Bernstein, N.; Feldman, J. L.; Singh, David J.
2010-04-05
While the thermal conductivity of the filled skutterudites has been of great interest it had not been calculated within a microscopic theory. Here a central force, Guggenheim-McGlashen, model with parameters largely extracted from first-principles calculations and from spectroscopic data, specific to LaFe{sub 4} Sb{sub 12} or CoSb{sub 3} , is employed in a Green-Kubo/molecular dynamics calculation of thermal conductivity as a function of temperature. We find that the thermal conductivity of a filled solid is more than a factor of two lower than that of an unfilled solid, assuming the “framework” interatomic force parameters are the same between filled and unfilled solids, and that this decrease is almost entirely due to the cubic anharmonic interaction between filling and framework atoms. In addition, partially as a test of our models, we calculate thermal expansivity and isotropic atomic mean-square displacements using both molecular dynamics and lattice dynamics methods. These quantities are in reasonable agreement with experiment, increasing our confidence in the anharmonic parameters of our models. We also find an anomalously large filling-atom mode Gruneisen parameter that is apparently observed for a filled skutterudite and is observed in a clathrate.
Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor
Lindsay, Lucas R.; Parker, David S.
2015-10-01
We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric powermore » factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.« less
Calculated transport properties of CdO: Thermal conductivity and thermoelectric power factor
NASA Astrophysics Data System (ADS)
Lindsay, L.; Parker, D. S.
2015-10-01
We present first-principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 W m-1K-1 is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ , despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric power factors may occur if the material can be heavily doped p type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.
Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor
Lindsay, Lucas R.; Parker, David S.
2015-10-01
We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity κ value of 0.7 Wm^{-1}K^{-1} is approximately one order of magnitude too small; our calculations of κ of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric power factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.
Bock, Steffen; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S; Vesovic, Velisa
2004-05-01
The transport properties of pure carbon dioxide have been calculated from the intermolecular potential using the classical trajectory method. Results are reported in the dilute-gas limit for thermal conductivity and thermomagnetic coefficients for temperatures ranging from 200 K to 1000 K. Three recent carbon dioxide potential energy hypersurfaces have been investigated. Since thermal conductivity is influenced by vibrational degrees of freedom, not included in the rigid-rotor classical trajectory calculation, a correction for vibration has also been employed. The calculations indicate that the second-order thermal conductivity corrections due to the angular momentum polarization (< 2%) and velocity polarization (< 1%) are both small. Thermal conductivity values calculated using the potential energy hypersurface by Bukowski et al. (1999) are in good agreement with the available experimental data. They underestimate the best experimental data at room temperature by 1% and in the range up to 470 K by 1%-3%, depending on the data source. Outside this range the calculated values, we believe, may be more reliable than the currently available experimental data. Our results are consistent with measurements of the thermomagnetic effect at 300 K only when the vibrational degrees of freedom are considered fully. This excellent agreement for these properties indicates that particularly the potential surface of Bukowski et al. provides a realistic description of the anisotropy of the surface. PMID:15267716
Ab initio calculation of mechanical and thermal properties of U2Mo intermetallic
NASA Astrophysics Data System (ADS)
Jaroszewicz, S.; Losada, E. L.; Garcés, J. E.; Mosca, H. O.
2013-10-01
We present a study of structural, elastic and thermodynamic properties of tetragonal (C11b) U2Mo by means of density-functional theory based calculations using full-potential linearized augmented plane wave method. In this approach the generalized gradient approximation were used for the exchange-correlation potential calculation. The optimized lattice parameters are in excellent agreement with the experimental data. Through the Debye-Grüneisen model the temperature and pressure dependence of equation of state, bulk modulus, thermal expansion and specific heat have been obtained and discussed in the range of pressure 0-20 GPa and the temperature 0-800 K.
Elastic and Thermal Properties of Silicon Compounds from First-Principles Calculations
NASA Astrophysics Data System (ADS)
Hou, Haijun; Zhu, H. J.; Cheng, W. H.; Xie, L. H.
2016-07-01
The structural and elastic properties of V-Si (V3Si, VSi2, V5Si3, and V6Si5) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grüneisen parameter, and Debye temperature of V-Si compounds have been calculated.
NASA Astrophysics Data System (ADS)
Vila, F. D.; Rehr, J. J.
Effects of thermal vibrations are essential to obtain a more complete understanding of the properties of complex materials. For example, they are important in the analysis and simulation of x-ray absorption spectra (XAS). In previous work we introduced an ab initio approach for a variety of vibrational effects, such as crystallographic and XAS Debye-Waller factors, Debye and Einstein temperatures, and thermal expansion coefficients. This approach uses theoretical dynamical matrices from which the locally-projected vibrational densities of states are obtained using a Lanczos recursion algorithm. In this talk I present recent improvements to our implementation, which permit simulations of more complex materials with up to two orders of magnitude larger simulation cells. The method takes advantage of parallelization in calculations of the dynamical matrix with VASP. To illustrate these capabilities we discuss two problems of considerable interest: negative thermal expansion in ZrW2O8; and local inhomogeneities in the elastic properties of supported metal nanoparticles. Both cases highlight the importance of a local treatment of vibrational properties. Supported by DOE Grant DE-FG02-03ER15476, with computer support from DOE-NERSC.
NASA Astrophysics Data System (ADS)
Zhou, Jiawei; Liao, Bolin; Chen, Gang
2016-04-01
The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). An understanding of the transport details can lead to material designs with better performances. In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials (such as band structure and phonon dispersion) accurately. Accordingly, methods have been developed to calculate the transport properties based on an ab initio approach. In this review we focus on the thermal, electrical, and thermoelectric transport properties of semiconductors, which represent the basic transport characteristics of the two degrees of freedom in solids—electronic and lattice degrees of freedom. Starting from the coupled electron-phonon Boltzmann transport equations, we illustrate different scattering mechanisms that change the transport features and review the first-principles approaches that solve the transport equations. We then present the first-principles results on the thermal and electrical transport properties of semiconductors. The discussions are grouped based on different scattering mechanisms including phonon-phonon scattering, phonon scattering by equilibrium electrons, carrier scattering by equilibrium phonons, carrier scattering by polar optical phonons, scatterings due to impurities, alloying and doping, and the phonon drag effect. We show how the first-principles methods allow one to investigate transport properties with unprecedented detail and also offer new insights into the electron and phonon transport. The current status of the simulation is mentioned when appropriate and some of the future directions are also discussed.
NASA Technical Reports Server (NTRS)
Cleghorn, T. F.
1994-01-01
MIPROPS is a set of programs which gives the thermophysical and transport properties of selected fluids. Although these programs are written in FORTRAN 77 for implementation on microcomputers, they are direct translations of interactive FORTRAN IV programs which were originally developed for large mainframes. MIPROPS calculates the properties of fluids in both the liquid and vapor states over a wide range of temperatures and pressures. The fluids included are: helium, parahydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, and iso- and normal butane. All of the programs except for the helium program utilize the same mathematical model of the equation of state. A separate program was necessary for helium, as the model for the helium thermodynamic surface is of a different form. The input variables are any two of pressure, density, or temperature for the single phase regions, and either pressure or temperature for the saturated liquid or vapor states. The output is pressure, density, temperature, internal energy, enthalpy, entropy, specific heat capacities, and speed of sound. In addition, viscosity, thermal conductivity, and dielectric constants are calculated for most of the fluids. The user can select either a single point or a table of output values for a specified temperature range, and can display the data either in engineering or metric units. This machine independent FORTRAN 77 program was implemented on an IBM PC XT with an MS-DOS 3.21 operating system. It has a memory requirement of approximately 100K. The program was developed in 1986.
NASA Astrophysics Data System (ADS)
Mebrouki, M.; Ouahrani, T.; Çiftci, Y. Öztekin
2016-07-01
Using a toolkit of theoretical techniques comprising ab initio density functional theory calculations and quasiharmonic approximation, we investigate temperature dependence of dynamical properties of BaVO_3 perovskite. This interest is triggered by the fact that, recently, it was possible to synthesize a BaVO_3 perovskite, in a cubic phase, at high pressure and temperature. First-principle calculations are achieved thanks to recent development in numerical facilities, especially phonon dispersion curves which are then fully obtained. Elastic constants of the compound are dependent on temperature due to the inevitable anharmonic effects in solids. We show that at low temperature, the full account of the thermal effects incorporating the phonon densities and Sommerfeld model is more appropriate to calculate the thermal properties of a metal.
NASA Astrophysics Data System (ADS)
Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.
2015-06-01
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.
Nagabalasubramanian, P B; Periandy, S; Karabacak, Mehmet; Govindarajan, M
2015-06-15
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100cm(-1). The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated. PMID:25795608
Properties of Solar Thermal Fuels by Accurate Quantum Monte Carlo Calculations
NASA Astrophysics Data System (ADS)
Saritas, Kayahan; Ataca, Can; Grossman, Jeffrey C.
2014-03-01
Efficient utilization of the sun as a renewable and clean energy source is one of the major goals of this century due to increasing energy demand and environmental impact. Solar thermal fuels are materials that capture and store the sun's energy in the form of chemical bonds, which can then be released as heat on demand and charged again. Previous work on solar thermal fuels faced challenges related to the cyclability of the fuel over time, as well as the need for higher energy densities. Recently, it was shown that by templating photoswitches onto carbon nanostructures, both high energy density as well as high stability can be achieved. In this work, we explore alternative molecules to azobenzene in such a nano-templated system. We employ the highly accurate quantum Monte Carlo (QMC) method to predict the energy storage potential for each molecule. Our calculations show that in many cases the level of accuracy provided by density functional theory (DFT) is sufficient. However, in some cases, such as dihydroazulene, the drastic change in conjugation upon light absorption causes the DFT predictions to be inconsistent and incorrect. For this case, we compare our QMC results for the geometric structure, band gap and reaction enthalpy with different DFT functionals.
NASA Astrophysics Data System (ADS)
Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin
2016-06-01
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.
Calculates Thermal Neutron Scattering Kernel.
1989-11-10
Version 00 THRUSH computes the thermal neutron scattering kernel by the phonon expansion method for both coherent and incoherent scattering processes. The calculation of the coherent part is suitable only for calculating the scattering kernel for heavy water.
NASA Astrophysics Data System (ADS)
Liu, Gang; Sun, Hongyi; Zhou, Jian; Li, Qingfang; Wan, X. G.
2016-05-01
The phonon spectra, Debye temperatures, Grüneisen parameters, and the intrinsic lattice thermal conductivities of the layered oxychalcogenides BiCuOCh (Ch = S, Se, Te) have been studied with first-principles calculations. We find that the lattice thermal conductivities of them are anisotropic and quite low. The lowest thermal conductivity is only 0.14 Wm-1K-1 along c-axis for BiCuOTe. The size-dependent thermal conductivity of them is also discussed.
NASA Astrophysics Data System (ADS)
Chelli, S.; Meradji, H.; Amara Korba, S.; Ghemid, S.; El Haj Hassan, F.
2014-12-01
The structural, electronic thermodynamic and thermal properties of BaxSr1-xTe ternary mixed crystals have been studied using the ab initio full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, the Perdew-Burke-Ernzerhof-generalized gradient approximation (PBE-GGA) was used for the exchange-correlation potential. Moreover, the recently proposed modified Becke Johnson (mBJ) potential approximation, which successfully corrects the band-gap problem was also used for band structure calculations. The ground-state properties are determined for the cubic bulk materials BaTe, SrTe and their mixed crystals at various concentrations (x = 0.25, 0.5 and 0.75). The effect of composition on lattice constant, bulk modulus and band gap was analyzed. Deviation of the lattice constant from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the ternary BaxSr1-xTe alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ΔHm as well as the phase diagram. It was shown that these alloys are stable at high temperature. Thermal effects on some macroscopic properties of BaxSr1-xTe alloys were investigated using the quasi-harmonic Debye model, in which the phononic effects are considered.
PHYSICOCHEMICAL PROPERTY CALCULATIONS
Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...
Erba, Alessandro; Maul, Jefferson; Civalleri, Bartolomeo
2016-01-31
An ab initio quantum-mechanical theoretical framework is presented to compute the thermal properties of molecular crystals. The present strategy combines dispersion-corrected density-functional-theory (DFT-D), harmonic phonon dispersion, quasi-harmonic approximation to the lattice dynamics for thermal expansion and thermodynamic functions, and quasi-static approximation for anisotropic thermo-elasticity. The proposed scheme is shown to reliably describe thermal properties of the urea molecular crystal by a thorough comparison with experimental data. PMID:26670006
Thermal properties of high-power InGaAsP/InP stripe-geometry laser diode: calculation and analyses
NASA Astrophysics Data System (ADS)
Li, Hongyan; Li, Hong; Shi, Jiawei; Jin, Enshun; Gao, Dingsan
1998-08-01
In this paper, theoretical calculation results of dynamically thermal properties of high-power InGaAsP/InP stripe-geometry laser diode has been given based on the 2D thermal conduction model by means of finite difference. In this calculation, except for active layer heating due to nonradiative recombination and partial reabsorption of radiation, the radiative transfer of the spontaneous radiation through the wide-gap passive layers, the Joule heating is taken into account. At the same time, active region heat source is simplified as line heat source. Through the temperature profiles acquired by changing construction parameters and supplied power, we can see that temperature profiles have a certain relation with the construction parameters and supplied power. At last, the thermal resistance achieved by theory calculation compares with the laser diode thermal resistance achieved by measuring, the proportion of the crystal, the heat sink and the shell's thermal resistance is obtained. The calculation shows that a diamond film sandwiched between the crystal and the heat sink can improve the diode's thermal properties obviously.
Calculation of thermal diffuse scattering
NASA Astrophysics Data System (ADS)
Wakabayashi, N.; Nicklow, R. M.; Katano, S.; Ishii, Y.; Child, H. R.; Smith, H. G.; Fernandez-Baca, J. A.
We have developed a computer program to calculate the thermal diffuse scattering (TDS) intensity distribution for single-crystal specimens in a diffractometer with no energy analysis. We assumed that the phonon frequencies are approximated by those of elastic waves and that the elastic constants, density and lattice parameters of the system under study are known. The results of the calculations were compared to experimental data obtain for single crystals of Si, diamond and NiAl at the wide-angle neutron diffractometer (WAND) at the HFIR at Oak Ridge National Laboratory. Excellent agreement was found between the calculations and the experimental observations.
NASA Technical Reports Server (NTRS)
Wanser, K. H.
1981-01-01
Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.
NASA Astrophysics Data System (ADS)
Ben hassen, C.; Boujelbene, M.; Bahri, M.; Zouari, N.; Mhiri, T.
2014-09-01
The present paper undertakes the study of a new hybrid compound [2-CH3C6H4NH3]2SeO4 characterized by the X-ray diffraction, IR, DFT calculation, TG-DTA, DSC and electrical conductivity. This new organic-inorganic hybrid compound crystallizes in the monoclinic system with P21/c space group and the following parameters a = 14.821 (5) Å; b = 16.245 (5) Å; c = 6.713 (5) Å; ß = 102.844 (5)°, Z = 4 and V = 1575.8 (14) Å3. The atomic arrangement can be described as isolated tetrahedral SeO42- connected with the organic groups by means of Nsbnd H⋯O hydrogen bonds to form infinite sinusoidal chains in the c-direction. BHHLYP/6-311g** method was used to determine the harmonic frequencies for two optimized cluster structures. The calculated modes were animated using the Molden graphical package to give tentative assignments of the observed IR spectra. Thermal analysis of the title compound does not indicate the occurrence of a phase transition in the temperature range of 300-650 K. Dielectric study of this compound has been measured, in order to determine the conductivity. The conductivity relaxation parameters associated with some H+ conduction have been determined from an analysis of the M″/M″max spectrum measured in a wide temperature range.
Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S; Vesovic, Velisa
2009-03-28
Transport properties of pure methane have been calculated in the rigid-rotor approximation using the recently proposed intermolecular potential energy hypersurface [R. Hellmann et al., J. Chem. Phys. 128, 214303 (2008)] and the classical-trajectory method. Results are reported in the dilute-gas limit for the temperature range of 80-1500 K. The calculated thermal conductivity values are in very good agreement with the measured data and correlations. In the temperature range of 310-480 K the calculated values underestimate the best experimental data by 0.5%-1.0%. We suggest that the calculated values are more accurate, especially at low and high temperatures, than the currently available correlations based on the experimental data. Our results also agree well with measurements of thermal transpiration and of the thermomagnetic coefficients. We have shown that although the dominant contribution to the thermomagnetic coefficients comes from the Wjj polarization in the spherical approximation, the contribution of a second polarization, Wj, cannot be neglected nor can a full description of the Wjj polarization. The majority of the volume viscosity measurements around room temperature are consistent with the calculated values but this is not the case at high and low temperatures. However, for nuclear-spin relaxation the calculated values consistently exceed the measurements, which are mutually consistent within a few percent. PMID:19334832
NASA Astrophysics Data System (ADS)
Łuszczak, Katarzyna; Persano, Cristina; Braun, Jean; Stuart, Finlay
2016-04-01
Low temperature thermochronometers are mainly used to decipher crustal denudation histories. However, these methods provide cooling paths that can be confidently translated into denudation rates only if the geothermal gradient at the time of cooling is known. As past geothermal gradients cannot be directly measured, they can be sometimes estimated from the thermochronometric data, when borehole data or vertical profiles are available. In all the other cases, our knowledge of the spatial and temporal variation of the geothermal gradient is limited. It is common practice in many thermochronometric studies to calculate the amounts and rates of denudation through time assuming a constant, average present-day value for the geothermal gradient. In this study, using 1D and 3D (Pecube) models, we have investigated the impact of crustal heat production and thermal conductivity (κ) on the estimated values of denudation, taking central west Britain as our case study. In this region, the apatite fission track (AFT) ages describe a characteristic U-shape pattern with early Cenozoic ages in the English Lake District and older, up to 200 Ma ages northwards in S Scotland, and southwards in N Wales. This pattern, which could be referred to a difficult to justify localized, differential denudation, can actually be best explained as an effect of the spatially variable heat production. The insulating effect of low thermal conductivity Upper Mesozoic sedimentary rocks, composed largely by chalk, increases the palaeogeothermal gradient and reduces the amounts of denudation, especially in the Lake District, where a heat productive granite batholith increases the local heat flow. The observed AFT age pattern may be, therefore, explained without any significant variation of early Cenozoic denudation across central west Britain. If the thermal proprieties of the crust are not taken into account, denudation in the Lake District will be overestimated by a factor of 1.5-2.0 and the mechanisms
NASA Astrophysics Data System (ADS)
Tsafack, Thierry; Piccinini, Enrico; Lee, Bong-Sub; Pop, Eric; Rudan, Massimo
2011-09-01
We present a comprehensive computational study on the properties of rock salt-like and hexagonal chalcogenide Ge2Sb2Te5 supported by experimental data. We calculate the electronic structure using density functional theory (DFT); the obtained density of states (DOS) compares favorably with experiments, and is suitable for transport analysis. Optical constants including refractive index and absorption coefficient capture major experimental features, aside from an energy shift owed to an underestimate of the bandgap that is typical of DFT calculations. We also compute the phonon DOS for the hexagonal phase, obtaining a speed of sound and thermal conductivity in good agreement with the experimental lattice contribution. The calculated heat capacity reaches ˜1.4 × 106 J/(m3 K) at high temperature, in agreement with experiments, and provides insight into the low-temperature range (<150 K), where data are unavailable.
First-principle calculations of the thermal properties of SrTiO3 and SrO(SrTiO3)n (n=1,2)
NASA Astrophysics Data System (ADS)
Lu, Yanli; Jia, Dewei; Gao, Feng; Hu, Tingting; Chen, Zheng
2015-01-01
The thermal properties of SrTiO3 and SrO(SrTiO3)n (n=1,2) with layered perovskite structure are analyzed using the Debye-Grüneisen model combined with ab initio calculations. The thermal expansion coefficient, specific heat at constant pressure CP and specific heat at constant volume CV, adiabatic bulk modulus BS and isothermal bulk modulus BT, entropy, and Debye temperature are investigated. At temperatures higher than 550 °C, the thermal expansion coefficient and the discrepancies between CP and CV, as well as that between BS and BT, of Sr3Ti2O7 increase the fastest as the temperature rises, followed by those of Sr2TiO4, and those of SrTiO3 increase the slowest. The bulk module and Debye temperature of Sr2TiO4, Sr3Ti2O7, and SrTiO3 increase with decreasing SrO/SrTiO3 ratio at 0 K. With increasing temperature, however, the bulk modulus and Debye temperature of Sr3Ti2O7 both rapidly decrease and even fall below those of Sr2TiO4 when the temperature is higher than specific values. We also analyzed the thermal properties of these three compounds in the pressure range from 0 GPa to 16 GPa at 300 K.
Thermal radiative properties: Coatings.
NASA Technical Reports Server (NTRS)
Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.
1972-01-01
This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Thermal Properties Measurement Report
Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch
2015-08-01
The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U_{3}Si_{2} (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).
Mishra, Karuna Kara; Achary, S Nagabhusan; Chandra, Sharat; Ravindran, T R; Sinha, Anil K; Singh, Manavendra N; Tyagi, Avesh K
2016-09-01
Variable-temperature Raman spectroscopic and synchrotron X-ray diffraction studies were performed on BaTe2O6 (orthorhombic, space group: Cmcm), a mixed-valence tellurium compound with a layered structure, to understand structural stability and anharmonicity of phonons. The structural and vibrational studies indicate no phase transition in it over a wider range of temperature (20 to 853 K). The structure shows anisotropic expansion with coefficients of thermal expansion in the order αb ≫ αa > αc, which was attributed to the anisotropy in bonding and structure of BaTe2O6. Temperature evolution of Raman modes of BaTe2O6 indicated a smooth decreasing trend in mode frequencies with increasing temperature, while the full width at half-maximum (fwhm) of all modes systematically increases due to a rise in phonon scattering processes. With the use of our earlier reported isothermal mode Grüneisen parameters, thermal properties such as thermal expansion coefficient and molar specific heat are calculated. The pure anharmonic (explicit) and quasiharmonic (implicit) contribution to the total anharmonicity is delineated and compared. The temperature dependence of phonon mode frequencies and their fwhm values are analyzed by anharmonicity models, and the dominating anharmonic phonon scattering mechanism is concluded in BaTe2O6. In addition to the lattice modes, several external modes of TeOn (n = 5, 6) are found to be strongly anharmonic. The ab initio electronic structure calculations indicated BaTe2O6 is a direct band gap semiconductor with gap energy of ∼2.1 eV. Oxygen orbitals, namely, O-2p states in the valence band maximum and the sp-hybridized states in the conduction band minimum, are mainly involved in the electronic transitions. In addition a number of electronic transitions are predicted by the electronic structure calculations. Experimental photoluminescence results are adequately explained by the ab initio calculations. Further details of the structural and
NASA Astrophysics Data System (ADS)
Guezlane, M.; Baaziz, H.; El Haj Hassan, F.; Charifi, Z.; Djaballah, Y.
2016-09-01
Density functional theory (DFT) based on the full-potential linearized augmented plane wave (FP-LAPW) method is used to investigate the structural, electronic, magnetic and thermal properties of Co2CrxFe1-xX (X=Al, Si) full Heusler alloys, with L21 structure. The structural properties and spin magnetic moments are investigated by the generalized gradient approximations (GGA) minimizing the total energy. For band structure calculations, GGA, the Engel-Vosko generalized gradient approximation (EVGGA) and modified Becke-Johnson (mBJ) schemes are used. Results of density of states (DOS) and band structures show that these alloys are half-metallic ferromagnets (HMFS). A regular-solution model has been used to investigate the thermodynamic stability of the compounds Co2CrxFe1-xX that indicates a phase miscibility gap. The thermal effects using the quasi-harmonic Debye model are investigated within the lattice vibrations. The temperature and pressure effects on the heat capacities, Debye temperatures and entropy are determined from the non-equilibrium Gibbs functions.
LMR thermal hydraulics calculations in the US
Dunn, F.E.; Malloy, D.J.; Mohr, D.
1987-04-27
A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.
How Accurately can we Calculate Thermal Systems?
Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A
2004-04-20
I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.
Ab initio DFT calculations of vibrational properties
NASA Astrophysics Data System (ADS)
Story, S. M.; Vila, F. D.; Kas, J. J.; Rehr, J. J.
2014-03-01
Vibrational properties such as EXAFS and crystallographic Debye-Waller factors, vibrational free energies, phonon self-energies, and phonon contributions to the electron spectral function, are key to understanding many aspects of materials beyond ground state electronic structure. Thus, their simulation using first principles methods is of particular importance. Many of these vibrational properties can be calculated from the dynamical matrix and electron-phonon coupling coefficients obtained from DFT calculations. Here we present a code DMVP that calculates these properties from the output of electronic structure codes such as ABINIT, Gaussian, Quantum Espresso and VASP. Our modular interfacing tool AI2PS allows us to translate the different outputs into a DMVP compatible format and generate vibrational properties in an automated way. Finally, we present some current applications that take advantage of the modular form of AI2PS to extend its capabilities to the calculation of coefficients of thermal expansion and other properties of interest such as infrared spectra. This work was supported by DOE Grant DE-FG02-97ER45623.
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.
1989-01-01
Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.
Thermal properties of heterogeneous grains
NASA Technical Reports Server (NTRS)
Lien, David J.
1988-01-01
Cometary dust is not spherical nor homogeneous, yet these are the assumptions used to model its thermal, optical, and dynamical properties. To better understand the effects of heterogeneity on the thermal and optical properties of dust grains, the effective dielectric constant for an admixture of magnetite and a silicate were calculated using two different effective medium theories: the Maxwell-Garnett theory and the Bruggeman theory. In concept, the MG theory describes the effective dielectric constant of a matrix material into which is embedded a large number of very small inclusions of a second material. The Bruggeman theory describes the dielectric constant of a well mixed aggregate of two or more types of materials. Both theories assume that the individual particles are much smaller than the wavelength of the incident radiation. The refractivity for a heterogeneous grain using the MG theory is very similar to the refractivity of the matrix material, even for large volume fractions of the inclusion. The equilibrium grain temperature for spherical particles sized from .001 to 100 microns in radius at 1 astronomical unit from the sun was calculated. Further explanation is given.
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui
1990-01-01
Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.
Thermal Properties of oil sand
NASA Astrophysics Data System (ADS)
LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.
2013-12-01
Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.
The calculation of thermophysical properties of nickel plasma
Apfelbaum, E. M.
2015-09-15
The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data of measurements.
REACTOR GROUT THERMAL PROPERTIES
Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.
2011-01-28
Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.
Thermal Property Parameter Estimation of TPS Materials
NASA Technical Reports Server (NTRS)
Maddren, Jesse
1998-01-01
Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.
NASA Astrophysics Data System (ADS)
Hiadsi, S.; Bouafia, H.; Sahli, B.; Abidri, B.; Bouaza, A.; Akriche, A.
2016-08-01
This study presents a theoretical prediction of the structural, mechanical, electronic and thermal properties of the zinc-based Perovskites (AgZnF3 and KZnF3) within the framework of Density Functional Theory (DFT) using All-electron self consistent Full Potential Augmented Plane Waves plus local orbital FP-(L)APW + lo method. To make our work comparable and reliable, several functional were used for the exchange-correlation potential. Also, this study intends to provide a basis and an improvement for updating either the values already predicted by other previous work (by using obsolete functional) or to predict them for the first time. GGA-PBE and GGA-PBEsol were used to predict the structural properties of AgZnF3 and KZnF3 Perovskites such as lattice parameter, bulk modulus and its pressure derivative and the cohesive energy. For these properties, the found values are in very good agreement; also those found by GGA-PBEsol are closer to other available previous and experimental results. The electronic properties of these materials are investigated and compared to provide a consolidated prediction by using the modified Becke Johnson potential TB-mBJ with other functional; the values found by this potential are closer to the available proven results and show that these materials exhibit an indirect gap from R to Γ point. The charge densities plot for [110] direction and QTAIM (Quantum Theory of Atoms in Molecules) theory indicate that ionic character is predominate for (K, Ag, Zn)sbnd F bonds. Finally, the effect of temperature and pressure on the unit cell volume, the heat capacity CV and entropy were studied using the quasi-harmonic Debye model.
Calculation of thermophysical properties of sodium. [LMFBR
Fink, J.K.; Leibowitz, L.
1981-01-01
The thermodynamic properties of sodium previously recommended by Padilla have been updated. As much as possible, the approach described by Padilla has been used. For sodium in the states of saturated liquid and vapor, subcooled liquid and superheated vapor, the following thermodynamic properties were determined: enthalpy, heat capacity (constant pressure and constant volume), pressure, density, thermal-expansion coefficient, and compressibility (adiabatic and isothermal). In addition to the above properties, thermodynamic properties including heat of fusion, heat of vaporization, surface tension, speed of sound and transport properties of themal conductivity, thermal diffusivity, emissivity, and viscosity were determined for saturated sodium.
Thermal properties for vegetation cover
NASA Astrophysics Data System (ADS)
Aleksyutina, D.; Motenko, R.
2011-12-01
Different samples of undisturbed vegetation cover were studied under laboratory conditions. Samples were collected from New Chara city, north of the Chita region. Vegetation cover in this area is represented by moss, lichen and tussock growth. Thermal properties were investigated by the I-st type regular mode method (a-calorimeter), the freezing temperature was studied by cryoscopic methods. The dry density of sampled specimens varies from 0.04 to 0.24 g/cm3, and humidity varies from 250 to 375 percent. The freezing temperature depends on moisture content and varies from -0.2 to 0 degrees centigrade. The vegetation cover had low thermal conductivities which varies from 0.05 to 0.46 W/(m*K) in unfrozen conditions, and from 0.07 to 1.14 W/(m*K) in frozen conditions, according to density and moisture content. Diffusivity of samples varies from 0.073*10-6 to 0.114*10-6 m2/s in thawed conditions, and from 0.174*10-6 to 0.584*10-6 m2/s in frozen conditions. The sod (bottom of vegetation cover) had relatively high thermal properties. Thermal properties of vegetation cover and peat (turf) were compared. The thermal conductivity of peat was much higher than thermal conductivity of vegetation cover. This data may be used for modeling of the thickness of the seasonally thawed layer and ground temperature variation. The knowledge of thermal properties of these samples allows us to view vegetation cover as a separate layer of geological section.
Calculating Theromodynamic And Transport Properties Of Fluids
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Klem, Mark D.
1987-01-01
Computer program incorporates van der Waals equation and correction tables. FLUID program developed to calculate thermodynamic and transport properties of pure fluids in both liquid and gas phases. Properties calculated by use of simple gas model, empirical corrections, and efficient numerical interpolation scheme. Produces results that agree very well with measured values. Much faster than older, more complex programs developed for same purpose.
Ab initio calculation of thermodynamic properties of silicon
NASA Astrophysics Data System (ADS)
Wei, Siqing; Li, Changlin; Chou, M. Y.
1994-11-01
We present a fully ab initio calculation of the thermodynamic properties for silicon within the quasiharmonic approximation, making use of volume-dependent phonon frequencies obtained from pseudopotential local-density calculations. The temperature dependence of the thermal-expansion coefficient, specific heat (at constant volume), and other related quantities are studied. We confirm that the thermal-expansion coefficient behaves differently in three temperature regions: positive for temperature below 15 K, negative between 15 and 125 K, and positive again above 125 K. This finding agrees with experiment. The abnormal (negative) thermal-expansion coefficient at low temperatures is explained through a detailed study of mode Grüneisen parameters. Both specific-heat and thermal-expansion-coefficient values calculated are in excellent agreement with experiment up to a few hundred kelvin.
NASA Astrophysics Data System (ADS)
Shiga, Takuma; Aketo, Daisuke; Feng, Lei; Shiomi, Junichiro
2016-05-01
In recent years, nanostructuring of dielectric and semiconducting crystals has enhanced controllability of their thermal conductivity. To carry out computational materials search for nanostructured materials with desirable thermal conductivity, a key property is the thermal conductivity spectrum of the original single crystal, which determines the appropriate length scale of nanostructures and mutual adaptability of different kinds of nanostructures. Although the first-principles phonon transport calculations have become accessible, the anharmonic lattice dynamics calculations are still expensive to scan many materials. To this end, we have developed an empirical model that describes the thermal conductivity spectrum in terms only of harmonic phonon properties and bulk thermal conductivity. The model was tested for several crystals with different structures and thermal conductivities, and was confirmed to reproduce the overall profiles of thermal conductivity spectra and their accumulation functions obtained by the first-principles anharmonic calculations.
Computer program for calculating water and steam properties
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Peller, I. C.; Baron, A. K.
1975-01-01
Computer subprogram calculates thermodynamic and transport properties of water and steam. Program accepts any two of pressure, temperature, and density as input conditions. Pressure and either entropy or enthalpy are also allowable input variables. Output includes any combination of temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, surface tension, and the Laplace constant.
Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G
2005-03-30
Much effort has been devoted to an ongoing search for more powerful, safer and environmentally friendly explosives. Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. Preliminary results on the physical and chemical characterization of FOX-7 have shown that it possesses good thermal and chemical stability. It is expected that FOX-7 will be a new important explosive ingredient in high performance, insensitive munition (IM) explosives. One of the major focuses in research on this novel energetic material is a study of its thermal properties. Oestmark et al have reported that DSC curves exhibit two minor endothermic peaks as well as two major exothermic peaks. Two endothermic peaks at {approx}116 and {approx}158 C suggest the presence of two solid-solid phase transitions. A third phase change below 100 C has also been reported based on a X-ray powder diffraction (XPD) study. The shapes, areas and observed temperatures of the two decomposition peaks at {approx}235 C and {approx}280 C vary with different batches and sources of the sample, and occasionally these two peaks are merged into one. The factors leading to this variation and a more complete investigation are in progress. Our laboratories have been interested in the thermal properties of energetic materials characterized by means of various thermal analysis techniques. This paper will present our results for the thermal behavior of FOX-7 including the phase changes, decomposition, kinetic analysis and the decomposition products using DSC, TG, ARC (Accelerating Rate Calorimetry), HFC (Heat Flow Calorimetry) and simultaneous TGDTA-FTIR (Fourier Transform Infrared Spectroscopy) Spectroscopy-MS (Mass) measurements.
Calculating Thermophysical Properties Of 12 Fluids
NASA Technical Reports Server (NTRS)
Cleghorn, T. F.; Mccarty, R. D.
1991-01-01
MIPROPS is set of computer programs giving thermophysical and transport properties of selected fluids. Calculates properties of fluids in both liquid and vapor states over wide range of temperatures and pressures. Fluids included: helium, hydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, isobutane, and normal butane. All programs except helium program incorporate same equation of state. Written in FORTRAN 77.
Method for measuring thermal properties using a long-wavelength infrared thermal image
Walker, Charles L.; Costin, Laurence S.; Smith, Jody L.; Moya, Mary M.; Mercier, Jeffrey A.
2007-01-30
A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Baron, A. K.; Peller, I. C.
1975-01-01
A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.
Probabilistic methods for the calculation of laminate properties
Mcmanus, H.L. )
1993-06-01
A method for calculating the properties of advanced composite laminates, including their variations due to known variations in the properties of the individual plies and the laminate geometry, is presented. The method is useful for understanding scatter in the measured properties of composite laminates. This scatter is particularly important in the design of ultra-low coefficient of thermal expansion (CTE) laminates. Such laminates are designed with a theoretically zero CTE, but in practice have a distribution of nonzero CTEs. Information useful for designing ultra-low expansion laminates is discussed. A practical limit on how close to zero the CTE of a laminate can be assumed to be is found. 10 refs.
Determines the Thermal and Optical Properties of Fenestration Systems
1995-01-27
WINDOW4.1 computes the thermal properties of windows and other fenestration elements used in typical residential and commercial buildings. Manufactures, specifiers, architects, consumers, and the energy code specialists all need to know these properties (U-values, Solar Heat Gain Coefficients, optical properties). The use of this program to calculate these properties is typically much more cost effective than laboratory test procedures. Properties of complete window systems are based on libraries (or user input) component data.
Direct-Semidirect Thermal Neutron Capture Calculations
Arbanas, G; Dietrich, F S; Kerman, A K
2005-12-20
A method for computing direct-semidirect (DSD) neutron radiative capture is presented and applied to thermal neutron capture on {sup 19}F, {sup 27}Al, {sup 28,29.30}Si, {sup 35,37}Cl, {sup 39,41}K, {sup 56}Fe, and {sup 238}U, in support of data evaluation effort at the O.R.N.L. The DSD method includes both direct and semidirect capture; the latter is a core-polarization term in which the giant dipole resonance is formed. We study the effects of a commonly used ''density'' approximation to the EM operator and find it to be unsatisfactory for the nuclei considered here. We also study the magnitude of semidirect capture relative to the pure direct capture. Furthermore, we compare our results with those obtained from another direct capture code (Tedca [17]). We also compare our results with those obtained from analytical expression for external capture derived by Lane and Lynn [3], and its extension to include internal capture [7]. To estimate the effect of nuclear deformation on direct capture, we computed direct thermal capture on {sup 238}U with and without imposition of spherical symmetry. Direct capture for a spherically symmetric {sup 238}U was approximately 6 mb, while a quadrupole deformation of 0.215 on the shape of {sup 238}U lowers this cross section down to approximately 2 mb. This result suggests that effects of nuclear deformation on direct capture warrant a further study. We also find out that contribution to the direct capture on {sup 238}U from the nuclear interior significantly cancels that coming from the exterior region, and hence both contributions must be taken into account. We reproduced a well known discrepancy between the computed and observed branching ratios in {sup 56}Fe(n,{gamma}). This will lead us to revisit the concept of doorway states in the particle-hole model.
NASA Astrophysics Data System (ADS)
Jan, C.; Cressault, Y.; Gleizes, A.; Bousoltane, K.
2014-01-01
Radiative transfer is a key point for accurate simulations of arcs in high voltage circuit breakers where the plasma is mainly composed, at high current, of a mixture of SF6 and PTFE vapours (C2F4 and decomposition products). Assuming local thermodynamic equilibrium, we have built a database of absorption coefficients over almost 300 000 spectral points, for a pressure range between 1 and 100 bar, temperatures from 300 to 50 000 K, and proportions from pure SF6 to pure C2F4. From these data, we have calculated the mean absorption coefficients (MAC) by considering several definitions of the mean coefficient and several spectral ranges or intervals. The choice between the various definitions was operated using a one dimensional radiative transfer model with imposed temperature profiles. The results showed that a combination of a normal average over the molecular continuum at low temperature, with a mixed definition of Planck average at high temperature gives the most accurate results. The optimization of the number of intervals for the definition of the MAC database was performed and showed that the accuracy on the radiative flux and on the divergence of the flux depends on the temperature profile. A good compromise is obtained with five or seven intervals.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2015-12-01
In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.
Calculation of steam-water injector properties
NASA Astrophysics Data System (ADS)
Pavlicek, Petr; Linhart, Jiri
2014-08-01
The topic of this article is a calculation of steam-water injector properties using simplified one dimensional global model. In this case the injector is used as combined mixing heat exchanger and water pump. It mixes steam with water and inject water into an area with a set back-pressure. At the exit only liquid phase is present, which is caused by a shock wave which occurs in highly wet steam.
NASA Technical Reports Server (NTRS)
Gordon, S.; Mcbride, B.; Zeleznik, F. J.
1984-01-01
An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.
Thermal Properties of Bazhen fm. Sediments from Thermal Core Logging
NASA Astrophysics Data System (ADS)
Spasennykh, Mikhail; Popov, Evgeny; Popov, Yury; Chekhonin, Evgeny; Romushkevich, Raisa; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Zhukov, Vladislav; Karpov, Igor; Saveliev, Egor; Gabova, Anastasia
2016-04-01
The Bazhen formation (B. fm.) is the hugest self-contained source-and-reservoir continuous petroleum system covering by more than 1 mln. km2 (West Siberia, Russia). High lithological differentiation in Bazhen deposits dominated by silicic shales and carbonates accompanied by extremely high total organic carbon values (of up to 35%), pyrite content and brittle mineralogical composition deteriorate standard thermal properties assessment for low permeable rocks. Reliable information of unconventional system thermal characteristics is the necessary part of works such as modelling of different processes in reservoir under thermal EOR for accessing their efficiency, developing and optimizing design of the oil recovery methods, interpretation of the well temperature logging data and for the basin petroleum modelling. A unique set of data including thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy for the B.fm. rocks was obtained from thermal core logging (high resolution continuous thermal profiling) on more than 4680 core samples (2000 of B.fm. samples are among) along seven wells for four oil fields. Some systematic peculiarities of the relation between thermal properties of the B.fm. rocks and their mineralogical composition, structural and texture properties were obtained. The high-resolution data are processed jointly with the standard petrophysical logging that allowed us to provide better separation of the formation. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).
Point kinetics calculations with fully coupled thermal fluids reactivity feedback
Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.
2013-07-01
The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)
Refinement of thermal imager minimum resolvable temperature difference calculating method
NASA Astrophysics Data System (ADS)
Kolobrodov, V. G.; Mykytenko, V. I.
2015-11-01
Calculating methods, which accurately predict minimum resolvable temperature difference (MRTD), are of significant interest for many years. The article deals with improvement the accuracy of determining the thermal imaging system MRTD by elaboration the visual perception model. We suggest MRTD calculating algorithm, which is based on a reliable approximation of the human visual system modulation transfer function (MTF) proposed by N. Nill. There was obtained a new expression for the bandwidth evaluation, which is independent of angular size of the Foucault bar target.
Benchmark calculations of thermal reaction rates. I - Quantal scattering theory
NASA Technical Reports Server (NTRS)
Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.
Recommended radiative property data for Venusian entry calculations
NASA Technical Reports Server (NTRS)
Jones, J. J.; Boughner, R. E.; Haggard, K. V.; Nealy, J. E.; Schryer, D. R.; Zoby, E. V.
1974-01-01
A compilation of experimental and calculated data on the radiative properties species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound, and free-free continua are considered for the principal radiating species of shock heated carbon dioxide. A limited amount of data pertinent to the species in the ablation layer is also included. The assumption is made that the Venus atmosphere so closely approximates pure CO2 that the inviscid layer radiation is due almost entirely to thermally excited CO2. The only exception is the inclusion of data on the Violet band system of CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas porperties is also included.
The results of near-field thermal and mechanical calculations of thermal loading schemes
Holland, J.F.
1992-12-31
Two waste emplacement schemes,borehole and in-drift are under evaluation as potential repository drift geometries for the Yucca Mountain Site Characterization Project Calculations were performed to examinethe systems implications of various thermal loadings on the near- and far-field repository environments. Ms paper reports the results of two-dimensional finite element analyses of the near-field thermal and structural response of the potential repository. Thermal calculations were run to 1000 years and mechanical calculations were run to 75 years. the time when the drifts will be backfilled. Local areal power densities (LAPDs) of 57, 80, and 100 kW/acre were used in the calculations. Both emplacement schemes meet current near-field thermal performance goals for all loadings examined. The mechanical calculations predict no intact rock failure, limited joint slippage around the drifts, and closure of apertures for vertical fractures above and below the drifts.
Properties of samarium nitride: First principle calculations
NASA Astrophysics Data System (ADS)
Aynyas, Mahendra; Panwar, Y. S.; Pataiya, J.; Makode, C.; Sanyal, Sankar P.
2016-05-01
The tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA has been used to calculate structural and electronic properties of samarium nitride at ambient and high pressure. As a function of volume, the total energy is evaluated. The phase transition pressure for this compound was found to be 6.0 GPa and it is transform from NaCl to CsCl-type structure. Apart from this, the lattice parameter (a0), bulk modulus (B0), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed metallic behaviour in SmN compound. The values of equilibrium lattice constants and bulk modulus are agreed well with the available data.
Shale: Measurement of thermal properties
Gilliam, T.M.; Morgan, I.L.
1987-07-01
Thermal conductivity and heat capacity measurements were made on samples of Devonian shale, Pierre shale, and oil shale from the Green River Formation. Thermal expansion measurements were made on selected samples of Devonian shale. Measurements were obtained over the temperature range of ambient to 473 K. Average values for thermal conductivity and heat capacity for the samples studied were within two standard deviations of all data over this temperature range. 15 refs., 12 figs., 4 tabs.
A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2006-01-01
A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.
Code System to Calculate Fuel Rod Thermal Performance.
2000-11-27
Version: 00 GT2R2 is Revision 2 of GAPCON-THERMAL-2 and is used to calculate the thermal behavior of a nuclear fuel rod during normal steady-state operation. The program was developed as a tool for estimating fuel-cladding gap conductances and fuel-stored energy. Models used include power history, fission gas generation and release, fuel relocation and densification, and fuel-cladding gap conductance. The gas release and relocation models can be used to make either best-estimate or conservative predictions. Themore » code is used by the United States Nuclear Regulatory Commission for audit calculations of nuclear fuel thermal performance computer codes.« less
Ab initio theory of thermal properties of germanane
NASA Astrophysics Data System (ADS)
Heine, Matthew; Lindsay, Lucas; Carrete, Jesús; Mingo, Natalio; Hellman, Olle; Broido, David
Germanane(GeH) is a germanium based hydrogen-terminated multi-layered graphane analogue semiconductor, which may be a promising thermoelectric due to its high electron mobility and the capability to tune its transport properties. We have performed first principles calculations of the thermal properties of germanane. Harmonic and anharmonic interatomic force constants are calculated within the framework of density functional theory, from which phonon dispersions, specific heat, thermal expansion are obtained. The phonon Boltzmann equation is solved to obtain the lattice thermal conductivity. The disparity in constituent masses in GeH gives phonon modes that are distinctly Ge or H in character and causes the specific heat not to saturate until much higher temperatures than in bulk Ge. Weak interlayer bonding and strong phonon-phonon scattering result in highly anisotropic and quite low intrinsic lattice thermal conductivity compared to Ge.
Calculation of the lattice thermal conductivity in granular crystals
Kazan, M.; Volz, S.
2014-02-21
This paper provides a general model for the lattice thermal conductivity in granular crystals. The key development presented in this model is that the contribution of surface phonons to the thermal conductivity and the interplay between phonon anharmonic scattering and phonon scattering by boundaries are considered explicitly. Exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield expressions for the rates at which phonons scatter by the grain boundaries in the presence of intrinsic phonon scattering mechanisms. The intrinsic phonon scattering rates are calculated from Fermi's golden rule, and the vibration parameters of the model are derived as functions of temperature and crystallographic directions by using a lattice dynamics approach. The accuracy of the model is demonstrated with reference to experimental measurements regarding the effects of surface orientation and isotope composition on the thermal conductivity in single crystals, and the effect of grains size and shape on the thermal conductivity tensor in granular crystals.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Taylor, A. H.; Sakata, I. F.
1985-01-01
A hybrid spar of titanium with an integrally brazed composite, consisting of an aluminum matrix reinforced with boron-carbide-coated fibers, was heated in an oven and the resulting thermal stresses were measured. Uniform heating of the spar in an oven resulted in thermal stresses arising from the effects of dissimilar materials and anisotropy of the metal matrix composite. Thermal stresses were calculated from a finite element structural model using anisotropic material properties deduced from constituent properties and rules of mixtures. Comparisons of calculated thermal stresses with measured thermal stresses on the spar are presented. It was shown that failure to account for anisotropy in the metal matrix composite elements would result in large errors in correlating measured and calculated thermal stresses. It was concluded that very strong material characterization efforts are required to predict accurate thermal stresses in anisotropic composite structures.
Identifying and bounding uncertainties in nuclear reactor thermal power calculations
Phillips, J.; Hauser, E.; Estrada, H.
2012-07-01
Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also
NASA Astrophysics Data System (ADS)
Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing
2016-06-01
Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.
NASA Astrophysics Data System (ADS)
Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing
2016-03-01
Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.
Determination of Thermal Properties of Composting Bulking Materials
Technology Transfer Automated Retrieval System (TEKTRAN)
Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...
Determination of Thermal Properties of Composting Bulking Materials
Technology Transfer Automated Retrieval System (TEKTRAN)
Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well-determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...
Infrared lens thermal effect: equivalent focal shift and calculating model
NASA Astrophysics Data System (ADS)
Zhang, Cheng-shuo; Shi, Zelin; Feng, Bin; Xu, Bao-shu
2014-11-01
It's well-know that the focal shift of infrared lens is the major factor in degeneration of imaging quality when temperature change. In order to figure out the connection between temperature change and focal shift, partial differential equations of thermal effect on light path are obtained by raytrace method, to begin with. The approximately solution of the PDEs show that focal shift is proportional to temperature change. And a formula to compute the proportional factor is given. In order to understand infrared lens thermal effect deeply, we use defocus by image plane shift at constant temperature to equivalently represent thermal effect on infrared lens. So equivalent focal shift (EFS) is defined and its calculating model is proposed at last. In order to verify EFS and its calculating model, Physical experimental platform including a motorized linear stage with built-in controller, blackbody, target, collimator, IR detector, computer and other devices is developed. The experimental results indicate that EFS make the image plane shift at constant temperature have the same influence on infrared lens as thermal effect and its calculating model is correct.
First-principles calculation of thermal transport in metal/graphene systems
NASA Astrophysics Data System (ADS)
Mao, R.; Kong, B. D.; Gong, C.; Xu, S.; Jayasekera, T.; Cho, K.; Kim, K. W.
2013-04-01
Thermal properties in the metal/graphene (Gr) systems are analyzed by using an atomistic phonon transport model based on Landauer formalism and first-principles calculations. The specific structures under investigation include chemisorbed Ni(111)/Gr, physisorbed Cu(111)/Gr and Au(111)/Gr, as well as Pd(111)/Gr with intermediate characteristics. Calculated results illustrate a strong dependence of thermal transfer on the details of interfacial microstructures. In particular, it is shown that the chemisorbed case provides a generally smaller interfacial thermal resistance than the physisorbed one due to the stronger bonding. However, our calculation also indicates that the weakly chemisorbed interface of Pd/Gr may be an exception, with the largest thermal resistance among the considered. Further examination of the electrostatic potential and interatomic force constants reveals that the mixed bonding force between the Pd and C atoms results in incomplete hybridization of Pd and graphene orbital states at the junction, leading effectively to two phonon interfaces and a larger than expected thermal resistance. Comparison with available experimental data shows good agreement. The result clearly suggests the feasibility of phonon engineering for thermal property optimization at the interface.
Numerical calculation of thermal effect on cavitation in cryogenic fluids
NASA Astrophysics Data System (ADS)
Shi, Suguo; Wang, Guoyu
2012-11-01
A key design issue related to the turbopump of the rocket engine is that cavitation occurs in cryogenic fluids when the fluid pressure is lower than the vapor pressure at a local thermodynamic state. Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. To date, fewer investigate the thermal effect on cavitation in cryogenic fluids clearly by the numerical methods due to the difficulty of the heat transfer in the phase change process. In order to study the thermal effect on cavitation in cryogenic fluid, computations are conducted around a 2D quarter caliber hydrofoil in liquid nitrogen and hydrogen respectively by implementing modified Merkle cavitation model, which accounts for the energy balance and variable thermodynamic properties of the fluid. The numerical results show that with the thermal effect, the vapour content in constant location decreases, the cavity becomes more porous and the interface becomes less distinct which shows increased spreading while getting shorter in length. In the cavity region, the temperature around the cavity depresses due to absorb the evaporation latent heat and the saturation pressure drops. When the vapour volume fraction is higher, the temperature depression and pressure depression becomes larger. It is also observed that a slight temperature rise is found above the reference fluid temperature at the cavity rear end attributed to the release of latent heat during the condensation process. When the fluid is operating close to its critical temperature, thermal effects on cavitation are more obviously in both the liquid nitrogen and hydrogen. The thermal effect on cavitation in liquid hydrogen is more distinctly compared with that in liquid nitrogen due to the density ratio, vapour pressure and other variable properties of the fluid. The investigation provides aid for the design of the cryogenic pump of the liquid rocket.
Thermal to electricity conversion using thermal magnetic properties
West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID
2010-04-27
A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.
Thermal properties of 433 Eros
NASA Technical Reports Server (NTRS)
Lebofsky, L. A.; Rieke, G. H.
1979-01-01
Radiometric and reflected light observations of 433 Eros at high time resolution, high accuracy, and broad spectral coverage are reported. A thermal inertia model is used to estimate the thermal inertia, albedo, and size of Eros. An albedo of 0.125 plus or minus 0.025 with axes of 39.3 plus or minus 2.0 x 16.1 plus or minus 0.8 km is found. The estimate of the albedo is about 30% lower than previous estimates.
Differential pressure corrections calculated for a tank thermal expansion experiment
Jones, F.E.
1993-12-31
The data from a tank thermal expansion experiment were treated by applying corrections to bubbler tube differential pressure measurements at the initial temperature. The tank had a capacity of 3.55 m{sup 3} and an internal height of 8.70 m. Water was used as the experimental fluid and the masses of water for the 4 experimental runs were 911.1, 1497.3, 876.98, and 2048.3 kg. Initial temperature ranged from 13.5 to 37.6 C; maximum temperatures ranged from 54.7 to 70.4 C. Four corrections were calculated for each temperature to obtain the correction to calculate the differential pressure for each successive temperature. The calculated differential pressure was compared to the measured differential pressure. The agreement between calculated and measured differential pressure was excellent.
A direct method to calculate thermal conductivity and its application in solid HMX.
Long, Y; Chen, J; Liu, Y G; Nie, F D; Sun, J S
2010-05-12
The calculation of thermal conductivity for complex material systems is a challenging problem in computational materials science. Its key point is to calculate heat flux. In this work, we derive a concise formula for this purpose based on the equation of motion and then use it to study the thermal conduction properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), which is a widely used plastic-bonded explosive (PBX). The results are in fair agreement with experiments and show a distinct thermal conduction anisotropy for HMX single crystals. Then we investigate some key issues of thermal conductivity, such as its temperature-dependence and composition-dependence. A series of interesting results are obtained. PMID:21393685
Thermal calculations pertaining to experiments in the Yucca Mountain Exploratory Shaft
Montan, D.N.
1986-03-01
A series of thermal calculations have been presented that appear to satisfy the needs for design of the Yucca Mountain Exploratory Shaft Tests. The accuracy of the modeling and calculational techniques employed probably exceeds the accuracy of the thermal properties used. The rather close agreement between simple analytical methods (the PLUS Family) and much more complex methods (TRUMP) suggest that the PLUS Family might be appropriate during final design to model, in a single calculation, the entire test array and sequence. Before doing further calculations it is recommended that all available thermal property information be critically evaluated to determine "best" values to be used for conductivity and saturation. Another possibility is to design one or more of the test sequences to approximately duplicate the early phase of Heater Test 1. In that experiment an unplanned power outage for about two days that occurred a week into the experiment gave extremely useful data from which to determine the conductivity and diffusivity. In any case we urge that adequate, properly calibrated instrumentation with data output available on a quasi-real time basis be installed. This would allow us to take advantage of significant power changes (planned or not) and also help "steer" the tests to desired temperatures. Finally, it should be kept in mind that the calculations presented here are strictly thermal. No hydrothermal effects due to liquid and vapor pressures have been considered.
Thermal diffusion calculations for the ionosphere of Venus
NASA Technical Reports Server (NTRS)
Nakada, M. P.; Sullivan, E. C.
1980-01-01
Simplified multicomponent diffusion calculations are made for the ionosphere of Venus. Large differences in temperature between electrons and ions and appreciable temperature gradients that are near those of recent measurements are used. Compositions for which binary thermal diffusion coefficients for ions are the same as multi-ion ones are examined as well as those that are quite different. An attempt to combine binary coefficients to give multi-ions ones has not been particularly successful.
Thermobaric calculation of a steam-thermal borehole
NASA Astrophysics Data System (ADS)
Alishaev, M. G.; Azizov, G. A.
2011-07-01
A procedure is proposed for carrying out an approximate analytical calculation of pressure and temperature along a vertical borehole for thermal water with a temperature of 150-320°C taking into account its phase transition into steam. It is shown that both a single-phase flow mode for water and a two-phase flow mode for a mixture of water and steam can appear in the borehole under certain conditions.
Thermal characterization and properties of a copper-diamond composite
Yang, Pin; Chavez, Thomas P.; DiAntonio, Christopher Brian; Coker, Eric Nicholas
2014-09-01
The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.
Frequency-wavelength calculator with table of dielectric properties
NASA Technical Reports Server (NTRS)
Thompson, L. L.
1972-01-01
Frequency-wavelength calculator has been developed which rapidly and accurately calculates wavelength of given frequency in specific dielectric material. Unit fits into shirt pocket and includes table of dielectric properties and one-step calculator.
Thermal properties of defect melting
NASA Astrophysics Data System (ADS)
Ami, S.; Hofsäss, T.; Horsley, R.
1984-03-01
Using mean field theory and high temperature expansions the transition temperature, entropy jump and heat capacity are calculated in the recent microscopic model of defect melting proposed by Kleinert. The results are compared with the experimental data for almost isotropic substances.
Electronic, Thermal and Structural Properties of Graphene Oxide Frameworks
Zhu, Pan; Sumpter, Bobby G; Meunier, V.
2013-01-01
We report a theoretical study of the electronic, thermal, and structural properties of a series of graphene oxide frameworks (GOFs) using first-principles calculations based on density functional theory. The molecular structure of GOFs is systematically studied by varying the nature and concentration of linear boronic acid pillars and the thermal stability is assessed using ab initio molecular dynamics. The results demonstrate that GOFs are thermally stable up to 550 K and that electronic properties, such as their band gap, can be modified controllably by an appropriate choice of pillaring unit and pillar concentration. The tunability of the electronic structure using non-chemical means, e.g., mechanical strain, is also quantified. Overall, this class of materials is predicted to offer highly tunable materials electronic properties ranging from metallic to semiconducting.
Electronic, Thermal, and Structural Properties of Graphene Oxide Frameworks
Zhu, Pan; Sumpter, Bobby G; Meunier, V.
2013-01-01
We report a theoretical study of the electronic, thermal, and structural properties of a series of graphene oxide frameworks (GOFs) using first-principles calculations based on density functional theory. The molecular structure of GOFs is systematically studied by varying the nature and concentration of linear boronic acid pillars, and the thermal stability is assessed using ab initio molecular dynamics. The results demonstrate that GOFs are thermally stable up to 550 K and that electronic properties, such as their band gap, can be modified controllably by an appropriate choice of pillaring unit and pillar concentration. The tunability of the electronic structure using nonchemical means, e.g., mechanical strain, is also quantified. Overall, this class of materials is predicted to offer highly tunable materials electronic properties ranging from metallic to semiconducting.
Thermal Properties of Structural Materials Used in LWR Vessels
J. E. Daw; J. L. Rempe; D. L. Knudson
2011-01-01
High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.
Enhanced thermal properties of nanodiamond nanofluids
NASA Astrophysics Data System (ADS)
Sundar, L. Syam; Singh, Manoj K.; Sousa, Antonio C. M.
2016-01-01
Nanodiamond (ND) particles dispersed in ethylene glycol/water mixtures have been reported for their thermal properties and potential heat transfer applications. Commercially available ultra-dispersed diamond soot was treated with sulfuric acid-nitric acids to form single ND particles - characterized by various techniques - then prepared ND nanofluids and then measured thermal conductivity and viscosity by experimentally. The enhanced thermal conductivity for 1.0% of ND/20:80, ND/40:60 and ND/60:40 nanofluids is 17.8%, 14.2% and 11.4%; enhanced viscosity is 2.74-times, 1.73-times and 1.92-times at temperature of 60 °C, respectively. The heat transfer benefits of ND nanofluids in laminar to turbulent flow have been analyzed theoretically by using thermal properties.
Thermal radiation properties and thermal conductivity of lunar material.
Birkebak, R C; Cremers, C J; Dawson, J P
1970-01-30
The thermal radiation properties were measured for lunar fines and chips from three different lunar rocks. Measurements for the fines were made at atmospheric pressure and at a pressure of 10(-5) torr or lower. The directional reflectance was obtained over a wavelength range of 0.5 to 2.0 microns for angles of incidence up to 60 degrees. The bidirectional reflectance-the distribution of reflected light-was measured for white light angles of illumination up to 60 degrees. The thermal conductivity was measured over a temperature range 200 to 400 degrees K under vacuum conditions. PMID:17781563
NASA Astrophysics Data System (ADS)
He, Yuping
2015-03-01
We present calculations of the thermal transport coefficients of Si-based clathrates and solar perovskites, as obtained from ab initio calculations and models, where all input parameters derived from first principles. We elucidated the physical mechanisms responsible for the measured low thermal conductivity in Si-based clatherates and predicted their electronic properties and mobilities, which were later confirmed experimentally. We also predicted that by appropriately tuning the carrier concentration, the thermoelectric figure of merit of Sn and Pb based perovskites may reach values ranging between 1 and 2, which could possibly be further increased by optimizing the lattice thermal conductivity through engineering perovskite superlattices. Work done in collaboration with Prof. G. Galli, and supported by DOE/BES Grant No. DE-FG0206ER46262.
Variable thermal properties and thermal relaxation time in hyperbolic heat conduction
NASA Technical Reports Server (NTRS)
Glass, David E.; Mcrae, D. Scott
1989-01-01
Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.
Thermal expansion properties of composite materials
NASA Technical Reports Server (NTRS)
Johnson, R. R.; Kural, M. H.; Mackey, G. B.
1981-01-01
Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.
Thermal properties of supernova matter: The bulk homogeneous phase
NASA Astrophysics Data System (ADS)
Constantinou, Constantinos; Muccioli, Brian; Prakash, Madappa; Lattimer, James M.
2014-06-01
We investigate the thermal properties of the potential model equation of state of Akmal, Pandharipande, and Ravenhall. This equation of state approximates the microscopic model calculations of Akmal and Pandharipande, which feature a neutral pion condensate. We treat the bulk homogeneous phase for isospin asymmetries ranging from symmetric nuclear matter to pure neutron matter and for temperatures and densities relevant for simulations of core-collapse supernovae, protoneutron stars, and neutron star mergers. Numerical results of the state variables are compared with those of a typical Skyrme energy density functional with similar properties at nuclear densities but which differ substantially at supranuclear densities. Analytical formulas, which are applicable to nonrelativistic potential models such as the equations of state we are considering, are derived for all state variables and their thermodynamic derivatives. A highlight of our work is its focus on thermal response functions in the degenerate and nondegenerate situations, which allow checks of the numerical calculations for arbitrary degeneracy. These functions are sensitive to the density-dependent effective masses of neutrons and protons, which determine the thermal properties in all regimes of degeneracy. We develop the "thermal asymmetry free energy" and establish its relation to the more commonly used nuclear symmetry energy. We also explore the role of the pion condensate at supranuclear densities and temperatures. Tables of matter properties as functions of baryon density, composition (i.e., proton fraction), and temperature are being produced which are suitable for use in astrophysical simulations of supernovae and neutron stars.
Thermal properties for the thermal-hydraulics analyses of the BR2 maximum nominal heat flux.
Dionne, B.; Kim, Y. S.; Hofman, G. L.
2011-05-23
This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in {sup 235}U) to LEU (19.75% enriched in {sup 235}U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. This section is regrouping all of the thermal property tables. Section 2 provides a summary of the thermal properties in form of tables while the following sections present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: (i) aluminum, (ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), (iii) beryllium, and (iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase's volume fraction. Appendix B shows the evolution of the BR2 maximum heat flux with burnup.
Thermal and thermoelectric properties of graphene.
Xu, Yong; Li, Zuanyi; Duan, Wenhui
2014-06-12
The subject of thermal transport at the mesoscopic scale and in low-dimensional systems is interesting for both fundamental research and practical applications. As the first example of truly two-dimensional materials, graphene has exceptionally high thermal conductivity, and thus provides an ideal platform for the research. Here we review recent studies on thermal and thermoelectric properties of graphene, with an emphasis on experimental progresses. A general physical picture based on the Landauer transport formalism is introduced to understand underlying mechanisms. We show that the superior thermal conductivity of graphene is contributed not only by large ballistic thermal conductance but also by very long phonon mean free path (MFP). The long phonon MFP, explained by the low-dimensional nature and high sample purity of graphene, results in important isotope effects and size effects on thermal conduction. In terms of various scattering mechanisms in graphene, several approaches are suggested to control thermal conductivity. Among them, introducing rough boundaries and weakly-coupled interfaces are promising ways to suppress thermal conduction effectively. We also discuss the Seebeck effect of graphene. Graphene itself might not be a good thermoelectric material. However, the concepts developed by graphene research might be applied to improve thermoelectric performance of other materials. PMID:24610791
Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation.
Ouyang, Tao; Xiao, Huaping; Tang, Chao; Hu, Ming; Zhong, Jianxin
2016-06-22
A fundamental understanding of the phonon transport property is crucial to predict the thermal management performance in micro/nano-electronic devices. By combining first principle calculations and Boltzmann phonon transport equation, we investigate thermal transport in TaAs-a typical Weyl semimetal. The lattice thermal conductivity of TaAs at room temperature was found to be 39.26 W mK(-1) and 24.78 W mK(-1) along the a(b) and c crystal axis, respectively, showing obvious anisotropy. Detailed analyses of the mode level phonon properties further revealed that the three acoustic phonon modes dominate the overall thermal transport and the major phonon scattering channels in this typical Weyl semimetal were TA1/TA2/LA + O ↔ O and A + A ↔ O. The representative phonon mean free path of TaAs was also calculated in this paper, which provide helpful guidance for the thermal management of TaAs-based electronic devices. PMID:27271203
NASA Technical Reports Server (NTRS)
Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir
2012-01-01
It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.
NASA Astrophysics Data System (ADS)
Khatun, Ayesha
The thermal properties of the sidewall lining materials are capturing attention since the last two decades. Good prediction of the dynamic thermal behaviour of Hall Heroult cells, including precise estimation of energy losses and location of the side ledge formed by the solidification of electrolytic bath, is made possible when the sidelining materials are well characterized in function of temperature. The present work aim at measuring the thermal diffusivity, heat capacity and thermal conductivity of silicon carbide (SiC), graphitic and graphitized carbon materials and cryolite (Na3AlF 6) based on transient characterization techniques. The thermal diffusivity and the heat capacity are measured by using state-of-the-art transient laser flash analyzer and differential scanning calorimeter respectively. The thermal conductivity is calculated by assuming a constant density. The range of precision error for each thermal property is also calculated for a finite number of data sets. Empirical correlation has been drawn for each of the properties to describe the relation with temperature in mathematical terms. Thermal characterization of the latent heat evolved during the melting of ledge is also carried out. Finally, based on the calculations conducted with a 2-D numerical model, the effect of the precision errors of temperature varying thermal properties of the sidewall materials and ledge on the dynamic behaviour of a laboratory scale phase change reactor is also presented. The results, so obtained, encourage further studies on the thermal properties of materials used in the aluminium reduction cell to find out the thermal environment inside the cell, heat loss estimation and effect of the additives on the location of ledge. Key words: Thermal conductivity, thermal diffusivity, heat capacity, temperature varying properties, precision error, phase change profile, latent heat.
Thermal transport properties of grey cast irons
Hecht, R.L.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin
1996-10-01
Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.
Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M
2014-01-01
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼104 m2 to ∼107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m−2 K−1 s−1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars. PMID:26213666
NASA Astrophysics Data System (ADS)
Martínez, G. M.; Rennó, N.; Fischer, E.; Borlina, C. S.; Hallet, B.; Torre Juárez, M.; Vasavada, A. R.; Ramos, M.; Hamilton, V.; Gomez-Elvira, J.; Haberle, R. M.
2014-08-01
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia (I) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ~104 m2 to ~107 m2. Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ~102 m2. We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m-2 K-1 s-1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.
NASA Astrophysics Data System (ADS)
Pennec, Fabienne; Alzina, Arnaud; Tessier-Doyen, Nicolas; Naitali, Benoit; Smith, David S.
2012-11-01
This work is about the calculation of thermal conductivity of insulating building materials made from plant particles. To determine the type of raw materials, the particle sizes or the volume fractions of plant and binder, a tool dedicated to calculate the thermal conductivity of heterogeneous materials has been developped, using the discrete element method to generate the volume element and the finite element method to calculate the homogenized properties. A 3D optical scanner has been used to capture plant particle shapes and convert them into a cluster of discret elements. These aggregates are initially randomly distributed but without any overlap, and then fall down in a container due to the gravity force and collide with neighbour particles according to a velocity Verlet algorithm. Once the RVE is built, the geometry is exported in the open-source Salome-Meca platform to be meshed. The calculation of the effective thermal conductivity of the heterogeneous volume is then performed using a homogenization technique, based on an energy method. To validate the numerical tool, thermal conductivity measurements have been performed on sunflower pith aggregates and on packed beds of the same particles. The experimental values have been compared satisfactorily with a batch of numerical simulations.
Calculation of Hugoniot values from atomic properties
Walker, F.E.; Walker, F.G.; Walker, J.B.
1986-01-01
A relatively simple equation is presented for use in calculating the Hugoniot values of any condensed element from its atomic weight, atomic radius, and density. Calculations from the equation are compared with data for many elements, and a discussion of the development and utility of the equation is included. The equation also appears to be useful for the gaseous elements when they are in condensed phases. 19 refs., 12 figs., 9 tabs.
Coefficients for calculating thermodynamic and transport properties of individual species
NASA Technical Reports Server (NTRS)
Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.
1993-01-01
Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.
Novel thermal properties of nanostructured materials.
Eastman, J. A.
1999-01-13
A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.
High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations
NASA Astrophysics Data System (ADS)
Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin
2014-06-01
Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.
Thermal properties of food and pharmaceutical powders
NASA Astrophysics Data System (ADS)
Abiad, Mohamad Ghassan
Foods and pharmaceuticals are complex systems usually exposed to various environmental conditions during processing and thus storage, stability, functionality and quality are key attributes that deserve careful attention. The quality and stability of foods and pharmaceuticals are mainly affected by environmental conditions such as temperature, humidity, time, and processing conditions (e.g. shear, pressure) under which they may undergo physical and/or chemical transformations. Glass transition as well as other thermal properties is a key to understand how external conditions affect physical changes of such materials. Development of new materials and understanding the physico-chemical behavior of existing ones require a scientific foundation that translates into safe and high quality foods, improved quality of pharmaceuticals and nutraceuticals with lower risk to patients and functional efficacy of polymers used in food and medicinal products. This research provides an overview of the glass transition and other thermal properties and introduces novel methods developed to characterize such properties.
NASA Astrophysics Data System (ADS)
Taheri, Siavash; Shadman, Muhammad; Ahadi, Zohreh; Asgari, Farid; Mighani, Hossein
2014-07-01
An equilibrium molecular dynamics simulation is applied to investigate the thermal properties of a single-walled carbon nanotube/poly(phenylenesulfone) as nanocomposite material. Cohesive energy density and the Hildebrand solubility parameter of pure poly(phenylenesulfone) and nanocomposite are calculated to compare the thermal analysis of them. The results indicate that carbon nanotube/poly(phenylenesulfone) nanocomposites are thermally stable than pure poly(phenylenesulfone); however, poly(phenylenesulfone) is a thermally stable polymer. This means carbon nanotube can further improve thermal properties of thermally stable polymer.
THERMAL: A routine designed to calculate neutron thermal scattering. Revision 1
Cullen, D.E.
1995-09-19
THERMAL is designed to calculate neutron thermal scattering that is elastic and isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the relative system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy, e.g., the keV energy range. The THERMAL method is simple, clean, easy to understand, and most important very efficient; on a SUN SPARC-10 workstation, at low energies with thermal scattering it can do almost 6 million scatters a minute and at high energy over 13 million. Warning: This version of THERMAL completely supersedes the original version described in the same report number, dated February 24, 1995. The method used in the original code is incorrect, as explained in this report.
Calculation and application of combined diffusion coefficients in thermal plasmas.
Murphy, Anthony B
2014-01-01
The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457
Calculation and application of combined diffusion coefficients in thermal plasmas
Murphy, Anthony B.
2014-01-01
The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457
Calculated fission properties of the heaviest elements
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1986-09-01
A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab.
Effect of molecular models on viscosity and thermal conductivity calculations
NASA Astrophysics Data System (ADS)
Weaver, Andrew B.; Alexeenko, Alina A.
2014-12-01
The effect of molecular models on viscosity and thermal conductivity calculations is investigated. The Direct Simulation Monte Carlo (DSMC) method for rarefied gas flows is used to simulate Couette and Fourier flows as a means of obtaining the transport coefficients. Experimental measurements for argon (Ar) provide a baseline for comparison over a wide temperature range of 100-1,500 K. The variable hard sphere (VHS), variable soft sphere (VSS), and Lennard-Jones (L-J) molecular models have been implemented into a parallel version of Bird's one-dimensional DSMC code, DSMC1, and the model parameters have been recalibrated to the current experimental data set. While the VHS and VSS models only consider the short-range, repulsive forces, the L-J model also includes constributions from the long-range, dispersion forces. Theoretical results for viscosity and thermal conductivity indicate the L-J model is more accurate than the VSS model; with maximum errors of 1.4% and 3.0% in the range 300-1,500 K for L-J and VSS models, respectively. The range of validity of the VSS model is extended to 1,650 K through appropriate choices for the model parameters.
NASA Astrophysics Data System (ADS)
Sun, J. G.; Tao, N.
2016-02-01
Thermal barrier coatings (TBCs) are extensively used on hot gas-path components in gas turbines to improve engine performance and extend component life. TBC thermal properties, specifically the thermal conductivity and heat capacity (the product of density and specific heat), are important parameters in these applications. These TBC properties are usually measured by destructive methods with specially prepared TBC samples. Nondestructive evaluation (NDE) methods have been developed in recently years that can measure TBC properties on natural TBC samples. However, many have limitations when examining TBCs on engine components. One exception is the pulsed thermal imaging - multilayer analysis (PTI-MLA) method, which can be applied to essentially any TBC samples with one or more coating layers and can determine TBC property distributions over the entire TBC surface. This paper describes its basic theories and implementations and discusses its potential applications to all areas of TBC studies.
Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul
2016-07-21
Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. PMID:27254282
Acoustic and thermal properties of tissue
NASA Astrophysics Data System (ADS)
Retat, L.; Rivens, I.; ter Haar, G. R.
2012-10-01
Differences in ultrasound (US) and thermal properties of abdominal soft tissues may affect the delivery of thermal therapies such as high intensity focused ultrasound and may provide a basis for US monitoring of such therapies. 21 rat livers were obtained, within one hour of surgical removal. For a single liver, 3 lobes were selected and each treated in one of 3 ways: maintained at room temperature, water bath heated to 50°C ± 1°C for 10 ± 0.5 minutes, or water bath heated to 60°C ± 1°C for 10 ± 0.6 minutes. The attenuation coefficient, speed of sound and thermal conductivity of fresh rat liver was measured. The attenuation coefficients and speed of sound were measured using the finite-amplitude insertion-substitution (FAIS) method. For each rat liver, the control and treated lobes were scanned using a pair of weakly focused 2.5 MHz Imasonic transducers over the range 1.8 to 3 MHz. The conductivity measurement apparatus was designed to provide one-dimensional heat flow through each specimen using a combination of insulation, heat source and heat sink. Using 35 MHz US images to determine the volume of air trapped in the system, the thermal conductivity was corrected using a simulation based on the Helmhotz bio-heat equation. The process of correlating these results with biological properties is discussed.
Heuze, F.E.
1983-03-01
An attempt to model the complex thermal and mechanical phenomena occurring in the disposal of high-level nuclear wastes in rock at high power loading is described. Such processes include melting of the rock, convection of the molten material, and very high stressing of the rock mass, leading to new fracturing. Because of the phase changes and the wide temperature ranges considered, realistic models must provide for coupling of the thermal and mechanical calculations, for large deformations, and for steady-state temperature-depenent creep of the rock mass. Explicit representation of convection would be desirable, as would the ability to show fracture development and migration of fluids in cracks. Enhancements to SNAGRE consisted of: array modifications to accommodate complex variations of thermal and mechanical properties with temperature; introduction of the ability of calculate thermally induced stresses; improved management of the minimum time step and minimum temperature step to increase code efficiency; introduction of a variable heat-generation algorithm to accommodate heat decay of the nuclear materials; streamlining of the code by general editing and extensive deletion of coding used in mesh generation; and updating of the program users' manual. The enhanced LLNL version of the code was renamed LSANGRE. Phase changes were handled by introducing sharp variations in the specific heat of the rock in a narrow range about the melting point. The accuracy of this procedure was tested successfully on a melting slab problem. LSANGRE replicated the results of both the analytical solution and calculations with the finite difference TRUMP code. Following enhancement and verification, a purely thermal calculation was carried to 105 years. It went beyond the extent of maximum melt and into the beginning of the cooling phase.
Computation of Thermally Perfect Compressible Flow Properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake
1996-01-01
A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.
Thermal properties of an erythritol derivative
NASA Astrophysics Data System (ADS)
Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich
2016-06-01
Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.
Rock properties and their effect on thermally-induced displacements and stresses
Chan, T.; Hood, M.; Board, M.
1980-02-01
A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (1) temperature independent, (2) temperature dependent thermal and thermomechanical properties and (3) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions for rock stresses is the in-situ modulus.
Rock properties and their effect on thermally induced displacements and stresses
Chan, T.; Mood, M.
1982-12-01
A discussion is given of the importance of material properties in the finite-element calculations for thermally induced displacements and stresses resulting from a heating experiment in an in-situ granitic rock, at Stripa, Sweden. Comparisons are made between field measurements and finite element method calculations using (i) temperature independent, (ii) temperature dependent thermal and thermomechanical properties, and (iii) in-situ and laboratory measurements for Young's modulus. The calculations of rock displacements are influenced predominantly by the temperature dependence of the thermal expansion coefficient, whereas the dominant factor affecting predictions or rock stresses is the in-situ modulus.
Computer code for determination of thermally perfect gas properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.
1994-01-01
A set of one-dimensional compressible flow relations for a thermally perfect, calorically imperfect gas is derived for the specific heat c(sub p), expressed as a polynomial function of temperature, and developed into the thermally perfect gas (TPG) computer code. The code produces tables of compressible flow properties similar to those of NACA Rep. 1135. Unlike the tables of NACA Rep. 1135 which are valid only in the calorically perfect temperature regime, the TPG code results are also valid in the thermally perfect calorically imperfect temperature regime which considerably extends the range of temperature application. Accuracy of the TPG code in the calorically perfect temperature regime is verified by comparisons with the tables of NACA Rep. 1135. In the thermally perfect, calorically imperfect temperature regime, the TPG code is validated by comparisons with results obtained from the method of NACA Rep. 1135 for calculating the thermally perfect calorically imperfect compressible flow properties. The temperature limits for application of the TPG code are also examined. The advantage of the TPG code is its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture thereof, whereas the method of NACA Rep. 1135 is restricted to only diatomic gases.
Physical Origins of Thermal Properties of Cement Paste
NASA Astrophysics Data System (ADS)
Abdolhosseini Qomi, Mohammad Javad; Ulm, Franz-Josef; Pellenq, Roland J.-M.
2015-06-01
Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (<2 THz ) compared to the vibrational states predicted by the Debye model. This anomaly is commonly referred to as the boson peak in glass physics. In addition, the specific-heat capacity of CSH in both dry and saturated states scales linearly with the calcium-to-silicon ratio. We show that the nanoscale-confining environment of CSH decreases the apparent heat capacity of water by a factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.
Tabulated In-Drift Geometric and Thermal Properties Used In Drift-Scale Models for TSPA-SR
N.D. Francis
2000-06-16
The objective of this calculation is to provide in-drift physical properties required by the drift-scale models (both two- and three-dimensional) used in total system performance assessments (TSPA). The physical properties include waste package geometry, waste package thermal properties, emplacement drift geometry including backfill and invert geometry and properties (both thermal and hydrologic), drip shield geometry and thermal properties, all tabulated in a single source.
Effect of element density on the NASTRAN calculated mechanical and thermal stresses of a spar
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
A NASTRAN model of a spar was examined to determine the sensitivity of calculated axial thermal stresses and bending stresses to changes in element density of the model. The thermal stresses calculated with three different element densities resulted in drastically differing values. The position of the constraint also significantly affected the value of the calculated thermal stresses. Mechanical stresses calculated from an applied loading were insensitive to element density.
Determining the Thermal Properties of Space Lubricants
NASA Technical Reports Server (NTRS)
Maldonado, Christina M.
2004-01-01
Many mechanisms used in spacecrafts, such as satellites or the space shuttle, employ ball bearings or gears that need to be lubricated. Normally this is not a problem, but in outer space the regular lubricants that are used on Earth will not function properly. Regular lubricants will quickly vaporize in the near vacuum of space. A unique liquid called a perfluoropolyalkylether (PFPE) has an extremely low vapor pressure, around l0(exp -10) torr at 20 C, and has been used in numerous satellites and is currently used in the space shuttle. Many people refer to the PFPEs as "liquid Teflon". PFPE lubricants however, have a number of problems with them. Lubricants need many soluble additives, especially boundary and anti-wear additives, in them to function properly. All the regular known boundary additives are insoluble in PFPEs and so PFPEs lubricate poorly under highly loaded conditions leading to many malfunctioning ball bearings and gears. JAXA, the Japanese Space Agency, is designing and building a centrifuge rotor to be installed in the International Space Station. The centrifuge rotor is part of a biology lab module. They have selected a PFPE lubricant to lubricate the rotor s ball bearings and NASA bearing experts feel this is not a wise choice. An assessment of the centrifuge rotor design is being conducted by NASA and part of the assessment entails knowing the physical and thermal properties of the PFPE lubricant. One important property, the thermal diffusivity, is not known. An experimental apparatus was set up in order to measure the thermal diffusivity of the PFPE. The apparatus consists of a constant temperature heat source, cylindrical Pyrex glassware, a thermal couple and digital thermometer. The apparatus was tested and calibrated using water since the thermal diffusivity of water is known.
Three-dimensional surface grid generation for calculation of thermal radiation shape factors
NASA Technical Reports Server (NTRS)
Aly, Hany M.
1992-01-01
A technique is described to generate three dimensional surface grids suitable for calculating shape factors for thermal radiative heat transfer. The surface under consideration is approximated by finite triangular elements generated in a special manner. The grid is generated by dividing the surface into a two dimensional array of nodes. Each node is defined by its coordinates. Each set of four adjacent nodes is used to construct two triangular elements. Each triangular element is characterized by the vector representation of its vertices. Vector algebra is used to calculate all desired geometric properties of grid elements. The properties are used to determine the shape factor between the element and an area element in space. The grid generation can be graphically displayed using any software with three dimensional features. DISSPLA was used to view the grids.
WASP: A flexible FORTRAN 4 computer code for calculating water and steam properties
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Peller, I. C.; Baron, A. K.
1973-01-01
A FORTRAN 4 subprogram, WASP, was developed to calculate the thermodynamic and transport properties of water and steam. The temperature range is from the triple point to 1750 K, and the pressure range is from 0.1 to 100 MN/m2 (1 to 1000 bars) for the thermodynamic properties and to 50 MN/m2 (500 bars) for thermal conductivity and to 80 MN/m2 (800 bars) for viscosity. WASP accepts any two of pressure, temperature, and density as input conditions. In addition, pressure and either entropy or enthalpy are also allowable input variables. This flexibility is especially useful in cycle analysis. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, surface tension, and the Laplace constant. The subroutine structure is modular so that the user can choose only those subroutines necessary to his calculations. Metastable calculations can also be made by using WASP.
Preliminary result of transport properties calculation molten Ag-based superionics
NASA Astrophysics Data System (ADS)
Oztek, H. O.; Yılmaz, M.; Kavanoz, H. B.
2016-03-01
We studied molten Ag based superionics (AgI, Ag2S and Ag3S I) which are well defined with Vashista-Rahman potential. Molecular Dynamic simulation code is Moldy which is used for canonical ensemble (NPT). Thermal properties are obtained from Green-Kubo formalism with equilibrium molecular dynamics (EMD) simulation. These calculation results are compared with the experimentals results.
Crystal dynamics and thermal properties of neptunium dioxide
NASA Astrophysics Data System (ADS)
Maldonado, P.; Paolasini, L.; Oppeneer, P. M.; Forrest, T. R.; Prodi, A.; Magnani, N.; Bosak, A.; Lander, G. H.; Caciuffo, R.
2016-04-01
We report an experimental and theoretical investigation of the lattice dynamics and thermal properties of the actinide dioxide NpO2. The energy-wave-vector dispersion relation for normal modes of vibration propagating along the [001 ] , [110 ] , and [111 ] high-symmetry lines in NpO2 at room temperature has been determined by measuring the coherent one-phonon scattering of x rays from an ˜1.2 -mg single-crystal specimen, the largest available single crystal for this compound. The results are compared against ab initio phonon dispersions computed within the first-principles density functional theory in the generalized gradient approximation plus Hubbard U correlation (GGA+U ) approach, taking into account third-order anharmonicity effects in the quasiharmonic approximation. Good agreement with the experiment is obtained for calculations with an on-site Coulomb parameter U =4 eV and Hund's exchange J =0.6 eV in line with previous electronic structure calculations. We further compute the thermal expansion, heat capacity, thermal conductivity, phonon linewidth, and thermal phonon softening, and compare with available experiments. The theoretical and measured heat capacities are in close agreement with another. About 27% of the calculated thermal conductivity is due to phonons with energy higher than 25 meV (˜6 THz ), suggesting an important role of high-energy optical phonons in the heat transport. The simulated thermal expansion reproduces well the experimental data up to about 1000 K, indicating a failure of the quasiharmonic approximation above this limit.
Tables for simplifying calculations of activities produced by thermal neutrons
Senftle, F.E.; Champion, W.R.
1954-01-01
The method of calculation described is useful for the types of work of which examples are given. It is also useful in making rapid comparison of the activities that might be expected from several different elements. For instance, suppose it is desired to know which of the three elements, cobalt, nickel, or vanadium is, under similar conditions, activated to the greatest extent by thermal neutrons. If reference is made to a cross-section table only, the values may be misleading unless properly interpreted by a suitable comparison of half-lives and abundances. In this table all the variables have been combined and the desired information can be obtained directly from the values of A 3??, the activity produced per gram per second of irradiation, under the stated conditions. Hence, it is easily seen that, under similar circumstances of irradiation, vanadium is most easily activated even though the cross section of one of the cobalt isotopes is nearly five times that of vanadium and the cross section of one of the nickel isotopes is three times that of vanadium. ?? 1954 Societa?? Italiana di Fisica.
Functional properties of thermally treated legume flours.
Nagmani, B; Prakash, J
1997-05-01
Functional properties of four thermally treated decorticated legume flours namely, bengal gram (Cicer arietinum), black gram (Phaseolus f1p4o Roxb.), green gram (Phaseolus aureus Roxb.) and lentils (Lens esculenta) were studied. Samples with moisture levels of 3.2, 3.3, 1.3 and 5.0% for all four were subjected to dry heat treatment in a covered vessel in pressure cooker. (Untreated flours served as controls. Thermal treatment lowered nitrogen solubility profiles of all flours and increased water absorption capacities in bengal gram (146) black gram (451) and lentil (206) over control values of 138, 441 and 180 ml/100 g of flour respectively. Fat absorption capacities decreased in thermally treated bengal gram and black gram (242 and 292) as against 298 and 303 ml/100 g for untreated samples respectively. Foaming capacity also showed a decrease in thermally treated bengal gram and black gram by 28 and 53% respectively over controls. Two deep fat fried Indian products namely, 'Seviya' and 'Chakli' were prepared using two of the legumes. Proximate compositional analysis revealed that products prepared with thermally treated flours absorbed less fat. The sensory scores for appearance, texture, flavour and overall quality obtained by Seviya were 6.04, 6.20, 5.98 and 6.40 for products prepared with untreated flour and 5.74, 5.78, 5.70 and 5.68 for product prepared with treated flour respectively. Chakli prepared with thermally treated flour obtained significantly lower scores of 6.08, 5.2, 5.42, and 5.88 as against 6.78, 6.68, 6.68 and 6.88 obtained by products prepared with untreated flour for similar attributes. PMID:9205596
Experimental methods of determining thermal properties of granite
Technology Transfer Automated Retrieval System (TEKTRAN)
Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...
Post-test thermal calculations and data analyses for the Spent Fuel Test, Climax
Montan, D.N.; Patrick, W.C.
1986-06-01
After the Spent Fuel Test - Climax (SFT-C) was completed, additional calculations were performed using the best available (directly measured or inferred from measurements made during the test) input parameters, thermal properties, and power levels. This report documents those calculations and compares the results with measurements made during the three-year heating phase and six-month posttest cooling phase of the SFT-C. Three basic types of heat-transfer calculations include a combined two-dimensional/three-dimensional, infinite-length, finite-difference model; a fully three-dimensional, finite-length, finite-difference model; and a fully three-dimensional, finite-length, analytical solution. The finite-length model much more accurately reflects heat flow near the ends of the array and produces cooler temperatures everywhere than does its infinite-length counterpart. 14 refs., 144 figs., 4 tabs.
The thermal properties of beeswaxes: unexpected findings.
Buchwald, Robert; Breed, Michael D; Greenberg, Alan R
2008-01-01
Standard melting point analyses only partially describe the thermal properties of eusocial beeswaxes. Differential scanning calorimetry (DSC) revealed that thermal phase changes in wax are initiated at substantially lower temperatures than visually observed melting points. Instead of a sharp, single endothermic peak at the published melting point of 64 degrees C, DSC analysis of Apis mellifera Linnaeus wax yielded a broad melting curve that showed the initiation of melting at approximately 40 degrees C. Although Apis beeswax retained a solid appearance at these temperatures, heat absorption and initiation of melting could affect the structural characteristics of the wax. Additionally, a more complete characterization of the thermal properties indicated that the onset of melting, melting range and heat of fusion of beeswaxes varied significantly among tribes of social bees (Bombini, Meliponini, Apini). Compared with other waxes examined, the relatively malleable wax of bumblebees (Bombini) had the lowest onset of melting and lowest heat of fusion but an intermediate melting temperature range. Stingless bee (Meliponini) wax was intermediate between bumblebee and honeybee wax (Apini) in heat of fusion, but had the highest onset of melting and the narrowest melting temperature range. The broad melting temperature range and high heat of fusion in the Apini may be associated with the use of wax comb as a free-hanging structural material, while the Bombini and Meliponini support their wax structures with exogenous materials. PMID:18083740
Biodegradable compounds: Rheological, mechanical and thermal properties
NASA Astrophysics Data System (ADS)
Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.
2015-12-01
Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.
Computation of Thermally Perfect Oblique Shock Wave Properties
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1997-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon the specific heat expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
Comprehensive characterization of thermophysical properties in solids using thermal impedance
NASA Astrophysics Data System (ADS)
Martínez-Flores, J. J.; Licea-Jiménez, L.; Pérez García, S. A.; Rodríguez-Viejo, J.; Alvarez-Quintana, J.
2012-11-01
Thermal impedance Zth(iω) is a way of defining the thermophysical characteristics and behavior of thermal systems. Existing photoacoustic and photothermal approaches based on thermal impedance formalism merely allows a partial thermal characterization of the materials (generally, either thermal diffusivity or thermal effusivity). In this work, a new approach based on the thermal impedance concept in terms of its characteristic thermal time constant is developed from thermal quadrupoles formalism. The approach outlined in this contribution presents a set of analytical equations in which through a single measurement of thermal impedance is sufficient to obtain a comprehensive characterization of the thermophysical properties of solid materials in a simple way.
NASA Astrophysics Data System (ADS)
Romao, Carl P.; Miller, Kimberly J.; Johnson, Michel B.; Zwanziger, J. W.; Marinkovic, Bojan A.; White, Mary Anne
2014-07-01
Y2Mo3O12, a material that exhibits negative thermal expansion (NTE) from 10 to 1173 K, offers an excellent opportunity to examine relationships between NTE and other physical properties over a wide temperature range. We report experimental heat capacity, thermal conductivity, and elastic properties of Y2Mo3O12, as well as results of an ab initio study of the lattice dynamics, and show how the anomalously high heat capacity and low thermal conductivity are correlated with NTE. We also report the ab initio elastic tensor and experimental velocity of sound of Y2Mo3O12 and use it to calculate the thermal stresses in a simulated polycrystal using finite-element analysis, showing that elastic anisotropy and thermal expansion anisotropy couple to influence the properties of the bulk solid.
Yu, Haitong; Liu, Dong; Duan, Yuanyuan; Wang, Xiaodong
2014-04-01
Opacified aerogels are particulate thermal insulating materials in which micrometric opacifier mineral grains are surrounded by silica aerogel nanoparticles. A geometric model was developed to characterize the spectral properties of such microsize grains surrounded by much smaller particles. The model represents the material's microstructure with the spherical opacifier's spectral properties calculated using the multi-sphere T-matrix (MSTM) algorithm. The results are validated by comparing the measured reflectance of an opacified aerogel slab against the value predicted using the discrete ordinate method (DOM) based on calculated optical properties. The results suggest that the large particles embedded in the nanoparticle matrices show different scattering and absorption properties from the single scattering condition and that the MSTM and DOM algorithms are both useful for calculating the spectral and radiative properties of this particulate system. PMID:24718167
Optical and thermal properties of doped semiconductor
NASA Astrophysics Data System (ADS)
Abroug, S.; Saadallah, F.; Yacoubi, N.
2008-01-01
The knowledge of doping effects on optical and thermal properties of semiconductors is crucial for the development of optoelectronic compounds. The purpose of this work is to investigate theses effects by mirage effect technique and spectroscopic ellipsometry SE. The absorption spectra measured for differently doped Si and GaAs bulk samples, show that absorption in the near IR increases with dopant density and also the band gap shifts toward low energies. This behavior is due to free carrier absorption which could be obtained by subtracting phonon assisted absorption from the measured spectrum. This carrier absorption is related to the dopant density throw a semi-empirical model.
NASA Astrophysics Data System (ADS)
Fischer, A.; Scheidt, E.-W.; Scherer, W.; Benson, D. E.; Wu, Y.; Eklöf, D.; Häussermann, U.
2015-06-01
The intermetallic compound ZnSb is an interesting thermoelectric material largely due to its low lattice thermal conductivity. The origin of the low thermal conductivity has so far been speculative. Using multitemperature single crystal x-ray diffraction (9-400 K) and powder x-ray diffraction (300-725 K) measurements, we characterized the volume expansion and the evolution of structural properties with temperature and identified an increasingly anharmonic behavior of the Zn atoms. From a combination of Raman spectroscopy and first principles calculations of phonons, we consolidate the presence of low-energy optic modes with wave numbers below 60 cm-1 . Heat capacity measurements between 2 and 400 K can be well described by a Debye-Einstein model containing one Debye and two Einstein contributions with temperatures ΘD=195 K , ΘE 1=78 K , and ΘE 2=277 K as well as a significant contribution due to anharmonicity above 150 K. The presence of a multitude of weakly dispersed low-energy optical modes (which couple with the acoustic, heat carrying phonons) combined with anharmonic thermal behavior provides an effective mechanism for low lattice thermal conductivity. The peculiar vibrational properties of ZnSb are attributed to its chemical bonding properties, which are characterized by multicenter bonded structural entities. We argue that the proposed mechanism to explain the low lattice thermal conductivity of ZnSb might also control the thermoelectric properties of other electron poor semiconductors, such as Zn4Sb3 , CdSb, Cd4Sb3 , Cd13 -xInyZn10 , and Zn5Sb4In2 -δ .
Thermal calculations pertaining to a proposed Yucca Mountain nuclear waste repository
Johnson, G.L.; Montan, D.N.
1990-02-01
In support to the Yucca Mountain Project waste package and repository design efforts, LLNL conducted heat-transfer modeling of the volcanic tuff in the repository. The analyses quantify: the thermal response of a finite size, uniformly loaded repository where each panel of emplacement drifts contains the same type of heat source the response given a realistic waste stream inventory to show the effect of inter-panel variations; and the intra-panel response for various realistic distributions of sources within the panel. The calculations, using the PLUS family of computer codes, are based on a linear superposition, in time and in space, of the analytic solution of individual, constant output point sources located in an infinite, isotropic, and homogeneous medium with constant thermal properties. 8 refs., 22 figs., 3 tabs.
40 CFR 80.66 - Calculation of reformulated gasoline properties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Calculation of reformulated gasoline properties. 80.66 Section 80.66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation...
40 CFR 80.66 - Calculation of reformulated gasoline properties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Calculation of reformulated gasoline properties. 80.66 Section 80.66 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation...
Ab initio calculations of phonon properties and spectra in condensed matter
NASA Astrophysics Data System (ADS)
Story, Shauna M.
Phonons, the quantization of atomic vibrations, are important in studying many solid state properties, ranging from Raman, infrared, and neutron scattering to thermal expansion, specific heat, and heat conductivity to electrical resistivity and superconductivity. Generally, modeling the interatomic forces and vibrational modes of a given system require costly computer simulations, though once calculated, they provide the means to a wide variety of phonon properties. Our goal is to enable easy access to these phonon properties and to do this, we have developed a framework for easily automating the workflows involved in interfacing a phonon mode calculation with the analysis tools for determining such physical properties. This was originally implemented with the AI2PS (ab initio to phonon spectra) tool, meant solely for the calculation of vibrational properties. It has since greatly expanded in scope and capabilities to a general scientific workflow tool called Corvus, which was started with the eventual goal of collecting all our various scientific workflow efforts---phonon properties, optical properties, and so on---into a single hub. We present here both the evolution of AI2PS into the Corvus project and the phonon properties simulated, including Debye--Waller factors, phonon contributions the electron self--energy and spectral function, vibrational free energy, thermal expansion, and heat capacity.
Elastic and thermodynamic properties of Fe3Ga from first-principles calculations
NASA Astrophysics Data System (ADS)
Lin, Ya-Ning; Li, Lin-Ling; Yan, Xiang-Hong; Zhang, Ya-Ping; Zhang, Dong-yun; Zhang, Peng
2016-03-01
First-principles calculations within the framework of density functional theory (DFT) are performed to investigate the elastic and thermodynamic properties of DO3-type Fe3Ga alloy. The obtained lattice constants and the bulk modulus are in good agreement with available experimental data. In terms of the calculated formation energy and Poisson's ratio, the Fe3Ga alloy is mechanically stable and exhibit a negative Poisson's ratio of -0.81 along the <110> direction. The thermodynamic properties such as the Gibbs free energy, thermal expansion, and the specific heat are obtained by the first-principles phonon calculations with the quasiharmonic approximation method. The predicted coefficient of linear thermal expansion and specific heat may provide a helpful reference for experimental work.
Thermal protection materials: Thermophysical property data
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, Donald M.
1992-01-01
This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.
Measurement of Thermal Radiation Properties of Solids
NASA Technical Reports Server (NTRS)
Richmond, J. C. (Editor)
1963-01-01
The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.
Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations
Pasamehmetoglu, K.O.; Shelton, J.D.
1998-08-01
The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.
Calculating nonlocal optical properties of structures with arbitrary shape.
McMahon, J. M.; Gray, S. K.; Schatz, G. C.; Northwestern Univ.
2010-07-16
In a recent Letter [J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur.
Alon, Leeor; Sodickson, Daniel K; Deniz, Cem M
2016-10-01
Deposition of radiofrequency (RF) energy can be quantified via electric field or temperature change measurements. Magnetic resonance imaging has been used as a tool to measure three dimensional small temperature changes associated with RF radiation exposure. When duration of RF exposure is long, conversion from temperature change to specific absorption rate (SAR) is nontrivial due to prominent heat-diffusion and conduction effects. In this work, we demonstrated a method for calculation of SAR via an inversion of the heat equation including heat-diffusion and conduction effects. This method utilizes high-resolution three dimensional magnetic resonance temperature images and measured thermal properties of the phantom to achieve accurate calculation of SAR. Accuracy of the proposed method was analyzed with respect to operating frequency of a dipole antenna and parameters used in heat equation inversion. Bioelectromagnetics. 37:493-503, 2016. © 2016 Wiley Periodicals, Inc. PMID:27490064
An efficient numerical technique for calculating thermal spreading resistance
NASA Technical Reports Server (NTRS)
Gale, E. H., Jr.
1973-01-01
The results of a thermal spreading resistance data generation technique study are reported. The method developed is discussed in detail, illustrative examples given, and the resulting computer program is included.
Determination of Viral Capsid Elastic Properties from Equilibrium Thermal Fluctuations
NASA Astrophysics Data System (ADS)
May, Eric R.; Brooks, Charles L., III
2011-05-01
We apply two-dimensional elasticity theory to viral capsids to develop a framework for calculating elastic properties of viruses from equilibrium thermal fluctuations of the capsid surface in molecular dynamics and elastic network model trajectories. We show that the magnitudes of the long wavelength modes of motion available in a simulation with all atomic degrees of freedom are recapitulated by an elastic network model. For the mode spectra to match, the elastic network model must be scaled appropriately by a factor which can be determined from an icosahedrally constrained all-atom simulation. With this method we calculate the two-dimensional Young’s modulus Y, bending modulus κ, and Föppl-von Kármán number γ, for the T=1 mutant of the Sesbania mosaic virus. The values determined are in the range of previous theoretical estimates.
High-field thermal transport properties of REBCO coated conductors
NASA Astrophysics Data System (ADS)
Bonura, Marco; Senatore, Carmine
2015-02-01
The use of REBCO coated conductors (CCs) is envisaged for many applications, extending from power cables to high-field magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the first study on the longitudinal thermal conductivity (κ) of REBCO CCs in magnetic fields up to 19 T applied both parallel and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-field κ of CCs can be calculated with an accuracy of +/- 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high fields have allowed us to evaluate the consistency of the procedures generally used for estimating in-field κ in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-field data are intended to provide primary ingredients for the thermal stability analysis of high-temperature superconductor-based magnets.
Thermal properties of lithium-ion battery and components
Maleki, H.; Hallaj, S.A.; Selman, J.R.; Dinwiddie, R.B.; Wang, H.
1999-03-01
Experimental thermal property data of the Sony US-18650 lithium-ion battery and components are presented, as well as thermal property measuring techniques. The properties in question are specific heat capacity (C{sub p}), thermal diffusivity ({alpha}), and thermal conductivity ({kappa}), in the presence and absence of electrolyte [1 M LiPF{sub 6} in ethylene carbonate-dimethyl carbonate (EC:DMC, 1:1 wt %)]. The heat capacity of the battery, C{sub p}, is 0.96 {+-} 0.02 J/g K at an open-circuit voltage (OCV) of 2.75 V, and 1.04 {+-} 0.02 J/g K at 3.75 V. The thermal conductivity, {kappa}, was calculated from {kappa} {identical_to} {alpha}{rho}C{sub p} where {alpha} was measured by a xenon-flash technique. In the absence of electrolyte, {kappa} increases with OCV, for both the negative electrode (NE) and the positive electrode (PE). For the NE, the increase is 26% as the OCV increases from 2.75 to 3.75 V, whereas for the PE the increase is only 5 to 6%. The dependence of both C{sub p} and {kappa} on OCV is explained qualitatively by considering the effect of lithiation and delithiation on the electron carrier density, which leads to n-type semiconduction in the graphitic NE material, but a change from semiconducting to metallic character in Li{sub x}CoO{sub 2} PE material. The overall effect is an increase of C{sub p} and {kappa} with OCV. For {kappa} this dependence is eliminated by electrolyte addition, which, however, greatly increases the effective {kappa} of the layered battery components by lowering the thermal contact resistance. For both NE and PE, the in-plane {kappa} value (measured along layers) is nearly one order of magnitude higher than the cross-plane {kappa}. This is ascribed mostly to the high thermal conductivity of the current collectors and to a lesser extent to the orientation of particles in the layers of electrodes.
Influence of thermal treatment on thermal properties of adamantane derivatives
NASA Astrophysics Data System (ADS)
Szewczyk, D.; JeŻowski, A.; Krivchikov, A. I.; Tamarit, J. Ll.
2015-06-01
Heat transport mechanisms present in 2-adamantanone and 1-cyanoadamantane crystals were investigated in a broad temperature range. To characterize scattering processes, thermal conductivity and heat capacity measurements were carried out. A particular care was paid to the cooling rate of specimen which influenced the thermal history of the samples. The experimental results led to a conclusion that under slow cooling the thermal conductivity reaches the highest values and resembles the behavior of ordered molecular crystals. As for fast cooling, the "quenching" resulted in changes in both the structure and the temperature dependence of the thermal conductivity, the latter resembling that of amorphous solids. In heat capacity measurements the thermal history made on samples did not reflect the preliminary findings known from thermal conductivity results, which could imply that the observed mechanisms are more complex.
Ab initio calculation of the thermal conductivity of indium antimonide
NASA Astrophysics Data System (ADS)
Miranda, Alonso L.; Xu, Bin; Hellman, Olle; Romero, Aldo H.; Verstraete, Matthieu J.
2014-12-01
A theoretical study based on the density functional theory and the temperature-dependent effective potential method is performed to analyze the changes in the phonon band structure as a function of temperature for indium antimonide. In particular, we show changes in the thermal expansion coefficient and the thermal resistivity that agree rather well with experimental measurements. From the theoretical side, we show a weak dependence with respect to the chosen thermostat used to obtain the inter-atomic force constants, which strengthens our conclusions.
Thermal properties measurements in biodiesel oils using photothermal techniques
NASA Astrophysics Data System (ADS)
Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.
2005-08-01
In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
Calculation of Thermal Conductivity Coefficients for Magnetized Neutron Star
NASA Astrophysics Data System (ADS)
Glushikhina, M. V.; Bisnovatyi-Kogan, G. S.
2015-01-01
The coefficients that determine the electron heat transfer and diffusion in the crust of neutron stars are calculated on the basis of a solution of the Boltzmann equation with allowance for degeneracy.
Ballistic phonon thermal conductance in graphene nano-ribbon: First-principles calculations
Nakamura, Jun; Tomita, Hiroki
2013-12-04
Ballistic phonon thermal conductances for graphene nanoribbons are investigated using first-principles calculations with the density functional perturbation theory and the Landauer theory. The phonon thermal conductance per unit width for GNR is larger than that for graphene and increases with decreasing ribbon width. The normalized thermal conductances with regard to a thermal quantum for GNRs are higher than those for the single-walled carbon nanotube that have circumferential lengths corresponding to the width of GNR.
Composition, structure and properties of sediment thermal springs of Kamchatka
NASA Astrophysics Data System (ADS)
Shanina, Violetta; Smolyakov, Pavel; Parfenov, Oleg
2016-04-01
associated with the rise of mixed solutions, formed at the boundary of secondary boil through faults to the surface thermal boiler (Bortnikova et al., 2009). Calculated flow index and plasticity, shows the classification in accordance with GOST 25100-2011. From these figures it is clear that all the sediments are sandy loam and are in a fluid state. A clear relationship between temperature, pH and particle size distribution of sediment thermal springs can not be traced, great importance is the geological evolution of the volcanic activity, hydrogeological conditions and the time factor. Therefore, samples with a currently active Mutnovsky volcano - sandy loam, sediments of the thermal springs Koshelevo fields are often to loams. The bottom sediments of thermal springs from the territory of the Lower Koshelevo thermal field in a natural occurrence in a state of higher yield strength, so they are an unstable surface, which may cause landslides. The bottom sediments of thermal springs are low explored subject of engineering geology, it is important to examine their properties to simulate the conditions of formation and the development of dangerous processes.
Calculation of the transport and relaxation properties of dilute water vapor.
Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S; Vesovic, Velisa
2009-07-01
Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements. PMID:19586101
The spacing calculator software—A Visual Basic program to calculate spatial properties of lineaments
NASA Astrophysics Data System (ADS)
Ekneligoda, Thushan C.; Henkel, Herbert
2006-05-01
A software tool is presented which calculates the spatial properties azimuth, length, spacing, and frequency of lineaments that are defined by their starting and ending co-ordinates in a two-dimensional (2-D) planar co-ordinate system. A simple graphical interface with five display windows creates a user-friendly interactive environment. All lineaments are considered in the calculations, and no secondary sampling grid is needed for the elaboration of the spatial properties. Several rule-based decisions are made to determine the nearest lineament in the spacing calculation. As a default procedure, the programme defines a window that depends on the mode value of the length distribution of the lineaments in a study area. This makes the results more consistent, compared to the manual method of spacing calculation. Histograms are provided to illustrate and elaborate the distribution of the azimuth, length and spacing. The core of the tool is the spacing calculation between neighbouring parallel lineaments, which gives direct information about the variation of block sizes in a given category of structures. The 2-D lineament frequency is calculated for the actual area that is occupied by the lineaments.
Attia, Ali Kamal; Souaya, Eglal R.; Soliman, Ethar A.
2015-01-01
Purpose: Thermal analysis techniques have been used to study the thermal behavior of dapoxetine and vardenafil hydrochlorides and confirmed using semi-empirical molecular orbital calculations. Methods: Thermogravimetric analysis, derivative thermogravimetry, differential thermal analysis and differential scanning calorimetry were used to determine the thermal behavior and purity of the drugs under investigation. Thermodynamic parameters such as activation energy, enthalpy, entropy and Gibbs free energy were calculated. Results: Thermal behavior of DAP and VAR were confirmed using by semi-empirical molecular orbital calculations. The purity values were found to be 99.97% and 99.95% for dapoxetine and vardenafil hydrochlorides, respectively. The purity of dapoxetine and vardenafil hydrochlorides is similar to that found by reported methods according to DSC data. Conclusion: Thermal analysis justifies its application in quality control of pharmaceutical compounds due to its simplicity, sensitivity and low operational costs. PMID:26819925
Microcomputer Calculation of Thermodynamic Properties from Molecular Parameters of Gases.
ERIC Educational Resources Information Center
Venugopalan, Mundiyath
1990-01-01
Described in this article is a problem-solving activity which integrates the application of microcomputers with the learning of physical chemistry. Students use the program with spectroscopic data to calculate the thermodynamic properties and compare them with the values from the thermochemical tables. (Author/KR)
Electronic and thermal properties of Biphenyl molecules
NASA Astrophysics Data System (ADS)
Medina, F. G.; Ojeda, J. H.; Duque, C. A.; Laroze, D.
2015-11-01
Transport properties of a single Biphenyl molecule coupled to two contacts are studied. We characterise this system by a tight-binding Hamiltonian. Based on the non-equilibrium Green's functions technique with a Landauer-Büttiker formalism the transmission probability, current and thermoelectrical power are obtained. We show that the Biphenyl molecule may have semiconductor behavior for certain values of the electrode-molecule-electrode junctions and different values of the angle between the two rings of the molecule. In addition, the density of states (DOS) is calculated to compare the bandwidths with the profile of the transmission probability. DOS allows us to explain the asymmetric shape with respect to the molecule's Fermi energy.
Calculation of material properties and ray tracing in transformation media.
Schurig, D; Pendry, J B; Smith, D R
2006-10-16
Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability. PMID:19529371
Thermal properties of PZT95/5(1.8Nb) and PSZT ceramics.
DiAntonio, Christopher Brian; Rae, David F.; Corelis, David J.; Yang, Pin; Burns, George Robert
2006-11-01
Thermal properties of niobium-modified PZT95/5(1.8Nb) and PSZT ceramics used for the ferroelectric power supply have been studied from -100 C to 375 C. Within this temperature range, these materials exhibit ferroelectric-ferroelectric and ferroelectric-paraelectric phase transformations. The thermal expansion coefficient, heat capacity, and thermal diffusivity of different phases were measured. Thermal conductivity and Grueneisen constant were calculated at several selected temperatures between -60 C and 100 C. Results show that thermal properties of these two solid solutions are very similar. Phase transformations in these ceramics possess first order transformation characteristics including thermal hysteresis, transformational strain, and enthalpy change. The thermal strain in the high temperature rhombohedral phase region is extremely anisotropic. The heat capacity for both materials approaches to 3R (or 5.938 cal/(g-mole*K)) near room temperature. The thermal diffusivity and the thermal conductivity are quite low in comparison to common oxide ceramics, and are comparable to amorphous silicate glass. Furthermore, the thermal conductivity of these materials between -60 C and 100 C becomes independent of temperature and is sensitive to the structural phase transformation. These phenomena suggest that the phonon mean free path governing the thermal conductivity in this temperature range is limited by the lattice dimensions, which is in good agreement with calculated values. Effects of small compositional changes and density/porosity variations in these ceramics on their thermal properties are also discussed. The implications of these transformation characteristics and unusual thermal properties are important in guiding processing and handling procedures for these materials.
NASA Astrophysics Data System (ADS)
Landerville, Aaron; Oleynik, Ivan
2015-06-01
Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of optimized unit cells along the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in PVT equations of state for each material that is in excellent agreement with experiment. Further, heat capacities, thermal expansion coefficients, and Gruneissen parameters as functions of temperature are calculated and compared with experiment. The vibrational properties, including phonon densities of states and pressure dependencies of individual modes, are also analyzed and compared with experiment.
239Pu Resonance Evaluation for Thermal Benchmark System Calculations
NASA Astrophysics Data System (ADS)
Leal, L. C.; Noguere, G.; de Saint Jean, C.; Kahler, A. C.
2014-04-01
Analyses of thermal plutonium solution critical benchmark systems have indicated a deficiency in the 239Pu resonance evaluation. To investigate possible solutions to this issue, the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Working Party for Evaluation Cooperation (WPEC) established Subgroup 34 to focus on the reevaluation of the 239Pu resolved resonance parameters. In addition, the impacts of the prompt neutron multiplicity (νbar) and the prompt neutron fission spectrum (PFNS) have been investigated. The objective of this paper is to present the results of the 239Pu resolved resonance evaluation effort.
Thermodynamic properties of CexTh1-xO2 solid solution from first-principles calculations
Xiao, Haiyan Y.; Zhang, Yanwen; Weber, William J.
2012-11-02
A systematic study based on first-principles calculations along with a quasi-harmonic approximation has been conducted to calculate the thermodynamic properties of the CexTh1xO2 solid solution. The predicted density, thermal expansion coefficients, heat capacity and thermal conductivity for the CexTh1xO2 solid solution all agree well with the available experimental data. The thermal expansion coefficient for ThO2 increases with CeO2 substitution, and complete substitution shows the highest expansion coefficient. On the other hand, the mixed CexTh1xO2 (0 < x < 1) solid solution generally exhibits lower heat capacity and thermal conductivity than the ThO2 and CeO2 end members. Our calculations indicate a strong effect of Ce concentration on the thermodynamic properties of the CexTh1xO2 solid solution.
Optimal experimental designs for the estimation of thermal properties of composite materials
NASA Technical Reports Server (NTRS)
Scott, Elaine P.; Moncman, Deborah A.
1994-01-01
Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.
THERMAL AND RHEOLOGICAL PROPERTIES OF LUPINUS ALBUS FLOUR MEAL
Technology Transfer Automated Retrieval System (TEKTRAN)
There is very little research done in the area of structure and function relationships of lupin meal or lupin native protein. The scope of this work is to study lupin's native proteins thermal and rheological properties in whole meal. The effect of pH and heat treatment on the thermal properties o...
THERMAL AND RHEOLOGICAL PROPERTIES OF LUPINUS ALBUS FLOUR MEAL
Technology Transfer Automated Retrieval System (TEKTRAN)
Research on the structure and function relationships of lupin meal or lupin native protein is limited. The scope of this work is to study lupin's native proteins' thermal and rheological properties in whole meal. The effect of pH and heat treatment on the thermal properties of lupin meal was studi...
The effect of material properties on the thermal efficiency of the Minto solar wheel
NASA Astrophysics Data System (ADS)
Lin, S.; Bhardwaj, R.
1980-04-01
The characteristic of the thermal performance of the Minto solar wheel is that its thermal efficiency is strongly dependent on the material properties of the working fluid. For a specified working fluid, the thermal efficiency of the ideal cycle of the Minto solar wheel is dependent only on the mean diameter of the wheel. To study the effect of the material properties of the working fluid on the ideal thermal efficiency, 14 working fluids are selected, and their thermal efficiencies as functions of the mean diameter of the wheel are calculated and compared with each other. Among these fluids, R-12, R-115, R-500, R-22 and R-13B1 achieve better thermal performance than the others.
Carbon fiber reinforced composites: their structural and thermal properties
NASA Astrophysics Data System (ADS)
Cheng, Jingquan; Yang, Dehua
2010-07-01
More and more astronomical telescopes use carbon fiber reinforced composites (CFRP). CFRP has high stiffness, high strength, and low thermal expansion. However, they are not isotropic in performance. Their properties are direction dependent. This paper discusses, in detail, the structural and thermal properties of carbon fiber structure members, such as tubes, plates, and honeycomb sandwich structures. Comparisons are provided both from the structural point of view and from the thermal point of view.
Adjustment of Sensor Locations During Thermal Property Parameter Estimation
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)
1996-01-01
The temperature dependent thermal properties of a material may be evaluated from transient temperature histories using nonlinear parameter estimation techniques. The usual approach is to minimize the sum of the squared errors between measured and calculated temperatures at specific locations in the body. Temperature measurements are usually made with thermocouples and it is customary to take thermocouple locations as known and fixed during parameter estimation computations. In fact, thermocouple locations are never known exactly. Location errors on the order of the thermocouple wire diameter are intrinsic to most common instrumentation procedures (e.g., inserting a thermocouple into a drilled hole) and additional errors can be expected for delicate materials, difficult installations, large thermocouple beads, etc.. Thermocouple location errors are especially significant when estimating thermal properties of low diffusively materials which can sustain large temperature gradients during testing. In the present work, a parameter estimation formulation is presented which allows for the direct inclusion of thermocouple positions into the primary parameter estimation procedure. It is straightforward to set bounds on thermocouple locations which exclude non-physical locations and are consistent with installation tolerances. Furthermore, bounds may be tightened to an extent consistent with any independent verification of thermocouple location, such as x-raying, and so the procedure is entirely consonant with experimental information. A mathematical outline of the procedure is given and its implementation is illustrated through numerical examples characteristic of light-weight, high-temperature ceramic insulation during transient heating. The efficacy and the errors associated with the procedure are discussed.
Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2000-01-01
Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.
Guo, Yaguang; Zhang, Shunhong; Zhao, Tianshan; Wang, Qian
2016-05-19
Mechanical cleavage, chemical intercalation and chemical vapor deposition are the main methods that are currently used to synthesize nanosheets or monolayers. Here, we propose a new strategy, thermal exfoliation for the fabrication of silica monolayers. Using a variety of state-of-the-art theoretical calculations we show that a stoichiometric single-layer silica with a tetragonal lattice, T-silica, can be thermally exfoliated from the stishovite phase in a clean environment at room temperature. The resulting single-layer silica is dynamically, thermally, and mechanically stable with exceptional properties, including a large band gap of 7.2 eV, an unusual negative Poisson's ratio, a giant Stark effect, and a high breakdown voltage. Moreover, other analogous structures like single-layer GeO2 can also be obtained by thermal exfoliation of its bulk phase. Our findings are expected to motivate experimental efforts on developing new techniques for the synthesis of monolayer materials. PMID:26743577
Thermal Coatings Seminar Series Training Part 1: Properties of Thermal Coatings
NASA Technical Reports Server (NTRS)
Triolo, Jack
2015-01-01
This course will present an overview of a variety of thermal coatings-related topics, including: coating types and availability, thermal properties measurements, environmental testing (lab and in-flight), environmental impacts, contamination impacts, contamination liabilities, determination of BOLEOL values, and what does specularity mean to the thermal engineer.
NASA Astrophysics Data System (ADS)
Kong, Fanjie; Hu, Yanfei; Hou, Haijun; Liu, Yanhua; Wang, Baolin; Wang, Lili
2012-12-01
The structural, electronic, thermoelectric and thermodynamic properties of ternary half-Heusler compound YPdSb are investigated using the first principle calculations. It is found that YPdSb is an indirect semiconductor. The calculated band gap is 0.161 eV with spin-orbital coupling including and 0.235 eV without spin-orbital coupling including, respectively. The electronic transport properties are obtained via Boltzman transport theory. The predicted Seebeck coefficient is 240 μV/K and the thermoelectric performance can be optimized by n-type doping at room temperature. Moreover, the lattice dynamical results regarding the phonon dispersion curves, phonon density of states and thermodynamic properties are reported. Thermodynamics (heat capacity and Debye temperature) as well as mean phonon free path and the thermal conductivity in a temperature range of 0-300 K are determined.
Thermodynamic and mechanical properties of TiC from ab initio calculation
Dang, D. Y.; Fan, J. L.; Gong, H. R.
2014-07-21
The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature, while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.
NASA Astrophysics Data System (ADS)
Guo, Yaguang; Zhang, Shunhong; Zhao, Tianshan; Wang, Qian
2016-05-01
Mechanical cleavage, chemical intercalation and chemical vapor deposition are the main methods that are currently used to synthesize nanosheets or monolayers. Here, we propose a new strategy, thermal exfoliation for the fabrication of silica monolayers. Using a variety of state-of-the-art theoretical calculations we show that a stoichiometric single-layer silica with a tetragonal lattice, T-silica, can be thermally exfoliated from the stishovite phase in a clean environment at room temperature. The resulting single-layer silica is dynamically, thermally, and mechanically stable with exceptional properties, including a large band gap of 7.2 eV, an unusual negative Poisson's ratio, a giant Stark effect, and a high breakdown voltage. Moreover, other analogous structures like single-layer GeO2 can also be obtained by thermal exfoliation of its bulk phase. Our findings are expected to motivate experimental efforts on developing new techniques for the synthesis of monolayer materials.Mechanical cleavage, chemical intercalation and chemical vapor deposition are the main methods that are currently used to synthesize nanosheets or monolayers. Here, we propose a new strategy, thermal exfoliation for the fabrication of silica monolayers. Using a variety of state-of-the-art theoretical calculations we show that a stoichiometric single-layer silica with a tetragonal lattice, T-silica, can be thermally exfoliated from the stishovite phase in a clean environment at room temperature. The resulting single-layer silica is dynamically, thermally, and mechanically stable with exceptional properties, including a large band gap of 7.2 eV, an unusual negative Poisson's ratio, a giant Stark effect, and a high breakdown voltage. Moreover, other analogous structures like single-layer GeO2 can also be obtained by thermal exfoliation of its bulk phase. Our findings are expected to motivate experimental efforts on developing new techniques for the synthesis of monolayer materials. Electronic
Surface and Electrical Properties of Electro-Coagulated Thermal Waste
NASA Astrophysics Data System (ADS)
Yesilkaya, S. S.; Okutan, M.; Içelli, O.; Yalçın, Z.
2015-05-01
The Electro-Coagulated Thermal Waste (ECTW) sample of the impedance spectroscopy investigation for electrical modulus and conductivity are presented. Electrical properties via temperature and frequency dependent impedance spectroscopy were investigated. Real and imaginary parts of electrical modulus were measured at various frequencies and a related Cole-Cole plot was acquired as well. The surface resistivity of the ECTW was measured by the four-point probe measurement technique, yielding a relatively high surface resistivity. As a result of this study, an effective building shielding material, which is a cost effective alternative, is proposed. The activation energy values were calculated from the Arrhenius plots at different frequencies. The transition region in this plot may be attributed to activation of ionic conductivity at lower temperatures.
Structural, Mechanical, and Thermal Properties of β-Si3N4 under High Pressure
NASA Astrophysics Data System (ADS)
Hou, H. J.; Zhu, H. J.; Lao, C. W.; Li, S. P.; Guan, H.; Xie, L. H.
2016-08-01
Intensive calculations have been carried out to study the structural, mechanical, and thermal properties of β-Si3N4 with hexagonal P63/m structure. The calculated lattice constants a and c are in agreement with the available experimental data and similar theoretical calculations. Through a series of researches, the mechanical parameters (the elastic constants, bulk modulus, shear modulus, and Young's modulus) and Debye temperature, the wave velocities are systematically investigated. Additionally, the mechanical anisotropy has been characterized by calculating Young's modulus and described by the three-dimensional (3D) surface constructions and its projections. By using the born stability criteria and phonon frequency, it is concluded that the β-Si3N4 is stable mechanically and dynamically up to 35 GPa. Finally, the thermal properties have been calculated by employing the quasi-harmonic Debye model at different temperatures (0-800 K) and pressures (0-35 GPa).
Predicting the properties of the lead alloys from DFT calculations
NASA Astrophysics Data System (ADS)
Buimaga-Iarinca, L.; Calborean, A.
2015-12-01
We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix for low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.
Predicting the properties of the lead alloys from DFT calculations
Buimaga-Iarinca, L. Calborean, A.
2015-12-23
We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix for low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.
Mechanical properties of thermal protection system materials.
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.
Galileo probe forebody thermal protection - Benchmark heating environment calculations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Nicolet, W. E.
1981-01-01
Solutions are presented for the aerothermal heating environment for the forebody heatshield of candidate Galileo probe. Entry into both the nominal and cool-heavy model atmospheres were considered. Solutions were obtained for the candidate heavy probe with a weight of 310 kg and a lighter probe with a weight of 290 kg. In the flowfield analysis, a finite difference procedure was employed to obtain benchmark predictions of pressure, radiative and convective heating rates, and the steady-state wall blowing rates. Calculated heating rates for entry into the cool-heavy model atmosphere were about 60 percent higher than those predicted for the entry into the nominal atmosphere. The total mass lost for entry into the cool-heavy model atmosphere was about 146 kg and the mass lost for entry into the nominal model atmosphere was about 101 kg.
Calculated stormtime variations in plasmaspheric thermal ion composition
NASA Technical Reports Server (NTRS)
Miller, N. J.; Mayr, H. G.; Harris, I.
1983-01-01
Model calculations describing stormtime variations in the earth's dayside plasmasphere are used to examine variations in ion composition. The model storm is initiated by high-latitude thermospheric heating that generates meridional winds that carry neutral species, momentum, and energy equatorward. The thermosphere acts on the plasmasphere through collisional transfer of momentum and through chemical reactions between neutral species and ions. Over latitudes near the region of thermospheric heating, the thermosphere-plasmasphere coupling processes cause enhancement in the density of oxygen ions while protons are being lost. Meanwhile, densities of oxygen ions and protons near the equator are increasing together, almost in phase. The largest enhancements in ion density develop at latitudes near 45 deg invariant for both oxygen and hydrogen.
Calculation of sensitivity derivatives in thermal problems by finite differences
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Malkus, D. S.
1981-01-01
The optimum design of a structure subject to temperature constraints is considered. When mathematical optimization techniques are used, derivatives of the temperature constraints with respect to the design variables are usually required. In the case of large aerospace structures, such as the Space Shuttle, the computation of these derivatives can become prohibitively expensive. Analytical methods and a finite difference approach have been considered in studies conducted to improve the efficiency of the calculation of the derivatives. The present investigation explores two possibilities for enhancing the effectiveness of the finite difference approach. One procedure involves the simultaneous solution of temperatures and derivatives. The second procedure makes use of the optimum selection of the magnitude of the perturbations of the design variables to achieve maximum accuracy.
Tissue Thermal Property Reconstruction by Stopping Heating And Perfusion
NASA Astrophysics Data System (ADS)
Sumi, C.; Uchida, T.; Ooba, T.; Inoue, K.
In this paper, we report robust noninvasive techniques for reconstructing the thermal properties of living tissues, such as thermal conductivity, thermal capacity and thermal diffusivity, for the diagnosis, monitoring and planning of thermal treatments such as high-intensity focus ultrasound (HIFU). Internal tissue temperature distributions can be measured using ultrasonic imaging or magnetic resonance imaging. Provided that the reference thermal properties of living tissues are given in the region of interest (ROI) as initial conditions, we can determine thermal property distributions by solving bioheat transfer equations as simultaneous first-order partial differential equations having temperature distributions as inhomogeneous coefficients. By using the reported technique, the perfusion by blood flow and thermal sources or sinks can also be reconstructed. However, in this study, we perform reconstruction after stopping heating and perfusion; only the thermal properties of living tissues can be reconstructed under such conditions. Simulations were conducted to verify the feasibility of the reconstruction. A minimally invasive thermal treatment will be realized by using our proposed reconstruction technique.
Calculated optical properties of thorium, protactinium, and uranium metals
Gasche, T.; Brooks, M.S.; Johansson, B.
1996-07-01
We report self-consistent energy band calculations using the linear muffin-tin orbital method and the local-spin-density approximation to exchange and correlation in density-functional theory for the light actinide metals Th, Pa, and U. The optical properties have been calculated and compared with measurements, where possible. The dependence of the optical response functions upon crystal structure was found to be surprisingly large and the dependence upon spin-orbit coupling, less so. Where it was possible to make comparison, agreement with experiment was obtained for the maxima of the optical spectra, the exception being a feature in the optical conductivity at 10 eV measured in both Th and U but not obtained in the calculations. {copyright} {ital 1996 The American Physical Society.}
Thermal properties of nonstoichiometry uranium dioxide
NASA Astrophysics Data System (ADS)
Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.
2016-04-01
In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.
Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models
NASA Astrophysics Data System (ADS)
Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel
2016-02-01
The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.
First principles calculations of vacancy-vacancy interactions in nickel: thermal expansion effects.
Megchiche, E H; Mijoule, C; Amarouche, M
2010-12-01
The energetic properties of the divacancy defect in fcc nickel are studied by ab initio calculations based on density functional theory. The formation and binding enthalpies of the divacancy in the first (1nn), second (2nn) and third (3nn) nearest-neighbor configurations are presented. Results show that the 1nn divacancy configuration is the most stable with a formation enthalpy H(2v)(f) of 2.71 eV and a small binding energy H(2v)(b) of 0.03 eV. In the 2nn configuration, the monovacancy-monovacancy interaction is repulsive, and it vanishes in the 3nn configuration. The migration process of the divacancy in its stable configuration is studied. We find that the divacancy migrates in the (111) plane by successive rotational steps of 60°. The corresponding migration enthalpy H(2v)(m) is predicted to be 0.59 eV, about half of that found for the monovacancy. For a better comparison of our results with high temperature experimental data, we have analyzed the effects of thermal expansion. Our results show that the inclusion of thermal expansion allows us to reproduce satisfactorily the experimental predictions. PMID:21406748
Thermal properties of rocks of the borehole Yaxcopoil-1 (Impact Crater Chicxulub, Mexico)
NASA Astrophysics Data System (ADS)
Popov, Yu.; Romushkevich, R.; Korobkov, D.; Mayr, S.; Bayuk, I.; Burkhardt, H.; Wilhelm, H.
2011-02-01
The results of thermal property measurements on cores from the scientific well Yaxcopoil-1 (1511 m in depth) drilled in the Chicxulub impact structure (Mexico) are described. The thermal conductivity, thermal diffusivity, volumetric heat capacity, thermal anisotropy coefficient, thermal heterogeneity factor, and, in addition, porosity and density were measured on 451 dry and water-saturated cores from the depth interval of 404-1511 m. The acoustic velocities were determined on a subgroup of representative samples. Significant vertical short- and long-scale variations of physical properties related to the grade of shock-thermal metamorphism and correlations between thermal and other physical properties are established. Rocks of the post-impact and impact complexes differ significantly in heterogeneity demonstrating that the impact complex has larger micro- heterogeneity on sample scale. The pre-impact rocks differ essentially from the impact and post-impact rocks in the thermal conductivity, thermal diffusivity, density and porosity. The thermal anisotropy of rocks of all structural-lithological complexes is very low (K = 1.02 … 1.08), which is similar to the situation in the Puchezh-Katunk and Ries impact structures. Correlations are established between the thermal conductivity and elastic wave velocities measured in laboratory. For limestone-calcarenites, the thermal conductivity (λ) can be calculated from the compressional wave velocity (Vp) using the formula λ= 0.346 Vp + 0.844, and for dolomite-anhydrites this relation has the form λ= 0.998 Vp + 1.163 [for λ in W (m K)-1 and Vp in km s-1]. These correlations are used for downscaling of the sonic velocities to the decimetre scale. The effective medium theory is applied to invert the matrix thermal conductivity and pore/crack geometry from the thermal conductivity measured on the studied samples. Representative experimental data on the thermal properties for all lithological groups encountered by the
Atomistic calculation of the thermoelectric properties of Si nanowires
NASA Astrophysics Data System (ADS)
Bejenari, I.; Kratzer, P.
2014-07-01
The thermoelectric properties of 1.6-nm-thick Si square nanowires with [100] crystalline orientation are calculated over a wide temperature range from 0 K to 1000 K, taking into account atomistic electron-phonon interaction. In our model, the [010] and [001] facets are passivated by hydrogen and there are Si-Si dimers on the nanowire surface. The electronic structure was calculated by using the sp3 spin-orbit-coupled atomistic second-nearest-neighbor tight-binding model. The phonon dispersion was calculated from a valence force field model of the Brenner type. A scheme for calculating electron-phonon matrix elements from a second-nearest-neighbor tight-binding model is presented. Based on Fermi's golden rule, the electron-phonon transition rate was obtained by combining the electron and phonon eigenstates. Both elastic and inelastic scattering processes are taken into consideration. The temperature dependence of transport characteristics was calculated by using a solution of the linearized Boltzmann transport equation obtained by means of the iterative orthomin method. At room temperature, the electron mobility is 195 cm2 V-1 s-1 and increases with temperature, while a figure of merit ZT =0.38 is reached for n-type doping with a concentration of n =1019 cm-3.
Membrane protein properties revealed through data-rich electrostatics calculations
Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael
2015-01-01
SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532
Measurement of Thermal Properties of Biosourced Building Materials
NASA Astrophysics Data System (ADS)
Pierre, Thomas; Colinart, Thibaut; Glouannec, Patrick
2014-10-01
This paper presents both experimental and theoretical works concerning the evaluation of the thermal conductivity and thermal diffusivity of hemp concrete. Experimental measurements of thermal properties are performed using a hot-strip technique for temperatures ranging from 3 to 30 and relative humidities ranging from 0 % to 95 %, thus creating a large database for this material. These experimental thermal conductivities are then compared with the results from the Krischer theoretical predictive model. The comparison shows good agreement, and a predictive analytical relation between the hemp concrete thermal conductivity, temperature, and relative humidity is determined.
Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Lee, Kam-Pui; Thompson, Richard A.; Yos, Jerrold M.
1991-01-01
A self-consistent set of equilibrium air values were computed for enthalpy, total specific heat at constant pressure, compressibility factor, viscosity, total thermal conductivity, and total Prandtl number from 500 to 30,000 K over a range of 10(exp -4) atm to 10(exp 2) atm. The mixture values are calculated from the transport and thermodynamic properties of the individual species provided in a recent study by the authors. The concentrations of the individual species, required in the mixture relations, are obtained from a free energy minimization calculation procedure. Present calculations are based on an 11-species air model. For pressures less than 10(exp -2) atm and temperatures of about 15,000 K and greater, the concentrations of N(++) and O(++) become important, and consequently, they are included in the calculations determining the various properties. The computed properties are curve fitted as a function of temperature at a constant value of pressure. These curve fits reproduce the computed values within 5 percent for the entire temperature range considered here at specific pressures and provide an efficient means for computing the flowfield properties of equilibrium air, provided the elemental composition remains constant at 0.24 for oxygen and 0.76 for nitrogen by mass.
Jo, J.H.; Yuelys-Miksis, C.; Rohatgi, U.S.
1984-01-01
Thermal-hydraulic transient calculations performed by LANL using the TRAC-PF1 code and by INEL using the RELAP5 code for the USNRC pressurized thermal shock (PTS) study of the Calvert Cliffs and H.B. Robinson Nuclear Power Plants have been reviewed at BNL including the input decks and steady state calculations. Furthermore, six transients for each plant have been selected for the in-depth review. Simple hand calculations based on the mass and energy balances of the entire reactor system, have been performed to predict the temperature and pressure of the reactor system, and the results have been compared with those obtained by the code calculation. In general, the temperatures and pressures of the primary system calculated by the codes have been very reasonable. The secondary pressures calculated by TRAC appear to indicate that the codes have some difficulty with the condensation model and further work is needed to assess the code calculation of the U-tube steam generator pressure when the cold auxiliary feedwater is introduced to the steam generator. However, it is not expected that this uncertainty would affect the transient calculations significantly.
NASA Astrophysics Data System (ADS)
Ganvir, Ashish; Curry, Nicholas; Markocsan, Nicolaie; Nylén, Per; Joshi, Shrikant; Vilemova, Monika; Pala, Zdenek
2016-01-01
Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.
Anisotropic thermal transport property of defect-free GaN
NASA Astrophysics Data System (ADS)
Ju, Wenjing; Zhou, Zhongyuan; Wei, Zhiyong
2016-06-01
Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly result from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.
Photothermal model fitting in the complex plane for thermal properties determination in solids.
Zambrano-Arjona, M A; Peñuñuri, F; Acosta, M; Riech, I; Medina-Esquivel, R A; Martínez-Torres, P; Alvarado-Gil, J J
2013-02-01
Thermal properties of solids are obtained by fitting the exact complex photothermal model to the normalized photoacoustic (PA) signal in the front configuration. Simple closed-form expressions for the amplitude and phase are presented in all frequency ranges. In photoacoustic it has been common practice to assume that all the absorptions of radiation take place in the sample. However, in order to obtain the accurate thermal properties it is necessary to consider the PA signal contributions produced at the cell walls. Such contributions were considered in our study. To demonstrate the usefulness of the proposed methodology, commercial stainless steel layers AISI 302 were analyzed. It is shown that using our approach the obtained thermal diffusivity and effusivity were in good agreement with those reported in the literature. Also, a detailed procedure for the calculation of the standard error in the thermal properties is discussed. PMID:23464238
Photothermal model fitting in the complex plane for thermal properties determination in solids
NASA Astrophysics Data System (ADS)
Zambrano-Arjona, M. A.; Peñuñuri, F.; Acosta, M.; Riech, I.; Medina-Esquivel, R. A.; Martínez-Torres, P.; Alvarado-Gil, J. J.
2013-02-01
Thermal properties of solids are obtained by fitting the exact complex photothermal model to the normalized photoacoustic (PA) signal in the front configuration. Simple closed-form expressions for the amplitude and phase are presented in all frequency ranges. In photoacoustic it has been common practice to assume that all the absorptions of radiation take place in the sample. However, in order to obtain the accurate thermal properties it is necessary to consider the PA signal contributions produced at the cell walls. Such contributions were considered in our study. To demonstrate the usefulness of the proposed methodology, commercial stainless steel layers AISI 302 were analyzed. It is shown that using our approach the obtained thermal diffusivity and effusivity were in good agreement with those reported in the literature. Also, a detailed procedure for the calculation of the standard error in the thermal properties is discussed.
Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study
NASA Astrophysics Data System (ADS)
Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj
2013-09-01
We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.
Property-optimized Gaussian basis sets for molecular response calculations
NASA Astrophysics Data System (ADS)
Rappoport, Dmitrij; Furche, Filipp
2010-10-01
With recent advances in electronic structure methods, first-principles calculations of electronic response properties, such as linear and nonlinear polarizabilities, have become possible for molecules with more than 100 atoms. Basis set incompleteness is typically the main source of error in such calculations since traditional diffuse augmented basis sets are too costly to use or suffer from near linear dependence. To address this problem, we construct the first comprehensive set of property-optimized augmented basis sets for elements H-Rn except lanthanides. The new basis sets build on the Karlsruhe segmented contracted basis sets of split-valence to quadruple-zeta valence quality and add a small number of moderately diffuse basis functions. The exponents are determined variationally by maximization of atomic Hartree-Fock polarizabilities using analytical derivative methods. The performance of the resulting basis sets is assessed using a set of 313 molecular static Hartree-Fock polarizabilities. The mean absolute basis set errors are 3.6%, 1.1%, and 0.3% for property-optimized basis sets of split-valence, triple-zeta, and quadruple-zeta valence quality, respectively. Density functional and second-order Møller-Plesset polarizabilities show similar basis set convergence. We demonstrate the efficiency of our basis sets by computing static polarizabilities of icosahedral fullerenes up to C720 using hybrid density functional theory.
Effects of nanosized constriction on thermal transport properties of graphene
2014-01-01
Thermal transport properties of graphene with nanosized constrictions are investigated using nonequilibrium molecular dynamics simulations. The results show that the nanosized constrictions have a significant influence on the thermal transport properties of graphene. The thermal resistance of the nanosized constrictions is on the order of 107 to 109 K/W at 150 K, which reduces the thermal conductivity by 7.7% to 90.4%. It is also found that the constriction resistance is inversely proportional to the width of the constriction and independent of the heat current. Moreover, we developed an analytical model for the ballistic thermal resistance of the nanosized constrictions in two-dimensional nanosystems. The theoretical prediction agrees well with the simulation results in this paper, which suggests that the thermal transport across the nanosized constrictions in two-dimensional nanosystems is ballistic in nature. PACS 65.80.CK; 61.48.Gh; 63.20.kp; 31.15.xv PMID:25232292
First-principles study of thermal properties of borophene.
Sun, Hongyi; Li, Qingfang; Wan, X G
2016-06-01
Very recently, a new single-element two-dimensional (2D) material borophene was successfully grown on a silver surface under pristine ultrahigh vacuum conditions which attracts tremendous interest. In this paper, the lattice thermal conductivity, phonon lifetimes, thermal expansion and temperature dependent elastic moduli of borophene are systematically studied by using first-principles. Our simulations show that borophene possesses unique thermal properties. Strong phonon-phonon scattering is found in borophene, which results in its unexpectedly low lattice thermal conductivity. Thermal expansion coefficients along both the armchair and zigzag directions of borophene show impressive negative values. More strikingly, the elastic moduli are sizably strengthened as temperature increases, and the negative in-plane Poisson's ratios are found along both the armchair and zigzag directions at around 120 K. The mechanisms of these unique thermal properties are also discussed in this paper. PMID:27188523
Novel applications exploiting the thermal properties of nanostructured materials.
Eastman, J. A.
1998-11-20
A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.
Ab Initio Calculation of Structure and Thermodynamic Properties of Zintl Aluminide SrAl2
NASA Astrophysics Data System (ADS)
Fu, Zhi-Jian; Jia, Li-Jun; Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong; Sun, Xiao-Wei; Chen, Qi-Feng
2015-12-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl2 at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory methodwithin the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl2 are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations inthe thermal expansion α are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
Thermal properties of epoxy composites filled with boric acid
NASA Astrophysics Data System (ADS)
Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.
2015-04-01
The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.
Optical measurements of the thermal properties of nanofluids
NASA Astrophysics Data System (ADS)
Rusconi, Roberto; Rodari, Erica; Piazza, Roberto
2006-12-01
The authors show that the thermal conductivity and diffusivity of colloidal particle dispersions can be rapidly obtained with high accuracy and reproducibility by exploiting a noninvasive, all-optical thermal lensing method. Applications of this technique to model suspensions of spherical monodisperse particles suggest that classical models for the effective properties of composite media hold up to rather high volume fractions, while no "anomalous" thermal conductivity effects are found.
Thermophysical Properties of Polymer Materials with High Thermal Conductivity
NASA Astrophysics Data System (ADS)
Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.
2015-06-01
Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Calculation of radiative properties of nonequilibrium hydrogen plasma
NASA Technical Reports Server (NTRS)
Park, C.
1979-01-01
A computer program called NEQRAP is described that calculates the radiative properties of nonequilibrium ionized hydrogen. From the given electron temperature, electron density, and atom density values (which do not necessarily satisfy the equilibrium relationship) and intensities of incident radiation, the non-Boltzmann populations of electronic states are computed by solving the equation of quasi-steady-state population distribution. Emission and absorption coefficients are determined as functions of wavelength by invoking the principle of detailed balance between the upper and lower states of each radiative transition. Radiative transport through the medium is computed assuming a one-dimensional uniform slab. The rate of ionic reaction is also computed. When used on a sample case, the program shows that there is a large difference between the calculated intensities of radiation emitted by a bulk of equilibrium and nonequilibrium hydrogen. The accuracy of the program is estimated to be better than 10%.
Thermal properties of organic and modified inorganic aerogels
Pekala, R.W.; Hrubesh, L.W.
1992-08-01
Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. Improvements in the thermal insulating properties of aerogels are possible by synthesizing new organic varieties, by using additives within existing aerogel matrix, and by optimizing their nanostructures. We discuss these approaches and give some examples of aerogels which demonstrate the improvements.
Water absorbance and thermal properties of sulfated wheat gluten films
Technology Transfer Automated Retrieval System (TEKTRAN)
Wheat gluten films of varying thicknesses formed at 30C to 70C were treated with cold sulfuric acid to produce sulfated gluten films. Chemical, thermal, thermal stability, and water uptake properties were characterized for neat and sulfated films. The sulfated gluten films were able ...
High-accuracy coupled cluster calculations of atomic properties
Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.
2015-01-22
The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.
NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species
NASA Technical Reports Server (NTRS)
McBride, Bonnie J.; Zehe, Michael J.; Gordon, Sanford
2002-01-01
This report documents the library of thermodynamic data used with the NASA Glenn computer program CEA (Chemical Equilibrium with Applications). This library, containing data for over 2000 solid, liquid, and gaseous chemical species for temperatures ranging from 200 to 20,000 K, is available for use with other computer codes as well. The data are expressed as least-squares coefficients to a seven-term functional form for C((sup o)(sub p)) (T) / R with integration constants for H (sup o) (T) / RT and S(sup o) (T) / R. The NASA Glenn computer program PAC (Properties and Coefficients) was used to calculate thermodynamic functions and to generate the least-squares coefficients. PAC input was taken from a variety of sources. A complete listing of the database is given along with a summary of thermodynamic properties at 0 and 298.15 K.
Insights into Asteroid Thermal Properties from Lunar Eclipse Observations
NASA Astrophysics Data System (ADS)
Hayne, Paul; Lucey, Paul G.; Paige, David A.
2015-08-01
Surface temperatures on airless planetary bodies are controlled primarily by insolation and the thermophysical properties of the subsurface layer probed by the diurnal and seasonal thermal waves. Observations of asteroid thermal emission are used to constrain the physical structure of this surface layer. However, the thermal skin depth probed by this technique depends on rotation period, and the derived thermal inertia is a weighted average over a finite depth, which varies from one asteroid to another. If the properties of the surface layer are depth-dependent, then physically identical bodies with different rotation periods will have different apparent thermal inertia values. The Moon provides an opportunity to investigate this phenomenon, using thermal infrared emission curves on both the diurnal and eclipse timescales.We used multi-spectral thermal infrared observations of the Moon from two instruments: The Maui Space Surveillance System’s Longwave-IR (LWIR) imager, and the Lunar Reconnaissance Orbiter’s Diviner Lunar Radiometer. Diviner’s near-complete characterization of the lunar diurnal temperature cycles are used to constrain the properties of the uppermost √κt ~ 30 cm, where κ is thermal diffusivity and t is the rotation period. Eclipse cooling data from both LWIR and Diviner reveal the properties of the uppermost ~ 1 cm. Here, we focus on results from the October, 2014, and April, 2015 total lunar eclipses.Using a 1-d thermal model with depth-dependent thermal properties, we fit both the diurnal and eclipse brightness temperature data. Results show that the regolith thermal inertia increases exponentially with depth, from ~10 J m-2 K-1 s-1/2 at the surface to ~90 J m-2 K-1 s-1/2 at > 30 cm depth. This range brackets values derived from thermal light curves of many asteroids. Surface thermal inertia values derived from eclipse data are ~25 - 50% lower than previous models based on diurnal temperatures alone, and are similar to the lower end of
Yu Fengling; Bennett, Ted D.
2005-11-15
Phase of thermal emission spectroscopy is developed for determining the thermal properties of thermal barrier coating (TBC) in the presence of thermal contact resistance between the coating and the substrate. In this method, a TBC sample is heated using a periodically modulated laser and the thermal emission from the coating is collected using an infrared detector. The phase difference between the heating signal and the emission signal is measured experimentally. A mathematical model is developed to predict the phase difference between the laser and the measured emission, which considers the coating properties and the thermal contact resistance of the interface. An electron-beam physical vapor deposition thermal barrier coating with local regions delaminated by laser shock is characterized using this technique. The measurements are made on two regions of the coating, one where good thermal contact between the coating and substrate exists and the other where the interface has been damaged by laser shock. The results for the thermal properties and thermal contact resistance of the interface are presented and compared.
NASA Astrophysics Data System (ADS)
Yu, Fengling; Bennett, Ted D.
2005-11-01
Phase of thermal emission spectroscopy is developed for determining the thermal properties of thermal barrier coating (TBC) in the presence of thermal contact resistance between the coating and the substrate. In this method, a TBC sample is heated using a periodically modulated laser and the thermal emission from the coating is collected using an infrared detector. The phase difference between the heating signal and the emission signal is measured experimentally. A mathematical model is developed to predict the phase difference between the laser and the measured emission, which considers the coating properties and the thermal contact resistance of the interface. An electron-beam physical vapor deposition thermal barrier coating with local regions delaminated by laser shock is characterized using this technique. The measurements are made on two regions of the coating, one where good thermal contact between the coating and substrate exists and the other where the interface has been damaged by laser shock. The results for the thermal properties and thermal contact resistance of the interface are presented and compared.
Structure and Thermal Properties of Porous Geological Materials
NASA Astrophysics Data System (ADS)
Kirk, Simon; Williamson, David
2011-06-01
Understanding the behaviour of porous geological materials is important for developing models of the explosive loading of rock in mining applications. To this end it is essential to first characterise its complex internal structure. Knowing the structure shows how the properties of the component materials relate to the overall properties of rock. The structure and mineralogy of Gosford sandstone was investigated and this information was used to predict its thermal properties. The thermal properties of the material were measured experimentally and compared against these predictions.
THERMAL PROPERTIES OF SECONDARY ORGANIC AEROSOLS
Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in several hydrocarbon/NO_{x} irradiation experiments. These measurements were used to estimate the thermal behavior of the particles that may be formed in the atmosphere. These laborator...
Review of thermal properties of graphite composite materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.
1987-01-01
Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.
Review of thermal properties of graphite composite materials
Kourtides, D.A.
1987-12-01
Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.
A computer program to calculate radiation properties of reflector antennas
NASA Technical Reports Server (NTRS)
Agrawal, P. K.
1978-01-01
A computer program to calculate the radiation properties of the reflector antennas is presented. It can be used for paraboloidal, spherical, or ellipsoidal reflector surfaces and is easily modified to handle any surface that can be expressed analytically. The program is general enough to allow any arbitrary location and pointing angle for the feed antenna. The effect of blockage due to the feed horn is also included in the computations. The computer program is based upon the technique of tracing the rays from the feed antenna to the reflector to an aperture plane. The far field radiation properties are then calculated by performing a double integration over the field points in the aperture plane. To facilitate the computation of double intergral, the field points are first aligned along the equispaced straight lines in the aperture plane. The computation time is relatively insensitive to the absolute size of the aperture and even though no limits on the largest reflector size have been determined, the program was used for reflector diameters of 1000 wavelenghts.
Kong, Fanjie; Hu, Yanfei; Hou, Haijun; Liu, Yanhua; Wang, Baolin; Wang, Lili
2012-12-15
The structural, electronic, thermoelectric and thermodynamic properties of ternary half-Heusler compound YPdSb are investigated using the first principle calculations. It is found that YPdSb is an indirect semiconductor. The calculated band gap is 0.161 eV with spin-orbital coupling including and 0.235 eV without spin-orbital coupling including, respectively. The electronic transport properties are obtained via Boltzman transport theory. The predicted Seebeck coefficient is 240 {mu}V/K and the thermoelectric performance can be optimized by n-type doping at room temperature. Moreover, the lattice dynamical results regarding the phonon dispersion curves, phonon density of states and thermodynamic properties are reported. Thermodynamics (heat capacity and Debye temperature) as well as mean phonon free path and the thermal conductivity in a temperature range of 0-300 K are determined. - Graphical Abstract: (a) The dependence of the Seebeck coefficient on chemical potential at 300 K. (b) The dependence of the thermopower factor on chemical potential at 300 K. Highlights: Black-Right-Pointing-Pointer The Seebeck coefficient and the thermopower factor are calculated. Black-Right-Pointing-Pointer The lattice dynamics and thermodynamic properties are obtained.
Front surface thermal property measurements of air plasma spray coatings
Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand
2009-04-15
A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.
NASA Astrophysics Data System (ADS)
Zhang, X. N.; Li, H. P.; Murphy, A. B.; Xia, W. D.
2015-06-01
Two main methods have been used to calculate the transport properties of two-temperature (2-T) plasmas in local chemical equilibrium: the method of Devoto (method B), in which coupling between electrons and heavy species is neglected, and the method of Rat et al (method C), in which coupling is included at the cost of a considerable increase in complexity. A new method (method A) has recently been developed, based on the modified Chapman-Enskog solution of the species Boltzmann equations. This method retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. In this paper, the properties of 2-T argon plasmas calculated using the three methods are compared. The viscosity, electrical conductivity and translational thermal conductivity obtained using all three methods are very similar. method B does not allow a complete set of species diffusion coefficient to be obtained. It is shown that such a set can be calculated using method A without any significant loss of accuracy. Finally, it is important to note that, by using the physical fact that the mass of heavy particles is much larger than that of electrons (i.e. me << mh), the complexity of calculations using method A is not increased compared with method B; that is to say, the calculation procedure is much simpler than with method C.
Cross-plane thermal properties of transition metal dichalcogenides
Muratore, C.; Varshney, V.; Gengler, J. J.; Hu, J. J.; Bultman, J. E.; Smith, T. M.; Shamberger, P. J.; Roy, A. K.; Voevodin, A. A.; Qiu, B.; Ruan, X.
2013-02-25
In this work, we explore the thermal properties of hexagonal transition metal dichalcogenide compounds with different average atomic masses but equivalent microstructures. Thermal conductivity values of sputtered thin films were compared to bulk crystals. The comparison revealed a >10 fold reduction in thin film thermal conductivity. Structural analysis of the films revealed a turbostratic structure with domain sizes on the order of 5-10 nm. Estimates of phonon scattering lengths at domain boundaries based on computationally derived group velocities were consistent with the observed film microstructure, and accounted for the reduction in thermal conductivity compared to values for bulk crystals.
Mechanical and thermal properties of planetologically important ices
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1987-01-01
Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.
Thermal conductivity and other properties of cementitious grouts
Allan, M.
1998-08-01
The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.
THERMAL CONDUCTIVITY AND OTHER PROPERTIES OF CEMENTITIOUS GROUTS
ALLAN,M.
1998-05-01
The thermal conductivity and other properties cementitious grouts have been investigated in order to determine suitability of these materials for grouting vertical boreholes used with geothermal heat pumps. The roles of mix variables such as water/cement ratio, sand/cement ratio and superplasticizer dosage were measured. In addition to thermal conductivity, the cementitious grouts were also tested for bleeding, permeability, bond to HDPE pipe, shrinkage, coefficient of thermal expansion, exotherm, durability and environmental impact. This paper summarizes the results for selected grout mixes. Relatively high thermal conductivities were obtained and this leads to reduction in predicted bore length and installation costs. Improvements in shrinkage resistance and bonding were achieved.
Calculation of stress relaxation properties for type 422 stainless steel
Ellis, F.V.; Tordonato, S.
2000-02-01
Analytical life prediction methods are being developed for high-temperature turbine and valve studs/bolts. In order to validate the approach, the calculated results are compared to the results of uniaxial stress relaxation testing, bolt model testing, and service experience. Long time creep, creep-rupture, and stress relaxation tests were performed by the National Research Institute for Metals of Japan (NRIM) for 12 Cr-1 Mo-1 W-1/4V, Type 422 stainless steel bolting material, at 500, 550, and 600 C. Based on these results and limited tests for a service-exposed bolt, the creep behavior can be described using a two-parameter material model: {var_epsilon}/{var_epsilon}{sub r} = 1-(1-(t/t{sub r}){sup m+1}){sup {delta}} where {var_epsilon}{sub r} is the rupture strain, t{sub r} is the rupture time, and m and {delta} are material constants. For comparison with the measured uniaxial stress relaxation properties, the stress relaxation was calculated using the two-parameter creep equation and a strain-hardening flow rule. The rupture time data was correlated using time-temperature parameter methods. A power law was used for the rupture strain versus rupture time relationship at each temperature. The calculated stress versus time curves were in good agreement with the measured at all temperatures and for initial strain levels of 0.10, 0.15, 0.20, and 0.25%.
In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties
NASA Astrophysics Data System (ADS)
Olowojoba, Ganiu B.; Eslava, Salvador; Gutierrez, Eduardo S.; Kinloch, Anthony J.; Mattevi, Cecilia; Rocha, Victoria G.; Taylor, Ambrose C.
2016-01-01
Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.
Thermal properties of amorphous/crystalline silicon superlattices.
France-Lanord, Arthur; Merabia, Samy; Albaret, Tristan; Lacroix, David; Termentzidis, Konstantinos
2014-09-01
Thermal transport properties of crystalline/amorphous silicon superlattices using molecular dynamics are investigated. We show that the cross-plane conductivity of the superlattices is very low and close to the conductivity of bulk amorphous silicon even for amorphous layers as thin as ≃ 6 Å. The cross-plane thermal conductivity weakly increases with temperature which is associated with a decrease of the Kapitza resistance with temperature at the crystalline/amorphous interface. This property is further investigated considering the spatial analysis of the phonon density of states in domains close to the interface. Interestingly, the crystalline/amorphous superlattices are shown to display large thermal anisotropy, according to the characteristic sizes of elaborated structures. These last results suggest that the thermal conductivity of crystalline/amorphous superlattices can be phonon engineered, providing new directions for nanostructured thermoelectrics and anisotropic materials in thermal transport. PMID:25105883
Unified expression for the calculation of thermal conductivity in the canonical ensemble
NASA Astrophysics Data System (ADS)
Chialvo, Ariel A.; Cummings, Peter T.
A proof of the theoretical equivalence between the E. Helfand, 1960, Phys. Rev., 119, 1 and the D. McQuarrie, 1976, Statistical Mechanics (Harper & Row), Chap. 21 equations for the calculation of thermal conductivity via the Einsteintype relations is presented here. Some theoretical implications of that equivalence are also discussed, such as the unification of the thermal conductivity expressions into one similar to that given for linear transport coefficients by F. C. Andrews, 1967, J. Chem. Phys., 47, 3161.
Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.
1995-09-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.
First-Principles Investigation of Structural, Thermal and Transport Properties of Anatase TiO2
NASA Astrophysics Data System (ADS)
Naffouti, Wafa; Ben Nasr, Tarek; Meradji, Hocine; Kamoun-Turki, Najoua
2016-06-01
A theoretical calculation of the structural, thermal and transport properties of anatase titanium dioxide (TiO2) was investigated with the help of density functional theory and Boltzmann theory. The fully optimized structure was obtained by minimizing the total energy. The variations of the volume (V), bulk modulus (B), Debye temperature (Θ), heat capacities at constant volume (C v ) and constant pressure (C p ), entropy (S), Grüneisen parameter (γ) and thermal expansion coefficient (α) as a function of the pressure (P) and temperature (T) were all obtained and analyzed in detail. Boltzmann theory calculations have been used to evaluate important transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (K el ) and power factor (S 2 σ) with respect to scattering time (τ) as a function of chemical potential (μ).
4He Thermophysical Properties: New Ab Initio Calculations
Hurly, John J.; Mehl, James B.
2007-01-01
Since 2000, atomic physicists have reduced the uncertainty of the helium-helium “ab initio” potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of 4He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties. PMID:27110456
NASA Astrophysics Data System (ADS)
Li, Y.; Anderson, R. M.; Duan, Z.; Chill, S.; Crooks, R. M.; Henkelman, G.; Frenkel, A. I.
2016-05-01
Characterizing size related thermal properties of nanoclusters is challenging due to the requirement to accurately control both their average sizes and the size distributions. In this work, temperature-dependent Extended X-ray Absorption Fine Structure spectroscopy and the phenomenological bond-order-length-strength (BOLS) model were employed to investigate the size-dependent Einstein temperature of Au nanoclusters. Theoretical calculations of Einstein temperature and average bond distance for clusters with different sizes agree quantitatively with experiment. The BOLS model is thus useful for predictive understanding of structure and thermal properties in well-defined metal clusters.
Pressure dependence of thermal transport properties
Hofmeister, Anne M.
2007-01-01
Pressure (P) derivatives of thermal conductivity (k) and thermal diffusivity (D) are important to geophysics but are difficult to measure accurately because minerals, being hard and partially transparent, likely incur systematic errors through thermal losses at interfaces and spurious radiative transfer. To evaluate accuracy, repeat experiments for olivine [(Mg0.9Fe0.1)2SiO4], quartz (SiO2), and NaCl are examined in detail: these and other data on electrical insulators are compared with theory. At ambient conditions, D is underestimated in proportion to the number of contacts. As temperature (T) increases, spurious radiative transfer more than offsets contact loss. Compression of pore space and contact losses affect pressure derivatives, but these seem independent of T. Accurate (±2%) values of D(T) at 1 atm are obtained with the contact-free, laser-flash method. Other optical techniques do not pinpoint D but provide useful pressure derivatives. Published data on ∂(lnk)/∂P at ambient conditions agree roughly with all available models, the simplest of which predicts ∂(lnk)/∂P ∼ ∂(lnKT)/∂P, where KT is the bulk modulus. However, derivatives verified by multiple measurements are reproduced accurately only by the damped harmonic oscillator model. An improved database is needed to refine this model and to confidently extrapolate these difficult measurements to geophysically relevant conditions. PMID:17299046
Thermal properties of {sup 4}He surfaces and interfaces
Clements, B.E.; Krotscheck, E. |; Tymczak, C.J.
1997-05-01
A first-principle quantum statistical mechanical theory is used to study the properties of thick liquid {sup 4}He films absorbed to the weakly binding substrates: Li, Na, and Cs. Values for the liquid-gas and solid-liquid surface energies are determined. By fitting, at long wavelengths, the film`s lowest energy mode with the standard expression for the ripplon energy, which depends on the liquid-gas surface energy, the authors obtain excellent agreement with the liquid-vacuum surface energy from recent experiments and also the one previously extracted from quantum liquid droplet calculations. The full spectrum of excitations for wave vectors less than 0.50 {Angstrom}{sup {minus}1} is calculated using a dynamical correlated basis function theory developed in earlier work, which includes multi-phonon scattering processes. Particle currents and transition densities are used to elucidate the nature of the excitations. At a coverage of 0.40 {Angstrom}{sup {minus}2}, the lowest mode shows no significant substrate dependence, and is recognized as being a ripplon propagating in the liquid film at the liquid-gas surface. A new effect is observed for the Cs substrate; the second lowest mode is qualitatively different than found on the other substrates and is identified as interfacial ripplon. In the other substrates the second mode is a volume mode altered somewhat by the high density inner liquid layers. The linewidths of these modes are also calculated. The dynamic excitations provide the input for the thermodynamic theory and the effects on the free energy, heat capacity, and thermal surface broadening of these films are studied as function of the nature of the excitations, the number of modes, and variations in the substrate potentials.
Thermal state of SNPS ``Topaz'' units: Calculation basing and experimental confirmation
NASA Astrophysics Data System (ADS)
Bogush, Igor P.; Bushinsky, Alexander V.; Galkin, Anatoly Ya.; Serbin, Victor I.; Zhabotinsky, Evgeny E.
1991-01-01
The ensuring thermal state parameters of thermionic space nuclear power system (SNPS) units in required limits on all operating regimes is a factor which determines SNPSs lifetime. The requirements to unit thermal state are distinguished to a marked degree, and both the corresponding units arragement in SNPS power generating module and the use of definite control algorithms, special thermal regulation and protection are neccessary for its provision. The computer codes which permit to define the thermal transient performances of liquid metal loop and main units had been elaborated for calculation basis of required SNPS ``Topaz'' unit thermal state. The conformity of these parameters to a given requirements are confirmed by results of autonomous unit tests, tests of mock-ups, power tests of ground SNPS prototypes and flight tests of two SNPS ``Topaz''.
Thermal state of SNPS Topaz'' units: Calculation basing and experimental confirmation
Bogush, I.P.; Bushinsky, A.V.; Galkin, A.Y.; Serbin, V.I.; Zhabotinsky, E.E. )
1991-01-01
The ensuring thermal state parameters of thermionic space nuclear power system (SNPS) units in required limits on all operating regimes is a factor which determines SNPSs lifetime. The requirements to unit thermal state are distinguished to a marked degree, and both the corresponding units arragement in SNPS power generating module and the use of definite control algorithms, special thermal regulation and protection are neccessary for its provision. The computer codes which permit to define the thermal transient performances of liquid metal loop and main units had been elaborated for calculation basis of required SNPS Topaz'' unit thermal state. The conformity of these parameters to a given requirements are confirmed by results of autonomous unit tests, tests of mock-ups, power tests of ground SNPS prototypes and flight tests of two SNPS Topaz''.
Model potential calculation of the thermal donor energy spectrum in silicon
NASA Astrophysics Data System (ADS)
Chen, C. S.; Schroder, D. K.
1988-06-01
The two-parameter model potential originally proposed by Ning and Sah [Phys. Rev. B 4, 3468 (1971)] for calculating the ground-state energies of group V and group VI impurities in silicon is extended to the variational calculation of the thermal donor ionization energies. In the multivalley effective mass approximation, the theoretical results are in excellent agreement with the reported experimental data. This provides additional evidence for the assumption that thermal donors consist of five to thirteen oxygen atoms, as first proposed by Ourmazd, Schröter, and Bourret [J. Appl. Phys. 56, 1670 (1984)].
Model potential calculation of the thermal donor energy spectrum in silicon
Chen, C.S.; Schroder, D.K.
1988-06-15
The two-parameter model potential originally proposed by Ning and Sah (Phys. Rev. B 4, 3468 (1971)) for calculating the ground-state energies of group V and group VI impurities in silicon is extended to the variational calculation of the thermal donor ionization energies. In the multivalley effective mass approximation, the theoretical results are in excellent agreement with the reported experimental data. This provides additional evidence for the assumption that thermal donors consist of five to thirteen oxygen atoms, as first proposed by Ourmazd, Schroeter, and Bourret (J. Appl. Phys. 56, 1670 (1984)).
Thermal properties of composite materials: a complex systems approximation
NASA Astrophysics Data System (ADS)
Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor
We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.
Crystal growth and anisotropic thermal properties of the nonlinear and polar oxide Cs2TeW3O12
NASA Astrophysics Data System (ADS)
Feng, Jiang-He; Xiang, Xu; Mao, Jiang-Gao
2015-12-01
Large crystal of the nonlinear optical and polar oxide Cs2TeW3O12 with a size of 20×15×4 mm3 has been grown by the top-seeded solution growth (TSSG) method. This crystal can be thermally stable up to 808 °C and melts incongruently. It possesses a large transparent range of 0.415-5.250 μm. Thermal properties, including thermal expansion, specific heat, thermal diffusivity and thermal conductivity were investigated. The average linear thermal expansion coefficients were calculated based on the measurement in the temperature range of 30-390 °C. It exhibits strong anisotropic thermal expansion which was discussed according to the relationships between the structure and thermal properties. Furthermore, laser-induced damage threshold has been estimated to be 591.28 MW/cm2 with a laser wavelength of 1064 nm and pulse duration of 8 ns.
Micromechanics of intraply hybrid composites: Elastic and thermal properties
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Composite micromechanics are used to derive equations for predicting the elastic and thermal properties of unidirectional intraply hybrid composites. The results predicted using these equations are compared with those predicted using approximate equations based on the rule of mixtures, linear laminate theory, finite element analysis and limited experimental data. The comparisons for three different intraply hybrids indicate that all four methods predict approximately the same elastic properties and are in good agreement with measured data. The micromechanics equations and linear laminate theory predict about the same values for thermal expansion coefficients. The micromechanics equations predict through-the-thickness properties which are in good agreement with the finite element results.
Calculation of the radiative properties of photosynthetic microorganisms
NASA Astrophysics Data System (ADS)
Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard
2015-08-01
A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively
Measurement of Thermal Properties of Saltstone
Steimke, J.L.; Fowley, M.D.
1998-05-01
Radioactive liquid effluent from the In Tank Precipitation Process is mixed with Portland cement, flyash and furnace alag to form Saltstone. The Saltstone is poured into vaults at Z Area for long term disposal. A transient heat transfer model of the Saltstone pouring process was previously written to determine whether the Saltstone temperature would exceed the Technical Specification Limit of 95 degrees C. The present work was performed to provide Saltstone density, heat capacity, heat of hydration and thermal conductivity for inclusion in the model.
Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites
NASA Astrophysics Data System (ADS)
Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun
2016-04-01
This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.
Boggs, S.A.; Radhakrishna, H.S.
1981-11-01
Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties (resistivity and diffusivity). For design purposes, these parameters should be treated statistically, since weather varies greatly from year-to-year. As well, soil thermal property surveys are normally required along the route to assess the thermal quality of the native soil. This project is intended to fill the gap between the need to carry out thermal design and the use of the Neher-McGrath formalism which is normally employed. This goal has been addressed through: (1) development of instrumentation and methods of measuring soil thermal properties in situ and in the laboratory; (2) recommendation of methods for conducting soil surveys along a proposed cable route and of assessing the thermal quality of soils; and (3) development of a computerized method to treat soil thermal design parameters on a statistical basis using computerized weather records as supplied by the US Environmental Data Service. This volume discussed methods for determining the thermal properties of soils. The use of the methods and instrumentation developed as a result of this contract should permit less conservative thermal design thereby improving the economics of underground transmission. As well, these techniques and instrumentation facilitate weather-dependent prediction of cable ampacity for installed cables, monitoring of backfill thermal stability, and many other new practices.
Thermoelectric properties of rocksalt ZnO from first-principles calculations
Alvarado, Andrew; Attapattu, Jeevake; Zhang, Yi; Chen, Changfeng
2015-10-28
Zinc oxide (ZnO) undergoes a pressure-induced structural transition from its normal ambient-pressure wurtzite (WZ) phase to a rocksalt (RS) phase around 10 GPa. A recent experiment shows that the high-pressure RS ZnO phase can be recovered and stabilized at ambient conditions, which raises exciting prospects of expanding the range of properties of ZnO. For a fundamental understanding of the RS ZnO phase, we have performed first-principles calculations to determine its electronic, phonon, and thermodynamic properties at high (20 GPa) and ambient (0 GPa) pressure. Furthermore, we have calculated its electrical and thermal transport properties, which allow an evaluation of its thermoelectric figure of merit ZT at different temperature and doping levels. Our calculations show that the ambient-pressure RS ZnO phase can reach ZT values of 0.25 to 0.3 under both n-type and p-type doping in a large temperature range of 400 K to 800 K, which is considerably lower than the temperature range of 1400 K to 1600 K where WZ ZnO reaches similar ZT values. These results establish RS ZnO as a promising material for thermoelectric devices designed to operate at temperatures desirable for many heat recovery applications.
Thermoelectric properties of rocksalt ZnO from first-principles calculations
NASA Astrophysics Data System (ADS)
Alvarado, Andrew; Attapattu, Jeevake; Zhang, Yi; Chen, Changfeng
2015-10-01
Zinc oxide (ZnO) undergoes a pressure-induced structural transition from its normal ambient-pressure wurtzite (WZ) phase to a rocksalt (RS) phase around 10 GPa. A recent experiment shows that the high-pressure RS ZnO phase can be recovered and stabilized at ambient conditions, which raises exciting prospects of expanding the range of properties of ZnO. For a fundamental understanding of the RS ZnO phase, we have performed first-principles calculations to determine its electronic, phonon, and thermodynamic properties at high (20 GPa) and ambient (0 GPa) pressure. Furthermore, we have calculated its electrical and thermal transport properties, which allow an evaluation of its thermoelectric figure of merit ZT at different temperature and doping levels. Our calculations show that the ambient-pressure RS ZnO phase can reach ZT values of 0.25 to 0.3 under both n-type and p-type doping in a large temperature range of 400 K to 800 K, which is considerably lower than the temperature range of 1400 K to 1600 K where WZ ZnO reaches similar ZT values. These results establish RS ZnO as a promising material for thermoelectric devices designed to operate at temperatures desirable for many heat recovery applications.
Shao, Cheng; Bao, Hua
2016-01-01
The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656
NASA Astrophysics Data System (ADS)
Shao, Cheng; Bao, Hua
2016-06-01
The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring.
Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium
Goldberg, A
2006-02-01
This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.
Full analytical evaluation of thermal transport properties of nanomaterials
NASA Astrophysics Data System (ADS)
Mamedov, B. A.
2016-02-01
New approaches for the analytical evaluation of the heat capacities and thermal conductivity of nanowires are presented. The most significant result of our calculation is an explicit closed form in terms of elementary functions. This allows the specific heat and thermal conductivity of nanowires to be easily evaluated within the arbitrary values of parameters. The proposed method is applied successfully to the evaluation of the heat capacities and thermal conductivity of Ni nanowire and can be used as a universal heat capacity evaluation scheme for all nanowires and other nanostructures. The theoretical model has been verified by comparing the predicted results with those obtained from the available analytical and literature data.
Crystallite Size Effect on Thermal Conductive Properties of Nonwoven Nanocellulose Sheets.
Uetani, Kojiro; Okada, Takumi; Oyama, Hideko T
2015-07-13
The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices. PMID:26106810
Effect of Silver Nanoparticles on the Thermal Properties of Sodium Acetate Trihydrate
NASA Astrophysics Data System (ADS)
Garay-Ramírez, B.; Cruz-Orea, A.; San Martín-Martínez, E.
2015-06-01
Sodium acetate trihydrate (SAT) is used as a phase change material (PCM) because of its high latent heat of fusion. Mixtures were prepared with SAT, a blend of the polymer sodium carboxymethil cellulose (CMC) and silica gel, silver nanoparticles (AgNPs), and anhydrous sodium sulfate to form a composite-PCM (c-PCM) based on SAT; the relative proportions of CMC/silica gel in the blend and AgNP content were varied according to a central composite experimental design. The thermal properties were determined for raw SAT, CMC, , and c-PCM samples. The thermal effusivity of samples was evaluated by the inverse photopyroelectric technique. The thermal diffusivity was obtained for samples by the open photoacoustic cell technique. The thermal conductivity was calculated from the obtained and values. To assess the thermal performance of the c-PCM compared to raw SAT, samples were studied through differential scanning calorimetry which served to determine the latent heat recovery ( LHR). Properties , and LHR were analyzed by response surface methodology and compared. The SAT-based c-PCM was found to be more thermally conductive than raw SAT. The best LHR with good thermal diffusivity and thermal conductivity was identified in the region of the central composite experimental design with medium-low AgNPs and higher proportions of CMC in the polymer blend.
A biharmonic relaxation method for calculating thermal stress in cooled irregular cylinders
NASA Technical Reports Server (NTRS)
Holms, Arthur G
1952-01-01
A numerical method was developed for calculating thermal stresses in irregular cylinders cooled by one or more internal passages. The use of relaxation methods and elementary methods of finite differences was found to give approximations to the correct values when compared with previously known solutions for concentric circular cylinders possessing symmetrical and asymmetrical temperature distributions.
Tensile-property characterization of thermally aged cast stainless steels.
Michaud, W. F.; Toben, P. T.; Soppet, W. K.; Chopra, O. K.; Energy Technology
1994-03-03
The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.
Tensile-property characterization of thermally aged cast stainless steels
Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.
1994-02-01
The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.
Thermal Influence on Mechanical Properties of Granite: A Microcracking Perspective
NASA Astrophysics Data System (ADS)
Zhao, Zhihong
2016-03-01
The particle mechanics method is used to simulate the process of thermally induced micro- and macrocracks in granite, to elucidate the mechanisms responsible for temperature-dependent mechanical properties. The numerical results are quantified and compared with existing results from other experimental data in the literature. The results indicate that heating generally reduces the compressive and tensile strengths of granites, first because of increasing thermal stresses, and second because of the generation of tensile microcracks. Rock mechanical properties are reduced in specimens subjected to heating-cooling cycles, solely because of the increase in density of thermally induced tensile microcracks. The presence of a thermal gradient induces the formation of macrocracks, which propagate from relatively cool to relatively warm areas. It is also observed that the boundary condition of the specimen can also affect the development of microcracks.
Theoretical models on prediction of thermal property of nanofluids
NASA Astrophysics Data System (ADS)
Shalimba, Veikko; Skočilasová, Blanka
2014-08-01
This paper deals with theoretical models on prediction of thermo physical properties of iron nanoparticles in base fluid. A high performance of heat transfer fluid has a great influence on the size, weight and cost of heat transfer systems, therefore a high performance heat transfer fluid is very important in many industries. Over the last decades nanofluids have been developed. According to many researchers and publications on nanofluids it is evident that nanofluids are found to exhibit enhanced thermal properties i.e. thermal conductivity etc. Theoretical models for predicting enhanced thermal conductivity have been established. The underlying mechanisms for the enhancement are still debated and not fully understood. In this paper, theoretical analytical models on prediction of thermal conductivity of iron nano particle in base Jatropha oil are discussed. The work arises from the projects which were realized at UJEP, FPTM, department of Machines and Mechanics with cooperation with Polytechnic of Namibia, department of Mechanical Engineering.
High pressure elasticity and thermal properties of depleted uranium
NASA Astrophysics Data System (ADS)
Jacobsen, M. K.; Velisavljevic, N.
2016-04-01
Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.
Thermal properties of dielectric solids below 4 K. I - Polycarbonate
NASA Technical Reports Server (NTRS)
Cieloszyk, G. S.; Cruz, M. T.; Salinger, G. L.
1973-01-01
Polymers and other dielectric materials are frequently used for many purposes in the construction of cryogenic apparatus. Yet very few values of the thermal properties of these materials below 4 K have been reported. It is, however, known that one can not use the Debye theory to extrapolate to lower temperatures the measurements of the specific heat capacity above 1 K. The thermal conductivity also follows no theoretically predictable temperature dependence. As a by-product of our studies of the thermal properties of amorphous and partly crystalline materials below 4 K, we wish to report values for the thermal conductivity, specific heat capacity, and velocity of sound below 4 K in materials useful for the construction of cryogenic apparatus. In this article we will describe our measurement techniques and report values for polycarbonate (Lexan). In subsequent notes we will give values for other materials of interest.
Ab initio calculation of the thermodynamic properties and phase diagram of gallium nitride
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wang, Shaofeng; Wang, Rui; Jiang, Na
2013-12-01
The thermodynamic properties of gallium nitride (GaN) with wurtzite (WZ) and rocksalt (RS) phases have been investigated by carrying out the first principles-calculations, in which the density-functional theory (DFT) and density-functional perturbation theory (DFPT) have been employed. The quasiharmonic approximation (QHA) has been utilized to estimate the free energies. The phonon dispersion, thermal expansion coefficients, bulk modulus, and heat capacities are presented and provided good agreement with the previous calculation and experimental data. Furthermore, the pressure-temperature (P-T) diagram of WZ-RS phase transition of GaN is predicted and the values of transition pressure range from 32.2 GPa at 0 K to about 21 GPa at 2480 K.
A New Model to Calculate Friction Coefficients and Shear Stresses in Thermal Drilling
Qu, Jun; Blau, Peter Julian
2008-01-01
A new analytical model for thermal drilling (also known as friction drilling) has been developed. The model distinguishes itself from recent work of other investigators by improving on two aspects: (1) the new model defines material plastic flow in terms of the yield in shear rather than the yield in compression, and (2) it uses a single, variable friction coefficient instead of assuming two unrelated friction coefficients in fixed values. The time dependence of the shear stress and friction coefficient at the hole walls, which cannot be measured directly in thermal drilling, can be calculated using this model from experimentally-measured values of the instantaneous thrust force and torque. Good matches between the calculated shear strengths and the handbook values for thermally drilling low carbon steel confirm the model's validity.
NASA Technical Reports Server (NTRS)
Harloff, G. J.
1986-01-01
Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.
Dynamic Boundary Layer Properties in Turbulent Thermal Convection
NASA Astrophysics Data System (ADS)
Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao
2004-11-01
We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.
"TPSX: Thermal Protection System Expert and Material Property Database"
NASA Technical Reports Server (NTRS)
Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)
1997-01-01
The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.
The anomalous thermal properties of glasses at low temperatures
NASA Technical Reports Server (NTRS)
Pohl, R. O.; Salinger, G. L.
1976-01-01
While experimentally there is great regularity below 1 deg K in the behavior of a particular thermal property for all amorphous dielectrics it is not understood why these properties should differ from those of crystalline dielectrics, since it would seem that at low temperatures long-wavelength elastic waves, similar in both cases, would determine the thermal properties. A model involving systems having very few levels is used in the present study, although the relation between the model's systems and the nature of the glassy state is not known. It is shown, among other effects, that: specific heat measurements above 0.1 K indicate a distribution of local modes independent of energy; ultrasonic velocity measurements give information about phonon-local mode coupling parameters; and thermal expansion and far infrared experiments indicate a phonon-assisted tunneling model.
Thermal volatilization properties of atmospheric nanoparticles.
Haboub, Abdelmoula; Hallett, John; Lowenthal, Douglas
2007-11-01
Thermal volatilization is explored as a means of inferring the chemical composition of atmospheric aerosol particles with diameters smaller than 10 nm (nanoparticles). Such particles contain too little mass for quantitative chemical determination by traditional analytical methods. Aerosols were subjected to increasing temperature in an oven and particle loss was measured as a function of temperature with the TSI model 3025 ultrafine condensation particle counter (UCPC), which is capable of counting particles with diameters as small as 3 nm. Particle nucleation was observed down stream of the oven when it was heated above about 400 degrees C. To reduce this artifact, the sample air down stream of the oven was cooled to condense the hot gases and/or the freshly nucleated particles before they reached the UCPC. Controlled experiments were done with pure ammonium sulfate (NH4)2SO4 particles. The experimental design was optimized based on the known concentration of pure (NH4)2SO4 particles vaporized in the oven and the diffusion of this material to the walls of the sampling tube before the particle counter. PMID:17458514
Fatigue properties of shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Cooper, P. A.
1980-01-01
Static and cyclic load tests were conducted to determine the static and fatigue strength of the RIS tile/SIP thermal protection system used on the orbiter of the space shuttle. The material systems investigated include the densified and undensified LI-900 tile system on the .40 cm thick SIP and the densified and undensified LI-2200 tile system on the .23 cm (.090 inch) thick SIP. The tests were conducted at room temperature with a fully reversed uniform cyclic loading at 1 Hertz. Cyclic loading causes a relatively large reduction in the stress level that each of the SIP/tile systems can withstand for a small number of cycles. For example, the average static strength of the .40 cm thick SIP/LI-900 tile system is reduced from 86 kPa to 62 kPa for a thousand cycles. Although the .23 cm thick SIP/LI-2200 tile system has a higher static strength, similar reductions in the fatigue strength are noted. Densifying the faying surface of the RSI tile changes the failure mode from the SIP/tile interface to the parent RSI or the SIP and thus greatly increases the static strength of the system. Fatigue failure for the densified tile system, however, occurs due to complete separation or excessive elongation of the SIP and the fatigue strength is only slightly greater than that for the undensified tile system.
Anharmonic properties in M g2X (X =C ,Si ,Ge ,Sn ,Pb ) from first-principles calculations
NASA Astrophysics Data System (ADS)
Chernatynskiy, Aleksandr; Phillpot, Simon R.
2015-08-01
Thermal conductivity reduction is one of the potential routes to improve the performance of thermoelectric materials. However, detailed understanding of the thermal transport of many promising materials is still missing. In this paper, we employ electronic-structure calculations at the level of density functional theory to elucidate thermal transport properties of the M g2X (X =C , Si, Ge, Sn, and Pb) family of compounds, which includes M g2Si , a material already identified as a potential thermoelectric. All these materials crystallize into the same antifluorite structure. Systematic trends in the anharmonic properties of these materials are presented and examined. Our calculations indicate that the reduction in the group velocity is the main driver of the thermal conductivity trend in these materials, as the phonon lifetimes in these compounds are very similar. We also examine the limits of the applicability of perturbation theory to study the effect of point defects on thermal transport and find that it is in good agreement with experiment in a wide range of scattering parameter values. The thermal conductivity of the recently synthesized M g2C is computed and predicted to be 34 W/mK at 300 °C.
Thermal Properties of Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.
2010-01-01
Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass
NASA Astrophysics Data System (ADS)
Diascorn, N.; Sallee, H.; Calas, S.; Rigacci, A.; Achard, P.
2015-07-01
Organic aerogels based on polyurethane were elaborated via sol-gel synthesis and dried with supercritical carbon dioxide (CO2). The influence of the catalyst concentration was investigated, first in order to decrease the reaction kinetics, then to study its impact on the obtained materials properties. It was shown that this parameter also influences the global shrinkage and the bulk density of the resulting materials. Its effect on the dry materials was studied in terms of morphological, textural and thermal properties in order to determine the main correlations thanks to scanning electron microscopy (SEM), nitrogen adsorption, non-intrusive mercury porosimetry and thermal conductivity measurements. Results allowed us to demonstrate a correlation between the bulk density, the texture and the thermal conductivity of this family of polyurethane aerogels and to determine an optimal density range for thermal performance associated with a fine internal mesoporous texture.
Tian, Xiaojuan; Itkis, Mikhail E.; Bekyarova, Elena B.; Haddon, Robert C.
2013-01-01
Thermal interface materials (TIMs) are crucial components of high density electronics and the high thermal conductivity of graphite makes this material an attractive candidate for such applications. We report an investigation of the in-plane and through-plane electrical and thermal conductivities of thin thermal interface layers of graphite nanoplatelet (GNP) based composites. The in-plane electrical conductivity exceeds its through-plane counterpart by three orders of magnitude, whereas the ratio of the thermal conductivities is about 5. Scanning electron microscopy reveals that the anisotropy in the transport properties is due to the in-plane alignment of the GNPs which occurs during the formation of the thermal interface layer. Because the alignment in the thermal interface layer suppresses the through-plane component of the thermal conductivity, the anisotropy strongly degrades the performance of GNP-based composites in the geometry required for typical thermal management applications and must be taken into account in the development of GNP-based TIMs.
Thermal Properties of Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Street, Kenneth; Ray, Chandra; Rickman, Doug
2010-01-01
Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH(-), the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification
Thermal Properties of Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Street, Kenneth; Ray, Chandra; Rickman, Doug
2010-01-01
Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of
Transport Properties of Nanoscale Materials by First-principles Calculations
NASA Astrophysics Data System (ADS)
Mizuseki, Hiroshi; Belosludov, Rodion V.; Lee, S.-U.; Kawazoe, Yoshiyuki
2009-03-01
Molecular devices are potential candidates for the next step towards nanoelectronic technology. Our group has covered a wide range of nanoscale wires, which have potential application in molecular electronics using first-principles calculations and nonequilibrium Green's function formalism [1]. Our target materials are supramolecular enamel wires (covered wires) [2], connection between organic molecules and metal electrodes, self-assembled nanowires on silicon surface [3], porphyrin [4], phthalocyanine, metallocene [5], fused-ring thiophene molecules, length dependence of conductance in alkanedithiols and so on. Namely, we have investigated a relationship of the energy levels of delocalized frontier orbitals (HOMO and LUMO) and Fermi level of metal electrodes and estimate the electronic transport properties through atomic and molecular wires using Green's function approach. References [1] http://www-lab.imr.edu/˜mizuseki/nanowire.html [2] R. V. Belosludov, A. A. Farajian, H. Baba, H. Mizuseki, and Y. Kawazoe, Jpn. J. Appl. Phys., 44, 2823 (2005). [3] R. V. Belosludov, A. A. Farajian, H. Mizuseki, K. Miki, and Y. Kawazoe, Phys. Rev. B, 75, 113411 (2007). [4] S.-U. Lee, R. V. Belosludov, H. Mizuseki, and Y. Kawazoe, Small 4 (2008) 962. [5] S.-U Lee, R. V. Belosludov, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. C. 111 (2007) 15397.
Thermal properties of soils: effect of biochar application
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy
2014-05-01
Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity
A technique for calculating the effective thermal resistance of steel stud walls for code compliance
Brown, W.C.; Swinton, M.C.; Haysom, J.C.
1998-12-31
Canada`s Model National Energy Codes for Houses and for Buildings contain prescriptive requirements in the form of minimum thermal characteristics of envelope assemblies, including steel stud walls. To assist in the uniform enforcement of these requirements, it was necessary for the codes to prescribe acceptable methods of calculating the thermal resistance of steel and assemblies. The ASHRAE Handbook--Fundamentals proposes a simple method for predicting the thermal performance of stud walls, which is based on a weighted average of the values predicted by isothermal planes and parallel path calculation methods. The thermal resistance of 2440 mm x 2440 mm (8 ft x 8 ft) wall specimens, with 92 mm (3-5/8 in.) steel studs, was measured in a series of guarded hot box tests. Two stud gauges were evaluated, as well as two stud spacings, with one wood-based and three insulating sheathings. The measurements demonstrated that a weighting of 2:1 (isothermal planes:parallel path) provided an/ accurate prediction of the thermal resistance of walls with steel studs at 406 mm (16 in.) o.c., but that a 1:1 weighting best predicted the thermal resistance of walls with steel studs at 610 mm (24 in.) o.c. These results applied to walls with wood-based sheathing directly applied to the studs, whether or not the walls had insulating sheathing. Finally, the measurements demonstrated that an intermediate weighting of 3:2 best predicted the thermal resistance of walls with insulating sheathing installed directly onto the studs, i.e., without intermediate structural sheathing.
NASA Astrophysics Data System (ADS)
Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul
2016-07-01
A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.
Structural, electronic and thermal properties of Mo{sub 3}Ir superconductors
Subhashree, G. Sankar, S.; Krithiga, R.; Devi, L. Vimala
2015-06-24
Self consistent first principle calculations on superconducting material Mo{sub 3}Ir of A15 phase have been performed to understand their fundamental characteristics of the structural, electronic and thermal properties. The bulk modulus (B{sub 0}), Debye temperature (θ{sub D}), density of states (N (E{sub F})) and electronic specific heat coefficient (γ) have been computed in terms of the electronic structure results obtained by using the tight-binding linear muffin tin orbital (TB-LMTO) method based on the density functional theory (DFT) within the local density approximation (LDA). Structural, electronic and thermal properties calculated here are found to corroborate well with the experimental and theoretical results of literature.
Foldable dome climate measurements and thermal properties
NASA Astrophysics Data System (ADS)
Sliepen, Guus; Jägers, Aswin P. L.; Hammerschlag, Robert H.; Bettonvil, Felix C. M.
2010-07-01
As part of a larger project for measuring various aspects of foldable domes in the context of EST and with support of the Dutch Technology Foundation STW, we have collected over a year of continuous temperature and humidity measurements, both inside and outside the domes of the Dutch Open Telescope (DOT) on La Palma5 and the GREGOR telescope on Tenerife.6 In addition, we have measured the wind field around each dome. Although the structure of both domes is similar, the DOT dome has a single layer of cloth, and is situated on top of an open tower. In contrast, the GREGOR dome has a double layer of cloth, and is situated on top of a tower-shaped building. These differences result in large differences in temperature and humidity insulation when the dome is closed. We will present the changes in temperature and humidity one can expect for each dome within one day, and the statistics for the variations throughout a year. In addition, we will show that the main advantage of a foldable dome is the near instantaneous equilibration of the air inside the volume originally enclosed by the dome and that of the environment outside the dome. This property allows one to operate a telescope without needing expensive air conditioning and dome skin temperature control in order to limit dome and shell seeing effects. The measurements give also information about the weather fluctuations at the sites of the domes. It was observed that on small time scales the temperature fluctuations are significantly greater during the day than during the night.
NASA Astrophysics Data System (ADS)
Yu, Xia; Xie, Zhong-Xiang; Liu, Jun-Hun; Chen, Qiao; Li, Ke-Min; Zhang, Yong
2016-04-01
In this paper, we study ballistic thermal transport properties at low temperatures in semiconductor nanowires-based heterojunctions under hard-wall boundary conditions (HWBCs) and stress-free boundary conditions (SFBCs). Here, the numerical calculations for the asymmetric heterojunction (ASHJ) and symmetric heterojunction (SHJ) are done. When SFBCs are employed, the transmission coefficient exhibits different behaviors between ASHJ and SHJ especially at low frequency, but when HWBCs are employed, the transmission coefficient displays similar smooth platforms in both heterojunctions. In low temperature limit, the quantized thermal conductance can be observed in SHJ under SFBCs regardless of the structural details. However, this quantization cannot be observed in ASHJ under SFBCs, and the thermal conductance is strongly sensitive to the transverse width ratio rather than the slant angle. With increasing the transverse width ratio, the thermal conductance in both heterojunctions gradually increases especially, and such the increasing degree is more evident at higher temperatures. A brief analysis of these results is given.
Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties
NASA Astrophysics Data System (ADS)
Rathbun, Julie A.; Rodriguez, Nathaniel J.; Spencer, John R.
2010-12-01
The Galileo photopolarimeter-radiometer (PPR) made over 100 observations of Europa's surface temperature. We have used these data to constrain a diurnal thermal model and, thus, map the thermal inertia and bolometric albedo over 20% of the surface. We find an increased thermal inertia at mid-latitudes that is widespread in longitude and does not appear to correlate with geology, albedo, or other observables. Our derived thermophysical properties can be used to predict volatile stability across the surface over the course of a day and in planning of infrared instruments on future missions. Furthermore, while observations in the thermal infrared can and have been used to find endogenic activity, no such activity was detected at Europa. We have calculated the detection limits of these PPR observations and find that 100 km 2 hotspots with temperatures of 116-1200 K could exist undetected on the surface, depending on the location.
Investigation of thermal conductivity and tribological properties of nanofluids
NASA Astrophysics Data System (ADS)
Gara, Luan
Nanofluids are engineered by dispersing and stably suspending nanoparticles with typical length on the order of 1--50 nm in traditional fluids. In the past decade, scientists and engineers have made great progresses in finding that a very small amount (< 1 vol %) of dispersed nanoparticles can provide dramatic improvement in the thermal properties of the base fluids. Therefore, numerous mechanisms and models have been proposed to account for the thermal enhancement of nanofluids. The molecular dynamics (MD) simulation has become an important tool in the study of dynamic properties of liquids, molecular solutions, and macromolecules. Therefore, MD simulation is a very helpful tool to model the enhanced thermal conduction and predict thermal conductivities of nanofluids. In recent years, investigations on the tribological properties of nanofluids have also been carried out. Some papers have reported that nanofluids are effective in reducing wear and friction. The mechanisms of friction reduction and anti-wear of nanoparticles in lubricants have been reported as colloidal effect, rolling effect, protective film, and third body. The objective of this research is to study the thermal conductivity and tribological properties of nanofluids. The thermal conductivity of nanofluids was investigated theoretically through MD simulation. Nanodiamond was selected as the nanoparticle and octane as the base oil. The Large-scale Atomic-Molecular Massively Parallel Simulator (LAMMPS) was used. The effects of the particle size, shape and concentration on the thermal conductivity of nanofluids was investigated. The thermal conductivity of oil based nanofluids with nanodiamond particles was also measured experimentally using transient hot-wire method. The tribological properties of nanofluids were studied through experimental investigation using commercially available nanopowders and nanofluids. Both water based and oil based nanofluids were investigated. A Universal Micro
Experimental determination of thermal properties of alluvial soil
NASA Astrophysics Data System (ADS)
Kulkarni, N. G.; Bhandarkar, U. V.; Puranik, B. P.; Rao, A. B.
2016-02-01
In the present work, thermal conductivity and specific heat of a particular type of alluvial soil used in brick making in a certain region of India (Karad, Maharashtra State) are experimentally determined for later use in the estimation of ground heat loss in clamp type kilns. These properties are determined simultaneously using the steady-state and the transient temperature data measured in the setup constructed for this purpose. Additionally, physical properties of the soil are experimentally determined for use with six models for the prediction of the thermal conductivity of soil. The predictions from the models are compared with the experimental data. A separate data fitting exercise revealed a small temperature dependence of the soil thermal conductivity on the soil mean temperature.
Oats Protein Isolate: Thermal, Rheological, Surface & Functional Properties
Technology Transfer Automated Retrieval System (TEKTRAN)
Oat protein isolate (OPI) was extracted in 0.015 N NaOH in a 10:1 ratio solvent:flour and was precipitated by adjusting the pH to 4.5 and freeze-dried. The thermal properties of OPI were determined using Differential Scanning Calorimetry (DSC). OPI with 6% moisture content exhibited a glass transi...
BARLEY PROTEIN ISOLATE: THERMAL, FUNCTIONAL, RHEOLOGICAL AND SURFACE PROPERTIES
Technology Transfer Automated Retrieval System (TEKTRAN)
Barley protein isolate (BPI) was prepared using hexane-defatted commercial barley flour. BPI was extracted in 0.05 N NaOH in a 10:1 ratio solvent:flour. The BPI was precipitated by adjusting the pH to 4.5 and freeze-dried. The thermal properties of the BPI were determined by Modulated Differentia...
Thermal treatment and mechanical properties of aluminum-2021
NASA Technical Reports Server (NTRS)
Brennecke, M. W.
1970-01-01
Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.
Phase diagram and thermal properties of strong-interaction matter
NASA Astrophysics Data System (ADS)
Gao, Fei; Chen, Jing; Liu, Yu-Xin; Qin, Si-Xue; Roberts, Craig D.; Schmidt, Sebastian M.
2016-05-01
We introduce a novel method for computing the (μ , T )-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.
NASA Astrophysics Data System (ADS)
Escher, U.; v. Schoenebeck, F.; Jäckel, M.; Gladun, A.
Thermal expansion α, specific heat capacity c and thermal conductivity λ of untreated and stretched polycarbonate (PC) have been measured at temperatures above 4.2 K and the Grueneisen parameter γ has been calculated from α and c. All properties exhibit typical low-temperature features of amorphous solids. The specific heat c is not influenced by stretching, α, γ and λ, however, get very anisotropic. The temperature dependence of α, λ and γ changes distinctly when mechanically loaded or oriented. The Grueneisen parameter γ( T) shows a maximum at 10 K for untreated PC and at 20 K for stretched PC.
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
Montan, D.N.; Patrick, W.C.
1981-09-30
The Spent Fuel Test-Climax (SFT-C) is a test of retrievable deep geologic storage of commercially generated spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with six electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the US Department of Energy Nevada Test Site. On June 2, 1978 LLNL secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This report documents a series of thermal calculations that were performed in support of the SFT-C. Early calculations employed analytical solutions to address such design and construction issues as drift layout and emplacement hole spacings. Operational aspects of the test required more detailed numerical solutions dealing with ventilation and guard-heater power levels. The final set of calculations presented here provides temperature histories throughout the test facility for evaluation of the response of the SFT-C and for comparison of calculations with acquired data. This final set of calculations employs the as-built test geometry and best-available material properties.
Calculation and observation of thermal electrostatic noise in solar wind plasma
NASA Technical Reports Server (NTRS)
Kellogg, P. J.
1981-01-01
Calculations, both approximate algebraic and numerical, have been carried out for the noise due to electrostatic waves incident on a dipole antenna. The noise is calculated both for a thermal equilibrium plasma, and one having several components at different temperatures. The results are compared with measurements from the IMP-6 satellite. In various frequency ranges, the noise power is dominated by Langmuir oscillations, by electron acoustic waves and by ion acoustic waves. The measurements are consistent with all of these, although the ion waves are not definitely observed, due to interference from shot noise.
NASA Astrophysics Data System (ADS)
Zubko, V.; Kozub, S.; Tkachenko, L.
SIS300 fast-cycling superconducting quadrupole magnet is developed at IHEP. Temperature margin and minimum quench energy are main parameters of stability of superconducting magnets. These parameters are important for the design and safe operation of superconducting magnets. But additional understanding for fast-cycling superconducting magnets is needed. To calculate the temperature margin one needs coupled numerical transient simulation of electromagnetic and thermal processes in the coil because critical temperature, operating temperature and AC losses are nonuniform over turns and their magnitudes vary in time during accelerator cycles. For calculation of the minimum quench energy the combination of the network model with thermal analysis is necessary, which allows one to model quench dynamics, including the effects of a current redistribution between strands of cable and spatial inhomogeneity of cable. Results for the temperature margin and the minimum quench energy for the magnet are presented and theirs dependence on various parameters is discussed.
Differential polarization imaging. II. Symmetry properties and calculations.
Kim, M; Ulibarri, L; Bustamante, C
1987-01-01
Various differential polarization images or Mueller images of model objects are generated using the equations derived in the previous paper (paper I of this series). These calculated images include models of the higher-order organization of metaphase chromosomes, and show the applicability of the differential polarization imaging method to the elucidation of complex molecular organizations. Then, the symmetry behavior of the Mueller matrix elements upon infinitesimal rotations of the optical components about the optical axis of the imaging system is presented. It is shown that the rotational properties of the Mueller images can be used to eliminate the linear polarization contributions to the M14 and M44 images, which appear when these images are generated with imperfect circular polarizations. The relationships between the 16 bright-field Mueller images for four different media, i.e., linearly and circularly isotropic, circularly anisotropic, linearly anisotropic, and linearly and circularly anisotropic, are also derived. For the first three cases simple relationships between the Mueller images are found and phenomenological equations in terms of the optical coefficients are derived. In the last case there are no specific relationships between the Mueller images and instead we briefly present Schellman and Jensen's method for treating this type of medium. The criterion of spatial resolution between adjacent domains of different optical anisotropy is then derived. It is found that in transitions between domains of opposite anisotropy the classical Rayleigh limit must be replaced by a magnitude criterion which depends on the limits of the sensitivity of the detection. Finally, the feasibility of optical sectioning in differential polarization imaging is demonstrated. PMID:3427200
Wang, Hsin; Sluder, Scott; Storey, John Morse
2009-01-01
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards. This paper reports results of a study of fundamental aspects of EGR cooler fouling. An apparatus and procedure were developed to allow surrogate EGR cooler tubes to be exposed to diesel engine exhaust under controlled conditions. The resulting fouled tubes were removed and analyzed. Volatile and non-volatile deposit mass was measured for each tube. Thermal diffusivity of the deposited soot cake was measured by milling a window into the tube and using the Xenon flash lamp method. The heat capacity of the deposit was measured at temperatures up to 430 C and was slightly higher than graphite, presumably due to the presence of hydrocarbons. These measurements were combined to allow calculation of the deposit thermal conductivity, which was determined to be 0.041 W/mK, only ~1.5 times that of air and much lower than the 304 stainless steel tube (14.7 W/mK). The main determinant of the deposit thermal conductivity is density, which was measured to be just 2% that of the density of the primary soot particles (or 98% porous). The deposit layer thermal resistance was calculated and compared with estimates of the thermal resistance calculated from gas temperature data during the experiment. The deposit properties were also used to further analyze the temperature data collected during the experiment.
NASA Astrophysics Data System (ADS)
Wang, Kai
1995-11-01
The knowledge of thermal expansion at high temperature and high pressure is necessary for modeling the equation of the state in the Earth's interior. It is an important parameter for materials science and is critical for understanding the nature of the residual stress in materials. Also, thermal expansion is a factor in the equations that describe many thermoelastic parameters. Errors in thermal expansion will propagate in thermodynamic calculations. This dissertation is based on a semi-empirical, quasi-harmonic, lattice dynamic thermal expansion model, its extension to high temperatures and high pressures and the role of defects on thermal expansion. A modified quasi -harmonic model is proposed to calculate high temperature thermal expansion of alkali halides. An empirical parabolic relationship is found at high temperatures. The contributions of thermal defects at high temperatures are employed to explain the differences between experimental data and the perfect quasi-harmonic crystal model. Expressions for defect contributions on thermal expansion and expansivity are given and applied to obtain the formation energies of thermal defects. Defect ordering is proposed for ionic crystals at high temperatures. A simplified model is derived for predicting high pressure thermal expansion. A detailed expression for defect contributions at high temperatures and high pressures is provided. Thermal expansion of MgO is predicted for pressures as high as at the core-mantle boundary. This model is also applied to alkali halides, and the thermophysical properties of NaCl are given as an example. Then a general model is proposed for evaluating and predicting high temperature thermal expansion. The product of thermal expansion, bulk modulus, and volume, alpha_{V}K_{T }V, or the partial temperature derivative of the work done by thermal pressure, resembles a specific heat curve. A modified Einstein model is applied to express the alpha_{V}K_{T }V data. After assuming a linear
Calculation of the Thermal Footprint of Resonant Magnetic Perturbations in DIII-D
Joseph, I; Evans, T; Moyer, R; Fenstermacher, M; Groth, M; Kasilov, S; Lasnier, C; Porter, G; Runov, A; Schaffer, M; Schneider, R; Watkins, J
2007-09-14
The effect of resonant magnetic perturbations on heat transport in DIII-D H-mode plasmas has been calculated by combining the TRIP3D field-line tracing code with the E3D two-fluid transport code. Simulations show that the divertor heat flux distribution becomes non-axisymmetric because heat flux is efficiently guided to the divertor along the three-dimensional invariant manifolds of the magnetic field. Calculations demonstrate that heat flux is spread over a wider area of the divertor target, thereby reducing the peak heat flux delivered during steady-state operation. Filtered optical cameras have observed non-axisymmetric particle fluxes at the strike-point and Langmuir probes have observed non-axisymmetric floating potentials. On the other hand, the predicted magnitude of stochastic thermal transport is too large to match the pedestal plasma profiles measured by Thomson scattering and charge exchange recombination spectroscopy. The Braginskii thermal conductivity overestimates the expected heat transport in the pedestal because the mean free path is longer than estimates of the parallel thermal correlation length, and collisionless transport models are probably required for accurate description. However, even the collisionless estimates for electron thermal transport are too large by one to two orders of magnitude. Thus, it is likely that another mechanism such as rotational screening of resonant perturbations limits the stochastic region and reduces transport inside of the pedestal.
Mechanical and thermal properties of the Czech marbles
NASA Astrophysics Data System (ADS)
Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Keppert, Martin; Černý, Robert
2016-06-01
The paper is dealing with selected parameters of four marbles with respect to their utilization as building materials. Stones from four function quarries in the Czech Republic were chosen and scopes of physical properties were determined. Basic physical, mechanical and thermal properties belong among studied characteristics. Bulk density of studied marbles is in average 2750 kg/m3, matrix density 2770 kg/m3, open porosity 0.7%. Pore structure show similar distributions. Mechanical properties show more differences; however minimal value of compressive strength was 66.5 MPa, while maximum was 174 MPa. Thermal conductivity of studied marbles was about 2.955 W/mK. Last measured characteristic was specific heat capacity; its average value was 609 J/kgK.
Thermal properties of carbon black aqueous nanofluids for solar absorption
NASA Astrophysics Data System (ADS)
Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao
2011-07-01
In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.
Thermal Properties of Prominence Motions as Observed in the UV
NASA Technical Reports Server (NTRS)
Kucera, T.; Landi, E.
2003-01-01
The mechanisms by which solar prominences are filled with plasma are still undetermined. In this study we perform a quantitative analysis of the thermal properties of moving features in prominences in order to put constraints on models of prominence formation and dynamics. In order to make such measurements of quickly moving features seen in prominences in the UV we use the SOHO instruments SUMER and CDS to take a time series of exposures at a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in spectral lines in a range of 'transition region' temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.
An assessment of the CORCON-MOD3 code. Part 1: Thermal-hydraulic calculations
Strizhov, V.; Kanukova, V.; Vinogradova, T.; Askenov, E.; Nikulshin, V.
1996-09-01
This report deals with the subject of CORCON-Mod3 code validation (thermal-hydraulic modeling capability only) based on MCCI (molten core concrete interaction) experiments conducted under different programs in the past decade. Thermal-hydraulic calculations (i.e., concrete ablation, melt temperature, melt energy, concrete temperature, and condensible and non-condensible gas generation) were performed with the code, and compared with the data from 15 experiments, conducted at different scales using both simulant (metallic and oxidic) and prototypic melt materials, using different concrete types, and with and without an overlying water pool. Sensitivity studies were performed in a few cases involving, for example, heat transfer from melt to concrete, condensed phase chemistry, etc. Further, special analysis was performed using the ACE L8 experimental data to illustrate the differences between the experimental and the reactor conditions, and to demonstrate that with proper corrections made to the code, the calculated results were in better agreement with the experimental data. Generally, in the case of dry cavity and metallic melts, CORCON-Mod3 thermal-hydraulic calculations were in good agreement with the test data. For oxidic melts in a dry cavity, uncertainties in heat transfer models played an important role for two melt configurations--a stratified geometry with segregated metal and oxide layers, and a heterogeneous mixture. Some discrepancies in the gas release data were noted in a few cases.
Characterization of thermal properties of municipal solid waste landfills.
Faitli, József; Magyar, Tamás; Erdélyi, Attila; Murányi, Attila
2015-02-01
Municipal waste landfills represent not only a source of landfill gases, but a source of thermal energy as well. The heat in landfills is generated by physical, chemical and microbiological processes. The goal of our study was to characterize the thermal properties of municipal solid waste (MSW) samples of the given landfill. A new apparatus was designed and constructed to measure heat flow. A systematic test series of 17 discrete measurements was carried out with municipal waste samples of 1.0-1.7 m(3). The thermal conductivity, heat diffusivity and specific heat capacity of the samples were determined. Analysing the results of the sampling and our experiments it was realized that the theoretical fundaments should be clarified. Two theories were developed for the serial and for the parallel heat flow in three phase disperse systems. The serial and parallel models resulted in different theoretical estimations. The measured thermal conductivity and heat diffusivity were better characterized by the parallel heat flow estimations. The results show that heat can flow parallel in solid, liquid and gas phases. Characterization of thermal properties serves to establish the fundament of heat extraction from municipal waste landfills. PMID:25464944
Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2000-01-01
Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.
Optical characterization of thermal properties of biological tissue
NASA Astrophysics Data System (ADS)
Gutierrez-Arroyo, A.; Sánchez Pérez, C.; Alemán-García, N.; Piña-Barba, C.
2013-11-01
In this work we utilize heat conduction measurements trough the photothermal beam deflection technique to characterize thermal properties of biological tissue. We design a heat flux sensor based on the phenomenon of photothermal laser beam deflection within a thermo-optic slab (acrylic), where the deflection is quantified by an optical fiber angle sensor. We analytically model the heat flux sensor response based on heat wave propagation theory that well agree with experimental data. We present heat conduction measurements on different tissues applying a heat pulse. Hence we obtain the thermal effusivity coefficient of bovine tendon and chicken liver and heart. It has been shown that thermal conduction depends on the tissués chemical composition as well on their structural arrangements, so any modification in tissue will affect on heat conduction rendering this method potentially useful as an auxiliary in biomedical studies. Nowadays there are several thermal effusivity and diffusivity measurement techniques with classic calorimetry (using thermistors) for research and industrial applications. However there are only few integrated optical devices already proposed, turning this optical technique in an innovative and alternative sensing system for thermal properties characterization.
Calculation of Geometric Properties Using a Personal Computer.
ERIC Educational Resources Information Center
Vawter, D. L.
1982-01-01
In introductory mechanics courses it is often necessary to know the geometric properties of some irregular figure. An interactive program (using an Apple II microcomputer) which allows an instructor to determine the geometric properties of an arbitrary figure is described. Includes mathematical formulation, properties of irregular polygons, and…
NASA Astrophysics Data System (ADS)
Eed, H.; Ramadin, Y.; Zihlif, A. M.; Elimat, Ziad; Ragosta, Giuseppe
2014-03-01
The impedance and thermal conductivity properties of prepared organic epoxy/polyhedral oligomeric silsequioxane (POSS) nanocomposites were studied. The measurements of the impedance were carried out using the impedance technique as a function of applied field frequency range from 20 kHz to 1 MHz, temperature range from 20°C-110°C, and POSS filler concentrations 5, 10, and 20 wt%. The AC conductivity and dielectric properties were determined from the impedance data. It was found that the AC conductivity and dielectric constant are increased by increasing the POSS content in the nanocomposites. The calculated activation energy varies with the filler content, temperature, and applied frequency. The observed electrical results fit approximately the reported equations concerning the AC conductivity of the prepared nanocomposites. The dielectric behavior was explained on the basis of the interfacial polarization, dipolar polarization, and decrease in the hindrance produced by the polymer matrix. The thermal conductivity of the prepared nanocomposite was studied as a function of temperature, and POSS concentration. It was found that the thermal conductivity is enhanced by the addition of the POSS content and temperature. During the heating process, the phonons are activated and electrons hopp to higher localized energy states producing enhancement in the thermal conductivity. Furthermore, correlations between the observed physical properties as thermal conductivity, storage modulus, and glass transition temperature of the nanocomposites are presented.
Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam
2007-01-01
Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.
Fabrication, characterization, and thermal property evaluation of silver nanofluids.
Noroozi, Monir; Radiman, Shahidan; Zakaria, Azmi; Soltaninejad, Sepideh
2014-01-01
Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293
Fabrication, characterization, and thermal property evaluation of silver nanofluids
NASA Astrophysics Data System (ADS)
Noroozi, Monir; Radiman, Shahidan; Zakaria, Azmi; Soltaninejad, Sepideh
2014-11-01
Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.
Fabrication, characterization, and thermal property evaluation of silver nanofluids
2014-01-01
Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively. PMID:25489293
NASA Astrophysics Data System (ADS)
Kany, A. M. I.; El-Gohary, M. I.; Kamal, S. M.
1994-07-01
Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barries of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure.
Local thermal properties of the surface of Vesta
NASA Astrophysics Data System (ADS)
Capria, M. T.; Tosi, F.; Capaccioni, F.; De Sanctis, M. C.; Palomba, E.; Ammannito, E.; Carraro, F.; Fonte, S.; Titus, T. N.; Combe, J.-P.; Toplis, M.; Sunshine, J.; Fulchignoni, M.; Russel, C. T.; Raymond, C. A.
2012-04-01
Temperature information has been obtained from the Dawn/VIR (Visible InfraRed imaging spectrometer) spectra acquired during the Vesta campaign. When combined with a thermophysical model, these temperatures can be used to derive surface thermal properties. Thermal properties are sensitive to several physical characteristics of the surface that are not all spatially resolved. Thus, the derivation of surface temperatures and thermal inertia can lead to the characterization of surface and sub-surface properties of Vesta and the determination of regolith properties. The model we are using solves the heat conduction equation and provide the temperature as a function of thermal conductivity, albedo, emissivity, density and specific heat. The model is applied to the actual shape of Vesta: for any given location, characterized by a well-defined illumination condition and a given UTC time to compute the thermal inertia that results in model temperatures providing a best-fit to surface temperatures as retrieved by VIR. The model has been already applied to the first Vesta full-disk data to derive the global average thermal inertia of Vesta. The values obtained are typical of fine-grained, unconsolidated materials (i.e. dust) and suggest a surface in which a dust layer is wide-spread on coarser regolith. The model is now being applied on small regions of the surface of Vesta. Specific regions are selected because they are interesting for some reason or appear different from the surroundings, such as, for example, dark and bright spots and other peculiar features. Given a location, the thermophysical code is applied until the obtained temperatures are matching (best-fit techniques are used) the temperatures derived from the VIR spectra. The thermal inertia, thermal conductivity, albedo and roughness values are then assumed to be characterizing the location under analysis. The results of the model must be carefully checked and interpreted by taking into account the context (from
Ab initio calculation of the thermodynamic properties of InSb under intense laser irradiation
Feng, ShiQuan; Cheng, XinLu; Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 ; Zhao, JianLing; Zhang, Hong
2013-07-28
In this paper, phonon spectra of InSb at different electronic temperatures are presented. Based on the phonon dispersion relationship, we further perform a theoretical investigation of the thermodynamic properties of InSb under intense laser irradiation. The phonon entropy, phonon heat capacity, and phonon contribution to Helmholtz free energy and internal energy of InSb are calculated as functions of temperature at different electronic temperatures. The abrupt change in the phonon entropy- temperature curve from T{sub e} = 0.75 to 1.0 eV provides an indication of InSb undergoing a phase transition from solid to liquid. It can be considered as a collateral evidence of non-thermal melting for InSb under intense electronic excitation effect.
WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1979-01-01
A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.
Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm
NASA Astrophysics Data System (ADS)
Hou, Yang; Zhu, Lin-Li
2016-08-01
Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).
High temperature thermal properties for metals used in LWR vessels
NASA Astrophysics Data System (ADS)
Rempe, J. L.; Knudson, D. L.
2008-01-01
Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of a light water reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated with little, if any, data above 700 °C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA 533 Grade B, Class 1 (SA533B1) low alloy steel, which is used to fabricate most US LWR reactor vessels; and Type 304 Stainless Steel SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data.
Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites
NASA Astrophysics Data System (ADS)
Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.
2015-05-01
The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.
Thermal properties of silicon nitride beams below 1 Kelvin.
Wang, G.; Yefremenko, V.; Novosad, V.; Datesman, A.; Pearson, J.; Shustakova, G.; Divan, R.; Chang, C.; McMahon, J.; Bleem, L.; Crites, A. T.; Downes, T.; Mehl, J.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago
2010-01-01
We have investigated the thermal transport of long, narrow beams of silicon nitride at cryogenic temperatures. Simultaneously employing a superconducting Transition Edge Sensor (TES) as both a heater and a sensor, we measured the thermal conductance of 1 {micro}m thick silicon nitride beams of different lateral dimensions. Based upon these measurements, we calculate the thermal parameters of the beams. We utilize a boundary limited phonon scattering model and assume the phonon mean free path to be temperature independent in the calculation. In the temperature range from 300 mK to 530 mK, the following results are obtained for 20 (30) {micro}m beams: the volume heat capacity is 0.083 T+0.509 T{sup 3} J/m{sup 3}-K, the width dependent phonon mean free path is 9.60 (11.05) {micro}m, and the width dependent thermal conductivity is 5.60 x 10{sup -3} T+3.41 x 10{sup -2} T{sup 3} (6.50 x 10{sup -3} T+3.93 x 10{sup -2} T{sup 3}) W/m-K.
Thermal Properties of Silicon Nitride Beams Below 1 Kelvin
NASA Astrophysics Data System (ADS)
Wang, G.; Yefremenko, V.; Novosad, V.; Datesman, A.; Pearson, J.; Shustakova, G.; Divan, R.; Chang, C.; McMahon, J.; Bleem, L.; Crites, A. T.; Downes, T.; Mehl, J.; Meyer, S. S.; Carlstrom, J. E.
2010-04-01
We have investigated the thermal transport of long, narrow beams of silicon nitride at cryogenic temperatures. Simultaneously employing a superconducting Transition Edge Sensor (TES) as both a heater and a sensor, we measured the thermal conductance of 1 μm thick silicon nitride beams of different lateral dimensions. Based upon these measurements, we calculate the thermal parameters of the beams. We utilize a boundary limited phonon scattering model and assume the phonon mean free path to be temperature independent in the calculation. In the temperature range from 300 mK to 530 mK, the following results are obtained for 20 (30) μm beams: the volume heat capacity is 0.083 T+0.509 T3 J/m3-K, the width dependent phonon mean free path is 9.60 (11.05) μm, and the width dependent thermal conductivity is 5.60×10-3 T+3.41×10-2 T3 (6.50×10-3 T+3.93×10-2 T3) W/m-K.
Ab initio study of the unusual thermal transport properties of boron arsenide and related materials
NASA Astrophysics Data System (ADS)
Broido, D. A.; Lindsay, L.; Reinecke, T. L.
2013-12-01
Recently, using a first principles approach, we predicted that zinc blende boron arsenide (BAs) will have an ultrahigh lattice thermal conductivity, κ, of over 2000 Wm-1K-1 at room temperature (RT), comparable to that of diamond. Here, we provide a detailed ab initio examination of phonon thermal transport in boron arsenide, contrasting its unconventional behavior with that of other related materials, including the zinc blende crystals boron nitride (BN), boron phosphide, boron antimonide, and gallium nitride (GaN). The unusual vibrational properties of BAs contribute to its weak phonon-phonon scattering and phonon-isotope scattering, which are responsible for its exceptionally high κ. The thermal conductivity of BAs has contributions from phonons with anomalously large mean free paths (˜2 μm), two to three times those of diamond and BN. This makes κ in BAs sensitive to phonon scattering from crystal boundaries. An order of magnitude smaller RT thermal conductivity in a similar material, zinc blende GaN, is connected to more separated acoustic phonon branches, larger anharmonic force constants, and a large isotope mixture on the heavy rather than the light constituent atom. The striking difference in κ for BAs and GaN demonstrates the importance of using a microscopic first principles thermal transport approach for calculating κ. BAs also has an advantageous RT coefficient of thermal expansion, which, combined with the high κ value, suggests that it is a promising material for use in thermal management applications.
Electronic and thermal properties of TiFe{sub 2} compound: An ab initio study
Sathyakumari, V. S.; Sankar, S. Mahalakshmi, K.; Subashree, G.; Krithiga, R.
2015-06-24
A systematic study of electronic, and thermal properties such as the Density of states, Fermi energy, Debye temperature and specific heat coefficient, has been carried out using the results of electronic bandstructure and related characteristics of the Laves phase compound, TiFe{sub 2}. Computation of electronic bandstructure and associated properties has been carried out using the tight-binding-linear-muffin-tin-orbital (TB-LMTO) method within atomic sphere approximation (ASA). The calculated values are compared with the available results of literature.
New crystal structure and physical properties of TcB from first-principles calculations
NASA Astrophysics Data System (ADS)
Zhang, Gang-Tai; Bai, Ting-Ting; Yan, Hai-Yan; Zhao, Ya-Ru
2015-10-01
By combining first-principles calculations with the particle swarm optimization algorithm, we predicted a hexagonal structure for TcB, which is energetically more favorable than the previously reported WC-type and Cmcm structures. The new phase is mechanically and dynamically stable, as confirmed by its phonon and elastic constants calculations. The calculated mechanical properties show that it is an ultra-incompressible and hard material. Meanwhile, the elastic anisotropy is investigated by the shear anisotropic factors and ratio of the directional bulk modulus. Density of states analysis reveals that the strong covalent bonding between Tc and B atoms plays a leading role in forming a hard material. Additionally, the compressibility, bulk modulus, Debye temperature, Grüneisen parameter, specific heat, and thermal expansion coefficient of TcB are also successfully obtained by using the quasi-harmonic Debye model. Project supported by the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK11061) and the Natural Science Foundation of the Education Committee of Shaanxi Province, China (Grant Nos. 2013JK0637, 2013JK0638, and 2014JK1044).
Thermoelectric properties of AgSbTe₂ from first-principles calculations
Rezaei, Nafiseh; Akbarzadeh, Hadi; Hashemifar, S. Javad
2014-09-14
The structural, electronic, and transport properties of AgSbTe₂ are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic Fd3⁻m and trigonal R3⁻m structures of AgSbTe₂ are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1–0.35 eV for AgSbTe₂ compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe₂ as a function of temperature and carrier concentration.
Thermoelectric properties of AgSbTe2 from first-principles calculations
NASA Astrophysics Data System (ADS)
Rezaei, Nafiseh; Hashemifar, S. Javad; Akbarzadeh, Hadi
2014-09-01
The structural, electronic, and transport properties of AgSbTe2 are studied by using full-relativistic first-principles electronic structure calculation and semiclassical description of transport parameters. The results indicate that, within various exchange-correlation functionals, the cubic F d 3 ¯ m and trigonal R 3 ¯ m structures of AgSbTe2 are more stable than two other considered structures. The computed Seebeck coefficients at different values of the band gap and carrier concentration are accurately compared with the available experimental data to speculate a band gap of about 0.1-0.35 eV for AgSbTe2 compound, in agreement with our calculated electronic structure within the hybrid HSE (Heyd-Scuseria-Ernzerhof) functional. By calculating the semiclassical Seebeck coefficient, electrical conductivity, and electronic part of thermal conductivity, we present the theoretical upper limit of the thermoelectric figure of merit of AgSbTe2 as a function of temperature and carrier concentration.
Strain-modulated electronic and thermal transport properties of two-dimensional O-silica.
Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming
2016-07-01
Silica is one of the most abundant materials in the Earth's crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices. PMID:27199352
Strain-modulated electronic and thermal transport properties of two-dimensional O-silica
NASA Astrophysics Data System (ADS)
Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming
2016-07-01
Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654–60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor–metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Goyal, Vivek; Balandin, Alexander A.
2012-02-01
The authors report on synthesis and thermal properties of the electrically conductive thermal interface materials with the hybrid graphene-metal particle fillers. The thermal conductivity of resulting composites was increased by ˜500% in a temperature range from 300 K to 400 K at a small graphene loading fraction of 5-vol.-%. The unusually strong enhancement of thermal properties was attributed to the high intrinsic thermal conductivity of graphene, strong graphene coupling to matrix materials, and the large range of the length-scale—from nanometers to micrometers—of the graphene and silver particle fillers. The obtained results are important for the thermal management of advanced electronics and optoelectronics.
Another Demo of the Unusual Thermal Properties of Rubber
NASA Astrophysics Data System (ADS)
Liff, Mark I.
2010-10-01
The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect.1-4 Joule in the 1850s studied the thermal behavior of rubbers that was initially explored by Gough in 1805. Properties of rubbers such as contraction upon heating, or the related phenomenon of heating upon fast expansion, did not make much sense at that time. Joule's work validated Gough's results, but the molecular basis of the unusual thermal behavior of rubbers remained unexplained for another 70 years. The physical ideas, taking into account gigantic conformational entropy of elastic polymers that explain their contraction on heating, were developed by Staudinger, Kuhn, and others only in the 1920s and 1930s.5
Spectroscopic and thermal properties of minerals from density-functional perturbation theory
NASA Astrophysics Data System (ADS)
Refson, K.
2003-12-01
Ab-initio calculations based on density-functional theory have provento give a highly accurate description of structural and elastic properties of minerals under pressure. To evaluate spectroscopic, dielectric and thermal properties it is necessary to compute the second derivatives of the energy with respect to a displacement or electric field perturbation. While the Hellman-Feynmann theorem makes the computation of forces (first derivatives of the energy) straightforward, second derivatives depend on the linear response of the orbitals and density to the perturbation. I will sketch the variational formulation of density-function perturbation theory, and it's implementation in the CASTEP plane-wave code. The capabilities will be illustrated with calculation of the full phonon dispersion spectra and dielectric properties of a-quartz, ZrO2 and NaHF2.
NASA Astrophysics Data System (ADS)
Holmes, Jesse Curtis
Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be
The Role of Partial Enthalpy in Thermal Conductivity Calculations for Nanofluids
NASA Astrophysics Data System (ADS)
Edwards, Matthew; Shelton, John
2014-03-01
Over the past decade, reports of significantly enhanced thermal conductivity in solutions of nanoscale particles (nanofluids) have elicited a great deal of interest due to the large number of applications for efficient heat transfer fluids. A common method for calculating the thermal conductivity of a nanofluid uses the autocorrelation of the microscopic heat flux (Green-Kubo formalism), which contains a correction for the net transport of enthalpy due to species diffusion. The partial enthalpy component of the correction term cannot be found from microscopic quantities and is often approximated by the partitioned enthalpy. Using NPT molecular dynamics simulations over a wide range of interaction energies, we show that this approximation leads to spurious enhancements with magnitudes similar to those reported in the literature. The discrepancy arises because the partitioned enthalpy neglects the change in fluid-fluid interaction enthalpy which occurs around solid particles; in systems with strong fluid-solid interactions this can be a substantial portion of the total enthalpy. This work suggests that the standard method for calculating thermal conductivity in nanofluids may be invalid and that actual conductivity enhancements are comparable to those predicted by Maxwell's theory.
Calculation of thermal inertia from day-night measurements separated by days or weeks
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Alley, R. E.
1985-01-01
The calculation of the thermal inertia of an area from remotely sensed data involves the measurement of the surface albedo and the determination of the diurnal temperature range of the surface in image format. The temperature-range image is calculated from surface thermal radiance measured as near as possible to the time of maximum surface temperature and (predawn) surface minimum temperature. Ordinarily, both surface-temperature images are measured within the same 12-hour period. If this is impossible, then the measurement of the predawn surface radiance within a 36-hour period has been considered to be adequate, although less satisfactory. The problems arising in connection with the impossibility to conduct measurements within the same 12-hour period are studied, and suggestions are made for cases in which only relative thermal inertia across an area is required. In such cases investigators should consider using the best day-night temperature pairs available, even if not acquired within a 12 to 36 hour period.
TOPAZ2D heat transfer code users manual and thermal property data base
NASA Astrophysics Data System (ADS)
Shapiro, A. B.; Edwards, A. L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.
Comparison of measured and calculated low latitude ionospheric properties
NASA Technical Reports Server (NTRS)
Chandler, M. O.; Behnke, R. A.; Nagy, A. F.; Fontheim, E. G.; Richards, P. G.; Torr, D. G.
1983-01-01
Measurements of ionospheric parameters above Arecibo, Puerto Rico, have been compared with a computer simulation for a variety of conditions. Agreement was found between the measured and calculated electron concentration during geomagnetically quiet conditions. Comparisons for more active conditions indicate a significant upward flow of ionization during the mid-afternoon. Calculated electron temperatures were found to be consistently lower than measured temperatures during the daytime. Calculated values of NmF2 and h(max) agreed with measured results except during the post-midnight period. Calculated values of the ion flux indicate a 24-hour net flow of ionization from the northern to the Southern Hemisphere amounting to 12 percent and 6 percent of the equilibrium flux tube content above 1000 km for the winter solstice and equinox cases, respectively.
The "Guarded Torus" approach for MUPUS thermal properties measurements
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Knollenberg, J.; Kargl, G.; Kömle, N. I.
2012-09-01
In the past few years scientists developed an increasing interest in the structure and behaviour of extraterrestrial surfaces. Comets are playing a main role as targets of these investigations. They are composed of ice, dust and organics and it is assumed that comets consist of the basic material out of which the solar system was formed. The properties at the surface and the upper layers of comets as well as their change during the approach to the sun are therefore of special interest. The thermal and mechanical properties of the comet 67P/Churyumov- Gerasimenko and their changes should be measured with the MUPUS-probe, one of the instruments on the Rosetta lander Philae. The "Guarded Torus" approach is a possible way of optimizing the scientific results of the thermal conductivity measurements with MUPUS like sensors.
Rheological and thermal properties of PP-based WPC
NASA Astrophysics Data System (ADS)
Mazzanti, V.; Mollica, F.; El Kissi, N.
2014-05-01
Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.
Transport properties and microstructural characteristics of a thermally cracked mylonite
NASA Astrophysics Data System (ADS)
Le Ravalec, M.; Darot, M.; Reuschlé, T.; Guéguen, Y.
1996-03-01
An experimental study was carried out on a granitic mylonite (La Bresse, France) to analyze the influence of pore microstructure on transport properties. Different crack networks were obtained by a controlled thermal treatment. Microstructures were analyzed by means of gas adsorption and mercury porosimetry. Transport properties have been investigated by measuring gas permeability and electrical conductivity. The dependence of permeability on confining pressure shows an exponential decrease, characteristic of a porosity made of cracks. Correlations between measured parameters have been analyzed by comparing them with relations deduced from theoretical models. Linking the formation factor to the porosity leads to a rather low tortuosity value (about 2.4), characterizing a medium with a well connected porosity. Correlation between permeability k and formation factor F leads to a power-law relation k ∝ F -n where n≈2.9, which is consistent with a crack model describing the behavior of the thermally treated rock.
Effect of thermal modification on rheological properties of polyethylene blends
Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki; Satoh, Yasuo; Sasaki, Hiroko
2014-03-15
We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constant draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.
NASA Technical Reports Server (NTRS)
Zhu, Shen; Li, C.; Su, Ching-Hua; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devices. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed.
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Li, C.; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devises. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed in the presentation.
Calculating model for equivalent thermal defocus amount in infrared imaging system
NASA Astrophysics Data System (ADS)
Zhang, Chengshuo; Shi, Zelin; Xu, Baoshu; Feng, Bin
2016-01-01
The main effect of temperature change on infrared imaging system is the focus shift of infrared lenses. This paper analyzes the equivalent influence on imaging between the temperature change and the defocus at room temperature. In order to quantify the equivalence, we define an equivalent thermal defocus amount (ETDA). The ETDA describes the distance of the photosensitive surface shifting at room temperature, which has the same effect on imaging as the temperature changes. To model the ETDA, the expression of the focal shift as a function of temperature is obtained by solving partial differential equations for the thermal effect on light path firstly with some approximations. Then point spread functions of the thermal effect and defocus at room temperature are modeled based on wave aberration. The calculating model of ETDA is finally established by making their PSFs equal under the condition that the cutoff frequency of infrared imaging systems is much smaller than that of infrared lens. The experimental results indicate that defocus of ETDA at room temperature has the same influence on imaging as the thermal effect. Prospectively, experiments at high/low temperature can be replaced by experiments at room temperature with ETDA.
Epoxide composites with thermally reduced graphite oxide and their properties
NASA Astrophysics Data System (ADS)
Arbuzov, A. A.; Muradyan, V. E.; Tarasov, B. P.; Sokolov, E. A.; Babenko, S. D.
2016-05-01
The properties of epoxide composites modified by thermal reduced graphite oxide are studied. The dielectric permittivities of epoxide composites with additives of up to 1.5 wt % of reduced graphite oxide are studied at a frequency of 9.8 GHz. It is shown that despite its low electrical conductivity, the large specific surface area of reduced graphite oxide allows us to create epoxide composites with high complex dielectric permittivities and dielectric loss tangents.
Simplified composite micromechanics equations for hygral, thermal and mechanical properties
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1983-01-01
A unified set of composite micromechanics equations of simple form is summarized and described. This unified set can be used to predict unidirectional composite (ply) geometric, mechanical, thermal and hygral properties using constituent material (fiber/matrix) properties. This unified set also includes approximate equations for predicting (1) moisture absorption; (2) glass transition temperature of wet resins; and (3) hygrothermal degradation effects. Several numerical examples are worked-out to illustrate ease of use and versatility of these equations. These numerical examples also demonstrate the interrelationship of the various factors (geometric to environmental) and help provide insight into composite behavior at the micromechanistic level.
Simplified composite micromechanics equations of hygral, thermal, and mechanical properties
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1984-01-01
A unified set of composite micromechanics equations of simple form is summarized and described. This unified set can be used to predict unidirectional composite (ply) geometric, mechanical, thermal and hygral properties using constituent material (fiber/matrix) properties. This unified set also includes approximate equations for predicting (1) moisture absorption; (2) glass transition temperature of wet resins; and (3) hygrothermal degradation effects. Several numerical examples are worked-out to illustrate ease of use and versatility of these equations. These numerical examples also demonstrate the interrelationship of the various factors (geometric to environmental) and help provide insight into composite behavior at the micromechanistic level.
Thermal properties of degraded lowland peat-moorsh soils
NASA Astrophysics Data System (ADS)
Gnatowski, Tomasz
2016-04-01
Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg‑1.K‑1 in the humic moorsh soil to 1944 J.kg‑1.K‑1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of
Thermal transport and thermoelectric properties of beta-graphyne nanostructures.
Ouyang, Tao; Hu, Ming
2014-06-20
Graphyne, an allotrope of graphene, is currently a hot topic in the carbon-based nanomaterials research community. Taking beta-graphyne as an example, we performed a comprehensive study of thermal transport and related thermoelectric properties by means of nonequilibrium Green's function (NEGF). Our simulation demonstrated that thermal conductance of beta-graphyne is only approximately 26% of that of the graphene counterpart and also shows evident anisotropy. Meanwhile, thermal conductance of armchair beta-graphyne nanoribbons (A-BGYNRs) presents abnormal stepwise width dependence. As for the thermoelectric property, we found that zigzag beta-graphyne nanoribbons (Z-BGYNRs) possess superior thermoelectric performance with figure of merit value achieving 0.5 at room temperature, as compared with graphene nanoribbons (~0.05). Aiming at obtaining a better thermoelectric coefficient, we also investigated Z-BGYNRs with geometric modulations. The results show that the thermoelectric performance can be enhanced dramatically (figure of merit exceeding 1.5 at room temperature), and such enhancement strongly depends on the width of the nanoribbons and location and quantity of geometric modulation. Our findings shed light on transport properties of beta-graphyne as high efficiency thermoelectrics. We anticipate that our simulation results could offer useful guidance for the design and fabrication of future thermoelectric devices. PMID:24859889
Mechanical and thermal properties of bulk ZrB2
NASA Astrophysics Data System (ADS)
Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke
2015-12-01
ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.
Low-rank coal thermal properties and diffusivity: Final report
Ramirez, W.F.
1987-06-01
This project developed techniques for measuring thermal properties and mass diffusivities of low-rank coals and coal powders. Using the concept of volume averaging, predictive models have been developed for these porous media properties. The Hot Wire Method was used for simultaneously measuring the thermal conductivity and thermal diffusivity of both consolidated and unconsolidated low-rank coals. A new computer-interfaced experiment is presented and sample container designs developed for both coal powders and consolidated coals. A new mathematical model, based upon volume averaging, is presented for the prediction of these porous media properties. Velocity and temperature effects on liquid-phase dispersion through unconsolidated coal were determined. Radioactive tracer data were used to determine mass diffusivities. A new predictive mathematical model is presented based upon volume averaging. Vapor-phase diffusivity measurements of organic solvents in consolidated lignite coal are reported. An unsteady-state pressure response experiment with microcomputed-based data acquisition was developed to estimate dispersion coefficients through consolidated lignite coals. The mathematical analysis of the pressure response data provides the dispersion coefficient and the adsorption coefficient. 48 refs., 59 figs., 17 tabs.
Electrical and thermal properties of graphite/polyaniline composites
Bourdo, Shawn E.; Warford, Brock A.; Viswanathan, Tito
2012-12-15
A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.
Thermal Properties of Moving UV Features in Prominences
NASA Technical Reports Server (NTRS)
Kucera, Therese A.
2003-01-01
Multi-thermal features with speeds of 5-70 kilometers per second perpendicular to the line of sight are common in the prominences which showed traceable motions. These speeds are noticeably higher than the typical speeds of 5-20 kilometers per second observed in H-alpha data from "quiet" prominences and are more typical of "activated" prominences in which H-alpha blob speeds of up to 40 kilometers per second have been reported. In order to make a more quantitative determination of the thermal properties of the moving features seen in the UV, we use the SOHO instruments SUMER and CDS to take a time series of exposures from a single pointing position, providing a measurement of spectral line properties as a function of time and position along the slit. The resulting observations in lines spectral lines in a range of "transition region" temperatures allow us to analyze the thermal properties of the moving prominence sources as a function of time.
Thermal stability, optical property, and morphology of flexible organoclay films.
Shin, Jieun; Chang, Jin-Hae
2011-07-01
Novel organo-saponite (organo-SPT) films with excellent thermal stability and optical property were synthesized by solution casting. Na ion-exchanged saponite (pristine SPT), hexadecylammonium ion-exchanged SPT (C16-SPT), hexadecyltriphenyl phosphonium ion-exchanged SPT (C16PPh3-SPT), and tetraphenyl phosphonium ion-exchanged SPT (PPh4-SPT) were used to prepare clay films. We examined the relationship between the structures and properties of the various SPT films. SPT films were examined by means of wide-angle X-ray diffraction (XRD), electronic microscopy (FE-SEM), thermogravimetric analysis (TGA), ultraviolet-visible (UV-vis.) spectrometer. On the basis of these analyses, we sought to improve both the thermal stability and the optical properties. Clay films composed of C16PPh3-SPT and PPh4-SPT were found to be more thermally stable than those composed of pristine SPT or C16-SPT. On the other hand, the transmittance was not significantly affected by variations in the organo-SPT material. PMID:22121657
NASA Astrophysics Data System (ADS)
Cartoixà, Xavier; Dettori, Riccardo; Melis, Claudio; Colombo, Luciano; Rurali, Riccardo
2016-07-01
We study thermal transport in porous Si nanowires (SiNWs) by means of approach-to-equilibrium molecular dynamics simulations. We show that the presence of pores greatly reduces the thermal conductivity, κ, of the SiNWs as long mean free path phonons are suppressed. We address explicitly the dependence of κ on different features of the pore topology—such as the porosity and the pore diameter—and on the nanowire (NW) geometry—diameter and length. We use the results of the molecular dynamics calculations to tune an effective model, which is capable of capturing the dependence of κ on porosity and NW diameter. The model illustrates the failure of Matthiessen's rule to describe the coupling between boundary and pore scattering, which we account for by the inclusion of an additional empirical term.
Thermal transport properties of MoS2 and MoSe2 monolayers
NASA Astrophysics Data System (ADS)
Kandemir, Ali; Yapicioglu, Haluk; Kinaci, Alper; Çağın, Tahir; Sevik, Cem
2016-02-01
The isolation of single- to few-layer transition metal dichalcogenides opens new directions in the application of two-dimensional materials to nanoelectronics. The characterization of thermal transport in these new low-dimensional materials is needed for their efficient implementation, either for general overheating issues or specific applications in thermoelectric devices. In this study, the lattice thermal conductivities of single-layer MoS2 and MoSe2 are evaluated using classical molecular dynamics methods. The interactions between atoms are defined by Stillinger-Weber-type empirical potentials that are developed to represent the structural, mechanical, and vibrational properties of the given materials. In the parameterization of the potentials, a stochastic optimization algorithm, namely particle swarm optimization, is utilized. The final parameter sets produce quite consistent results with density functional theory in terms of lattice parameters, bond distances, elastic constants, and vibrational properties of both single-layer MoS2 and MoSe2. The predicted thermal properties of both materials are in very good agreement with earlier first-principles calculations. The discrepancies between the calculations and experimental measurements are most probably caused by the pristine nature of the structures in our simulations.
Thermal transport properties of MoS2 and MoSe2 monolayers.
Kandemir, Ali; Yapicioglu, Haluk; Kinaci, Alper; Çağın, Tahir; Sevik, Cem
2016-02-01
The isolation of single- to few-layer transition metal dichalcogenides opens new directions in the application of two-dimensional materials to nanoelectronics. The characterization of thermal transport in these new low-dimensional materials is needed for their efficient implementation, either for general overheating issues or specific applications in thermoelectric devices. In this study, the lattice thermal conductivities of single-layer MoS2 and MoSe2 are evaluated using classical molecular dynamics methods. The interactions between atoms are defined by Stillinger-Weber-type empirical potentials that are developed to represent the structural, mechanical, and vibrational properties of the given materials. In the parameterization of the potentials, a stochastic optimization algorithm, namely particle swarm optimization, is utilized. The final parameter sets produce quite consistent results with density functional theory in terms of lattice parameters, bond distances, elastic constants, and vibrational properties of both single-layer MoS2 and MoSe2. The predicted thermal properties of both materials are in very good agreement with earlier first-principles calculations. The discrepancies between the calculations and experimental measurements are most probably caused by the pristine nature of the structures in our simulations. PMID:26752165
Molecular-dynamics calculations of thermodynamic properties of metastable alloys
Mazzone, G.; Rosato, V.; Pintore, M.; Delogu, F.; Demontis, P.; Suffritti, G.B.
1997-01-01
In order to improve our current understanding of the microscopic structure of metastable alloys of immiscible elements such as Ag-Cu and Co-Cu, the Helmholtz free energy of several microstructures based on an fcc unit cell has been calculated and compared with that of a reference state. The microstructures considered for the free energy calculations at fixed volume are (1) a structure formed by alternating layers of fixed thickness of metal 1 and metal 2 separated by coherent interfaces; (2) an atomically disordered solid solution; (3) a structure comprising a random distribution of elemental cubic grains separated by coherent interfaces. Numerical results show that the Helmholtz free energy of structure (3) decreases with increasing grain size and that its value calculated for a sufficiently large grain size approaches the free energy of structure (1). Further molecular-dynamics simulations for the Ag-Cu system have allowed the calculation of the enthalpy at the equilibrium volume of several microstructures including some of those listed above. A comparison of the calculated values of the enthalpy with the heat release observed experimentally allows the advancement of an hypothesis concerning the reaction path and the structure of the equiatomic Ag-Cu alloy obtained by ball milling.
Buoyancy effects in overcooling transients calculated for the NRC pressurized thermal shock study
Theofanous, T G; Iyer, K; Nourbakhsh, H P; Gherson, P
1986-05-01
The thermal-hydraulic responses of three PWRs (Oconee, Calvert Cliffs, and H.B. Robinson), to postulated Pressurized Thermal Shock (PTS) scenarios, which were originally determined by RELAP5 and TRAC calculations, are being further developed here with regard to buoyancy/stratification effects. These three PWRs were the subject of the NRC PTS study, and the present results helped define the thermal-hydraulic conditions utilized in the fracture mechanics calculations carried out at ORNL. The computer program REMIX, which is based on the Regional Mixing Model (RMM), was the analytical tool employed, while Purdue's 1/2-Scale HPI Thermal Mixing facility provided the basis for experimental support. Important mixing and wall heat transfer regimes are delineated on the basis of these results. We conclude that stratification is important only in cases of complete loop stagnation and that mixed-convection effects are important for downcomer flow velocities below approx.0.25 m/s. The stratification is small in magnitude, however it is important in creating a recirculating flow pattern which activates the lower plenum, pump and loop seal volumes, to participate in the mixing process. This mixing process together with the heat input from the wall metal significantly impact the cooldown rates. Heat transfer in the plume region is dominated by forced convection. On the other hand, the presence of the Reactor Pressure Vessel (RPV) wall cladding and wall conduction significantly dampen the free convection effects in the low velocity, mixed-convection, regime. For the stagnant loop cases, all locations outside the plume region are included in this regime. In the presence of natural loop circulation and a uniformly distributed downcomer flow, the mixed convection regime is also expected, however, the forced convection regime can also be observed in highly asymmetric flow behavior.
Ab Initio Study of the Structural, Electronic, and Thermal Properties of Alloy
NASA Astrophysics Data System (ADS)
Benkaddour, I.; Khachai, H.; Chiker, F.; Benosman, N.; Benkaddour, Y.; Murtaza, G.; Omran, S. Bin; Khenata, R.
2015-07-01
The results of a first-principle study of the structural, electronic, and thermal properties of a alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.
Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.
2015-10-01
The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.
NASA Astrophysics Data System (ADS)
Gutierrez-Herrera, Enoch; Sánchez-Pérez, Celia; García-Cadena, Carlos A.; Hernández-Ruiz, Joselín.
2015-08-01
Non-subjective and early diagnostic technique for liver fibrosis may decrease morbidity in patients and reduce medical costs. Liver fibrosis results in changes in density and thermal properties of tissue. In this work, we evaluate numerically the feasibility of using the optical beam deflection method (OBDM) by means of a thermo-optic material in contact with liver tissue to quantitate changes in thermal conduction. We use the finite-difference method to model the heat transfer in liver and acrylic slab. The response required for thermal characterization for different fibrosis stages is assessed by calculating the deflection angle using ray trace analysis. Numerical study shows the potential of the OBDM for developing an optical-integrated sensor as non-subjective diagnostic technique for liver fibrosis.
Burkes, Douglas; Casella, Amanda J.; Gardner, Levi D.; Casella, Andrew M.; Huber, Tanja K.; Breitkreutz, Harald
2015-02-11
The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.
Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids
NASA Technical Reports Server (NTRS)
Soulas, George C.
2006-01-01
An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.
Direct calculation of modal contributions to thermal conductivity via Green-Kubo modal analysis
NASA Astrophysics Data System (ADS)
Lv, Wei; Henry, Asegun
2016-01-01
We derived a new method for direct calculation of the modal contributions to thermal conductivity, which is termed Green-Kubo modal analysis (GKMA). The GKMA method combines the lattice dynamics formalism with the Green-Kubo formula for thermal conductivity, such that the thermal conductivity becomes a direct summation of modal contributions, where one need not define the phonon velocity. As a result, the GKMA method can be applied to any material/group of atoms, where the atoms vibrate around stable equilibrium positions, which includes non-stoichiometric compounds, random alloys, amorphous materials and even rigid molecules. By using molecular dynamics simulations to obtain the time history of each mode’s contribution to the heat current, one naturally includes anharmonicity to full order and can obtain insight into the interactions between different modes through the cross-correlations. As an example, we applied the GMKA method to crystalline and amorphous silicon. The modal contributions at each frequency result from the analysis and thereby allow one to apply a quantum correction to the mode heat capacity to determine the temperature dependence of thermal conductivity. The predicted temperature dependent thermal conductivity for amorphous silicon shows the best agreement with experiments to date. The GKMA method provides new insight into the nature of phonon transport, as it casts the problem in terms of mode-mode correlation instead of scattering, and provides a general unified formalism that can be used to understand phonon-phonon interactions in essentially any class of materials or structures where the atoms vibrate around stable equilibrium sites.
Thermal property measurement of thin fibers by complementary methods
NASA Astrophysics Data System (ADS)
Munro, Troy Robert
To improve measurement reliability and repeatability and resolve the orders of magnitude discrepancy between the two different measurements (via reduced model transient electrothermal and lock-in IR thermography), this dissertation details the development of three complementary methods to accurately measure the thermal properties of the natural and synthetic Nephila (N.) clavipes spider dragline fibers. The thermal conductivity and diffusivity of the dragline silk of the (N.) clavipes spider has been characterized by one research group to be 151-416 W m-1 K-1 and 6.4-12.3 x 10-5 m2 s -1, respectively, for samples with low to high strains (zero to 19.7%). Thermal diffusivity of the dragline silk of a different spider species, Araneus diadematus, has been determined by another research group as 2 x 10-7 m2 s-1 for un-stretched silk. This dissertation seeks to resolve this discrepancy by three complementary methods. The methods detailed are the transient electrothermal technique (in both reduced and full model versions), the 3o method (for both current and voltage sources), and the non-contact, photothermal, quantum-dot spectral shape-based fluorescence thermometry method. These methods were also validated with electrically conductive and non-conductive fibers. The resulting thermal conductivity of the dragline silk is 1.2 W m-1 K-1, the thermal diffusivity is 6 x 10-7 m2 s -1 and the volumetric heat capacity is 2000 kJ m-3 K-1, with an uncertainty of about 12% for each property.
Computer program for calculating water and steam properties
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Peller, I. C.; Baron, A. K.
1974-01-01
Computer subprogram, WASP, accepts any two of pressure, temperature, and density as input conditions. Pressure and either entropy or enthalpy are also allowable input variables. This flexibility is especially useful in cycle analysis. Metastable calculations can also be made using WASP.
40 CFR 80.66 - Calculation of reformulated gasoline properties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the volume. (g)(1) Per gallon values for VOC and NOX emissions reduction shall be calculated using the... subject, and per-gallon values for the VOC, NOX, and toxics emissions performance standards to which the... total VOC, NOX, and toxic emissions performance reduction values associated with a batch of gasoline...
40 CFR 80.66 - Calculation of reformulated gasoline properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calculated by multiplying the RVP times the volume. (g)(1) Per gallon values for VOC and NOX emissions... subject, and per-gallon values for the VOC, NOX, and toxics emissions performance standards to which the... appropriate for the gasoline. (3) The total VOC, NOX, and toxic emissions performance reduction...
40 CFR 80.66 - Calculation of reformulated gasoline properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calculated by multiplying the RVP times the volume. (g)(1) Per gallon values for VOC and NOX emissions... subject, and per-gallon values for the VOC, NOX, and toxics emissions performance standards to which the... appropriate for the gasoline. (3) The total VOC, NOX, and toxic emissions performance reduction...
Braase, Lori; Papesch, Cynthia; Hurley, David
2015-04-01
The Department of Energy (DOE)-Office of Nuclear Energy (NE), Idaho National Laboratory (INL), and associated nuclear fuels programs have invested heavily over the years in infrastructure and capability development. With the current domestic and international need to develop Accident Tolerant Fuels (ATF), increasing importance is being placed on understanding fuel performance in irradiated conditions and on the need to model and validate that performance to reduce uncertainty and licensing timeframes. INL’s Thermal Properties Capability Development Workshop was organized to identify the capability needed by the various nuclear programs and list the opportunities to meet those needs. In addition, by the end of fiscal year 2015, the decision will be made on the initial thermal properties instruments to populate the shielded cell in the Irradiated Materials Characterization Laboratory (IMCL).
Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.
1981-01-01
FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.
1999-05-19
Version 00 RELAP4/MOD7/101 performs best estimate analyses of nuclear reactors or related systems undergoing a transient. Transient thermal-hydraulic, two-phase phenomena are calculated from formulations of one-dimensional, homogeneous, equilibrium conservation equations for water mass, momentum, and energy. Heat structures are modeled using a transient one-dimensional heat conduction solution that is coupled to the fluid through heat transfer relations. Various explicit models are used to calculate nonhomogeneous, nonequilibrium behavior including a phase separation model, a vertical slipmore » model, and a nonequilibrium model. Other models are used to represent critical flow, reactor kinetics, pressurized water reactor reflood behavior, nuclear fuel rod swelling and blockage, and components such as pumps, valves, and accumulators.« less
Thermal-capillary analysis of small-scale floating zones Steady-state calculations
NASA Technical Reports Server (NTRS)
Duranceau, J. L.; Brown, R. A.
1986-01-01
Galerkin finite element analysis of a thermal-capillary model of the floating zone crystal growth process is used to predict the dependence of molten zone shape on operating conditions for the growth of small silicon boules. The model accounts for conduction-dominated heat transport in the melt, feed rod and growing crystal and for radiation between these phases, the ambient and a heater. Surface tension acting on the shape of the melt/gas meniscus counteracts gravity to set the shape of the molten zone. The maximum diameter of the growing crystal is set by the dewetting of the melt from the feed rod when the crystal radius is large. Calculations with small Bond number show the increased zone lengths possible for growth in a microgravity environment. The sensitivity of the method to the shape and intensity of the applied heating distribution is demonstrated. The calculations are compared with experimental observations.
NASA Technical Reports Server (NTRS)
Wallyn, P.; Mahoney, W. A.; Durouchoux, Ph.; Chapuis, C.
1996-01-01
We calculate the intensities of the positronium de-excitation lines for two processes: (1) the radiative combination of free thermal electrons and positrons for transitions with principal quantum number n less than 20, and (2) charge exchange between free positrons and hydrogen and helium atoms, restricting our evaluation to the Lyman-alpha line. We consider a low-density medium modeled by the case A assumption of Baker & Menzel and use the "nL method" of Pengelly to calculate the absolute intensities. We also evaluate the positronium fine and hyperfine intensities and show that these transitions are in all cases much weaker than positronium de-excitation lines in the same wavelength range. We also extrapolate our positronium de-excitation intensities to the submillimeter, millimeter, and centimeter wavelengths. Our results favor the search of infrared transitions of positronium lines for point sources when the visual extinction A, is greater than approx. 5.
Thermal properties of andesite from Popocatepetl and Volcán de Colima, México.
NASA Astrophysics Data System (ADS)
Cardenas-Sanchez, Enrique; De la Cruz-Reina, Servando; Varley, Nick
2015-04-01
The thermal conductivity (K), specific heat (Cp) and the coefficient of heat transfer surface (H) are the basic parameters to describe the process of cooling a volcanic rock fragment released in an explosive event. The analysis of the cooling process by conduction, convection and radiation of heat in volcanic rock fragments, has been limited to basalts, and various minerals such as olivine, pyroxene, quartz, etc. (Miao & Chen, 2014; Branlund & Hofmeister, 2012; Romine et al, 2012;. Schön, 2011; Stroberg et al, 2010;. Schatz & Simmons, 1972). There are no detailed studies on the thermal properties of the andesites, abundant in continental stratovolcanoes, and particularly susceptible from lava domes with frequent destruction processes, such as Popocatepetl and Volcan de Colima. Previously, we developed an algorithm for calculation of the grain-size distribution, degree of fragmentation, the thermal energy released and its possible correlation with Volcanic Explosive Index (VEI) from the cooling curves of fragments from vulcanian and strombolian explosions. These curves were obtained from sequences of time over incandescent deposits recorded at selected pixel thermal images of vulcanian activity in the Popocatepetl and Volcan de Colima, Mexico. However, the model was limited by the lack of thermal parameters of the andesites, forcing a first approximation using basalts data. We present a simple model for the cooling process using andesites samples from Popocatépetl and Volcan de Colima. First, the samples were subjected to a rounding process to minimize surface effects. Then, heated to 800 ° C were extracted from the muffle and cooling rate is measured. The thermal conductivity and coefficient of surface heat are determined using a thermal camera and three thermocouples embedded at various depths within the sample. An inversion method was implemented to determine the thermal properties parameters , by comparing the observed data regarding cooling model for a solid
Kim, Ji Mun; Han, Mi Sun; Kim, Youn Hee; Kim, Woo Nyon
2008-07-07
The polyurethane foams (PUFs) were prepared by polyether polyols, polymeric 4,4'-diphenylmethane diisocyanate (PMDI), silicone surfactants, amine catalysts and cyclopentane as a blowing agent. Solid and liquid type fillers were used as a nucleating agent to decrease a cell size of the PUFs as well as improve the thermal insulating properties of the PUFs. The PUFs were prepared by adding solid and liquid type fillers in the range of 1 to 3 wt%. For the liquid type fillers, the cell size of the PUFs showed minimum and found to decrease compared the PUF without adding fillers. Also, thermal conductivity of the PUFs with adding fillers showed minimum. For the solid type fillers, cell size and thermal conductivity of the PUFs were observed to decrease with the filler content up to 3 wt%. From these results, it is suggested that the thermal insulating property of the PUFs can be improved by adding fillers as a nucleating agent. Also, storage and loss modulus of the PUFs will be presented to study gelling points of the PUFs.
Investigation on electronic, mechanical and thermal properties of Hf-H system
NASA Astrophysics Data System (ADS)
Wang, Hao; Konashi, Kenji
2013-11-01
Hf hydride is proposed to be used as neutron control materials for fast reactors. The electronic, mechanical and thermal properties of its three phases: δ‧-HfH1.5, δ-HfH1.75, ε-HfH2, are investigated. Their relative stabilities at 0 K by our calculation are consistent with the explanation of Jahn-Teller mechanism. The mechanical properties like elastic constants are calculated and agree well with the experiments. At finite temperatures, in addition to the direct method for phonon calculation, electronic free energy is also calculated in order to investigate the thermal expansion and bulk moduli of three phases. Hf-H system has an increasing relationship in bulk moduli with respect to the H concentration before about 360 K, after which ε-HfH2 seems to decrease more quickly in the softness of the structure than δ-HfH1.75 as the temperature increases. The relation between heat capacity and Hf and H atoms vibration is discussed.
On thermal properties of hard rocks as a host environment of an underground thermal energy storage
NASA Astrophysics Data System (ADS)
Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.
2013-12-01
With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of
Červinka, Ctirad; Pádua, Agilio A H; Fulem, Michal
2016-03-10
This work presents a molecular dynamics simulation study concerning the thermodynamic data of ionic liquids (ILs) including phase change enthalpies, liquid phase densities, radial and spatial distribution functions, and diffusive properties. Three homologous series of ILs were selected for this study, namely, 1-alkyl-3-methylimidazolium tetrafluoroborates, hexafluorophosphates, and 1,1,2,2-tetrafluoroethanesulfonates, so that properties of 36 ILs are calculated in total. The trends of calculated properties are compared to available experimental data and thoroughly discussed in context of the homologous series. The calculated trends of the vaporization enthalpies within the series are supported by analyzing the structural properties of the ILs. An excellent agreement of calculated structural properties (liquid phase density) with the experimental counterparts is reached. The calculated enthalpic properties are overestimated considerably; thus, further development of the force fields for ILs is required. PMID:26848831
NASA Astrophysics Data System (ADS)
Oberste Berghaus, Jörg; Legoux, Jean-Gabriel; Moreau, Christian; Tarasi, Fariba; Chráska, Tomas
2008-03-01
Micro-laminates and nanocomposites of Al2O3 and ZrO2 can potentially exhibit higher hardness and fracture toughness and lower thermal conductivity than alumina or zirconia alone. The potential of these improvements for abrasion protection and thermal barrier coatings is generating considerable interest in developing techniques for producing these functional coatings with optimized microstructures. Al2O3-ZrO2 composite coatings were deposited by suspension thermal spraying (APS and HVOF) of submicron feedstock powders. The liquid carrier employed in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to unique and novel fine-scaled microstructures. The suspensions were injected internally using a Mettech Axial III plasma torch and a Sulzer-Metco DJ-2700 HVOF gun. The different spray processes induced a variety of structures ranging from finely segregated ceramic laminates to highly alloyed amorphous composites. Mechanisms leading to these structures are related to the feedstock size and in-flight particle states upon their impact. Mechanical and thermal transport properties of the coatings were compared. Compositionally segregated crystalline coatings, obtained by plasma spraying, showed the highest hardness of up to 1125 VHN3 N, as well as the highest abrasion wear resistance (following ASTM G65). The HVOF coating exhibited the highest erosion wear resistance (following ASTM G75), which was related to the toughening effect of small dispersed zirconia particles in the alumina-zirconia-alloyed matrix. This microstructure also exhibited the lowest thermal diffusivity, which is explained by the amorphous phase content and limited particle bonding, generating local thermal resistances within the structure.
First-principles phonon calculations of thermal expansion in Ti3SiC2 , Ti3AlC2 , and Ti3GeC2
NASA Astrophysics Data System (ADS)
Togo, Atsushi; Chaput, Laurent; Tanaka, Isao; Hug, Gilles
2010-05-01
Thermal properties of ternary carbides with composition Ti3SiC2 , Ti3AlC2 , and Ti3GeC2 were studied using the first-principles phonon calculations. The thermal expansions, the heat capacities at constant pressure, and the isothermal bulk moduli at finite temperatures were obtained under the quasiharmonic approximation. Comparisons were made with the available experimental data and excellent agreements were obtained. Phonon band structures and partial density of states were investigated. These compounds present unusual localized phonon states at low frequencies, which are due to atomiclike vibrations parallel to the basal plane of the Si, Al, or Ge elements.
[Calculation of spectroscopic properties of Tm:YVO4 crystals].
Song, Feng; Guo, Hong-cang; Zhang, Wan-lin; Zhang, Chao-bo; Shang, Mei-ru; Zhang, Guang-yin
2002-02-01
Sigma and pi polarized absorption spectra of Tm:YVO4 crystal have been measured at room temperature. Considering the difference of the sigma and pi polarized absorption spectra and the changing of the refractive index with different wavelengths, we calculate the intensity parameters of Tm3+ in crystal YVO4 which are omega 2 = 1.9416 x 10(-20) (cm2), omega 4 = 0.1568 x 10(-20) (cm2), omega 6 = 0.3963 x 10(-20) (cm2) by Judd-Ofelt theory. The spectra characteristic parameters, such as radiative transition rates, luminescence branching ratio, total radiative lifetime and integral cross-section are also calculated. The results show that the spontaneous rate of the transition 1D2-->3F4 is much higher than that of the transition 1D2 to other levels. PMID:12940012
Computer program for calculating thermodynamic and transport properties of fluids
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braon, A. K.; Peller, I. C.
1975-01-01
Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.
Study on Thermal and Mechanical Properties of EPDM Insulation
NASA Astrophysics Data System (ADS)
Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing
As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.
Thermal properties of polyolefin composites with copper silicate
NASA Astrophysics Data System (ADS)
Klozinski, Arkadiusz; Jakubowska, Paulina; Ambrozewicz, Damian; Jesionowski, Teofil
2015-05-01
The aim of this work was to specify thermal properties of polyolefin composites with copper silicate. Low density polyethylene (LDPE) and polypropylene (PP) composites with 2, 4 and 8 wt % of the filler (CuO.SiO2) were analyzed. Characteristic temperatures of the polymer compositions, i.e. the melting (Tm) and crystallization temperatures (Tc), obtained by means of Differential Scanning Calorimetry (DSC), were determined. The impact of the applied additives on composites thermal stability was established using thermogravimetry measurements (TGA). Afterwards, the flammability test was performed. The measurement was complemented with the establishment of the maximum combustion temperature using infrared recording techniques and image analysis (infrared camera). One of the most important parameter of thermoplastics is the softening point which was also determined. The measurement was carried out using a Vicat apparatus. Thermal characteristic was also supplemented with an assessment of the thermal diffusivity (the parameter determining the cooling time in an injection mold). The tests were conducted using the modified Angstrom method and an infrared camera.
MAPTIP experiment, marine aerosol properties and thermal imager performance
Eijk, A.M.J. van; Leeuw, G. de; Jensen, D.R.
1994-12-31
During the fall of 1993, a field experimental study on Marine Aerosol Properties and Thermal Imager Performance (MAPTIP) was conducted in the Dutch coastal waters. The objectives of the MAPTIP trial were: (1) to improve and validate vertical marine aerosol models by providing an extensive set of aerosol and meteorological measurements, within a coastal environment, at different altitudes and for a range of meteorological conditions; (2) to make aerosol and meteorological observations in the first 10 m above the ocean surface with a view to extending existing aerosol models to incorporate near-surface effects; (3) to assess marine boundary layer effects on thermal imaging systems. Aerosol and meteorological instruments, as well as thermal imagers and calibrated targets, were used at several platforms and locations. Measurements have been made of atmospheric turbulence and refractivity effects at wavelengths in the IR and visible, to assess the marine boundary layer effects on the degradation of thermal images. Calibrated targets at different altitudes were observed to the maximum observable range under a wide variety of conditions in both the 3--5 and 8--12 gm bands, These data will be used for the development and validation of IRST models and IR ship signature models with the view of determining the effects of marine-generated aerosols, turbulence and meteorological profiles on their performance.
Determination of Thermal Spray Coating Property with Curvature Measurements
NASA Astrophysics Data System (ADS)
Dwivedi, Gopal; Nakamura, Toshio; Sampath, Sanjay
2013-12-01
Real-time curvature measurement of a coating-substrate system during deposition has facilitated the monitoring of coating stresses and provided additional insights into thermal spray deposition mechanisms. However, the non-equilibrium state of coating formation along with harsh spray booth environment introduces complexity not only in data interpretation but also in the coating properties estimation. In this paper, a new procedure is proposed to estimate the elastic modulus of thermal sprayed ceramic coatings using in situ curvature and temperature measurements. In order to correlate the measurable parameters to coating elastic modulus, a systematic study is conducted to develop a suitable methodology. First, various finite element model analyses are carried out to formulate suitable relations between the measurements and elastic modulus. Subsequently, experiments are conducted to validate the procedure to estimate coating moduli. The results are compared with more accurate measurements obtained from post-deposition characterization technique under low temperature thermal cycles. The comparison suggests that the moduli estimated using the proposed procedure are in good agreements with those obtained from the post-deposition technique. Further, the nonlinear response of coatings are evaluated from the estimated moduli during deposition and cool down, which offer additional information on the characteristics of thermal spray coatings.
Accelerating molecular property calculations with nonorthonormal Krylov space methods.
Furche, Filipp; Krull, Brandon T; Nguyen, Brian D; Kwon, Jake
2016-05-01
We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved. PMID:27155623
Accelerating molecular property calculations with nonorthonormal Krylov space methods
NASA Astrophysics Data System (ADS)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake
2016-05-01
We formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remain small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.
Woon, D.E.; Dunning, T.H. Jr. )
1994-02-15
An accurate description of the electrical properties of atoms and molecules is critical for quantitative predictions of the nonlinear properties of molecules and of long-range atomic and molecular interactions between both neutral and charged species. We report a systematic study of the basis sets required to obtain accurate correlated values for the static dipole ([alpha][sub 1]), quadrupole ([alpha][sub 2]), and octopole ([alpha][sub 3]) polarizabilities and the hyperpolarizability ([gamma]) of the rare gas atoms He, Ne, and Ar. Several methods of correlation treatment were examined, including various orders of Moller--Plesset perturbation theory (MP2, MP3, MP4), coupled-cluster theory with and without perturbative treatment of triple excitations [CCSD, CCSD(T)], and singles and doubles configuration interaction (CISD). All of the basis sets considered here were constructed by adding even-tempered sets of diffuse functions to the correlation consistent basis sets of Dunning and co-workers. With multiply-augmented sets we find that the electrical properties of the rare gas atoms converge smoothly to values that are in excellent agreement with the available experimental data and/or previously computed results. As a further test of the basis sets presented here, the dipole polarizabilities of the F[sup [minus
Bandriyana, B.; Utaja
2010-06-22
Thermal stratification introduces thermal shock effect which results in local stress and fatigue problems that must be considered in the design of nuclear power plant components. Local stress and fatigue calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343 deg. C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.
NASA Astrophysics Data System (ADS)
Bandriyana, B.; Utaja
2010-06-01
Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.
Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra
2015-01-01
This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695
Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra
2015-01-01
Summary This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695
Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Xie, Han; Hu, Ming; Bao, Hua; Yue, Shengying; Qin, Guangzhao; Su, Gang
2014-02-01
Silicene, the silicon-based counterpart of graphene with a two-dimensional honeycomb lattice, has attracted tremendous interest both theoretically and experimentally due to its significant potential industrial applications. From the aspect of theoretical study, the widely used classical molecular dynamics simulation is an appropriate way to investigate the transport phenomena and mechanisms in nanostructures such as silicene. Unfortunately, no available interatomic potential can precisely characterize the unique features of silicene. Here, we optimized the Stillinger-Weber potential parameters specifically for a single-layer Si sheet, which can accurately reproduce the low buckling structure of silicene and the full phonon dispersion curves obtained from ab initio calculations. By performing equilibrium and nonequilibrium molecular dynamics simulations and anharmonic lattice dynamics calculations with the new potential, we reveal that the three methods consistently yield an extremely low thermal conductivity of silicene and a short phonon mean-free path, suggesting silicene as a potential candidate for high-efficiency thermoelectric materials. Moreover, by qualifying the relative contributions of lattice vibrations in different directions, we found that the longitudinal phonon modes dominate the thermal transport in silicene, which is fundamentally different from graphene, despite the similarity of their two-dimensional honeycomb lattices.
Properties of Silicate Melts at High Pressure and Temperature from Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Seclaman, A. C.; Caracas, R.
2014-12-01
The evolution of planetary interiors is intrinsically connected to the behavior and properties of silicate melts at high pressures and temperatures. Our work comes as a complement to existing data expanding the pressure, temperature, and compositional ranges. We used the V.A.S.P. code to perform NVT Molecular Dynamics simulations on two basic compositions: Mg2SiO4 and MgSiO3. All calculations are done within augmented planar wave formalism of the Density Functional Theory. Supercells of 160 atoms clino-enstatite and 112 atoms forsterite were melted at 5000K and then cooled and thermalized, using the Nose-Hoover thermostat, at temperatures more representative of Earth's interior (3000 and 4000K). The pressure range of our investigations spans from 0 to approximately 160GPa. Since important properties, density and magnetism, are dependent on the presence of iron we also created (Fex-1,Mgx)SiO3 and (Fex-1,Mgx)2SiO4melts from the thermalized pure compositions by replacing the desired amount of magnesium atoms with iron. Because other transitional elements present similar behavior as iron, and nickel is an important element in the core, compositions containing different amounts of nickel were also created by adding extra Ni atoms in the system. We analyze in detail the behavior with pressure of the density, clustering and coordination, total magnetization, and thermodynamical parameters of the melts. Our results indicate that changes in the structure and magnetic moment of the Forsterite melt begin at relatively low pressure. As an application of our data to the Earth's present deep interior we analyzed in great detail various possible mixtures of Fe bearing melt and solid mantle in an attempt to fit the density estimated for the Ultra Low Velocity Zones.
Rhea and Dione: Variations in Surface Thermal Properties
NASA Astrophysics Data System (ADS)
Howett, Carly; Spencer, J.; Anne, V.
2013-10-01
Thermal inertia variations have been observed on icy satellite surfaces throughout the Saturnian system, resulting in night and daytime temperature variations across the satellites. The most notable are the two ‘Pac-Man’ anomalies on Mimas and Tethys (Howett et al., 2011, 2012): distinct regions of high thermal inertia at low latitudes on the leading hemisphere of both satellites, resulting in warmer nighttime and cooler daytime temperatures (by ~15 K) than their surroundings. High-energy electrons are the likely cause of this surface alteration, which preferentially bombard low latitudes of the leading hemisphere of Mimas and Tethys, effectively gluing the grains together and thus increasing their thermal inertia. Cassini’s CIRS (Composite Infrared Spectrometer) has returned a plethora of night- and day-time data for both Dione and Rhea. Using these data, with the same analysis techniques that discovered the ‘Pac-Men’, the spatial variations in thermophysical properties across Rhea and Dione have been mapped. The results are intriguing: for the first time we see a decrease in the thermal inertia across Rhea’s Inktomi crater ejecta blanket and hints at a high thermal inertia region at low latitudes on Dione’s leading hemisphere. If Dione’s high thermal inertia region is formed by the same mechanism as the ‘Pac-Men’ on Mimas and Tethys (and nothing similar is observed on Rhea), then this sets an important bound in the electron energy able to produce this type of surface alteration. Rhea’s Inktomi crater (14 S/112 W, diameter 48 km) is a bright young ray crater. A similar crater (i.e. young, morphologically fresh) exists on Dione: Creusa (49 N/76 W, diameter 40 km). Preliminary results show that no significant change in the thermal inertia is observed over Creusa. Why should thermal inertia vary over Inktomi, but not Creusa? Rhea and Dione’s subsurface may be different enough to explain this inconsistency (Schenk et al., 2011), or maybe the
Optical Property Evaluation of Next Generation Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.
2010-01-01
Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.
NASA Astrophysics Data System (ADS)
Ozolins, Vidvuds; Xia, Yi; Nielson, Weston; Zhou, Fei
2015-03-01
Earth-abundant minerals such as tetrahedrite Cu12Sb4S13 have recently received attention as promising thermoelectrics due to a combination of a relatively high figure of merit (ZT > 1 at T = 700 K in tetrahedrite), good mechanical properties and inexpensive bulk processing methods. Like many large unit-cell thermoelectrics, these compounds often have complex chemical formulas with very large unit cells that pose challenges to our ability to study their lattice dynamical properties theoretically. Here we show that a recently introduced approach, compressive sensing lattice dynamics (CSLD) [F. Zhou et al., Phys. Rev. Lett. 113, 185501 (2014)] provides an accurate and computationally efficient platform for investigating anharmonic lattice dynamics in complex materials. We will discuss the basic ideas and illustrate the performance of CSLD for the lattice thermal conductivity κL of tetrahedrite, collusite, pyrite, and other earth-abundant mineral compounds.
Residual stresses calculation in autofrettage using variable material properties method
Jahed, H.; Dubey, R.N.
1996-12-01
Autofrettaged cylinders are used for variety of applications in chemical and nuclear industries where large internal pressures have to be withstood. Autofrettage is in the process by which beneficial residual stresses are introduced into thick-walled tubes by initially subjected the tube to high internal pressure which causes inelastic deformation. Here, the variable material properties method is employed to obtain elastic-plastic analysis of an autofrettaged tube. This method develops inelastic solution from the elastic solution by treating the material properties as field variables. The distribution of these parameters are obtained in an iterative manner as a part of the solution. An energy based scheme is used to update these variables. The residual stress field of autofrettaged tubes based on the actual material curve and isotropic and kinematic hardening models are obtained. The results are shown to be in good agreement with the published experimental and finite element results.
Ab-Initio Calculations of the Electronic Properties of Boron Nitride
NASA Astrophysics Data System (ADS)
Stewart, Anthony; Khamala, Bethuel; Hart, Daniel; Bagayoko, Diola
2014-03-01
The potential of Boron Nitride (BN) in nanotechnology is tremendous. BN in its bulk form has a wide band gap with excellent thermal and chemical stability. BN structures can be tailored using various techniques in order to obtain desired materials properties. The State-of-the-art Proton Exchange Membrane Fuel Cell (PEMFCs) technology exploits graphitized carbon as a support for platinum-type catalysts. However, some forms of carbon are susceptible to long-term durability issues such as corrosion which is a detriment to fuel cell performance and viability. Novel non-carbon supports such as BN may provide a pathway for addressing the durability and performance issues associated with carbon support materials. We present preliminary theoretical studies, using an linear combination of atomic orbital (LCAO) quantum chemistry package from Ames Laboratory, of the electronic properties of this potentially important material. Our calculated band gap of 6.48 eV for the cubic structure, obtained with an LDA potential and the BZW-EF method, is in agreement with experiment. LASIGMA/ NNSA_MSIP.
The electronic, magnetic and thermal properties of actinide monocarbides: A first principles study
NASA Astrophysics Data System (ADS)
Soni, Pooja; Pagare, Gitanjali; Rajagopalan, M.; Sanyal, Sankar P.
2012-06-01
A theoretical study on structural, electronic, magnetic and thermal properties of actinide monocarbides AnCs (An= Np and Cm), which crystallize in NaCl-type structure, has been performed using self consistent tight binding linear muffin tin orbital (TB-LMTO) method at ambient as well as at high pressure. Both non-spin and spin polarized calculations have been performed to check the magnetic stability. We observe that both the compounds are metallic in nature and ferro-magnetically stable at ambient pressure. The calculated ground state properties such as lattice constants and bulk modulus are compared with the available results. The Debye temperature is also estimated for the first time.
Thermodynamic simulation of the elastic and thermal properties of cobalt monosilicide
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Filanovich, A. N.; Nogovitsyna, T. A.
2016-06-01
A self-consistent thermodynamic model is used to calculate the temperature dependences of the heat capacity, the thermal expansion coefficient, the bulk compression modulus, the density, Debye temperature, and the Grüneisen parameter of CoSi in the temperature range 0-1400 K. The calculation results agree well with the existing experimental data and can be used to predict the properties of CoSi in the temperature range that has not been experimentally studied. Cobalt monosilicide is shown to have a significant phonon anharmonicity, which can be caused by an electron-phonon interaction, and this anharmonicity should be taken into account in the simulation of its thermoelectric properties.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; Kwon, Jake
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Properties And Coefficient Program For The Calculation Of Thermodynamic Data (PAC2)
NASA Technical Reports Server (NTRS)
Mcbride, B. J.
1989-01-01
Program calculates ideal gas thermodynamic properties for any species for which molecular constant data available, and offers user choice of methodologies for performing thermodynamic calculations. PAC2 updated to PAC4. Improvements include increased user friendliness and ability to extrapolate thermodynamic properties for gases to higher temperatures using Wilhoit's formulas.
NASA Astrophysics Data System (ADS)
Greenstein, Abraham; Hudiono, Yeny; Graham, Samuel; Nair, Sankar
2010-03-01
We present a systematic study to investigate the effects of nonframework cations and the role of phonon scattering mechanisms on the thermal transport properties of zeolite LTA, via experiment and semiempirical lattice dynamics calculations. Our study is motivated by the increasing interest in accurate measurements and mechanistic understanding of the thermal transport properties of zeolite materials. The presence of a nanostructured pore network, extra-framework cations, and tunable framework structure and composition confer interesting thermophysical properties to these materials, making them a good model system to investigate thermal transport in complex materials. Continuous films of zeolite LTA with different nonframework cations (Na+, K+, and Ca+2) were synthesized and characterized. The thermal conductivity was measured using the three-omega method over a wide range of temperature (150-450 K). These are the first thermal conductivity measurements performed on bulk LTA, so they are more accurate than previous measurements, which involved the use of compacted zeolite powders. Our data showed significant dependence of the thermal conductivity on the extra-framework cations as well the temperature. The thermal conductivities of the zeolite LTA samples were modeled with the relaxation time approximation to the Boltzmann transport equation. The full phonon spectra for each type of LTA zeolite were calculated and used in conjunction with semiempirical relaxation time expressions to calculate the thermal conductivity. The results both validated, and suggested the limitations of, this modeling approach. Optical phonons dominated the thermal conductivity and boundarylike scattering was found to be the strongest phonon scattering mechanism, as also observed in MFI zeolite.
Size effects on mechanical and thermal properties of thin films
NASA Astrophysics Data System (ADS)
Alam, Md Tarekul
Materials, from electronic to structural, exhibit properties that are sensitive to their composition and internal microstructures such as grain and precipitate sizes, crystalline phases, defects and dopants. Therefore, the research trend has been to obtain fundamental understanding in processing-structure-properties to develop new materials or new functionalities for engineering applications. The advent of nanotechnology has opened a new dimension to this research area because when material size is reduced to nanoscale, properties change significantly from the bulk values. This phenomenon expands the problem to 'size-processing-structure-propertiesfunctionalities'. The reinvigorated research for the last few decades has established size dependency of the material properties such as thermal conductivity, Young's modulus and yield strength, electrical resistivity, photo-conductance etc. It is generally accepted that classical physical laws can be used to scale down the properties up to 25-50 nm length-scale, below which their significant deviation or even breakdown occur. This dissertation probes the size effect from a different perspective by asking the question, if nanoscale size influences one physical domain, why it would not influence the coupling between two or more domains? Or in other words, if both mechanical and thermal properties are different at the nanoscale, can mechanical strain influence thermal conductivity? The hypothesis of size induced multi-domain coupling is therefore the foundation of this dissertation. It is catalyzed by the only few computational studies available in the literature while experimental validations have been non-existent owing to experimental challenges. The objective of this research is to validate this hypothesis, which will open a novel avenue to tune properties and functionalities of materials with the size induced multi-domain coupling. Single domain characterization itself is difficult at the nanoscale due to specimen
NASA Technical Reports Server (NTRS)
Svehla, R. A.; Mcbride, B. J.
1973-01-01
A FORTRAN IV computer program for the calculation of the thermodynamic and transport properties of complex mixtures is described. The program has the capability of performing calculations such as:(1) chemical equilibrium for assigned thermodynamic states, (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. Condensed species, as well as gaseous species, are considered in the thermodynamic calculation; but only the gaseous species are considered in the transport calculations.
Exploiting the Properties of Aquaporin to Calculate Free Energy
NASA Astrophysics Data System (ADS)
Espejel, Hugo; Chen, Liao
2010-03-01
Aquaporins' (AQPs) main purpose is to facilitate the transfer of water molecules through a molecular membrane. We can calculate the free energy of the AQP system when water permeates through it. This is performed using the Visual Molecular Dynamics (VMD) and the Nanoscale Molecular Dynamics (NAMD) programs. In our first set of experiments, AQP is submerged in a body of water, in which case a water molecule near AQP is pulled through the protein. The data is then used to calculate the free energy using two different equations: the Jarzynski equality and the fluctuation-dissipation theorem. The values from both equations are then compared to examine their accuracy. The second set of experiments has the same set up, but now AQP is embedded in a lipid bilayer. We found that both equations give values that are much smaller than kT. This verifies that AQP is a channel for water molecules because the pulling of water gives constant values of free energy. We also found that the water molecules' negative poles were all pointing towards the center of the AQP channel. This means that the process of proton transport in AQP is overwhelmingly difficult.
Classic calculations of static properties of nucleons reexamined
NASA Astrophysics Data System (ADS)
Nasrallah, N. F.
2016-03-01
Classic calculations of the magnetic moments μp and μn of the nucleons using the traditional exponential kernel show instability with respect to variations of the Borel mass as well as arbitrariness with respect to the choice of the onset of perturbative QCD. The use of a polynomial kernel, the coefficients of which are determined by the masses of the nucleon resonances stabilizes the calculation and provides much better damping of the unknown contribution of the nucleon continuum. The method is also applied to the evaluation of the coupling gA of proton to the axial current and to the strong part of the neutron-proton mass difference δ Mn p . All these quantities depend sensitively on the value of the 4-quark condensate <0 ∣q ¯q q ¯q ∣0 > , and the value <0 ∣q ¯q q ¯q ∣0 > ≃1.6 <0∣q ¯q ∣0 > 2 reproduces the experimental results.
Spectrophotometric Properties of Thermally Anomalous Terrain on Mimas
NASA Astrophysics Data System (ADS)
Verbiscer, Anne J.; Helfenstein, Paul; Howett, Carly; Annex, Andrew; Schenk, Paul
2014-11-01
Cassini’s Composite InfraRed Spectrometer (CIRS) maps of thermal emission from Mimas reveal a V-shaped boundary, centered at 0° N and 180° W, which divides relatively warm daytime temperatures from an anomalously cooler region at low to mid-latitudes on the moon’s leading hemisphere (Howett et al. 2011, Icarus 216, 221-226). This cooler region is also warmer at night, indicating that it has high thermal inertia, and also coincides in shape and location with that of high-energy electron deposition from Saturn’s magnetosphere (Roussos et al. 2007, JGRA 112, A06214; Schenk et al. 2011, Icarus 211, 740-757). Global IR/UV color ratio maps assembled from Cassini Imaging Science Subsystem (ISS) images show a lens-shaped region of relatively blue terrain also centered on Mimas’ leading hemisphere (Schenk et al. 2011), coinciding in shape and location with the region of high thermal inertia. We present results of our analysis of Cassini ISS CL1 UV3 and IR3 filter (centered at 338 and 930 nm, respectively) images using the Hapke (2008, Icarus 195, 918-926) photometric model. We investigate whether the photometric properties of surface particles are consistent with the conclusion by Howett et al. (2011) that their high thermal inertia is produced by sintering processes due to bombardment by high energy electrons. The non-thermally anomalous surface on Mimas' trailing hemisphere exhibits a strong opposition effect, consistent with the presence of a more complex microtexture due to preferential bombardment by E ring particles. This work is supported by the NASA Cassini Data Analysis and Participating Scientists Program.
The thermal infrared radiance properties of dust aerosol over ocean
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu
2015-10-01
Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.
Rheological and thermal properties of polylactide/silicate nanocomposites films.
Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal
2010-03-01
Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications. PMID:20492249
Lenormand, R.; Thiele, M.R.
1997-08-01
The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-01-01
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438
NASA Astrophysics Data System (ADS)
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-02-01
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.
Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard
2016-01-01
Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy(3+) and Y(3+)on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke's model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases. PMID:26888438
Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.
Mechanical properties testing and results for thermal barrier coatings
NASA Astrophysics Data System (ADS)
Cruse, T. A.; Johnsen, B. P.; Nagy, A.
1997-03-01
Mechanical test data for thermal barrier coatings, including modulus, static strength, and fatigue strength data, are reviewed in support of the development of durability models for heat engine applica-tions. The materials include 7 and 8 wt % yttria partially stabilized zirconia (PSZ) as well as a cermet ma-terial (PSZ +10 wt % NiCoCrAlY). Both air plasma sprayed and electron beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
Thermal-hydraulic calculations for the conversion to LEU of a research reactor core
Grigoriadis, D.; Varvayanni, M.; Catsaros, N.; Stakakis, E.
2008-07-15
The thermal-hydraulic analysis performed for the needs of the conversion of the open pool 5MW Greek Research Reactor (GRR-1) to a pure Low Enrichment (LEU) configuration is presented. The methodology was based on a complete set of neutronic calculations performed for the new core configuration, in compliance with pre-defined Operation Limiting Conditions. The hottest channel analysis approach was adopted, and peaking factors were used to account for fabrication or measuring uncertainties. Calculations were carried out using the numerical codes NATCON, PLTEMP and PARET provided by Argonne National Laboratory (ANL). Two main different classes of conditions were considered, namely i) steady state normal operating conditions and ii) transient cases related to accidental events including reactivity feedback effects. For steady state operating conditions the behaviour of the new configuration was examined both for forced and natural convection cooling modes. Transient calculations considered several initiating events including reactivity insertion accidents (slow or fast reactivity insertion) and total or partial loss-of-flow accidents, i.e. in accordance to guidelines provided by the IAEA for research Reactors. (author)
NASA Astrophysics Data System (ADS)
Sinka, M.; Sahmenko, G.; Korjakins, A.; Radina, L.; Bajare, D.
2015-11-01
One of the main challenges that construction industry faces today is how to address the demands for more sustainable, environmentally friendly and carbon neutral construction materials and building upkeep processes. One of the answers to these demands is lime-hemp concrete (LHC) building materials - carbon negative materials that have sufficient thermal insulation capabilities to be used as thermal insulation materials for new as well as for existing buildings. But one problem needs to be overcome before these materials can be used on a large scale - current manufacturing technology allows these materials to be used only as self-bearing thermal insulation material with large labour intensity in the manufacturing process. In order to lower the labour intensity and allow the material to be used in wider applications, a LHC block and board production is necessary, which in turn calls for the binders different from the classically used ones, as they show insufficient mechanical strength for this new use. The particular study focuses on alternative binders produced using gypsum-cement compositions ensuring they are usable in outdoor applications together with hemp shives. Physical, mechanical, thermal and water absorption properties of hemp concrete with various binders are addressed in the current study.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir F.
2016-09-01
The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeen S.
1987-01-01
The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity.
Morphology and thermal properties of PLA-cellulose nanofibers composites.
Frone, Adriana N; Berlioz, Sophie; Chailan, Jean-François; Panaitescu, Denis M
2013-01-01
Biodegradable nanocomposites were obtained from polylactic acid (PLA) and cellulose nanofibers with diameters ranging from 11 nm to 44 nm. The influence of treated (with 3-aminopropyltriethoxysilane) and untreated nanofibers on the thermal properties of PLA was investigated in detail using multiple session Differential Scanning Calorimetry (DSC) analysis. The nucleating effect of the cellulose nanofibers was confirmed by all the DSC runs (two melting and two crystallization steps). The morphology of both neat PLA and nanocomposites was explored for the first time using a new powerful AFM technique, Peak Force QNM (Quantitative Mechanical Property Mapping at the Nanoscale), which emphasized the nanolevel characteristics by elastic modulus mapping. QNM analyses showed a better dispersion of the silane treated nanofibers in the matrix as compared to the untreated ones. Moreover, a higher degree of crystallinity was detected in the PLA composites containing untreated nanofibers compared to the composites with treated ones. PMID:23044146
Aryl sulfoxide radical cations. Generation, spectral properties, and theoretical calculations.
Baciocchi, Enrico; Del Giacco, Tiziana; Gerini, Maria Francesca; Lanzalunga, Osvaldo
2006-08-17
Aromatic sulfoxide radical cations have been generated by pulse radiolysis and laser flash photolysis techniques. In water (pulse radiolysis) the radical cations showed an intense absorption band in the UV region (ca. 300 nm) and a broad less intense band in the visible region (from 500 to 1000 nm) whose position depends on the nature of the ring substituent. At very low pulse energy, the radical cations decayed by first-order kinetics, the decay rate increasing as the pH increases. It is suggested that the decay involves a nucleophilic attack of H(2)O or OH(-) (in basic solutions) to the positively charged sulfur atom to give the radical ArSO(OH)CH(3)(*). By sensitized [N-methylquinolinium tetrafluoborate (NMQ(+))] laser flash photolysis (LFP) the aromatic sulfoxide radical cations were generated in acetonitrile. In these experiments, however, only the band of the radical cation in the visible region could be observed, the UV band being covered by the UV absorption of NMQ(+). The lambda(max) values of the bands in the visible region resulted almost identical to those observed in water for the same radical cations. In the LFP experiments the sulfoxide radical cations decayed by second-order kinetics at a diffusion-controlled rate, and the decay is attributed to the back electron transfer between the radical cation and NMQ(*). DFT calculations were also carried out for a number of 4-X ring substituted (X = H, Me, Br, OMe, CN) aromatic sulfoxide radical cations (and their neutral parents). In all radical cations, the conformation with the S-O bond almost coplanar with the aromatic ring is the only one corresponding to the energy minimum. The maximum of energy corresponds to the conformation where the S-O bond is perpendicular to the aromatic ring. The rotational energy barriers are not very high, ranging from 3.9 to 6.9 kcal/mol. In all radical cations, the major fraction of charge and spin density is localized on the SOMe group. However, a substantial delocalization
Thermal, structural and mechanical properties of neutron irradiated Bayfol nuclear track detector
NASA Astrophysics Data System (ADS)
Nouh, S. A.; Mohamed, Amal; Bahammam, S.
2009-07-01
Samples from sheets of the polymeric material Bayfol have been exposed to neutrons of incident energy in the range 0.8-19.2 MeV. The resultant effect of neutron irradiation on the thermal properties of Bayfol has been investigated using thermo-gravimetric analysis. The onset temperature of decomposition and activation energy of thermal decomposition were calculated. The variation of transition temperatures with neutron energy has been determined using differential thermal analysis. The results indicate Bayfol thermograms characterized by the appearance of an endothermic peak due to melting. Melting temperature was found to be dependent on the neutron energy. Structural property studies using infrared spectroscopy were performed and results indicated that scission takes place at the carbonate site with the formation of a hydroxyl group. Mechanical properties were studied and it is shown that, at the fluence range 0-4.4 MeV, the standard chains and a great number of chain ends weaken and the material may become softer.
Thermal Properties of Structural Materials Found in Light Water Reactor Vessels
J. E. Daw; J. L. Rempe; D. L. Knudson
2009-11-01
High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce such uncertainties, new data for SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600, found in Light Water Reactor (LWR) vessels and penetrations, were acquired and tested using material property systems available at the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 oC. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these material differ significantly from measured values at high temperatures. This is especially true for SA533B1, as previous data do not account for the phase transformation of this material between 740 oC and 840 oC.
Wang Weizong; Rong Mingzhe; Yan, J. D.; Spencer, Joseph W.; Murphy, A. B.
2011-11-15
Calculated thermophysical properties of nitrogen plasmas in and out of thermal equilibrium are presented. The cut-off of the partition functions due to the lowering of the ionization potential has been taken into account, together with the contributions from different core excited electronic states. The species composition and thermodynamic properties are determined numerically using the Newton-Raphson iterative method, taking into account the corrections due to Coulomb interactions. The transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated using the most recent collision interaction potentials by adopting Devoto's electron and heavy particle decoupling approach, expanded to the third-order approximation (second-order for viscosity) in the framework of Chapman-Enskog method. Results are presented in the pressure range of 0.1 atm-10 atm and in electron temperature range from 300 to 40 000 K, with the ratio of electron temperature to heavy-particle temperature varied from 1 to 20. Results are compared with those from previous works, and the influences of different definitions of the Debye length are discussed.
New invariants of weighted graphs for calculating the critical properties of freons
NASA Astrophysics Data System (ADS)
Kruglyak, Yu. A.; Peredunova, I. V.
2015-12-01
A new approach to structure-property problems using new invariants of fully weighted graphs to provide a quantitative description of the critical properties of freons is proposed. A general principle for constructing topological invariants of fully weighted graphs for structure-property correlations is formulated. Two new invariants are proposed and used to calculate critical properties of freons of the methane, ethane, and propane series. It is shown that unlike all other known incremental methods, the proposed approach does not require the use of experimental data or calibrations to calculate critical properties. It ensures a statistically reliable linear dependence of all critical properties of freons on the value of the matching index for our corresponding molecular graph. Over 2.5 thousand previously unknown values of the critical properties of lower freons are calculated.
Non-contact imaging of thermal properties of the skin.
Togawa, T; Saito, H
1994-08-01
Non-contact measurement of thermal properties of the skin was performed by using a thermovision camera and a mechanical system that provides a step change in ambient radiation temperature. A hood maintained at 20 degrees C was initially placed so as to cover the object surface towards which a thermovision camera was directed. Then the hood was quickly replaced by another hood maintained at 40 degrees C. Thermograms before, immediately after and 20 s after switching the hoods were taken. Then the image of emissivity was computed from thermograms taken before and immediately after hood switching, and the emissivity-corrected thermograms were computed by using the emissivity value obtained at each pixel. The images of the square root of the product of thermal conductivity, density and specific heat were computed from thermograms taken immediately after and 20 s after hood switching. While images of the emissivity obtained and the thermal parameter defined above contained significant noise, differences in these quantities between sites could be clearly demonstrated. PMID:7994207
Thermal properties of liquid crystal hexylbenzoic acid/octyloxybenzoic acid mixture
NASA Astrophysics Data System (ADS)
Okumus, M.
2015-03-01
The thermal behaviors of binary mixture formed from hydrogen bonded nematic liquid crystals 4-hexylbenzoic acid and 4-(octyloxy)benzoic acid, were investigated by differential scanning calorimetry (DSC). The phase transition temperatures and enthalpies were determined by using calorimetric methods on DSC. The DSC results clearly indicate that the produced liquid crystal mixture displays liquid crystalline properties. The phase transition temperature values increase with increasing heating rate between 5 °C/min and 20 °C/min, and the calculated activation energy values show that the reaction arising during the phase transitions of the mixture is regular.
The thermal and electrical properties of the promising semiconductor MXene Hf2CO2.
Zha, Xian-Hu; Huang, Qing; He, Jian; He, Heming; Zhai, Junyi; Francisco, Joseph S; Du, Shiyu
2016-01-01
With the growing interest in low dimensional materials, MXenes have also attracted considerable attention recently. In this work, the thermal and electrical properties of oxygen-functionalized M2CO2 (M = Ti, Zr, Hf) MXenes are investigated using first-principles calculations. Hf2CO2 is determined to exhibit a thermal conductivity better than MoS2 and phosphorene. The room-temperature thermal conductivity along the armchair direction is determined to be 86.25~131.2 Wm(-1) K(-1) with a flake length of 5~100 μm. The room temperature thermal expansion coefficient of Hf2CO2 is 6.094 × 10(-6) K(-1), which is lower than that of most metals. Moreover, Hf2CO2 is determined to be a semiconductor with a band gap of 1.657 eV and to have high and anisotropic carrier mobility. At room temperature, the Hf2CO2 hole mobility in the armchair direction (in the zigzag direction) is determined to be as high as 13.5 × 10(3) cm(2)V(-1)s(-1) (17.6 × 10(3) cm(2)V(-1)s(-1)). Thus, broader utilization of Hf2CO2, such as the material for nanoelectronics, is likely. The corresponding thermal and electrical properties of Ti2CO2 and Zr2CO2 are also provided. Notably, Ti2CO2 presents relatively lower thermal conductivity but much higher carrier mobility than Hf2CO2. According to the present results, the design and application of MXene based devices are expected to be promising. PMID:27302597
The thermal and electrical properties of the promising semiconductor MXene Hf2CO2
Zha, Xian-Hu; Huang, Qing; He, Jian; He, Heming; Zhai, Junyi; Francisco, Joseph S.; Du, Shiyu
2016-01-01
With the growing interest in low dimensional materials, MXenes have also attracted considerable attention recently. In this work, the thermal and electrical properties of oxygen-functionalized M2CO2 (M = Ti, Zr, Hf) MXenes are investigated using first-principles calculations. Hf2CO2 is determined to exhibit a thermal conductivity better than MoS2 and phosphorene. The room-temperature thermal conductivity along the armchair direction is determined to be 86.25~131.2 Wm−1 K−1 with a flake length of 5~100 μm. The room temperature thermal expansion coefficient of Hf2CO2 is 6.094 × 10−6 K−1, which is lower than that of most metals. Moreover, Hf2CO2 is determined to be a semiconductor with a band gap of 1.657 eV and to have high and anisotropic carrier mobility. At room temperature, the Hf2CO2 hole mobility in the armchair direction (in the zigzag direction) is determined to be as high as 13.5 × 103 cm2V−1s−1 (17.6 × 103 cm2V−1s−1). Thus, broader utilization of Hf2CO2, such as the material for nanoelectronics, is likely. The corresponding thermal and electrical properties of Ti2CO2 and Zr2CO2 are also provided. Notably, Ti2CO2 presents relatively lower thermal conductivity but much higher carrier mobility than Hf2CO2. According to the present results, the design and application of MXene based devices are expected to be promising. PMID:27302597
The thermal and electrical properties of the promising semiconductor MXene Hf2CO2
NASA Astrophysics Data System (ADS)
Zha, Xian-Hu; Huang, Qing; He, Jian; He, Heming; Zhai, Junyi; Francisco, Joseph S.; Du, Shiyu
2016-06-01
With the growing interest in low dimensional materials, MXenes have also attracted considerable attention recently. In this work, the thermal and electrical properties of oxygen-functionalized M2CO2 (M = Ti, Zr, Hf) MXenes are investigated using first-principles calculations. Hf2CO2 is determined to exhibit a thermal conductivity better than MoS2 and phosphorene. The room-temperature thermal conductivity along the armchair direction is determined to be 86.25~131.2 Wm‑1 K‑1 with a flake length of 5~100 μm. The room temperature thermal expansion coefficient of Hf2CO2 is 6.094 × 10‑6 K‑1, which is lower than that of most metals. Moreover, Hf2CO2 is determined to be a semiconductor with a band gap of 1.657 eV and to have high and anisotropic carrier mobility. At room temperature, the Hf2CO2 hole mobility in the armchair direction (in the zigzag direction) is determined to be as high as 13.5 × 103 cm2V‑1s‑1 (17.6 × 103 cm2V‑1s‑1). Thus, broader utilization of Hf2CO2, such as the material for nanoelectronics, is likely. The corresponding thermal and electrical properties of Ti2CO2 and Zr2CO2 are also provided. Notably, Ti2CO2 presents relatively lower thermal conductivity but much higher carrier mobility than Hf2CO2. According to the present results, the design and application of MXene based devices are expected to be promising.
NASA Technical Reports Server (NTRS)
Svehla, R. A.; Mcbride, B. J.
1973-01-01
Program performs calculations such as chemical equilibrium for assigned thermodynamic states, theoretical rocket performance for both equilibrium and frozen compositions during expansion, incident and reflected shock properties, and Chapman-Jouget detonation properties. Features include simplicity of input and storage of all thermodynamic and transport property data on master tape.
Rudenko, V. V.
2010-12-15
The problem of laser deposition with allowance for thermal radiation transport inside and outside the laser torch is considered in a multigroup approximation. The energy fluxes of laser torch thermal radiation onto a target in the far and near zones are calculated as functions of time and the character of the exposure. It is shown that absorption of thermal fluxes in the substrate and target in the course of laser deposition results in their substantial heating. The possibility of diagnosing thermal radiation fluxes from the laser torch by using photodetectors is demonstrated.
NASA Astrophysics Data System (ADS)
Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.
2014-08-01
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
Theory and calculation of water distribution in bentonite in a thermal field
Carnahan, C.L.
1988-09-01
Highly compacted bentonite is under consideration for use as a buffer material in geological repositories for high-level radioactive wastes. To assess the suitability of bentonite for this use, it is necessary to be able to predict the rate and spatial extent of water uptake and water distribution in highly compacted bentonite in the presence of thermal gradients. The ''Buffer Mass Test'' (BMT) was conducted by workers in Sweden as part of the Stripa Project. The BMT measured uptake and spatial distributions of water infiltrating annuli of compacted MX-80 sodium bentonite heated from within and surrounded by granite rock; the measurements provided a body of data very valuable for comparison to results of theoretical calculations. Results of experiments on adsorption of water by highly compacted MX-80 bentonite have been reported by workers in Switzerland. The experiments included measurements of heats of immersion and adsorption-desorption isotherms. These measurements provide the basis for prediction of water vapor pressures in equilibrium with bentonite having specified adsorbed water contents at various temperatures. The present work offers a phenomenological description of the processes influencing movement of water in compacted bentonite in the presence of a variable thermal field. The theory is applied to the bentonite buffer-water system in an assumed steady state of heat and mass transport, using critical data derived from the experimental work done in Switzerland. Results of the theory are compared to distributions of absorbed water in buffers observed in the Swedish BMT experiments. 9 refs., 2 figs.
The thermal radiative properties of metals at high temperature
Self, S.A. . Dept. of Mechanical Engineering)
1990-01-01
A knowledge of the optical radiative properties of the surfaces of various metals at high temperatures, up to and above the melting point, is of considerable technical importance for a number of applications. These include smelting and casting, welding by TIG, E-beam and laser methods, and thermal and E-beam evaporative sources for thin film and composite deposition. The optical/radiative properties are important in modeling the energy balance in such applications. Accurate information is required on the surface absorptivity, reflectivity and emissivity as a function of wavelength, temperature and angle relative to the surface normal. These parameters are known to be sensitive functions of the state of the surface, including crystalline state and surface roughness for the solid phase, and the oxidation state of the surface for both solid and liquid metals. The principal thrust of this work is to obtain detailed and accurate data on the optical/radiative properties of pure aluminum and uranium at temperatures up through their melting points. However, it should be added that with the development of apparatus techniques and expertise completed, the facility will be available for optical/radiative property measurements on a variety of materials of interest to various programs at LLNL.
Thermal Properties of Unusual Local-Scale Features on Vesta
NASA Technical Reports Server (NTRS)
Capria, M.; DeSanctis, M.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; Sunshine, J. M.; Titus, T. N.; Mittlefehldt, D. W.; Li, J.; Russell, C. T.; Raymond, C. A.
2012-01-01
On Vesta, the thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. We used Dawn s Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta and pitted materials, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were reobserved by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low- Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. In this work we present temperature maps and emissivities of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Data from VIR's IR channel show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations, and not, for example, shadowing. During maximum daily insolation, dark features in the equatorial region may rise to temperatures greater than 270 K, while brightest features stop at roughly 258 K, local solar time being similar. However, pitted materials, showing relatively low reflectance, have significantly lower temperatures, as a result of differences in composition and/or structure (e.g, average grain size of the surface regolith, porosity, etc.). To complement this work, we provide preliminary values of thermal inertia for some bright and dark features.
Maienschein, J L; Wardell, J F; Weese, R K; Cunningham, B J; Tran, T D
2002-07-03
The violence of thermal explosions with energetic materials is affected by many material properties, including mechanical and thermal properties, thermal ignition kinetics, and deflagration behavior. These properties must be characterized for heated samples as well as pristine materials. We present available data for these properties for two HMX-based formulations--LX-04 and PBX-9501, and two RDX-based formulations--Composition B and PBXN-109. We draw upon separately published data on the thermal explosion violence with these materials to compare the material properties with the observed violence. We have the most extensive data on deflagration behavior of these four formulations, and we discuss the correlation of the deflagration data with the violence results. The data reported here may also be used to develop models for application in simulation codes such as ALE3D to calculate and Dredict thermal explosion violence.
NASA Astrophysics Data System (ADS)
Liu, X. K.; Tang, B.; Zhang, Y.
2013-10-01
The structural and thermodynamic properties of tetragonal-TiH2 under high temperatures and pressures are investigated by Ab initio calculations based on pseudo-potential plane-wave density functional theory method within using the generalized gradient approximation (GGA) and quasi-harmonic Debye model. Some ground state properties such as lattice constants, bulk modulus and elastic constants are good agreement with the available experimental results and other theoretical data. Through the quasiharmonic Debye model, in which the phononic effects are considered, the thermodynamic properties of tetragonal-TiH2 such as thermal expansion coefficient, Debye temperature, heat capacity and Grüneisen parameters dependence of temperature and pressure in the range of 0-1000 K and 0-10 GPa are also presented, respectively.
Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site
NASA Astrophysics Data System (ADS)
Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.
2016-06-01
As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (˜8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.
Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites
NASA Astrophysics Data System (ADS)
Saidina, D. S.; Mariatti, M.; Juliewatty, J.
2015-07-01
This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.
Statistical Properties of Thermal Noise Driving the Brownian Particles in Fluids
NASA Astrophysics Data System (ADS)
Tóthová, Jana; Lisý, Vladimír
2016-02-01
In several recent works high-resolution interferometric detection allowed to study the Brownian motion of optically trapped microparticles in air and fluids. The observed positional fluctuations of the particles are well described by the generalized Langevin equation with the Boussinesq-Basset "history force" instead of the Stokes friction, which is valid only for the steady motion. Recently, also the time correlation function of the thermal random force Fth driving the Brownian particles through collisions with the surrounding molecules has been measured. In the present contribution we propose a method to describe the statistical properties of Fth in incompressible fluids. Our calculations show that the time decay of the correlator
Chang, Dahu; Liu, Yaming; Rao, Fengfei; Wang, Fei; Sun, Qiang; Jia, Yu
2016-06-01
Weyl semimetal (WSM) is a new type of topological quantum material for future spintronic devices. Using the first-principles density functional theory, we systematically investigated the thermal expansion properties, and the temperature dependence of isovolume heat capacity and bulk modulus in WSMs MX (M = Nb, Ta; X = P, As). We also presented the phonon dispersion curves and its variation under stress in MX and the anisotropic thermal expansion properties due to the anisotropic crystal structure in WSMs have been predicted in our calculations. Intriguing, we found that the heat capacities increase more rapidly with increasing temperature in the low temperature region for all MX. Furthermore, our results showed that the thermal expansion properties are determined mainly by the isovolume heat capacity at low temperatures, while the bulk modulus has the major effect at high temperatures. These results are useful for applications of WSMs in electronic and spintronic devices. PMID:27174542
NASA Astrophysics Data System (ADS)
Howell, P. C.
2012-12-01
We compare the molecular dynamics Green-Kubo and direct methods for calculating thermal conductivity κ, using as a test case crystalline silicon at temperatures T in the range 500-1000 K (classical regime). We pay careful attention to the convergence with respect to simulation size and duration and to the procedures used to fit the simulation data. We show that in the Green-Kubo method the heat current autocorrelation function is characterized by three decay processes, of which the slowest lasts several tens of picoseconds so that convergence requires several tens of nanoseconds of data. Using the Stillinger-Weber potential we find excellent agreement between the two methods. We also use the direct method to calculate κ(T) for the Tersoff potential and find that the magnitude and the temperature-dependence are different for the two potentials and that neither potential agrees with experimental data. We argue that this implies that using the Stillinger-Weber or Tersoff potentials to predict trends in kappa as some system parameter is varied may yield results which are specific to the potential but not intrinsic to Si.
Howell, P C
2012-12-14
We compare the molecular dynamics Green-Kubo and direct methods for calculating thermal conductivity κ, using as a test case crystalline silicon at temperatures T in the range 500-1000 K (classical regime). We pay careful attention to the convergence with respect to simulation size and duration and to the procedures used to fit the simulation data. We show that in the Green-Kubo method the heat current autocorrelation function is characterized by three decay processes, of which the slowest lasts several tens of picoseconds so that convergence requires several tens of nanoseconds of data. Using the Stillinger-Weber potential we find excellent agreement between the two methods. We also use the direct method to calculate κ(T) for the Tersoff potential and find that the magnitude and the temperature-dependence are different for the two potentials and that neither potential agrees with experimental data. We argue that this implies that using the Stillinger-Weber or Tersoff potentials to predict trends in kappa as some system parameter is varied may yield results which are specific to the potential but not intrinsic to Si. PMID:23248991
A computer program for calculation of spectral radiative properties of gas mixtures
NASA Technical Reports Server (NTRS)
Nealy, J. E.
1975-01-01
A computer code is described whereby calculations of radiative properties of gas mixtures may be made. The program is arranged so that distinct radiative processes for each species are computed in individual subroutines. Provision is made for calculating radiative properties in nonequilibrium situations - separate rotational, vibrational, and electronic temperatures may be used. These features should provide a flexibility not currently available in such programs. The basic equations and the program listing in FORTRAN 4 language are presented. Sample calculations are given for high temperature air and carbon dioxide and are compared to calculations made with previously developed programs.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; Fahmey, M. A.; Hawash, M. A.; El-Habeeb, Abeer A.
2007-06-01
The buspirone drug is usually present as hydrochloride form of general formula C 21H 31N 5O 2·HCl, and of molecular weight (MW) = 421.96. It is an analgesic anxiolytic drug, which does not cause sedative or depression of central nervous system. In the present work it is investigated using electron impact mass spectral (EI-MS) fragmentation at 70 eV, in comparison with thermal analyses (TA) measurements (TG/DTG and DTA) and molecular orbital calculation (MOC). Semi-empirical MO calculation, PM3 procedure, has been carried out on buspirone both as neutral molecule (in TA) and the corresponding positively charged species (in MS). The calculated MOC parameters include bond length, bond order, particle charge distribution on different atoms and heats of formation. The fragmentation pathways of buspirone in EI-MS lead to the formation of important primary and secondary fragment ions. The mechanism of formation of some important daughter ions can be illuminated from comparing with that obtained using electrospray ESIMS/MS mode mass spectrometer through the accurate mass measurement determination. The losses of the intermediate aliphatic part (CH 2) 4 due to cleavage of N-C bond from both sides is the primary cleavage in both techniques (MS and TA). The PM3 provides a base for fine distinction among sites of initial bond cleavage and subsequent fragmentation of drug molecule in both TA and MS techniques; consequently the choice of the correct pathway of such fragmentation knowing this structural session of bonds can be used to decide the active sites of this drug responsible for its chemical, biological and medical reactivity.
Ab initio calculations of the vibrational and dielectric properties of PbSnTe alloys
NASA Astrophysics Data System (ADS)
Scolfaro, Luisa; Rezende Neto, A. R.; Leite Alves, H. W.; Petersen, J. E.; Myers, T. H.; Borges, P. D.
Thermoelectric devices have promise in dealing with the challenges of the growing demand for alternative clean energy and Te-based materials well-known candidates for them. Recently, we have shown that the high values for the dielectric constant, together with anharmonic LA-TO coupling, reduces the lattice thermal conductivity and enhances the electronic conductivity in PbTe. Also, it was shown that by alloying this material with Se, the electronic conductivity of the alloys is also enhanced. But, it is not clear if the same occurs when alloying with Sn. We show, in this work, our ab initio results for the vibrational and dielectric properties of Pb1-xSnxTe alloys. The calculations were carried out by using the Density Functional Theory, and the alloys were described by both the Virtual Crystal Approximation and Cluster Expansion Method. Our results show that the anharmonic LA-TO coupling enhances and reach its maximum for Sn concentration values of 0.75, corresponding to the maximum value for the dielectric constant, which is higher than that obtained for PbTe
Comparative Study of Defect Properties in GaN: Ab initio and Empirical Potential Calculations
Gao, Fei; Bylaska, Eric J.; El-Azab, Anter; Weber, William J.; LM Wang, R Fromknecht, LL Snead, DF Downey and H Takahashi
2004-04-05
Density functional theory (DFT) is used to study the formation, properties and atomic configurations of monovacancies, antisite defects and possible interstitials in GaN. The relaxation around a vacancy is generally small, but the relaxation around antisite defects is large, particularly for a Ga antisite defect, which is not stable and converts to an N-N<0001> split interstitial. All N interstitials, starting from any possible sites, eventually transfer into the N-N split interstitials, forming N molecules. In the case of Ga interstitials, the most favorable configuration is the Ga octahedral interstitial. However, it is found that the Ga-Ga<> split interstitial can bridge the gap between non-bonded Ga atoms along the <11-2> direction, which leads to the formation of Ga atomic wires in GaN, with bond distance close to those noted in bulk Ga. In addition, two representative potentials, namely Stillinger-Weber and Tersoff-Brenner potentials, have been employed to deter mine the formation of defects using molecular dynamics (MD) method in GaN. The MD results are discussed and compared to DFT calculations. The present DFT and MD results provide guidelines for evaluating the quality and fit of empirical potentials for large-scale simulations of ion-solid interaction and thermal annealing of defects in GaN.
Synthesis and thermal properties of strontium and calcium peroxides
NASA Technical Reports Server (NTRS)
Philipp, Warren H.; Kraft, Patricia A.
1989-01-01
A practical synthesis and a discussion of some chemical properties of pure strontium peroxide and calcium peroxide are presented. The general synthesis of these peroxides involves precipitation of their octahydrates by addition of H2O2 to aqueous ammoniacal Sr(NO3)2 or CaCl2. The octahydrates are converted to the anhydrous peroxides by various dehydration techniques. A new x-ray diffraction powder pattern for CaO2 x 8H2O is given from which lattice parameters a=6.212830 and c=11.0090 were calculated on the basis of the tetragonal crystal system.
Ab initio based thermal property predictions at a low cost: An error analysis
NASA Astrophysics Data System (ADS)
Lejaeghere, Kurt; Jaeken, Jan; Van Speybroeck, Veronique; Cottenier, Stefaan
2014-01-01
Ab initio calculations often do not straightforwardly yield the thermal properties of a material yet. It requires considerable computational efforts, for example, to predict the volumetric thermal expansion coefficient αV or the melting temperature Tm from first principles. An alternative is to use semiempirical approaches. They relate the experimental values to first-principles predictors via fits or approximative models. Before applying such methods, however, it is of paramount importance to be aware of the expected errors. We therefore quantify these errors at the density-functional theory level using the Perdew-Burke-Ernzerhof functional for several semiempirical approximations of αV and Tm, and compare them to the errors from fully ab initio methods, which are computationally more intensive. We base our conclusions on a benchmark set of 71 ground-state elemental crystals. For the thermal expansion coefficient, it appears that simple quasiharmonic theory, in combination with different approximations to the Grüneisen parameter, provides a similar overall accuracy as exhaustive first-principles phonon calculations. For the melting temperature, expensive ab initio molecular-dynamics simulations still outperform semiempirical methods.
Experimental study of the effect of shallow groundwater table on soil thermal properties
NASA Astrophysics Data System (ADS)
Jiang, Jianmei; Zhao, Lin; Zeng, Yijian; Zhai, Zhe
2016-03-01
In plains areas with semi-arid climates, shallow groundwater is one of the important factors affecting soil thermal properties. In this study, soil temperature and water content were measured when groundwater tables reached 10 cm, 30 cm, and 60 cm depths (Experiment I, II, and III) by using sensors embedded at depths of 5 cm, 10 cm, 20 cm, and 30 cm for 5 days. Soil thermal properties were analyzed based on the experimental data using the simplified de Vries model. Results show that soil water content and temperature have fluctuations that coincide with the 24 h diurnal cycle, and the amplitude of these fluctuations decreased with the increase in groundwater table depth. The amplitude of soil water content at 5 cm depth decreased from 0.025 m3·m-3 in Experiment II to 0.01 m3·m-3 in Experiment III. Moreover, it should be noted that the soil temperature in Experiment III gradually went up with the lowest value increasing from 26.0°C to 28.8°C. By contrast, the trends were not evident in Experiments I and II. Results indicate that shallow groundwater has a "cooling" effect on soil in the capillary zone. In addition, calculated values of thermal conductivity and heat capacity declined with the increasing depth of the groundwater table, which is consistent with experimental results. The thermal conductivity was stable at a value of 2.3W·cm-1·K-1 in Experiment I. The average values of thermal conductivity at different soil depths in Experiment II were 1.82W·cm-1·K-1, 2.15W·cm-1·K-1, and 2.21W·cm-1·K-1, which were always higher than that in Experiment III.
Room temperature mechanical properties of shuttle thermal protection system materials
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Rummler, D. R.
1980-01-01
Tests were conducted at room temperature to determine the mechanical properties and behavior of materials used for the thermal protection system of the space shuttle. The materials investigated include the LI-900 RSI tiles, the RTV-560 adhesive and the .41 cm (.16 thick) strain isolator pad (SIP). Tensile and compression cyclic loading tests were conducted on the SIP material and stress-strain curves obtained for various proof loads and load cyclic conditioning. Ultimate tensile and shear tests were conducted on the RSI, RTV, and SIP materials. The SIP material exhibits highly nonlinear stress-strain behavior, increased tangent modulus and ultimate tensile strength with increased loading rate, and large short time load relaxation and moderate creep behavior. Proof and cyclic load conditioning of the SIP results in permanent deformation of the material, hysteresis effects, and much higher tensile tangent modulus values at large strains.
Water retention curves and thermal insulating properties of Thermosand
NASA Astrophysics Data System (ADS)
Leibniz, Otto; Winkler, Gerfried; Birk, Steffen
2010-05-01
The heat loss and the efficiency of isolating material surrounding heat supply pipes are essential issues for the energy budget of heat supply pipe lines. Until now heat loss from the pipe is minimized by enlarging the polyurethane (PU) - insulation thickness around the pipe. As a new approach to minimize the heat loss a thermally insulating bedding material was developed and investigated. Conventional bedding sands cover all necessary soil mechanical properties, but have a high thermal conductivity from λ =1,5 to 1,7 W/(m K). A newly developed embedding material 'Thermosand' shows thermal properties from λ=0,18 W/(m K) (dry) up to 0,88 W/(m K) (wet). The raw material originates from the waste rock stockpiles of a coal mine near Fohnsdorf, Austria. With high temperatures up to nearly 1000 ° C and a special mineral mixture, a natural burned reddish material resembling clinker arises. The soilmechanical properties of Thermosand has been thoroughly investigated with laboratory testing and in situ investigations to determine compaction-, permeability- and shear-behaviour, stiffness and corresponding physical parameters. Test trenches along operational heat pipes with temperature-measurement along several cross-sections were constructed to compare conventional embedding materials with 'Thermosand'. To investigate the influence of varying moisture content on thermal conductivity a 1:1 large scale model test in the laboratory to simulate real insitu-conditions was established. Based on this model it is planned to develop numerical simulations concerning varying moisture contents and unsaturated soil mechanics with heat propagation, including the drying out of the soil during heat input. These simulations require the knowledge about the water retention properties of the material. Thus, water retention curves were measured using both steady-state tension and pressure techniques and the simplified evaporation method. The steady-state method employs a tension table (sand
NASA Astrophysics Data System (ADS)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.
2013-11-01
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Bento, A. C.; Santos, A. D.; Moraes, J. C. S.
2013-11-21
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)
Crystal structure, spectroscopic investigation and thermal properties of L-lysine p-toluenesulfonate
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, D. H.; Zhang, G. H.; Xu, D.; Deng, W. X.
2016-03-01
A novel organic crystal was prepared from L-lysine (Lly) and p-toluenesulfonic acid (pTS), which was grown from an aqueous solution by slow cooling method. The crystal system and the lattice parameters have been confirmed by single crystal X-ray diffraction studies. The FT-IR, FT-Raman, 1H-NMR and 13C-NMR spectral of the crystal have been recorded and analyzed. The spectral analyses confirmed the presence of various functional groups and the molecular configurations in LLTS crystal. The UV-Vis-NIR transmittance spectrum has been carried out which shows the cutoff wavelength around 280 nm. The thermal properties of crystal have been evaluated from thermogravimetric (TG) and differential thermal analysis (DTA). The melting point of grown crystal is fairly high, at around 259 °C. The nonlinear optical (NLO) properties of LLTS crystal were demonstrated by powder SHG experiment and also by quantum chemical calculations. The powder SHG efficiency of LLTS crystal is relatively low and very different from theoretical calculation results.
Optical-Fiber Thermal-Wave-Cavity Technique to Study Thermal Properties of Silver/Clay Nanofliuds
NASA Astrophysics Data System (ADS)
Noroozi, M.; Radiman, S.; Zakaria, A.; Shameli, K.; Deraman, M.; Soltaninejad, S.; Abedini, A.
2014-10-01
Thermal properties enhancement of nanofluids have varied strongly with synthesis technique, particle size and type, concentration and agglomeration with time. This study explores the possibility of changing the thermal wave signal of Ag/clay nanofluids into a thermal diffusivity measurement at well dispersion or aggregation of nanoparticles in the base fluid. Optical-Fiber Thermal-Wave-Cavity (OF-TWC) technique was achieved by using a small amount of nanofluid (only 0.2 mL) between fiber optic tip and the Pyroelectric detector and the cavity-length scan was performed. We established the accuracy and precision of this technique by comparing the thermal diffusivity of distilled water to values reported in the literature. Assuming a linear Pyroelectric signal response, the results show that adding clay reduced the thermal diffusivity of water, while increasing the Ag concentration from 1 to 5 wt.% increased the thermal diffusivity of the Ag nanofluid from 1.524×10-3 to 1.789×10-3 cm2/s. However, in particular, nanoparticles show the tendency to form aggregates over time that correlated with the performance change of thermal properties of nanofluid. Our results confirm the high sensitivity of OF-TWC technique raises the potential to be applied to measuring the optical and thermal properties of nanofluids. Furthermore, this technique allows the extraction of information not obtained using other traditional techniques.
NASA Astrophysics Data System (ADS)
Paul, Abhijeet
2011-07-01
The technological progress in dimensional scaling has not only kept Silicon CMOS industry on Moore's law for the past five decades but has also benefited many other areas such as thermoelectricity, photo-voltaics, and energy storage. Extending CMOS beyond Si (More Moore, MM) and adding functional diversity to CMOS (More Than Moore, MTM) requires a thorough understanding of the basic electron and heat flow in semiconductors. Along with experiments computer modeling and simulation are playing an increasingly vital role in exploring the numerous possibilities in materials, devices and systems. With these aspects in mind the present work applies computational physics modeling and simulations to explore the, (i) electronic, (ii) thermal, and (iii) thermoelectric properties in nano-scale semiconductors. The electronic structure of zinc-blende and lead-chalcogenide nano-materials is calculated using an atomistic Tight-Binding model. The phonon dispersion in zinc-blende materials is obtained using the Modified Valence Force Field model. Electronic and thermal transport at the nano-scale is explored using Green's function method and Landauer's method. Thermoelectric properties of semiconductor nanostructures are calculated using Landauer's method. Using computer modeling and simulations the variation of the three physical properties (i-iii) are explored with varying size, transport orientation, shape, porosity, strain and alloying of nanostructures. The key findings are, (a) III-Vs and Ge with optimized strain and orientation can improve transistors' and thermoelectric performance, (b) porous Si nanowires provide a lucrative idea for enhancing the thermoelectric efficiency at room temperature, and (c) Si/Ge superlattice nanowires can be used for nano-scale tuning of lattice thermal conductivity by period control. The present work led to the development of two new interface trap density extraction methods in ultra-scaled FinFETs and correlation of the phonon shifts in Si
Thermal Properties of Amorphous Selenium over the Glass- Transition Range
NASA Astrophysics Data System (ADS)
Ismail, Mukhtar Veliev
1997-02-01
In has been shown that the heat capacity (Cp), coefficients of heat conductivity, (l) and thermal expansion, (a), for the amorphous selenium are dependent on the temperature of the transition from glass-forming state into a high elasticity condition. On this transition these quantities are increased by ACp=3,47 kal/deg\\cdotmol, D l=0,32\\cdot 10-3 cal/sec\\cdot deg., da=0,79\\cdot 10-5 deg-1. These increments are due to the contribution by the increased concentration of holes. Contribution of holes in the glass-forming region was calculated using the formulae by Hirai and Eyring for 1 mol of "heads", which is equal to Cp=3,06 kal/deg\\cdotmol. The "hole" theory for liquids is used as a strating point in the calculation of the l and a. The obtained resuls are: l =0,28\\cdot 10-3 kal/cm\\cdotsec\\cdotdeg. a=0,73\\cdot 10-5 deg-1. These quantities for Cp, l and a are in satisfactory agreement with experimental data.
Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing
NASA Astrophysics Data System (ADS)
Chander, Subhash; Dhaka, M. S.
2015-09-01
This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.
Three-dimensional Monte Carlo calculation of atmospheric thermal heating rates
NASA Astrophysics Data System (ADS)
Klinger, Carolin; Mayer, Bernhard
2014-09-01
We present a fast Monte Carlo method for thermal heating and cooling rates in three-dimensional atmospheres. These heating/cooling rates are relevant particularly in broken cloud fields. We compare forward and backward photon tracing methods and present new variance reduction methods to speed up the calculations. For this application it turns out that backward tracing is in most cases superior to forward tracing. Since heating rates may be either calculated as the difference between emitted and absorbed power per volume or alternatively from the divergence of the net flux, both approaches have been tested. We found that the absorption/emission method is superior (with respect to computational time for a given uncertainty) if the optical thickness of the grid box under consideration is smaller than about 5 while the net flux divergence may be considerably faster for larger optical thickness. In particular, we describe the following three backward tracing methods: the first and most simple method (EMABS) is based on a random emission of photons in the grid box of interest and a simple backward tracing. Since only those photons which cross the grid box boundaries contribute to the heating rate, this approach behaves poorly for large optical thicknesses which are common in the thermal spectral range. For this reason, the second method (EMABS_OPT) uses a variance reduction technique to improve the distribution of the photons in a way that more photons are started close to the grid box edges and thus contribute to the result which reduces the uncertainty. The third method (DENET) uses the flux divergence approach where - in backward Monte Carlo - all photons contribute to the result, but in particular for small optical thickness the noise becomes large. The three methods have been implemented in MYSTIC (Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres). All methods are shown to agree within the photon noise with each other and with a
Huang, Zuocai; Zhang, Lei; Pan, Wei
2013-09-15
Pure zircon and scheelite LuVO{sub 4} were prepared by solid state reaction and high-pressure route, respectively. Structure, elastic constants, lattice dynamics and thermodynamics of LuVO{sub 4} polymorphs were studied by experiments and first principles calculation. Calculations here are in good agreement with the experimental results. The phonon dispersions of LuVO{sub 4} polymorphs were studied by the linear response method. The calculated phonon dispersions show that zircon and scheelite LuVO{sub 4} phases are dynamically stable. Raman-active frequencies were measured and assigned to different modes according to the calculations. The internal frequencies shift downward after phase transition from zircon to scheelite. Born effective charge tensors elements for both phases are analyzed. The finite temperature thermodynamic properties of LuVO{sub 4} polymorphs were calculated from the obtained phonon density of states by quasi-harmonic approach. - Graphical abstract: Lutetium orthovanadate polymorphs were synthesized by SSR and HP methods and their physical and chemical properties, including lattice dynamical properties, were determined by DFT calculations and experiments. Display Omitted - Highlights: • Pure zircon and scheelite LuVO{sub 4} polymorphs were synthesized by solid state reaction and high-pressure route. • Chemical and physical properties of LuVO4 polymorphs were studied by experiments and first principles calculation. • Raman-active frequencies were measured and assigned to different modes according to the calculations. • Lattice dynamics of polymorphs were discussed in details.
Calculation of long range forces and their applications in determining gaseous properties
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
A discussion of various theoretical and experimental techniques for the calculation of long range interaction between two atomic systems at moderate separation is presented. Some applications of these techniques for obtaining gaseous properties are described. The forces between neutral molecules and metallic surfaces are also discussed and numerical values of heats of adsorption for a number of systems are calculated.
cluster-lensing: Tools for calculating properties and weak lensing profiles of galaxy clusters
NASA Astrophysics Data System (ADS)
Ford, Jes
2016-05-01
The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.
Du, Jincheng; Devanathan, Ram; Corrales, L Rene; Weber, William J
2012-01-01
First principle periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal-mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The atomic charges determined using the Bader method show that bonding in reidite has a stronger covalent character.
Lock, Nina; Christensen, Mogens; Wu, Yue; Peterson, Vanessa K; Thomsen, Maja K; Piltz, Ross O; Ramirez-Cuesta, Anibal J; McIntyre, Garry J; Norén, Katarina; Kutteh, Ramzi; Kepert, Cameron J; Kearley, Gordon J; Iversen, Bo B
2013-02-14
Complementary experimental techniques and ab initio calculations were used to determine the origin and nature of negative thermal expansion (NTE) in the archetype metal-organic framework MOF-5 (Zn(4)O(1,4-benzenedicarboxylate)(3)). The organic linker was probed by inelastic neutron scattering under vacuum and at a gas pressure of 175 bar to distinguish between the pressure and temperature responses of the framework motions, and the local structure of the metal centers was studied by X-ray absorption spectroscopy. Multi-temperature powder- and single-crystal X-ray and neutron diffraction was used to characterize the polymeric nature of the sample and to quantify NTE over the large temperature range 4-400 K. Ab initio calculations complement the experimental data with detailed information on vibrational motions in the framework and their correlations. A uniform and comprehensive picture of NTE in MOF-5 has been drawn, and we provide direct evidence that the main contributor to NTE is translational transverse motion of the aromatic ring, which can be dampened by applying a gas pressure to the sample. The linker motion is highly correlated rather than local in nature. The relative energies of different framework vibrations populated in MOF-5 are suggested by analysis of neutron diffraction data. We note that the lowest-energy motion is a librational motion of the aromatic ring which does not contribute to NTE. The libration is followed by transverse motion of the linker and the carboxylate group. These motions result in unit-cell contraction with increasing temperature. PMID:23044752
Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias
2015-07-16
The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions. PMID:25853321
Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong
2011-10-01
Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5
Fluegel, Alex
2010-10-01
Thermal expansion data for more than 5500 compositions of silicate glasses were analyzed statistically. These data were gathered from the scientific literature, summarized in SciGlass© 6.5, a new version of the well known glass property database and information system. The analysis resulted in a data reduction from 5500 glasses to a core of 900, where the majority of the published values is located within commercial glass composition ranges and obtained over the temperature range 20 to 500°C. A multiple regression model for the linear thermal expansivity at 210°C, including error formula and detailed application limits, was developed based on those 900 core data from over 100 publications. The accuracy of the model predictions is improved about twice compared to previous work because systematic errors from certain laboratories were investigated and corrected. The standard model error (precision) was 0.37 ppm/K, with R² = 0.985. The 95% confidence interval for individual predictions largely depends on the glass composition of interest and the composition uncertainty. The model is valid for commercial silicate glasses containing Na2O, CaO, Al2O3, K2O, MgO, B2O3, Li2O, BaO, ZrO2, TiO2, ZnO, PbO, SrO, Fe2O3, CeO2, fining agents, and coloring and de-coloring components. In addition, a special model for ultra-low expansion glasses in the system SiO2-TiO2 is presented. The calculations allow optimizing the time-temperature cooling schedule of glassware, the development of glass sealing materials, and the design of specialty glass products that are exposed to varying temperatures.
Thermally induced changes in dynamic mechanical properties of native silks.
Guan, Juan; Porter, David; Vollrath, Fritz
2013-03-11
Dynamic mechanical thermal analysis (DMTA) on individual native silk fibers demonstrates changes in the dynamic mechanical properties of storage modulus and loss tangent as a function of temperature and temperature history ranging from -100 to 250 °C. These property changes are linked quantitatively to two main types of change in the silk structure. First, the evaporation of water with increasing temperature up to 100 °C increases the storage modulus and removes two characteristic loss tangent peaks at -60 and +60 °C. Second, various discrete loss tangent peaks in the range 150-220 °C are associated with specific disordered silk structures that are removed or converted to a limiting high-temperature relaxed structure by the combination of increasing temperature and static load in the DMTA tests. The results identify important origins of silk filament quality based on the analysis of measurements that can be traced back to differences in production and processing history. PMID:23405856
Thermal and magnetic properties of chitosan-iron oxide nanoparticles.
Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo
2016-09-20
Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762
Montmorillonite-levan nanocomposites with improved thermal and mechanical properties.
Chen, Xiaoming; Gao, Hongsheng; Ploehn, Harry J
2014-01-30
This work reports on the structure and properties of novel nanocomposites composed of exfoliated montmorillonite clay blended with levan, a polysaccharide produced by Bacillus sp. Dry levan is very brittle, making it difficult to obtain stand-alone films. MMT-levan composites were prepared by solution blending in water, coating on plastic surfaces, partial drying at 50°C, and conditioning in air at 50-60% relative humidity. This process results in freestanding, transparent, and flexible films of pure levan and MMT-levan composites plasticized by 10-15 wt% water. XRD patterns from levan-MMT composites indicate an MMT interlayer spacing 0.62 nm greater than that of the starting MMT, suggesting re-stacking of MMT platelets coated by adsorbed, uncoiled levan molecules. FTIR results suggest that levan adheres to MMT via water-mediated hydrogen bonding between the levan's hydroxyl groups and MMT surface oxygens. MMT-levan composites have improved thermal stability and a well-defined glass transition temperature that increases with MMT loading. The tensile moduli of levan-MMT composites increase by as much as 480% relative to pure levan. The XRD and mechanical property results suggest that MMT reinforces levan through a filler network structure composed of MMT platelets bridged by adsorbed levan molecules, enhanced when the MMT loading becomes high enough (5-10wt% MMT) to induce an isotropic-nematic transition in MMT platelet orientation. PMID:24299812
Magnetic colloid by PLA: Optical, magnetic and thermal transport properties
NASA Astrophysics Data System (ADS)
Pandey, B. K.; Shahi, A. K.; Gopal, Ram
2015-08-01
Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.
Structure and properties of electronic and hole centers in CsBr from theoretical calculations
Halliday, Matthew T.; Hess, Wayne P.; Shluger, Alexander L.
2015-06-24
The electronic structure, geometry, diffusion barriers and optical properties of fundamental defects of CsBr are calculated using hybrid functional DFT and TD- DFT methods. The B3LYP functional with a modified exchange contribution has been used in an embedded cluster scheme to model the structure and spectroscopic properties of self-trapped triplet exciton, interstitial Br atoms and ions, self-trapped holes and Br vacancies. The calculated migration barriers and positions of maxima of optical absorption bands are in good agreement with experiment, justifying the obtained defect geometries. The o*-center triplet exciton luminescence energy is also accurately calculated.