An Introductory Calculus-Based Mechanics Investigation
ERIC Educational Resources Information Center
Allen, Bradley
2017-01-01
One challenge for the introductory physics teacher is incorporating calculus techniques into the laboratory setting. It can be difficult to strike a balance between presenting an experimental task for which calculus is essential and making the mathematics accessible to learners who may be apprehensive about applying it. One-dimensional kinematics…
Deriving the Work Done by an Inverse Square Force in Non-Calculus-Based Introductory Physics Courses
ERIC Educational Resources Information Center
Hu, Ben Yu-Kuang
2012-01-01
I describe a method of evaluating the integral of 1/r[superscript 2] with respect to r that uses only algebra and the concept of area underneath a curve, and which does not formally employ any calculus. This is useful for algebra-based introductory physics classes (where the use of calculus is forbidden) to derive the work done by the force of one…
Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2009-05-01
Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
ERIC Educational Resources Information Center
Burko, Lior M.
2008-01-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…
The Development of Prerequisite Notions for an Introductory Conception of a Functional Limit
ERIC Educational Resources Information Center
Nagle, Courtney Rose
2012-01-01
The limit concept plays a foundational role in calculus, appearing in the definitions of the two main ideas of introductory calculus, derivatives and integrals. Previous research has focused on three stages of students' development of limit ideas: the premathematical stage, the introductory calculus stage, and the transition from introductory…
ERIC Educational Resources Information Center
Patel, Rita Manubhai; McCombs, Paul; Zollman, Alan
2014-01-01
Novice students have difficulty with the topic of limits in calculus. We believe this is in part because of the multiple perspectives and shifting metaphors available to solve items correctly. We investigated college calculus instructors' personal concepts of limits. Based upon previous research investigating introductory calculus student…
Reducing the failure rate in introductory physics classes
NASA Astrophysics Data System (ADS)
Saul, Jeff; Coulombe, Patrick; Lindell, Rebecca
2017-01-01
Calculus-based introductory physics courses are often among the most difficult at many colleges and universities. With the national movement to increase STEM majors, the introductory calculus-based courses need to be less of a weed-out course and more of a course that propels students forward into successful majors. This talk discusses two approaches to reduce DFW rates and improve student retention: studio courses and parachute courses. Studio courses integrate lecture/laboratory into one course where the primary mode of instruction is small group activities. Typically, any students enrolled in the college or university can enroll in a studio version of the course. Parachute courses on the other hand, focus on the poor performing students. Designed so that students not doing well in an introductory physics course can switch into the parachute class mid-semester without harm to their GPA. In addition, the parachute course focuses on helping students build the knowledge and skills necessary for success when retaking the calculus-based Physics course. The studio course format has been found to reduce DFW rates at several universities by 40-60% compared with separate lecture and laboratory format versions of the same courses, while parachutes courses were less successful. At one university, the parachute course succeeded in helping 80% of students maintain their GPA, but only helped 20% successfully pass the calculus-based physics course.
Transversality of electromagnetic waves in the calculus-based introductory physics course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2010-09-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.
Transitioning from Introductory Calculus to Formal Limit Conceptions
ERIC Educational Resources Information Center
Nagle, Courtney
2013-01-01
The limit concept is a fundamental mathematical notion both for its practical applications and its importance as a prerequisite for later calculus topics. Past research suggests that limit conceptualizations promoted in introductory calculus are far removed from the formal epsilon-delta definition of limit. In this article, I provide an overview…
Implementing and Assessing Computational Modeling in Introductory Mechanics
ERIC Educational Resources Information Center
Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.
2012-01-01
Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational…
Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format
ERIC Educational Resources Information Center
Yoder, Garett; Cook, Jerry
2014-01-01
The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…
Analyzing Conceptual Gains in Introductory Calculus with Interactively-Engaged Teaching Styles
ERIC Educational Resources Information Center
Thomas, Matthew
2013-01-01
This dissertation examines the relationship between an instructional style called Interactive-Engagement (IE) and gains on a measure of conceptual knowledge called the Calculus Concept Inventory (CCI). The data comes from two semesters of introductory calculus courses (Fall 2010 and Spring 2011), consisting of a total of 482 students from the…
Students' Difficulties with Integration in Electricity
ERIC Educational Resources Information Center
Nguyen, Dong-Hai; Rebello, N. Sanjay
2011-01-01
This study investigates the common difficulties that students in introductory physics experience when solving problems involving integration in the context of electricity. We conducted teaching-learning interviews with 15 students in a second-semester calculus-based introductory physics course on several problems involving integration. We found…
Preliminary Investigation of Instructor Effects on Gender Gap in Introductory Physics
ERIC Educational Resources Information Center
Kreutzer, Kimberley; Boudreaux, Andrew
2012-01-01
Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement…
Restructuring Introductory Physics by Adapting an Active Learning Studio Model
ERIC Educational Resources Information Center
Gatch, Delena
2010-01-01
Despite efforts to engage students in the traditional lecture environment, faculty in Georgia Southern University's Physics Department became dissatisfied with lecture as the primary means of instruction. During the fall semester of 2006, our department began adapting the studio model to suit the needs of introductory calculus-based physics…
Tale of Two Curricula: The Performance of 2000 Students in Introductory Electromagnetism
ERIC Educational Resources Information Center
Kohlmyer, Matthew A.; Caballero, Marcos D.; Catrambone, Richard; Chabay, Ruth W.; Ding, Lin; Haugan, Mark P.; Marr, M. Jackson; Sherwood, Bruce A.; Schatz, Michael F.
2009-01-01
The performance of over 2000 students in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I)…
Effect of Written Presentation on Performance in Introductory Physics
ERIC Educational Resources Information Center
Stewart, John; Ballard, Shawn
2010-01-01
This study examined the written work of students in the introductory calculus-based electricity and magnetism course at the University of Arkansas. The students' solutions to hourly exams were divided into a small set of countable features organized into three major categories, mathematics, language, and graphics. Each category was further divided…
ERIC Educational Resources Information Center
Rebello, Carina M.
2012-01-01
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…
Understanding Introductory Students' Application of Integrals in Physics from Multiple Perspectives
ERIC Educational Resources Information Center
Hu, Dehui
2013-01-01
Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that…
Modeling the Water Balloon Slingshot
NASA Astrophysics Data System (ADS)
Bousquet, Benjamin D.; Figura, Charles C.
2013-01-01
In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments, from non-science major classes to algebra-based and calculus-based introductory physics classes.
From "F = ma" to Flying Squirrels: Curricular Change in an Introductory Physics Course
ERIC Educational Resources Information Center
O'Shea, Brian; Terry, Laura; Benenson, Walter
2013-01-01
We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on…
Putting Differentials Back into Calculus
ERIC Educational Resources Information Center
Dray, Tevian; Manogue, Corrine A.
2010-01-01
We argue that the use of differentials in introductory calculus courses is useful and provides a unifying theme, leading to a coherent view of the calculus. Along the way, we meet several interpretations of differentials, some better than others.
ERIC Educational Resources Information Center
Poh, Wei Beng; Dindyal, Jaguthsing
2016-01-01
A history-infused lesson package developed by a team of teachers in a professional learning community was used to teach introductory calculus in a secondary school. First, we report a quasi-experimental design that showed that students in the experimental group performed significantly better than students in the control group. Second, we report on…
NASA Astrophysics Data System (ADS)
Evans, William R.; Selen, Mats A.
2017-12-01
Homework in introductory physics represents an important part of a student's learning experience; therefore, choosing the manner in which homework is presented merits investigation. We performed three rounds of clinical trials comparing the effects of mastery-style homework vs traditional-style homework with students in both algebra-based and calculus-based introductory mechanics. Results indicate a benefit from mastery-style over traditional-style homework, principally for weaker students who are less familiar with the material being covered and on questions that are nearer transfer to the study materials.
Unisex Math: Narrowing the Gender Gap.
ERIC Educational Resources Information Center
Tapia, Martha; Marsh, George E., II
This study examined gender differences in attitudes toward mathematics of undergraduate students. The Attitudes Toward Mathematics Instrument (ATMI) was administered to students enrolled in introductory mathematics classes (Pre-Calculus, Calculus, and Business Calculus) at two Southeast universities, one a large state university and the other one…
Promoting Metacognition in Introductory Calculus-based Physics Labs
NASA Astrophysics Data System (ADS)
Grennell, Drew; Boudreaux, Andrew
2010-10-01
In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.
Student Selection of the Textbook for an Introductory Physics Course
ERIC Educational Resources Information Center
Dake, L. S.
2007-01-01
Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods,1 which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this…
Calculus Demonstrations Using MATLAB
ERIC Educational Resources Information Center
Dunn, Peter K.; Harman, Chris
2002-01-01
The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…
Communicating physics and the design of textbooks
NASA Astrophysics Data System (ADS)
Barojas, J.; Trigueros, M.
1991-05-01
The cognitive domains of a communication scheme for learning physics are related to a framework based on epistemology, and the planning of an introductory calculus textbook in classical mechanics is shown as an example of application.
Student Achievement in College Calculus, Louisiana State University 1967-1968.
ERIC Educational Resources Information Center
Scannicchio, Thomas Henry
An investigation of freshmen achievement in an introductory calculus course was performed on the basis of high school mathematics background to find predictors of college calculus grades. Overall high school academic achievement, overall high school mathematics achievement, number of high school mathematics units, pattern of college preparatory…
Problem Solving: Physics Modeling-Based Interactive Engagement
ERIC Educational Resources Information Center
Ornek, Funda
2009-01-01
The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…
Analysis of Newton's Third Law Questions on the Force Concepts Inventory at Georgia State University
NASA Astrophysics Data System (ADS)
Oakley, Christopher; Thoms, Brian
2012-03-01
A major emphasis of the Physics Education Research program at Georgia State University is an effort to assess and improve students' understanding of Newton's Laws concepts. As part of these efforts the Force Concepts Inventory (FCI) has been given to students in both the algebra-based and calculus-based introductory physics sequences. In addition, the algebra-based introductory physics sequence is taught in both a SCALE-UP and a traditional lecture format. The results of the FCI have been analyzed by individual question and also as categorized by content. The analysis indicates that students in both algebra and calculus-based courses are successful at overcoming Aristotelian misconceptions regarding Newton's Third Law (N3) in the context of a stationary system. However, students are less successful on N3 questions involving objects in constant motion or accelerating. Interference between understanding of Newton's Second and Third Laws as well as other possible explanations for lower student performance on N3 questions involving non-stationary objects will be discussed.
The Association of Precollege Use of Calculators with Student Performance in College Calculus
ERIC Educational Resources Information Center
Mao, Yi; White, Tyreke; Sadler, Philip M.; Sonnert, Gerhard
2017-01-01
This study investigates how the use of calculators during high school mathematics courses is associated with student performance in introductory college calculus courses in the USA. Data were drawn from a nationally representative sample of 7087 students enrolled in college calculus at 134 colleges and universities. They included information about…
Commentary on A General Curriculum in Mathematics for Colleges.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
This document constitutes a complete revision of the report of the same name first published in 1965. A new list of basic courses is described, consisting of Calculus I, Calculus II, Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra, and Introductory Modern Algebra. Commentaries outline the content and spirit of these courses in…
Integrating Mathematics into the Introductory Biology Laboratory Course
ERIC Educational Resources Information Center
White, James D.; Carpenter, Jenna P.
2008-01-01
Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…
Total Quality Management in the Classroom: Applications to University-Level Mathematics.
ERIC Educational Resources Information Center
Williams, Frank
1995-01-01
Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)
Tablet PC: A Preliminary Report on a Tool for Teaching Calculus
ERIC Educational Resources Information Center
Gorgievski, Nicholas; Stroud, Robert; Truxaw, Mary; DeFranco, Thomas
2005-01-01
This study examined students' perceptions of the Tablet PC as an instructional tool for teaching Calculus. A thirteen item survey was developed by the researchers and administered to 103 students in an introductory Calculus course at a large university in the Northeast of the United States. The purpose of this survey was to collect data regarding…
GRIPs (Group Investigation Problems) for Introductory Physics
NASA Astrophysics Data System (ADS)
Moore, Thomas A.
2006-12-01
GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.
NASA Astrophysics Data System (ADS)
Stelzer, Timothy; Gladding, Gary; Mestre, José P.; Brookes, David T.
2009-02-01
We compared the efficacy of multimedia learning modules with traditional textbooks for the first few topics of a calculus-based introductory electricity and magnetism course. Students were randomly assigned to three groups. One group received the multimedia learning module presentations, and the other two received the presentations via written text. All students were then tested on their learning immediately following the presentations as well as 2weeks later. The students receiving the multimedia learning modules performed significantly better on both tests than the students experiencing the text-based presentations.
Success in Introductory Calculus: The Role of High School and Pre-Calculus Preparation
ERIC Educational Resources Information Center
Ayebo, Abraham; Ukkelberg, Sarah; Assuah, Charles
2017-01-01
Calculus at the college level has significant potential to serve as a pump for increasing the number of students majoring in STEM fields. It is a foundation course for all STEM majors and, if mastered well, should provide students with a positive and successful first-year experience and gateway into more advanced courses. Studies have shown that a…
NASA Astrophysics Data System (ADS)
Behroozi, F.
2018-04-01
When a chain hangs loosely from its end points, it takes the familiar form known as the catenary. Power lines, clothes lines, and chain links are familiar examples of the catenary in everyday life. Nevertheless, the subject is conspicuously absent from current introductory physics and calculus courses. Even in upper-level physics and math courses, the catenary equation is usually introduced as an example of hyperbolic functions or discussed as an application of the calculus of variations. We present a new derivation of the catenary equation that is suitable for introductory physics and mathematics courses.
NASA Astrophysics Data System (ADS)
Bottorff, Mark
2012-01-01
A large (74 student) calculus based physics class was required to make observations of the moon over two lunar cycles using a small telescope equipped with mechanical setting circles. The data was collectivized and then analyzed in the laboratory to determine the period of the moon and to search for evidence of the eccentricity of the moon's orbit. These results were used in conjunction with the simple pendulum experiment in which the students inferred the acceleration due to gravity. The student inferred lunar orbital period and acceleration due to gravity (augmented with the radius of the Earth) enabled the students to infer the average Earth to moon distance. Class lectures, activities, and homework on gravitation and orbits were tailored to this observational activity thereby forming a learning module. A basic physics and orbital mechanics knowledge questionnaire was administered before and after the learning module. The resulting learning gains are reported here.
Care and Feeding of a Paperless, Calculus-based Physics Course
NASA Astrophysics Data System (ADS)
Moore, Christopher; Fuller, Robert; Plano-Clark, Vicki L.; Dunbar, Steven R.
1997-04-01
Technology is playing an increasing role in our lives at home, at work, and in the classroom. We have begun a calculus-based introductory physics course to integrate mathematics and multimedia with the traditional physics content. This course relies on the use of technology to teach physics. We formulated the following rule for the conduct of the course: ''No paper is transferred between instructional staff and students that contains course information or assignments for grading.'' Implementing and maintaining this physics course within the context of the instructor goals will be discussed. Preliminary results of feedback from the students and an evaluation team will be presented.
ERIC Educational Resources Information Center
Zack, Laurie; Fuselier, Jenny; Graham-Squire, Adam; Lamb, Ron; O'Hara, Karen
2015-01-01
Our study compared a flipped class with a standard lecture class in four introductory courses: finite mathematics, precalculus, business calculus, and calculus 1. The flipped sections watched video lectures outside of class and spent time in class actively working on problems. The traditional sections had lectures in class and did homework outside…
ERIC Educational Resources Information Center
Mahoney, Joyce; And Others
1988-01-01
Evaluates 16 commercially available courseware packages covering topics for introductory physics. Discusses the price, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each program. Recommends two packages in measurement and vectors, and one-dimensional motion respectively. (YP)
Developing Critical Thinking in Undergraduate Courses: A Philosophical Approach.
ERIC Educational Resources Information Center
Kalman, Calvin S.
2002-01-01
Examines how 20th century philosophers of science have influenced current physics educational research. Examines the introduction of a study of these philosophers in several courses, including the calculus-based introductory physics course on optics and modern physics. Concludes that students seem to have made a marked improvement in their…
Teaching Integration with Layers and Representations: A Case Study
ERIC Educational Resources Information Center
Von Korff, Joshua; Rebello, N. Sanjay
2012-01-01
We designed a sequence of seven lessons to facilitate learning of integration in a physics context. We implemented this sequence with a single college sophomore, "Amber," who was concurrently enrolled in a first-semester calculus-based introductory physics course which covered topics in mechanics. We outline the philosophy underpinning these…
Vector Knowledge of Beginning Physics Students.
ERIC Educational Resources Information Center
Knight, Randall D.
1995-01-01
Presents the Vector Knowledge Test that was designed to see if beginning physics students possess the minimal basic knowledge of vectors that will allow them to proceed with a study of Newtonian mechanics. Concludes that only one-third of the students in a calculus-based introductory course at California Polytechnic had sufficient vector…
Teaching Electrostatics and Entropy in Introductory Physics
NASA Astrophysics Data System (ADS)
Reeves, Mark
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.
Projectile Motion without Calculus
ERIC Educational Resources Information Center
Rizcallah, Joseph A.
2018-01-01
Projectile motion is a constant theme in introductory-physics courses. It is often used to illustrate the application of differential and integral calculus. While most of the problems used for this purpose, such as maximizing the range, are kept at a fairly elementary level, some, such as determining the safe domain, involve not so elementary…
Self-Paced Calculus: A Case Study.
ERIC Educational Resources Information Center
Johnson, Guy, Jr.; Pascarella, Ernest T.
Increasingly higher education is confronted with the task of educating a population of students whose entry aptitudes and skills have grown more heterogeneous. Perhaps nowhere is this diversity of abilities more apparent, and at the same time more difficult to deal with, than in courses in introductory calculus. This paper outlines an experimental…
Students' Exploratory Thinking about a Nonroutine Calculus Task
ERIC Educational Resources Information Center
Nabb, Keith
2013-01-01
In this article on introductory calculus, intriguing questions are generated that can ignite an appreciation for the subject of mathematics. These questions open doors to advanced mathematical thinking and harness many elements of research-oriented mathematics. Such questions also offer greater incentives for students to think and reflect.…
Adding Resistances and Capacitances in Introductory Electricity
NASA Astrophysics Data System (ADS)
Efthimiou, C. J.; Llewellyn, R. A.
2005-09-01
All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.
Introductory Life Science Mathematics and Quantitative Neuroscience Courses
ERIC Educational Resources Information Center
Duffus, Dwight; Olifer, Andrei
2010-01-01
We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…
ERIC Educational Resources Information Center
Hitt, G. W.; Isakovic, A. F.; Fawwaz, O.; Bawa'aneh, M. S.; El-Kork, N.; Makkiyil, S.; Qattan, I. A.
2014-01-01
We report on efforts to design the "Collaborative Workshop Physics" (CWP) instructional strategy to deliver the first interactive engagement (IE) physics course at Khalifa University of Science, Technology and Research (KU), United Arab Emirates (UAE). To our knowledge, this work reports the first calculus-based, introductory mechanics…
Learning, Retention, and Forgetting of Newton's Third Law throughout University Physics
ERIC Educational Resources Information Center
Sayre, Eleanor C.; Franklin, Scott V.; Dymek, Stephanie; Clark, Jessica; Sun, Yifei
2012-01-01
We present data from a between-student study on student response to questions on Newton's third law given in two introductory calculus-based physics classes (Mechanics and Electromagnetism) at a large northeastern university. Construction of a response curve reveals subtle dynamics in student learning not capturable by pretesting and post-testing.…
Designing for Enhanced Conceptual Understanding in an Online Physics Course
ERIC Educational Resources Information Center
Dunlap, Joanna C.; Furtak, Thomas E.; Tucker, Susan A.
2009-01-01
The calculus-based, introductory physics course is the port of entry for any student interested in pursuing a college degree in the sciences, mathematics, or engineering. There is increasing demand for online delivery options that make the course more widely available, especially those that use best practices in student engagement. However,…
Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs
NASA Astrophysics Data System (ADS)
Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy
2010-10-01
With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.
ERIC Educational Resources Information Center
Mahoney, Joyce; And Others
1988-01-01
Evaluates 10 courseware packages covering topics for introductory physics. Discusses the price; sub-topics; program type; interaction; possible hardware; time; calculus required; graphics; and comments on each program. Recommends two packages in projectile and circular motion, and three packages in statics and rotational dynamics. (YP)
Families of linear recurrences for Catalan numbers
NASA Astrophysics Data System (ADS)
Gauthier, N.
2011-01-01
Four different families of linear recurrences are derived for Catalan numbers. The derivations rest on John Riordan's 1973 generalization of Catalan numbers to a set of polynomials. Elementary differential and integral calculus techniques are used and the results should be of interest to teachers and students of introductory courses in calculus and number theory.
Adapting research-based curricula at Seattle Pacific University: Results on student learning
NASA Astrophysics Data System (ADS)
Close, Eleanor; Vokos, Stamatis; Lindberg, John; Seeley, Lane
2004-05-01
Seattle Pacific University is the recent recipient of a NSF CCLI grant to improve student learning in introductory physics and calculus courses. This talk will outline the goals of this collaborative project and present some initial results on student performance. Results from research-based assessments will be presented as well as specific examples of successes and challenges from mechanics and electricity and magnetism.
Impact of Course Policy Changes on Calculus I DFW Rates
ERIC Educational Resources Information Center
Norton, Paran; Bridges, William; High, Karen
2018-01-01
This paper examines the impact of departmental policy changes on the trend in DFW proportions for introductory calculus at a large research university, where DFW denotes the proportion of students receiving a grade of D, F, or withdrawing from the course. We defined three distinct policy periods: Traditional (2002-2005), Active Learning (SCALE-UP)…
Vision and change in introductory physics for the life sciences
NASA Astrophysics Data System (ADS)
Mochrie, S. G. J.
2016-07-01
Since 2010, our physics department has offered a re-imagined calculus-based introductory physics sequence for the life sciences. These courses include a selection of biologically and medically relevant topics that we believe are more meaningful to undergraduate premedical and biological science students than those found in a traditional course. In this paper, we highlight new aspects of the first-semester course, and present a comparison of student evaluations of this course versus a more traditional one. We also present the effect on student perception of the relevance of physics to biology and medicine after having taken this course.
A Tale of Two Curricula: The performance of two thousand students in introductory electromagnetism
NASA Astrophysics Data System (ADS)
Schatz, Michael; Kohlmyer, Matthew; Caballero, Marcos; Chabay, Ruth; Sherwood, Bruce; Catrambone, Richard; Marr, Marcus; Haugen, Mark; Ding, Lin
2009-03-01
Student performance in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I) curriculum. At each university, post-instruction BEMA test averages were significantly higher for the M&I curriculum than for the traditional curriculum. The differences in post-test averages cannot be explained by differences in variables such as pre-instruction BEMA scores, grade point average, or SAT scores.
Improving Critical Skills Using Wikis and CGPS in a Physics Classroom
ERIC Educational Resources Information Center
Mohottala, H. E.
2016-01-01
We report the combined use of Wikispaces (wikis) and collaborative group problem solving (CGPS) sessions conducted in introductory-level calculus-based physics classes. As a part of this new teaching tool, some essay-type problems were posted on the wiki page on a weekly basis and students were encouraged to participate in problem solving without…
ERIC Educational Resources Information Center
Perram, John W.; Andersen, Morten; Ellekilde, Lars-Peter; Hjorth, Poul G.
2004-01-01
This paper discusses experience with alternative assessment strategies for an introductory course in dynamical systems, where the use of computer algebra and calculus is fully integrated into the learning process, so that the standard written examination would not be appropriate. Instead, students' competence was assessed by grading three large…
Alternative theoretical method for motion of a sand-filled funnel experiment
NASA Astrophysics Data System (ADS)
Byrd, David; White, Gary
2001-11-01
In "Motion of a Sand-Filled Funnel," Peter Sullivan and Anna McLoon described how to use numerical methods and a Microsoft Excel spreadsheet to predict the motion of a variant of Atwood's machine with variable mass. They wrote for noncalculus-based physics classes, but we solve the same problem using the methods of calculus. Our method highlights the less-familiar but more accurate version of Newton's second law, ∑F =dp/dt. This can help introductory physics students understand a broader definition of Newton's second law and enhance their calculus skills. It also teaches students how to solve a variable-mass problem.
Exploring the Relationship between Self-Efficacy and Retention in Introductory Physics
ERIC Educational Resources Information Center
Sawtelle, Vashti; Brewe, Eric; Kramer, Laird H.
2012-01-01
The quantitative results of Sources of Self-Efficacy in Science Courses-Physics (SOSESC-P) are presented as a logistic regression predicting the passing of students in introductory Physics with Calculus I, overall as well as disaggregated by gender. Self-efficacy as a theory to explain human behavior change [Bandura [1977] "Psychological…
Math remediation intervention for student success in the algebra-based introductory physics course
NASA Astrophysics Data System (ADS)
Forrest, Rebecca L.; Stokes, Donna W.; Burridge, Andrea B.; Voight, Carol D.
2017-12-01
Pretesting and early intervention measures to identify and remediate at-risk students were implemented in algebra-based introductory physics to help improve student success rates. Pretesting via a math and problem-solving diagnostic exam administered at the beginning of the course was employed to identify at-risk students based on their scores. At-risk students were encouraged to utilize an online math tutorial to increase their chances of passing the course. The tutorial covers the same math topics covered by the diagnostic exam. Results from 643 students enrolled in the course showed that the 61 at-risk students who successfully completed the math tutorial increased their odds of passing the course by roughly 4 times those of the at-risk students who did not. This intervention is easily implemented, short term, and can be administered concurrently with the course. Based on these results, the Department of Physics has implemented the math tutorials in all sections of the introductory algebra as well as the calculus-based physics courses.
NASA Astrophysics Data System (ADS)
Donnelly, Suzanne M.
This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations
Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University
NASA Astrophysics Data System (ADS)
Perry, Jonathan; Bassichis, William
Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.
Students' Ways of Thinking about Two-Variable Functions and Rate of Change in Space
ERIC Educational Resources Information Center
Weber, Eric David
2012-01-01
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet…
ERIC Educational Resources Information Center
Lunsford, M. Leigh; Rowell, Ginger Holmes; Goodson-Espy, Tracy
2006-01-01
We applied a classroom research model to investigate student understanding of sampling distributions of sample means and the Central Limit Theorem in post-calculus introductory probability and statistics courses. Using a quantitative assessment tool developed by previous researchers and a qualitative assessment tool developed by the authors, we…
Introductory Physics Gender Gaps: Pre- and Post-Studio Transition
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Kuo, H. Vincent
2009-11-01
Prior work has characterized the gender gaps present in college-level introductory physics courses. Such work has also shown that research-based interactive engagement techniques can reduce or eliminate these gender gaps. In this paper, we study the gender gaps (and lack thereof) in the introductory calculus-based electricity and magnetism course at the Colorado School of Mines. We present eight semesters' worth of data, totaling 2577 students, with four semesters preceding a transition to Studio physics, and four following. We examine gender gaps in course grades, DFW (D grade, fail, or withdrawal) rates, and normalized gains on the Conceptual Survey of Electricity and Magnetism (CSEM), and consider factors such as student ACT scores and grades in prior math classes. We find little or no gap in male/female course grades and DFW rates, but substantial gaps in CSEM gains that are reduced somewhat by the transition to Studio physics.
Basic Math Skills and Performance in an Introductory Economics Class
ERIC Educational Resources Information Center
Ballard, Charles L.; Johnson, Marianne F.
2004-01-01
The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…
Examining End-of-Chapter Problems across Editions of an Introductory Calculus-Based Physics Textbook
ERIC Educational Resources Information Center
Xiao, Bin
2016-01-01
End-Of-Chapter (EOC) problems have been part of many physics education studies. Typically, only problems "localized" as relevant to a single chapter were used. This work examines how well this type of problem represents all EOC problems and whether EOC problems found in leading textbooks have changed over the past several decades. To…
Using Computer-Assisted Personalized Assignment System in a Large-Enrollment General Physics
ERIC Educational Resources Information Center
Gok, Tolga
2010-01-01
The on-line tutoring system, LON-CAPA, was implemented in Introductory Calculus-Based Physics-II course at Colorado School of Mines in fall 2008 and spring 2009. In this paper, the features and the case study of the LON-CAPA implementation were described. The performance data obtained from the scores of students enrolled in the course represented…
Students' Understanding and Application of the Area under the Curve Concept in Physics Problems
ERIC Educational Resources Information Center
Nguyen, Dong-Hai; Rebello, N. Sanjay
2011-01-01
This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving…
Tarzan's Dilemma: A Challenging Problem for Introductory Physics Students
ERIC Educational Resources Information Center
Rave, Matthew; Sayers, Marcus
2013-01-01
The following kinematics problem was given to several students as a project in conjunction with a first-semester calculus-based physics course. The students were asked to keep a journal of all their work and were encouraged to keep even their scrap paper. The goal of the project was to expose the students to the process of doing theoretical…
Internal ballistics of a pneumatic potato cannon
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2009-05-01
Basic laws of thermodynamics and mechanics are used to analyse an air gun. Such devices are often employed in outdoor physics demonstrations to launch potatoes using compressed gas that is here assumed to expand reversibly and adiabatically. Reasonable agreement is found with reported muzzle speeds for such homebuilt cannons. The treatment is accessible to undergraduate students who have taken calculus-based introductory physics.
Derivation of the Biot-Savart Law from Ampere's Law Using the Displacement Current
ERIC Educational Resources Information Center
Buschauer, Robert
2013-01-01
The equation describing the magnetic field due to a single, nonrelativistic charged particle moving at constant velocity is often referred to as the "Biot-Savart law for a point charge." Introductory calculus-based physics books usually state this law without proof. Advanced texts often present it either without proof or as a special…
NASA Astrophysics Data System (ADS)
Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian
2009-11-01
Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.
Student Selection of the Textbook for an Introductory Physics Course
NASA Astrophysics Data System (ADS)
Dake, L. S.
2007-10-01
Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods, which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this factor, so I turned the textbook selection into a class project. The students unanimously chose one textbook, which I have now successfully used for three years. The project was decidedly worthwhile, and I gained considerable insight into what students prefer in a textbook.
Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes
NASA Astrophysics Data System (ADS)
Ramos, Roberto
We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.
NASA Astrophysics Data System (ADS)
McKinney, Meghan
2015-04-01
This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.
An Inexpensive Toroidal Solenoid for an Investigative Student Lab
NASA Astrophysics Data System (ADS)
Ferstl, Andrew; Broberg, John
2008-09-01
Magnetism and Ampère's law is a common subject in most calculus-based introductory physics courses. Many textbooks offer examples to calculate the magnetic field produced by a symmetric current by using Ampère's law. These examples include the solenoid and the toroidal solenoid (sometimes called a torus; see Fig. 1), which are used in many applications, including the study of plasmas.
Projectile motion without calculus
NASA Astrophysics Data System (ADS)
Rizcallah, Joseph A.
2018-07-01
Projectile motion is a constant theme in introductory-physics courses. It is often used to illustrate the application of differential and integral calculus. While most of the problems used for this purpose, such as maximizing the range, are kept at a fairly elementary level, some, such as determining the safe domain, involve not so elementary techniques, which can hardly be assumed of the targeted audience. In the literature, several attempts have been undertaken to avoid calculus altogether and keep the exposition entirely within the realm of algebra and/or geometry. In this paper, we propose yet another non-calculus approach which uses the projectile’s travel times to shed new light on these problems and provide instructors with an alternate method to address them with their students.
ERIC Educational Resources Information Center
Stewart, John; Stewart, Gay; Taylor, Jennifer
2012-01-01
Student use of out-of-class time was measured for four years in the introductory second-semester calculus-based physics course at the University of Arkansas. Two versions of the course were presented during the time of the measurement. In both versions, the total out-of-class time a student invested in the course explained less than 1% of the…
Chronicling a successful secondary implementation of Studio Physics
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Vincent Kuo, H.
2012-09-01
The Colorado School of Mines (CSM) has taught its first-semester calculus-based introductory physics course (Physics I) using a hybrid lecture/Studio Physics format since the spring of 1997. Starting in the fall of 2007, we have been converting the second semester of our calculus-based introductory physics course (Physics II) to a hybrid lecture/Studio Physics format, beginning from a traditional lecture/lab/recitation course. In this paper, we document the stages of this transformation, highlighting what has worked and what has not, and the challenges and benefits associated with the switch to Studio Physics. A major goal in this study is to develop a method for secondary implementations of Studio physics that keeps the time and resource investments manageable. We describe the history of Studio at CSM and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), exam scores, failure rates, and a variety of qualitative observations. Results suggest that Studio has increased student performance and satisfaction despite an aggressive expansion of class sizes in the past few years. Gains have been concentrated mostly in problem-solving skills and exam performance (as opposed to conceptual survey gains), in contrast to what has sometimes been seen in other studies.
Examining End-Of-Chapter Problems Across Editions of an Introductory Calculus-Based Physics Textbook
NASA Astrophysics Data System (ADS)
Xiao, Bin
End-Of-Chapter (EOC) problems have been part of many physics education studies. Typically, only problems "localized" as relevant to a single chapter were used. This work examines how well this type of problem represents all EOC problems and whether EOC problems found in leading textbooks have changed over the past several decades. To investigate whether EOC problems have connections between chapters, I solved all problems of the E&M; chapters of the most recent edition of a popular introductory level calculus-based textbook and coded the equations used to solve each problem. These results were compared to the first edition of the same text. Also, several relevant problem features were coded for those problems and results were compared for sample chapters across all editions. My findings include two parts. The result of equation usage shows that problems in the E&M; chapters do use equations from both other E&M; chapters and non-E&M; chapters. This out-of-chapter usage increased from the first edition to the last edition. Information about the knowledge structure of E&M; chapters was also revealed. The results of the problem feature study show that most EOC problems have common features but there was an increase of diversity in some of the problem features across editions.
NASA Astrophysics Data System (ADS)
Yoder, G.; Cook, J.
2010-12-01
Interactive lecture demonstrations1-6 (ILDs) are a powerful tool designed to help instructors bring state-of-the-art teaching pedagogies into the college-level introductory physics classroom. ILDs have been shown to improve students' conceptual understanding, and many examples have been created and published by Sokoloff and Thornton.6 We have used the new technology of Vernier's Wireless Dynamics Sensor System (WDSS)7 to develop three new ILDs for the first-semester introductory physics (calculus-based or algebra-based) classroom. These three are the Force Board, to demonstrate the vector nature of forces, addition of vectors, and the first condition of equilibrium; the Torque Board, to demonstrate torque and the second condition for equilibrium; and the Circular Motion Board, to discover the nature of the acceleration an object exhibiting uniform circular motion. With the WDSS, all three of these ILDs are easy to set up and use in any classroom or laboratory situation, and allow more instructors to utilize the technique of interactive lecture demonstrations.
Impacts of curricular change: Implications from 8 years of data in introductory physics
NASA Astrophysics Data System (ADS)
Pollock, Steven J.; Finkelstein, Noah
2013-01-01
Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.
Patterns of Incorrect Responses on the FCI and Course Success
NASA Astrophysics Data System (ADS)
Wells, James; Mokaya, Fridah; Valente, Diego
The Force Concept Inventory (FCI) is often used to measure the effectiveness of instructional pedagogy in introductory physics courses both at the algebra- and calculus-based level. Scores on the FCI are correlated with the performance of students in a class, as measured by their final course grade. We have collected data from several semesters of first-semester introductory mechanics courses at a public 4-year university, taught in large-scale classrooms with pedagogy including elements of Just-in-Time Teaching pedagogy along with active learning course components. The data collected includes pre- and post-test FCI scores, midterm exam grades, and final course grades. We examine whether certain patterns of incorrect answers on the FCI post-test are predictive of course grades, indicating whether certain specific student preconceptions are more detrimental than others to the success of students in an introductory mechanics course. Funding from UConn - College of Liberal Arts and Sciences (CLAS).
Evolution of Student Knowledge in a Traditional Introductory Classroom
NASA Astrophysics Data System (ADS)
Sayre, Eleanor C.; Heckler, Andrew F.
2008-10-01
In the physics education research community, a common format for evaluation is pre- and post-tests. In this study, we collect student test data many times throughout a course, allowing for the measurement of the changes of student knowledge with a time resolution on the order of a few days. The data cover the first two quarters (mechanics, E&M) of a calculus-based introductory sequence populated primarily by first- and second-year engineering majors. To avoid the possibility of test-retest effects, separate and quasi-random subpopulations of students are evaluated every week of the quarter on a variety of tasks. Unsurprisingly for a traditional introductory course, there is little change on many conceptual questions. However, the data suggest that some student ideas peak and decay rapidly during a quarter, a pattern consistent with memory research yet unmeasurable by pre-/post-testing.
Using isomorphic problems to learn introductory physics
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Singh, Chandralekha
2011-12-01
In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.
NASA Astrophysics Data System (ADS)
Mehta, Nirav; Cheng, Kelvin
2012-10-01
We have developed an interactive workshop-style course for our introductory calculus-based physics sequence at Trinity University. Lecture is limited to approximately 15 min. at the beginning of class, and the remainder of the 50-min. class is devoted to inquiry-based activities and problem solving. So far, lab is done separately and we have not incorporated the lab component into the workshop model. We use the Brief Electricity and Magnetism Assessment (BEMA) to compare learning gains between the workshop and traditional lecture-based course for the Spring 2012 semester. Both the workshop and lecture courses shared the same inquiry-based lab component that involved pre-labs, prediction-observation and post-lab activities. Our BEMA results indicate statistically significant improvement in overall learning gains compared to the traditional course. We compare our workshop BEMA scores both to traditional lecture scores here at Trinity and to those from other institutions.
NASA Astrophysics Data System (ADS)
Chen, Jean Chi-Jen
Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2017-03-01
Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average performance in a class is significantly better than those of students in traditionally taught courses described here (and particularly when it is comparable to that of physics PhD students’ average performance discussed here), the curriculum or pedagogy used in that introductory class can be deemed effective. Moreover, we discuss the use of the survey to investigate gender differences in student performance.
NASA Astrophysics Data System (ADS)
Khan, Neelam; Hu, Dehui; Nguyen, Dong-Hai; Rebello, N. Sanjay
2012-02-01
Integration is widely used in physics in electricity and magnetism (E&M), as well as in mechanics, to calculate physical quantities from other non-constant quantities. We designed a survey to assess students' ability to apply integration to physics problems in introductory physics. Each student was given a set of eight problems, and each set of problems had two different versions; one consisted of symbolic problems and the other graphical problems. The purpose of this study was to investigate students' strategies for solving physics problems that use integrals in first and second-semester calculus-based physics. Our results indicate that most students had difficulty even recognizing that an integral is needed to solve the problem.
The notion of motion: covariational reasoning and the limit concept
NASA Astrophysics Data System (ADS)
Nagle, Courtney; Tracy, Tyler; Adams, Gregory; Scutella, Daniel
2017-05-01
This paper investigates outcomes of building students' intuitive understanding of a limit as a function's predicted value by examining introductory calculus students' conceptions of limit both before and after instruction. Students' responses suggest that while this approach is successful at reducing the common limit equals function value misconception of a limit, new misconceptions emerged in students' responses. Analysis of students' reasoning indicates a lack of covariational reasoning that coordinates changes in both x and y may be at the root of the emerging limit reached near x = c misconception. These results suggest that although dynamic interpretations of limit may be intuitive for many students, care must be taken to foster a dynamic conception that is both useful at the introductory calculus level and is in line with the formal notion of limit learned in advanced mathematics. In light of the findings, suggestions for adapting the pedagogical approach used in this study are provided.
NASA Astrophysics Data System (ADS)
Tai, Robert H.
Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.
Introductory life science mathematics and quantitative neuroscience courses.
Duffus, Dwight; Olifer, Andrei
2010-01-01
We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.
Investigating and improving introductory physics students’ understanding of electric flux
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2018-07-01
A solid grasp of the concept of electric flux is an important pre-requisite for appropriate use of Gauss’s law in solving electrostatics problems. As part of a broader investigation focusing on improving understanding of electrostatics concepts, we investigated the conceptual difficulties of college students in a traditionally taught calculus-based introductory physics course with the concept of electric flux and then the research on student difficulties was used as a guide in the development and evaluation of a research-validated tutorial which strives to help students learn this concept better. During the investigation of difficulties and the design and validation of the guided inquiry-based tutorial, college students in a calculus-based introductory physics course were given written questions to probe the common conceptual difficulties with the electric flux related concepts, and we also interviewed a subset of those students to get an in-depth account of the reasons behind the conceptual difficulties. The guided inquiry-based learning sequences in the tutorial were also iterated several times with instructors who regularly teach these courses. Here we discuss the common student difficulties with the electric flux found in our investigations, and the development and validation of a tutorial that strives to improve student understanding. We analyse how students performed on the pre-test (administered before the electric flux tutorial but after traditional instruction in the electric flux concepts) and on the post-test (administered after students in the tutorial group had engaged with the electric flux related tutorial). The performance of students in all sections of the course was comparable on the pre-test regardless of who taught that section. However, on the post-test, the performance of those in the sections of the course in which students engaged with the tutorial is significantly better that the section in which the tutorial was not used.
Assessing students' conceptual knowledge of electricity and magnetism
NASA Astrophysics Data System (ADS)
McColgan, Michele W.; Finn, Rose A.; Broder, Darren L.; Hassel, George E.
2017-12-01
We present the Electricity and Magnetism Conceptual Assessment (EMCA), a new assessment aligned with second-semester introductory physics courses. Topics covered include electrostatics, electric fields, circuits, magnetism, and induction. We have two motives for writing a new assessment. First, we find other assessments such as the Brief Electricity and Magnetism Assessment and the Conceptual Survey on Electricity and Magnetism not well aligned with the topics and content depth of our courses. We want to test introductory physics content at a level appropriate for our students. Second, we want the assessment to yield scores and gains comparable to the widely used Force Concept Inventory (FCI). After five testing and revision cycles, the assessment was finalized in early 2015 and is available online. We present performance results for a cohort of 225 students at Siena College who were enrolled in our algebra- and calculus-based physics courses during the spring 2015 and 2016 semesters. We provide pretest, post-test, and gain analyses, as well as individual question and whole test statistics to quantify difficulty and reliability. In addition, we compare EMCA and FCI scores and gains, and we find that students' FCI scores are strongly correlated with their performance on the EMCA. Finally, the assessment was piloted in an algebra-based physics course at George Washington University (GWU). We present performance results for a cohort of 130 GWU students and we find that their EMCA scores are comparable to the scores of students in our calculus-based physics course.
Student Blogging about Physics
NASA Astrophysics Data System (ADS)
Daniels, Karen E.
2010-09-01
In traditional introductory physics classes, there is often limited opportunity for students to contribute their own ideas, interests, and experiences as they engage with the subject matter. This situation is exacerbated in university lecture-format classes, where students may not feel comfortable speaking during class. In the last few years, Internet blogs have become a decentralized format for diarists, independent journalists, and opinion makers to both post entries and allow commentary from their readers. Below, I will describe some techniques for using student blogging about physics to engage students from two different classroom environments: a calculus-based introductory mechanics class for scientists and engineers, and an honors seminar for first-year students. These assignments required them to make their own connections between classroom knowledge and situations where it might find applications. A second goal of including blogging in the introductory physics course was to induce students to write about the physics content of the class in a more substantive way than was previously part of the class.
Introductory Life Science Mathematics and Quantitative Neuroscience Courses
Olifer, Andrei
2010-01-01
We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses. PMID:20810971
Preliminary investigation of instructor effects on gender gap in introductory physics
NASA Astrophysics Data System (ADS)
Kreutzer, Kimberley; Boudreaux, Andrew
2012-06-01
Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement (IE) techniques. In two of the IE course sections, however, the gains of female students were comparable to those of male students. Classroom observations of the course sections involved were made over an extended period. In this paper, we characterize the observed instructor-student interactions using a framework from educational psychology referred to as wise schooling. Results suggest that instructor practices affect differential learning, and that wise schooling techniques may constitute an effective strategy for promoting gender equity in the physics classroom.
NASA Astrophysics Data System (ADS)
Prather, Edward E.; Wallace, Colin Scott
2018-06-01
We present an instructional framework that allowed a first time physics instructor to improve students quantitative problem solving abilities by more than a letter grade over what was achieved by students in an experienced instructor’s course. This instructional framework uses a Think-Pair-Share approach to foster collaborative quantitative problem solving during the lecture portion of a large enrollment introductory calculus-based mechanics course. Through the development of carefully crafted and sequenced TPS questions, we engage students in rich discussions on key problem solving issues that we typically only hear about when a student comes for help during office hours. Current work in the sophomore E&M course illustrates that this framework is generalizable to classes beyond the introductory level and for topics beyond mechanics.
Angular Speed of a Compact Disc
NASA Astrophysics Data System (ADS)
Sawicki, Mikolaj ``Mik''
2006-09-01
A spinning motion of a compact disc in a CD player offers an interesting and challenging problem in rotational kinematics with a nonconstant angular acceleration that can be incorporated into a typical introductory physics class for engineers and scientists. It can be used either as an example presented during the lecture, emphasizing application of calculus, or as a homework assignment that could be handled easily with the help of a spreadsheet, thus eliminating the calculus aspect altogether. I tried both approaches, and the spreadsheet study was favored by my students.
ERIC Educational Resources Information Center
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
Few Fractional Order Derivatives and Their Computations
ERIC Educational Resources Information Center
Bhatta, D. D.
2007-01-01
This work presents an introductory development of fractional order derivatives and their computations. Historical development of fractional calculus is discussed. This paper presents how to obtain computational results of fractional order derivatives for some elementary functions. Computational results are illustrated in tabular and graphical…
Continuous Problem of Function Continuity
ERIC Educational Resources Information Center
Jayakody, Gaya; Zazkis, Rina
2015-01-01
We examine different definitions presented in textbooks and other mathematical sources for "continuity of a function at a point" and "continuous function" in the context of introductory level Calculus. We then identify problematic issues related to definitions of continuity and discontinuity: inconsistency and absence of…
Modifying ``Six Ideas that Shaped Physics'' for a Life-Science major audience at Hope College
NASA Astrophysics Data System (ADS)
Mader, Catherine
2005-04-01
The ``Six Ideas That Shaped Physics'' textbook has been adapted and used for use in the algebra-based introductory physics course for non-physics science majors at Hope College. The results of the first use will be presented. Comparison of FCI for pre and post test scores will be compared with results from 8 years of results from both the algebra-based course and the calculus-based course (when we first adopted ``Six Ideas that Shaped Physcs" for the Calculus-based course). In addition, comparison on quantitative tests and homework problems with prior student groups will also be made. Because a large fraction of the audience in the algebra-based course is life-science majors, a goal of this project is to make the material relevant for these students. Supplemental materials that emphasize the connection between the life sciences and the fundamental physics concepts are being be developed to accompany the new textbook. Samples of these materials and how they were used (and received) during class testing will be presented.
Electrons and Positrons--Can Freshmen Get a Charge Out of Physics?
ERIC Educational Resources Information Center
Stevens, J. R.; Winegard, W. C.
1971-01-01
Describes a one semester introductory physics course for physical science students with PSSC and calculus as prerequisites. Course content concentrates on the properties of the electron, positron, andphoton. Summarizes the student evaluation of the course and the laboratory equipment used. (Author/DS)
Maximizing the Range of a Projectile.
ERIC Educational Resources Information Center
Brown, Ronald A.
1992-01-01
Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)
Conditional Independence in Applied Probability.
ERIC Educational Resources Information Center
Pfeiffer, Paul E.
This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…
Examining students' views about validity of experiments: From introductory to Ph.D. students
NASA Astrophysics Data System (ADS)
Hu, Dehui; Zwickl, Benjamin M.
2018-06-01
We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.
Investigating and improving introductory physics students’ understanding of symmetry and Gauss’s law
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2018-01-01
We discuss an investigation of student difficulties with symmetry and Gauss’s law and how the research on students’ difficulties was used as a guide to develop a tutorial related to these topics to help students in the calculus-based introductory physics courses learn these concepts. During the development of the tutorial, we interviewed students individually at various stages of development and administered written tests in the free-response and multiple-choice formats on these concepts to learn about common student difficulties. We also obtained feedback from physics instructors who teach introductory physics courses regularly in which these concepts were covered. The students in several ‘equivalent’ sections worked on the tutorial after traditional lecture-based instruction. We discuss the performance of students on the written pre-test (administered after lecture-based instruction in relevant concepts) and post-test given after students worked on the tutorial. We find that on the pre-test, all sections of the course performed comparably regardless of the instructor. Also, on average, student performance on the post-test after working on the tutorial is significantly better than on the pre-test after lecture-based instruction. We also compare the post-test performance of introductory students in sections of the course in which the tutorial was used versus not used and find that sections in which students engaged with the tutorial outperformed those in which students did not engage with it.
NASA Astrophysics Data System (ADS)
Kohl, Patrick B.; Kuo, H. Vincent; Ruskell, Todd G.
2008-10-01
The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Over the past year we have converted the second semester of our calculus-based introductory physics course (Physics II) to a Studio Physics format, starting from a traditional lecture-based format. In this paper, we document the early stages of this conversion in order to better understand which features succeed and which do not, and in order to develop a model for switching to Studio that keeps the time and resource investment manageable. We describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), solicited student comments, failure rates, and exam scores.
Studio Physics at the Colorado School of Mines: A model for iterative development and assessment
NASA Astrophysics Data System (ADS)
Kohl, Patrick; Kuo, Vincent
2009-05-01
The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Based on this previous success, over the past 18 months we have converted the second semester of our traditional calculus-based introductory physics course (Physics II) to a Studio Physics format. In this talk, we describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), failure rates, and exam scores. We also report on recent attempts to involve students in the department's Senior Design program with our course. Our ultimate goal is to construct one possible model for a practical and successful transition from a lecture course to a Studio (or Studio-like) course.
Using tablets for real-time formative assessment in large-enrollment introductory courses
NASA Astrophysics Data System (ADS)
Ruskell, Todd
2013-04-01
Many large-enrollment introductory physics courses now use personal response devices (clickers) to engage students during class and collect data for real-time formative assessment. However, most systems only allow for multiple-choice or in some cases numeric or simple text answers. A program called inkSurvey allows faculty to ask more open-ended questions and students can submit both text and graphical responses from tablet computers. This provides faculty much greater insight into a student's problem-solving process. In our pilot project standard clickers were used in the first half of a calculus-based physics I course, and in the second half of the semester, tablets and inkSurvey were used to collect formative assessment data. We will report on initial impressions of both the faculty and students regarding the relative utility and effectiveness of each tool.
NASA Astrophysics Data System (ADS)
Cummings, Karen; Marx, Jeffrey D.
2010-10-01
We have developed an assessment of students' ability to solve standard textbook style problems and are currently engaged in the validation and revision process. The assessment covers the topics of force and motion, conservation of momentum and conservation of energy at a level consistent with most calculus-based, introductory physics courses. This tool is discussed in more detail in an accompanying paper by Marx and Cummings. [1] Here we present preliminary beta-test data collected at four schools during the 2009/2010 academic year. Data include both pre- and post-instruction results for introductory physics courses as well as results for physics majors in later years. In addition, we present evidence that right/wrong grading may well be a perfectly acceptable grading procedure for a course-level assessment of this type.
ERIC Educational Resources Information Center
Gerhardt, Ira
2015-01-01
An experiment was conducted over three recent semesters of an introductory calculus course to test whether it was possible to quantify the effect that difficulty with basic algebraic and arithmetic computation had on individual performance. Points lost during the term were classified as being due to either algebraic and arithmetic mistakes…
Where Is the Rate in the Rule?
ERIC Educational Resources Information Center
Herbert, Sandra
2008-01-01
A well-developed understanding of rate is foundational to conceptual understanding of introductory calculus. Many students achieve procedural competence with the application of rules for differentiation without developing an awareness of the connection between derivative and rate. In addition, rate-related reasoning is needed to make informed…
Does interactive instruction in introductory physics impact long-term outcomes for students?
NASA Astrophysics Data System (ADS)
Gordon, Vernita
Early college classroom experiences contribute greatly to students leaving STEM majors. Peer instruction is a research-based pedagogy in which students, in small groups in the classroom, discuss concepts and work short problems. A single study at Harvard found that taking peer-instruction introductory physics also increases persistence in science majors. To what degree, if at all, peer instruction helps retention and performance for STEM majors at large public institutions (like University of Texas, Austin) is not known. Here I describe the results of a retrospective pilot study comparing outcomes for students who took different sections of the same calculus-based introductory mechanics course in Fall 2012 and Fall 2014. Compared with traditional lecture sections, peer-instruction sections had a 50% lower drop rate, a 40% / 55% higher rate of enrollment in the 2nd/ 3rd courses in the sequence, and, for the Fall 2012 cohort, a 74% / 165% higher rate of graduating from UT Austin / the UT Austin College of Natural Sciences by Fall 2015. I will discuss weaknesses of this retrospective pilot study and present plans for an intentionally-designed study to be implemented beginning Fall 2017.
A Calculus-Level Introductory Physics Course with an Astronomy Theme
NASA Astrophysics Data System (ADS)
Amato, Joseph
2011-05-01
Physics from Planet Earth (PPE) is a one-semester, calculus-based introductory course in classical mechanics intended for first year students of physics, chemistry, astronomy and engineering. Most of the core topics in mechanics are included, but many of the examples and applications are drawn from astronomy, space science, and astrophysics. The laws of physics are assigned the task of exploring the heavens - the same task addressed by Newton over 300 years ago at the birth of classical mechanics. How do we know the distance to the Moon, Sun, or other galaxies? How do we know the masses of the Earth, Sun, and other planets and stars, and why do we believe in "missing” mass? As a physics course, PPE concentrates on how we know rather than what we know. Examples and applications include those of historical importance (the Earth-Moon distance, the Earth-Sun distance, Ptolemaic vs. Copernican models, weighing the Earth) as well as those of contemporary interest (Hubble's Law, rocket propulsion, spacecraft gravity boosts, the Roche limit, search for extrasolar planets, orbital mechanics, pulsars, galactic rotation curves). The course has been taught successfully at Colgate for over a decade, using materials that have been developed and refined during the past 15 years. Developers of PPE are eager to enrich the course by identifying other topics in contemporary astronomy that can be adapted for the first year physics audience.
Physics for Scientists and Engineers, 5th edition - Volume 1
NASA Astrophysics Data System (ADS)
Tipler, Paul A.; Mosca, Gene P.
For nearly 30 years, Paul Tipler's Physics for Scientists and Engineers has set the standard in the introductory calculus-based physics course for clarity, accuracy, and precision. In this fifth edition, Paul has recruited Gene Mosca to bring his years of teaching experience to bear on the text, to scrutinize every explanation and example from the perspective of the freshman student. The result is a teaching tool that retains its precision and rigor, but offers struggling students the support they need to solve problems strategically and to gain real understanding of physical concepts.
Communicating Physics and the Design of Textbooks.
ERIC Educational Resources Information Center
Barojas, Jorge; Trigueros, Maria
1991-01-01
The planning of an introductory calculus textbook in classical mechanics is shown as an example of an approach to textbook design that uses four main cognitive categories: sources of learning, instruments of learning, processes of knowing, and mechanisms of knowing. The aspects, domains, description, and elements of each section of the textbook…
The Notion of Motion: Covariational Reasoning and the Limit Concept
ERIC Educational Resources Information Center
Nagle, Courtney; Tracy, Tyler; Adams, Gregory; Scutella, Daniel
2017-01-01
This paper investigates outcomes of building students' intuitive understanding of a limit as a function's predicted value by examining introductory calculus students' conceptions of limit both before and after instruction. Students' responses suggest that while this approach is successful at reducing the common "limit equals function…
Families of Linear Recurrences for Catalan Numbers
ERIC Educational Resources Information Center
Gauthier, N.
2011-01-01
Four different families of linear recurrences are derived for Catalan numbers. The derivations rest on John Riordan's 1973 generalization of Catalan numbers to a set of polynomials. Elementary differential and integral calculus techniques are used and the results should be of interest to teachers and students of introductory courses in calculus…
Examining issues of underrepresented minority students in introductory physics
NASA Astrophysics Data System (ADS)
Watkins, Jessica Ellen
In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.
NASA Astrophysics Data System (ADS)
Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.
2015-02-01
This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.
NASA Astrophysics Data System (ADS)
Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.
2015-01-01
This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.
“Workshop Astronomy” at Dickinson College
NASA Astrophysics Data System (ADS)
Morgan, Windsor A., Jr.
2006-12-01
Dickinson College, a 2400-student liberal arts college in Carlisle, Pennsylvania, is recognized for the development of Workshop Physics. This innovative, calculus-based introductory course combines physics lectures and laboratories with integrated hands-on, small-group sessions. It allows students to do experiments, so that they will make their own observations and, with the guidance of the professor discover the principles of physics themselves. Since spring 2006, I have been developing an introductory solar-system astronomy course in the “Workshop” format at Dickinson. Students participate in discussions with their classmates and investigate astronomical concepts with computer simulations and guided inquiry. I emphasize “practical” astronomy (such as lunar phases, sky motions, and seasons) and physics concepts (such as density and Doppler shift); thus, my students become familiar with the basics of astronomy before developing a better understanding of the solar system. In my paper, I will discuss class activities and will evaluate their efficacy based on a comparison with traditionally-taught astronomy courses.
Gender Differences in Both Force Concept Inventory and Introductory Physics Performance
NASA Astrophysics Data System (ADS)
Docktor, Jennifer; Heller, Kenneth
2008-10-01
We present data from a decade of introductory calculus-based physics courses for science and engineering students at the University of Minnesota taught using cooperative group problem solving. The data include 40 classes with more than 5500 students taught by 22 different professors. The average normalized gain for males is 0.4 for these large classes that emphasized problem solving. Female students made up approximately 20% of these classes. We present relationships between pre and post Force Concept Inventory (FCI) scores, course grades, and final exam scores for females and males. We compare our results with previous studies from Harvard [2] and the University of Colorado [3,4]. Our data show there is a significant gender gap in pre-test FCI scores that persists post-instruction although there is essentially no gender difference in course performance as determined by course grade.
NASA Astrophysics Data System (ADS)
Fowler, C. M. R.
2004-12-01
The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3
NASA Astrophysics Data System (ADS)
Fowler, C. M. R.
2005-02-01
The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2004-05-01
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.
ERIC Educational Resources Information Center
Behroozi, F.
2018-01-01
When a chain hangs loosely from its end points, it takes the familiar form known as the catenary. Power lines, clothes lines, and chain links are familiar examples of the catenary in everyday life. Nevertheless, the subject is conspicuously absent from current introductory physics and calculus courses. Even in upper-level physics and math courses,…
Undergraduate Research: Mathematical Modeling of Mortgages
ERIC Educational Resources Information Center
Choi, Youngna; Spero, Steven
2010-01-01
In this article, we study financing in the real estate market and show how various types of mortgages can be modeled and analyzed. With only an introductory level of interest theory, finance, and calculus, we model and analyze three types of popular mortgages with real life examples that explain the background and inevitable outcome of the current…
NASA Astrophysics Data System (ADS)
Li, Jing; Singh, Chandralekha
2012-02-01
We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.
Student Performance in Measuring Distance with Wavelengths in Various Settings
NASA Astrophysics Data System (ADS)
White, Gary
2015-04-01
When physics students are asked to measure the distance between two fixed locations using a pre-defined wavelength as a ruler, there is a surprising failure rate, at least partially due to the fact that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this result, and also show some interesting features when comparing a setting involving slinkies with a setting involving surface waves on water.
Minimal Solutions to the Box Problem
ERIC Educational Resources Information Center
Chuang, Jer-Chin
2009-01-01
The "box problem" from introductory calculus seeks to maximize the volume of a tray formed by folding a strictly rectangular sheet from which identical squares have been cut from each corner. In posing such questions, one would like to choose integral side-lengths for the sheet so that the excised squares have rational or integral side-length.…
Understanding Gauss's Law Using Spreadsheets
ERIC Educational Resources Information Center
Baird, William H.
2013-01-01
Some of the results from the electrostatics portion of introductory physics are particularly difficult for students to understand and/or believe. For students who have yet to take vector calculus, Gauss's law is far from obvious and may seem more difficult than Coulomb's. When these same students are told that the minimum potential…
ERIC Educational Resources Information Center
Stroumbakis, Konstantinos
2010-01-01
Completion of higher level high school mathematics courses need not translate to success in introductory college level mathematics courses, which, in turn, may contribute to attrition from STEM programs. High school and college faculty rated online survey items, corresponding to content and pedagogy, with respect to importance for success in…
Moments of Inertia of Disks and Spheres without Integration
ERIC Educational Resources Information Center
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Initial experience with a calculus-based IPLS course at Vanderbilt
NASA Astrophysics Data System (ADS)
Hutson, M. Shane; Rericha, Erin C.
2014-03-01
By implementing research results from the PER community, we have designed a new calculus-based IPLS course and began teaching two sections of this course in Fall 2013, both taught by biological physicists. This course differs from Vanderbilt's other introductory physics offerings in two major ways. First, it seeks to implement PER-based active learning strategies including just-in-time teaching, peer instruction and context-rich problems. The latter are specifically designed within biomedical contexts. Second, the course content has been chosen to closely align with the core competencies delineated in the HHMI-AAMC report Scientific Foundations for Future Physicians. We provide students with a very explicit accounting (in the syllabus) of how this course will contribute to 5 of the 8 SFFP-competencies and 21 of its 37 learning objectives. Throughout the course and associated labs, we make repeated, explicit and hopefully authentic connections between physics and the life sciences. The chosen text reinforces our approach through well-developed biomedical applications of physics concepts. We will report what we've seen work and not work in our first implementation of an IPLS course and detail results regarding student learning and student attitudes towards physics.
Active Learning in a Large General Physics Classroom.
NASA Astrophysics Data System (ADS)
Trousil, Rebecca
2008-04-01
In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.
A Preliminary Study of the Effectiveness of Different Recitation Teaching Methods
NASA Astrophysics Data System (ADS)
Endorf, Robert J.; Koenig, Kathleen M.; Braun, Gregory A.
2006-02-01
We present preliminary results from a comparative study of student understanding for students who attended recitation classes which used different teaching methods. Student volunteers from our introductory calculus-based physics course attended a special recitation class that was taught using one of four different teaching methods. A total of 272 students were divided into approximately equal groups for each method. Students in each class were taught the same topic, "Changes in energy and momentum," from Tutorials in Introductory Physics. The different teaching methods varied in the amount of student and teacher engagement. Student understanding was evaluated through pretests and posttests given at the recitation class. Our results demonstrate the importance of the instructor's role in teaching recitation classes. The most effective teaching method was for students working in cooperative learning groups with the instructors questioning the groups using Socratic dialogue. These results provide guidance and evidence for the teaching methods which should be emphasized in training future teachers and faculty members.
NASA Astrophysics Data System (ADS)
McDermott, Lillian C.; Shaffer, Peter S.; Somers, Mark D.
1994-01-01
A problem on the Atwood's machine is often introduced early in the teaching of dynamics to demonstrate the application of Newton's laws to the motion of a compound system. In a series of preliminary studies, student understanding of the Atwood's machine was examined after this topic had been covered in a typical calculus-based course. Analysis of the data revealed that many students had serious difficulties with the acceleration, the internal and external forces, and the role of the string. The present study was undertaken to obtain more detailed information about the nature and prevalence of these difficulties and thus provide a sound basis for the design of more effective instruction. The context for the investigation is a group of related problems involving less complicated compound systems. Specific examples illustrate how this research, which was conducted primarily in a classroom setting, has served as a guide in the development of tutorial materials to supplement the lectures and textbook in a standard introductory course.
Workshop Physics Activity Guide, Module 4: Electricity and Magnetism
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2004-05-01
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:
Improving Critical Skills Using Wikis and CGPS in a Physics Classroom
NASA Astrophysics Data System (ADS)
Mohottala, H. E.
2016-10-01
We report the combined use of Wikispaces (wikis) and collaborative group problem solving (CGPS) sessions conducted in introductory-level calculus-based physics classes. As a part of this new teaching tool, some essay-type problems were posted on the wiki page on a weekly basis and students were encouraged to participate in problem solving without providing numerical final answers but only the steps. Each week students were further evaluated on problem solving skills, opening up more opportunity for peer interaction through CGPS. Students developed a set of skills in decision making, problem solving, communication, negotiation, critical and independent thinking, and teamwork through the combination of wikis and CGPS.
Investigating Student Understanding of Control of Variables
NASA Astrophysics Data System (ADS)
Boudreaux, Andrew; Heron, P. R.; Shaffer, P. S.
2006-12-01
The concept of control of variables is fundamental to science. A practical understanding is especially important for science teachers, who must help students design experiments and learn to interpret the results. Findings from an extended study of student and teacher facility with the reasoning underlying control of variables will be reported. This research has involved precollege science teachers, liberal arts physics students, calculus-based introductory physics students, and college science faculty. The results suggest that while most participants are familiar with the idea of controlled experiments, many lack functional skill with the underlying reasoning. Results from interviews and written questions will be used to illustrate specific difficulties.
Astronomical Simulations Using Visual Python
NASA Astrophysics Data System (ADS)
Cobb, Michael L.
2007-05-01
The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.
NASA Astrophysics Data System (ADS)
Rebello, Carina M.
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.
Assessment of student knowledge of the weak and strong nuclear forces
NASA Astrophysics Data System (ADS)
Shakya, Pramila
The purpose of this study was to determine if the use of active-learning activities to teach weak force and strong force to students enrolled in various courses at The University of Southern Mississippi, Hattiesburg campus and Gulf Park campus at different class times would increase their knowledge. There were eighty-six students that took part in this study. The study was conducted in the lab classes of an introductory astronomy survey course (AST 111), an introductory algebra-based physics course (PHY 112), and an introductory calculus-based physics course (PHY 202) during fall semester, 2014. Each class was randomly assigned as active-learning or direct instruction. A pretest followed by lecture was administered to all groups. The active-learning group performed four activities whereas the direct group watched a video irrelevant to the lesson. At the end of the lesson, the same post-test was given to all groups. Various statistical methods were used to analyze the differences in mean pretest and posttest scores. Overall, results show that the mean posttest scores were higher than the mean pretest scores. Findings support the use of active-learning activities work to the small number of students or the equal number of students in a group. The mean posttest scores of the direct instruction classes were higher than those of the active-learning groups.
Gravitational Wave Detection in the Introductory Lab
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2017-01-01
Great physics breakthroughs are rarely included in the introductory physics course. General relativity and binary black hole coalescence are no different, and can be included in the introductory course only in a very limited sense. However, we can design activities that directly involve the detection of GW150914, the designation of the Gravitation Wave signal detected on September 14, 2015, thereby engage the students in this exciting discovery directly. The activities naturally do not include the construction of a detector or the detection of gravitational waves. Instead, we design it to include analysis of the data from GW150914, which includes some interesting analysis activities for students of the introductory course. The same activities can be assigned either as a laboratory exercise or as a computational project for the same population of students. The analysis tools used here are simple and available to the intended student population. It does not include the sophisticated analysis tools, which were used by LIGO to carefully analyze the detected signal. However, these simple tools are sufficient to allow the student to get important results. We have successfully assigned this lab project for students of the introductory course with calculus at Georgia Gwinnett College.
Effectiveness of different tutorial recitation teaching methods and its implications for TA training
NASA Astrophysics Data System (ADS)
Endorf, Robert
2008-04-01
We present results from a comparative study of student understanding for students who attended recitation classes that used different teaching methods. The purpose of the study was to evaluate which teaching methods would be the most effective for recitation classes associated with large lectures in introductory physics courses. Student volunteers from our introductory calculus-based physics course at the University of Cincinnati attended a special recitation class that was taught using one of four different teaching methods. A total of 272 students were divided into approximately equal groups for each method. Students in each class were taught the same topic, ``Changes in Energy and Momentum,'' from ``Tutorials in Introductory Physics'' by Lillian McDermott, Peter Shaffer and the Physics Education Group at the University of Washington. The different teaching methods varied in the amount of student and teacher engagement. Student understanding was evaluated through pretests and posttests. Our results demonstrate the importance of the instructor's role in teaching recitation classes. The most effective teaching method was for students working in cooperative learning groups with the instructors questioning the groups using Socratic dialogue. In addition, we investigated student preferences of modes of instruction through an open-ended survey. Our results provide guidance and evidence for the teaching methods which should be emphasized in training course instructors.
Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate
2013-06-01
Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments.
Using Assessments to Investigate and Compare the Nature of Learning in Undergraduate Science Courses
Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate
2013-01-01
Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments. PMID:23737631
Presenting the Straddle Lemma in an introductory Real Analysis course
NASA Astrophysics Data System (ADS)
Soares, A.; Santos, A. L. dos
2017-04-01
In this article, we revisit the concept of strong differentiability of real functions of one variable, underlying the concept of differentiability. Our discussion is guided by the Straddle Lemma, which plays a key role in this context. The proofs of the results presented are designed to meet a young audience in mathematics, typical of students in a first course of Real Analysis or an honors-level Calculus course.
NASA Astrophysics Data System (ADS)
Laws, Priscilla W.
2004-05-01
The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including:
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Singh, Chandralekha
2013-12-01
In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies for future investigation.
Identifying and addressing student difficulties with the ideal gas law
NASA Astrophysics Data System (ADS)
Kautz, Christian Hans
This dissertation reports on an in-depth investigation of student understanding of the ideal gas law. The research and curriculum development were mostly conducted in the context of algebra- and calculus-based introductory physics courses and a sophomore-level thermal physics course. Research methods included individual demonstration interviews and written questions. Student difficulties with the quantities: pressure, volume, temperature, and the number of moles were identified. Data suggest that students' incorrect and incomplete microscopic models about gases contribute to the difficulties they have in answering questions posed in macroscopic terms. In addition, evidence for general reasoning difficulties is presented. These research results have guided the development of curriculum to address the student difficulties that have been identified.
NASA Astrophysics Data System (ADS)
Marshall, Jill A.; Dorward, James T.
2000-07-01
The study reported here was designed to substantiate the findings of previous research on the use of inquiry-based laboratory activities in introductory college physics courses. The authors sought to determine whether limited use of inquiry activities as a supplement to a traditional lecture and demonstration curriculum would improve student achievement in introductory classes for preservice teachers and general education students. Achievement was measured by responses to problems designed to test conceptual understanding as well as overall course grades. We analyzed the effect on selected student outcome measures in a preliminary study in which some students engaged in inquiry activities and others did not, and interviewed students about their perceptions of the inquiry activities. In the preliminary study, preservice elementary teachers and female students showed significantly higher achievement after engaging such activities, but only on exam questions relating directly to the material covered in the exercises. In a second study we used a common exam problem to compare the performance of students who had engaged in a revised version of the inquiry activities with the performance of students in algebra and calculus-based classes. The students who had engaged in inquiry investigations significantly outperformed the other students.
Toward equity through participation in Modeling Instruction in introductory university physics
NASA Astrophysics Data System (ADS)
Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla
2010-06-01
We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women, similarly enter with scores indicating lower conceptual understanding, and over the course of MI this understanding gap increases, yet we do not find differences in the odds of success between men and women. Contrasting these results with the participationist view on learning indicates a movement toward greater equity in introductory physics but also indicates that the instructional environment can be improved.
NASA Astrophysics Data System (ADS)
Gavrin, Andy; Lindell, Rebecca
2017-03-01
There are many reasons for an instructor to consider using social media, particularly in a large introductory course. Improved communications can lessen the sense of isolation some students feel in large classes, and students may be more likely to respond to faculty announce-ments in a form that is familiar and comfortable. Furthermore, many students currently establish social media sites for their classes, without the knowledge or participation of their instructors. Such "shadow" sites can be useful, but they can also become distributors of misinformation, or venues for inappropriate or disruptive discussions. CourseNetworking (CN) is a social media platform designed for the academic environment. It combines many features common among learning management systems (LMS's) with an interface that looks and feels more like Facebook than a typical academic system. We have recently begun using CN as a means to engage students in an introductory calculus-based mechanics class, with enrollments of 150-200 students per semester. This article presents basic features of CN, and details our initial experiences and observations.
Effectiveness of different tutorial recitation teaching methods and its implications for TA training
NASA Astrophysics Data System (ADS)
Koenig, Kathleen M.; Endorf, Robert J.; Braun, Gregory A.
2007-06-01
We present results from a comparative study of student understanding for students who attended recitation classes that used different teaching methods. Student volunteers from our introductory calculus-based physics course attended a special recitation class that was taught using one of four different teaching methods. A total of 272 students were divided into approximately equal groups for each method. Students in each class were taught the same topic, “Changes in Energy and Momentum,” from Tutorials in Introductory Physics. The different teaching methods varied in the amount of student and teacher engagement. Student understanding was evaluated through pre- and post-tests. Our results demonstrate the importance of the instructor’s role in teaching recitation classes. The most effective teaching method was for students working in cooperative learning groups with the instructors questioning the groups using Socratic dialogue. In addition, we investigated student preferences for modes of instruction through an open-ended survey. Our results provide guidance and evidence for the teaching methods that should be emphasized in training course instructors.
Situated Self-efficacy in Introductory Physics Students
NASA Astrophysics Data System (ADS)
Henderson, Rachel; DeVore, Seth; Michaluk, Lynnette; Stewart, John
2017-01-01
Within the general university environment, students' perceived self-efficacy has been widely studied and findings suggest it plays a role in student success. The current research adapted a self-efficacy survey, from the ``Self-Efficacy for Learning Performance'' subscale of the Motivated Learning Strategies Questionnaire and administered it to the introductory, calculus-based physics classes (N=1005) over the fall 2015 and spring 2016 semesters. This assessment measured students' self-efficacy in domains including the physics class, other science and mathematics classes, and their intended future career. The effect of gender was explored with the only significant gender difference (p < . 001) existing within the physics domain. A hierarchical linear regression analysis indicated that this gender difference was not explained by a student's performance which was measured by test average. However, a mediation analysis showed that students' overall academic self-efficacy, measured by their math and science self-efficacy, acts as a mediator for the effect of test average on self-efficacy towards the physics class domain. This mediation effect was significant for both female (p < . 01) and male students (p < . 001) however, it was more pronounced for male students.
The relativistic gravity train
NASA Astrophysics Data System (ADS)
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Maries, Alexandru; Singh, Chandralekha
2013-01-01
We investigate introductory physics students' difficulties in translating between mathematical and graphical representations and the effect of scaffolding on students' performance. We gave a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution (a conducting sphere concentric with a conducting spherical shell) to 95 calculus-based introductory physics students. We asked students to write a mathematical expression for the electric field in various regions and asked them to graph the electric field. We knew from previous experience that students have great difficulty in graphing the electric field. Therefore, we implemented two scaffolding interventions to help them. Students who received the scaffolding support were either (1) asked to plot the electric field in each region first (before having to plot it as a function of distance from the center of the sphere) or (2) asked to plot the electric field in each region after explicitly evaluating the electric field at the beginning, mid and end points of each region. The comparison group was only asked to plot the electric field at the end of the problem. We found that students benefited the most from intervention (1) and that intervention (2), although intended to aid students, had an adverse effect. Also, recorded interviews were conducted with a few students in order to understand how students were impacted by the aforementioned interventions.
Enabling Students to Develop a Scientific Mindset
NASA Astrophysics Data System (ADS)
Kalman, Calvin
2010-02-01
This paper is centered on getting students to understand the nature of science (NOS) by considering historical material in relation to modern philosophers of science. This paper incorporates the methodology of contrasting cases in the calculus-based introductory physics course on optics and modern physics. Students study one philosopher all semester as a group project and report regularly on how their philosopher would view the subject matter of the course. Almost all of the students were able to argue successfully on the final examination about all three philosophers. Students become aware that the same textual material can be viewed in a variety of ways. The answers that students give about the NOS have become clearer at the end of the course.
NASA Astrophysics Data System (ADS)
Loehr, John Francis
The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.
Exploring Magnetic Fields with a Compass
NASA Astrophysics Data System (ADS)
Lunk, Brandon; Beichner, Robert
2011-01-01
A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.
NASA Astrophysics Data System (ADS)
Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia
2007-12-01
To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.
Weeded Out? Gendered Responses to Failing Calculus.
Sanabria, Tanya; Penner, Andrew
2017-06-01
Although women graduate from college at higher rates than men, they remain underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study examines whether women react to failing a STEM weed-out course by switching to a non-STEM major and graduating with a bachelor's degree in a non-STEM field. While competitive courses designed to weed out potential STEM majors are often invoked in discussions around why students exit the STEM pipeline, relatively little is known about how women and men react to failing these courses. We use detailed individual-level data from the National Educational Longitudinal Study (NELS) Postsecondary Transcript Study (PETS): 1988-2000 to show that women who failed an introductory calculus course are substantially less likely to earn a bachelor's degree in STEM. In doing so, we provide evidence that weed-out course failure might help us to better understand why women are less likely to earn degrees.
Weeded Out? Gendered Responses to Failing Calculus
Sanabria, Tanya; Penner, Andrew
2018-01-01
Although women graduate from college at higher rates than men, they remain underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study examines whether women react to failing a STEM weed-out course by switching to a non-STEM major and graduating with a bachelor’s degree in a non-STEM field. While competitive courses designed to weed out potential STEM majors are often invoked in discussions around why students exit the STEM pipeline, relatively little is known about how women and men react to failing these courses. We use detailed individual-level data from the National Educational Longitudinal Study (NELS) Postsecondary Transcript Study (PETS): 1988–2000 to show that women who failed an introductory calculus course are substantially less likely to earn a bachelor’s degree in STEM. In doing so, we provide evidence that weed-out course failure might help us to better understand why women are less likely to earn degrees. PMID:29616148
Choices in higher education: Majoring in and changing from the sciences
NASA Astrophysics Data System (ADS)
Minear, Nancy Ann
This dissertation addresses patterns of retention of undergraduate science, engineering and mathematics (SEM) students, with special attention paid to female and under represented minority students. As such, the study is focused on issues related to academic discipline and institutional retention, rather than the retention of students in the overall system of higher education. While previous retention studies have little to say about rates of retention that are specific to the sciences (or any other specific area of study) or employ models that rely on students' performance at the college level, this work address both points by identifying the post secondary academic performance characteristics of persisters and non-persisters in the sciences by gender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in sciencegender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in science majors. A secondary goal of investigating the usefulness of institutional records for retention research is addressed. Models produced for the entire population and selected subpopulations consistently classified higher-performing (both SEM and non-SEM grade point averages) students into Bachelor of Science categories using the number of Introductory Chemistry courses attempted at the university. For lower performing students, those with more introductory chemistry courses were classified as changing majors out of the sciences, and in general as completing a Bachelor of Arts degree. Performance in gatekeeper courses as a predictor of terminal academic status was limited to Introductory Physics for a small number of cases. Performance in Introductory Calculus and Introductory Chemistry were not consistently utilized as predictor variables. The models produced for various subpopulations (women, ethnic groups and matriculation major) utilized the same set of predictor variables with varying cutpoints for classification.
NASA Astrophysics Data System (ADS)
Aurora, Tarlok
2005-04-01
In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.
NASA Astrophysics Data System (ADS)
Brewe, Eric; Traxler, Adrienne; de la Garza, Jorge; Kramer, Laird H.
2013-12-01
We report on a multiyear study of student attitudes measured with the Colorado Learning Attitudes about Science Survey in calculus-based introductory physics taught with the Modeling Instruction curriculum. We find that five of six instructors and eight of nine sections using Modeling Instruction showed significantly improved attitudes from pre- to postcourse. Cohen’s d effect sizes range from 0.08 to 0.95 for individual instructors. The average effect was d=0.45, with a 95% confidence interval of (0.26-0.64). These results build on previously published results showing positive shifts in attitudes from Modeling Instruction classes. We interpret these data in light of other published positive attitudinal shifts and explore mechanistic explanations for similarities and differences with other published positive shifts.
An Algebra-Based Introductory Computational Neuroscience Course with Lab.
Fink, Christian G
2017-01-01
A course in computational neuroscience has been developed at Ohio Wesleyan University which requires no previous experience with calculus or computer programming, and which exposes students to theoretical models of neural information processing and techniques for analyzing neural data. The exploration of theoretical models of neural processes is conducted in the classroom portion of the course, while data analysis techniques are covered in lab. Students learn to program in MATLAB and are offered the opportunity to conclude the course with a final project in which they explore a topic of their choice within computational neuroscience. Results from a questionnaire administered at the beginning and end of the course indicate significant gains in student facility with core concepts in computational neuroscience, as well as with analysis techniques applied to neural data.
Student ability to apply the concepts of work and energy to extended systems
NASA Astrophysics Data System (ADS)
Lindsey, Beth A.; Heron, Paula R. L.; Shaffer, Peter S.
2009-11-01
We report results from an investigation of student ability to apply the concepts of work and energy to situations in which the internal structure of a system cannot be ignored, that is, the system cannot be treated as a particle. Students in introductory calculus-based physics courses were asked written and online questions after relevant instruction by lectures, textbook, and laboratory. Several difficulties were identified. Some related to student ability to calculate the work done on a system. Failure to associate work with the change in energy of a system was also widespread. The results have implications for instruction that aims for a rigorous treatment of energy concepts that is consistent with the first law of thermodynamics. The findings are guiding the development of two tutorials to supplement instruction.
Inquiring Minds Want to Know: Progress Report on SCALE-UP Physics at Penn State Erie
NASA Astrophysics Data System (ADS)
Hall, Jonathan
2008-03-01
SCALE-UP (Student Centered Activities for Large Enrollment University Programs) is a ``studio'' approach to learning developed by Bob Beichner at North Carolina State University. SCALE-UP was adapted for teaching and learning in the introductory calculus-based mechanics course at Penn State Erie, The Behrend College, starting in Spring 2007. We are presently doing quantitative and qualitative research on using inquiry-based learning with first year college students, in particular how it effects female students and students from groups that are traditionally under-represented in STEM fields. Using field notes of observations of the classes, focus groups, and the collection of quantitative data, the feedback generated by the research is also being used to improve the delivery of the course, and in the planning of adopting SCALE-UP to the second semester course on electromagnetism in the Fall 2008 semester.
Hands-on-Entropy, Energy Balance with Biological Relevance
NASA Astrophysics Data System (ADS)
Reeves, Mark
2015-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.
NASA Astrophysics Data System (ADS)
Magnen, Jacques; Unterberger, Jérémie
2012-03-01
{Let $B=(B_1(t),...,B_d(t))$ be a $d$-dimensional fractional Brownian motion with Hurst index $\\alpha<1/4$, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of $B$ is a difficult task because of the low H\\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to $B$, or to solving differential equations driven by $B$. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \\cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\\'evy area.
A First Course in Atmospheric Thermodynamics
NASA Astrophysics Data System (ADS)
Chilson, Phillip
2009-08-01
It is not uncommon to find textbooks that have been written with the intention of catering to a broad spectrum of readers. Often, though not always, the result is a book appropriate for neither advanced nor beginning students. However, Grant Petty had a very specific target audience in mind when he wrote A First Course in Atmospheric Thermodynamics. The book is clearly gauged for atmospheric science and meteorology students who have had introductory courses in physics and calculus but who have not necessarily established a firm foundation in analytic problem solving.
From F = ma to Flying Squirrels: Curricular Change in an Introductory Physics Course
O’Shea, Brian; Terry, Laura; Benenson, Walter
2013-01-01
We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011–2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences–oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning–based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major. PMID:23737630
From F = ma to flying squirrels: curricular change in an introductory physics course.
O'Shea, Brian; Terry, Laura; Benenson, Walter
2013-06-01
We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.
Analytical derivation: An epistemic game for solving mathematically based physics problems
NASA Astrophysics Data System (ADS)
Bajracharya, Rabindra R.; Thompson, John R.
2016-06-01
Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.
Teaching assistant-student interactions in a modified SCALE-UP classroom
NASA Astrophysics Data System (ADS)
DeBeck, George; Demaree, Dedra
2012-02-01
In the spring term of 2010, Oregon State University (OSU) began using a SCALE-UP style classroom in the instruction of the introductory calculus-based physics series. Instruction in this classroom was conducted in weekly two-hour sessions facilitated by the primary professor and either two graduate teaching assistants (GTAs) or a graduate teaching assistant and an undergraduate learning assistant (LA). During the course of instruction, two of the eight tables in the room were audio and video recorded. We examine the practices of the GTAs in interacting with the students through both qualitative and quantitative analyses of these recordings. Quantitatively, significant differences are seen between the most experienced GTA and the rest. A major difference in confidence is also observed in the qualitative analysis of this GTA compared to a less experienced GTA.
NASA Astrophysics Data System (ADS)
Kryjevskaia, Lioudmila N.
This dissertation reports on an in-depth investigation of student understanding of wave phenomena at a boundary. The research and curriculum development were conducted in the contexts of the introductory calculus-based physics course and special courses for preservice and inservice teachers. Research methods included pretests, post-tests, and informal observations and discussions with students. Several student difficulties with wave behavior at a boundary and the cause and effect relationship between wavelength, frequency, and propagation speed were identified. The results from this investigation have guided the development of two sets of instructional materials designed to address the conceptual and reasoning difficulties that were identified. The first is a sequence of tutorials intended to supplement standard lecture and laboratory instruction on mechanical waves in a traditional introductory course. The second consists of a module on mechanical waves designed for use in inquiry-oriented courses for preservice and inservice teachers. Ongoing assessment of both sets of materials indicates that they are effective in addressing many of the student difficulties that were found to be persistent. Such difficulties, when not addressed, may hinder student understanding of more advanced topics such as interference and diffraction of waves.
Factors Associated with Success in College Calculus II
ERIC Educational Resources Information Center
Rosasco, Margaret E.
2013-01-01
Students are entering college having earned credit for college Calculus 1 based on their scores on the College Board's Advanced Placement (AP) Calculus AB exam. Despite being granted credit for college Calculus 1, it is unclear whether these students are adequately prepared for college Calculus 2. College calculus classes are often taught from a…
Characterizing, modeling, and addressing gender disparities in introductory college physics
NASA Astrophysics Data System (ADS)
Kost-Smith, Lauren Elizabeth
2011-12-01
The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self-affirmation was strongest for females who endorsed the stereotype that men do better than women in physics. The findings of this thesis suggest that there are multiple factors that contribute to the underperformance of females in physics. Establishing this model of gender differences is a first step towards increasing females' participation and performance in physics, and can be used to guide future interventions to address the disparities.
NASA Astrophysics Data System (ADS)
Reeves, Mark
2014-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Derivation of the Biot-Savart Law from Ampere's Law Using the Displacement Current
NASA Astrophysics Data System (ADS)
Buschauer, Robert
2013-12-01
The equation describing the magnetic field due to a single, nonrelativistic charged particle moving at constant velocity is often referred to as the "Biot-Savart law for a point charge." Introductory calculus-based physics books usually state this law without proof.2 Advanced texts often present it either without proof or as a special case of a complicated mathematical formalism.3 Either way, little or no physical insight is provided to the student regarding the underlying physics. This paper presents a novel, basic, and transparent derivation of the Biot-Savart law for a point charge based only on Maxwell's displacement current term in Ampere's law. This derivation can serve many pedagogical purposes. For example, it can be used as lecture material at any academic level to obtain the Biot-Savart law for a point charge from simple principles. It can also serve as a practical example of the important fact that a changing electric flux produces a magnetic field.
Examining gender differences on FCI performance in algebra and calculus based physics courses
NASA Astrophysics Data System (ADS)
Kreutzer, Kimberley; Boudreaux, Andrew
2009-05-01
The Force Concept Inventory (FCI) has been widely used to asses student understanding of Newtonian principles. Studies have shown a marked difference in the performance of men and women on both pre- and post-tests [1,2] and also indicate that experiential based instruction may lead to a reduction in this gender gap [1,3]. This poster presents FCI data collected at Western Washington University. Initial analysis of gender differences are consistent with those reported nationally. We also discuss factors that may contribute to the differences in performance and propose instructional strategies that are designed to address the gender gap. [4pt] [1] M. Lorenzo, et. al., ``Reducing the gender gap in the physics classroom,'' AJP 74(2), 118-122 (2006) [0pt] [2] J. Docktor and K. Heller, ``Gender Differences in Both Force Concept Inventory and Introductory Physics Performance,'' Proceedings at the 2008 PERC [0pt] [3] S. Pollack, et. al., ``Reducing the gender gap in the physics classroom: How sufficient is interactive engagement?'' PRST-PER 3 (2007)
Reaching Out: The Bachelor of Arts Degree In Physics
NASA Astrophysics Data System (ADS)
Hobson, Art
1996-05-01
Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.
Evaluating and redesigning teaching learning sequences at the introductory physics level
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José
2017-12-01
In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.
NASA Astrophysics Data System (ADS)
Fencl, Heidi S.; Scheel, Karen R.
2004-09-01
Self-efficacy, or a person's situation-specific belief that s/he can succeed in a given task, has been successful in a variety of educational studies for predicting behaviors such as perseverance and success (grades), and for understanding which behaviors are attempted or avoided. The focus of this study was to examine if classroom factors such as teaching strategies and classroom climate contribute to students' physics self-efficacy. 121 undergraduates in first semester, calculus-based introductory physics courses completed surveys assessing course experiences, self-efficacy and other outcome variables, and demographic information. Students in sections including a mix of teaching strategies did significantly better than students in the traditional section on outcome variables including self-efficacy. When individual strategies were examined, the strongest relationships were found between cooperative learning strategies and all sources of self-efficacy, and between climate variables and all sources of efficacy.
Apples vs. Oranges: Comparison of Student Performance in a MOOC vs. a Brick-and-Mortar Class
NASA Astrophysics Data System (ADS)
Dubson, Michael
In the fall of 2013, my colleagues and I taught the calculus-based introductory physics course to 800 tuition-paying students at the University of Colorado at Boulder. At the same time we taught a free massive open online version of the same course (MOOC), through Coursera.com. The initial enrollment in the MOOC was 10,000 students, of whom 255 completed the course. Students in both courses received identical lectures with identical embedded clicker questions, identical homework assignments, and identical timed exams. We present data on participation rates and exam performance for the two groups. We find that the MOOC is like a drug targeted at a very specific population. When it works, it works well, but it works for very few students. This MOOC worked well for older, well-educated students, who already had a good understanding of Newtonian mechanics.
NASA Astrophysics Data System (ADS)
Perkins, Katherine K.; Gratny, Mindy
2010-10-01
In this paper, we examine the correlation between students' beliefs upon entering college and their likelihood of continuing on to become a physics major. Since 2004, we have collected CLASS survey and self-reported level-of-interest responses from students in the first-term, introductory calculus-based physics course (N>2500). Here, we conduct a retrospective analysis of students' incoming CLASS scores and level of interest, comparing those students who go on to become physics majors with those who do not. We find the incoming CLASS scores and reported interest of these future physics majors to be substantially higher than the class average, indicating that these students enter their first college course already having quite expert-like beliefs. The comparative differences are much smaller for grades, SAT score, and university predicted-GPA.
Learning by doing at the Colorado School of Mines
NASA Astrophysics Data System (ADS)
Furtak, Thomas E.; Ruskell, Todd G.
2013-03-01
With over 260 majors, the undergraduate physics program at CSM is among the largest in the country. An underlying theme in this success is experiential learning, starting with a studio teaching method in the introductory calculus-based physics courses. After their second year students complete a 6-week full-time summer course devoted to hands-on practical knowledge and skills, including machine shop techniques, high-vacuum technology, applied optics, electronic control systems, and computational tools. This precedes a two-semester laboratory sequence that can be taught at an advanced level because of the students' experience. The required capstone senior course is a year-long open-ended challenge in which students partner with members of the faculty to work on authentic research projects, teaming with grad students or post-docs as contributing members to the department's externally funded scholarship. All of these features are important components of our B.S. degree, Engineering Physics, which is officially accredited by ABET.
TA Beliefs in a SCALE-UP Style Classroom
NASA Astrophysics Data System (ADS)
DeBeck, George; Settelmeyer, Sam; Li, Sissi; Demaree, Dedra
2010-10-01
In Spring 2010, the Oregon State University physics department instituted a SCALE-UP (Student-Centered Active Learning Environment for Undergraduate Programs) style studio classroom in the introductory, calculus-based physics series. In our initial implementation, comprised of two hours lecture, two hours of studio, and two hours lab work, the studio session was lead by a faculty member and either 2 GTAs or 1 GTA and 1 LA. We plan to move to a model where senior GTAs can lead studio sections after co-teaching with the faculty member. It is critical that we know how to prepare and support the instructional team in facilitating student learning in this setting. We examine GTA and LA pedagogical beliefs through reflective journaling, interviews, and personal experience of the authors. In particular, we examine how these beliefs changed over their first quarter of instruction, as well as the resources used to adapt to the new classroom environment.
How a gender gap in belonging contributes to the gender gap in physics participation
NASA Astrophysics Data System (ADS)
Stout, Jane G.; Ito, Tiffany A.; Finkelstein, Noah D.; Pollock, Steven J.
2013-01-01
A great deal of research indicates that feeling a secure sense of belonging in academic settings is critical to students' achievement. In the current work, we present data collected over multiple semesters of a calculus-based introductory physics class indicating that women feel a lower sense of belonging than men in physics. This finding is important because our data also indicate that having a strong sense of belonging in physics positively predicts the degree to which all students see the value of physics in their daily life (an outcome that predicts motivation and persistence in achievement settings) as well as performance on exams in the course. We identify one potential antecedent of women's relatively lower sense of belonging in physics, namely, negative cultural stereotypes about women's inferior ability in physics compared to men. We then discuss pedagogical strategies that might be employed to enhance women's sense of belonging in physics.
Characterizing the Fundamental Intellectual Steps Required in the Solution of Conceptual Problems
NASA Astrophysics Data System (ADS)
Stewart, John
2010-02-01
At some level, the performance of a science class must depend on what is taught, the information content of the materials and assignments of the course. The introductory calculus-based electricity and magnetism class at the University of Arkansas is examined using a catalog of the basic reasoning steps involved in the solution of problems assigned in the class. This catalog was developed by sampling popular physics textbooks for conceptual problems. The solution to each conceptual problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content within the course. Using this characterization technique, an exceptionally detailed picture of the information flow and structure of the class can be produced. The intellectual structure of published conceptual inventories is compared with the information presented in the class and the dependence of conceptual performance on the details of coverage extracted. )
The Physics Learning Center at the University of Wisconsin-Madison
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.
2013-03-01
The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors
A Simple Acronym for Doing Calculus: CAL
ERIC Educational Resources Information Center
Hathaway, Richard J.
2008-01-01
An acronym is presented that provides students a potentially useful, unifying view of the major topics covered in an elementary calculus sequence. The acronym (CAL) is based on viewing the calculus procedure for solving a calculus problem P* in three steps: (1) recognizing that the problem cannot be solved using simple (non-calculus) techniques;…
NASA Astrophysics Data System (ADS)
Shapiro, Amy; O'Rielly, Grant; Sims-Knight, Judith
2014-03-01
Clickers are commonly used in large-enrollment introductory courses in order to encourage attendance, increase student engagement and improve learning. We report the results from a highly controlled study of factual and conceptual clicker questions in calculus-based introductory physics courses, on students' performance on the factual and conceptual exam questions they targeted. We found that clicker questions did not enhance student performance on either type of exam question. The use of factual clicker questions actually decreased student performance on conceptual exam questions, however. Directing students' attention to surface features of the course content may distract them from the important underlying concepts. The conceptual clicker questions were likely ineffective because the practice students got on homework questions had a stronger effect than the single question posed in class. Interestingly, the same studies in general education biology and psychology courses show a strong, positive effect of clickers on student learning. This study suggest that the usefulness of clickers should be weighed in the context of other course activities and goals. Secondary analyses will explore the effect of students' GPA, motivation and study strategies on the results. This work was supported by the Institute of Education Sciences, US Dept. of Education, through Grant R305A100625 to UMass Dartmouth. The opinions expressed are those of the authors and do not represent views of the Institute or the US Dept. of Education.
Internet computer coaches for introductory physics problem solving
NASA Astrophysics Data System (ADS)
Xu Ryan, Qing
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.
Is classical mechanics a prerequisite for learning physics of the 20th century?
NASA Astrophysics Data System (ADS)
Walwema, Godfrey B.; French, Debbie A.; Verley, Jim D.; Burrows, Andrea C.
2016-11-01
Physics of the 20th century has contributed significantly to modern technology, and yet many physics students are never availed the opportunity to study it as part of the curriculum. One of the possible reasons why it is not taught in high school and introductory physics courses could be because curriculum designers believe that students need a solid background in classical mechanics and calculus in order to study physics of the 20th century such as the photoelectric effect, special and general relativity, the uncertainty principle, etc. This presumption may not be justifiable or valid. The authors of this paper contend that teaching physics of the 20th century aids students in relating physics to modern technology and the real world, making studying physics exciting. In this study, the authors correlated scores for matched questions in the Mechanics Baseline Test and a physics of the 20th century test in order to examine the trend of the scores. The participants included undergraduate students attending an introductory algebra-based physics course with no intention of taking physics at a higher level. The analysis of the scores showed no significant correlation for any of the matched pairs of questions. The purpose of this article is to recommend that even without a solid background in classical mechanics, teachers can introduce physics of the 20th century to their students for increased interest.
DOE Fundamentals Handbook: Mathematics, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
DOE Fundamentals Handbook: Mathematics, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
NASA Astrophysics Data System (ADS)
Wharmby, Andrew William
Existing fractional calculus models having a non-empirical basis used to describe constitutive relationships between stress and strain in viscoelastic materials are modified to employ all orders of fractional derivatives between zero and one. Parallels between viscoelastic and dielectric theory are drawn so that these modified fractional calculus based models for viscoelastic materials may be used to describe relationships between electric flux density and electric field intensity in dielectric materials. The resulting fractional calculus based dielectric relaxation model is tested using existing complex permittivity data in the radio-frequency bandwidth of a wide variety of homogeneous materials. The consequences that the application of this newly developed fractional calculus based dielectric relaxation model has on Maxwell's equations are also examined through the effects of dielectric dissipation and dispersion.
Partial Fractions via Calculus
ERIC Educational Resources Information Center
Bauldry, William C.
2018-01-01
The standard technique taught in calculus courses for partial fraction expansions uses undetermined coefficients to generate a system of linear equations; we present a derivative-based technique that calculus and differential equations instructors can use to reinforce connections to calculus. Simple algebra shows that we can use the derivative to…
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.
ERIC Educational Resources Information Center
Natour, Denise M.
This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…
An Excel-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Martin, Linda
2008-01-01
Calculus-based business mathematics is a required quantitative course for undergraduate business students in most AACSB accredited schools or colleges of business. Many business students, however, have relatively weak mathematical background or even display math-phobia when presented with calculus problems. Because of the popularity of Excel, its…
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Lin, Shih-Yin; Singh, Chandralekha
2017-12-01
Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students' representational consistency. Students in calculus-based introductory physics were given a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution in which they were asked to write a mathematical expression for the electric field in various regions and then plot the electric field. In study 1, we found that students had great difficulty in plotting the electric field as a function of the distance from the center of the sphere consistent with the mathematical expressions in various regions, and interviews with students suggested possible reasons which may account for this difficulty. Therefore, in study 2, we designed two scaffolding interventions with levels of support which built on each other (i.e., the second scaffolding level built on the first) in order to help students plot their expressions consistently and compared the performance of students provided with scaffolding with a comparison group which was not given any scaffolding support. Analysis of student performance with different levels of scaffolding reveals that scaffolding from an expert perspective beyond a certain level may sometimes hinder student performance and students may not even discern the relevance of the additional support. We provide possible interpretations for these findings based on in-depth, think-aloud student interviews.
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules indlude study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics
NASA Astrophysics Data System (ADS)
Dou, Remy
This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has implications on how students learn in a variety of introductory STEM classrooms and settings structured after constructivist and sociocultural learning theories. I collected data related to students' in-class interactions using the tools of social network analysis (SNA). Social network analysis has recently been shown to be an effective and useful way to examine the structure of student relationships that develop in and out of STEM classrooms. This set of studies furthers the implementation of SNA as a tool to examine self-efficacy and interest formation in the active learning physics classroom. Here I represent a variety of statistical applications of SNA, including bootstrapped linear regression (Chapter 2), structural equation modeling (Chapter 3), and hierarchical linear modeling for longitudinal analyses (Chapter 4). Self-efficacy data were collected using the Sources of Self-Efficacy for Science Courses - Physics survey (SOSESC-P), and interest data were collected using the physics identity survey. Data for these studies came from the Modeling Instruction sections of Introductory Physics with Calculus offered at Florida International University in the fall of 2014 and 2015. Analyses support the idea that students' perceptions of one another impact the development of their social network centrality, which in turn affects their self-efficacy building experiences and their overall self-efficacy. It was shown that unlike career theories that emphasize causal relationships between the development of self-efficacy and the subsequent growth of student interest, in this context student interest takes precedence before the development of student self-efficacy. This outcome also has various implications for career theories.
Do evidence-based active-engagement courses reduce the gender gap in introductory physics?
NASA Astrophysics Data System (ADS)
Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha
2018-03-01
Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on the validated conceptual surveys and the final exam, which had a heavy weight on quantitative problem solving.
On the Presentation of Pre-Calculus and Calculus Topics: An Alternate View
ERIC Educational Resources Information Center
Davydov, Aleksandr; Sturm-Beiss, Rachel
2008-01-01
The orders of presentation of pre-calculus and calculus topics, and the notation used, deserve careful study as they affect clarity and ultimately students' level of understanding. We introduce an alternate approach to some of the topics included in this sequence. The suggested alternative is based on years of teaching in colleges within and…
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is Part of a series of 41 Calculus Based Physics (CBP) modules totaling about 1,000 Pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized courses in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Assessing the Impacts of a Hybrid ``Flipped'' Approach to University Physics.
NASA Astrophysics Data System (ADS)
Hughes, Chris; Paulson, Scott
2015-03-01
Over the course of several years, the physics faculty at James Madison University has been gradually reforming the introductory calculus-based physics sequence to a hybrid model using a ``flipped classroom'' approach. The content traditionally delivered during lecture was divided into approximately 150 short (5-10 minute) videos. For homework, students are assigned 3-5 videos to watch before each class session. These assignments are combined with in-class activities including gouger problem solving and the tutorials developed by the University of Washington group to provide the students with focused guidance on concepts and skills that students traditionally have left our classes not having mastered. For the fall semester course on mechanics, the Force Concept Inventory (FCI) was used to evaluate student outcomes. For the spring semester course on E&M and optics, the Conceptual Survey of Electricity and Magnetism (CSEM) was used. Student reaction to the course structure was generally positive though there were some complaints in the student evaluations at the end of each semester. However, a positive impact on student outcomes was observed based on the Hake gains on the FCI.
NASA Astrophysics Data System (ADS)
Behroozi, F.
2014-09-01
A hanging chain takes the familiar form known as the catenary which is one of the most ubiquitous curves students encounter in their daily life. Yet most introductory physics and mathematics texts ignore the subject entirely. In more advanced texts the catenary equation is usually derived as an application of the calculus of variations. Although the variational approach is mathematically elegant, it is suitable for more advanced students. Here we derive the catenary equation in special and rectangular coordinates by considering the equilibrium conditions for an element of the hanging chain and without resorting to the calculus of variations. One advantage of this approach is its simplicity which makes it accessible to undergraduate students; another is the concurrent derivation of a companion equation which gives the tension along the chain. These solutions provide an excellent opportunity for undergraduates to explore the underlying physics. One interesting result is that the shape of a hanging chain does not depend on its linear mass density or on the strength of the gravitational field. Therefore, within a scale factor, all catenaries are copies of the same universal curve. We give the functional dependence of the scale factor on the length and terminal angle of the hanging chain.
Subgingival calculus imaging based on swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Lu, Chih-Wei; Jiang, Cho-Pei; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei
2011-07-01
We characterized and imaged dental calculus using swept-source optical coherence tomography (SS-OCT). The refractive indices of enamel, dentin, cementum, and calculus were measured as 1.625 +/- 0.024, 1.534 +/- 0.029, 1.570 +/- 0.021, and 2.097 +/- 0.094, respectively. Dental calculus leads strong scattering properties, and thus, the region can be identified from enamel with SS-OCT imaging. An extracted human tooth with calculus is covered with gingiva tissue as an in vitro sample for tomographic imaging.
Dental calculus image based on optical coherence tomography
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei
2011-03-01
In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.
NASA Astrophysics Data System (ADS)
Horner, Joseph L.
1987-04-01
Progress in the fields of integrated optics and fiber optics is continuing at a rapid pace. Recognizing this trend, the goal of the author is to provide an introductory textbook on time-harmonic electromagnetic theory, with an emphasis on optical rather than microwave technologies. The book is appropriate for an upper-level undergraduate or graduate course. Each chapter includes examples of problems. The book focuses on several areas of prime importance to intergrated optics. These include dielectric waveguide analysis, couple-mode thoery, Bragg scattering, and prism coupling There is very little coverage of active components such as electro-optic modulators and switches. The author assumes the reader has a working knowledge of vector calculus and is familiar with Maxwell's equations.
Interactive, Collaborative, Electronic Learning Logs in the Physics Classroom
NASA Astrophysics Data System (ADS)
Gosling, Chris
2006-12-01
I describe my experiences using Hickman's Interactive Collaborative Electronic Learning Logs teaching HS Physics. ICE Learning Logs are written in student groups to answer questions posed by the instructor, who then in turn responds to each group’s entry before the next class. These logs were used with non-physics majors in both algebra and calculus-based introductory physics courses, and also at the high school level. I found ICE Learning Logs were found to be a clear improvement over traditional student journals. Excerpts from group entries will be presented to demonstrate the group identities that formed as well as the utility of the journals to probe for conceptual understanding. In addition, the ICE Learning Logs served as an excellent resource for students to review before exams and also to examine for critical moments to reflect on in formal essays. Hickman, P. (2000). Assessing student understanding with interactive-electronic-collaborative learning logs. ENC Focus, 7(2), 24-27. Sponsored by the National Science Foundation DUE0302097 and SUNY-Buffalo State Physics
NASA Astrophysics Data System (ADS)
Kalman, Calvin S.; Aulls, Mark W.
This study examines a course in which students use two writing activities and collaborative group activities to examine the conceptual structure of the calculus-based introductory Physics course. Students are presented with two alternative frameworks; pre-Galilean Physics and Newtonian Physics. The idea of the course design is that students would at first view the frameworks almost in a theatrical sense as a view of a drama involving a conflict of actors;Aristotle, Galileo, Newton and others occurring a long time ago. As participants passing through a series of interventions, the students become aware that the frameworks relate concepts from different parts of the course and learn to evaluate the two alternative frameworks. They develop a scientific mindset changing their outlook on the course material from the viewpoint that it consists of a tool kit of assorted practices, classified according to problem type, to the viewpoint that it comprises a connected structure of concepts.
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-12-01
This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.
Student Performance on Conceptual Questions: Does Instruction Matter?
NASA Astrophysics Data System (ADS)
Heron, Paula
2012-10-01
As part of the tutorial component of introductory calculus-based physics at the University of Washington, students take weekly pretests that consist of conceptual questions. Pretests are so named because they precede each tutorial, but they are frequently administered after lecture instruction. Many variables associated with class composition and prior instruction could, in principle, affect student performance. Nonetheless, the results are often found to be ``essentially the same'' in all classes. Selected questions for which we have accumulated thousands of responses, from dozens of classes representing different conditions with respect to the textbook in use, the amount of prior instruction, etc., serve as examples. A preliminary analysis suggests that the variation in performance across all classes is essentially random. No statistically significant difference is observed between results obtained before relevant instruction begins and after it has been completed. The results provide evidence that exposure to concepts in lecture and textbook is not sufficient to ensure an improvement in performance on questions that require qualitative reasoning.
ERIC Educational Resources Information Center
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
NASA Astrophysics Data System (ADS)
Trout, Joseph; Bland, Jared
2013-03-01
In this pilot project, one hour of lecture time was replaced with one hour of in-class assignments, which groups of students collaborated on. These in-class assignments consisted of problems or projects selected for the calculus-based introductory physics students The first problem was at a level of difficulty that the majority of the students could complete with a small to moderate amount of difficulty. Each successive problem was increasingly more difficult, the last problem being having a level of difficulty that was beyond the capabilities of the majority of the students and required some instructor intervention. The students were free to choose their own groups. Students were encouraged to interact and help each other understand. The success of the in-class exercises were measured using pre-tests and post-tests. The pre-test and post-test were completed by each student independently. Statistics were also compiled on each student's attendance record and the amount of time spent reading and studying, as reported by the student. Statistics were also completed on the student responses when asked if they had sufficient time to complete the pre-test and post-test and if they would have completed the test with the correct answers if they had more time. The pre-tests and post-tests were not used in the computation of the grades of the students.
Incorporating Inquiry-Based Learning in the Calculus Sequence: A Most Challenging Endeavour
ERIC Educational Resources Information Center
McLoughlin, M. Padraig M. M.
2009-01-01
A course in the Calculus sequence is arguably the most difficult course in which inquiry-based learning (IBL) can be achieved with any degree of success within the curriculum in part due to: (1) the plethora of majors taking Calculus to which the sequence relates to their majors in what is considered an "applied" manner; and (2) the…
Calculus domains modelled using an original bool algebra based on polygons
NASA Astrophysics Data System (ADS)
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2016-08-01
Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.
Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy
NASA Astrophysics Data System (ADS)
Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo
2011-06-01
Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.
Subgingival calculus imaging based on swept-source optical coherence tomography.
Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Lu, Chih-Wei; Jiang, Cho-Pei; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei
2011-07-01
We characterized and imaged dental calculus using swept-source optical coherence tomography (SS-OCT). The refractive indices of enamel, dentin, cementum, and calculus were measured as 1.625 ± 0.024, 1.534 ± 0.029, 1.570 ± 0.021, and 2.097 ± 0.094, respectively. Dental calculus leads strong scattering properties, and thus, the region can be identified from enamel with SS-OCT imaging. An extracted human tooth with calculus is covered with gingiva tissue as an in vitro sample for tomographic imaging.
A new proof of the generalized Hamiltonian–Real calculus
Gao, Hua; Mandic, Danilo P.
2016-01-01
The recently introduced generalized Hamiltonian–Real (GHR) calculus comprises, for the first time, the product and chain rules that makes it a powerful tool for quaternion-based optimization and adaptive signal processing. In this paper, we introduce novel dual relationships between the GHR calculus and multivariate real calculus, in order to provide a new, simpler proof of the GHR derivative rules. This further reinforces the theoretical foundation of the GHR calculus and provides a convenient methodology for generic extensions of real- and complex-valued learning algorithms to the quaternion domain.
NASA Astrophysics Data System (ADS)
Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.
2010-05-01
Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure of small groups focusing on fundamental understanding taught mostly by dedicated undergraduates should transfer well.
NASA Astrophysics Data System (ADS)
Kost-Smith, Lauren
2011-04-01
Despite males and females being equally represented at the college level in several STEM disciplines (including biology, chemistry and mathematics), females continue to be under-represented in physics. Our research documents and addresses this participation gender gap in the introductory, calculus-based physics courses at the University of Colorado. We characterize gender differences in performance, psychological factors (including attitudes and beliefs) and retention that exist in Physics 1 and 2 [L. E. Kost, et al., Phys. Rev. ST Phys. Educ. Res. 5, 010101 (2009); L. E. Kost-Smith, et al., Phys. Rev. ST Phys. Educ. Res. 6, 020112 (2010)]. We find that the gender differences in performance can largely be accounted for by measurable differences in the physics and mathematics backgrounds and incoming attitudes and beliefs of males and females. But these background factors do not completely account for the gender gaps. We hypothesize, based on gender differences in responses to survey questions about students' sense of physics identity and confidence levels, that identity threat (the fear of confirming a negative characterization about one's identity) is playing a role in our courses. Working with researchers in psychology, we implemented an intervention where students either wrote about their most important values or not, twice at the beginning of the course [A. Miyake, et al., Science, 330, 1234 (2010)]. This ``values affirmation'' activity reduced the male-female performance difference substantially and elevated women's modal grades from the C to B range. Benefits were strongest for women who tended to endorse the stereotype that men do better than women in physics. This brief psychological intervention may be a promising way to address the gender gap in science performance.
Imagine Yourself in This Calculus Classroom
ERIC Educational Resources Information Center
Bryan, Luajean
2007-01-01
The efforts to attract students to precalculus, trigonometry, and calculus classes became more successful at the author's school when projects-based classes were offered. Data collection from an untethered hot air balloon flight for calculus students was planned to maximize enrollment. The data were analyzed numerically, graphically, and…
Pulsed laser ablation of dental calculus in the near ultraviolet.
Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter
2014-02-01
Pulsed lasers emitting wavelengths near 400 nm can selectively ablate dental calculus without damaging underlying and surrounding sound dental hard tissue. Our results indicate that calculus ablation at this wavelength relies on the absorption of porphyrins endogenous to oral bacteria commonly found in calculus. Sub- and supragingival calculus on extracted human teeth, irradiated with 400-nm, 60-ns laser pulses at ≤8 J/cm2, exhibits a photobleached surface layer. Blue-light microscopy indicates this layer highly scatters 400-nm photons, whereas fluorescence spectroscopy indicates that bacterial porphyrins are permanently photobleached. A modified blow-off model for ablation is proposed that is based upon these observations and also reproduces our calculus ablation rates measured from laser profilometry. Tissue scattering and a stratified layering of absorbers within the calculus medium explain the gradual decrease in ablation rate from successive pulses. Depending on the calculus thickness, ablation stalling may occur at <5 J/cm2 but has not been observed above this fluence.
Calculus detection technologies: where do we stand now?
Archana, V
2014-01-01
Epidemiological studies have implicated dental calculus as an ideal substrate for subgingival microbial colonization. Therefore, the main objective of periodontal therapy is to eliminate the microbial biofilm along with the calculus deposits from the root surface by root surface debridement. Over the past years, a large number of clinical and laboratory studies have been conducted to evaluate the efficacy of calculus removal by various methods. None of these conventional methods or devices was effective in completely eliminating all the calculus from the diseased root surfaces. In this context, a number of newer technologies have been developed to identify and selectively remove the dental calculus. Regarding this fact, the present article highlights a critical review of these devices based on published clinical and experimental data. PMID:25870667
Calculus detection technologies: where do we stand now?
Archana, V
2014-01-01
Epidemiological studies have implicated dental calculus as an ideal substrate for subgingival microbial colonization. Therefore, the main objective of periodontal therapy is to eliminate the microbial biofilm along with the calculus deposits from the root surface by root surface debridement. Over the past years, a large number of clinical and laboratory studies have been conducted to evaluate the efficacy of calculus removal by various methods. None of these conventional methods or devices was effective in completely eliminating all the calculus from the diseased root surfaces. In this context, a number of newer technologies have been developed to identify and selectively remove the dental calculus. Regarding this fact, the present article highlights a critical review of these devices based on published clinical and experimental data.
Connecting Symbolic Integrals to Physical Meaning in Introductory Physics
NASA Astrophysics Data System (ADS)
Amos, Nathaniel R.
This dissertation presents a series of studies pertaining to introductory physics students' abilities to derive physical meaning from symbolic integrals (e.g., the integral of vdt) and their components, namely differentials and differential products (e.g., dt and vdt, respectively). Our studies focus on physical meaning in the form of interpretations (e.g., "the total displacement of an object") and units (e.g., "meters"). Our first pair of studies independently attempted to identify introductory-level mechanics students' common conceptual difficulties with and unproductive interpretations of physics integrals and their components, as well as to estimate the frequencies of these difficulties. Our results confirmed some previously-observed incorrect interpretations, such as the notion that differentials are physically meaningless; however, we also uncovered two new conceptualizations of differentials, the "rate" (differentials are "rates" or "derivatives") and "instantaneous value" (differentials are values of physical variables "at an instant") interpretations, which were exhibited by more than half of our participants at least once. Our next study used linear regression analysis to estimate the strengths of the inter-connections between the abilities to derive physical meaning from each of differentials, differential products, and integrals in both first- and second-semester, calculus-based introductory physics. As part of this study, we also developed a highly reliable, multiple choice assessment designed to measure students' abilities to connect symbolic differentials, differential products, and integrals with their physical interpretations and units. Findings from this study were consistent with statistical mediation via differential products. In particular, students' abilities to extract physical meaning from differentials were seen to be strongly related to their abilities to derive physical meaning from differential products, and similarly differential products to integrals; there was seen to be almost no direct connection between the abilities to derive physical meaning from differentials and the abilities to derive physical meaning from integrals. Our final pair of studies intended to implement and quantitatively assess the efficacy of specially-designed instructional tutorials in controlled experiments (with several treatment factors that may impact performance, most notably the effect of feedback during training) for the purpose of promoting better connection between symbolic differentials, differential products, and integrals with their corresponding physical meaning. Results from both experiments consistently and conclusively demonstrated that the ability to connect verbal and symbolic representations of integrals and their components is greatly improved by the provision of electronic feedback during training. We believe that these results signify the first instance of a large, controlled experiment involving introductory physics students that has yielded significantly stronger connection of physics integrals and their components to physical meaning, compared to untrained peers.
Calculus: An Active Approach with Projects.
ERIC Educational Resources Information Center
Hilbert, Steve; And Others
Ithaca College, in New York, has developed and tested a projects-based first-year calculus course over the last 3 years which uses the graphs of functions and physical phenomena to illustrate and motivate the major concepts of calculus and to introduce students to mathematical modeling. The course curriculum is designed to: (1) emphasize on the…
NASA Astrophysics Data System (ADS)
Wutchana, U.; Emarat, N.
2011-06-01
The Maryland Physics Expectations (MPEX) survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1) individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE) results, which measure students’ conceptual understanding, and (2) student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.
Implementing Projects in Calculus on a Large Scale at the University of South Florida
ERIC Educational Resources Information Center
Fox, Gordon A.; Campbell, Scott; Grinshpan, Arcadii; Xu, Xiaoying; Holcomb, John; Bénéteau, Catherine; Lewis, Jennifer E.; Ramachandran, Kandethody
2017-01-01
This paper describes the development of a program of project-based learning in Calculus courses at a large urban research university. In this program, students developed research projects in consultation with a faculty advisor in their major, and supervised by their calculus instructors. Students wrote up their projects in a prescribed format…
Brown, Laurie M; Casamassimo, Paul S; Griffen, Ann; Tatakis, Dimitris
2006-01-01
This study assessed the anti-calculus benefit of Crest Dual Action Whitening Toothpaste in gastrostomy (GT) children compared to a control anti-caries dentifrice. A double-blind randomized crossover design was used to compare the two dentifrices. A convenience sample of 24 GT subjects, 3-12 years old, was given a consensus baseline Volpe-Manhold Index calculus score by 2 trained examiners, followed by a dental prophylaxis to remove all calculus. Each child was randomly assigned to either study or control dentifrice groups. Caregivers brushed subjects' teeth twice daily with the unlabelled dentifrice for at least 45 seconds. Calculus was scored at 8 weeks (+/- 1 week) by the same investigators. Subjects then had a prophylaxis and received the alternative dentifrice. Subjects returned 8 weeks (+/- 1 week) later for final calculus scoring. The study dentifrice significantly reduced supragingival calculus from baseline by 58% compared to control dentifrice (p<0.005 need exact p-value unless it is <.001; maybe it's reported in the paper). Calculus levels decreased by 68% over the study duration, irrespective of dentifrice. ANOVA found no significant differences in calculus scores based on gender, race, history of reflux, aspiration pneumonia, or oral intake of food. Calculus was significantly related to history of aspiration pneumonia (p<0.05 need exact p-value here). Crest Dual Action Whitening Toothpaste was effective and better than anti-caries control dentifrice in reducing calculus in GT children.
Dental calculus detection using the VistaCam.
Shakibaie, Fardad; Walsh, Laurence J
2016-12-01
The VistaCam® intra-oral camera system (Dürr Dental, Bietigheim-Bissingen, Germany) is a fluorescence system using light emitting diodes that produce a 405-nm violet light. This wavelength has potential application for detection of dental calculus based on red emissions from porphyrin molecules. This study assessed the digital scores obtained for both supragingival and subgingival calculus on 60 extracted teeth and compared these with lesions of dental caries. It has also examined the effect of saliva and blood on the fluorescence readings for dental calculus. VistaCam fluorescence scores for both supragingival (1.7-3.3) and subgingival calculus (1.3-2.4) were higher than those for sound root surfaces (0.9-1.1) and dental caries (0.9-2.2) ( p < .05). The readings for calculus samples were not affected by the presence of saliva or blood. These results suggest that the use of violet light fluorescence could be a possible adjunct to clinical examination for deposits of dental calculus.
NASA Astrophysics Data System (ADS)
Schoenly, Joshua E.; Seka, Wolf; Romanos, Georgios; Rechmann, Peter
A desired outcome of scaling and root planing is the complete removal of calculus and infected root tissue and preservation of healthy cementum for rapid healing of periodontal tissues. Conventional periodontal treatments for calculus removal, such as hand instrument scaling and ultrasonic scaling, often deeply scrape the surface of the underlying hard tissue and may leave behind a smear layer. Pulsed lasers emitting at violet wavelengths (specifically, 380 to 400 nm) are a potential alternative treatment since they can selectively ablate dental calculus without ablating pristine hard tissue (i.e., enamel, cementum, and dentin). In this study, light and scanning electron microscopy are used to compare and contrast the efficacy of in vitro calculus removal for several conventional periodontal treatments (hand instruments, ultrasonic scaler, and Er:YAG laser) to calculus removal with a frequency-doubled Ti:sapphire (λ = 400 nm). After calculus removal, enamel and cementum surfaces are investigated for calculus debris and damage to the underlying hard tissue surface. Compared to the smear layer, grooves, and unintentional hard tissue removal typically found using these conventional treatments, calculus removal using the 400-nm laser is complete and selective without any removal of pristine dental hard tissue. Based on these results, selective ablation from the 400-nm laser appears to produce a root surface that would be more suitable for successful healing of periodontal tissues.
Recursive sequences in first-year calculus
NASA Astrophysics Data System (ADS)
Krainer, Thomas
2016-02-01
This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.
Leading institutional change: Implementing Studio in physics and beyond
NASA Astrophysics Data System (ADS)
Kohl, Patrick; Kuo, H. Vincent
2013-04-01
The Colorado School of Mines (CSM) teaches its first-year calculus-based introductory physics courses (Physics I and Physics II) using a hybrid of lecture and Studio physics. This model was first implemented in Physics I in 1997, and was established in Physics II in the fall of 2007. In this talk, we highlight the stages of the transformation from traditional to Studio, highlighting what has worked and what has not, and describing methods for assessment and evaluation. Results suggest that Studio has increased student performance and satisfaction despite an aggressive expansion of class sizes in the past few years. Gains have been concentrated mostly in problem-solving skills and exam performance (as opposed to conceptual survey gains), in contrast to what has sometimes been seen in other studies. Most recently, we as a department have been capitalizing on our successes with Studio physics to take a leadership role in disseminating advanced educational methods throughout CSM, both vertically (into upper division physics courses) and horizontally (into various departments outside of physics). We will briefly describe progress so far.
NASA Astrophysics Data System (ADS)
Stewart, John
2015-04-01
The amount of time spent on out-of-class activities such as working homework, reading, and studying for examinations is presented for 10 years of an introductory, calculus-based physics class at a large public university. While the class underwent significant change in the 10 years studied, the amount of time invested by students in weeks not containing an in-semester examination was constant and did not vary with the length of the reading or homework assignments. The amount of time spent preparing for examinations did change as the course was modified. The time spent on class assignments, both reading and homework, did not scale linearly with the length of the assignment. The time invested in both reading and homework per length of the assignment decreased as the assignments became longer. The class average time invested in examination preparation did change with the average performance on previous examinations in the same class, with more time spent in preparation for lower previous examination scores (R2 = 0 . 70).
An empirical study of the effect of granting multiple tries for online homework
NASA Astrophysics Data System (ADS)
Kortemeyer, Gerd
2015-07-01
When deploying online homework in physics courses, an important consideration is how many tries learners should be allowed to solve numerical free-response problems. While on the one hand, this number should be large enough to allow learners mastery of concepts and avoid copying, on the other hand, granting too many allowed tries encourages counter-productive behavior. We investigate data from an introductory calculus-based physics course that allowed different numbers of tries in different semesters. It turns out that the probabilities for successfully completing or abandoning problems during a particular try are independent of the number of tries already made, which indicates that students do not learn from their earlier tries. We also find that the probability for successfully completing a problem during a particular try decreases with the number of allowed tries, likely due to increased carelessness or guessing, while the probability to give up on a problem after a particular try is largely independent of the number of allowed tries. These findings lead to a mathematical model for learner usage of multiple tries, which predicts an optimum number of five allowed tries.
NASA Astrophysics Data System (ADS)
Boudreaux, Andrew
2006-05-01
Current national and local standards for the science learning of K-12 students emphasize both basic concepts (such as density) and fundamental reasoning skills (such as proportional reasoning, the interpretation of graphs, and the use of control of variables). At Western Washington University (WWU) and the University of Washington (UW), an effort is underway to examine the ability of university students to apply these same concepts and skills. Populations include students in liberal arts physics courses, introductory calculus-based physics courses, and special courses for the preparation of teachers. One focus of the research has been on the idea of control of variables. This topic is studied by students at all levels, from the primary grades, in which the notion of a ``fair test,'' is sometimes used, to university courses. This talk will discuss research tasks in which students are expected to infer from experimental data whether a particular variable influences (i.e., affects) or by itself determines (i.e., predicts) a given result. Student responses will be presented to identify specific difficulties.
Lai, Hsien-Tang; Kung, Pei-Tseng; Su, Hsun-Pi; Tsai, Wen-Chen
2014-09-01
Limited studies with large samples have been conducted on the utilization of dental calculus scaling among people with physical or mental disabilities. This study aimed to investigate the utilization of dental calculus scaling among the national disabled population. This study analyzed the utilization of dental calculus scaling among the disabled people, using the nationwide data between 2006 and 2008. Descriptive analysis and logistic regression were performed to analyze related influential factors for dental calculus scaling utilization. The dental calculus scaling utilization rate among people with physical or mental disabilities was 16.39%, and the annual utilization frequency was 0.2 times. Utilization rate was higher among the female and non-aboriginal samples. Utilization rate decreased with increased age and disability severity while utilization rate increased with income, education level, urbanization of residential area and number of chronic illnesses. Related influential factors for dental calculus scaling utilization rate were gender, age, ethnicity (aboriginal or non-aboriginal), education level, urbanization of residence area, income, catastrophic illnesses, chronic illnesses, disability types, and disability severity significantly influenced the dental calculus scaling utilization rate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of Errors and Misconceptions in the Learning of Calculus by Undergraduate Students
ERIC Educational Resources Information Center
Muzangwa, Jonatan; Chifamba, Peter
2012-01-01
This paper is going to analyse errors and misconceptions in an undergraduate course in Calculus. The study will be based on a group of 10 BEd. Mathematics students at Great Zimbabwe University. Data is gathered through use of two exercises on Calculus 1&2.The analysis of the results from the tests showed that a majority of the errors were due…
Simplicial lattices in classical and quantum gravity: Mathematical structure and application
NASA Astrophysics Data System (ADS)
Lafave, Norman Joseph
1989-03-01
Geometrodynamics can be understood more clearly in the language of geometry than in the language of differential equations. This is the primary motivation for the development of calculational schemes based on Regge Calculus as an alternative to those schemes based on Ricci Calculus. The mathematics of simplicial lattices were developed to the same level of sophistication as the mathematics of pseudo--Riemannian geometry for continuum manifolds. This involves the definition of the simplicial analogues of several concepts from differential topology and differential geometry-the concept of a point, tangent spaces, forms, tensors, parallel transport, covariant derivatives, connections, and curvature. These simplicial analogues are used to define the Einstein tensor and the extrinsic curvature on a simplicial geometry. This mathematical formalism was applied to the solution of several outstanding problems in the development of a Regge Calculus based computational scheme for general geometrodynamic problems. This scheme is based on a 3 + 1 splitting of spacetime within the Regge Calculus prescription known as Null-Strut Calculus (NSC). NSC describes the foliation of spacetime into spacelike hypersurfaces built of tetrahedra. These hypersurfaces are coupled by light rays (null struts) to past and future momentum-like structures, geometrically dual to the tetrahedral lattice of the hypersurface. Avenues of investigation for NSC in quantum gravity are described.
Keller, Joseph J; Chen, Yi-Kuang; Lin, Herng-Ching
2012-12-01
Study Type--Disease prevalence study (cohort design) Level of Evidence 2a. What's known on the subject? and What does the study add? Several studies have estimated the potential association of urinary calculus (UC) with chronic kidney disease (CKD). However, previous literature focusing on this issue tended to evaluate the impact of kidney stones alone on incident CKD, with no studies having been conducted investigating the association between CKD and stone formation in other portions of the urological system. We found that patients with CKD were consistently more likely than comparison subjects to have been previously diagnosed with kidney calculus (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.95-2.27), ureter calculus (OR 1.68, 95% CI 1.51-1.85), bladder calculus (OR 1.49, 95% CI 1.13-1.98), and unspecified calculus (OR 1.89, 95% CI 1.74-2.06). We concluded that there was an association between CKD and UC regardless of stone location. • To explore the association of chronic kidney disease (CKD) with prior kidney calculus, ureter calculus, and bladder calculus using a population-based dataset in Taiwan. Several studies have estimated the potential association of urinary calculus (UC) with CKD. However, previous literature focusing on this issue tended to evaluate the impact of kidney stones alone on incident CKD, with no studies having been conducted investigating the association between CKD and stone formation in other portions of the urological system. • We identified 21,474 patients who received their first-time diagnosis of CKD between 2001 and 2009. • The 21,474 controls were frequency-matched with cases for sex, age group, and index year. • We used conditional logistic regression analyses to compute the odds ratio (OR) and corresponding 95% confidence interval (CI) as an estimation of association between CKD and having been previously diagnosed with UC. • The results show that compared with controls, the OR of prior UC for cases was 1.91 (95% CI 1.81-2.01, P < 0.001) after adjusting for potential confounders. • Furthermore, cases were consistently more likely than controls to have been previously diagnosed with kidney calculus (OR 2.10, 95% CI 1.95-2.27), ureter calculus (OR 1.68, 95% CI 1.51-1.85), bladder calculus (OR 1.49, 95% CI 1.13-1.98), and unspecified UC (OR 1.89, 95% CI 1.74-2.06). • We concluded that there was an association between ckd and UC regardless of stone location. © 2012 BJU INTERNATIONAL.
Online Calculus: The Course and Survey Results.
ERIC Educational Resources Information Center
Allen, G. Donald
2001-01-01
Describes the development and implementation of a Web-based calculus course at Texas A & M University. Discusses the course design, layout of content and the contrast with textbook structure, results of course surveys that included student reactions, and how students learn form Web-based materials. (Author/LRW)
Drinking water composition and incidence of urinary calculus: introducing a new index.
Basiri, Abbas; Shakhssalim, Nasser; Khoshdel, Ali Reza; Pakmanesh, Hamid; Radfar, Mohammad Hadi
2011-01-01
INTRODUCTION. We searched for a pathophysiologically based feature of major water electrolytes, which may define water quality better than the water hardness, respecting urinary calculus formation. MATERIALS AND METHODS. Utilizing a multistage stratified sampling, 2310 patients were diagnosed in the imaging centers of the provincial capitals in Iran between 2007 and 2008. These were composed of 1755 patients who were settled residents of 24 provincial capitals. Data on the regional drinking water composition, obtained from an accredited registry, and their relationships with the region's incidence of urinary calculi were evaluated by metaregression models. The stone risk index (defined as the ratio of calcium to magnesium-bicarbonate product in drinking water) was used to assess the risk of calculus formation. RESULTS. No correlation was found between the urinary calculus incidence and the amount of calcium, bicarbonate, or the total hardness of the drinking water. In contrast, water magnesium had a marginally significant nonlinear inverse relationship with the incidence of the disease in the capitals (R(2) = 26%, P = .05 for a power model). The stone risk index was associated nonlinearly with the calculus incidence (R(2) = 28.4%, P = .04). CONCLUSIONS. Urinary calculus incidence was inversely related with drinking water magnesium content. We introduced a new index constructed on the foundation of a pathophysiologically based formula; the stone risk index had a strong positive association with calculus incidence. This index can have therapeutic and preventive applications, yet to be confirmed by clinical trials.
A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics
ERIC Educational Resources Information Center
Liang, Jiajuan; Pan, William S. Y.
2009-01-01
MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…
ERIC Educational Resources Information Center
Kwon, Oh Nam; Bae, Younggon; Oh, Kuk Hwan
2015-01-01
In this study, researchers design and implement an inquiry based multivariable calculus course in a university which aims at enhancing students' argumentation in rich mathematical discussions. This research aims to understand the characteristics of students' argumentation in activities involving proof constructions through mathematical…
Real-time detection of dental calculus by blue-LED-induced fluorescence spectroscopy.
Qin, Y L; Luan, X L; Bi, L J; Lü, Z; Sheng, Y Q; Somesfalean, G; Zhou, C N; Zhang, Z G
2007-05-25
Successful periodontal therapy requires sensitive techniques to discriminate dental calculus from healthy teeth. The aim of the present study was to develop a fluorescence-based procedure to enable real-time detection and quantification of dental calculus. Thirty human teeth--15 teeth with sub- and supragingival calculus and 15 healthy teeth--covered with a layer of physiological saline solution or blood were illuminated by a focused blue LED light source of 405 nm. Autofluorescence spectra recorded along a randomly selected line stretching over the crown-neck-root area of each tooth were utilized to evaluate a so called calculus parameter R, which was selected to define a relationship between the integrated intensities specific for healthy teeth and for calculus in the 477-497 nm (S(A)) and 628-685 nm (S(B)) wavelength regions, respectively. Statistical analysis was performed and a cut-off threshold of R=0.2 was found to distinguish dental calculus from healthy teeth with 100% sensitivity and specificity under various experimental conditions. The results of the spectral evaluation were confirmed by clinical and histological findings. Automated real-time detection and diagnostics for clinical use were implemented by a corresponding software program written in Visual Basic language. The method enables cost-effective and reliable calculus detection, and can be further developed for imaging applications.
Case Study: Students’ Symbolic Manipulation in Calculus Among UTHM Students
NASA Astrophysics Data System (ADS)
Ali, Maselan; Sufahani, Suliadi; Ahmad, Wan N. A. W.; Ghazali Kamardan, M.; Saifullah Rusiman, Mohd; Che-Him, Norziha
2018-04-01
Words are symbols representing certain aspects of mathematics. The main purpose of this study is to gain insight into students’ symbolic manipulation in calculus among UTHM students. This study make use the various methods in collecting data which are documentation, pilot study, written test and follow up individual interviews. Hence, the results analyzed and interpreted based on action-process-object-schema framework which is based on Piaget’s ideas of reflective abstraction, the concept of relational and instrumental understanding and the zone of proximal development idea. The students’ reply in the interview session is analyzed and then the overall performance is discussed briefly to relate with the students flexibility in symbolic manipulation in linking to the graphical idea, the students interpretation towards different symbolic structure in calculus and the problem that related to overgeneralization in their calculus problems solving.
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.
Reasoning with alternative explanations in physics: The cognitive accessibility rule
NASA Astrophysics Data System (ADS)
Heckler, Andrew F.; Bogdan, Abigail M.
2018-06-01
A critical component of scientific reasoning is the consideration of alternative explanations. Recognizing that decades of cognitive psychology research have demonstrated that relative cognitive accessibility, or "what comes to mind," strongly affects how people reason in a given context, we articulate a simple "cognitive accessibility rule", namely that alternative explanations are considered less frequently when an explanation with relatively high accessibility is offered first. In a series of four experiments, we test the cognitive accessibility rule in the context of consideration of alternative explanations for six physical scenarios commonly found in introductory physics curricula. First, we administer free recall and recognition tasks to operationally establish and distinguish between the relative accessibility and availability of common explanations for the physical scenarios. Then, we offer either high or low accessibility explanations for the physical scenarios and determine the extent to which students consider alternatives to the given explanations. We find two main results consistent across algebra- and calculus-based university level introductory physics students for multiple answer formats. First, we find evidence that, at least for some contexts, most explanatory factors are cognitively available to students but not cognitively accessible. Second, we empirically verify the cognitive accessibility rule and demonstrate that the rule is strongly predictive, accounting for up to 70% of the variance of the average student consideration of alternative explanations across scenarios. Overall, we find that cognitive accessibility can help to explain biases in the consideration of alternatives in reasoning about simple physical scenarios, and these findings lend support to the growing number of science education studies demonstrating that tasks relevant to science education curricula often involve rapid, automatic, and potentially predictable processes and outcomes.
Selective ablation of sub- and supragingival calculus with a frequency-doubled Alexandrite laser
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1995-05-01
In a preceding trial the absorption characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to contain chromophores absorbing in the ultraviolet spectral region up to 420 nm. The aim of the actual study was the ablation of sub- and supragingival calculus using a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz). Extracted human teeth presenting sub- and supragingival calculus were irradiated perpendicular to their axis with a laser fluence of 1 Jcm-2. Using a standard application protocol calculus was irradiated at the enamel surface, at the junction between enamel and root, and at the root surface (located on dentin or on cementum). During the irradiation procedure an effective water cooling-system was engaged. For light microscopical investigations undecalcified histological sections were prepared after treatment. The histological sections revealed that a selective and total removal of calculus is possible at all locations without ablation of healthy enamel, dentin or cementum. Even low fluences provide us with a high effectiveness for the ablation of calculus. Thus, based on different absorption characteristics and ablation thresholds, engaging a frequency doubled Alexandrite-laser a fast and, even more, a selective ablation of sub- and supragingival calculus is possible without adverse side effects to the surrounding tissues. Even more, microbial dental plaque can be perfectly removed.
Fluorescence-based calculus detection using a 405-nm excitation wavelength
NASA Astrophysics Data System (ADS)
Brede, O.; Schelle, F.; Krueger, S.; Oehme, B.; Dehn, C.; Frentzen, M.; Braun, A.
2011-03-01
The aim of this study was to assess the difference of fluorescence signals of cement and calculus using a 405 nm excitation wavelength. A total number of 20 freshly extracted teeth was used. The light source used for this study was a blue LED with a wavelength of 405nm. For each tooth the spectra of calculus and cementum were measured separately. Fluorescence light was collimated into an optical fibre and spectrally analyzed using an echelle spectrometer (aryelle 200, Lasertechnik Berlin, Germany) with an additionally bandpass (fgb 67, Edmund Industrial Optics, Karlsruhe, Germany). From these 40 measurements the median values were calculated over the whole spectrum, leading to two different median spectra, one for calculus and one for cementum. For further statistical analysis we defined 8 areas of interest (AOI) in wavelength regions, showing remarkable differences in signal strength. In 7 AOIs the intensity of the calculus spectrum differed statistically significant from the intensity of the cementum spectrum (p < 0.05). A spectral difference could be shown between calculus and cement between 600nm and 700nm. Thus, we can conclude that fluorescence of calculus shows a significant difference to the fluorescence of cement. A differentiation over the intensity is possible as well as over the spectrum. Using a wavelength of 405nm, it is possible to distinguish between calculus and cement. These results could be used for further devices to develop a method for feedback controlled calculus removal.
Schiff, Thomas; Delgado, Evaristo; DeVizio, William; Proskin, Howard M
2008-01-01
The objective of this double-blind clinical study, conducted in harmony with Volpe-Manhold design for studies of dental calculus, was to compare the efficacy of a dentifrice containing 0.3% triclosan/2.0% polyvinylmethyl ether/maleic acid (PVM/MA) copolymer/0.243% sodium fluoride in a 17% dual silica base (Colgate Total Advanced Toothpaste) to that of a commercially available dentifrice containing 0.243% sodium fluoride in a silica base (Crest Cavity Protection Toothpaste) with respect to the reduction of supragingival calculus formation. Adult male and female subjects from the San Francisco area were entered into the eight-week pre-test phase of the study. Subjects received an evaluation of oral soft and hard tissues and were given a complete oral prophylaxis. They were provided with a non-tartar control placebo dentifrice and a soft-bristled adult toothbrush, and were instructed to brush their teeth twice daily (morning and evening) for one minute. After eight weeks of using the placebo dentifrice, subjects were examined for baseline supragingival calculus formation using the Volpe-Manhold Calculus Index. Qualifying subjects were randomized into two treatment groups which were balanced for gender and baseline calculus scores. All subjects entered into the twelve-week test phase were given a complete oral prophylaxis, and were provided with their assigned dentifrice and a soft-bristled adult toothbrush for home use. Subjects were instructed to brush their teeth for one minute twice daily (in the morning and evening). Prior to each study visit, subjects refrained from brushing their teeth and eating and drinking for four hours. Seventy-seven (77) subjects complied with the protocol and completed the study. At the twelve-week examination, the Test Dentifrice group presented a mean Volpe-Manhold Calculus Index score of 13.22 and the Control Dentifrice group presented a score of 20.29. After twelve weeks of product use, the Test Dentifrice group exhibited 34.8% less supragingival calculus formation than the Control Dentifrice group (statistically significant at p < 0.05). The overall results of this double-blind clinical study support the conclusion that after twelve weeks' use of a dentifrice containing 0.3% triclosan/2.0% PVM/MA copolymer/0.243% sodium fluoride in a 17% dual silica base provides significantly greater control of supragingival calculus formation relative to that of a commercially available dentifrice containing 0.243% sodium fluoride in a silica base.
Bacteria and archaea paleomicrobiology of the dental calculus: a review.
Huynh, H T T; Verneau, J; Levasseur, A; Drancourt, M; Aboudharam, G
2016-06-01
Dental calculus, a material observed in the majority of adults worldwide, emerged as a source for correlating paleomicrobiology with human health and diet. This mini review of 48 articles on the paleomicrobiology of dental calculus over 7550 years discloses a secular core microbiota comprising nine bacterial phyla - Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, TM7, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes - and one archaeal phylum Euryarchaeota; and some accessory microbiota that appear and disappear according to time frame. The diet residues and oral microbes, including bacteria, archaea, viruses and fungi, consisting of harmless organisms and pathogens associated with local and systemic infections have been found trapped in ancient dental calculus by morphological approaches, immunolabeling techniques, isotope analyses, fluorescent in situ hybridization, DNA-based approaches, and protein-based approaches. These observations led to correlation of paleomicrobiology, particularly Streptococcus mutans and archaea, with past human health and diet. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Anti-calculus activity of a toothpaste with microgranules.
Chesters, R K; O'Mullane, D M; Finnerty, A; Huntington, E; Jones, P R
1998-09-01
The objective of the trial was to determine the efficacy of the proven anticalculus active system (zinc citrate trihydrate [ZCT] and triclosan), when the ZCT is delivered from microgranules incorporated in a silica-based toothpaste containing 1450 ppm F as sodium fluoride. A monadic, single-blind, two phase design clinical trial was used to compare the effect of the test and a negative control fluoridated toothpaste on the formation of supragingival calculus. Male and female calculus-forming volunteers, aged 18 or over, were recruited for the study following a 2-week screening phase. All subjects were given a scale and polish of their eight lower anterior teeth at the start of both the pre-test and test phases. Subjects were supplied with a silica-based 1450 F ppm fluoridated toothpaste with no anti-calculus active for use during an 8-week pre-test phase. Calculus was assessed at the end of the pre-test and test phases using the Volpe-Manhold index (VMI). Subjects were stratified according to their pre-test VMI score (8-10, 10.5-12, > 12) and gender and then allocated at random to test or negative control toothpaste groups. Subjects with < 8 mm of calculus were excluded from further participation. The outcome variable was the mean VMI score for the test and negative control groups. The test toothpaste caused a statistically significant 30% reduction in calculus compared with the control paste after a 13-week use. No adverse events were reported during the study. The incorporation of the ZCT in microgranules did not adversely affect the anticalculus activity of the new formulation.
Pateel, Deepak Gowda Sadashivappa; Gunjal, Shilpa; Math, Swarna Y; Murugeshappa, Devarasa Giriyapura; Nair, Sreejith Muraleedharan
2017-01-01
Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20-55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA) and statherin levels by using ELISA Kit (Cusabio Biotech). Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96 μ g/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups ( p < 0.05). Our preliminary data indicates that statherin could possibly play a role in the formation of dental calculus.
Observed hierarchy of student proficiency with period, frequency, and angular frequency
NASA Astrophysics Data System (ADS)
Young, Nicholas T.; Heckler, Andrew F.
2018-01-01
In the context of a generic harmonic oscillator, we investigated students' accuracy in determining the period, frequency, and angular frequency from mathematical and graphical representations. In a series of studies including interviews, free response tests, and multiple choice tests developed in an iterative process, we assessed students in both algebra-based and calculus-based, traditionally instructed university-level introductory physics courses. Using the results, we categorized nine skills necessary for proficiency in determining period, frequency, and angular frequency. Overall results reveal that, postinstruction, proficiency is quite low: only about 20%-40% of students mastered most of the nine skills. Next, we used a semiquantitative, intuitive method to investigate the hierarchical structure of the nine skills. We also employed the more formal item tree analysis method to verify this structure and found that the skills form a multilevel, nonlinear hierarchy, with mastery of some skills being prerequisite for mastery in other skills. Finally, we implemented a targeted, 30-min group-work activity to improve proficiency in these skills and found a 1 standard deviation gain in accuracy. Overall, the results suggest that many students currently lack these essential skills, targeted practice may lead to required mastery, and that the observed hierarchical structure in the skills suggests that instruction should especially attend to the skills lower in the hierarchy.
Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R
2013-06-01
The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.
Some problems in fractal differential equations
NASA Astrophysics Data System (ADS)
Su, Weiyi
2016-06-01
Based upon the fractal calculus on local fields, or p-type calculus, or Gibbs-Butzer calculus ([1],[2]), we suggest a constructive idea for "fractal differential equations", beginning from some special examples to a general theory. However, this is just an original idea, it needs lots of later work to support. In [3], we show example "two dimension wave equations with fractal boundaries", and in this note, other examples, as well as an idea to construct fractal differential equations are shown.
ERIC Educational Resources Information Center
Rockhill, Theron D.
Reported is an attempt to develop and evaluate an individualized instructional program in pre-calculus college mathematics. Four computer based resource units were developed in the areas of set theory, relations and function, algebra, trigonometry, and analytic geometry. Objectives were determined by experienced calculus teachers, and…
Tensor calculus: unlearning vector calculus
NASA Astrophysics Data System (ADS)
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-02-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can serve as a bridge for vector calculus into tensor calculus.
Geometric constrained variational calculus. II: The second variation (Part I)
NASA Astrophysics Data System (ADS)
Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico
2016-10-01
Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.
Zhang, Song-Mei; Tian, Fei; Jiang, Xin-Quan; Li, Jing; Xu, Chun; Guo, Xiao-Kui; Zhang, Fu-Qiang
2009-09-01
Calcifying nanoparticles (CNPs), also known as nanobacteria, can produce carbonate apatite on their cell walls and initiate pathologic calcification. The objective of this study was to determine whether CNPs are present in the gingival crevicular fluid (GCF) from subjects with periodontal disease and whether they can induce the pathologic calcification of primary cultured human gingival epithelial cells. GCF and dental calculus samples were collected from 10 subjects with gingivitis and 10 subjects with chronic periodontitis. CNPs in GCF and calculus filtrates were detected with nanocapture enzyme-linked immunosorbent assay kits. The CNPs in cultures of dental calculus filtrates were also identified using immunofluorescence staining, transmission electron microscopy (TEM), and chemical analysis. Pathologic changes in the CNP-treated gingival epithelial cells were observed with TEM, alizarin red staining, and disk-scanning confocal microscopy. CNPs were found in GCF samples from two subjects with chronic periodontitis. Based on chemical analysis, the surface-associated material from CNPs isolated and cultured from calculus has a composition similar to dental calculus. The pathologic calcification of CNP-treated gingival epithelial cells was also observed. Self-replicating calcifying nanoparticles can be cultured and identified from dental calculus. This raises the issue of whether CNPs contribute to the pathogenesis of periodontitis.
Schmid, Sabrina; Goldberg-Bockhorn, Eva; Schwarz, Silke; Rotter, Nicole; Kassubek, Jan; Del Tredici, Kelly; Pinkhardt, Elmar; Otto, Markus; Ludolph, Albert C; Oeckl, Patrick
2018-06-01
In autopsy cases staged for sporadic Parkinson's disease (PD), the neuropathology is characterized by a preclinical phase that targets the enteric nervous system of the gastrointestinal tract (GIT). Therefore, the ENS might be a source of potential (presymptomatic) PD biomarkers. In this clinically based study, we examined the alpha-synuclein (αSyn) concentration in an easily accessible protein storage medium of the GIT, dental calculus, in 21/50 patients with PD and 28/50 age- and gender-matched controls using ELISA. αSyn was detectable in dental calculus and the median concentration in the control patients was 8.6 pg/mg calculus (interquartile range 2.6-13.1 pg/mg). αSyn concentrations were significantly influenced by blood contamination and samples with a hemoglobin concentration of > 4000 ng/mL were excluded. There was no significant difference of αSyn concentrations in the dental calculus of PD patients (5.76 pg/mg, interquartile range 2.91-9.74 pg/mg) compared to those in controls (p = 0.40). The total αSyn concentration in dental calculus is not a suitable biomarker for sporadic PD. Disease-related variants such as oligomeric or phosphorylated αSyn in calculus might prove to be more specific.
Instruction of Multidisciplinary Content in Introductory Courses
NASA Astrophysics Data System (ADS)
Shaibani, Saami J.
2017-01-01
There has been an ever-increasing emphasis on the integration of material in the areas of science, technology, engineering and mathematics during the past decade or so. However, there are two major requirements for accomplishing the effective delivery of such multidisciplinary content in the classroom: having high levels of expertise in all of the subjects; and, having the ability to combine the separate fields in a consistent manner without compromising academic purity. The research reported here involves a teacher with this skill set and it includes an example from kinematics, which is initially explored with standard treatment of concepts in mechanics and then developed with analysis employing algebra. As often happens, the non-trivial nature of the result in this case does not readily allow students to have a sense that the physics-based outcome is correct. This shortfall is remedied by adopting a complementary approach with geometry and calculus, which adds an independent perspective that reassures students by confirming the validity of the original answer. The enhanced quality of instruction achieved with the above methodology produces many benefits, including greater student understanding and more opportunities for active involvement by students in the learning process.
It's, Like, Relative Motion at the Mall
NASA Astrophysics Data System (ADS)
Robinett, R. W.
2003-03-01
Almost all introductory textbooks, both algebra- and calculus-based, include sections on relative motion and relative velocity, in both one and two dimensions. The most popular examples in discussions of 2-D relative velocity in such texts seem to be the motion of airplanes/blimps flying in the presence of wind or the conceptually identical cases of boats/rafts piloted across rivers/streams, including the effects of currents. These and similar cases are rather removed from the everyday experience of some students, and the use of simple lecture demonstrations to illustrate these concepts can be quite useful. For example, the motion of a simple toy "wind-up" car moving at constant speed across a horizontal tabletop, with a plastic sheet underneath providing the "moving frame of reference," can illustrate many aspects of such problems, including the need to "point" the plane/boat in an appropriate direction, just as illustrated in many textbook figures. On the other hand, it is also useful if students can directly experience concepts for themselves, especially in a kinesthetic manner, but there are seemingly far fewer human-sized lecture demonstrations on this topic. In this paper, we will point out one such example which might well be just a short drive away.
NASA Astrophysics Data System (ADS)
Caballero, Marcos D.; Greco, Edwin F.; Murray, Eric R.; Bujak, Keith R.; Jackson Marr, M.; Catrambone, Richard; Kohlmyer, Matthew A.; Schatz, Michael F.
2012-07-01
The performance of over 5000 students in introductory calculus-based mechanics courses at the Georgia Institute of Technology was assessed using the Force Concept Inventory (FCI). Results from two different curricula were compared: a traditional mechanics curriculum and the Matter & Interactions (M&I) curriculum. Both were taught with similar interactive pedagogy. Post-instruction FCI averages were significantly higher for the traditional curriculum than for the M&I curriculum; the differences between curricula persist after accounting for factors such as pre-instruction FCI scores, grade point averages, and SAT scores. FCI performance on categories of items organized by concepts was also compared; traditional averages were significantly higher in each concept. We examined differences in student preparation between the curricula and found that the relative fraction of homework and lecture topics devoted to FCI force and motion concepts correlated with the observed performance differences. Concept inventories, as instruments for evaluating curricular reforms, are generally limited to the particular choice of content and goals of the instrument. Moreover, concept inventories fail to measure what are perhaps the most interesting aspects of reform: the non-overlapping content and goals that are not present in courses without reform.
The Physics Learning Program at the University of Wisconsin-Madison
NASA Astrophysics Data System (ADS)
Nossal, S. M.; Watson, L.; Huesmann, A.; Jacob, A.; Fretz, J.; Clarke, M.
2006-05-01
The Physics Learning Program at the University of Wisconsin-Madison provides a supportive learning environment for students studying physics. We pair staff and upper level physics and secondary science education majors in small study groups with students studying introductory physics. Approximately 33-50% of our students are from racial and ethnic groups underrepresented in the sciences. In addition, students participating in our program include others who may be feeling isolated such as first-generation college students, returning adults, students with disabilities, international students, and students from small rural schools; as well as students with weak math and physics preparation and/or who are struggling with the course. The Physics Learning Program is run in conjunction with similar programs for chemistry and biochemistry. During the past year with a move to a new building we obtained a dedicated space for the Physics Learning Program, facilitating students to form their own study groups. We also began a pilot program for students in the calculus-based physics sequence. We will discuss these additions, as well as recruitment, pedagogy, teacher training, and mentoring practices that we use with the aim of creating an inclusive learning environment.
Coordinating an IPLS class with a biology curriculum: NEXUS/Physics
NASA Astrophysics Data System (ADS)
Redish, Edward
2014-03-01
A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.
NASA Astrophysics Data System (ADS)
Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.
2017-12-01
The ability to solve physics problems that require multiple concepts from across the physics curriculum—"synthesis" problems—is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. Across three experiments with students from introductory calculus-based physics courses, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time on task.
Two- and three-dimensional CT measurements of urinary calculi length and width: a comparative study.
Lidén, Mats; Thunberg, Per; Broxvall, Mathias; Geijer, Håkan
2015-04-01
The standard imaging procedure for a patient presenting with renal colic is unenhanced computed tomography (CT). The CT measured size has a close correlation to the estimated prognosis for spontaneous passage of a ureteral calculus. Size estimations of urinary calculi in CT images are still based on two-dimensional (2D) reformats. To develop and validate a calculus oriented three-dimensional (3D) method for measuring the length and width of urinary calculi and to compare the calculus oriented measurements of the length and width with corresponding 2D measurements obtained in axial and coronal reformats. Fifty unenhanced CT examinations demonstrating urinary calculi were included. A 3D symmetric segmentation algorithm was validated against reader size estimations. The calculus oriented size from the segmentation was then compared to the estimated size in axial and coronal 2D reformats. The validation showed 0.1 ± 0.7 mm agreement against reference measure. There was a 0.4 mm median bias for 3D estimated calculus length compared to 2D (P < 0.001), but no significant bias for 3D width compared to 2D. The length of a calculus in axial and coronal reformats becomes underestimated compared to 3D if its orientation is not aligned to the image planes. Future studies aiming to correlate calculus size with patient outcome should use a calculus oriented size estimation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
ERIC Educational Resources Information Center
Winkel, Brian
2008-01-01
A complex technology-based problem in visualization and computation for students in calculus is presented. Strategies are shown for its solution and the opportunities for students to put together sequences of concepts and skills to build for success are highlighted. The problem itself involves placing an object under water in order to actually see…
Site specific mineral composition and microstructure of human supra-gingival dental calculus.
Hayashizaki, Junko; Ban, Seiji; Nakagaki, Haruo; Okumura, Akihiko; Yoshii, Saori; Robinson, Colin
2008-02-01
Dental calculus has been implicated in the aetiology of several periodontal conditions. Its prevention and removal are therefore desirable clinical goals. While it is known that calculus is very variable in chemical composition, crystallinity and crystallite size little is known about site specific variability within a dentition and between individuals. With this in mind, a study was undertaken to investigate the comparative site specific nature and composition of human dental supra-gingival dental calculus obtained from 66 male patients visiting for their dental check-up using fluorescent X-ray spectroscopy, X-ray diffractometry and Fourier transform infrared spectroscopy. The supra-gingival dental calculus formed on the lingual surfaces of lower anterior teeth and the buccal surfaces of upper molar teeth were classified into four types based on calcium phosphate phases present. There was significant difference in composition of the crystal phase types between lower and upper teeth (p<0.01). There was no significant difference in crystal size between dental calculus on anterior or molar teeth of all samples. The degree of crystallinity of dental calculus formed on the upper molar teeth was higher than that formed on the lower anterior teeth (p<0.01). The CO(3)(2-) contents in dental calculus formed on the lower anterior teeth were higher than on upper molar teeth (p<0.05) which might explain the difference in crystallinity. Magnesium and Si contents and Ca:P ratio on the other hand showed no significant difference between lower and upper teeth. It was concluded that the crystal phases, crystallinity and CO(3)(2-) contents of human dental supra-gingival dental calculus is related to its location in the mouth.
A calculus based on a q-deformed Heisenberg algebra
Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...
1999-04-27
We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less
Inquiry-Based Learning of Transcendental Functions in Calculus
ERIC Educational Resources Information Center
Ekici, Celil; Gard, Andrew
2017-01-01
In a series of group activities supplemented with independent explorations and assignments, calculus students investigate functions similar to their own derivatives. Graphical, numerical, and algebraic perspectives are suggested, leading students to develop deep intuition into elementary transcendental functions even as they lay the foundation for…
NASA Astrophysics Data System (ADS)
Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi
2016-05-01
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil
2015-11-01
We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.
Supplementing Introductory Biology with On-Line Curriculum
ERIC Educational Resources Information Center
McGroarty, Estelle; Parker, Joyce; Heidemann, Merle; Lim, Heejun; Olson, Mark; Long, Tammy; Merrill, John; Riffell, Samuel; Smith, James; Batzli, Janet; Kirschtel, David
2004-01-01
We developed web-based modules addressing fundamental concepts of introductory biology delivered through the LON-CAPA course management system. These modules were designed and used to supplement large, lecture-based introductory biology classes. Incorporating educational principles and the strength of web-based instructional technology, choices…
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, Egidio
2015-10-01
The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.
Understanding Gauss’s law using spreadsheets
NASA Astrophysics Data System (ADS)
Baird, William H.
2013-09-01
Some of the results from the electrostatics portion of introductory physics are particularly difficult for students to understand and/or believe. For students who have yet to take vector calculus, Gauss’s law is far from obvious and may seem more difficult than Coulomb’s. When these same students are told that the minimum potential energy for charges added to a conductor is realized when all charges are on the surface, they may have a hard time believing that the energy would not be lowered if just one of those charges were moved from the surface to the interior of a conductor. Investigating these ideas using Coulomb’s law and/or the formula for the potential energy of a system of discrete charges might be tempting, but as the number of charges climbs past a few the calculations become tedious. A spreadsheet enables students to perform these for a hundred or more charges and confirm the familiar results.
Tensor Calculus: Unlearning Vector Calculus
ERIC Educational Resources Information Center
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
On power series expansions of the S-resolvent operator and the Taylor formula
NASA Astrophysics Data System (ADS)
Colombo, Fabrizio; Gantner, Jonathan
2016-12-01
The S-functional calculus is based on the theory of slice hyperholomorphic functions and it defines functions of n-tuples of not necessarily commuting operators or of quaternionic operators. This calculus relays on the notion of S-spectrum and of S-resolvent operator. Since most of the properties that hold for the Riesz-Dunford functional calculus extend to the S-functional calculus, it can be considered its non commutative version. In this paper we show that the Taylor formula of the Riesz-Dunford functional calculus can be generalized to the S-functional calculus. The proof is not a trivial extension of the classical case because there are several obstructions due to the non commutativity of the setting in which we work that have to be overcome. To prove the Taylor formula we need to introduce a new series expansion of the S-resolvent operators associated to the sum of two n-tuples of operators. This result is a crucial step in the proof of our main results, but it is also of independent interest because it gives a new series expansion for the S-resolvent operators. This paper is addressed to researchers working in operator theory and in hypercomplex analysis.
ERIC Educational Resources Information Center
Thieken, John
2012-01-01
A sample of 127 high school Advanced Placement (AP) Calculus students from two schools was utilized to study the effects of an engineering design-based problem solving strategy on student performance with AP style Related Rate questions and changes in conceptions, beliefs, and influences. The research design followed a treatment-control multiple…
Cao, Caijun; Nie, Liming; Lou, Cunguang; Xing, Da
2010-09-07
Imaging of renal calculi is important for patients who suffered a urinary calculus prior to treatment. The available imaging techniques include plain x-ray, ultrasound scan, intravenous urogram, computed tomography, etc. However, the visualization of a uric acid calculus (radiolucent calculi) is difficult and often impossible by the above imaging methods. In this paper, a new detection method based on microwave-induced thermoacoustic tomography was developed to detect the renal calculi. Thermoacoustic images of calcium oxalate and uric acid calculus were compared with their x-ray images. The microwave absorption differences among the calcium oxalate calculus, uric acid calculus and normal kidney tissue could be evaluated by the amplitude of the thermoacoustic signals. The calculi hidden in the swine kidney were clearly imaged with excellent contrast and resolution in the three orthogonal thermoacoustic images. The results indicate that thermoacoustic imaging may be developed as a complementary method for detecting renal calculi, and its low cost and effective feature shows high potential for clinical applications.
Conformally Invariant Powers of the Laplacian, Q-Curvature, and Tractor Calculus
NASA Astrophysics Data System (ADS)
Gover, A. Rod; Peterson, Lawrence J.
We describe an elementary algorithm for expressing, as explicit formulae in tractor calculus, the conformally invariant GJMS operators due to C.R. Graham et alia. These differential operators have leading part a power of the Laplacian. Conformal tractor calculus is the natural induced bundle calculus associated to the conformal Cartan connection. Applications discussed include standard formulae for these operators in terms of the Levi-Civita connection and its curvature and a direct definition and formula for T. Branson's so-called Q-curvature (which integrates to a global conformal invariant) as well as generalisations of the operators and the Q-curvature. Among examples, the operators of order 4, 6 and 8 and the related Q-curvatures are treated explicitly. The algorithm exploits the ambient metric construction of Fefferman and Graham and includes a procedure for converting the ambient curvature and its covariant derivatives into tractor calculus expressions. This is partly based on [12], where the relationship of the normal standard tractor bundle to the ambient construction is described.
Individualized Additional Instruction for Calculus
ERIC Educational Resources Information Center
Takata, Ken
2010-01-01
College students enrolling in the calculus sequence have a wide variance in their preparation and abilities, yet they are usually taught from the same lecture. We describe another pedagogical model of Individualized Additional Instruction (IAI) that assesses each student frequently and prescribes further instruction and homework based on the…
Revitalization of Nonstandard Calculus.
ERIC Educational Resources Information Center
Fetta, Iris B.
This project developed materials for an innovative new approach to calculus for students in business, economics, liberal arts, management, and the social sciences. With the focus on rates and accumulation of change and their interpretations in real life situations, the materials are data driven, technology based, and feature a unique modeling…
NASA Astrophysics Data System (ADS)
McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.
2016-12-01
The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.
NASA Astrophysics Data System (ADS)
Kalanov, Temur Z.
2014-03-01
A critical analysis of the foundations of standard vector calculus is proposed. The methodological basis of the analysis is the unity of formal logic and of rational dialectics. It is proved that the vector calculus is incorrect theory because: (a) it is not based on a correct methodological basis - the unity of formal logic and of rational dialectics; (b) it does not contain the correct definitions of ``movement,'' ``direction'' and ``vector'' (c) it does not take into consideration the dimensions of physical quantities (i.e., number names, denominate numbers, concrete numbers), characterizing the concept of ''physical vector,'' and, therefore, it has no natural-scientific meaning; (d) operations on ``physical vectors'' and the vector calculus propositions relating to the ''physical vectors'' are contrary to formal logic.
Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.
Predicting Performance in a First Engineering Calculus Course: Implications for Interventions
ERIC Educational Resources Information Center
Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia
2015-01-01
At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take "Engineering Analysis I," a calculus-based engineering analysis course. After the…
Calculus in Elementary School: An Example of ICT-Based Curriculum Transformation
ERIC Educational Resources Information Center
Fluck, Andrew; Ranmuthugala, Dev; Chin, Chris; Penesis, Irene
2012-01-01
Integral calculus is generally regarded as a fundamental but advanced aspect of mathematics, and it is not generally studied until students are aged about fifteen or older. Understanding the transformative potential of information and communication technology, this project undertook an investigation in four Australian schools to train students…
Modeling an Outbreak of Anthrax
ERIC Educational Resources Information Center
Sturdivant, Rod; Watts, Krista
2010-01-01
This article presents material that has been used as a classroom activity in a calculus-based probability and statistics course. The application was used in the first few lessons of this course. Students had three previous semesters of math, including calculus (single and multivariable), differential equations, and a course in mathematical…
Calculus Students' and Instructors' Conceptualizations of Slope: A Comparison across Academic Levels
ERIC Educational Resources Information Center
Nagle, Courtney; Moore-Russo, Deborah; Viglietti, Janine; Martin, Kristi
2013-01-01
This study considers tertiary calculus students' and instructors' conceptualizations of slope. Qualitative techniques were employed to classify responses to 5 items using conceptualizations of slope identified across various research settings. Students' responses suggest that they rely on procedurally based conceptualizations of…
The impact of taking a college pre-calculus course on students' college calculus performance
NASA Astrophysics Data System (ADS)
Sonnert, Gerhard; Sadler, Philip M.
2014-11-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and four-year colleges continues to grow, and these courses are well-populated with students who already took pre-calculus in high school. We examine student performance in college calculus, using regression discontinuity to estimate the effects of taking college pre-calculus or not, in a national US sample of 5507 students at 132 institutions. We find that students who take college pre-calculus do not earn higher calculus grades.
Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.
Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook
2015-01-01
Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391 mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.
A case-control study on the association between bladder cancer and prior bladder calculus.
Chung, Shiu-Dong; Tsai, Ming-Chieh; Lin, Ching-Chun; Lin, Herng-Ching
2013-03-15
Bladder calculus is associated with chronic irritation and inflammation. As there is substantial documentation that inflammation can play a direct role in carcinogenesis, to date the relationship between stone formation and bladder cancer (BC) remains unclear. This study aimed to examine the association between BC and prior bladder calculus using a population-based dataset. This case-control study included 2,086 cases who had received their first-time diagnosis of BC between 2001 and 2009 and 10,430 randomly selected controls without BC. Conditional logistic regressions were employed to explore the association between BC and having been previously diagnosed with bladder calculus. Of the sampled subjects, bladder calculus was found in 71 (3.4%) cases and 105 (1.1%) controls. Conditional logistic regression analysis revealed that the odds ratio (OR) of having been diagnosed with bladder calculus before the index date for cases was 3.42 (95% CI = 2.48-4.72) when compared with controls after adjusting for monthly income, geographic region, hypertension, diabetes, coronary heart disease, and renal disease, tobacco use disorder, obesity, alcohol abuse, and schistosomiasis, bladder outlet obstruction, and urinary tract infection. We further analyzed according to sex and found that among males, the OR of having been previously diagnosed with bladder calculus for cases was 3.45 (95% CI = 2.39-4.99) that of controls. Among females, the OR was 3.05 (95% CI = 1.53-6.08) that of controls. These results add to the evidence surrounding the conflicting reports regarding the association between BC and prior bladder calculus and highlight a potential target population for bladder cancer screening.
Teaching the First Law of Thermodynamics via Real-Life Examples
NASA Astrophysics Data System (ADS)
Chang, Wheijen
2011-04-01
The literature has revealed that many students encounter substantial difficulties in applying the first law of thermodynamics. For example, university students sometimes fail to recognize that heat and work are independent means of energy transfer. When discussing adiabatic processes for an ideal gas, few students can correctly refer to the concept of "work" to justify a change in temperature. Some students adopt the notion that "collisions between molecules produce heat" to explain the rise in temperature for an adiabatic compression process.2 When explaining processes entailing temperature variation, students tend to adopt the ideal-gas law.1,2 Although most university students have acquired a reasonable grasp of the state-function concept, which is valid for variation of internal energy, they fail to grasp the concept that work depends not only on the states but also the processes. Thus, they are unable to use the first law effectively.3 In order to help students comprehend the meaning, usages, and value of the first law, and to realize that the ideal-gas law itself is insufficient to analyze many real-life examples, this paper introduces four examples, some of which can be demonstrated in the classroom. The examples have been devised and gradually modified over a period of several years based on implementation in a calculus-based introductory physics course. Details of when, how, and why each example is adopted, along with the students' pitfalls, are described below.
Zhang, Bo; Tan, Xiaodan; Zhang, Kunlun
2018-01-24
We aimed to investigate whether the cadmium concentrations differ in human dental calculus obtained from the residents with no smoking living in the contaminated area and those with no smoking living in noncontaminated area. In total, there were 260 samples of dental calculus from the adults (n = 50) with no smoking living in contaminated area, the adults (n = 60) with no smoking living in mountainous area, and the adults (n = 150) with no smoking living in low altitude area in Hunan province of China. All samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) for cadmium levels. The cadmium levels in dental calculus were significantly higher in the adults with no smoking living in contaminated area than those living in mountainous area and in low altitude area (p < 0.01). The cadmium levels in dental calculus were also higher in the adults with no smoking living in low altitude area than those living in mountainous region (p < 0.01). The results suggested that measuring cadmium levels in dental calculus may be a useful noninvasive method for analysis of environmental exposure to cadmium in the human oral cavity. The low altitude region may have an area contaminated with cadmium in Hunan province of China.
Study on bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis.
Wan, Tien-Chun; Cheng, Fu-Yuan; Liu, Yu-Tse; Lin, Liang-Chuan; Sakata, Ryoichi
2009-12-01
The purpose of the study was to investigate bioactive compounds of in vitro cultured Calculus Suis and natural Calculus Bovis obtained as valuable by-products from animals used for meat production. The results showed that the components of natural Calculus Bovis were rich in bilirubin and biliverdin and had higher content of essential amino acids. The major amino acids of in vitro cultured Calculus Suis were identified as glycine, alanine, glutamic acid and aspartic acid, and those for natural Calculus Bovis were found to be glutamic acid, aspartic acid, proline, and arginine. The methionine and cysteine contents of precursors for glutathione in natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The mineral contents of zinc, iron and manganese of natural Calculus Bovis were significantly higher than those of in vitro cultured Calculus Suis. The major bile acids in both products were cholic acid and dehydrocholic acid, respectively. The chenodeoxycholic and ursodeoxycholic acid content of in vitro cultured Calculus Suis was significantly higher than that of natural Calculus Bovis.
POGIL in the Calculus Classroom
ERIC Educational Resources Information Center
Bénéteau, Catherine; Guadarrama, Zdenka; Guerra, Jill E.; Lenz, Laurie; Lewis, Jennifer E.; Straumanis, Andrei
2017-01-01
In this paper, we will describe the experience of the authors in using process-oriented guided inquiry learning (POGIL) in calculus at four institutions across the USA. We will briefly examine how POGIL compares to and fits in with other kinds of inquiry-based learning approaches. In particular, we will first discuss the unique structure of a…
It's about Time: The Relationships between Coverage and Instructional Practices in College Calculus
ERIC Educational Resources Information Center
Johnson, Estrella; Ellis, Jessica; Rasmussen, Chris
2016-01-01
This paper is based on a large-scale empirical study designed to investigate Calculus I programmes across the United States to better understand the relationship between instructors' concerns about coverage, instructional practices, and the nature of the material covered. We found that there was no association between instructors feeling pressured…
Integrating Supplementary Application-Based Tutorials in the Multivariable Calculus Course
ERIC Educational Resources Information Center
Verner, I. M.; Aroshas, S.; Berman, A.
2008-01-01
This article presents a study in which applications were integrated in the Multivariable Calculus course at the Technion in the framework of supplementary tutorials. The purpose of the study was to test the opportunity of extending the conventional curriculum by optional applied problem-solving activities and get initial evidence on the possible…
Enhancing Student Writing and Computer Programming with LATEX and MATLAB in Multivariable Calculus
ERIC Educational Resources Information Center
Sullivan, Eric; Melvin, Timothy
2016-01-01
Written communication and computer programming are foundational components of an undergraduate degree in the mathematical sciences. All lower-division mathematics courses at our institution are paired with computer-based writing, coding, and problem-solving activities. In multivariable calculus we utilize MATLAB and LATEX to have students explore…
ERIC Educational Resources Information Center
Grable-Wallace, Lisa; And Others
1989-01-01
Evaluates 5 courseware packages covering the topics of simple harmonic motion, 7 packages for wave motion, and 10 packages for sound. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects several packages based on the criteria. (YP)
Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics
NASA Astrophysics Data System (ADS)
Baskin, E.; Iomin, A.
2011-12-01
We developed an analytical approach, for a wave propagation in metal-dielectric nanostructures in the quasi-static limit. This consideration establishes a link between fractional geometry of the nanostructure and fractional integro-differentiation. The method is based on fractional calculus and permits to obtain analytical expressions for the electric-field enhancement.
On a Calculus-Based Statistics Course for Life Science Students
ERIC Educational Resources Information Center
Watkins, Joseph C.
2010-01-01
The choice of pedagogy in statistics should take advantage of the quantitative capabilities and scientific background of the students. In this article, we propose a model for a statistics course that assumes student competency in calculus and a broadening knowledge in biology. We illustrate our methods and practices through examples from the…
Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364
An ellipsoidal calculus based on propagation and fusion.
Ros, L; Sabater, A; Thomas, F
2002-01-01
Presents an ellipsoidal calculus based solely on two basic operations: propagation and fusion. Propagation refers to the problem of obtaining an ellipsoid that must satisfy an affine relation with another ellipsoid, and fusion to that of computing the ellipsoid that tightly bounds the intersection of two given ellipsoids. These two operations supersede the Minkowski sum and difference, affine transformation and intersection tight bounding of ellipsoids on which other ellipsoidal calculi are based. Actually, a Minkowski operation can be seen as a fusion followed by a propagation and an affine transformation as a particular case of propagation. Moreover, the presented formulation is numerically stable in the sense that it is immune to degeneracies of the involved ellipsoids and/or affine relations. Examples arising when manipulating uncertain geometric information in the context of the spatial interpretation of line drawings are extensively used as a testbed for the presented calculus.
Fractional kinetics of compartmental systems: first approach with use digraph-based method
NASA Astrophysics Data System (ADS)
Markowski, Konrad Andrzej
2017-08-01
In the last two decades, integral and differential calculus of a fractional order has become a subject of great interest in different areas of physics, biology, economics and other sciences. The idea of such a generalization was mentioned in 1695 by Leibniz and L'Hospital. The first definition of the fractional derivative was introduced by Liouville and Riemann at the end of the 19th century. Fractional calculus was found to be a very useful tool for modelling the behaviour of many materials and systems. In this paper fractional calculus was applied to pharmacokinetic compartmental model. For introduced model determine all possible quasi-positive realisation based on one-dimensional digraph theory. The proposed method was discussed and illustrated in detail with some numerical examples.
Association between osteoporosis and urinary calculus: evidence from a population-based study.
Keller, J J; Lin, C-C; Kang, J-H; Lin, H-C
2013-02-01
This population-based case-control analysis investigated the association between osteoporosis and prior urinary calculus (UC) in Taiwan. We succeeded in detecting an association between osteoporosis and prior UC (adjusted odds ratio = 1.66). This association was consistent and significant regardless of stone location. UC has been demonstrated to be a risk factor for osteoporotic fractures, but no studies to date have directly investigated the association between UC and osteoporosis. This case-control analysis aimed to investigate the association of osteoporosis with prior UC using a population-based dataset in Taiwan. We first identified 39,840 cases ≥40 years who received their first-time diagnosis of osteoporosis between 2002 and 2009 and then randomly selected 79,680 controls. We used conditional logistic regression analyses to compute the odds ratio (OR) and the corresponding 95 % confidence interval (CI) for having been previously diagnosed with UC between cases and controls. The OR of having been previously diagnosed with UC for patients with osteoporosis was 1.66 (95 % CI = 1.59-1.73) when compared to controls after adjusting for geographic location, urbanization level, type I diabetes mellitus, coronary heart disease, hyperlipidemia, rheumatoid arthritis, stroke, renal disease, Parkinson's disease, hyperthyroidism, chronic hepatopathy, Cushing's syndrome, malabsorption, gastrectomy, obesity, and alcohol abuse/alcohol dependence syndrome. The results consistently showed that osteoporosis was significantly associated with a previous diagnosis of UC regardless of stone location; the adjusted ORs of prior kidney calculus, ureter calculus, bladder calculus, and unspecified calculus when compared to controls were 1.71 (95 % CI = 1.61-1.81), 1.60 (95 % CI = 1.47-1.74), 1.59 (95 % CI = 1.23-2.04), and 1.69 (95 % CI = 1.59-1.80), respectively. This study succeeded in detecting an association between osteoporosis and prior UC. In addition, our findings were consistent and significant regardless of stone location.
An Active Classroom: The Emerging Scholars Program at West Virginia University
ERIC Educational Resources Information Center
Deshler, Jessica M.; Miller, David; Pascal, Matthew
2016-01-01
In an effort to support the success of minority students and to incorporate inquiry-based learning (IBL) into the calculus sequence of courses at West Virginia University, a modified version of the Emerging Scholars Program (ESP) was implemented in the fall of 2009. Since then, approximately 100 students have taken ESP Calculus I, with many of…
Peer-Led Guided in Calculus at University of South Florida
ERIC Educational Resources Information Center
Bénéteau, Catherine; Fox, Gordon; Xu, Xiaoying; Lewis, Jennifer E.; Ramachandran, Kandethody; Campbell, Scott; Holcomb, John
2016-01-01
This paper describes the development of a Peer-Led Guided Inquiry (PLGI) program for teaching calculus at the University of South Florida. This approach uses the POGIL (Process Oriented Guided Inquiry Learning) teaching strategy and the small group learning model PLTL (Peer-Led Team Learning). The developed materials used a learning cycle based on…
A Knowledge-Structure-Based Adaptive Dynamic Assessment System for Calculus Learning
ERIC Educational Resources Information Center
Ting, M.-Y.; Kuo, B.-C.
2016-01-01
The purpose of this study was to investigate the effect of a calculus system that was designed using an adaptive dynamic assessment (DA) framework on performance in the "finding an area using an integral". In this study, adaptive testing and dynamic assessment were combined to provide different test items depending on students'…
Computation of Surface Integrals of Curl Vector Fields
ERIC Educational Resources Information Center
Hu, Chenglie
2007-01-01
This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…
On a Calculus-based Statistics Course for Life Science Students
2010-01-01
The choice of pedagogy in statistics should take advantage of the quantitative capabilities and scientific background of the students. In this article, we propose a model for a statistics course that assumes student competency in calculus and a broadening knowledge in biology. We illustrate our methods and practices through examples from the curriculum. PMID:20810962
An Individualized Student Term Project for Multivariate Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2004-01-01
In this article, the author describes an individualized term project that is designed to increase student understanding of some of the major concepts and methods in multivariate calculus. The project involves having each student conduct a complete max-min analysis of a third degree polynomial in x and y that is based on his or her social security…
Quantum Bundle Description of Quantum Projective Spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2012-12-01
We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.
Impact of Calculus Reform in a Liberal Arts Calculus Course.
ERIC Educational Resources Information Center
Brosnan, Patricia A.; Ralley, Thomas G.
This report describes the changes in a freshman-level calculus course that occurred as a consequence of adopting the Harvard Consortium Calculus text. The perspective is that of the lecturer. The course is intended as an introduction to calculus for liberal arts students, that is, students who will not be expected to use calculus as a mathematical…
Enhancing the Teaching of Introductory Economics with a Team-Based, Multi-Section Competition
ERIC Educational Resources Information Center
Beaudin, Laura; Berdiev, Aziz N.; Kaminaga, Allison Shwachman; Mirmirani, Sam; Tebaldi, Edinaldo
2017-01-01
The authors describe a unique approach to enhancing student learning at the introductory economics level that utilizes a multi-section, team-based competition. The competition is structured to supplement learning throughout the entire introductory course. Student teams are presented with current economic issues, trends, or events, and use economic…
ERIC Educational Resources Information Center
Hldreth, Laura A.; Robison-Cox, Jim; Schmidt, Jade
2018-01-01
This study examines the transferability of results from previous studies of simulation-based curriculum in introductory statistics using data from 3,500 students enrolled in an introductory statistics course at Montana State University from fall 2013 through spring 2016. During this time, four different curricula, a traditional curriculum and…
A useful demonstration of calculus in a physics high school laboratory
NASA Astrophysics Data System (ADS)
Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David
2018-01-01
The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an experiment of a falling magnet in a column of self-induced eddy currents. The presented method combines multiple physics concepts such as 1D kinematics, classical mechanics, electromagnetism and non-trivial mathematics. It offers the opportunity for lateral as well as project-based learning.
Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity
NASA Astrophysics Data System (ADS)
Undreiu, Lucian M.
2006-12-01
In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.
Student performance on conceptual questions: Does instruction matter?
NASA Astrophysics Data System (ADS)
Heron, Paula R. L.
2013-01-01
As part of the tutorial component of introductory calculus-based physics at the University of Washington, students take weekly pretests that consist of conceptual questions. Pretests are so named because they precede each tutorial, but they are frequently administered after lecture instruction. Many variables associated with class composition and prior instruction (if any) could, in principle, affect student performance on these questions. Nonetheless, the results are often found to be "essentially the same" in all classes. With data available from a large number of classes, it is possible to characterize the typical variation quantitatively. In this paper three questions for which we have accumulated thousands of responses, from dozens of classes representing different conditions with respect to the textbook in use, the amount of prior instruction, etc., serve as examples. For each question, we examine the variation in student performance across all classes. We also compare subsets categorized according to the amount of relevant prior instruction each class had received. A preliminary analysis suggests that the variation in performance is essentially random. No statistically significant difference is observed between results obtained before relevant instruction begins and after it has been completed. The results provide evidence that exposure to concepts in lecture and textbook is not sufficient to ensure an improvement in performance on questions that require qualitative reasoning.
The Impact of Taking a College Pre-Calculus Course on Students' College Calculus Performance
ERIC Educational Resources Information Center
Sonnert, Gerhard; Sadler, Philip M.
2014-01-01
Poor performance on placement exams keeps many US students who pursue a STEM (science, technology, engineering, mathematics) career from enrolling directly in college calculus. Instead, they must take a pre-calculus course that aims to better prepare them for later calculus coursework. In the USA, enrollment in pre-calculus courses in two- and…
Alkhateeb, Haitham M
2002-02-01
This study was designed to compare achievement, attitudes toward success in mathematics, and mathematics anxiety of college students taught brief calculus using a graphic calculator, with the achievement and attitudes and anxiety of students taught using the computer algebra system Maple, using a technology based text book. 50 men and 50 women, students in three classes at a large public university in the southwestern United States, participated. Students' achievement in brief calculus was measured by performance on a teacher-made achievement test given at the end of the study. Analysis of variance showed no significant difference in achievement between the groups. To measure change in attitudes and anxiety, responses to paper-and-pencil inventories indicated significant differences in favor of students using the computer.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
The effect of introducing computers into an introductory physics problem-solving laboratory
NASA Astrophysics Data System (ADS)
McCullough, Laura Ellen
2000-10-01
Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted with gender, with the men in the control group more likely to discuss equipment difficulties than any other group. Overall, the differences between the control and quasi-experimental groups were minimal. It was concluded that carefully replacing traditional data collection and analysis tools with a computer tool had no negative effects on achievement, attitude, group behavior, and did not interact with gender.
NASA Astrophysics Data System (ADS)
West, Emily Lincoln Ashbaugh
Prior research across hundreds for introductory physics courses has demonstrated that traditional physics instruction does not generally lead to students learning physics concepts in a meaningful way, but that interactive-engagement physics courses do sometimes promote a great deal more student learning. In this work I analyze a reform effort in a large-enrollment, introductory, physics course. I find that evaluating a curriculum in isolation from other influences, such as the instructor implementation and the student population, is problematical. Instead, I propose a model of classroom culture identifying the curriculum, instructor, and student peer group as key components to creating a learning environment. Assessment, a key influence of classroom culture, is considered a product of the instructor/curriculum interaction. All three aspects of the classroom culture have the potential to influence student learning outcomes. I analyze the implementation of two different reformed physics series in terms of classroom culture. In a calculus-based course, I evaluate a new reform-based curriculum for the first and third quarters of instruction. In the first quarter, mechanics, I find that having an instructor teach in alignment with the philosophy of the reformed curriculum is essential, with students of only certain section instructors having improved outcomes over traditional instruction on measures of conceptual understanding. In the electromagnetism quarter of instruction, student outcomes for all reformed sections are higher than those from traditional sections in spite of variations in instructor implementation. The vast range of instructor-student interactions within such a reformed course are analyzed in an observational study, finding that some types of interactions are characteristic of particular instructors, regardless of the content studied that day. An analysis of assessment proposes an alternative grading method that is superior to the traditional grading practices, which are inadequate to consistently evaluate certain classes of test items. Those taking part in curriculum design or research in the context of physics classrooms must be aware that variations in instructor implementation, the student population, and assessment practices all have tremendous potential to influence student learning outcomes.
ERIC Educational Resources Information Center
Gibson, Megan
2013-01-01
Due in part to the growing popularity of the Advanced Placement program, an increasingly large percentage of entering college students are enrolling in calculus courses having already taken calculus in high school. Many students do not score high enough on the AP calculus examination to place out of Calculus I, and many do not take the…
Designing an Interactive OER Course Development at Athabasca University Based on ODL Principles
ERIC Educational Resources Information Center
Yan, Hongxin; Law, Sandra
2013-01-01
Failure rates in first year calculus courses are high in most post-secondary institutions across North America and other parts of the world. This Inukshuk-funded open education project involved the development of five stand-alone pre-calculus learning modules. The design and revision phases of this project occurred between the fall of 2007 and…
Keller, Joseph; Chen, Yi-Kuang; Lin, Herng-Ching
2013-04-01
Although one prior study reported an association between bladder pain syndrome/interstitial cystitis (BPS/IC) and urinary calculi (UC), no population-based study to date has been conducted to explore this relationship. Therefore, using a population-based data set in Taiwan, this study set out to investigate the association between BPS/IC and a prior diagnosis of UC. This study included 9,269 cases who had received their first-time diagnosis of BPS/IC between 2006 and 2007 and 46,345 randomly selected controls. We used conditional logistic regression analysis to compute the odds ratio (OR) and its corresponding 95 % confidence interval (CI) for having been previously diagnosed with UC between cases and controls. There was a significant difference in the prevalence of prior UC between cases and controls (8.1 vs 4.3 %, p < 0.001). Conditional logistic regression analysis revealed that cases were more likely to have been previously diagnosed with UC than controls (OR = 1.70; 95 % CI = 1.56-1.84) after adjusting for chronic pelvic pain, irritable bowel syndrome, fibromyalgia, chronic fatigue syndrome, depression, panic disorder, migraine, sicca syndrome, allergy, endometriosis, and asthma. BPS/IC was found to be significantly associated with prior UC regardless of stone location; the adjusted ORs of kidney calculus, ureter calculus, bladder calculus, and unspecified calculus when compared to controls were 1.58 (95 % CI = 1.38-1.81), 1.73 (95 % CI = 1.45-2.05), 3.80 (95 % CI = 2.18-6.62), and 1.83 (95 % CI = 1.59-2.11), respectively. This work generates the hypothesis that UC may be associated with BPS/IC.
[Does carbonate originate from carbonate-calcium crystal component of the human urinary calculus?].
Yuzawa, Masayuki; Nakano, Kazuhiko; Kumamaru, Takatoshi; Nukui, Akinori; Ikeda, Hitoshi; Suzuki, Kazumi; Kobayashi, Minoru; Sugaya, Yasuhiro; Morita, Tatsuo
2008-09-01
It gives important information in selecting the appropriate treatment for urolithiasis to confirm the component of urinary calculus. Presently component analysis of the urinary calculus is generally performed by infrared spectroscopy which is employed by companies providing laboratory testing services in Japan. The infrared spectroscopy determines the molecular components from the absorption spectra in consequence of atomic vibrations. It has the drawback that an accurate crystal structure cannot be analyzed compared with the X-ray diffraction method which analyzes the crystal constituent based on the diffraction of X-rays on crystal lattice. The components of the urinary calculus including carbonate are carbonate apatite and calcium carbonate such as calcite. Although the latter is reported to be very rare component in human urinary calculus, the results by infrared spectroscopy often show that calcium carbonate is included in calculus. The infrared spectroscopy can confirm the existence of carbonate but cannot determine whether carbonate is originated from carbonate apatite or calcium carbonate. Thus, it is not clear whether calcium carbonate is included in human urinary calculus component in Japan. In this study, we examined human urinary calculus including carbonate by use of X-ray structural analysis in order to elucidate the origin of carbonate in human urinary calculus. We examined 17 human calculi which were reported to contain calcium carbonate by infrared spectroscopy performed in the clinical laboratory. Fifteen calculi were obtained from urinary tract, and two were from gall bladder. The stones were analyzed by X-ray powder method after crushed finely. The reports from the clinical laboratory showed that all urinary culculi consisted of calcium carbonate and calcium phosphate, while the gallstones consisted of calcium carbonate. But the components of all urinary calculi were revealed to be carbonate apatite by X-ray diffraction. The components of gallstones were shown to be calcium carbonate (one calcite and the other aragonite) not only by infrared spectroscopy but by X-ray diffraction. It was shown that component analysis of the calculus could be more accurately performed by adding X-ray diffraction method to infrared spectroscopy. It was shown that calcium carbonate existed in a gallstone. As for the carbonate in human urinary calculi, present study showed that it was not calcium carbonate origin but carbonate apatite origin.
Fluorescence properties of human teeth and dental calculus for clinical applications
NASA Astrophysics Data System (ADS)
Lee, Yong-Keun
2015-04-01
Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.
Fluorescence properties of human teeth and dental calculus for clinical applications.
Lee, Yong-Keun
2015-04-01
Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.
Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus
NASA Astrophysics Data System (ADS)
Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.
2015-05-01
We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.
Computer-Oriented Calculus Courses Using Finite Differences.
ERIC Educational Resources Information Center
Gordon, Sheldon P.
The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…
Doğan, Gülnihal Emrem; Demir, Turgut; Laloğlu, Esra; Sağlam, Ebru; Aksoy, Hülya; Yildirim, Abdulkadir; Akçay, Fatih
2016-12-22
Fetuin-A is a potent inhibitor of calcium-phosphate precipitation and of the calcification process, therefore it can also be related with dental calculus. Thus, we aimed to investigate a possible relationship between fetuin-A gene polymorphism and the presence of dental calculus. A possible relationship between serum, saliva and gingival crevicular fluid (GCF) levels of fetuin-A was also investigated. Fetuin-A c.742C > T and c.766C > G polymorphisms were investigated in 103 patients with or without dental calculus. Additionally, serum, saliva and GCF fetuin-A levels of patients were compared according to dental calculus presence. A significant difference was not observed in the distribution of the fetuin-A c.742C > T and c.766C > G polymorphisms between patients with or without dental calculus. Saliva and GCF fetuin-A concentrations of patients with dental calculus were statistically higher than those without dental calculus (P=0.001, P=0.036 respectively). According to our results, fetuin-A c.742C > T and c.766C > G polymorphisms were not associated with presence of dental calculus. However, higher GCF and saliva fetuin-A levels were detected in patients with dental calculus than in patients without dental calculus, which may result from an adaptive mechanism to inhibit mineral precipitation and eventually calculus formation.
Il Calcolo della Pasqua: Vittorio d'Aquitania Dionigi il Piccolo e Abbone di Fleury
NASA Astrophysics Data System (ADS)
Sigismondi, Costantino
2014-05-01
The Easter calculus is a story of ephemerides approximations, with appropriate algorithms, as well as the reformations of the calendar dealed with tropical year's approximations. The calculus made by Victorius of Aquitania, Dyonisius Exiguus and Abbo of Fleury, based on 532 years Easter period in Julian calendar are discussed, including the corrections ad hoc of the algorithms, like the saltus lunae.
Giant calculus: review and report of a case.
Woodmansey, Karl; Severine, Anthony; Lembariti, Bakari S
2013-01-01
Dental calculus is a common oral finding. The term giant calculus is used to describe unusually large deposits of dental calculus. Several extreme cases have been reported in the dental literature. The specific etiology of these cases remains uncertain. This paper reviews previously reported cases, and presents another extreme example of giant calculus.
Calculus: The Dynamics of Change. MAA Notes Number 39.
ERIC Educational Resources Information Center
Roberts, A. Wayne, Ed.
This book discusses the calculus reform effort. The first essay captures the basic themes that should characterize a calculus course that is modern in its vision as well as its pedagogy and content. The next section contains essays on the vision of calculus reform: "Visions of Calculus" (Sharon Cutler Ross); "Nonalgebraic Approaches…
Renal vein thrombosis mimicking urinary calculus: a dilemma of diagnosis.
Wang, Yimin; Chen, Shanwen; Wang, Wei; Liu, Jianyong; Jin, Baiye
2015-07-02
Renal vein thrombosis (RVT) with flank pain, and hematuria, is often mistaken with renal colic originating from ureteric or renal calculus. Especially in young and otherwise healthy patients, clinicians are easily misled by clinical presentation and calcified RVT. A 38-year-old woman presented with flank pain and hematuria suggestive of renal calculus on ultrasound. She underwent extracorporeal shock wave lithotripsy that failed, leading to the recommendation that percutaneous lithotomy was necessary to remove the renal calculus. In preoperative view of the unusual shape of the calculus without hydronephrosis, noncontrast computed tomography was taken and demonstrated left ureteric calculus. However computed tomography angiography revealed, to our surprise, a calcified RVT that was initially thought to be a urinary calculus. This case shows that a calcified RVT might mimic a urinary calculus on conventional ultrasonography and ureteric calculus on noncontrast computed tomography. Subsequent computed tomography angiography disclosed that a calcified RVT caused the imaging findings, thus creating a potentially dangerous clinical pitfall. Hence, it is suggested that the possibility of a RVT needs to be considered in the differential diagnosis whenever one detects an uncommon shape for a urinary calculus.
Noninvasive control of dental calculus removal: qualification of two fluorescence methods
NASA Astrophysics Data System (ADS)
Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.
2013-02-01
The main condition of periodontitis prevention is the full calculus removal from the teeth surface. This procedure should be fulfilled without harming adjacent unaffected tooth tissues. Nevertheless the problem of sensitive and precise estimating of tooth-calculus interface exists and potential risk of hard tissue damage remains. In this work it was shown that fluorescence diagnostics during calculus removal can be successfully used for precise noninvasive detection of calculus-tooth interface. In so doing the simple implementation of this method free from the necessity of spectrometer using can be employed. Such a simple implementation of calculus detection set-up can be aggregated with the devices of calculus removing.
Reliability of recordings of subgingival calculus detected using an ultrasonic device.
Corraini, Priscila; López, Rodrigo
2015-04-01
To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥ 4 mm and with furcation involvement ≥ degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.
Using Dynamic Software to Address Common College Calculus Stumbling Blocks
ERIC Educational Resources Information Center
Seneres, Alice W.; Kerrigan, John A.
2014-01-01
There are specific topics in college calculus that can be major stumbling blocks for students. Having taught college calculus for four years to over a thousand students, we observed that even the students who have already taken pre-calculus or calculus during their high school careers had common misunderstandings. Students may remember a technique…
Leveraging Prior Calculus Study with Embedded Review
ERIC Educational Resources Information Center
Nikolov, Margaret C.; Withers, Wm. Douglas
2016-01-01
We propose a new course structure to address the needs of college students with previous calculus study but no course validations as an alternative to repeating the first year of calculus. Students are introduced directly to topics from Calculus III unpreceded by a formal review of topics from Calculus I or II, but with additional syllabus time…
ERIC Educational Resources Information Center
Robinson, William Baker
1970-01-01
The predicted and actual achievement in college calculus is compared for students who had studied two semesters of calculus in high school. The regression equation used for prediction was calculated from the performance data of similar students who had not had high school calculus. (CT)
[Fluorescence control of dental calculus removal].
Bakhmutov, D N; Gonchukov, S A; Lonkina, T V; Sukhinina, A V
2012-01-01
The main condition of periodontitis prevention is the full calculus removal from the teeth surface. This procedure should be fulfilled without harming adjacent unaffected tooth tissues. Nevertheless the problem of sensitive and precise estimating of tooth-calculus interface exists and potential risk of hard tissue damage remains. In the frames of this work it was shown that fluorescence diagnostics during calculus removal can be successfully used for precise detection of tooth-calculus interface. In so doing the simple implementation of this method free from the necessity of spectrometer using can be employed. Such a simple implementation of calculus detection set-up can be aggregated with the devices of calculus removing (as ultrasonic or laser devices).
Formalization of the Integral Calculus in the PVS Theorem Prover
NASA Technical Reports Server (NTRS)
Butler, Ricky W.
2004-01-01
The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.
ERIC Educational Resources Information Center
Burdman, Pamela
2015-01-01
Since the mid-20th century, the standard U.S. high school and college math curriculum has been based on two years of algebra and a year of geometry, preparing students to take classes in pre-calculus followed by calculus. Students' math pursuits have been differentiated primarily by how far or how rapidly they proceed along a clearly defined…
NASA Astrophysics Data System (ADS)
Constantinescu, E.; Oanta, E.; Panait, C.
2017-08-01
The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.
The Development of Newtonian Calculus in Britain, 1700-1800
NASA Astrophysics Data System (ADS)
Guicciardini, Niccoló
2003-11-01
Introduction; Overture: Newton's published work on the calculus of fluxions; Part I. The Early Period: 1. The diffusion of the calculus (1700-1730); 2. Developments in the calculus of fluxions (1714-1733); 3. The controversy on the foundations of the calculus (1734-1742); Part II. The Middle Period: 4. The textbooks on fluxions (1736-1758); 5. Some applications of the calculus (1740-1743); 6. The analytic art (1755-1785); Part III. The Reform: 7. Scotland (1785-1809); 8. The Military Schools (1773-1819); 9. Cambridge and Dublin (1790-1820); 10. Tables; Endnotes; Bibliography; Index.
The impacts of gingivitis and calculus on Thai children's quality of life.
Krisdapong, Sudaduang; Prasertsom, Piyada; Rattanarangsima, Khanit; Sheiham, Aubrey; Tsakos, Georgios
2012-09-01
To assess associations of socio-demographic, behavioural and the extent of gingivitis and calculus with oral health-related quality of life (OHRQoL) in nationally representative samples of 12- and 15-year-old Thai children. In the Thailand National Oral Health Survey, 1,063 twelve-year olds and 811 fifteen-year olds were clinically examined and interviewed for OHRQoL using the Child-OIDP and OIDP indices, respectively, and completed a behavioural questionnaire. We assessed associations of condition-specific impacts (CS-impacts) with gingivitis and calculus, adjusted for socio-demographic and behavioural factors. Gingivitis and calculus were highly prevalent: 79.3% in 12-year and 81.5% in 15-year olds. CS-impacts relating to calculus and/or gingivitis were reported by 26.0% of 12-year and 29.6% of 15-year olds. Except for calculus without gingivitis, calculus and/or gingivitis in any form was significantly related to any level of CS-impacts. At a moderate or higher level of CS-impacts, there were significant relationships with extensive calculus and/or gingivitis in 12-year olds and for extensive gingivitis and gingivitis without calculus in 15-year olds. Gingivitis was generally associated with any level of CS-impacts attributed to calculus and/or gingivitis. CS-impacts were related more to gingivitis than to calculus. © 2012 John Wiley & Sons A/S.
Having the stomach for it: a contribution to Neanderthal diets?
NASA Astrophysics Data System (ADS)
Buck, Laura T.; Stringer, Chris B.
2014-07-01
Due to the central position of diet in determining ecology and behaviour, much research has been devoted to uncovering Neanderthal subsistence strategies. This has included indirect studies inferring diet from habitat reconstruction, ethnographic analogy, or faunal assemblages, and direct methods, such as dental wear and isotope analyses. Recently, studies of dental calculus have provided another rich source of dietary evidence, with much potential. One of the most interesting results to come out of calculus analyses so far is the suggestion that Neanderthals may have been eating non-nutritionally valuable plants for medicinal reasons. Here we offer an alternative hypothesis for the occurrence of non-food plants in Neanderthal calculus based on the modern human ethnographic literature: the consumption of herbivore stomach contents.
NASA Astrophysics Data System (ADS)
Christensen, Warren Michael
This thesis constitutes an investigation into student understanding of concepts in thermal physics in an introductory calculus-based university physics course. Nearly 90% of students enrolled in the course had previous exposure to thermodynamics concepts in chemistry and/or high-school physics courses. The two major thrusts of this work are (1) an exploration of student approaches to solving calorimetry problems involving two substances with differing specific heats, and (2) a careful probing of student ideas regarding certain aspects of entropy and the second law of thermodynamics. We present extensive free-response, interview, and multiple-choice data regarding students' ideas, collected both before and after instruction from a diverse set of course semesters and instructors. For topics in calorimetry, we found via interviews that students frequently get confused by, or tend to overlook, the detailed proportional reasoning or algebraic procedures that could lead to correct solutions. Instead, students often proceed with semi-intuitive reasoning that at times may be productive, but more often leads to inconsistencies and non-uniform conceptual understanding. Our investigation of student thinking regarding entropy suggests that prior to instruction, students have consistent and distinct patterns of incorrect or incomplete responses that often persist despite deliberate and focused efforts by the instructor. With modified instruction based on research-based materials, significant learning gains were observed on certain key concepts, e.g., that the entropy of the universe increases for all non-ideal processes. The methodology for our work is described, the data are discussed and analyzed, and a description is given of goals for future work in this area.
Prevalence of gingivitis and calculus in 12-year-old Puerto Ricans: a cross-sectional study.
Elias-Boneta, Augusto R; Ramirez, Karol; Rivas-Tumanyan, Sona; Murillo, Margarita; Toro, Milagros J
2018-01-19
Gingivitis is a common oral health problem. Untreated gingivitis may progress to periodontitis, a common cause of tooth loss. The prevalence of gingivitis and calculus among Puerto Rican children is unknown. Understanding this prevalence can support early public health preventative strategies. This study aims to estimate the prevalence of gingivitis and calculus among 12-year-old Puerto Ricans by health region and to explore differences in distribution by school type (proxy for socio-economic status) and gender. A probability-based sample of 113 schools was selected proportional to enrollment size and stratified by health region, school type, and gender. Two trained examiners evaluated the presence of gingivitis and both supragingival and subgingival dental calculus. Gingivitis was defined as the presence of gingival bleeding upon gentle probing (BOP) in at least one site, and the extent of the problem was classified according to the percentage of teeth whose gingiva presented BOP (limited: 25-49% of the teeth tested; extensive: >50% of teeth tested). Logistic and linear regression models, adjusted for health regions, were used to compare gingivitis and calculus prevalence and extent between genders and school types. Gingivitis was found in 80.41% of the 1586 children evaluated. Urban-public schoolchildren had a slightly higher prevalence (83.24%) compared to private (79.15%, p = 0.16); those in rural-public (77.59%) and private schools had similar prevalence (p = 0.15). Extensive gingivitis was present in 60.81% of all children. The mean percentage of sites presenting BOP (BOP%) was 17.79%. Rural and urban public schoolchildren presented significantly higher BOP% compared to children from private schools (p = 0.0005, p = 0.002, respectively). Dental calculus was detected in 61.59% of the sample, boys presenting significantly higher (p = 0.005) total and supragingival calculus. Rural-public schoolchildren had a significantly higher prevalence of subgingival calculus compared to private schoolchildren (p = 0.02). Gingivitis prevalence is higher among 12-year-old Puerto Ricans compared to data reported for U.S. adolescents. Public schoolchildren presented significantly higher BOP% sites compared to private schoolchildren. Boys presented a significantly higher total and supragingival calculus prevalence than girls. Oral health disparities related to gender and school type were identified by this study. Studies exploring the reasons for these disparities are recommended.
ERIC Educational Resources Information Center
Hall, Angela Renee
2011-01-01
This investigative research focuses on the level of readiness of Science, Technology, Engineering, and Mathematics (STEM) students entering Historically Black Colleges and Universities (HBCU) in the college Calculus sequence. Calculus is a fundamental course for STEM courses. The level of readiness of the students for Calculus can very well play a…
ERIC Educational Resources Information Center
Judson, Thomas W.; Nishimori, Toshiyuki
2005-01-01
In this study we investigated above-average high school calculus students from Japan and the United States in order to determine any differences in their conceptual understanding of calculus and their ability to use algebra to solve traditional calculus problems. We examined and interviewed 18 Calculus BC students in the United States and 26…
Montenegro Raudales, Jorge Luis; Yoshimura, Atsutoshi; SM, Ziauddin; Kaneko, Takashi; Ozaki, Yukio; Ukai, Takashi; Miyazaki, Toshihiro; Latz, Eicke; Hara, Yoshitaka
2016-01-01
Dental calculus is a mineralized deposit associated with periodontitis. The bacterial components contained in dental calculus can be recognized by host immune sensors, such as Toll-like receptors (TLRs), and induce transcription of proinflammatory cytokines, such as IL-1β. Studies have shown that cellular uptake of crystalline particles may trigger NLRP3 inflammasome activation, leading to the cleavage of the IL-1β precursor to its mature form. Phagocytosis of dental calculus in the periodontal pocket may therefore lead to the secretion of IL-1β, promoting inflammatory responses in periodontal tissues. However, the capacity of dental calculus to induce IL-1β secretion in human phagocytes has not been explored. To study this, we stimulated human polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) with dental calculus collected from periodontitis patients, and measured IL-1β secretion by ELISA. We found that calculus induced IL-1β secretion in both human PMNs and PBMCs. Calculus also induced IL-1β in macrophages from wild-type mice, but not in macrophages from NLRP3- and ASC-deficient mice, indicating the involvement of NLRP3 and ASC. IL-1β induction was inhibited by polymyxin B, suggesting that LPS is one of the components of calculus that induces pro-IL-1β transcription. To analyze the effect of the inorganic structure, we baked calculus at 250°C for 1 h. This baked calculus failed to induce pro-IL-1β transcription. However, it did induce IL-1β secretion in lipid A-primed cells, indicating that the crystalline structure of calculus induces inflammasome activation. Furthermore, hydroxyapatite crystals, a component of dental calculus, induced IL-1β in mouse macrophages, and baked calculus induced IL-1β in lipid A-primed human PMNs and PBMCs. These results indicate that dental calculus stimulates IL-1β secretion via NLRP3 inflammasome in human and mouse phagocytes, and that the crystalline structure has a partial role in the activation of NLRP3 inflammasome. PMID:27632566
Montenegro Raudales, Jorge Luis; Yoshimura, Atsutoshi; Sm, Ziauddin; Kaneko, Takashi; Ozaki, Yukio; Ukai, Takashi; Miyazaki, Toshihiro; Latz, Eicke; Hara, Yoshitaka
2016-01-01
Dental calculus is a mineralized deposit associated with periodontitis. The bacterial components contained in dental calculus can be recognized by host immune sensors, such as Toll-like receptors (TLRs), and induce transcription of proinflammatory cytokines, such as IL-1β. Studies have shown that cellular uptake of crystalline particles may trigger NLRP3 inflammasome activation, leading to the cleavage of the IL-1β precursor to its mature form. Phagocytosis of dental calculus in the periodontal pocket may therefore lead to the secretion of IL-1β, promoting inflammatory responses in periodontal tissues. However, the capacity of dental calculus to induce IL-1β secretion in human phagocytes has not been explored. To study this, we stimulated human polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) with dental calculus collected from periodontitis patients, and measured IL-1β secretion by ELISA. We found that calculus induced IL-1β secretion in both human PMNs and PBMCs. Calculus also induced IL-1β in macrophages from wild-type mice, but not in macrophages from NLRP3- and ASC-deficient mice, indicating the involvement of NLRP3 and ASC. IL-1β induction was inhibited by polymyxin B, suggesting that LPS is one of the components of calculus that induces pro-IL-1β transcription. To analyze the effect of the inorganic structure, we baked calculus at 250°C for 1 h. This baked calculus failed to induce pro-IL-1β transcription. However, it did induce IL-1β secretion in lipid A-primed cells, indicating that the crystalline structure of calculus induces inflammasome activation. Furthermore, hydroxyapatite crystals, a component of dental calculus, induced IL-1β in mouse macrophages, and baked calculus induced IL-1β in lipid A-primed human PMNs and PBMCs. These results indicate that dental calculus stimulates IL-1β secretion via NLRP3 inflammasome in human and mouse phagocytes, and that the crystalline structure has a partial role in the activation of NLRP3 inflammasome.
Liu, Ping; He, Xinrong; Guo, Mei
2010-04-01
To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P < 0.01). GABA content of zolpidem group and Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P < 0.05). GABA content of Calculus Bovis group was higher than combination group (P < 0.05). GABA content of zolpidem group was not significantly different from combination group. Gly content of Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P < 0.05). Contents of two inhibitive neurotransmitters in rat striatum corpora were all significantly increased in Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.
Some basic results on the sets of sequences with geometric calculus
NASA Astrophysics Data System (ADS)
Türkmen, Cengiz; Başar, Feyzi
2012-08-01
As an alternative to the classical calculus, Grossman and Katz [Non-Newtonian Calculus, Lee Press, Pigeon Cove, Massachusetts, 1972] introduced the non-Newtonian calculus consisting of the branches of geometric, anageometric and bigeometric calculus. Following Grossman and Katz, we construct the field C(G) of geometric complex numbers and the concept of geometric metric. Also we give the triangle and Minkowski's inequalities in the sense of geometric calculus. Later we respectively define the sets w(G), ℓ∞(G), c(G), c0(G) and ℓp(G) of all, bounded, convergent, null and p-absolutely summable sequences, in the sense of geometric calculus and show that each of the set forms a complete vector space on the field C(G).
Restricted diversity of dental calculus methanogens over five centuries, France.
Huynh, Hong T T; Nkamga, Vanessa D; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel
2016-05-11
Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14(th) to 19(th) centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus.
Convex functions and some inequalities in terms of the Non-Newtonian Calculus
NASA Astrophysics Data System (ADS)
Unluyol, Erdal; Salas, Seren; Iscan, Imdat
2017-04-01
Differentiation and integration are basic operations of calculus and analysis. Indeed, they are many versions of the subtraction and addition operations on numbers, respectively. From 1967 till 1970 Michael Grossman and Robert Katz [1] gave definitions of a new kind of derivative and integral, converting the roles of subtraction and addition into division and multiplication, and thus establish a new calculus, called Non-Newtonian Calculus. So, in this paper, it is investigated to the convex functions and some inequalities in terms of Non-Newtonian Calculus. Then we compare with the Newtonian and Non-Newtonian Calculus.
Tsubokawa, Masaki; Aoki, Akira; Kakizaki, Sho; Taniguchi, Yoichi; Ejiri, Kenichiro; Mizutani, Koji; Koshy, Geena; Akizuki, Tatsuya; Oda, Shigeru; Sumi, Yasunori; Izumi, Yuichi
2018-05-24
This study evaluated the effectiveness of swept-source optical coherence tomography (ss-OCT) for detecting calculus and root cementum during periodontal therapy. Optical coherence tomography (OCT) images were taken before and after removal of subgingival calculus from extracted teeth and compared with non-decalcified histological sections. Porcine gingival sheets of various thicknesses were applied to the root surfaces of extracted teeth with calculus and OCT images were taken. OCT images were also taken before and after scaling and root planing (SRP) in human patients. In vitro, calculus was clearly detected as a white-gray amorphous structure on the root surface, which disappeared after removal. Cementum was identified as a thin, dark-gray layer. The calculus could not be clearly observed when soft tissues were present on the root surface. Clinically, supragingival calculus and cementum could be detected clearly with OCT, and subgingival calculus in the buccal cervical area of the anterior and premolar teeth was identified, which disappeared after SRP. Digital processing of the original OCT images was useful for clarifying the calculus. In conclusion, ss-OCT showed potential as a periodontal diagnostic tool for detecting cementum and subgingival calculus, although the practical applications of subgingival imaging remain limited.
Bunny hops: using multiplicities of zeroes in calculus for graphing
NASA Astrophysics Data System (ADS)
Miller, David; Deshler, Jessica M.; Hansen, Ryan
2016-07-01
Students learn a lot of material in each mathematics course they take. However, they are not always able to make meaningful connections between content in successive mathematics courses. This paper reports on a technique to address a common topic in calculus I courses (intervals of increase/decrease and concave up/down) while also making use of students' pre-existing knowledge about the behaviour of functions around zeroes based on multiplicities.
New picosecond laser emitting blue light for use in periodontology
NASA Astrophysics Data System (ADS)
Hennig, Thomas; Nieswand, Elmar; Rechmann, Peter
2001-04-01
Aim of the study was to investigate the impact of a new picosecond laser emitting blue light on tooth surfaces in order to remove calculus. The radiation may be comfortably transmitted via 25 micrometers diameter fiber optics. The resulting fluence at the tooth was found to be to low for ablation of calculus via nonlinear effects. Higher absorption of the 446 nm radiation by calculus compared to heathy tissues can provide preferential heating and evaporation of the calculus. The surface of thick calculus is irregular rough thus comprising a large interface to the surrounding cooling medium contra acting the preferential heating. In summary the study indicates the possibility flat layers of calculus by thermal effects. Carbonization in healthy tissues is the major problem concerning removal of subgingival calculus with thermal effects.
[Percentage of uric acid calculus and its metabolic character in Dongjiang River valley].
Chong, Hong-Heng; An, Geng
2009-02-15
To study the percentage of uric acid calculus in uroliths and its metabolic character in Dongjiang River valley. To analyze the chemical composition of 290 urinary stones by infrared (IR) spectroscopy and study the ratio changes of uric acid calculus. Uric acid calculus patients and healthy people were studied. Personal characteristics, dietary habits were collected. Conditional logistic regression was used for data analysis and studied the dietary risk factors of uric acid calculus. Patients with uric acid calculus, calcium oxalate and those without urinary calculus were undergone metabolic evaluation analysis. The results of uric acid calculus patients compared to another two groups to analysis the relations between the formation of uric acid calculus and metabolism factors. Uric acid calculi were found in 53 cases (18.3%). The multiple logistic regression analysis suggested that low daily water intake, eating more salted and animal food, less vegetable were very closely associated with uric acid calculus. Comparing to calcium oxalate patients, the urine volume, the value of pH, urine calcium, urine oxalic acid were lower, but uric acid was higher than it. The value of pH, urine oxalic acid and citric acid were lower than them, but uric acid and urine calcium were higher than none urinary calculus peoples. Blood potassium and magnesium were lower than them. The percentage of uric acid stones had obvious advanced. Less daily water intake, eating salted food, eating more animal food, less vegetables and daily orange juice intake, eating sea food are the mainly dietary risk factors to the formation of uric acid calculus. Urine volume, the value of pH, citric acid, urine calcium, urine uric acid and the blood natrium, potassium, magnesium, calcium, uric acid have significant influence to the information of uric acid stones.
Dental Calculus Arrest of Dental Caries.
Keyes, Paul H; Rams, Thomas E
An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.
Dental Calculus Arrest of Dental Caries
Keyes, Paul H.; Rams, Thomas E.
2016-01-01
Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993
Recent Evolution of the Introductory Curriculum in Computing.
ERIC Educational Resources Information Center
Tucker, Allen B.; Garnick, David K.
1991-01-01
Traces the evolution of introductory computing courses for undergraduates based on the Association for Computing Machinery (ACM) guidelines published in "Curriculum 78." Changes in the curricula are described, including the role of discrete mathematics and theory; and the need for a broader model for designing introductory courses is…
Liu, Yonggang; Tan, Peng; Liu, Shanshan; Shi, Hang; Feng, Xin; Ma, Qun
2015-01-01
Objective: Calculus bovis have been widely used in Chinese herbology for the treatment of hyperpyrexia, convulsions, and epilepsy. Nowadays, due to the limited source and high market price, the substitutes, artificial and in vitro cultured Calculus bovis, are getting more and more commonly used. The adulteration phenomenon is serious. Therefore, it is crucial to establish a fast and simple method in discriminating the natural, artificial and in vitro cultured Calculus bovis. Bile acids, one of the main active constituents, are taken as an important indicator for evaluating the quality of Calculus bovis and the substitutes. Several techniques have been built to analyze bile acids in Calculus bovis. Whereas, as bile acids are with poor ultraviolet absorbance and high structural similarity, effective technology for identification and quality control is still lacking. Methods: In this study, high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) was applied in the analysis of bile acids, which effectively identified natural, artificial and in vitro cultured Calculus bovis and provide a new method for their quality control. Results: Natural, artificial and in vitro cultured Calculus bovis were differentiated by bile acids analysis. A new compound with protonated molecule at m/z 405 was found, which we called 3α, 12α-dihydroxy-7-oxo-5α-cholanic acid. This compound was discovered in in vitro cultured Calculus bovis, but almost not detected in natural and artificial Calculus bovis. A total of 13 constituents was identified. Among them, three bio-markers, including glycocholic acid, glycodeoxycholic acid and taurocholic acid (TCA) were detected in both natural and artificial Calculus bovis, but the density of TCA was different in two kinds of Calculus bovis. In addition, the characteristics of bile acids were illustrated. Conclusions: The HPLC coupled with tandem MS (LC/MS/MS) method was feasible, easy, rapid and accurate in identifying natural, artificial and in vitro cultured Calculus bovis. PMID:25829769
Maxima and Minima Without Calculus.
ERIC Educational Resources Information Center
Birnbaum, Ian
1982-01-01
Approaches to extrema that do not require calculus are presented to help free maxima/minima problems from the confines of calculus. Many students falsely suppose that these types of problems can only be dealt with through calculus, since few, if any, noncalculus examples are usually presented. (MP)
A generalized nonlocal vector calculus
NASA Astrophysics Data System (ADS)
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
Transurethral lithotripsy with holmium-YAG laser of a large exogenous prostatic calculus.
Hasegawa, Masanori; Ohara, Rei; Kanao, Kent; Nakajima, Yosuke
2011-04-01
Prostatic calculi are classified into two types, endogenous and exogenous calculi, based on their origin. Endogenous calculi are commonly observed in elderly men; however, exogenous prostatic calculi are extremely rare. We report here the case of a 51-year-old man who suffered incontinence and pollakiuria with a giant exogenous prostatic calculus almost completely replacing the prostatic tissue. X-rays and computed tomography demonstrated a large calculus of 65 × 58 mm in the small pelvic cavity. The patient underwent a transurethral lithotripsy with a holmium-YAG laser and a total of 85 g of disintegrated stones was retrieved and chemical stone analysis revealed the presence of magnesium ammonium phosphate. The incontinence improved and the voiding volume increased dramatically, and no stone recurrence in the prostatic fossa occurred at the 2 years follow-up. The etiology of this stone formation seemed to be based on some exogenous pathways combined with urinary stasis and chronic urinary infection due to compression fracture of the lumbar vertebra.
Cristiani, Emanuela; Radini, Anita; Borić, Dušan; Robson, Harry K; Caricola, Isabella; Carra, Marialetizia; Mutri, Giuseppina; Oxilia, Gregorio; Zupancich, Andrea; Šlaus, Mario; Vujević, Dario
2018-05-25
In this contribution we dismantle the perceived role of marine resources and plant foods in the subsistence economy of Holocene foragers of the Central Mediterranean using a combination of dental calculus and stable isotope analyses. The discovery of fish scales and flesh fragments, starch granules and other plant and animal micro-debris in the dental calculus of a Mesolithic forager dated to the end of the 8th millenium BC and buried in the Vlakno Cave on Dugi Otok Island in the Croatian Archipelago demonstrates that marine resources were regularly consumed by the individual together with a variety of plant foods. Since previous stable isotope data in the Eastern Adriatic and the Mediterranean region emphasises that terrestrial-based resources contributed mainly to Mesolithic diets in the Mediterranean Basin, our results provide an alternative view of the dietary habits of Mesolithic foragers in the Mediterranean region based on a combination of novel methodologies and data.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Using Case Studies in Calculus-based Physics
NASA Astrophysics Data System (ADS)
Katz, Debora M.
2006-12-01
Do your students believe that the physics only works in your classroom or laboratory? Or do they see that physics underlies their everyday experience? Case studies in physics help students connect physics principles to their everyday experience. For decades, case studies have been used to teach law, medicine and biology, but they are rarely used in physics. I am working on a calculus-based physics textbook for scientists and engineers. Case studies are woven into each chapter. Stop by and get a case study to test out in your classroom. I would love to get your feedback.
Detection, removal and prevention of calculus: Literature Review
Kamath, Deepa G.; Umesh Nayak, Sangeeta
2013-01-01
Dental plaque is considered to be a major etiological factor in the development of periodontal disease. Accordingly, the elimination of supra- and sub-gingival plaque and calculus is the cornerstone of periodontal therapy. Dental calculus is mineralized plaque; because it is porous, it can absorb various toxic products that can damage the periodontal tissues. Hence, calculus should be accurately detected and thoroughly removed for adequate periodontal therapy. Many techniques have been used to identify and remove calculus deposits present on the root surface. The purpose of this review was to compile the various methods and their advantages for the detection and removal of calculus. PMID:24526823
ERIC Educational Resources Information Center
Lindstrom, Peter A.; And Others
This document consists of four units. The first of these views calculus applications to work, area, and distance problems. It is designed to help students gain experience in: 1) computing limits of Riemann sums; 2) computing definite integrals; and 3) solving elementary area, distance, and work problems by integration. The second module views…
Sowinski, J; Petrone, D M; Battista, G; Petrone, M E; Crawford, R; Patel, S; DeVizio, W; Chaknis, P; Volpe, A R; Proskin, H M
1999-01-01
The objective of this double-blind clinical study was to compare the effect of a new dentifrice (Colgate Tartar Control Plus Whitening Fluoride Toothpaste) for the prevention of supragingival calculus, with that of a commercially available calculus-inhibiting dentifrice (Crest Tartar Control Toothpaste). The study involved adult male and female subjects who had pre-qualified for participation by developing sufficient supragingival calculus (greater than 7.0 on the Volpe-Manhold Calculus Index) during an eight-week screening period. Subjects received a full oral prophylaxis, and were stratified into two treatment groups balanced for age, sex and qualifying calculus score. Subjects were instructed to brush their teeth twice daily (morning and evening) for one minute with their assigned dentifrice using a soft-bristled toothbrush. Examinations for dental calculus were performed after twelve weeks' use of the study dentifrices, using the Volpe-Manhold Calculus Index, Fifty-eight (58) subjects complied with the protocol and completed the entire study. The Colgate Tartar Control Plus Whitening group exhibited a statistically significant (p < 0.001) 34.6% reduction in mean calculus score compared to the Crest Tartar Control group.
Clinical evaluation of seven anticalculus dentifrice formulations.
Scruggs, R R; Stewart, P W; Samuels, M S; Stamm, J W
1991-01-01
One hundred ninety-two subjects completed a clinical trial to determine the effects of seven dentifrice formulations on calculus inhibition. The double-blind study involved a ten-day control phase and a ten-day experimental phase. For the control phase, subjects were evaluated for calculus present, received a prophylaxis and had pre-weighed mylar strips attached to the lingual surfaces of the mandibular incisors to harvest mineral deposits. Subjects were then assigned the placebo dentifrice for unsupervised twice-daily use and were required to report once a day for a supervised mouthrinse using a 1:3 dilution of the dentrifice. The experimental phase was identical except that subjects were allocated the experimental dentifices using a stratified random assignment based on age, gender and the initial presence of calculus. Simple linear regression analyses of the dry and ash log weights obtained from the strips were performed. The results showed no statistically significant differences among the test products; however, two formulations containing zinc citrate showed some calculus inhibition-potential suggesting that further research and development of such products may be warranted.
Generalized vector calculus on convex domain
NASA Astrophysics Data System (ADS)
Agrawal, Om P.; Xu, Yufeng
2015-06-01
In this paper, we apply recently proposed generalized integral and differential operators to develop generalized vector calculus and generalized variational calculus for problems defined over a convex domain. In particular, we present some generalization of Green's and Gauss divergence theorems involving some new operators, and apply these theorems to generalized variational calculus. For fractional power kernels, the formulation leads to fractional vector calculus and fractional variational calculus for problems defined over a convex domain. In special cases, when certain parameters take integer values, we obtain formulations for integer order problems. Two examples are presented to demonstrate applications of the generalized variational calculus which utilize the generalized vector calculus developed in the paper. The first example leads to a generalized partial differential equation and the second example leads to a generalized eigenvalue problem, both in two dimensional convex domains. We solve the generalized partial differential equation by using polynomial approximation. A special case of the second example is a generalized isoperimetric problem. We find an approximate solution to this problem. Many physical problems containing integer order integrals and derivatives are defined over arbitrary domains. We speculate that future problems containing fractional and generalized integrals and derivatives in fractional mechanics will be defined over arbitrary domains, and therefore, a general variational calculus incorporating a general vector calculus will be needed for these problems. This research is our first attempt in that direction.
Effect of non-functional teeth on accumulation of supra-gingival calculus in children.
Ashkenazi, M; Miller, R; Levin, L
2012-10-01
To evaluate the occurrence of supra-gingival calculus in children aged 6-9 years with disuse conditions such as: presence of dental pain, open-bite or erupting teeth. A cohort of 327 children aged 7.64±2.12 (range: 6-9) years (45% girls) were screened for presence of supra-gingival calculus in relation to open bite, erupting teeth and dental pain. Presence of dental calculus was evaluated dichotomically in the buccal, palatinal/lingual and occlusal surfaces. Plaque index (PI) and gingival index (GI) were also evaluated. Supra-gingival calculus was found in 15.9% of the children mainly in the mandibular incisors. Children aged 6-7 years had a higher prevalence of calculus as compared to children aged 7-8 years (23% vs. 13.5%, p=0.057) or 8-9 years (23% vs. 12.4%, p=0.078), respectively. No statistical relation was found between plaque and gingival indices and presence of calculus. The prevalence of calculus among children with openbite was significantly higher than that of children without open-bite (29.4% vs. 10.7%, p=0.0006, OR=3.489). The prevalence of calculus among children with erupting teeth in their oral cavity was higher than that of children without erupting teeth (17.7% vs. 9%, respectively, p=0.119). No statistical correlation was found between presence of dental pain and calculus (15.4% vs. 15.9%; p=0.738). Accumulation of calculus in children aged 6-10 years was found mainly in the mandibular incisors, decreased with age and was correlated with open-bite.
Doğan, Gülnihal Emrem; Demir, Turgut; Aksoy, Hülya; Sağlam, Ebru; Laloğlu, Esra; Yildirim, Abdulkadir
2016-10-01
Matrix-Gla Protein (MGP) is one of the major Gla-containing protein associated with calcification process. It also has a high affinity for Ca 2+ and hydroxyapatite. In this study we aimed to evaluate the MGP rs4236 [A/G] gene polymorphism in association with subgingival dental calculus. Also a possible relationship between MGP gene polymorphism and serum and GCF levels of MGP were examined. MGP rs4236 [A/G] gene polymorphism was investigated in 110 patients with or without subgingival dental calculus, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. Additionally, serum and GCF levels of MGP of the patients were compared according to subgingival dental calculus. Comparison of patients with and without subgingival dental calculus showed no statistically significant difference in MGP rs4236 [A/G] gene polymorphism (p=0.368). MGP concentrations in GCF of patients with subgingival dental calculus were statistically higher than those without subgingival dental calculus (p=0.032). However, a significant association was not observed between the genotypes of AA, AG and GG of the MGP rs4236 gene and the serum and GCF concentrations of MGP in subjects. In this study, it was found that MGP rs4236 [A/G] gene polymorphism was not to be associated with subgingival dental calculus. Also, that GCF MGP levels were detected higher in patients with subgingival dental calculus than those without subgingival dental calculus independently of polymorphism, may be the effect of adaptive mechanism to inhibit calculus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
An AP Calculus Classroom Amusement Park
ERIC Educational Resources Information Center
Ferguson, Sarah
2016-01-01
Throughout the school year, AP Calculus teachers strive to teach course content comprehensively and swiftly in an effort to finish all required material before the AP Calculus exam. As early May approaches and the AP Calculus test looms, students and teachers nervously complete lessons, assignments, and assessments to ensure student preparation.…
Early Vector Calculus: A Path through Multivariable Calculus
ERIC Educational Resources Information Center
Robertson, Robert L.
2013-01-01
The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)
A Historical Perspective on Teaching and Learning Calculus
ERIC Educational Resources Information Center
Doorman, Michiel; van Maanen, Jan
2008-01-01
Calculus is one of those topics in mathematics where the algorithmic manipulation of symbols is easier than understanding the underlying concepts. Around 1680 Leibniz invented a symbol system for calculus that codifies and simplifies the essential elements of reasoning. The calculus of Leibniz brings within the reach of an ordinary student…
ERIC Educational Resources Information Center
Hoskins, Tyler D.; Gantz, J. D.; Chaffee, Blake R.; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J.
2017-01-01
Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami…
NASA Astrophysics Data System (ADS)
Eyre, T. M. W.
Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as
1985-09-01
Code 0 Physics (Calculus-Based) or Physical Science niscioline 0----------------------------------------- lR averaqe...opportunity for fficers with inadequate math- ematical and physical science backgrounds to establish a good math foundation to be able to gualify for a...technical curricu2um [Ref. 5: page 36]. There is also a six week refresher available that is designed to rapidly cover the calculus and physics
NASA Astrophysics Data System (ADS)
Hundley, Stacey A.
In recent years there has been a national call for reform in undergraduate science education. The goal of this reform movement in science education is to develop ways to improve undergraduate student learning with an emphasis on developing more effective teaching practices. Introductory science courses at the college level are generally taught using a traditional lecture format. Recent studies have shown incorporating active learning strategies within the traditional lecture classroom has positive effects on student outcomes. This study focuses on incorporating interactive teaching methods into the traditional lecture classroom to enhance student learning for non-science majors enrolled in introductory geology courses at a private university. Students' experience and instructional preferences regarding introductory geology courses were identified from survey data analysis. The information gained from responses to the questionnaire was utilized to develop an interactive lecture introductory geology course for non-science majors. Student outcomes were examined in introductory geology courses based on two teaching methods: interactive lecture and traditional lecture. There were no significant statistical differences between the groups based on the student outcomes and teaching methods. Incorporating interactive lecture methods did not statistically improve student outcomes when compared to traditional lecture teaching methods. However, the responses to the survey revealed students have a preference for introductory geology courses taught with lecture and instructor-led discussions and students prefer to work independently or in small groups. The results of this study are useful to individuals who teach introductory geology courses and individuals who teach introductory science courses for non-science majors at the college level.
Questions Revisited: A Close Examination of Calculus of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.; Koga, Dennis (Technical Monitor)
2003-01-01
In this paper I examine more closely the way in which probability theory, the calculus of inference, is derived from the Boolean lattice structure of logical assertions ordered by implication. I demonstrate how the duality between the logical conjunction and disjunction in Boolean algebra is lost when deriving the probability calculus. In addition, I look more closely at the other lattice identities to verify that they are satisfied by the probability calculus. Last, I look towards developing the calculus of inquiry demonstrating that there is a sum and product rule for the relevance measure as well as a Bayes theorem. Current difficulties in deriving the complete inquiry calculus will also be discussed.
Preservation of the metaproteome: variability of protein preservation in ancient dental calculus.
Mackie, Meaghan; Hendy, Jessica; Lowe, Abigail D; Sperduti, Alessandra; Holst, Malin; Collins, Matthew J; Speller, Camilla F
2017-01-01
Proteomic analysis of dental calculus is emerging as a powerful tool for disease and dietary characterisation of archaeological populations. To better understand the variability in protein results from dental calculus, we analysed 21 samples from three Roman-period populations to compare: 1) the quantity of extracted protein; 2) the number of mass spectral queries; and 3) the number of peptide spectral matches and protein identifications. We found little correlation between the quantity of calculus analysed and total protein identifications, as well as no systematic trends between site location and protein preservation. We identified a wide range of individual variability, which may be associated with the mechanisms of calculus formation and/or post-depositional contamination, in addition to taphonomic factors. Our results suggest dental calculus is indeed a stable, long-term reservoir of proteins as previously reported, but further systematic studies are needed to identify mechanisms associated with protein entrapment and survival in dental calculus.
Recalling Prerequisite Material in a Calculus II Course to Improve Student Success
ERIC Educational Resources Information Center
Mokry, Jeanette
2016-01-01
This article discusses preparation assignments used in a Calculus II course that cover material from prerequisite courses. Prior to learning new material, students work on problems outside of class involving concepts from algebra, trigonometry, and Calculus I. These problems are directly built upon in order to answer Calculus II questions,…
The Path to College Calculus: The Impact of High School Mathematics Coursework
ERIC Educational Resources Information Center
Sadler, Philip; Sonnert, Gerhard
2018-01-01
This study addresses a longstanding question among high school mathematics teachers and college mathematics professors: Which is the best preparation for college calculus-- (a) a high level of mastery of mathematics considered preparatory for calculus (algebra, geometry, precalculus) or (b) taking calculus itself in high school? We used a data set…
The Development and Nature of Problem-Solving among First-Semester Calculus Students
ERIC Educational Resources Information Center
Dawkins, Paul Christian; Epperson, James A. Mendoza
2014-01-01
This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate…
ERIC Educational Resources Information Center
Harding, Simon; Scott, Paul
2004-01-01
Calculus is a mathematical concept that is fundamental to how we understand the world around us. Whether it is in the world of technology, finance, astronomy, sociology, medicine, calculus in one form or another can be found. This brief article describes the origins of calculus in Greece, further developments by Newton and Leibniz, and the…
Polynomial Calculus: Rethinking the Role of Calculus in High Schools
ERIC Educational Resources Information Center
Grant, Melva R.; Crombie, William; Enderson, Mary; Cobb, Nell
2016-01-01
Access to advanced study in mathematics, in general, and to calculus, in particular, depends in part on the conceptual architecture of these knowledge domains. In this paper, we outline an alternative conceptual architecture for elementary calculus. Our general strategy is to separate basic concepts from the particular advanced techniques used in…
Calculus ABCs: A Gateway for Freshman Calculus
ERIC Educational Resources Information Center
Fulton, Scott R.
2003-01-01
This paper describes a gateway testing program designed to ensure that students acquire basic skills in freshman calculus. Students must demonstrate they have mastered standards for "Absolutely Basic Competency"--the Calculus ABCs--in order to pass the course with a grade of C or better. We describe the background, standards, and testing program.…
Unusual Case of Calculus in Floor of Mouth: A Case Report
Thosar, Nilima; Jain, Eesha S
2012-01-01
Abstract Calculus consists of mineralized bacterial plaque that forms on the surfaces of natural teeth. It is supragingival or subgingival depending upon its relation with gingival margin. The two most common locations for supragingival calculus are the buccal surfaces of maxillary molars and lingual surfaces of mandibular anterior teeth. It is very important to rule out the predisposing factor for calculus formation. In the present case of an 11-year- old female child, 1.2 × 1.5 cm large indurated mass suggestive of calculus in the left side of floor of mouth was observed. After surgical removal, along with indurated mass, an embedded root fragment was seen. Biochemical analysis of the specimen detected the calcium and phosphate ions approximately equals to the level in calculus. Thus, we diagnosed it as a calculus. Oral hygiene instructions and regular follow-up was advised. How to cite this article: Bahadure RN, Thosar N, Jain ES. Unusual Case of Calculus in Floor of Mouth: A Case Report. Int J Clin Pediatr Dent 2012;5(3):223-225. PMID:25206174
Investigation of In vitro Mineral forming bacterial isolates from supragingival calculus.
Baris, O; Demir, T; Gulluce, M
2017-12-01
Although it is known that bacterial mechanisms are involved in dental calculus formation, which is a predisposing factor in periodontal diseases, there have been few studies of such associations, and therefore, information available is limited. The purpose of this study was to isolate and identify aerobic bacteria responsible for direct calcification from supragingival calculus samples. The study was conducted using supragingival calculus samples from patients with periodontal disease, which was required as part of conventional treatment. Isolations were performed by sampling the supragingival calculus with buffer and inoculating the samples on media on which crystallization could be observed. The 16S recombinant DNA of the obtained pure cultures was then amplified and sequenced. A few bacterial species that have not previously been associated with mineralization or identified on bacterial plaque or calculus were detected. The bacteria that caused mineralization an aerobic environment are identified as Neisseria flava, Aggregatibacter segnis, Streptococcus tigurinus, and Morococcus cerebrosus. These findings proved that bacteria potentially play a role in the etiopathology of supragingival calculus. The association between the effects of the identified bacteria on periodontal diseases and calculus formation requires further studies.
Computational Inquiry in Introductory Statistics
ERIC Educational Resources Information Center
Toews, Carl
2017-01-01
Inquiry-based pedagogies have a strong presence in proof-based undergraduate mathematics courses, but can be difficult to implement in courses that are large, procedural, or highly computational. An introductory course in statistics would thus seem an unlikely candidate for an inquiry-based approach, as these courses typically steer well clear of…
Dental calculus formation in children and adolescents undergoing hemodialysis.
Martins, Carla; Siqueira, Walter Luiz; Oliveira, Elizabeth; Nicolau, José; Primo, Laura Guimarães
2012-10-01
This study aimed to determine whether dental calculus formation is really higher among patients with chronic kidney disease undergoing hemodialysis than among controls. Furthermore, the study evaluated correlations between dental calculus formation and dental plaque, variables that are related to renal disease and/or saliva composition. The Renal Group was composed of 30 patients undergoing hemodialysis, whereas the Healthy Group had 30 clinically healthy patients. Stimulated whole saliva and parotid saliva were collected. Salivary flow rate and calcium and phosphate concentrations were determined. In the Renal Group the saliva collection was carried out before and after a hemodialysis session. Patients from both groups received intraoral exams, oral hygiene instructions, and dental scaling. Three months later, the dental calculus was measured by the Volpe-Manhold method to determine the rate of dental calculus formation. The Renal Group presented a higher rate of dental calculus formation (p < 0.01). Correlation was observed between rate of dental calculus formation and whole saliva flow rate in the Renal Group after a hemodialysis session (r = 0.44, p < 0.05). The presence of dental calculus was associated with phosphate concentration in whole saliva from the Renal Group (p < 0.05). In conclusion, patients undergoing hemodialysis presented accelerated dental calculus formation, probably due to salivary variables.
The Case for Biocalculus: Design, Retention, and Student Performance
Eaton, Carrie Diaz; Highlander, Hannah Callender
2017-01-01
Calculus is one of the primary avenues for initial quantitative training of students in all science, technology, engineering, and mathematics fields, but life science students have been found to underperform in the traditional calculus setting. As a result, and because of perceived lack of its contribution to the understanding of biology, calculus is being actively cut from biology program requirements at many institutions. Here, we present an alternative: a model for learning mathematics that sees the partner disciplines as crucial to student success. We equip faculty with information to engage in dialogue within and between disciplinary departments involved in quantitative education. This includes presenting a process for interdisciplinary development and implementation of biology-oriented Calculus I courses at two institutions with different constituents, goals, and curricular constraints. When life science students enrolled in these redesigned calculus courses are compared with life science students enrolled in traditional calculus courses, students in the redesigned calculus courses learn calculus concepts and skills as well as their traditional course peers; however, the students in the redesigned courses experience more authentic life science applications and are more likely to stay and succeed in the course than their peers who are enrolled in traditional courses. Therefore, these redesigned calculus courses hold promise in helping life science undergraduate students attain Vision and Change recommended competencies. PMID:28450445
Improving student learning in calculus through applications
NASA Astrophysics Data System (ADS)
Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.
2011-07-01
Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.
The development and nature of problem-solving among first-semester calculus students
NASA Astrophysics Data System (ADS)
Dawkins, Paul Christian; Mendoza Epperson, James A.
2014-08-01
This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving performance, we observe that current instruction requires ongoing refinement to help students develop multi-register fluency and the ability to model quantitatively, as is called for in current US standards for mathematical instruction.
Rams, Thomas E; Alwaqyan, Abdulaziz Y
2017-10-01
This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.
Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.
Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y
2018-06-01
Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental calculus was significantly inhibited by cytochalasin D, z-YVAD-fmk and glyburide, indicating NLRP3 inflammasome involvement. In permeability assays, dental calculus attenuated the barrier function of HSC-2 cell monolayers. Dental calculus induces pyroptotic cell death in human oral epithelial cells and the crystalline structure plays a major role in this process. Oral epithelial cell death induced by dental calculus might be important for the etiology of periodontitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Sissi L.
At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based introductory physics. The responses were analyzed using principal component exploratory factor analysis. The emergent factors were analyzed to create reliable subscales to measure PLI in terms of physics learning self-efficacy and social expectations about learning. Using these subscales, I present a case study of a student who performed well in the course but resisted the identity learning goals of the curriculum. These findings are used to support the factors that emerged from the statistical analysis and suggest a potential model of the relationships between the factors describing science learning and learning identity in large enrollment college science classes. This study offers an instrument with which to measure aspects of physics learning identity and insights on how PLI might develop in a classroom community of practice.
ERIC Educational Resources Information Center
Mastilak, Christian
2012-01-01
Millennial students often possess characteristics at odds with typical lecture-based approaches to introductory accounting courses. The author introduces an approach for reaching millennial students early in introductory accounting courses in ways that fit millennials' characteristics. This article describes the use of the board game Monopoly[R]…
ERIC Educational Resources Information Center
Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.
2017-01-01
Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…
Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course
ERIC Educational Resources Information Center
Moss, Elizabeth; Cervato, Cinzia
2016-01-01
As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…
Just the Facts? Introductory Undergraduate Biology Courses Focus on Low-Level Cognitive Skills
ERIC Educational Resources Information Center
Momsen, Jennifer L.; Long, Tammy M.; Wyse, Sara A.; Ebert-May, Diane
2010-01-01
Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses.…
A Transition Course from Advanced Placement to College Calculus
ERIC Educational Resources Information Center
Lucas, Timothy A.; Spivey, Joseph
2011-01-01
In the Spring of 2007, a group of highly motivated mathematics graduate students conducted a review of Duke's Calculus curriculum. They focused on two main problems. The first problem is the result of a very positive trend: a growing number of students are earning AP credit for Calculus I in high school. However, this results in Calculus II…
Improving Calculus II and III through the Redistribution of Topics
ERIC Educational Resources Information Center
George, C. Yousuf; Koetz, Matt; Lewis, Heather A.
2016-01-01
Three years ago our mathematics department rearranged the topics in second and third semester calculus, moving multivariable calculus to the second semester and series to the third semester. This paper describes the new arrangement of topics, and how it could be adapted to calculus curricula at different schools. It also explains the benefits we…
Computer Managed Instruction Homework Modules for Calculus I.
ERIC Educational Resources Information Center
Goodman-Petrushka, Sharon; Roitberg, Yael
This booklet contains 11 modules (290 multiple-choice items) designed for use in the first course of a three-course calculus sequence using the textbook "Calculus with Analytic Geometry" (Dennis G. Zill). In each module, relevant sections of the textbook are identified for users. It can, however, be used in conjunction with any calculus textbook.…
ERIC Educational Resources Information Center
Merrick, K. E.
2010-01-01
This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…
Incorporating Code-Based Software in an Introductory Statistics Course
ERIC Educational Resources Information Center
Doehler, Kirsten; Taylor, Laura
2015-01-01
This article is based on the experiences of two statistics professors who have taught students to write and effectively utilize code-based software in a college-level introductory statistics course. Advantages of using software and code-based software in this context are discussed. Suggestions are made on how to ease students into using code with…
NASA Astrophysics Data System (ADS)
Vaninsky, Alexander
2015-04-01
Defining the logarithmic function as a definite integral with a variable upper limit, an approach used by some popular calculus textbooks, is problematic. We discuss the disadvantages of such a definition and provide a way to fix the problem. We also consider a definition-based, rigorous derivation of the derivative of the exponential function that is easier, more intuitive, and complies with the standard definitions of the number e, the logarithmic, and the exponential functions.
Phonological Interpretation into Preordered Algebras
NASA Astrophysics Data System (ADS)
Kubota, Yusuke; Pollard, Carl
We propose a novel architecture for categorial grammar that clarifies the relationship between semantically relevant combinatoric reasoning and semantically inert reasoning that only affects surface-oriented phonological form. To this end, we employ a level of structured phonology that mediates between syntax (abstract combinatorics) and phonology proper (strings). To notate structured phonologies, we employ a lambda calculus analogous to the φ-terms of [8]. However, unlike Oehrle's purely equational φ-calculus, our phonological calculus is inequational, in a way that is strongly analogous to the functional programming language LCF [10]. Like LCF, our phonological terms are interpreted into a Henkin frame of posets, with degree of definedness ('height' in the preorder that interprets the base type) corresponding to degree of pronounceability; only maximal elements are actual strings and therefore fully pronounceable. We illustrate with an analysis (also new) of some complex constituent-order phenomena in Japanese.
Concept of dynamic memory in economics
NASA Astrophysics Data System (ADS)
Tarasova, Valentina V.; Tarasov, Vasily E.
2018-02-01
In this paper we discuss a concept of dynamic memory and an application of fractional calculus to describe the dynamic memory. The concept of memory is considered from the standpoint of economic models in the framework of continuous time approach based on fractional calculus. We also describe some general restrictions that can be imposed on the structure and properties of dynamic memory. These restrictions include the following three principles: (a) the principle of fading memory; (b) the principle of memory homogeneity on time (the principle of non-aging memory); (c) the principle of memory reversibility (the principle of memory recovery). Examples of different memory functions are suggested by using the fractional calculus. To illustrate an application of the concept of dynamic memory in economics we consider a generalization of the Harrod-Domar model, where the power-law memory is taken into account.
Differential form representation of stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
ERIC Educational Resources Information Center
Setty, Sumana; Kosinski-Collins, Melissa S.
2015-01-01
It has been noted that undergraduate project-based laboratories lead to increased interest in scientific research and student understanding of biological concepts. We created a novel, inquiry-based, multiweek genetics research project studying Ptpmeg, for the Introductory Biology Laboratory course at Brandeis University. Ptpmeg is a protein…
A Case-Based Curriculum for Introductory Geology
ERIC Educational Resources Information Center
Goldsmith, David W.
2011-01-01
For the past 5 years I have been teaching my introductory geology class using a case-based method that promotes student engagement and inquiry. This article presents an explanation of how a case-based curriculum differs from a more traditional approach to the material. It also presents a statistical analysis of several years' worth of student…
ERIC Educational Resources Information Center
Tintle, Nathan; Topliff, Kylie; VanderStoep, Jill; Holmes, Vicki-Lynn; Swanson, Todd
2012-01-01
Previous research suggests that a randomization-based introductory statistics course may improve student learning compared to the consensus curriculum. However, it is unclear whether these gains are retained by students post-course. We compared the conceptual understanding of a cohort of students who took a randomization-based curriculum (n = 76)…
Kraivaphan, Petcharat; Amornchat, Cholticha
2017-01-01
The purpose of this double-blind, parallel clinical study was to assess clinical efficacy in supragingival calculus formation reduction using Abhaibhubejhr Herbal Toothpaste compared to Colgate Total and Colgate Cavity Protection toothpastes. A total of 150 subjects participated in the pretest phase. All subjects were given oral soft/hard tissue evaluation, calculus examination using Volpe-Manhold calculus, and whole mouth oral prophylaxis. They received noncalculus control fluoride toothpaste and a soft-bristled toothbrush to brush for 1 min two times daily for 8 weeks. After which, subjects were given a test phase oral soft/hard tissue evaluation and calculus examination and were randomized into one of the three toothpaste groups. All subjects in the test phase received a whole mouth oral prophylaxis and were given their assigned toothpaste and a soft-bristled toothbrush to brush for 1 min two times a day for 12 weeks. Thereafter, subjects were assessed for their oral soft/hard tissue and calculus formation. Mean Volpe-Manhold calculus index scores for the Cavity Protection, Abhaibhubejhr, and Total toothpaste groups were 0.78, 0.62, and 0.48, respectively, at the 12-week test phase evaluation. Abhaibhubejhr and Total toothpaste groups show 20.51% and 38.46% significantly less calculus formation than the Cavity Protection toothpaste group ( P < 0.05). Total toothpaste group also show 22.58% significantly less calculus formation than the Abhaibhubejhr toothpaste group ( P < 0.05). The use of Colgate Total toothpaste over a 12-week period was clinically more effective than either Abhaibhubejhr or Colgate Cavity Protection toothpastes in controlling supragingival calculus formation.
Endoscopic vs. tactile evaluation of subgingival calculus.
Osborn, Joy B; Lenton, Patricia A; Lunos, Scott A; Blue, Christine M
2014-08-01
Endoscopic technology has been developed to facilitate imagery for use during diagnostic and therapeutic phases of periodontal care. The purpose of this study was to compare the level of subgingival calculus detection using a periodontal endoscope with that of conventional tactile explorer in periodontitis subjects. A convenience sample of 26 subjects with moderate periodontitis in at least 2 quadrants was recruited from the University of Minnesota School of Dentistry to undergo quadrant scaling and root planing. One quadrant from each subject was randomized for tactile calculus detection alone and the other quadrant for tactile detection plus the Perioscope ™ (Perioscopy Inc., Oakland, Cali). A calculus index on a 0 to 3 score was performed at baseline and at 2 post-scaling and root planing visits. Sites where calculus was detected at visit 1 were retreated. T-tests were used to determine within-subject differences between Perioscope™ and tactile measures, and changes in measures between visits. Significantly more calculus was detected using the Perioscope™ vs. tactile explorer for all 3 subject visits (p<0.005). Mean changes (reduction) in calculus detection from baseline to visit 1 were statistically significant for both the Perioscope™ and tactile quadrants (p<0.0001). However, further reductions in calculus detection from visit 1 to visit 2 was only significant for the Perioscope™ quadrant (p<0.025), indicating that this methodology was able to more precisely detect calculus at this visit. It was concluded that the addition of a visual component to calculus detection via the Perioscope™ was most helpful in the re-evaluation phase of periodontal therapy. Copyright © 2014 The American Dental Hygienists’ Association.
A comparison of dental ultrasonic technologies on subgingival calculus removal: a pilot study.
Silva, Lidia Brión; Hodges, Kathleen O; Calley, Kristin Hamman; Seikel, John A
2012-01-01
This pilot study compared the clinical endpoints of the magnetostrictive and piezoelectric ultrasonic instruments on calculus removal. The null hypothesis stated that there is no statistically significant difference in calculus removal between the 2 instruments. A quasi-experimental pre- and post-test design was used. Eighteen participants were included. The magnetostrictive and piezoelectric ultrasonic instruments were used in 2 assigned contra-lateral quadrants on each participant. A data collector, blind to treatment assignment, assessed the calculus on 6 predetermined tooth sites before and after ultrasonic instrumentation. Calculus size was evaluated using ordinal measurements on a 4 point scale (0, 1, 2, 3). Subjects were required to have size 2 or 3 calculus deposit on the 6 predetermined sites. One clinician instrumented the pre-assigned quadrants. A maximum time of 20 minutes of instrumentation was allowed with each technology. Immediately after instrumentation, the data collector then conducted the post-test calculus evaluation. The repeated analysis of variance (ANOVA) was used to analyze the pre- and post-test calculus data (p≤0.05). The null hypothesis was accepted indicating that there is no statistically significant difference in calculus removal when comparing technologies (p≤0.05). Therefore, under similar conditions, both technologies removed the same amount of calculus. This research design could be used as a foundation for continued research in this field. Future studies include implementing this study design with a larger sample size and/or modifying the study design to include multiple clinicians who are data collectors. Also, deposit removal with periodontal maintenance patients could be explored.
Statistics for wildlifers: how much and what kind?
Johnson, D.H.; Shaffer, T.L.; Newton, W.E.
2001-01-01
Quantitative methods are playing increasingly important roles in wildlife ecology and, ultimately, management. This change poses a challenge for wildlife practitioners and students who are not well-educated in mathematics and statistics. Here we give our opinions on what wildlife biologists should know about statistics, while recognizing that not everyone is inclined mathematically. For those who are, we recommend that they take mathematics coursework at least through calculus and linear algebra. They should take statistics courses that are focused conceptually , stressing the Why rather than the How of doing statistics. For less mathematically oriented wildlifers, introductory classes in statistical techniques will furnish some useful background in basic methods but may provide little appreciation of when the methods are appropriate. These wildlifers will have to rely much more on advice from statisticians. Far more important than knowing how to analyze data is an understanding of how to obtain and recognize good data. Regardless of the statistical education they receive, all wildlife biologists should appreciate the importance of controls, replication, and randomization in studies they conduct. Understanding these concepts requires little mathematical sophistication, but is critical to advancing the science of wildlife ecology.
Science 101: How Do We Use Calculus in Science?
ERIC Educational Resources Information Center
Robertson, Bill
2014-01-01
How is calculus used in science? That might seem like an odd question to answer in a magazine intended primarily for elementary school teachers. After all, how much calculus gets used in elementary science? Here the author guesses that quite a few readers of this column do not know a whole lot about calculus and have not taken a course in…
ERIC Educational Resources Information Center
Laurent, Theresa A.
2009-01-01
The purpose of this study was to investigate higher education mathematics departments' credit granting policies for students with high school calculus experience. The number of students taking calculus in high school has more than doubled since 1982 (NCES, 2007) and it is estimated that approximately 530,000 students took a calculus course in high…
ERIC Educational Resources Information Center
Sofronas, Kimberly S.; DeFranco, Thomas C.; Swaminathan, Hariharan; Gorgievski, Nicholas; Vinsonhaler, Charles; Wiseman, Brianna; Escolas, Samuel
2015-01-01
This paper discusses findings from a research study designed to investigate calculus instructors' perceptions of approximation as a central concept and possible unifying thread of the first-year calculus. The study also examines the role approximation plays in participants' self-reported instructional practices. A survey was administered to 279…
What Does It Mean for a Student to Understand the First-Year Calculus? Perspectives of 24 Experts
ERIC Educational Resources Information Center
Sofronas, Kimberly S.; DeFranco, Thomas C.; Vinsonhaler, Charles; Gorgievski, Nicholas; Schroeder, Larissa; Hamelin, Chris
2011-01-01
This article presents the views of 24 nationally recognized authorities in the field of mathematics, and in particular the calculus, on student understanding of the first-year calculus. A framework emerged that includes four overarching end goals for understanding of the first-year calculus: (a) mastery of the fundamental concepts and-or skills of…
Merging Old and New: An Instrumentation-Based Introductory Analytical Laboratory
ERIC Educational Resources Information Center
Jensen, Mark B.
2015-01-01
An instrumentation-based laboratory curriculum combining traditional unknown analyses with student-designed projects has been developed for an introductory analytical chemistry course. In the first half of the course, students develop laboratory skills and instrumental proficiency by rotating through six different instruments performing…
Preservation of the metaproteome: variability of protein preservation in ancient dental calculus
Mackie, Meaghan; Hendy, Jessica; Lowe, Abigail D.; Sperduti, Alessandra; Holst, Malin; Collins, Matthew J.; Speller, Camilla F.
2017-01-01
ABSTRACT Proteomic analysis of dental calculus is emerging as a powerful tool for disease and dietary characterisation of archaeological populations. To better understand the variability in protein results from dental calculus, we analysed 21 samples from three Roman-period populations to compare: 1) the quantity of extracted protein; 2) the number of mass spectral queries; and 3) the number of peptide spectral matches and protein identifications. We found little correlation between the quantity of calculus analysed and total protein identifications, as well as no systematic trends between site location and protein preservation. We identified a wide range of individual variability, which may be associated with the mechanisms of calculus formation and/or post-depositional contamination, in addition to taphonomic factors. Our results suggest dental calculus is indeed a stable, long-term reservoir of proteins as previously reported, but further systematic studies are needed to identify mechanisms associated with protein entrapment and survival in dental calculus. PMID:29098079
ERIC Educational Resources Information Center
Center for Faculty Development, Princeton, NJ.
Between 1988 and 1991, the Center for Faculty Development undertook a project to evaluate the teaching of the Introductory Course in History at American community colleges. Based upon a survey of over 100 introductory history teachers and conference discussions, it was determined that two sets of course guidelines for faculty were required, one…
ERIC Educational Resources Information Center
Kazimoglu, Cagin; Kiernan, Mary; Bacon, Liz; MacKinnon, Lachlan
2011-01-01
This paper outlines an innovative game-based approach to learning introductory programming that is grounded in the development of computational thinking at an abstract conceptual level, but also provides a direct contextual relationship between game-play and learning traditional introductory programming. The paper proposes a possible model for,…
ERIC Educational Resources Information Center
Debb, Scott M.; Debb, Sharon M.
2012-01-01
Enrolling in an introductory course in psychology is a staple of many community college students' core curriculum. For those students who plan to pursue social science and humanities-related majors in particular, introductory psychology helps provide a solid base upon which future coursework at all academic levels will be built. The goal of any…
An Introductory Review Module For an Anti-Infectives Therapeutics Course
Murphy, Kendrick; Zaeem, Maryam; DiVall, Margarita V.
2012-01-01
Objective. To determine whether an introductory review module using a hybrid-learning approach helped students learn infectious disease management in an anti-infectives therapeutics course. Design. An introductory module consisting of an online pharmacology review, pre-class assignment, 2 classroom lectures, and 1 case-based lecture was developed and implemented. Assessment. Among the 110 students who completed pre- and post-tests on the material covered, average scores increased from 71% to 83% (p<0.0001). Performance on knowledge-based question improved for 8 out of 10 questions (p<0.05) and student confidence increased from the first lecture to completion of the module (p<0.001 for all comparisons). Of the 129 students who completed an evaluation of the introductory module, 98% strongly agreed or agreed that the content was essential for course success. Conclusion. The addition of an introductory module using a hybrid-learning approach to review and solidify concepts of medical microbiology and pharmacology provided the foundation necessary for success in an infectious diseases module. PMID:23049107
NASA Astrophysics Data System (ADS)
Bare, William D.
2000-07-01
An argument is presented which suggests that the commonly seen calculus-based derivations of Beer's law may not be adequately useful to students and may in fact contribute to widely held misconceptions about the interaction of light with absorbing samples. For this reason, an alternative derivation of Beer's law based on a corpuscular model and the laws of probability is presented. Unlike many previously reported derivations, that presented here does not require the use of calculus, nor does it require the assumption of absorption properties in an infinitesimally thin film. The corpuscular-probability model and its accompanying derivation of Beer's law are believed to comprise a more pedagogically effective presentation than those presented previously.
Sparky IntroChem: A Student-Oriented Introductory Chemistry Course.
ERIC Educational Resources Information Center
Butcher, David J.; Brandt, Paul F.; Norgaard, Nicholas J.; Atterholt, Cynthia A.; Salido, Arthur L.
2003-01-01
Describes an introductory chemistry course that incorporates student-oriented approaches such as inquiry and problem-based laboratories. Provides an overview of the modules. (Contains 16 references.) (DDR)
ERIC Educational Resources Information Center
Ferguson, Leann J.
2012-01-01
Calculus is an important tool for building mathematical models of the world around us and is thus used in a variety of disciplines, such as physics and engineering. These disciplines rely on calculus courses to provide the mathematical foundation needed for success in their courses. Unfortunately, due to the basal conceptions of what it means to…
Gupta, Swati; Jain, P K; Kumra, Madhumani; Rehani, Shweta; Mathias, Yulia; Gupta, Ramakant; Mehendiratta, Monica; Chander, Anil
2016-07-01
Chronic inflammatory periodontal diseases i.e. gingivitis and periodontitis are one of the most common afflictions faced by human beings. Dental plaque, which is a pool of pathogenic microorganisms, remains to be current mainstay in etiopathogenesis. Dental calculus, which is a mineralized product of this plaque remains ignored and is considered merely as an ash heap of minor significance. However, the intriguing array in disease etiopathogenesis bulldozed researchers to suspect the role of calculus in disease chrysalis but still the viability of bacteria inside calculus and thus its pathogenicity remains an intricacy; the answer to which lies in the Pandora's Box. The present study was undertaken to investigate the viability of bacteria within dental calculus along with their identification. Also, to classify dental calculus on the basis of mineralization and to observe the variation of viable microflora found in dental calculus with the extent of mineralization and disease severity. A total of 60 samples were obtained, by harvesting two samples of supragingival calculus from each patient having chronic inflammatory periodontal disease. These samples were divided into two groups (Group A and Group B). Samples of Group A were kept non-irradiated and samples of Group B were exposed to UV radiation. The samples were categorized into less, moderately and highly mineralized according to the force required for crushing them. All the crushed calculus samples were then divided into three parts. These were used for dark-field microscopy, gram staining and bacterial cultures. Bacterial identification of the cultures obtained was also carried out by performing various biochemical assays. The present study revealed the presence of motile spirochaetes within the samples under dark-field microscope. Gram staining revealed presence of numerous gram positive cocci and gram negative bacilli. Bacterial cultures showed growth of variety of aerobic and capnophilic microorganisms. The present study concludes the presence of viable aerobic and capnophilic bacteria inside dental calculus which may reside within the lacunae and channels in the calculus.
Ozga, Andrew T; Nieves-Colón, Maria A; Honap, Tanvi P; Sankaranarayanan, Krithivasan; Hofman, Courtney A; Milner, George R; Lewis, Cecil M; Stone, Anne C; Warinner, Christina
2016-06-01
Archaeological dental calculus is a rich source of host-associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Extracted DNA from six individuals at the 700-year-old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in-solution capture techniques, followed by Illumina high-throughput sequencing. Full mitogenomes (7-34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92-100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220-228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus
Ozga, Andrew T.; Nieves‐Colón, Maria A.; Honap, Tanvi P.; Sankaranarayanan, Krithivasan; Hofman, Courtney A.; Milner, George R.; Lewis, Cecil M.; Stone, Anne C.
2016-01-01
ABSTRACT Objectives Archaeological dental calculus is a rich source of host‐associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Materials and Methods Extracted DNA from six individuals at the 700‐year‐old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in‐solution capture techniques, followed by Illumina high‐throughput sequencing. Results Full mitogenomes (7–34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92–100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Discussion Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220–228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. PMID:26989998
Kraivaphan, Petcharat; Amornchat, Cholticha
2017-01-01
Objectives: The purpose of this double-blind, parallel clinical study was to assess clinical efficacy in supragingival calculus formation reduction using Abhaibhubejhr Herbal Toothpaste compared to Colgate Total and Colgate Cavity Protection toothpastes. Materials and Methods: A total of 150 subjects participated in the pretest phase. All subjects were given oral soft/hard tissue evaluation, calculus examination using Volpe-Manhold calculus, and whole mouth oral prophylaxis. They received noncalculus control fluoride toothpaste and a soft-bristled toothbrush to brush for 1 min two times daily for 8 weeks. After which, subjects were given a test phase oral soft/hard tissue evaluation and calculus examination and were randomized into one of the three toothpaste groups. All subjects in the test phase received a whole mouth oral prophylaxis and were given their assigned toothpaste and a soft-bristled toothbrush to brush for 1 min two times a day for 12 weeks. Thereafter, subjects were assessed for their oral soft/hard tissue and calculus formation. Results: Mean Volpe-Manhold calculus index scores for the Cavity Protection, Abhaibhubejhr, and Total toothpaste groups were 0.78, 0.62, and 0.48, respectively, at the 12-week test phase evaluation. Abhaibhubejhr and Total toothpaste groups show 20.51% and 38.46% significantly less calculus formation than the Cavity Protection toothpaste group (P < 0.05). Total toothpaste group also show 22.58% significantly less calculus formation than the Abhaibhubejhr toothpaste group (P < 0.05). Conclusion: The use of Colgate Total toothpaste over a 12-week period was clinically more effective than either Abhaibhubejhr or Colgate Cavity Protection toothpastes in controlling supragingival calculus formation. PMID:28435373
Intra-mathematical connections made by high school students in performing Calculus tasks
NASA Astrophysics Data System (ADS)
García-García, Javier; Dolores-Flores, Crisólogo
2018-02-01
In this article, we report the results of research that explores the intra-mathematical connections that high school students make when they solve Calculus tasks, in particular those involving the derivative and the integral. We consider mathematical connections as a cognitive process through which a person relates or associates two or more ideas, concepts, definitions, theorems, procedures, representations and meanings among themselves, with other disciplines or with real life. Task-based interviews were used to collect data and thematic analysis was used to analyze them. Through the analysis of the productions of the 25 participants, we identified 223 intra-mathematical connections. The data allowed us to establish a mathematical connections system which contributes to the understanding of higher concepts, in our case, the Fundamental Theorem of Calculus. We found mathematical connections of the types: different representations, procedural, features, reversibility and meaning as a connection.
Condition-based diagnosis of mechatronic systems using a fractional calculus approach
NASA Astrophysics Data System (ADS)
Gutiérrez-Carvajal, Ricardo Enrique; Flávio de Melo, Leonimer; Maurício Rosário, João; Tenreiro Machado, J. A.
2016-07-01
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model's complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Toward lattice fractional vector calculus
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Operating the production calculus: ordering a production system in the print industry.
Button, Graham; Sharrock, Wes
2002-06-01
The topic of shop-floor work has been extensively examined within sociology. However, the organizational structures within which this work takes place have, in the most part, been taken as unexamined givens. Yet, their operation is also the shop-floor work of some people. This paper examines the way in which the stable organizational structures within which shop-floor work takes place are achieved. It is based upon a fieldwork investigation of a large commercial printer and focuses upon the collaborative work of those who are involved in scheduling the production of a job and their use of 'the production calculus' in planning the work of the site. The print industry is undergoing considerable technological change and scheduling technologies have been developed to automate this work. However, there has been little take up of these technologies and the paper also considers how the characteristics of operating the production calculus in practice may account for this.
A Calculus for Boxes and Traits in a Java-Like Setting
NASA Astrophysics Data System (ADS)
Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan
The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.
NASA Astrophysics Data System (ADS)
Curland, Matthew; Halpin, Terry; Stirewalt, Kurt
A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
ERIC Educational Resources Information Center
Papadakis, Stamatios; Kalogiannakis, Michail; Orfanakis, Vasileios; Zaranis, Nicholas
2017-01-01
Teaching programming is a complex task. The task is even more challenging for introductory modules. There is an ongoing debate in the teaching community over the best approach to teaching introductory programming. Visual block-based programming environments allow school students to create their own programs in ways that are more accessible than in…
ERIC Educational Resources Information Center
Ahmad, Khuloud Nasser
2012-01-01
A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…
DOT National Transportation Integrated Search
2012-05-01
The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...
Flipping an Introductory Biostatistics Course: A Case Study of Student Attitudes and Confidence
ERIC Educational Resources Information Center
Loux, Travis M.; Varner, Sara Emily; VanNatta, Matthew
2016-01-01
Flipped classrooms have become an interesting alternative to traditional lecture-based courses throughout the undergraduate curriculum. In this article, we compare a flipped classroom approach to the traditional lecture-based approach to teaching introductory biostatistics to first-year graduate students in public health. The traditional course…
Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum
ERIC Educational Resources Information Center
Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan
2017-01-01
Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…
Inference and the Introductory Statistics Course
ERIC Educational Resources Information Center
Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross
2011-01-01
This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…
Taking a Quantum Leap in Cyber Deterrence
2010-02-17
calculus that weighs the cost and benefit of an action. 76 According to John Mearsheimer, that decision calculus is ―a function of the costs and...frame an adversary‘s rationale and decision calculus . 82 Understanding a group‘s rationale helps frame a strategy for deterrence. Emanuel Adler...only remaining option. Mearsheimer‘s decision calculus described above indicates that if the cost of an attack is high, or the probability of
ERIC Educational Resources Information Center
Barclay, Allen C.
2012-01-01
On a national level, data indicate that about 40 percent of students in calculus courses finish with a grade of D or F, drop the course, or withdraw (Reinholz, 2009). This high failure rate has led to research studies investigating the teaching of calculus at the national level (House, 1995). Calculus courses have a history of high failure rates,…
Complete staghorn calculus in polycystic kidney disease: infection is still the cause
2013-01-01
Background Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. Case presentation We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. Conclusion UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation. PMID:24070202
Complete staghorn calculus in polycystic kidney disease: infection is still the cause.
Mao, Zhiguo; Xu, Jing; Ye, Chaoyang; Chen, Dongping; Mei, Changlin
2013-08-01
Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation.
Miniature endoscopic optical coherence tomography for calculus detection.
Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan
2015-08-20
The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (P<0.001) in SD values. Finally, the receiver operating characteristic curve had a high capacity (area under the curve=0.934) for discriminating between healthy regions (including enamel pearl) and dental calculus.
An evaluation of a pre-scaling gel (SofScale) on the ease of supragingival calculus removal.
Smith, S R; Foyle, D M; Daniels, J
1994-09-01
SofScale is a pre-scaling gel, containing disodium EDTA and sodium lauryl sulphate, which is claimed to soften calculus and therefore facilitate its removal. 31 subjects were treated in a double blind randomised placebo controlled split mouth study to evaluate this product. Test or placebo gels were applied to the lingual surfaces of the mandibular teeth for 4 min and the time taken to complete the removal of supragingival calculus recorded. The operator recorded on which side the calculus was considered easier to remove and the patient indicated how comfortable the scaling had been. The mean calculus index was 1.99 for the SofScale group and 1.97 for the placebo. The mean time taken to complete scaling was 5.31 min for both groups. Using the Student t-test, there were no statistically significant differences (p > 0.7) between either the calculus index or time taken to complete the scaling between the groups. The operator did not consider SofScale to facilitate calculus removal and patients did not find calculus removal more comfortable when SofScale had been used. There was no increased sensitivity in the SofScale group following scaling. The results of this study do not support the use of SofScale as an adjunct to scaling.
Brady, A G; Williams, L E; Haught, D; Abee, C R
2000-03-01
Dental calculus and associated periodontal disease are serious clinical problems in captive squirrel monkeys. Calculus begins to appear as early as 2 years of age, with subsequent development of periodontal disease, dental abscessation, tooth loss and other sequelae. When used as a feed additive, sodium hexametaphosphate (HMP) retards the growth of calculus on previously cleaned teeth in rhesus monkeys, lemurs, and other species. We wanted to determine whether HMP would reduce dental calculus in squirrel monkeys (Saimiri spp.) whose teeth had not been pre-cleaned. The study animals were divided into two groups. One received a standard diet; the other received an identical diet containing the HMP additive at a concentration effective in other primate and non-primate species that had received dental cleaning prior to treatment with HMP. Teeth were graded for extent of calculus formation at the start of the study and at 3 and 6 months during HMP treatment. We compared the results from the two groups both by total score per animal and according to tooth type (e.g., incisors versus incisors in test and control groups). At the end of 6 months, dental calculus did not differ significantly between the experimental groups. Therefore, we conclude that HMP is ineffective in squirrel monkeys with preexisting dental calculus.
ERIC Educational Resources Information Center
Demirci, Neset
2010-01-01
The main aim of this study was to assess and compare undergraduate students' homework performance using a web-based testing system with paper-based, hand-graded one in introductory physics courses. Students' perceptions about each method were then investigated. Every semester during the two-year period, one of the two identical sections of…
Selective ablation of dental calculus with a frequency-doubled Alexandrite laser
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Hennig, Thomas
1996-01-01
The aim of the study was the selective removal of dental calculus by means of pulsed lasers. In a first approach the optical characteristics of subgingival calculus were calculated using fluorescence emission spectroscopy (excitation laser: N2-laser, wavelength 337 nm, pulse duration 4 ns). Subgingival calculus seems to absorb highly in the ultraviolet spectral region up to 420 nm. According to these measurements a frequency doubled Alexandrite-laser (wavelength 377 nm, pulse duration 100 ns, repetition rate 110 Hz) was used to irradiate calculus located on enamel, at the cementum enamel junction and on the root surface (located on dentin or on cementum). Irradiation was performed perpendicular to the root surface with a laser fluence of 1 Jcm-2. During the irradiation procedure an effective water cooling-system was engaged. Histological investigations were done on undecalcified sections. As a result, engaging low fluences allows a fast and strictly selective removal of subgingival calculus. Even more the investigations revealed that supragingival calculus can be removed in a strictly selective manner engaging a frequency doubled Alexandrite-laser. No adverse side effects to the surrounding tissues could be found.
Yan, Shi-Kai; Wu, Yan-Wen; Liu, Run-Hui; Zhang, Wei-Dong
2007-01-01
Major bioactive components in various Calculus Bovis, including natural, artificial and in-vitro cultured Calculus Bovis, were comparatively studied. An approach of high-performance liquid chromatography coupled with ultraviolet and evaporative light scattering detections (HPLC/UV/ELSD) was established to simultaneously determinate six bioactive components thereof, including five bile acids (cholic acid, deoxycholic acid, ursodeoxycholic, chenodeoxycholic acid, hyodeoxycholic acid) and bilirubin. ELSD and UV detector were applied to detect bile acids and bilirubin respectively. The assay was performed on a C(18) column with water-acetonitrile gradient elution and the investigated constituents were authenticated by comparing retention times and mass spectra with those of reference compounds. The proposed method was applied to analyze twenty-one Calculus Bovis extraction samples, and produced data with acceptable linearity, precision, repeatability and accuracy. The result indicated the variations among Calculus Bovis samples under different developmental conditions. Artificial and in-vitro cultured Calculus Bovis, especially in-vitro cultured ones, which contain total bioactive constituents no less than natural products and have the best batch-to-batch uniformity, suffice to be used as substitutes of natural Calculus Bovis.
Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
1998-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Initialization, conceptualization, and application in the generalized (fractional) calculus.
Lorenzo, Carl F; Hartley, Tom T
2007-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Challenges in assessing college students' conception of duality: the case of infinity
NASA Astrophysics Data System (ADS)
Babarinsa-Ochiedike, Grace Olutayo
Interpreting students' views of infinity posits a challenge for researchers due to the dynamic nature of the conception. There is diversity and variation among students' process-object perceptions. The fluctuations between students' views however reveal an undeveloped duality conception. This study examined college students' conception of duality in understanding and representing infinity with the intent to design strategies that could guide researchers in categorizing students' views of infinity into different levels. Data for the study were collected from N=238 college students enrolled in Calculus sequence courses (Pre-Calculus, Calculus I through Calculus III) at one of the southwestern universities in the U.S. using self-report questionnaires and semi-structured individual task-based interviews. Data was triangulated using multiple measures analyzed by three independent experts using self-designed coding sheets to assess students' externalization of the duality conception of infinity. Results of this study reveal that college students' experiences in traditional Calculus sequence courses are not supportive of the development of duality conception. On the contrary, it strengthens the singularity perspective on fundamental ideas of mathematics such as infinity. The study also found that coding and assessing college students' conception of duality is a challenging and complex process due to the dynamic nature of the conception that is task-dependent and context-dependent. Practical significance of the study is that it helps to recognize misconceptions and starts addressing them so students will have a more comprehensive view of fundamental mathematical ideas as they progress through the Calculus coursework sequence. The developed duality concept development framework called Action-Process-Object-Duality (APOD) adapted from the APOS theory could guide educators and researchers as they engage in assessing students' conception of duality. The results of this study could serve as a facilitating instrument to further analyze cognitive obstacles in college students' understanding of the infinity concept.
Raw beef bones as chewing items to reduce dental calculus in Beagle dogs.
Marx, F R; Machado, G S; Pezzali, J G; Marcolla, C S; Kessler, A M; Ahlstrøm, Ø; Trevizan, L
2016-01-01
Evaluate the effect of raw bovine cortical bone (CB) (medullary bone cross-sectioned) and marrow or epiphyseal 'spongy' bone (SB) as chew items to reduce dental calculus in adult dogs. Eight 3-year-old Beagle dogs were observed in two study periods. In the first study, the dogs each received a piece of bovine femur CB (122 ± 17 g) daily and in the second study, a piece of bovine femur SB (235 ± 27 g). The first study lasted 12 days and the second 20 days. Dental calculus was evaluated using image integration software. At the start of the studies, dental calculus covered 42.0% and 38.6% of the dental arcade areas, respectively. In study one, the chewing reduced the established dental calculus area to 27.1% (35.5% reduction) after 3 days and after 12 days the dental calculus covering was reduced to 12.3% (70.6% reduction). In study two, the dental calculus covered 16.8% (56.5% reduction) after 3 days, 7.1% (81.6% reduction) after 12 days and 4.7% (87.8% reduction) after 20 days. The CB remained largely intact after 24 h, but SB was reduced to smaller pieces and in some cases totally consumed after 24 h. No complications such as tooth fractures, pieces of bone stuck between teeth or intestinal obstructions were observed during the studies. Chewing raw bovine bones was an effective method of removing dental calculus in dogs. The SB bones removed dental calculus more efficiently in the short term. © 2016 Australian Veterinary Association.
A surface physicochemical rationale for calculus formation in the oral cavity
NASA Astrophysics Data System (ADS)
Busscher, Henk J.; White, Don J.; Kamminga-Rasker, Hannetta J.; van der Mei, Henny C.
2004-01-01
Surface free energies of dental hard tissues, including salivary conditioning films on enamel, play a crucial role in mineralization, dissolution and adhesion processes at the tooth surface. These mineralization reactions at oral surfaces control the development and progression of various diseases. In this paper, we compare the surface free energies, as derived from measured contact angles with liquids, of salivary conditioning films on enamel after exposure to dentifrices with and without anti-calculus additives, such as hexametaphosphate, pyrophosphate or zinc citrate trihydrate. Measured contact angles were converted to surface free energies using the concept of Lifshitz-Van der Waals and Lewis acid-base components. Nearly all dentifrices yield film properties with a negative interfacial tension against an aqueous phase, which thermodynamically opposes mineralization. Concurrent with negative interfacial tensions, are positive values of the interfacial free energy of adhesion for octacalcium-phosphate (OCP) to the film surfaces, indicating that adhesion of newly mineralized, calcium-phosphate rich phases is thermodynamically unfavorable. Interestingly, two out of the three dentifrices with anti-calculus additives containing hexametaphosphate and pyrophosphate cause most positive interfacial free energies for OCP adhesion of 5.8 and 2.6 mJ/m 2, respectively. In summary, surface thermodynamical analyses indicate that anti-calculus effects of commercial dentifrice formulations are consistent with more negative interfacial tensions of salivary conditioning films on enamel surfaces and thus with more positive values for the interfacial free energy of adhesion toward newly formed mineral phases. A dentifrice containing hexametaphosphate yielded thermodynamic properties of salivary conditioning films most unfavorable for calculus formation.