agreement.« less

  15. Direct measurement of the resistivity weighting function

    NASA Astrophysics Data System (ADS)

    Koon, D. W.; Chan, Winston K.

    1998-12-01

    We have directly measured the resistivity weighting function—the sensitivity of a four-wire resistance measurement to local variations in resistivity—for a square specimen of photoconducting material. This was achieved by optically perturbing the local resistivity of the specimen while measuring the effect of this perturbation on its four-wire resistance. The weighting function we measure for a square geometry with electrical leads at its corners agrees well with calculated results, displaying two symmetric regions of negative weighting which disappear when van der Pauw averaging is performed.

  16. Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction.

    PubMed

    Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk

    2018-06-25

    Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.

  17. FDE-vdW: A van der Waals inclusive subsystem density-functional theory.

    PubMed

    Kevorkyants, Ruslan; Eshuis, Henk; Pavanello, Michele

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation-dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  18. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Eshuis, Henk

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method.more » We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.« less

  19. Signatures of van der Waals binding: A coupling-constant scaling analysis

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  20. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene.

    PubMed

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H2, H2O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  1. Probabilistic analysis for identifying the driving force of protein folding

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yoshihiko; Yamamori, Yu; Matubayasi, Nobuyuki

    2018-03-01

    Toward identifying the driving force of protein folding, energetics was analyzed in water for Trp-cage (20 residues), protein G (56 residues), and ubiquitin (76 residues) at their native (folded) and heat-denatured (unfolded) states. All-atom molecular dynamics simulation was conducted, and the hydration effect was quantified by the solvation free energy. The free-energy calculation was done by employing the solution theory in the energy representation, and it was seen that the sum of the protein intramolecular (structural) energy and the solvation free energy is more favorable for a folded structure than for an unfolded one generated by heat. Probabilistic arguments were then developed to determine which of the electrostatic, van der Waals, and excluded-volume components of the interactions in the protein-water system governs the relative stabilities between the folded and unfolded structures. It was found that the electrostatic interaction does not correspond to the preference order of the two structures. The van der Waals and excluded-volume components were shown, on the other hand, to provide the right order of preference at probabilities of almost unity, and it is argued that a useful modeling of protein folding is possible on the basis of the excluded-volume effect.

  2. First-principles study of the binding energy between nanostructures and its scaling with system size

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Jiao, Yang; Mo, Yuxiang; Yang, Zeng-Hui; Zhu, Jian-Xin; Hyldgaard, Per; Perdew, John P.

    2018-04-01

    The equilibrium van der Waals binding energy is an important factor in the design of materials and devices. However, it presents great computational challenges for materials built up from nanostructures. Here we investigate the binding-energy scaling behavior from first-principles calculations. We show that the equilibrium binding energy per atom between identical nanostructures can scale up or down with nanostructure size, but can be parametrized for large N with an analytical formula (in meV/atom), Eb/N =a +b /N +c /N2+d /N3 , where N is the number of atoms in a nanostructure and a , b , c , and d are fitting parameters, depending on the properties of a nanostructure. The formula is consistent with a finite large-size limit of binding energy per atom. We find that there are two competing factors in the determination of the binding energy: Nonadditivities of van der Waals coefficients and center-to-center distance between nanostructures. To decode the detail, the nonadditivity of the static multipole polarizability is investigated from an accurate spherical-shell model. We find that the higher-order multipole polarizability displays ultrastrong intrinsic nonadditivity, no matter if the dipole polarizability is additive or not.

  3. Origin of n-type conductivity in two-dimensional InSe: In atoms from surface adsorption and van der Waals gap

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun

    2018-04-01

    Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.

  4. ELECTROKINETIC PHENOMENA. II : THE FACTOR OF PROPORTIONALITY FOR CATAPHORETIC AND ELECTROENDOSMOTIC MOBILITIES.

    PubMed

    Abramson, H A

    1930-07-20

    Two theories which predict different values for the ratio of V(E), the electroendosmotic velocity of a liquid past a surface, to V(p), the electric mobility of a particle of the same surface through the same liquid are discussed. The theory demanding that See PDF for Equation was supported by certain data of van der Grinten for a glass surface. Re-calculation of van der Grinten's data reveals that the ratio varies between 2.1 and 2.8. These results are in accord with previous data of Abramson. It is pointed out that glass is unsuitable for the investigation. The ratio See PDF for Equation is here determined for a flat surface and particles when both are covered by the same proteins. Under these conditions See PDF for Equation The theory is similarly tested for a round surface using a micro-cataphoresis cell. It is shown that See PDF for Equation for a round surface is approximately 1.00. These findings are confirmatory of previous data supporting the view that cataphoretic mobility is independent of the size and shape of the particles when all particles compared have similar surface constitutions.

  5. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.

    PubMed

    Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst

    2017-05-05

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190  MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  6. Quantum defect theory for the orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2017-01-01

    In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.

  7. Phosphorus allotropes: Stability of black versus red phosphorus re-examined by means of the van der Waals inclusive density functional method

    NASA Astrophysics Data System (ADS)

    Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.

    2017-06-01

    We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.

  8. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    PubMed

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered (aggregated) phases is shown to exist when liquid vapor is confined in capillaries (condensation-liquefaction-evaporation and flux). This pheno-menon can be experimentally illustrated with suspended nano-sized particles (flocculation-coagulation-peptisation of colloidal sols) being confined in sample holders of varying size. The self-assembled aggregates represent critical self-similar equilibrium structures corres-ponding to rate determining complexes in kinetics. Overall, a self-consistent thermodynamic framework is established for the characterization of two- and three-dimensional phase separations in one-, two- and three-component systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Job Oriented Training: Onderwijskundige Grondslag en Onderbouwing (Job Oriented Training: Foundation and Empirical Support)

    DTIC Science & Technology

    2008-07-01

    die binmen defensie tot aanzien van de effecten van JOT onderwijs met het nieuwe leren terug te dan toe in gebruik waren bij het theorie - voeren is op...problemen in de uitvoerings- onderwijs; toepassing van JOT impliceerde Grondslag praktijk van datzeltde regulier onderwijs. dat er geen theorie meer...het rechte eind Opdrachtnummer Datum PROGRAMMA PROJECT juli 2008 Program mabegeleider Projectbegeleider Auteur (s) IkolP.M.. Bonen,dr. A.H. van der

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Hua; College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024; Kioussis, Nicholas, E-mail: nick.kioussis@csun.edu

    Using ab initio based calculations, we have calculated the intrinsic lattice thermal conductivity of chiral tellurium. We show that the interplay between the strong covalent intrachain and weak van der Waals interchain interactions gives rise to the phonon band gap between the lower and higher optical phonon branches. The underlying mechanism of the large anisotropy of the thermal conductivity is the anisotropy of the phonon group velocities and of the anharmonic interatomic force constants (IFCs), where large interchain anharmonic IFCs are associated with the lone electron pairs. We predict that tellurium has a large three-phonon scattering phase space that resultsmore » in low thermal conductivity. The thermal conductivity anisotropy decreases under applied hydrostatic pressure.« less

  11. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  12. Changes in the reflectivity of a lithium niobate crystal decorated with a graphene layer

    NASA Astrophysics Data System (ADS)

    Salas, O.; Garcés, E.; Castillo, F. L.; Magaña, L. F.

    2017-01-01

    Density functional theory and molecular dynamics were used to study the interaction of a graphene layer with the surface of lithium niobate. The simulations were performed at atmospheric pressure and 300K. We found that the graphene layer is physisorbed with an adsorption energy of -0.8205 eV/C-atom. Subsequently, the optical absorption of the graphene-(lithium niobate) system was calculated and compared with that of graphene solo and lithium niobate alone, respectively. The calculations were performed using the Quantum Espresso code with the GGA approximation and Vdw-DF2 (which includes long-range correlation effects as Van der Waals interactions).

  13. Quantum 1/f Noise in Solid State Devices in Particular Hg(1-x)Cd(x)Te N(+)-P Diodes

    DTIC Science & Technology

    1989-05-15

    1 / f noise in pentodes. 3. A. van der Ziel, P. H. Handel, X. C. Zhu, and K. H. Duh, "A theory of the Hooge parameters of solid-state...the progress reports 12. P. H. Hardel and A. van der Ziel, "Relativistic correction of the Hooge parameter for Umklapp 1 / f noise ," Physica, vol. 141B... Hooge parameter and of fundamental 1 / f noise sources. As a side result many quantum 1 / f noise formulas are verified

  14. USAF Summer Faculty Research Program. 1981 Research Reports. Volume II.

    DTIC Science & Technology

    1981-10-01

    Research Associate 17 (A) Spect roscop i( Analysis anld Opt. i n1iZaLtol on 1 Di. Larry R. Dalton the oxygen/ I od ine Chemica (tILase r and (8...theory appear in Fig. 7 where the inverse temper- ature dependence reflects the dominant influence of the van der Waals 2.7 attraction. Note that the...colinear geometry. Coltrin obtains a 13 depth of 6.9 kcal/mol vs. 2.7 kcal/mol obtained by Wilkins. Thus we expect more Coltrin trajectories to form van der

  15. Rapid estimation of the electron correlation energy for van der Waals complexes RgX (Rg = Kr, Xe, X = Br, I)

    NASA Astrophysics Data System (ADS)

    Xinying, Li; Yongfang, Zhao; Xiaogong, Jing; Fengli, Liu; Fengyou, Hao

    2006-01-01

    We present the rules of electron correlation energies for RgX (Rg = Kr, Xe, X = Br, I) van der Waals (vdW) complex systems at CCSD(T) theoretical level with SDB-cc-pVQZ basis set by the Gaussian 98 program. A new method to derive the dispersion coefficient C6 by fitting the intermonomer electron correlation energies to C6R-6 function is introduced. The present C6 values are compared with the corresponding theoretical ones.

  16. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and thin films

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F.; Milton, Kimball A.; Malyi, Oleksandr I.; Boström, Mathias

    2015-11-01

    In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  17. Synchronous Oscillations in Van Der Pol Generator with Modulated Natural Frequency

    NASA Astrophysics Data System (ADS)

    Nimets, A. Yu.; Vavriv, D. M.

    2015-12-01

    The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefrequency resonances resulted from the interaction between oscillations of the generator natural frequency, modulation frequency and synchronized signal frequency. Characteristics of synchronous oscillations due to the below mentioned three-frequency interaction are obtained and comparison with the case of synchronization of oscillator on the main mode made.

  18. Speed Measuring System (Detectoren en Signaalbewerking Voor Het Snelheidsmeetsysteem 4-01)

    DTIC Science & Technology

    1989-03-01

    een hogere nauwkeurigheid te halen dan san de voet van bet signasi mogelijk is bij een grote signaalaniplitude, Wanneer de S/L < 6 is wordt de drempel...snelheidsmeetsysteem 4-01 Niets Uilf deze ultgave mag worden vermenigvuldigd en of openbaar gemaakt door mlddel van druk fotokope microfilm autour~s): of op welke...andere wijze dan 006 zonder voorafgaarode toestemming van TNO J. van der Haven Hetlter I zage geven van net TNO-rappoit aan direct belanghebbenoen is

  19. Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: A theoretical study

    NASA Astrophysics Data System (ADS)

    Hu, Jisong; Ji, Gepeng; Ma, Xinguo; He, Hua; Huang, Chuyun

    2018-05-01

    Interfacial interactions and electronic properties of graphene/CH3NH3PbI3 heterojunctions were investigated by first-principles calculations incorporating semiempirical dispersion-correction scheme to describe van der Waals interactions. Two lattice match configurations between graphene and CH3NH3PbI3(0 0 1) slab were constructed in parallel contact and both of them were verified to form remarkable van der Waals heterojunctions with similar work functions. Our calculated energy band structures show that the Dirac-cone of graphene and the direct band gap of CH3NH3PbI3 are still preserved in the heterojunctions, thus graphene can be a promising candidate either as a capping or supporting layer for encapsulating CH3NH3PbI3 layer. It is identified that the Schottky barrier of graphene/CH3NH3PbI3 heterojunctions can be controlled by the interlayer distance and affected by the stacking pattern of graphene and CH3NH3PbI3. The 3D charge density differences present the build-in internal electric field from graphene to CH3NH3PbI3 after interface equilibrium and thus, a low n-type Schottky barrier is needed for high efficient charge transferring in the interface. The possible mechanism of the band edge modulations in the heterojunctions and corresponding photoinduced charge transfer processes are also described.

  20. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo

    2018-04-01

    A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

  1. van der Waals criticality in AdS black holes: A phenomenological study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  2. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    PubMed

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  3. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

    PubMed Central

    Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.

    2015-01-01

    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783

  4. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics.

    PubMed

    Dubrovkin, Alexander M; Qiang, Bo; Krishnamoorthy, Harish N S; Zheludev, Nikolay I; Wang, Qi Jie

    2018-05-02

    Improvements in device density in photonic circuits can only be achieved with interconnects exploiting highly confined states of light. Recently this has brought interest to highly confined plasmon and phonon polaritons. While plasmonic structures have been extensively studied, the ultimate limits of phonon polariton squeezing, in particular enabling the confinement (the ratio between the excitation and polariton wavelengths) exceeding 10 2 , is yet to be explored. Here, exploiting unique structure of 2D materials, we report for the first time that atomically thin van der Waals dielectrics (e.g., transition-metal dichalcogenides) on silicon carbide substrate demonstrate experimentally record-breaking propagating phonon polaritons confinement resulting in 190-times squeezed surface waves. The strongly dispersive confinement can be potentially tuned to greater than 10 3 near the phonon resonance of the substrate, and it scales with number of van der Waals layers. We argue that our findings are a substantial step towards infrared ultra-compact phonon polaritonic circuits and resonators, and would stimulate further investigations on nanophotonics in non-plasmonic atomically thin interface platforms.

  5. Beam-dynamic effects at the CMS BRIL van der Meer scans

    NASA Astrophysics Data System (ADS)

    Babaev, A.

    2018-03-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.

  6. On possible microscopic origins of the swelling of neutral lipid bilayers induced by simple salts.

    PubMed

    Manciu, Marian; Ruckenstein, Eli

    2007-05-01

    It was recently suggested that the swelling of neutral multilipid bilayers upon addition of a salt can be simply explained only by the electrolyte screening of the van der Waals attractions, while assuming that the hydration force and the repulsion due to thermal undulations of membranes are unaffected by the salt. While we agree that the screening of the van der Waals interactions plays a role, we suggest that the increase in the hydration force upon addition of a salt has also to be taken into account. In a statistical model, which accounts for the membrane undulations, parameters could be found to explain the multibilayer swelling even when the van der Waals attraction is considered unaffected by the electrolyte screening. These results point out that the decrease by a factor of three of the Hamaker constant upon addition of a salt, suggested recently to be responsible for the swelling of neutral multilipid bilayers, is perhaps too large, and a smaller decrease in Hamaker constant, coupled with the above mentioned effects might explain the swelling.

  7. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo

    2016-10-01

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  8. Trends on band alignments: Validity of Anderson's rule in SnS2- and SnSe2-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2018-04-01

    Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.

  9. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  10. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.

    PubMed

    Alavi, Saman; Ohmura, Ryo

    2016-10-21

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  11. Computations of Lifshitz-van der Waals interaction energies between irregular particles and surfaces at all separations for resuspension modelling

    NASA Astrophysics Data System (ADS)

    Priye, Aashish; Marlow, William H.

    2013-10-01

    The phenomenon of particle resuspension plays a vital role in numerous fields. Among many aspects of particle resuspension dynamics, a dominant concern is the accurate description and formulation of the van der Waals (vdW) interactions between the particle and substrate. Current models treat adhesion by incorporating a material-dependent Hamaker's constant which relies on the heuristic Hamaker's two-body interactions. However, this assumption of pairwise summation of interaction energies can lead to significant errors in condensed matter as it does not take into account the many-body interaction and retardation effects. To address these issues, an approach based on Lifshitz continuum theory of vdW interactions has been developed to calculate the principal many-body interactions between arbitrary geometries at all separation distances to a high degree of accuracy through Lifshitz's theory. We have applied this numerical implementation to calculate the many-body vdW interactions between spherical particles and surfaces with sinusoidally varying roughness profile and also to non-spherical particles (cubes, cylinders, tetrahedron etc) orientated differently with respect to the surface. Our calculations revealed that increasing the surface roughness amplitude decreases the adhesion force and non-spherical particles adhere to the surfaces more strongly when their flatter sides are oriented towards the surface. Such practical shapes and structures of particle-surface systems have not been previously considered in resuspension models and this rigorous treatment of vdW interactions provides more realistic adhesion forces between the particle and the surface which can then be coupled with computational fluid dynamics models to improve the predictive capabilities of particle resuspension dynamics.

  12. Theoretical Study on the Dynamics of the Reaction of HNO((1)A') with HO2((2)A″).

    PubMed

    Mousavipour, S Hosein; Asemani, S Somayeh

    2015-06-04

    We used stochastic one-dimensional chemical master equation (CME) simulation to gain insight into the dynamics of the reaction of HNO((1)A') with HO2((2)A″). The reaction takes place over a multiwell, multichannel potential energy surface that is based on the computations at the CBS-QB3 level of theory. The calculated multipath potential energy surface consists of three potential wells and three van der Waals complexes. In solving the master equation, the Lennard-Jones potential is used to model the collision between the collider gases. The fractional population of different intermediates and products in the early stages of the reaction is examined to determine the role of the energized intermediates and van der Waals complexes on the kinetics of the title reaction. The major products of the title reaction at lower temperatures are OH, HNO2, HNOH, and O2(X(3)Σg(-)). The temperature- and pressure-dependence of the reaction over a wide range of temperature (300-3000 K) and pressure (0.1-2000 Torr) are studied. No sign of pressure dependence was being observed for the title reaction over the stated range of pressure. The calculated rate constants from the CME simulation are compared with those obtained from the RRKM-SSA method that is based on strong collision assumption. Our results indicate that the strong collision assumption increases the calculated rate constant for the formation of the main products (HNO2 + OH) by a factor of 2 at 300 K and 1 atm pressure, compared to the results of CME simulation, although the results are in good agreement at higher temperatures.

  13. Toward an Operational Definition of Cross-Cultural Competence from the Literature

    DTIC Science & Technology

    2008-01-01

    Journal of Applied Psychology, 73, 410-420. Mol, S. T., Born, M. P., Willemsen, M. E., & Van Der Molen , H. T. (2005). Predicting expatriate job...decision-making processes (Ang, Van Dyne, Koh, & Ng, 2004; Ang, Van Dyne, & Koh, 2007). Because the CQ has demonstrated validity and covers the...empirical foundation. U.S. Army Research Institute for the Behavioral and Social Sciences, Study Report 2008-1. Arlington, VA: ARI. Ang, S., Van Dyne, L

  14. Van der Waals pressure sensors using reduced graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  15. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2015-09-01

    Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ /10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

  16. Quality assurance in radiotherapy.

    PubMed

    Kouloulias, V E

    2003-03-01

    In 1999, the European Organisation for Research and Treatment of Cancer (EORTC), being a European pioneer in the field of cancer research as well as in quality assurance (QA), launched an Emmanuel van der Schueren fellowship for QA in radiotherapy. In this paper, the work that has been done during the first E. van der Schueren fellowship is reported, focusing on four phase III EORTC clinical trials: 22921 for rectal cancer, 22961 and 22991 for prostate cancer and 22922 for breast cancer. A historical review of the QA programme of the EORTC Radiotherapy group during the past 20 years is included.

  17. Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators

    NASA Astrophysics Data System (ADS)

    Martins, T. V.; Toral, R.

    2011-09-01

    We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of a fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal.

  18. Proceedings of Biological Actions of Extracellular ATP Conference Held in Philadelphia, Pennsylvania on 27-19 November 1990. (Annals of the New York Academy of Sciences. Volume 603)

    DTIC Science & Technology

    1990-12-16

    Uncomplexed with Divalent Cations Activate a Receptor Coupled to Phosphoinositidase C in iitar Cells. By J. S. DAVIDsoN, 1. WAKEFIEL, P. A. VAN DER ...selective antagonist, at least over a limited concentration range)." ’ Studies of the pharma - cological actions of isopolar phosphonate analogues of...139 VAN DER MERWE, F A, 1. K WAKEFIELD, I FINE, R, P. MILLAR & 3. S. DAVIDSON, 1989 FEltS Lell 243: 333-336. 140 HARDEN, T K, J L BOYER, It A BROWN

  19. Thermally programmable gas storage and release in single crystals of an organic van der Waals host.

    PubMed

    Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A

    2003-08-20

    A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics.

  20. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  1. Granular fountains: convection cascade in a compartmentalized granular gas.

    PubMed

    van der Meer, Devaraj; van der Weele, Ko; Reimann, Peter

    2006-06-01

    This paper extends the two-compartment granular fountain [D. van der Meer, P. Reimann, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 92, 184301 (2004)] to an arbitrary number of compartments: the tendency of a granular gas to form clusters is exploited to generate spontaneous convective currents, with particles going down in the well-filled compartments and going up in the diluted ones. We focus upon the bifurcation diagram of the general -compartment system, which is constructed using a dynamical flux model and which proves to agree quantitatively with results from molecular dynamics simulations.

  2. Peeling off an elastica from a smooth attractive substrate

    NASA Astrophysics Data System (ADS)

    Oyharcabal, Xabier; Frisch, Thomas

    2005-03-01

    Using continuum mechanics, we study theoretically the unbinding of an inextensible rod with free ends attracted by a smooth substrate and submitted to a vertical force. We use the elastica model in a medium-range van der Waals potential. We numerically solve a nonlinear boundary value problem and obtain the force-stretching relation at zero temperature. We obtain the critical force for which the rod unbinds from the substrate as a function of three dimensionless parameters, and we find two different regimes of adhesion. We study analytically the contact potential case as the van der Waals radius goes to zero.

  3. Van der Woude syndrome: Management in the mixed dentition.

    PubMed

    Agarwal, Sonahita; Dinesh, M R; Dharma, R M; Amarnath, B C

    2013-01-01

    This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone grafting followed by retention with functional regulator-3. The mild maxillary retrognathia and deficient lip support was managed with dental compensation.

  4. Van der Woude syndrome: Management in the mixed dentition

    PubMed Central

    Agarwal, Sonahita; Dinesh, M. R.; Dharma, R. M.; Amarnath, B. C.

    2013-01-01

    This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone grafting followed by retention with functional regulator-3. The mild maxillary retrognathia and deficient lip support was managed with dental compensation. PMID:23853466

  5. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  6. Merlon-type density waves in a compartmentalized conveyor system

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, G.; van derWeele, K.

    2016-09-01

    Multi-particle flow through a cyclic array of K connected compartments with a preferential direction is known to be able to organize itself in the form of density waves [Kanellopoulos, Van der Meer, and Van der Weele, Phys. Rev. E 92, 022205 (2015)]. In this brief note we focus on the intriguing shape these waves take when K is even, in which case they travel through alternatingly dense and diluted compartments. We call them "merlon waves", since the sequence of high and low densities is reminiscent of the merlons and crenels on the battlements of medieval castles.

  7. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    PubMed

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  8. Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies.

    PubMed

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2015-09-18

    Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.

  9. Configuration of the magnetic field and reconstruction of Pangaea in the Permian period.

    PubMed

    Westphal, M

    1977-05-12

    The virtual geomagnetic poles of Laurasia and Gondwanaland in the Carboniferous and Permian periods diverge significantly when these continents are reassembled according to the fit calculated by Bullard et al. Two interpretations have been offered: Briden et al. explain these divergences by a magnetic field configuration very different from that of a geocentric axial dipole; Irving (and private communication), Van der Voo and French(4) suggest a different reconstruction and it is shown here that these two interpretations are not incompatible and that the first may help the second.

  10. Dynamics of harpooning studied by transition state spectroscopy. II. LiṡṡFH

    NASA Astrophysics Data System (ADS)

    Hudson, A. J.; Oh, H. B.; Polanyi, J. C.; Piecuch, P.

    2000-12-01

    The van der Waals complex LiṡṡFH was formed in crossed beams and the transition state of the excited-state reaction, Li*(2p 2P)+HF→LiF+H, was accessed by photoexcitation of this complex. The dynamics of the excited-state reaction were probed by varying the excitation wavelength over the range 570-970 nm while recording the photodepletion of the complex. The findings were interpreted using high-level ab initio calculations of the ground and lowest excited-state potential-energy surfaces.

  11. Spectroscopic Signatures for Interlayer Coupling in MoS2-WSe2 van der Waals Stacking

    DTIC Science & Technology

    2014-09-07

    theory (DFPT) calculations were carried out using the plane wave code CASTEP as implemented in the Materials Studio package .38 A hexagonal unit cell...transition metal dichalcogenide (TMD) monolayers. The layer-number sensitive Raman out -of-plane mode A2 1g for WSe2 (309 cm1) is found sensitive to the...Raman out -of-plane mode A2 1g for WSe2 (309 cm1) is found sensitive to the coupling between two TMD monolayers. The presence of interlayer excitonic

  12. Charge transport calculations by a wave-packet dynamical approach using maximally localized Wannier functions based on density functional theory: Application to high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-01-01

    We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.

  13. 3,3’-(1-Oxopropane-1,3-diyl)bis(1,3-thiazolidine-2-thione) Chlorobenzene Hemisolvate

    DTIC Science & Technology

    2013-01-01

    2005). For the definition of amide twist angles, see: Yamada et al. (1993). For details of the use of SQUEEZE, see: van der Sluis & Spek (1990...the C4–N1 bond of 5.6 (1)° (calculated according to the definition given by Yamada 1993). Figure 2 shows the molecular packing for C9H12N2OS4...modified using the SQUEEZE function. The void in the center of the unit cell contains a disordered molecule of chlorobenzene, the recrystallization solvent

  14. Optical properties of metal-hydride switchable films

    NASA Astrophysics Data System (ADS)

    Griessen, Ronald

    2001-03-01

    In 1996 we discovered that yttrium-, lanthanum-, and rare-earth-hydride (REHx) films [1] protected by a thin palladium layer, exhibit spectacular changes in their optical properties when the hydrogen concentration x is increased from 2 to 3. For example, a 500 nm thick YH2 film is metallic and shiny while YH3 is yellowish and transparent. The transition is reversible, fast [2, 3], and can simply be induced by adding or removing hydrogen from the gas phase, an electrolyte or from an H containing liquid. The optical switching that occurs near the metal-insulator transition of these hydrides is remarkably robust as it is not affected by structural or compositional disorder. It occurs in polycrystalline and epitaxial films, in alloys with cubic or hexagonal crystal structures,and deuterides [4] switch as well as hydrides. At small length scales epitaxial YHx films exhibit surprising structural properties which open the way to pixel-by-pixel optical switching [5]. Colour-neutral switchable mirrors based on RE-Mg alloys [6] can be used in all-solid-state switchable devices. Newest results for Rare-Earth free switchable mirrors will be presented. [1] J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot and N. J. Koeman, Nature 380 (1996) 231; [2] S. J. van der Molen, J. W. J. Kerssemakers, J. H. Rector, N. J. Koeman, B. Dam, R. Griessen, J. Appl. Phys. 86 (1999) 6107; [3] F. J. A. den Broeder, S. J. van der Molen, et al., Nature 394 (1998)656; [4] A. T. M. van Gogh, E. S. Kooij, R. Griessen, Phys. Rev. Lett. 83 (1999) 4614; [5] J. W. J. Kerssemakers, S. J. van der Molen and R. Griessen, Nature 406 (2000) 489; [6] P. van der Sluis, M. Ouwerkerk and P. A. Duine, Appl. Phys. Lett. 70 (1997) 3356.

  15. Analysis of Regional Phases Using Three-Component Data

    DTIC Science & Technology

    1989-11-20

    and Sen- gbush, 1953; Cholet and Richards, 1954; Uhrig and Van Melle, 1955; de Segonzac and Laherrere, 1959; Richards, 1960; Gretener , 1961; Van der...1963, Elastische Anisotropie in tektonisch verformten Sedimentgesteinen, Geophys. Prospecting, 1,, 423-458. Gretener , P.E.F., 1961, An analysis of

  16. How does a tidal embayment morphodynamically react on sea level rise?

    NASA Astrophysics Data System (ADS)

    van der Wegen, Mick

    2010-05-01

    Conditions for (assumed) equilibrium in tidal embayments have been studied extensively in the past years with morphodynamic 1D models (Van Dongeren and De Vriend, 1994; Schuttelaars and de Swart, 1996, 2000; Lanzoni and Seminara, 2002) and 2D models (Hibma et al. [2003], Van der Wegen and Roelvink [2008]) Van der Wegen et al 2008). The current research addresses the impact of sea level rise on tidal embayments. Although effects of sea level rise may only become apparent after decades, the character of the embayment can change considerably. Examples are the (dis)appearance or re-allocation of intertidal flats, increased tidal resonance, shift from sediment export to import, deepening of channel area and other related (ecological) parameters. The research applies a 2D morphodynamic model (Delft3D) in an idealized environment. The model is based on the 2 D shallow water equations, the Engelund -Hansen transport formula and includes bed slope effects, drying and flooding procedures and an advanced morphodynamic update scheme (Roelvink 2006). The initial condition of the bathymetry is generated by 3000 years of morphodynamic calculations in a 80 km long and 2.5 km wide rectangular tidal embayment under constant M2 tidal forcing conditions (Van der Wegen and Roelvink [2008]). After this period sea level rise gradually developing towards a rate of 0.4 m/century is added to the boundary conditions. Model results describe development towards less intertidal area and a transition from an exporting system to a importing system. Model results are evaluated in terms of M2, M4 and M6 tidal constituents as well as against Vs/Vc (shoal volume over channel volume) versus a/h (amplitude over water depth) relationship as proposed by Friedrichs and Aubrey (1988). Although the model describes morphodynamic development in a strongly idealized environment the results can provide an excellent tool to systematically study the impact of sea level rise in tidal embayments as well as the time scales of dominant underlying resulting transport mechanisms and processes. DISSANAYAKE, D.M.P.K; RANASINGHE, R. and ROELVINK, J.A., 2009. Effect of Sea Level Rise in tidal inlet evolution: a numerical modelling approach. Journal of Coastal Research, SI 56 (Proceedings of the 10th International Coastal Symposium), pg - pg. Lisbon, Portugal. Friedrichs, C. T., and D. G. Aubrey (1988), Non-linear tidal distortion in shallow well mixed estuaries: A synthesis, Estuarine Coastal Shelf Sci.,27, 521- 545, doi:10.1016/0272-7714(88)90082-0. Hibma, A., H.M. Schuttelaars, and H. J. de Vriend (2003b), Initial formation and long-term evolution of channel-shoal patterns in estuaries, in Proc. 3rd RCEM conf.edited by A. Sánchez -Acrilla and A. Bateman, pp. 740-760, IAHR., Barcelona, Spain. Lanzoni, S., and G. Seminara (2002), Long-term evolution and morphodynamic equilibrium of tidal channels, J. Geophys. Res., 107(C1), 3001, doi:10.1029/2000JC000468. Roelvink, J. A. (2006), Coastal morphodynamic evolution techniques, J. Coastal Eng., 53, 177-187. Schuttelaars, H. M., and H. E. De Swart (1996), An idealized long termmorphodynamic model of a tidal embayment, Eur. J. Mech. B Fluids, 15(1), 55-80. Schuttelaars, H. M., and H. E. De Swart (2000), Multiple morphodynamic equilibria in tidal embayments, J. Geophys. Res., 105(C10), 24,105 - 24,118. Van Dongeren, A. D., and H. J. De Vriend (1994), A model of morphological behaviour of tidal basins, Coastal Eng., 22, 287- 310. van der Wegen, M., and J. A. Roelvink (2008), Long-term morphodynamic evolution of a tidal embayment using a twodimensional, process-based model, J. Geophys. Res., 113, C03016, doi:10.1029/2006JC003983 van der Wegen, M., Z. B. Wang, H. H. G. Savenije, and J. A. Roelvink (2008), Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment, J. Geophys. Res., 113, F03001, doi:10.1029/2007JF000898

  17. Wilson loop's phase transition probed by non-local observable

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Feng, Zhong-Wen; Yang, Shu-Zheng; Zu, Xiao-Tao

    2018-04-01

    In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.

  18. Electronic Properties of Graphene-PtSe2 Contacts.

    PubMed

    Sattar, Shahid; Schwingenschlögl, Udo

    2017-05-10

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe 2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe 2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe 2 and a p-type Schottky contact with bilayer PtSe 2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  19. Retention behaviour of polyunsaturated fatty acid methyl esters on porous graphitic carbon.

    PubMed

    Gaudin, Karen; Hanai, Toshihiko; Chaminade, Pierre; Baillet, Arlette

    2007-07-20

    Retention with porous graphitic carbon was investigated with 25 structures of fatty acid methyl esters (FAMEs) with two different mobile phases: CH(3)CN:CHCl(3) 60:40 (v/v) and CH(3)OH:CHCl(3) 60:40 (v/v) with both 0.1% triethylamine (TEA) and an equimolar amount of HCOOH. Preliminary results showed that the use of TEA/HCOOH led to the response increase of saturated FAMEs with evaporative light scattering detection. No increase was observed for unsaturated one. These modifiers may slightly reduce the retention of FAMEs but did not significantly modify the separation factor with porous graphitic carbon. Thermodynamic parameters were calculated for each structure using Van't Hoff plot measured over the temperature range from 10 to 50 degrees C, with the both mobile phase conditions. All the studied compounds were found linked by the same retention mechanism on porous graphitic carbon. Quantitative in silico analysis of the retention using a molecular mechanics calculation demonstrated a good correlation between the retention factors and the molecular interaction energy values (r>0.93). Especially the Van der Waals energy was predominant, and the contribution of electrostatic energy was negligible for the quantitative analysis of the retention. The results indicate that Van der Waals force, hydrophobic interaction, is predominant for the retention of FAMEs on this packing material. The relative retention for highly unsaturated homologues can be changed by the selection of the weak solvent CH(3)CN or CH(3)OH. Then isomers differing only in the position of the carbon double bond on the alkyl chain can be separated and their behaviour is summarised as the closer the carbon double bonds to the FAME polar head, the more the retention decreases. Finally, the more important the number of carbon double bonds in the alkyl chain is, the smaller the retention is.

  20. van der Waals epitaxial two-dimensional CdSxSe(1-x) semiconductor alloys with tunable-composition and application to flexible optoelectronics.

    PubMed

    Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min

    2017-09-21

    Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.

  1. Tunable electronic structure in stained two dimensional van der Waals g-C2N/XSe2 (X = Mo, W) heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Z. D.; Wang, X. C.; Mi, W. B.

    2017-10-01

    The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.

  2. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    PubMed

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  3. Elucidation of the binding mechanism of renin using a wide array of computational techniques and biological assays.

    PubMed

    Tzoupis, Haralambos; Leonis, Georgios; Avramopoulos, Aggelos; Reis, Heribert; Czyżnikowska, Żaneta; Zerva, Sofia; Vergadou, Niki; Peristeras, Loukas D; Papavasileiou, Konstantinos D; Alexis, Michael N; Mavromoustakos, Thomas; Papadopoulos, Manthos G

    2015-11-01

    We investigate the binding mechanism in renin complexes, involving three drugs (remikiren, zankiren and enalkiren) and one lead compound, which was selected after screening the ZINC database. For this purpose, we used ab initio methods (the effective fragment potential, the variational perturbation theory, the energy decomposition analysis, the atoms-in-molecules), docking, molecular dynamics, and the MM-PBSA method. A biological assay for the lead compound has been performed to validate the theoretical findings. Importantly, binding free energy calculations for the three drug complexes are within 3 kcal/mol of the experimental values, thus further justifying our computational protocol, which has been validated through previous studies on 11 drug-protein systems. The main elements of the discovered mechanism are: (i) minor changes are induced to renin upon drug binding, (ii) the three drugs form an extensive network of hydrogen bonds with renin, whilst the lead compound presented diminished interactions, (iii) ligand binding in all complexes is driven by favorable van der Waals interactions and the nonpolar contribution to solvation, while the lead compound is associated with diminished van der Waals interactions compared to the drug-bound forms of renin, and (iv) the environment (H2O/Na(+)) has a small effect on the renin-remikiren interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Investigation of the electronic structure of Be2+He and Be+He, and static dipole polarisabilities of the helium atom

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, J.; Bejaoui, M.; Farjallah, M.; Berriche, H.

    2018-05-01

    The potential energy and spectroscopic constants of the ground and many excited states of the Be+He van der Waals system have been investigated using a one-electron pseudo-potential approach, which is used to replace the effect of the Be2+ core and the electron-He interactions by effective potentials. Furthermore, the core-core interactions are incorporated. This permits the reduction of the number of active electrons of the Be+He van der Waals system to only one electron. Therefore, the potential energy of the ground state as well as the excited states is performed at the SCF level and considering the spin-orbit interaction. The core-core interaction for Be2+He ground state is included using accurate CCSD (T) calculations. Then, the spectroscopic properties of the Be+He electronic states are extracted and compared with the previous theoretical and experimental studies. This comparison has shown a very good agreement for the ground and the first excited states. Moreover, the transition dipole moment has been determined for a large and dense grid of internuclear distances including the spin orbit effect. In addition, a vibrational spacing analysis for the Be2+He and Be+He ground states is performed to extract the He atomic polarisability.

  5. Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Kuang, Anlong; Luo, Xukai; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong

    2018-05-01

    Two-dimensional (2D) gallium sulfide (GaS), hexagonal boron nitride (h-BN) and graphitic carbon nitride (g-C3N4) have been fabricated and expected to be promising photocatalysts under ultraviolet irradiation. Here, we employ hybrid density functional calculations to explore the potential of the 2D GaS-based heterojunctions GaS/h-BN (g-C3N4) for the design of efficient water redox photocatalysts. Both heterostructures can be formed via van der Waals (vdW) interaction and are direct bandgap semiconductors, whose bandgaps are reduced comparing with isolated GaS, h-BN or g-C3N4 monolayers and whose bandedges straddle water redox potentials. Furthermore, the optical absorption of GaS/h-BN (g-C3N4) heterostructures is observably enhanced in the ultraviolet-visible (UV-vis) light range. The electron-hole pairs in GaS/h-BN (g-C3N4) heterostructures are completely separated from different layers. In addition, the in-plane biaxial strain can effectively modulate the electronic properties of GaS/h-BN (g-C3N4) heterostructures. Thus the GaS/h-BN (g-C3N4) heterostructures are anticipated to be promising candidates for photocatalytic water splitting to produce hydrogen.

  6. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    PubMed Central

    Hirn, Ulrich; Schennach, Robert

    2015-01-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption. PMID:26000898

  7. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  8. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Li, Zhenyu

    2018-06-01

    Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zr n+1C n T2, T = O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zr n+1C n T2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.

  9. Structure-Energy Relationships of Halogen Bonds in Proteins.

    PubMed

    Scholfield, Matthew R; Ford, Melissa Coates; Carlsson, Anna-Carin C; Butta, Hawera; Mehl, Ryan A; Ho, P Shing

    2017-06-06

    The structures and stabilities of proteins are defined by a series of weak noncovalent electrostatic, van der Waals, and hydrogen bond (HB) interactions. In this study, we have designed and engineered halogen bonds (XBs) site-specifically to study their structure-energy relationship in a model protein, T4 lysozyme. The evidence for XBs is the displacement of the aromatic side chain toward an oxygen acceptor, at distances that are equal to or less than the sums of their respective van der Waals radii, when the hydroxyl substituent of the wild-type tyrosine is replaced by a halogen. In addition, thermal melting studies show that the iodine XB rescues the stabilization energy from an otherwise destabilizing substitution (at an equivalent noninteracting site), indicating that the interaction is also present in solution. Quantum chemical calculations show that the XB complements an HB at this site and that solvent structure must also be considered in trying to design molecular interactions such as XBs into biological systems. A bromine substitution also shows displacement of the side chain, but the distances and geometries do not indicate formation of an XB. Thus, we have dissected the contributions from various noncovalent interactions of halogens introduced into proteins, to drive the application of XBs, particularly in biomolecular design.

  10. What do a foam film and a real gas have in common?

    PubMed

    Stubenrauch, Cosima

    2005-01-01

    The stability of well-drained quasistatic foam films (thickness <100 nm) is usually discussed in terms of surface forces, which create an excess pressure normal to the film interfaces, called the disjoining pressure pi The disjoining pressure is the sum of repulsive electrostatic (pi(elec)), attractive van der Waals (pi(vdW)), and repulsive steric (pi(sr)) forces on the assumption that structural forces can be neglected. On the basis of these forces two different types of thin foam films are distinguished, namely common black films (CBF), which are mainly stabilized by pi(elec), and Newton black films (NBF), the stability of which is determined by pi(sr),With a thin-film pressure balance (TFPB) the thickness h of a foam film can be measured as a function of the applied pressure from which the disjoining pressure pi can be calculated. A thorough analysis of the results published so far reveals that the pi-h curves of nonionic surfactants measured at different surfactant concentrations resemble p-V(m) isotherms of a real gas measured at different temperatures. On the basis of these observations the van der Waals description of a real gas can be applied to foam films and a phase diagram for a foam film was constructed using the Maxwell construction.

  11. Strain and electric-field tunable valley states in 2D van der Waals MoTe2/WTe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Zhida; Wang, Xiaocha; Mi, Wenbo

    2016-12-01

    The strain and electric-field effects on the electronic structure of MoTe2/WTe2 van der Waals heterostructures are investigated by first-principles calculations. The MoTe2/WTe2 heterostructures are indirect band gap semiconductors under different strains except for 2%. At a strain from  -6% to 6% under a zero electric field, the band gap is 0.56, 0.62, 0.69, 0.62, 0.46, 0.37 and 0.29 eV, respectively. Meanwhile, spin splitting at the conduction band minimum (CBM) decreases monotonically from 76-1 meV, and that at the valance band maximum (VBM) is 232, 266, 292, 307, 319, 302 and 283 meV. At an electric field from  -0.3 to 0.3 V Å-1 under a 2% strain, VBM splitting decreases from 499-77 meV, but CBM splitting almost remains at 33 meV. A semiconductor-metal transition appears at an electric field of  -0.3 V Å-1. At different electric fields under a  -4% strain, CBM splitting monotonically increases from 37-154 meV, but VBM splitting is 437, 438, 378, 273, 150, 78 and 134 meV, respectively. Our results can provide a more significant basis for spintronic and valleytronic devices.

  12. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  13. Holographic Jet Shapes and their Evolution in Strongly Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Rajagopal, Krishna; Sadofyev, Andrey; van der Schee, Wilke

    2017-11-01

    Recently our group analyzed how the probability distribution for the jet opening angle is modified in an ensemble of jets that has propagated through an expanding cooling droplet of plasma [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. Each jet in the ensemble is represented holographically by a string in the dual 4+1- dimensional gravitational theory with the distribution of initial energies and opening angles in the ensemble given by perturbative QCD. In [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], the full string dynamics were approximated by assuming that the string moves at the speed of light. We are now able to analyze the full string dynamics for a range of possible initial conditions, giving us access to the dynamics of holographic jets just after their creation. The nullification timescale and the features of the string when it has nullified are all results of the string evolution. This emboldens us to analyze the full jet shape modification, rather than just the opening angle modification of each jet in the ensemble as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603]. We find the result that the jet shape scales with the opening angle at any particular energy. We construct an ensemble of dijets with energies and energy asymmetry distributions taken from events in proton-proton collisions, opening angle distribution as in [K. Rajagopal, A. V. Sadofyev, W. van der Schee, Phys. Rev. Lett. 116 (2016) 211603], and jet shape taken from proton-proton collisions and scaled according to our result. We study how these observables are modified after we send the ensemble of dijets through the strongly-coupled plasma.

  14. Interaction-component analysis of the hydration and urea effects on cytochrome c

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Ishizuka, Ryosuke; Karino, Yasuhito; Sakuraba, Shun; Matubayasi, Nobuyuki

    2016-02-01

    Energetics was analyzed for cytochrome c in pure-water solvent and in a urea-water mixed solvent to elucidate the solvation effect in the structural variation of the protein. The solvation free energy was computed through all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were examined over sets of protein structures against the electrostatic and van der Waals components in the average interaction energy of the protein with the solvent and the excluded-volume component in the solvation free energy. It was observed in pure-water solvent that the solvation free energy varies in parallel to the electrostatic component with minor roles played by the van der Waals and excluded-volume components. The effect of urea on protein structure was then investigated in terms of the free-energy change upon transfer of the protein solute from pure-water solvent to the urea-water mixed solvent. The decomposition of the transfer free energy into the contributions from urea and water showed that the urea contribution is partially canceled by the water contribution and governs the total free energy of transfer. When correlated against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components, the transfer free energy exhibited strong correlations with the total change in the solute-solvent energy and its van der Waals component. The solute-solvent energy was decomposed into the contributions from the protein backbone and side chain, furthermore, and neither of the contributions was seen to be decisive in the correlation to the transfer free energy.

  15. Light-matter interaction in transition metal dichalcogenides and their heterostructures

    NASA Astrophysics Data System (ADS)

    Wurstbauer, Ursula; Miller, Bastian; Parzinger, Eric; Holleitner, Alexander W.

    2017-05-01

    The investigation of two-dimensional (2D) van der Waals materials is a vibrant, fast-moving and still growing interdisciplinary area of research. These materials are truly 2D crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers, and have a variety of different electronic, optical and mechanical properties. Transition metal dichalcogenides are a very prominent class of 2D materials, particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range, decent charge carrier mobility together with high (photo-) catalytic and mechanical stability, and exotic many-body phenomena. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. Furthermore, the materials exhibit a strong light-matter interaction, providing a high sunlight absorbance of up to 15% in the monolayer limit, strong scattering cross section in Raman experiments, and access to excitonic phenomena in van der Waals heterostructures. This review focuses on the light-matter interaction in MoS2, WS2, MoSe2 and WSe2, which is dictated by the materials’ complex dielectric functions, and on the multiplicity of studying the first-order phonon modes by Raman spectroscopy to gain access to several material properties such as doping, strain, defects and temperature. 2D materials provide an interesting platform for stacking them into van der Waals heterostructures without the limitation of lattice mismatch, resulting in novel devices for applications but also to enable the study of exotic many-body interaction phenomena such as interlayer excitons. Future perspectives of semiconducting transition metal dichalcogenides and their heterostructures for applications in optoelectronic devices will be examined, and routes to study emergent fundamental problems and many-body quantum phenomena under excitations with photons will be discussed.

  16. A mechanistic study on Decontamination of Methyl Orange Dyes from Aqueous Phase by Mesoporous Pulp Waste and Polyaniline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Donglin; Yang, Yonggang; Li, Chaozheng

    2017-04-15

    The dispersion-corrected density functional theory (DFT-D3) is used to investigate the mechanism of mesoporous pulp waste (MPW) and polyaniline (PANI) adsorptive removal methyl orange (MO) dye from their aqueous solutions. The results are absolutely reliable because of the sufficiently accurate method although such big systems are studied. It is demonstrated that hydrogen bond and Van Der Waals interactions play a significant role in MO adsorption by MPW and PANI. For MO adsorption by MPW, hydrogen bond and Van Der Waals interactions are both weakened in S{sub 1} state. In contrast, hydrogen bond and Van Der Waals interactions between PANI andmore » MO are both enhanced in S{sub 1} state. The thermodynamic parameters such as enthalpy and free energy change reveal that the MO adsorption by MPW and PANI are spontaneous and exothermic. The adsorption of MO on MPW is less favorable in S{sub 1} state and the adsorption of MO on PANI is more favorable in S{sub 1} state. Therefore, the photoexcitation should be controlled during the MO adsorption by MPW and applied for MO adsorption by PANI. - Highlights: • The hydrogen bond and Van Der Waals interactions play a significant role in MO adsorption by MPW and PANI. • The influence of photoexcitation on adsorption has been studied firstly in our work. • The adsorption of MO on MPW is less favorable in S{sub 1} state and the adsorption of MO on PANI is more favorable in S{sub 1} state. • The MO adsorption by MPW and PANI are spontaneous and exothermic.« less

  17. CMMI Roadmaps

    DTIC Science & Technology

    2008-11-01

    Attendees of the SPIder Workshop D. Bierhuizen—Medis Medical Imaging Systems L. Braafhart—LogicaCMG Nederland H.J.J. Cannegieter—SYSQA W. den...Dekker—LogicaCMG Nederland L. Delmelk—LogicaCMG België A.J. Donderman—Transfer Solutions G.H.M. Friedhoff—SYSQA L.L. van der Giessen—ABN AMRO M...Mechelen—Compuware Nederland M.P.H.M. Mermans—Philips Medical Systems C. Michielsen—ITIB N. van Mourik—SYSQA E.M. Oostveen—Advanced M.H.M. van

  18. Relationship between the Macroscopic and Quantum Characteristics of Dynamic Viscosity for Hydrocarbons upon the Compensation Effect

    NASA Astrophysics Data System (ADS)

    Dolomatov, M. Yu.; Kovaleva, E. A.; Khamidullina, D. A.

    2018-05-01

    An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel-Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.

  19. International Hydrogenase Conference (7th) Held at the University of Reading on August 24th to 29th 2004.

    DTIC Science & Technology

    2004-08-19

    Johannes Hackstein [ PB GIO rNovel Fe-hydrogenases from the rumen ciliate metagenome . :12.50 :114.00 -1 Lunch [ 114.00 1 7.00 1 Poster Session 2...d.r.o’ g’.e n-.a-.s.e..s from the rumnen ciliate metagenome . p36 Severing, E., Boxma, B., van Alen, T.A., Ricard, G., van Hoek, A.H.A.M., Moon-van...hydrogenases from the rumen ciliate metagenome . Severing, E.’, Boxma, B.1, van Alen, T.A.’, Ricard, G.z, van Hoek, A.H.A.M.’, Moon-van der Staay, S.Y

  20. Analysis of Four Scoring Systems for the Prognosis of Patients with Metastasis of the Vertebral Column.

    PubMed

    Pollner, Péter; Horváth, Anna; Mezei, Tamás; Banczerowski, Péter; Czigléczki, Gábor

    2018-04-01

    Metastatic spinal diseases are common health problems and there is no consensus on the appropriate treatment of metastases in several conditions. Using clinical measures (e.g., survival time and functional status), prognosis prediction systems advise on the appropriate interventions. The aim of this article is to assess and compare 4 widely used scoring systems (revised Tokuhashi, Tomita, van der Linden, and modified Bauer scores) on a single-center cohort. A retrospective study was designed of 329 patients who were subjected to surgery because of metastatic spinal diseases. Subpopulations according to the classifications of the 4 scoring systems were identified. The overall survival was calculated with the Kaplan-Meier formula. The difference between the survival curves of subpopulations was analyzed with log-rank tests. The consistency rates for the 4 scoring systems are calculated as well. The follow-up period was 8 years. The median survival time was 222 days. The overall survival of prognostic categories in 3 scoring systems was significantly different from each other, but we found no differences between the categories of the van der Linden system. In this cohort, the revised Tokuhashi system gave the best approximation for survival, with a mean predictive capability 60.5%. The evaluation of 4 standard scoring systems showed that 3 were self-consistent, although none of systems was able to predict the survival in our cohort. Based on the predictive capability, the revised Tokuhashi system may provide the best predictions with careful examination of individual cases. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Photoionisation study of Xe.CF{sub 4} and Kr.CF{sub 4} van-der-Waals molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, V. A., E-mail: alekseev@va3474.spb.edu; Kevorkyants, R.; Garcia, G. A.

    2016-05-14

    We report on photoionization studies of Xe.CF{sub 4} and Kr.CF{sub 4} van-der-Waals complexes produced in a supersonic expansion and detected using synchrotron radiation and photoelectron-photoion coincidence techniques. The ionization potential of CF{sub 4} is larger than those of the Xe and Kr atoms and the ground state of the Rg.CF{sub 4}{sup +} ion correlates with Rg{sup +} ({sup 2}P{sub 3/2}) + CF{sub 4}. The onset of the Rg.CF{sub 4}{sup +} signals was found to be only ∼0.2 eV below the Rg ionization potential. In agreement with experiment, complementary ab initio calculations show that vertical transitions originating from the potential minimummore » of the ground state of Rg.CF{sub 4} terminate at a part of the potential energy surfaces of Rg.CF{sub 4}{sup +}, which are approximately 0.05 eV below the Rg{sup +} ({sup 2}P{sub 3/2}) + CF{sub 4} dissociation limit. In contrast to the neutral complexes, which are most stable in the face geometry, for the Rg.CF{sub 4}{sup +} ions, the calculations show that the minimum of the potential energy surface is in the vertex geometry. Experiments which have been performed only with Xe.CF{sub 4} revealed no Xe.CF{sub 4}{sup +} signal above the first ionization threshold of Xe, suggesting that the Rg.CF{sub 4}{sup +} ions are not stable above the first dissociation limit.« less

  2. Spherical solid model system: Exact evaluation of the van der Waals interaction between a microscopic or submacroscopic spherical solid and a deformable fluid interface

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.

    2011-03-01

    In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.

  3. A Look at Psychometrics in the Netherlands.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; Swaminathan, H.

    Comments are made on the review papers presented by six Dutch psychometricians: Ivo Molenaar, Wim van der Linden, Ed Roskam, Arnold Van den Wollenberg, Gideon Mellenbergh, and Dato de Gruijter. Molenaar has embraced a pragmatic viewpoint on Bayesian methods, using both empirical and pure approaches to solve educational research problems. Molenaar…

  4. Hilbert's sixth problem and the failure of the Boltzmann to Euler limit

    NASA Astrophysics Data System (ADS)

    Slemrod, Marshall

    2018-04-01

    This paper addresses the main issue of Hilbert's sixth problem, namely the rigorous passage of solutions to the mesoscopic Boltzmann equation to macroscopic solutions of the Euler equations of compressible gas dynamics. The results of the paper are that (i) in general Hilbert's program will fail because of the appearance of van der Waals-Korteweg capillarity terms in a macroscopic description of motion of a gas, and (ii) the van der Waals-Korteweg theory itself might satisfy Hilbert's quest for a map from the `atomistic view' to the laws of motion of continua. This article is part of the theme issue `Hilbert's sixth problem'.

  5. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  6. On coagulation mechanisms of charged nanoparticles produced by combustion of hydrocarbon and metallized fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savel'ev, A. M.; Starik, A. M.

    2009-02-15

    The contributions of van der Waals, Coulomb, and polarization interactions between nanometersized particles to the particle coagulation rate in both free-molecular and continuum regimes are analyzed for particle charges of various magnitudes and signs. Analytical expressions are obtained for the coagulation rate constant between particles whose interaction in the free-molecular regime is described by a singular potential. It is shown that van der Waals and polarization forces significantly increase the coagulation rate between a neutral and a charged particle (by a factor of up to 10) and can even suppress the Coulomb repulsion between like-charged particles of widely different sizes.

  7. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  8. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  9. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    PubMed Central

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  10. Combined Tongue-Palate Fusion With Alveolar Bands in a Patient With Pierre Robin Sequence and Van der Woude Syndrome.

    PubMed

    Robbins, Alexa; Zarate, Yuri A; Hartzell, Larry D

    2018-01-01

    This report describes the presentation of a newborn male with circumferential tongue-palate fusion associated with cleft palate and alveolar bands. After intraoral adhesions lysis, the patient was diagnosed with Pierre Robin sequence. A family history of cleft lip and palate was noted, and interferon regulatory factor 6 ( IRF6) sequencing revealed a heterozygous variant, confirming the diagnosis of van der Woude syndrome. The disruption of IRF6 resulted in abnormal orofacial development including micrognathia and intraoral adhesions as well as tongue-palate fusion, then resulting in glossoptosis with airway obstruction and cleft palate.

  11. Supersonic minimum length nozzle design for dense gases

    NASA Technical Reports Server (NTRS)

    Aldo, Andrew C.; Argrow, Brian M.

    1993-01-01

    Recently, dense gases have been investigated for many engineering applications such as for turbomachinery and wind tunnels. Supersonic nozzle design for these gases is complicated by their nonclassical behavior in the transonic flow regime. In this paper a method of characteristics (MOC) is developed for two-dimensional (planar) and, primarily, axisymmetric flow of a van der Waals gas. Using a straight aortic line assumption, a centered expansion is used to generate an inviscid wall contour of minimum length. The van der Waals results are compared to previous perfect gas results to show the real gas effects on the flow properties and inviscid wall contours.

  12. Nonadditivity of van der Waals forces on liquid surfaces

    NASA Astrophysics Data System (ADS)

    Venkataram, Prashanth S.; Whitton, Jeremy D.; Rodriguez, Alejandro W.

    2016-09-01

    We present an approach for modeling nanoscale wetting and dewetting of textured solid surfaces that exploits recently developed, sophisticated techniques for computing exact long-range dispersive van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We apply these techniques to solve the variational formulation of the Young-Laplace equation and predict the equilibrium shapes of liquid-vacuum interfaces near solid gratings. We show that commonly employed methods of computing vdW interactions based on additive Hamaker or Derjaguin approximations, which neglect important electromagnetic boundary effects, can result in large discrepancies in the shapes and behaviors of liquid surfaces compared to exact methods.

  13. Electric-field switching of two-dimensional van der Waals magnets

    NASA Astrophysics Data System (ADS)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  14. Two-dimensional antimonene single crystals grown by van der Waals epitaxy.

    PubMed

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-11-15

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 10 4  S m -1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.

  15. Two-dimensional antimonene single crystals grown by van der Waals epitaxy

    PubMed Central

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-01-01

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327

  16. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  17. Problems of low-parameter equations of state

    NASA Astrophysics Data System (ADS)

    Petrik, G. G.

    2017-11-01

    The paper focuses on the system approach to problems of low-parametric equations of state (EOS). It is a continuation of the investigations in the field of substantiated prognosis of properties on two levels, molecular and thermodynamic. Two sets of low-parameter EOS have been considered based on two very simple molecular-level models. The first one consists of EOS of van der Waals type (a modification of van der Waals EOS proposed for spheres). The main problem of these EOS is a weak connection with the micro-level, which raise many uncertainties. The second group of EOS has been derived by the author independently of the ideas of van der Waals based on the model of interacting point centers (IPC). All the parameters of the EOS have a meaning and are associated with the manifestation of attractive and repulsive forces. The relationship between them is found to be the control parameter of the thermodynamic level. In this case, EOS IPC passes into a one-parameter family. It is shown that many EOS of vdW-type can be included in the framework of the PC model. Simultaneously, all their parameters acquire a physical meaning.

  18. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    PubMed

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

  19. When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures.

    PubMed

    Gobbi, Marco; Orgiu, Emanuele; Samorì, Paolo

    2018-05-01

    van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on-demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self-assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The physics behind Van der Burgh's empirical equation, providing a new predictive equation for salinity intrusion in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2017-07-01

    The practical value of the surprisingly simple Van der Burgh equation in predicting saline water intrusion in alluvial estuaries is well documented, but the physical foundation of the equation is still weak. In this paper we provide a connection between the empirical equation and the theoretical literature, leading to a theoretical range of Van der Burgh's coefficient of 1/2 < K < 2/3 for density-driven mixing which falls within the feasible range of 0 < K < 1. In addition, we developed a one-dimensional predictive equation for the dispersion of salinity as a function of local hydraulic parameters that can vary along the estuary axis, including mixing due to tide-driven residual circulation. This type of mixing is relevant in the wider part of alluvial estuaries where preferential ebb and flood channels appear. Subsequently, this dispersion equation is combined with the salt balance equation to obtain a new predictive analytical equation for the longitudinal salinity distribution. Finally, the new equation was tested and applied to a large database of observations in alluvial estuaries, whereby the calibrated K values appeared to correspond well to the theoretical range.

  1. A statistical model of the human core-temperature circadian rhythm

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.

    2000-01-01

    We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.

  2. Generalization of the van der Pauw relationship derived from electrostatics

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan D.

    2011-08-01

    In an earlier paper, this author, along with two others Weiss et al. (2008) [1], demonstrated that the original van der Pauw relationship could be derived from three-dimensional electrostatics, as opposed to van der Pauw's use of conformal mapping. The earlier derivation was done for a conducting material of rectangular cross section with contacts placed at the corners. Presented here is a generalization of the previous work involving a square sample and a square array of electrodes that are not confined to the corners, since this measurement configuration could be a more convenient one. As in the previous work, the effects of non-zero sample thickness and contact size have been investigated. Buehler and Thurber derived a similar relationship using an infinite series of current images on a large and thin conducting sheet to satisfy the conditions at the boundary of the sample. The results presented here agree with theirs numerically, but analytic agreement could not be shown using any of the perused mathematical literature. By simply equating the two solutions, it appears that, as a byproduct of this work, a new mathematical relationship has been uncovered. Finally, the application of this methodology to the Hall Effect is discussed.

  3. Transport and deposition of cohesive pharmaceutical powders in human airway

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Chu, Kaiwei; Yu, Aibing

    2017-06-01

    Pharmaceutical powders used in inhalation therapy are in the size range of 1-5 microns and are usually cohesive. Understanding the cohesive behaviour of pharmaceutical powders during their transportation in human airway is significant in optimising aerosol drug delivery and targeting. In this study, the transport and deposition of cohesive pharmaceutical powders in a human airway model is simulated by a well-established numerical model which combines computational fluid dynamics (CFD) and discrete element method (DEM). The van der Waals force, as the dominant cohesive force, is simulated and its influence on particle transport and deposition behaviour is discussed. It is observed that even for dilute particle flow, the local particle concentration in the oral to trachea region can be high and particle aggregation happens due to the van der Waals force of attraction. It is concluded that the deposition mechanism for cohesive pharmaceutical powders, on one hand, is dominated by particle inertial impaction, as proven by previous studies; on the other hand, is significantly affected by particle aggregation induced by van der Waals force. To maximum respiratory drug delivery efficiency, efforts should be made to avoid pharmaceutical powder aggregation in human oral-to-trachea airway.

  4. Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure.

    PubMed

    Baranowski, M; Surrente, A; Klopotowski, L; Urban, J M; Zhang, N; Maude, D K; Wiwatowski, K; Mackowski, S; Kung, Y C; Dumcenco, D; Kis, A; Plochocka, P

    2017-10-11

    Stacking atomic monolayers of semiconducting transition metal dichalcogenides (TMDs) has emerged as an effective way to engineer their properties. In principle, the staggered band alignment of TMD heterostructures should result in the formation of interlayer excitons with long lifetimes and robust valley polarization. However, these features have been observed simultaneously only in MoSe 2 /WSe 2 heterostructures. Here we report on the observation of long-lived interlayer exciton emission in a MoS 2 /MoSe 2 /MoS 2 trilayer van der Waals heterostructure. The interlayer nature of the observed transition is confirmed by photoluminescence spectroscopy, as well as by analyzing the temporal, excitation power, and temperature dependence of the interlayer emission peak. The observed complex photoluminescence dynamics suggests the presence of quasi-degenerate momentum-direct and momentum-indirect bandgaps. We show that circularly polarized optical pumping results in long-lived valley polarization of interlayer exciton. Intriguingly, the interlayer exciton photoluminescence has helicity opposite to the excitation. Our results show that through a careful choice of the TMDs forming the van der Waals heterostructure it is possible to control the circular polarization of the interlayer exciton emission.

  5. A general method for constructing multidimensional molecular potential energy surfaces from {ital ab} {ital initio} calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, T.; Rabitz, H.

    1996-02-01

    A general interpolation method for constructing smooth molecular potential energy surfaces (PES{close_quote}s) from {ital ab} {ital initio} data are proposed within the framework of the reproducing kernel Hilbert space and the inverse problem theory. The general expression for an {ital a} {ital posteriori} error bound of the constructed PES is derived. It is shown that the method yields globally smooth potential energy surfaces that are continuous and possess derivatives up to second order or higher. Moreover, the method is amenable to correct symmetry properties and asymptotic behavior of the molecular system. Finally, the method is generic and can be easilymore » extended from low dimensional problems involving two and three atoms to high dimensional problems involving four or more atoms. Basic properties of the method are illustrated by the construction of a one-dimensional potential energy curve of the He{endash}He van der Waals dimer using the exact quantum Monte Carlo calculations of Anderson {ital et} {ital al}. [J. Chem. Phys. {bold 99}, 345 (1993)], a two-dimensional potential energy surface of the HeCO van der Waals molecule using recent {ital ab} {ital initio} calculations by Tao {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 8680 (1994)], and a three-dimensional potential energy surface of the H{sup +}{sub 3} molecular ion using highly accurate {ital ab} {ital initio} calculations of R{umlt o}hse {ital et} {ital al}. [J. Chem. Phys. {bold 101}, 2231 (1994)]. In the first two cases the constructed potentials clearly exhibit the correct asymptotic forms, while in the last case the constructed potential energy surface is in excellent agreement with that constructed by R{umlt o}hse {ital et} {ital al}. using a low order polynomial fitting procedure. {copyright} {ital 1996 American Institute of Physics.}« less

  6. The Ammonia Dimer Revisited

    NASA Astrophysics Data System (ADS)

    Dawes, Richard; Van Der Avoird, Ad

    2012-06-01

    The conclusion from microwave spectra by Nelson, Fraser, and Klemperer that the ammonia dimer has a nearly cyclic structure led to much debate about the issue of whether (NH_3)_2 is hydrogen bonded. This structure was surprising because most {ab initio} calculations led to a classical, nearly linear, hydrogen-bonded structure. An obvious explanation of the discrepancy between the outcome of these calculations and the microwave data which led Nelson {et al.} to their ``surprising structure'' might be the effect of vibrational averaging: the electronic structure calculations focus on finding the minimum of the intermolecular potential, the experiment gives a vibrationally averaged structure. Isotope substitution studies seemed to indicate, however, that the complex is nearly rigid. Additional data became available from high-resolution molecular beam far-infrared spectroscopy in the Saykally group. These spectra, displaying large tunneling splittings, indicate that the complex is very floppy. The seemingly contradictory experimental data were explained when it became possible to calculate the vibration-rotation-tunneling (VRT) states of the complex on a six-dimensional intermolecular potential surface. The potential used was a simple model potential, with parameters fitted to the far-infrared data. Now, for the first time, a six-dimensional potential was computed by high level {ab initio} methods and this potential will be used in calculations of the VRT states of (NH_3)_2 and (ND_3)_2. So, we will finally be able to answer the question whether the conclusions from the model calculations are indeed a valid explanation of the experimental data. D. Nelson, G. T. Fraser, and W. Klemperer J. Chem. Phys. 83 6201 (1985) J. G. Loeser, C. A. Schmuttenmaer, R. C. Cohen, M. J. Elrod, D. W. Steyert, R. J. Saykally, R. E. Bumgarner, and G. A. Blake J. Chem. Phys. 97 4727 (1992) E. H. T. Olthof, A. van der Avoird, and P. E. S. Wormer J. Chem. Phys. 101 8430 (1994) E. H. T. Olthof, A. van der Avoird, P. E. S. Wormer, J. G. Loeser, and R. J. Saykally J. Chem. Phys. 101 8443 (1994)

  7. Investigation of Gene Expression Correlating With Centrosome Amplification in Development and Progression of Breast Cancer

    DTIC Science & Technology

    2004-09-01

    M. A., Broerse, J. J., deVries, J. B., vandenBerg, K. K., Knaan, 33. Papa, D., Li, S. A. & Li, J. J. (2003) Mol. Carcinog. 38, 97-105. S. & van der ...Veer LI, Dai H, van de Vijver MJ, et al. Gene (n = 84). These data are similar to those of van de expression profiling predicts clinical outcome of...breast Vijver et al,"O who demonstrated a significant cancer. Nature 2002;415:530-536. correlation between outcome and expression of 70 10 van de Vijver

  8. Stability of casein micelles in milk

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    2002-07-01

    Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.

  9. NMR and NQR parameters of ethanol crystal

    NASA Astrophysics Data System (ADS)

    Milinković, M.; Bilalbegović, G.

    2012-04-01

    Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.

  10. Quarkonium-nucleus bound states from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, S.  R.; Chang, E.; Cohen, S.  D.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  11. Electronic Spectrum of Twisted Graphene Layers under Heterostrain

    NASA Astrophysics Data System (ADS)

    Huder, Loïc; Artaud, Alexandre; Le Quang, Toai; de Laissardière, Guy Trambly; Jansen, Aloysius G. M.; Lapertot, Gérard; Chapelier, Claude; Renard, Vincent T.

    2018-04-01

    We demonstrate that stacking layered materials allows a strain engineering where each layer is strained independently, which we call heterostrain. We combine detailed structural and spectroscopic measurements with tight-binding calculations to show that small uniaxial heterostrain suppresses Dirac cones and leads to the emergence of flat bands in twisted graphene layers (TGLs). Moreover, we demonstrate that heterostrain reconstructs, much more severely, the energy spectrum of TGLs than homostrain for which both layers are strained identically, a result which should apply to virtually all van der Waals structures opening exciting possibilities for straintronics with 2D materials.

  12. Experimental study of the valence band of Bi 2 Se 3

    DOE PAGES

    Gao, Yi-Bin; He, Bin; Parker, David; ...

    2014-09-26

    The valence band of Bi 2Se 3 is investigated with Shubnikov - de Haas measurements, galvanomagnetic and thermoelectric transport. At low hole concentration, the hole Fermi surface is closed and box-like, but at higher concentrations it develops tube-like extensions that are open. The experimentally determined density-of-states effective mass is lighter than density-functional theory calculations predict; while we cannot give a definitive explanation for this, we suspect that the theory may lack sufficient precision to compute room-temperature transport properties, such as the Seebeck coefficient, in solids in which there are Van der Waals interlayer bonds.

  13. Vacancy effects on the electronic and structural properties pentacene

    NASA Astrophysics Data System (ADS)

    Laraib, Iflah; Janotti, Anderson

    Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.

  14. Sinterable Ceramic Powders from Laser Heated Gas Phase Reactions and Rapidly Solidified Ceramic Materials.

    DTIC Science & Technology

    1984-07-01

    Growth Rate and Calculated Growth Rate (Transport Limited). 68 V.I. Hamaker Constants 8) V.2. A Comparison of Two Methods of Agglomerate Size...particles of the same material is given by: A ix A 12 x2+ 2x where x is A/2a and A is the Hamaker constant. Because the denominator goes to zero as A goes...20-H20 4.4* J. Visser, "On Hamaker Constants", Adv. Coll. Inter. Sci., 3,331-63, 1972. + B. Vincent, "The van der Waals Attraction Between Colloidal

  15. Constrained dipole oscillator strength distributions, sum rules, and dispersion coefficients for Br2 and BrCN

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2017-03-01

    Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.

  16. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  17. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    NASA Astrophysics Data System (ADS)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  18. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    PubMed

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  19. Ordered and layered structure of liquid nitromethane within a graphene bilayer: toward stabilization of energetic materials through nanoscale confinement.

    PubMed

    Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Kang, Ying; Ge, Zhongxue

    2015-03-01

    The structural characteristics involving thermal stabilities of liquid nitromethane (NM)—one of the simplest energetic materials—confined within a graphene (GRA) bilayer were investigated by means of all-atom molecular dynamics simulations and density functional theory calculations. The results show that ordered and layered structures are formed at the confinement of the GRA bilayer induced by the van der Waals attractions of NM with GRA and the dipole-dipole interactions of NM, which is strongly dependent on the confinement size, i.e., the GRA bilayer distance. These unique intermolecular arrangements and preferred orientations of confined NM lead to higher stabilities than bulk NM revealed by bond dissociation energy calculations.

  20. Collisional excitation of interstellar PO(X2Π) by He: new ab initio potential energy surfaces and scattering calculations

    NASA Astrophysics Data System (ADS)

    Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos

    2018-01-01

    We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.

  1. Method and Apparatus for the Quantification of Particulate Adhesion Forces on Various Substrates

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Connell, John W.

    2011-01-01

    Mitigation strategies for lunar dust adhesion have typically been limited to qualitative analysis. This technical memorandum describes the generation and operation of an adhesion testing device capable of quantitative assessment of adhesion forces between particulates and substrates. An aerosolization technique is described to coat a surface with a monolayer of particulates. Agitation of this surface, via sonication, causes particles to dislodge and be gravitationally fed into an optical particle counter. Experimentally determined adhesion force values are compared to forces calculated from van der Waals interactions and are used to calculate the work of adhesion using Johnson-Kendall-Roberts (JKR) theory. Preliminary results indicate that a reduction in surface energy and available surface area, through topographical modification, improve mitigation of particulate adhesion.

  2. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  3. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  4. The effect of the London-van der Waals dispersion force on interline heat transfer

    NASA Technical Reports Server (NTRS)

    Wayner, P. C., Jr.

    1978-01-01

    A theoretical procedure to determine the heat transfer characteristics of the interline region (junction of liquid-solid-vapor) from the macroscopic optical and thermophysical properties of the system is outlined. The analysis is based on the premise that the interline transport processes are controlled by the London-van der Waals dispersion force between condensed phases (solid and liquid). Numerical values of the dispersion constant are presented. The procedure is used to compare the relative size of the interline heat sink of various systems using a constant heat flux mode. This solution demonstrates the importance of the interline heat flow number, which is evaluated for various systems.

  5. Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp; Sekikawa, Munehisa; Inaba, Naohiko

    2015-02-15

    Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

  6. On the crystallization of polymer composites with inorganic fullerene-like particles.

    PubMed

    Enyashin, Andrey N; Glazyrina, Polina Yu

    2012-05-21

    The effect of a sulfide fullerene-like particle embedded into a polymer has been studied by molecular dynamics simulations on the nanosecond time scale using a mesoscopic Van der Waals force field evaluated for the case of a spherical particle. Even in this approach, neglecting the atomistic features of the surface, the inorganic particle acts as a nucleation agent facilitating the crystallization of the polymeric sample. A consideration of the Van der Waals force field of multi-walled sulfide nanoparticles suggests that in the absence of chemical interactions the size of the nanoparticle is dominating for the adhesion strength, while the number of sulfide layers composing the cage does not play a role.

  7. Some new exact solitary wave solutions of the van der Waals model arising in nature

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  8. Interactive spectral analyzer and comparator (ISAAC)

    NASA Astrophysics Data System (ADS)

    Latković, O.; Cséki, A.; Vince, I.

    2003-10-01

    We are developing an application for graphical comparison of observed and synthetic spectra (ISAAC). Synthetic spectrum calculation is performed by SPECTRUM, Stellar Spectral Synthesis Program by Richard O. Gray that we use with his kind permission. This program computes line profiles under LTE conditions in the given wavelength interval using a stellar (solar) atmosphere model, a spectral line data list (wavelength, energy levels, oscillator strengths, and damping constants), a file containing data for atoms and molecules, as well as a data file for hydrogen line profiles calculation. ISAAC offers a simple interface for viewing and changing any atomic parameter SPECTRUM uses for line profile calculation, enabling quick comparison of the new synthetic line profile with the observed one. In this way parameters like relative abundances, oscillator strengths and van der Waals damping constants can be improved, achieving a better agreement with the observed spectrum.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.; Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333

    We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1)more » GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.« less

  10. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  11. New insight on the Toba volcano super eruption (Sumatra Island, Indonesia) from BAR-9425 core.

    NASA Astrophysics Data System (ADS)

    Caron, B.; del Manzo, G.; Moreno, E.; Annachiara, B.; Baudin, F.; Bassinot, F. C.; Villemant, B.

    2017-12-01

    The famous 73 ka Toba eruption has produced about 2800 km3 of magma and is considered as one of the largest known eruptions during the Quaternary (Rose and Chesner, 1990). The BAR-9425 piston core collected during the 1994 joint French-Indonesian BARAT Cruise in the north Sumatra Island has recorded the volcano history of Toba from 60 to 100 ka (including the 73 ka Young Toba Tuff (YTT)). Tephra layers within this sediment core have been systematically studied using a combined analysis including stable isotope (δ18O, van der Kaars et al., 2012), high resolution tephrostratigraphic, morphological and a major-trace element studies. Our preliminary results show that not only one major eruption occurred between 60 and 100 ka but probably 11 distinct eruptions occurred. The 11 eruptions display an homogeneous major element composition. The oldest tephra with an estimated age of 101 ka, have a rhyolitic composition and 30% of relative abundance of volcanic glass shards. The other eruptive phases are dated at: 91,5-89,2 ka with a maximum of 16% of volcanic tephra; 85,7-84,8 ka with 64%; 81,8 ka with 22%; 74,4 ka with 43%, 72,3 ka with 89%, 71,4 ka with 92%; 68,9% with 96%; 66,5 ka with 94%; 65,2 ka with 75% and 63,1-60,3 ka with a maximum of 96% of volcanic tephra respectively (ages were calculated with a constant sediment rate of 4,3 cm/ka from data from van der Kaars et al., 2012). Some of these eruptions have had direct effect on regional vegetation as suggested by Van der Kaars et al. (2012) who propose that the gradual expansion of pine cover for the 7000 years following the eruption, is a consequence of the ash deposit from the 89 ka eruption. Our detailed tephrostratigraphy study of Toba eruptions will help to understand the impact on the ecosystems of northern Sumatra and on global climate change. Moreover, we expect to correlate the new tephra layers of Toba volcano to other sites by using AL-ICP-MS traces analyses and to use it as chronological makers.

  12. Vertical electron transport in van der Waals heterostructures with graphene layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp; Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 111005; Otsuji, T.

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equationmore » which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.« less

  13. Two body and multibody interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Han, Jianing; Gallagher, Tom

    2009-05-01

    Cold Rydberg atoms trapped in a Magneto Optical Trap (MOT) are not isolated and they tend to bond through dipole-dipole and multiple-multiple interactions between Rydberg atoms. The dipole-dipole interaction and van der Waals interaction between two atoms have been intensively studied. However, the fact that the dipole-dipole interaction and van der Waals interaction show the same size of broadening, studied by Raithel's group, and there is transition between two molecular states, studied by Farooqi and Overstreet, can not be explained by the two atom picture. The purpose of this paper is to show the multibody nature of a dense cold Rydberg gas by studying the molecular state microwave spectrum. Specifically, single body, two body and three body interaction regions are separated. Moreover, the multibody energy levels for selected geometries are calculated. In addition, multibody blockade will be discussed. [3pt] [1] A. Reinhard, K. C. Younge, T. Cubel Liebisch, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 100, 233201 (2008).[0pt] [2] S.M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic,Y.P. Zhang, J.R. Ensher, A.S. Estrin, C. Boisseau, R. Cote, E.E. Eyler, and P.L. Gould, Phys. Rev. Lett. 91, 183002 (2003).[0pt] [3] K. Richard Overstreet, Arne Schwettmann, Jonathan Tallant, and James P. Shaffer, Phys. Rev. A 76, 011403 (2007).

  14. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  15. The adsorption of CH3 and C6H6 on corundum-type sesquioxides: The role of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dabaghmanesh, Samira; Partoens, Bart; Neyts, Erik

    Van der Waals (vdW) interactions play an important role in the adsorption of atoms and molecules on the surface of solids. This role becomes more significant whenever the interaction between the adsorbate and surface is physisorption. Thanks to recent developments in density functional theory (DFT), we are now able to employ different vdW methods that helps us to account for the long-range vdW forces. However, the choice of the most efficient vdW functional for different materials is still an open question. In our study, we examine different vdW approaches to compute bulk and molecular adsorption properties of M2O3 oxides (M: Cr, Fe, and Al) as well-known examples of the corundum family. For the bulk properties, we compare our results for the heat of formation, cohesive energy, lattice parameters and bond distances as obtained using the different vdW functionals and available experimental data. Next we compute the adsorption energies of the benzene molecule (as an example of physisorption) and CH3 (as an example of chemisorption) on top of the (0001) M-terminated and MO-terminated surfaces. Calculating the vdW contributions into the adsorption energies, we find that the vdW functionals play important role not just in the weak adsorptions but even in strong adsorption.

  16. Molecular origins of fluorocarbon hydrophobicity

    PubMed Central

    Dalvi, Vishwanath H.; Rossky, Peter J.

    2010-01-01

    We have undertaken atomistic molecular simulations to systematically determine the structural contributions to the hydrophobicity of fluorinated solutes and surfaces compared to the corresponding hydrocarbon, yielding a unified explanation for these phenomena. We have transformed a short chain alkane, n-octane, to n-perfluorooctane in stages. The free-energy changes and the entropic components calculated for each transformation stage yield considerable insight into the relevant physics. To evaluate the effect of a surface, we have also conducted contact-angle simulations of water on self-assembled monolayers of hydrocarbon and fluorocarbon thiols. Our results, which are consistent with experimental observations, indicate that the hydrophobicity of the fluorocarbon, whether the interaction with water is as solute or as surface, is due to its “fatness.” In solution, the extra work of cavity formation to accommodate a fluorocarbon, compared to a hydrocarbon, is not offset by enhanced energetic interactions with water. The enhanced hydrophobicity of fluorinated surfaces arises because fluorocarbons pack less densely on surfaces leading to poorer van der Waals interactions with water. We find that interaction of water with a hydrophobic solute/surface is primarily a function of van der Waals interactions and is substantially independent of electrostatic interactions. This independence is primarily due to the strong tendency of water at room temperature to maintain its hydrogen bonding network structure at an interface lacking hydrophilic sites. PMID:20643968

  17. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  18. Dynamics and Fragmentation of Hydrogen Bonded and van der Waal Clusters upon 26.5 eV Soft X-ray Laser Ionization

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Heinbuch, Scott; Bernstein, Elliot; Rocca, Jorge

    2006-05-01

    A desk-top soft x-ray laser is applied to the study of water, methanol, ammonia, sulfur dioxide, carbon dioxide, mixed sulfur dioxide-water, and mixed carbon dioxide-water clusters through single photon ionization time of flight mass spectroscopy. Almost all of the energy above the vertical ionization energy is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the mass spectra for the first three systems. The temperatures of the neutral water and methanol clusters can be estimated. In the case of pure SO2 and CO2, the mass spectra are dominated by (SO2)n^+ and (CO2)n^+ cluster series. When a high or low concentration of SO2/CO2 is mixed with water, we observe (SO2/CO2)nH2O^+ or SO2/CO2(H2O)nH^+ in the mass spectra, respectively. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated for the protonated water, methanol, and ammonia clusters as well as for SO2 and CO2 clusters. We find that the 26.5 eV soft x-ray laser is a nearly ideal tool for the study of hydrogen bonded and van der Waals cluster systems and we are currently exploring its usefulness for other more strongly bound systems.

  19. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures.

    PubMed

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-25

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe 3 /CrSiTe 3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe 3 /CrSiTe 3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe 3 /CrSiTe 3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe 3 /CrSiTe 3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  20. Milk caseins as useful vehicle for delivery of dipyridamole drug.

    PubMed

    Dezhampanah, Hamid; Esmaili, Masoomeh; Hasani, Leila

    2018-05-01

    The interaction of bovine milk α- and β-caseins as an efficient drug carrier system with Dipyridamole (DIP) was investigated using spectroscopy and molecular docking studies at different temperatures (20-37 °C). FTIR, CD, and fluorescence spectroscopy methods demonstrated that α- and β-caseins interact with DIP molecule mainly via hydrophobic and hydrophilic interactions and change in secondary structure of α- and β-caseins. DIP showed a higher quenching efficiency and binding constant of α-casein than β-casein. There was only one binding site for DIP and it was located on the surface of the protein molecule. The thermodynamic parameters of calculation showed that the binding process occurs spontaneously and demonstrated that α- and β-caseins provide very good binding and entrapment to DIP via hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Fluorescence resonance energy transfer, synchronous fluorescence spectroscopy, and docking study showed that DIP binds to the Trp residues of α- and β-casein molecules with short distances. Docking study showed that DIP molecule made several hydrogen bonds and van der Waals interactions with α- and β-caseins. The study of cell culture and micellar solubility of DIP demonstrated α- and β-caseins relatively the same helping in delivery of DIP. Milk α- and β-caseins are considered as a useful vehicle for the solublization and stabilization of DIP in aqueous solution at natural pH.

Top