Sample records for calculus linear algebra

  1. Commentary on A General Curriculum in Mathematics for Colleges.

    ERIC Educational Resources Information Center

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    This document constitutes a complete revision of the report of the same name first published in 1965. A new list of basic courses is described, consisting of Calculus I, Calculus II, Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra, and Introductory Modern Algebra. Commentaries outline the content and spirit of these courses in…

  2. Partial Fractions via Calculus

    ERIC Educational Resources Information Center

    Bauldry, William C.

    2018-01-01

    The standard technique taught in calculus courses for partial fraction expansions uses undetermined coefficients to generate a system of linear equations; we present a derivative-based technique that calculus and differential equations instructors can use to reinforce connections to calculus. Simple algebra shows that we can use the derivative to…

  3. Mathematical Methods for Optical Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Gbur, Gregory J.

    2011-01-01

    1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.

  4. Computer Algebra Systems in Undergraduate Instruction.

    ERIC Educational Resources Information Center

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  5. Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep

    2016-01-01

    The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…

  6. Curve Fitting via the Criterion of Least Squares. Applications of Algebra and Elementary Calculus to Curve Fitting. [and] Linear Programming in Two Dimensions: I. Applications of High School Algebra to Operations Research. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 321, 453.

    ERIC Educational Resources Information Center

    Alexander, John W., Jr.; Rosenberg, Nancy S.

    This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…

  7. The Transformation App Redux: The Notion of Linearity

    ERIC Educational Resources Information Center

    Domenick, Anthony

    2015-01-01

    The notion of linearity is perhaps the most fundamental idea in algebraic thinking. It sets the transition to functions and culminates with the instantaneous rate of change in calculus. Despite its simplicity, this concept poses complexities to a considerable number of first semester college algebra students. The purpose of this observational…

  8. Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra

    ERIC Educational Resources Information Center

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-01-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…

  9. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  10. A Mathematics Software Database Update.

    ERIC Educational Resources Information Center

    Cunningham, R. S.; Smith, David A.

    1987-01-01

    Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)

  11. Linking Computer Algebra Systems and Paper-and-Pencil Techniques To Support the Teaching of Mathematics.

    ERIC Educational Resources Information Center

    van Herwaarden, Onno A.; Gielen, Joseph L. W.

    2002-01-01

    Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…

  12. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2006-10-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  13. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2011-03-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  14. Secondary School Mathematics Curriculum Improvement Study Information Bulletin 7.

    ERIC Educational Resources Information Center

    Secondary School Mathematics Curriculum Improvement Study, New York, NY.

    The background, objectives, and design of Secondary School Mathematics Curriculum Improvement Study (SSMCIS) are summarized. Details are given of the content of the text series, "Unified Modern Mathematics," in the areas of algebra, geometry, linear algebra, probability and statistics, analysis (calculus), logic, and computer…

  15. Racing against Time: Using Technology To Explore Distance, Rate, and Time.

    ERIC Educational Resources Information Center

    Essex, N. Kathryn; Lambdin, Diana V.; McGraw, Rebecca H.

    2002-01-01

    Investigates ways to analyze change in various contexts. Focuses on computer technology providing contexts for children's investigations of patterns of change and helping to develop foundational ideas of algebra and calculus. Discusses relationships between patterns of change, fundamental algebraic notions as linear and nonlinear functions, and…

  16. Constitutive relations in optics in terms of geometric algebra

    NASA Astrophysics Data System (ADS)

    Dargys, A.

    2015-11-01

    To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.

  17. Recommendations for the Undergraduate Mathematics Program for Students in the Life Sciences. An Interim Report.

    ERIC Educational Resources Information Center

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    This report considers the mathematics required by life science students (those with majors in agriculture and renewable resources, all branches of biology, and medicine) who have successfully completed the usual pre-calculus courses. A core is proposed, to include one year of calculus, some linear algebra, and some probability and statistics.…

  18. Mathematical modelling in engineering: an alternative way to teach Linear Algebra

    NASA Astrophysics Data System (ADS)

    Domínguez-García, S.; García-Planas, M. I.; Taberna, J.

    2016-10-01

    Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).

  19. Investigating Years 7 to 12 students' knowledge of linear relationships through different contexts and representations

    NASA Astrophysics Data System (ADS)

    Wilkie, Karina J.; Ayalon, Michal

    2018-02-01

    A foundational component of developing algebraic thinking for meaningful calculus learning is the idea of "function" that focuses on the relationship between varying quantities. Students have demonstrated widespread difficulties in learning calculus, particularly interpreting and modeling dynamic events, when they have a poor understanding of relationships between variables. Yet, there are differing views on how to develop students' functional thinking over time. In the Australian curriculum context, linear relationships are introduced to lower secondary students with content that reflects a hybrid of traditional and reform algebra pedagogy. This article discusses an investigation into Australian secondary students' understanding of linear functional relationships from Years 7 to 12 (approximately 12 to 18 years old; n = 215) in their approaches to three tasks (finding rate of change, pattern generalisation and interpretation of gradient) involving four different representations (table, geometric growing pattern, equation and graph). From the findings, it appears that these students' knowledge of linear functions remains context-specific rather than becoming connected over time.

  20. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  1. Mathematics Conceptual Visualization with HyperCard.

    ERIC Educational Resources Information Center

    Haws, LaDawn

    1992-01-01

    Hypermedia provides an easy-to-use option for adding visualization, via the computer, to the classroom. Some examples of this medium are presented, including applications in basic linear algebra and calculus, and a tutorial in electromagnetism. (Author)

  2. Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.

    ERIC Educational Resources Information Center

    Natour, Denise M.

    This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…

  3. A calculus based on a q-deformed Heisenberg algebra

    DOE PAGES

    Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...

    1999-04-27

    We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less

  4. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  5. Total Quality Management in the Classroom: Applications to University-Level Mathematics.

    ERIC Educational Resources Information Center

    Williams, Frank

    1995-01-01

    Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)

  6. Webs on surfaces, rings of invariants, and clusters.

    PubMed

    Fomin, Sergey; Pylyavskyy, Pavlo

    2014-07-08

    We construct and study cluster algebra structures in rings of invariants of the special linear group action on collections of 3D vectors, covectors, and matrices. The construction uses Kuperberg's calculus of webs on marked surfaces with boundary.

  7. Generalizing a Categorization of Students' Interpretations of Linear Kinematics Graphs

    ERIC Educational Resources Information Center

    Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul

    2016-01-01

    We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque…

  8. Conditional Independence in Applied Probability.

    ERIC Educational Resources Information Center

    Pfeiffer, Paul E.

    This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…

  9. A Glossary for Pre-Calculus

    ERIC Educational Resources Information Center

    Arnold, Bruce; Kracht, Brenda; Ross, Judy; Teegarden, Terrie; Tompkins, Maurice

    2012-01-01

    In the deconstruction of the California state standards for trigonometry, linear algebra and mathematical analysis for the Cal-PASS (California Partnership for Achieving Student Success) Content Standards Deconstruction projects, it became apparent that terms were used for which no definition was given. The San Diego Central Cal-PASS Math…

  10. Incorporating Writing in an Integrated Calculus, Linear Algebra, and Differential Equations Sequence.

    ERIC Educational Resources Information Center

    Kelly, Susan E.; LeDocq, Rebecca Lewin

    2001-01-01

    Describes the specific courses in a sequence along with how the writing has been implemented in each course. Provides ideas for how to efficiently handle the additional paper load so students receive the necessary feedback while keeping the grading time reasonable. (Author/ASK)

  11. Theory of Holors

    NASA Astrophysics Data System (ADS)

    Hiram Moon, Parry; Eberle Spencer, Domina

    2005-09-01

    Preface; Nomenclature; Historical introduction; Part I. Holors: 1. Index notation; 2. Holor algebra; 3. Gamma products; Part II. Transformations: 4. Tensors; 5. Akinetors; 6. Geometric spaces; Part III. Holor Calculus: 7. The linear connection; 8. The Riemann-Christoffel tensors; Part IV. Space Structure: 9. Non-Riemannian spaces; 10. Riemannian space; 11. Euclidean space; References; Index.

  12. v9 = ? The Answer Depends on Your Lecturer

    ERIC Educational Resources Information Center

    Kontorovich, Igor'

    2016-01-01

    This article is concerned with the approaches to the root concept that lecturers in calculus, linear algebra and complex analysis employ in their instruction. Three highly experienced university lecturers participated in the study. In the individual interviews the participants referred to roots of real numbers, roots of complex numbers, roots as…

  13. Interaction Patterns in Synchronous Online Calculus and Linear Algebra Recitations

    ERIC Educational Resources Information Center

    Mayer, Greg; Hendricks, Cher

    2014-01-01

    This study describes interaction patterns observed during a pilot project that explored the use of web-conferencing (WC) software in two undergraduate distance education courses offered to advanced high-school students. The pilot program replaced video-conferencing technology with WC software during recitations, so as to increase participation in…

  14. Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.

  15. Student Solution Manual for Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.

  16. Asymptotic identity in min-plus algebra: a report on CPNS.

    PubMed

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.

  17. Asymptotic Identity in Min-Plus Algebra: A Report on CPNS

    PubMed Central

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446

  18. Cartooning in Algebra and Calculus

    ERIC Educational Resources Information Center

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  19. Generalizing a categorization of students' interpretations of linear kinematics graphs

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul

    2016-06-01

    We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque Country, Spain (University of the Basque Country). We discuss how we adapted the categorization to accommodate a much more diverse student cohort and explain how the prior knowledge of students may account for many differences in the prevalence of approaches and success rates. Although calculus-based physics students make fewer mistakes than algebra-based physics students, they encounter similar difficulties that are often related to incorrectly dividing two coordinates. We verified that a qualitative understanding of kinematics is an important but not sufficient condition for students to determine a correct value for the speed. When comparing responses to questions on linear distance-time graphs with responses to isomorphic questions on linear water level versus time graphs, we observed that the context of a question influences the approach students use. Neither qualitative understanding nor an ability to find the slope of a context-free graph proved to be a reliable predictor for the approach students use when they determine the instantaneous speed.

  20. Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Harper, David

    1989-06-01

    This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.

  1. Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea

    2017-07-01

    This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.

  2. Proceedings: Summer Conference for College Teachers on Applied Mathematics, University of Missouri-Rolla, 1971.

    ERIC Educational Resources Information Center

    Committee on the Undergraduate Program in Mathematics, Berkeley, CA.

    Proceedings from four sessions of the Summer Conference for College Teachers on Applied Mathematics are presented. The four sessions were: (1) Applications of Elementary Calculus, (2) Applications of Linear Algebra, (3) Applications of Elementary Differential Equations, and (4) Applications of Probability and Statistics. Nine lectures were given…

  3. A Comprehensive Probability Project for the Upper Division One-Semester Probability Course Using Yahtzee

    ERIC Educational Resources Information Center

    Wilson, Jason; Lawman, Joshua; Murphy, Rachael; Nelson, Marissa

    2011-01-01

    This article describes a probability project used in an upper division, one-semester probability course with third-semester calculus and linear algebra prerequisites. The student learning outcome focused on developing the skills necessary for approaching project-sized math/stat application problems. These skills include appropriately defining…

  4. A Mathematics Support Programme for First-Year Engineering Students

    ERIC Educational Resources Information Center

    Hillock, Poh Wah; Jennings, Michael; Roberts, Anthony; Scharaschkin, Victor

    2013-01-01

    This article describes a mathematics support programme at the University of Queensland, targeted at first-year engineering students identified as having a high risk of failing a first-year mathematics course in calculus and linear algebra. It describes how students were identified for the programme and the main features of the programme. The…

  5. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  6. Deriving the Work Done by an Inverse Square Force in Non-Calculus-Based Introductory Physics Courses

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe a method of evaluating the integral of 1/r[superscript 2] with respect to r that uses only algebra and the concept of area underneath a curve, and which does not formally employ any calculus. This is useful for algebra-based introductory physics classes (where the use of calculus is forbidden) to derive the work done by the force of one…

  7. The development and nature of problem-solving among first-semester calculus students

    NASA Astrophysics Data System (ADS)

    Dawkins, Paul Christian; Mendoza Epperson, James A.

    2014-08-01

    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving performance, we observe that current instruction requires ongoing refinement to help students develop multi-register fluency and the ability to model quantitatively, as is called for in current US standards for mathematical instruction.

  8. Deriving the Regression Equation without Using Calculus

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Gordon, Florence S.

    2004-01-01

    Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…

  9. Visualizing the Chain Rule (for Functions over R and C) and More

    ERIC Educational Resources Information Center

    Kreminski, Rick

    2009-01-01

    A visual approach to understanding the chain rule and related derivative formulae, for functions from R to R and from C to C, is presented. This apparently novel approach has been successfully used with several audiences: students first studying calculus, students with some background in linear algebra, students beginning study of functions of a…

  10. Descriptions of Free and Freeware Software in the Mathematics Teaching

    NASA Astrophysics Data System (ADS)

    Antunes de Macedo, Josue; Neves de Almeida, Samara; Voelzke, Marcos Rincon

    2016-05-01

    This paper presents the analysis and the cataloging of free and freeware mathematical software available on the internet, a brief explanation of them, and types of licenses for use in teaching and learning. The methodology is based on the qualitative research. Among the different types of software found, it stands out in algebra, the Winmat, that works with linear algebra, matrices and linear systems. In geometry, the GeoGebra, which can be used in the study of functions, plan and spatial geometry, algebra and calculus. For graphing, can quote the Graph and Graphequation. With Graphmatica software, it is possible to build various graphs of mathematical equations on the same screen, representing cartesian equations, inequalities, parametric among other functions. The Winplot allows the user to build graphics in two and three dimensions functions and mathematical equations. Thus, this work aims to present the teachers some free math software able to be used in the classroom.

  11. Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2011-06-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  12. Using CAS to Solve Classical Mathematics Problems

    ERIC Educational Resources Information Center

    Burke, Maurice J.; Burroughs, Elizabeth A.

    2009-01-01

    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  13. Mathematics Placement at Cottey College.

    ERIC Educational Resources Information Center

    Callahan, Susan

    In response to the large numbers of students who were failing or dropping out of basic algebra and calculus classes, Cottey College, in Missouri, developed a math placement program in 1982 using Basic Algebra (BA) and Calculus Readiness (CR) tests from the Mathematical Association of America's Placement Testing Program. Cut off scores for the…

  14. Generalized Cartan Calculus in general dimension

    DOE PAGES

    Wang, Yi -Nan

    2015-07-22

    We develop the generalized Cartan Calculus for the groups G = SL(2,R) × R +, SL(5,R) and SO(5,5). They are the underlying algebraic structures of d=9,7,6 exceptional field theory, respectively. These algebraic identities are needed for the "tensor hierarchy" structure in exceptional field theory. The validity of Poincar\\'e lemmas in this new differential geometry is also discussed. Lastly, we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.

  15. Without derivatives or limits: from visual and geometrical points of view to algebraic methods for identifying tangent lines

    NASA Astrophysics Data System (ADS)

    Vivier, L.

    2013-07-01

    Usually, the tangent line is considered to be a calculus notion. However, it is also a graphical and an algebraic notion. The graphical frame, where our primary conceptions are conceived, could give rise to algebraic methods to obtain the tangent line to a curve. In this pre-calculus perspective, two methods are described and discussed according to their potential for secondary students and teacher training.

  16. Factors Influencing Students' Propensity for Semantic and Syntactic Reasoning in Proof Writing: A Case Study

    ERIC Educational Resources Information Center

    Mejía-Ramos, Juan Pablo; Weber, Keith; Fuller, Evan

    2015-01-01

    In this paper we present a case study of an individual student who consistently used semantic reasoning to construct proofs in calculus but infrequently used semantic reasoning to produce proofs in linear algebra. We hypothesize that the differences in these reasoning styles can be partially attributed to this student's familiarity with the…

  17. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    PubMed

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  18. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    PubMed Central

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  19. A fresh look at linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization

    NASA Astrophysics Data System (ADS)

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.

  20. The Effect of Graphing Calculators on Student Achievement in College Algebra and Pre-Calculus Mathematics Courses

    ERIC Educational Resources Information Center

    Hatem, Neil

    2010-01-01

    This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…

  1. The Effects of Computer Algebra System on Undergraduate Students' Spatial Visualization Skills in a Calculus Course

    ERIC Educational Resources Information Center

    Karakus, Fatih; Aydin, Bünyamin

    2017-01-01

    This study aimed at determining the effects of using a computer algebra system (CAS) on undergraduate students' spatial visualization skills in a calculus course. This study used an experimental design. The "one group pretest-posttest design" was the research model. The participants were 41 sophomore students (26 female and 15 male)…

  2. To Math or Not to Math: The Algebra-Calculus Pipeline and Postsecondary Mathematics Remediation

    ERIC Educational Resources Information Center

    Showalter, Daniel A.

    2017-01-01

    This article reports on a study designed to estimate the effect of high school coursetaking in the algebra-calculus pipeline on the likelihood of placing out of postsecondary remedial mathematics. A nonparametric variant of propensity score analysis was used on a nationally representative data set to remove selection bias and test for an effect…

  3. Quantum stochastic calculus associated with quadratic quantum noises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculusmore » extends the Hudson-Parthasarathy quantum stochastic calculus.« less

  4. Recalling Prerequisite Material in a Calculus II Course to Improve Student Success

    ERIC Educational Resources Information Center

    Mokry, Jeanette

    2016-01-01

    This article discusses preparation assignments used in a Calculus II course that cover material from prerequisite courses. Prior to learning new material, students work on problems outside of class involving concepts from algebra, trigonometry, and Calculus I. These problems are directly built upon in order to answer Calculus II questions,…

  5. The Path to College Calculus: The Impact of High School Mathematics Coursework

    ERIC Educational Resources Information Center

    Sadler, Philip; Sonnert, Gerhard

    2018-01-01

    This study addresses a longstanding question among high school mathematics teachers and college mathematics professors: Which is the best preparation for college calculus-- (a) a high level of mastery of mathematics considered preparatory for calculus (algebra, geometry, precalculus) or (b) taking calculus itself in high school? We used a data set…

  6. A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia

    2017-10-01

    A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.

  7. The Hopf algebra structure of the h-deformed Z3-graded quantum supergroup GLh,j(1|1)

    NASA Astrophysics Data System (ADS)

    Yasar, Ergün

    2016-07-01

    In this work, we define a new proper singular g matrix to construct a Z3-graded calculus on the h-deformed quantum superplane. Using the obtained calculus, we construct a new h-deformed Z3-graded quantum supergroup and give some features of it. Finally, we build up the Hopf algebra structure of this supergroup.

  8. On the construction of unitary quantum group differential calculus

    NASA Astrophysics Data System (ADS)

    Pyatov, Pavel

    2016-10-01

    We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.

  9. Concepts and Skills in High School Calculus: An Examination of a Special Case in Japan and the United States

    ERIC Educational Resources Information Center

    Judson, Thomas W.; Nishimori, Toshiyuki

    2005-01-01

    In this study we investigated above-average high school calculus students from Japan and the United States in order to determine any differences in their conceptual understanding of calculus and their ability to use algebra to solve traditional calculus problems. We examined and interviewed 18 Calculus BC students in the United States and 26…

  10. Umbral Calculus and Holonomic Modules in Positive Characteristic

    NASA Astrophysics Data System (ADS)

    Kochubei, Anatoly N.

    2006-03-01

    In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.

  11. Some applications of mathematics in theoretical physics - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Kalpana

    2016-06-21

    Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical toolsmore » are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.« less

  12. Some applications of mathematics in theoretical physics - A review

    NASA Astrophysics Data System (ADS)

    Bora, Kalpana

    2016-06-01

    Mathematics is a very beautiful subject-very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like-differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.

  13. Assessing Mathematics Automatically Using Computer Algebra and the Internet

    ERIC Educational Resources Information Center

    Sangwin, Chris

    2004-01-01

    This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…

  14. The conceptual basis of mathematics in cardiology: (II). Calculus and differential equations.

    PubMed

    Bates, Jason H T; Sobel, Burton E

    2003-04-01

    This is the second in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.

  15. Advanced Placement Mathematics Calculus, Grade 12 Curriculum Guide.

    ERIC Educational Resources Information Center

    Scharf, John; And Others

    This document is a guide to the advanced placement program in calculus for grade 12 in the city schools in Warren, Ohio. The program covers analytic geometry, differential and integral calculus of algebraic functions, elementary transcendental functions, and applications of differentiation and integration. The philosophy and aims of the program…

  16. DIFFERENTIAL AND INTEGRAL CALCULUS. A TENTATIVE CURRICULUM GUIDE.

    ERIC Educational Resources Information Center

    BRANT, VINCENT; GERARDI, WILLIAM

    A GUIDE FOR A 1-YEAR COURSE IN DIFFERENTIAL AND INTEGRAL CALCULUS PREREQUISITED KNOWLEDGE IN ALGEBRA, ANALYTIC TRIGONOMETRY, AND ELEMENTARY ANALYSIS. EACH ASSIGNMENT CONTAINED BOTH NEW AND REVIEW WORK TO REINFORCE THE NEW WORK. THERE WERE ELEVEN UNITS OF STUDY USING THE FOLLOWING FOUR BOOKS--"CALCULUS AND ANALYTIC GEOMETRY, THIRD…

  17. The conceptual basis of mathematics in cardiology III: linear systems theory and integral transforms.

    PubMed

    Bates, Jason H T; Sobel, Burton E

    2003-05-01

    This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.

  18. Differential calculus on quantized simple lie groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1991-07-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ∈ ℝ are also discussed.

  19. Descartes' Calculus of Subnormals: What Might Have Been

    ERIC Educational Resources Information Center

    Boudreaux, Gregory Mark; Walls, Jess E.

    2013-01-01

    Rene Descartes' method for finding tangents (equivalently, subnormals) depends on geometric and algebraic properties of a family of circles intersecting a given curve. It can be generalized to establish a calculus of subnormals, an alternative to the calculus of Newton and Leibniz. Here we prove subnormal counterparts of the well-known…

  20. Modelling the Landing of a Plane in a Calculus Lab

    ERIC Educational Resources Information Center

    Morante, Antonio; Vallejo, Jose A.

    2012-01-01

    We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)

  1. Solving multi-customer FPR model with quality assurance and discontinuous deliveries using a two-phase algebraic approach.

    PubMed

    Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang

    2016-01-01

    A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.

  2. Symbolic-numeric interface: A review

    NASA Technical Reports Server (NTRS)

    Ng, E. W.

    1980-01-01

    A survey of the use of a combination of symbolic and numerical calculations is presented. Symbolic calculations primarily refer to the computer processing of procedures from classical algebra, analysis, and calculus. Numerical calculations refer to both numerical mathematics research and scientific computation. This survey is intended to point out a large number of problem areas where a cooperation of symbolic and numerical methods is likely to bear many fruits. These areas include such classical operations as differentiation and integration, such diverse activities as function approximations and qualitative analysis, and such contemporary topics as finite element calculations and computation complexity. It is contended that other less obvious topics such as the fast Fourier transform, linear algebra, nonlinear analysis and error analysis would also benefit from a synergistic approach.

  3. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    NASA Astrophysics Data System (ADS)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  4. Proceedings of the International Conference on Algebraic Methodology and Software Technology (2nd) Held in Iowa City, Iowa on May 22-25, 1991.

    DTIC Science & Technology

    1992-05-25

    d’Etat, University of Paris-Sud. [Boudol 84] G. Boudol, An asynchronous calculus MEIJE, in NATO summer school, La - Colle - sur - Loup , France (1984). [Da...on the propositional p-calculus. Theoretical Comput. Sci., 27:333-354, 1983. [12] M. Nivat. Sur la synchronisation des processus. Revue Technique...Meulen, E.A. Deriving In- Traynor, 0., de la Cruz, P., Uniform (Meta- ) De- cremental Implementations from Algebraic Specifica- velopment in the PROSPECTRA

  5. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  6. Who Takes College Algebra?

    ERIC Educational Resources Information Center

    Herriott, Scott R.; Dunbar, Steven R.

    2009-01-01

    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  7. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  8. Calculus domains modelled using an original bool algebra based on polygons

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2016-08-01

    Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.

  9. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

    ERIC Educational Resources Information Center

    Tuluk, Güler

    2014-01-01

    Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

  10. The conceptual basis of mathematics in cardiology: (I) algebra, functions and graphs.

    PubMed

    Bates, Jason H T; Sobel, Burton E

    2003-02-01

    This is the first in a series of four articles developed for the readers of. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease, abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.

  11. Supercalculators and University Entrance Calculus Examinations.

    ERIC Educational Resources Information Center

    Hong, Ye Yoon; Thomas, Mike; Kiernan, Christine

    2000-01-01

    Investigates whether the use of computer algebra systems could provide a significant advantage to students taking standard university entrance calculus examinations. Indicates that supercalculators would probably provide a significant advantage, particularly for lower-achieving students. Demonstrates that it is possible to write questions in which…

  12. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  13. An Uncommon Approach to a Common Algebraic Error

    ERIC Educational Resources Information Center

    Rossi, Paul S.

    2008-01-01

    The basic rules of elementary algebra can often appear beyond the grasp of many students. Even though most subjects, including calculus, prove to be more difficult, it is the simple rules of algebra that continue to be the "thorn in the side" of many mathematics students. In this paper we present a result intended to help students achieve a…

  14. Inquiry-Based Learning of Transcendental Functions in Calculus

    ERIC Educational Resources Information Center

    Ekici, Celil; Gard, Andrew

    2017-01-01

    In a series of group activities supplemented with independent explorations and assignments, calculus students investigate functions similar to their own derivatives. Graphical, numerical, and algebraic perspectives are suggested, leading students to develop deep intuition into elementary transcendental functions even as they lay the foundation for…

  15. A Guided Tour of Mathematical Methods - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2004-09-01

    Mathematical methods are essential tools for all physical scientists. This second edition provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students in this area. In contrast to more traditional textbooks, all the material is presented in the form of problems. Within these problems the basic mathematical theory and its physical applications are well integrated. The mathematical insights that the student acquires are therefore driven by their physical insight. Topics that are covered include vector calculus, linear algebra, Fourier analysis, scale analysis, complex integration, Green's functions, normal modes, tensor calculus, and perturbation theory. The second edition contains new chapters on dimensional analysis, variational calculus, and the asymptotic evaluation of integrals. This book can be used by undergraduates, and lower-level graduate students in the physical sciences. It can serve as a stand-alone text, or as a source of problems and examples to complement other textbooks. All the material is presented in the form of problems Mathematical insights are gained by getting the reader to develop answers themselves Many applications of the mathematics are given

  16. Mathematics for the New Millennium

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2004-01-01

    Courses below calculus need to be refocused to emphasise conceptual understanding and realistic applications via mathematical modelling rather than an overarching focus on developing algebraic skills that may be needed for calculus. Without understanding the concepts, students will not be able to transfer the mathematics to new situations or to…

  17. Questions Revisited: A Close Examination of Calculus of Inference and Inquiry

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Koga, Dennis (Technical Monitor)

    2003-01-01

    In this paper I examine more closely the way in which probability theory, the calculus of inference, is derived from the Boolean lattice structure of logical assertions ordered by implication. I demonstrate how the duality between the logical conjunction and disjunction in Boolean algebra is lost when deriving the probability calculus. In addition, I look more closely at the other lattice identities to verify that they are satisfied by the probability calculus. Last, I look towards developing the calculus of inquiry demonstrating that there is a sum and product rule for the relevance measure as well as a Bayes theorem. Current difficulties in deriving the complete inquiry calculus will also be discussed.

  18. Comparing the Impact of Traditional and Modeling College Algebra Courses on Student Performance in Survey of Calculus

    ERIC Educational Resources Information Center

    West, Jerry G.

    2013-01-01

    Students in higher education deserve opportunities to succeed and learning environments which maximize success. Mathematics courses can create a barrier for success for some students. College algebra is a course that serves as a gateway to required courses in many bachelor's degree programs. The content in college algebra should serve to…

  19. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  20. Teacher's Guide to Secondary Mathematics.

    ERIC Educational Resources Information Center

    Duval County Schools, Jacksonville, FL.

    This is a teacher's guide to secondary school mathematics. Developed for use in the Duval County Public Schools, Jacksonville, Florida. Areas of mathematics covered are algebra, analysis, calculus, computer literacy, computer science, geometry, analytic geometry, general mathematics, consumer mathematics, pre-algebra, probability and statistics,…

  1. The Negative Sign and Exponential Expressions: Unveiling Students' Persistent Errors and Misconceptions

    ERIC Educational Resources Information Center

    Cangelosi, Richard; Madrid, Silvia; Cooper, Sandra; Olson, Jo; Hartter, Beverly

    2013-01-01

    The purpose of this study was to determine whether or not certain errors made when simplifying exponential expressions persist as students progress through their mathematical studies. College students enrolled in college algebra, pre-calculus, and first- and second-semester calculus mathematics courses were asked to simplify exponential…

  2. Conceptual Precalculus: Strengthening Students' Quantitative and Covariational Reasoning

    ERIC Educational Resources Information Center

    Madison, Bernard L.; Carlson, Marilyn; Oehrtman, Michael; Tallman, Michael

    2015-01-01

    Research over the past few decades points to ways precalculus and calculus courses can be strengthened to improve student learning in these courses. This research has informed the development of the Algebra and Precalculus Concept Readiness (APCR) and the Calculus Concept Readiness (CCR) assessments. In this article, the authors present three…

  3. Using Matlab in a Multivariable Calculus Course.

    ERIC Educational Resources Information Center

    Schlatter, Mark D.

    The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…

  4. Dynamical Correspondence in a Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2015-05-01

    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.

  5. The ALARM Experiment

    ERIC Educational Resources Information Center

    Gerhardt, Ira

    2015-01-01

    An experiment was conducted over three recent semesters of an introductory calculus course to test whether it was possible to quantify the effect that difficulty with basic algebraic and arithmetic computation had on individual performance. Points lost during the term were classified as being due to either algebraic and arithmetic mistakes…

  6. On the geometry of inhomogeneous quantum groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschieri, Paolo

    1998-01-01

    The author gives a pedagogical introduction to the differential calculus on quantum groups by stressing at all stages the connection with the classical case. He further analyzes the relation between differential calculus and quantum Lie algebra of left (right) invariant vectorfields. Equivalent definitions of bicovariant differential calculus are studied and their geometrical interpretation is explained. From these data he constructs and analyzes the space of vectorfields, and naturally introduces a contraction operator and a Lie derivative. Their properties are discussed.

  7. Hermeneutics of differential calculus in eighteenth-century northern Germany.

    PubMed

    Blanco, Mónica

    2008-01-01

    This paper applies comparative textbook analysis to studying the mathematical development of differential calculus in northern German states during the eighteenth century. It begins with describing how the four textbooks analyzed presented the foundations of calculus and continues with assessing the influence each of these foundational approaches exerted on the resolution of problems, such as the determination of tangents and extreme values, and even on the choice of coordinates for both algebraic and transcendental curves.

  8. Teaching Calculus with Wolfram|Alpha

    ERIC Educational Resources Information Center

    Dimiceli, Vincent E.; Lang, Andrew S. I. D.; Locke, LeighAnne

    2010-01-01

    This article describes the benefits and drawbacks of using Wolfram|Alpha as the platform for teaching calculus concepts in the lab setting. It is a result of our experiences designing and creating an entirely new set of labs using Wolfram|Alpha. We present the reasoning behind our transition from using a standard computer algebra system (CAS) to…

  9. Dogs Don't Need Calculus

    ERIC Educational Resources Information Center

    Bolt, Mike

    2010-01-01

    Many optimization problems can be solved without resorting to calculus. This article develops a new variational method for optimization that relies on inequalities. The method is illustrated by four examples, the last of which provides a completely algebraic solution to the problem of minimizing the time it takes a dog to retrieve a thrown ball,…

  10. Exponential Models of Legislative Turnover. [and] The Dynamics of Political Mobilization, I: A Model of the Mobilization Process, II: Deductive Consequences and Empirical Application of the Model. Applications of Calculus to American Politics. [and] Public Support for Presidents. Applications of Algebra to American Politics. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 296-300.

    ERIC Educational Resources Information Center

    Casstevens, Thomas W.; And Others

    This document consists of five units which all view applications of mathematics to American politics. The first three view calculus applications, the last two deal with applications of algebra. The first module is geared to teach a student how to: 1) compute estimates of the value of the parameters in negative exponential models; and draw…

  11. A Guided Tour of Mathematical Methods

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2009-04-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical co-ordinates; 5. The gradient; 6. The divergence of a vector field; 7. The curl of a vector field; 8. The theorem of Gauss; 9. The theorem of Stokes; 10. The Laplacian; 11. Conservation laws; 12. Scale analysis; 13. Linear algebra; 14. The Dirac delta function; 15. Fourier analysis; 16. Analytic functions; 17. Complex integration; 18. Green's functions: principles; 19. Green's functions: examples; 20. Normal modes; 21. Potential theory; 22. Cartesian tensors; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Variational calculus; 26. Epilogue, on power and knowledge; References.

  12. Maxwell Equations and the Redundant Gauge Degree of Freedom

    ERIC Educational Resources Information Center

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  13. A Flexible, Extensible Online Testing System for Mathematics

    ERIC Educational Resources Information Center

    Passmore, Tim; Brookshaw, Leigh; Butler, Harry

    2011-01-01

    An online testing system developed for entry-skills testing of first-year university students in algebra and calculus is described. The system combines the open-source computer algebra system "Maxima" with computer scripts to parse student answers, which are entered using standard mathematical notation and conventions. The answers can…

  14. Geometric interpretation of vertex operator algebras.

    PubMed Central

    Huang, Y Z

    1991-01-01

    In this paper, Vafa's approach to the formulation of conformal field theories is combined with the formal calculus developed in Frenkel, Lepowsky, and Meurman's work on the vertex operator construction of the Monster to give a geometric definition of vertex operator algebras. The main result announced is the equivalence between this definition and the algebraic one in the sense that the categories determined by these definitions are isomorphic. PMID:11607240

  15. Math Placement Validation Study: A Summary of the Criterion-Related Validity Evidence and Multiple Measures Data for the San Diego Community College District.

    ERIC Educational Resources Information Center

    Armstrong, William B.

    In Fall 1994, the San Diego Community College District (SDCCD), in California, conducted a study to determine the validity of the Mathematics Diagnostic Testing Project (MDTP) placement test. The MDTP provides tests at four levels (i.e., algebra readiness, elementary algebra, intermediate algebra, and pre-calculus) and is used in the District for…

  16. The Development of an Individualized Instructional Program in Beginning College Mathematics Utilizing Computer Based Resource Units. Final Report.

    ERIC Educational Resources Information Center

    Rockhill, Theron D.

    Reported is an attempt to develop and evaluate an individualized instructional program in pre-calculus college mathematics. Four computer based resource units were developed in the areas of set theory, relations and function, algebra, trigonometry, and analytic geometry. Objectives were determined by experienced calculus teachers, and…

  17. Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere

    DTIC Science & Technology

    2014-11-24

    Clifford Algebra to Geometric Calculus , Reidel, 1984. Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, 1954...are made explicit in a Poincaré sphere and geometric (Clifford) algebra representation. Section 5.0 of this report provides the evidence supporting...MEDIA 4.0 LABORATORY TEST CONFIGURATIONS 5.0 TEST RESULTS 5.1 DATA ANALYSIS METHODS 5.2 DATA ANALYSIS 6.0 GEOMETRIC ALGEBRA 6.1 INTRODUCTION

  18. Enhancing Mathematical Communication for Virtual Math Teams

    ERIC Educational Resources Information Center

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  19. The conceptual basis of mathematics in cardiology IV: statistics and model fitting.

    PubMed

    Bates, Jason H T; Sobel, Burton E

    2003-06-01

    This is the fourth in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas. This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to cardiovascular medicine and biology.

  20. A Historical Survey of the Contributions of Francois-Joseph Servois to the Development of the Rigorous Calculus

    ERIC Educational Resources Information Center

    Petrilli, Salvatore John, Jr.

    2009-01-01

    Historians of mathematics considered the nineteenth century to be the Golden Age of mathematics. During this time period many areas of mathematics, such as algebra and geometry, were being placed on rigorous foundations. Another area of mathematics which experienced fundamental change was analysis. The drive for rigor in calculus began in 1797…

  1. Students' Ways of Thinking about Two-Variable Functions and Rate of Change in Space

    ERIC Educational Resources Information Center

    Weber, Eric David

    2012-01-01

    This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet…

  2. Geometric constrained variational calculus I: Piecewise smooth extremals

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2015-05-01

    A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagin's equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagin's algorithm in Hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.

  3. Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism

    NASA Astrophysics Data System (ADS)

    Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.

    2015-04-01

    We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.

  4. A variational approach to dynamics of flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Chin; Haug, Edward J.; Kim, Sung-Soo

    1989-01-01

    This paper presents a variational formulation of constrained dynamics of flexible multibody systems, using a vector-variational calculus approach. Body reference frames are used to define global position and orientation of individual bodies in the system, located and oriented by position of its origin and Euler parameters, respectively. Small strain linear elastic deformation of individual components, relative to their body references frames, is defined by linear combinations of deformation modes that are induced by constraint reaction forces and normal modes of vibration. A library of kinematic couplings between flexible and/or rigid bodies is defined and analyzed. Variational equations of motion for multibody systems are obtained and reduced to mixed differential-algebraic equations of motion. A space structure that must deform during deployment is analyzed, to illustrate use of the methods developed.

  5. Mathematics preparation for medical school: do all premedical students need calculus?

    PubMed

    Nusbaum, Neil J

    2006-01-01

    The premedical student confronts a disparate set of required and recommended courses from the various medical schools to which the student might apply. Students may feel compelled to take courses such as calculus even though most medical schools do not require it and even though it may not be related to either undergraduate academic plans or the core academic needs of the typical future physician. Basic mathematical knowledge--a knowledge of algebra, statistics, and overall numeracy--are each more important for most future physicians than is the traditional calculus course.

  6. Experiences in Evaluating Outcomes in Tool-Based, Competence Building Education in Dynamical Systems Using Symbolic Computer Algebra

    ERIC Educational Resources Information Center

    Perram, John W.; Andersen, Morten; Ellekilde, Lars-Peter; Hjorth, Poul G.

    2004-01-01

    This paper discusses experience with alternative assessment strategies for an introductory course in dynamical systems, where the use of computer algebra and calculus is fully integrated into the learning process, so that the standard written examination would not be appropriate. Instead, students' competence was assessed by grading three large…

  7. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

    ERIC Educational Resources Information Center

    Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

    2010-01-01

    2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

  8. A Guided Tour of Mathematical Methods for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; van Wijk, Kasper

    2015-05-01

    1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical coordinates; 5. Gradient; 6. Divergence of a vector field; 7. Curl of a vector field; 8. Theorem of Gauss; 9. Theorem of Stokes; 10. The Laplacian; 11. Scale analysis; 12. Linear algebra; 13. Dirac delta function; 14. Fourier analysis; 15. Analytic functions; 16. Complex integration; 17. Green's functions: principles; 18. Green's functions: examples; 19. Normal modes; 20. Potential-field theory; 21. Probability and statistics; 22. Inverse problems; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Conservation laws; 26. Cartesian tensors; 27. Variational calculus; 28. Epilogue on power and knowledge.

  9. Molecular symmetry with quaternions.

    PubMed

    Fritzer, H P

    2001-09-01

    A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Won Sang, E-mail: mimip4444@hanmail.net; Hounkonnou, Mahouton Norbert, E-mail: norbert.hounkonnou@cipma.uac.bj; Arjika, Sama, E-mail: rjksama2008@gmail.com

    In this paper, we propose a full characterization of a generalized q-deformed Tamm-Dancoff oscillator algebra and investigate its main mathematical and physical properties. Specifically, we study its various representations and find the condition satisfied by the deformed q-number to define the algebra structure function. Particular Fock spaces involving finite and infinite dimensions are examined. A deformed calculus is performed as well as a coordinate realization for this algebra. A relevant example is exhibited. Associated coherent states are constructed. Finally, some thermodynamics aspects are computed and discussed.

  11. Analysis of Newton's Third Law Questions on the Force Concepts Inventory at Georgia State University

    NASA Astrophysics Data System (ADS)

    Oakley, Christopher; Thoms, Brian

    2012-03-01

    A major emphasis of the Physics Education Research program at Georgia State University is an effort to assess and improve students' understanding of Newton's Laws concepts. As part of these efforts the Force Concepts Inventory (FCI) has been given to students in both the algebra-based and calculus-based introductory physics sequences. In addition, the algebra-based introductory physics sequence is taught in both a SCALE-UP and a traditional lecture format. The results of the FCI have been analyzed by individual question and also as categorized by content. The analysis indicates that students in both algebra and calculus-based courses are successful at overcoming Aristotelian misconceptions regarding Newton's Third Law (N3) in the context of a stationary system. However, students are less successful on N3 questions involving objects in constant motion or accelerating. Interference between understanding of Newton's Second and Third Laws as well as other possible explanations for lower student performance on N3 questions involving non-stationary objects will be discussed.

  12. Tracking the Success of Pre-College Algebra Workshop Students in Subsequent College Mathematics Classes

    ERIC Educational Resources Information Center

    Fuller, Edgar; Deshler, Jessica M.; Kuhn, Betsy; Squire, Douglas

    2014-01-01

    In 2007 the Department of Mathematics at our institution began developing a placement process designed to identify at-risk students entering mathematics courses at the College Algebra and Calculus levels. Major changes in our placement testing process and the resulting interventions for at-risk students were put in place in Fall of 2008. At the…

  13. Teaching of Real Numbers by Using the Archimedes-Cantor Approach and Computer Algebra Systems

    ERIC Educational Resources Information Center

    Vorob'ev, Evgenii M.

    2015-01-01

    Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of…

  14. Degrees of Freedom: Diversifying Math Requirements for College Readiness and Graduation (Report 1 of a 3-Part Series)

    ERIC Educational Resources Information Center

    Burdman, Pamela

    2015-01-01

    Since the mid-20th century, the standard U.S. high school and college math curriculum has been based on two years of algebra and a year of geometry, preparing students to take classes in pre-calculus followed by calculus. Students' math pursuits have been differentiated primarily by how far or how rapidly they proceed along a clearly defined…

  15. Projectile motion without calculus

    NASA Astrophysics Data System (ADS)

    Rizcallah, Joseph A.

    2018-07-01

    Projectile motion is a constant theme in introductory-physics courses. It is often used to illustrate the application of differential and integral calculus. While most of the problems used for this purpose, such as maximizing the range, are kept at a fairly elementary level, some, such as determining the safe domain, involve not so elementary techniques, which can hardly be assumed of the targeted audience. In the literature, several attempts have been undertaken to avoid calculus altogether and keep the exposition entirely within the realm of algebra and/or geometry. In this paper, we propose yet another non-calculus approach which uses the projectile’s travel times to shed new light on these problems and provide instructors with an alternate method to address them with their students.

  16. Space Mathematics: A Resource for Secondary School Teachers

    NASA Technical Reports Server (NTRS)

    Kastner, Bernice

    1985-01-01

    A collection of mathematical problems related to NASA space science projects is presented. In developing the examples and problems, attention was given to preserving the authenticity and significance of the original setting while keeping the level of mathematics within the secondary school curriculum. Computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus are among the areas addressed.

  17. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  18. Numerical operator calculus in higher dimensions.

    PubMed

    Beylkin, Gregory; Mohlenkamp, Martin J

    2002-08-06

    When an algorithm in dimension one is extended to dimension d, in nearly every case its computational cost is taken to the power d. This fundamental difficulty is the single greatest impediment to solving many important problems and has been dubbed the curse of dimensionality. For numerical analysis in dimension d, we propose to use a representation for vectors and matrices that generalizes separation of variables while allowing controlled accuracy. Basic linear algebra operations can be performed in this representation using one-dimensional operations, thus bypassing the exponential scaling with respect to the dimension. Although not all operators and algorithms may be compatible with this representation, we believe that many of the most important ones are. We prove that the multiparticle Schrödinger operator, as well as the inverse Laplacian, can be represented very efficiently in this form. We give numerical evidence to support the conjecture that eigenfunctions inherit this property by computing the ground-state eigenfunction for a simplified Schrödinger operator with 30 particles. We conjecture and provide numerical evidence that functions of operators inherit this property, in which case numerical operator calculus in higher dimensions becomes feasible.

  19. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2004-01-01

    The effect of Richard T. Cox's contribution to probability theory was to generalize Boolean implication among logical statements to degrees of implication, which are manipulated using rules derived from consistency with Boolean algebra. These rules are known as the sum rule, the product rule and Bayes Theorem, and the measure resulting from this generalization is probability. In this paper, I will describe how Cox s technique can be further generalized to include other algebras and hence other problems in science and mathematics. The result is a methodology that can be used to generalize an algebra to a calculus by relying on consistency with order theory to derive the laws of the calculus. My goals are to clear up the mysteries as to why the same basic structure found in probability theory appears in other contexts, to better understand the foundations of probability theory, and to extend these ideas to other areas by developing new mathematics and new physics. The relevance of this methodology will be demonstrated using examples from probability theory, number theory, geometry, information theory, and quantum mechanics.

  20. Modifying ``Six Ideas that Shaped Physics'' for a Life-Science major audience at Hope College

    NASA Astrophysics Data System (ADS)

    Mader, Catherine

    2005-04-01

    The ``Six Ideas That Shaped Physics'' textbook has been adapted and used for use in the algebra-based introductory physics course for non-physics science majors at Hope College. The results of the first use will be presented. Comparison of FCI for pre and post test scores will be compared with results from 8 years of results from both the algebra-based course and the calculus-based course (when we first adopted ``Six Ideas that Shaped Physcs" for the Calculus-based course). In addition, comparison on quantitative tests and homework problems with prior student groups will also be made. Because a large fraction of the audience in the algebra-based course is life-science majors, a goal of this project is to make the material relevant for these students. Supplemental materials that emphasize the connection between the life sciences and the fundamental physics concepts are being be developed to accompany the new textbook. Samples of these materials and how they were used (and received) during class testing will be presented.

  1. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina

    2015-07-01

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  2. Software Reviews.

    ERIC Educational Resources Information Center

    Bitter, Gary G., Ed.

    1989-01-01

    Describes three software packages: (1) "MacMendeleev"--database/graphic display for chemistry, grades 10-12, Macintosh; (2) "Geometry One: Foundations"--geometry tutorial, grades 7-12, IBM; (3) "Mathematics Exploration Toolkit"--algebra and calculus tutorial, grades 8-12, IBM. (MVL)

  3. DNA algorithms of implementing biomolecular databases on a biological computer.

    PubMed

    Chang, Weng-Long; Vasilakos, Athanasios V

    2015-01-01

    In this paper, DNA algorithms are proposed to perform eight operations of relational algebra (calculus), which include Cartesian product, union, set difference, selection, projection, intersection, join, and division, on biomolecular relational databases.

  4. Can a Crescent Mars Ever Be Seen from Earth?

    ERIC Educational Resources Information Center

    Lamb, John F., Jr.

    1990-01-01

    Described is an activity that incorporates a computer, geometry, algebra, trigonometry, and calculus to answer questions about the planet Mars. A possible crescent of Mars is compared to those of Venus and Mercury. (KR)

  5. Lectures on Kähler Geometry - Series: London Mathematical Society Student Texts (No. 69)

    NASA Astrophysics Data System (ADS)

    Moroianu, Andrei

    2004-03-01

    Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory. The first graduate-level text on Kähler geometry, providing a concise introduction for both mathematicians and physicists with a basic knowledge of calculus in several variables and linear algebra Over 130 exercises and worked examples Self-contained and presents varying viewpoints including Riemannian, complex and algebraic

  6. Reflective Properties of a Parabolic Mirror.

    ERIC Educational Resources Information Center

    Ramsey, Gordon P.

    1991-01-01

    An incident light ray parallel to the optical axis of a parabolic mirror will be reflected at the focal point and vice versa. Presents a mathematical proof that uses calculus, algebra, and geometry to prove this reflective property. (MDH)

  7. Z2×Z2 generalizations of 𝒩 =2 super Schrödinger algebras and their representations

    NASA Astrophysics Data System (ADS)

    Aizawa, N.; Segar, J.

    2017-11-01

    We generalize the real and chiral N =2 super Schrödinger algebras to Z2×Z2-graded Lie superalgebras. This is done by D-module presentation, and as a consequence, the D-module presentations of Z2×Z2-graded superalgebras are identical to the ones of super Schrödinger algebras. We then generalize the calculus over the Grassmann number to Z2×Z2 setting. Using it and the standard technique of Lie theory, we obtain a vector field realization of Z2×Z2-graded superalgebras. A vector field realization of the Z2×Z2 generalization of N =1 super Schrödinger algebra is also presented.

  8. A Categorification of the Crystal Isomorphism B 1,1 B + B(Lambda i) = B(Lambdasigma (i) and a Graphical Calculus for the Shifted Symmetric Functions

    NASA Astrophysics Data System (ADS)

    Kvinge, Henry

    We prove two results at the intersection of Lie theory and the representation theory of symmetric groups, Hecke algebras, and their generalizations. The first is a categorification of the crystal isomorphism B. (1,1) tensor B1,1 ⊕ B(Lambdai ) ≅ B(Lambdasigma (i)). Here B(Lambdai and B(Lambda sigma(i)) are two affine type highest weight crystals of weight Lambdai and Lambdasigma (i) respectively, sigma is a specific map from the Dynkin indexing set I to itself, and B1,1 is a Kirillov-Reshetikhin crystal. We show that this crystal isomorphism is in fact the shadow of a richer module-theoretic phenomenon in the representation theory of Khovanov-Lauda-Rouquier algebras of classical affine type. Our second result identifies the center EndH'( 1) of Khovanov's Heisenberg category H', as the algebra of shifted symmetric functions Lambda* of Okounkov and Olshanski, i.e. End H'(1) ≅ Lambda*. This isomorphism provides us with a graphical calculus for Lambda*. It also allows us to describe EndH'(1) in terms of the transition and co-transition measure of Kerov and the noncommutative probability spaces of Biane.

  9. Mathematics of Quantization and Quantum Fields

    NASA Astrophysics Data System (ADS)

    Dereziński, Jan; Gérard, Christian

    2013-03-01

    Preface; 1. Vector spaces; 2. Operators in Hilbert spaces; 3. Tensor algebras; 4. Analysis in L2(Rd); 5. Measures; 6. Algebras; 7. Anti-symmetric calculus; 8. Canonical commutation relations; 9. CCR on Fock spaces; 10. Symplectic invariance of CCR in finite dimensions; 11. Symplectic invariance of the CCR on Fock spaces; 12. Canonical anti-commutation relations; 13. CAR on Fock spaces; 14. Orthogonal invariance of CAR algebras; 15. Clifford relations; 16. Orthogonal invariance of the CAR on Fock spaces; 17. Quasi-free states; 18. Dynamics of quantum fields; 19. Quantum fields on space-time; 20. Diagrammatics; 21. Euclidean approach for bosons; 22. Interacting bosonic fields; Subject index; Symbols index.

  10. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  11. Numerical operator calculus in higher dimensions

    PubMed Central

    Beylkin, Gregory; Mohlenkamp, Martin J.

    2002-01-01

    When an algorithm in dimension one is extended to dimension d, in nearly every case its computational cost is taken to the power d. This fundamental difficulty is the single greatest impediment to solving many important problems and has been dubbed the curse of dimensionality. For numerical analysis in dimension d, we propose to use a representation for vectors and matrices that generalizes separation of variables while allowing controlled accuracy. Basic linear algebra operations can be performed in this representation using one-dimensional operations, thus bypassing the exponential scaling with respect to the dimension. Although not all operators and algorithms may be compatible with this representation, we believe that many of the most important ones are. We prove that the multiparticle Schrödinger operator, as well as the inverse Laplacian, can be represented very efficiently in this form. We give numerical evidence to support the conjecture that eigenfunctions inherit this property by computing the ground-state eigenfunction for a simplified Schrödinger operator with 30 particles. We conjecture and provide numerical evidence that functions of operators inherit this property, in which case numerical operator calculus in higher dimensions becomes feasible. PMID:12140360

  12. Polynomial asymptotes of the second kind

    NASA Astrophysics Data System (ADS)

    Dobbs, David E.

    2011-03-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and conics. Prerequisites include the division algorithm for polynomials with coefficients in the field of real numbers and elementary facts about limits from calculus. This note could be used as enrichment material in courses ranging from Calculus to Real Analysis to Abstract Algebra.

  13. Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations

    DTIC Science & Technology

    2014-07-01

    treatment of the general case as a future work. 3 Here ` is used, as in sequent calculus , to assert that whenever the constraint H (antecedent) is satisfied...clause and the rule becomes (Inv) F → C C → [ẋ = p &H ]C F → [ẋ = p &H ]C . In the following sections, we will be working in a proof calculus , rather...examples we used in our benchmarks originate from a num- ber of sources - many of them come from textbooks on Dynamical Systems; others have been hand

  14. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  15. A Hodge-de Rham Dirac operator on the quantum SU(2)

    NASA Astrophysics Data System (ADS)

    di Cosmo, Fabio; Marmo, Giuseppe; Pérez-Pardo, Juan Manuel; Zampini, Alessandro

    We describe how it is possible to define a Hodge-de Rham Dirac operator associated to a suitable Cartan-Killing metric form upon the exterior algebra over the quantum spheres SUq(2) equipped with a three-dimensional left covariant calculus.

  16. Identification of dynamic systems, theory and formulation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1985-01-01

    The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.

  17. A Characterization of a Unified Notion of Mathematical Function: The Case of High School Function and Linear Transformation

    ERIC Educational Resources Information Center

    Zandieh, Michelle; Ellis, Jessica; Rasmussen, Chris

    2017-01-01

    As part of a larger study of student understanding of concepts in linear algebra, we interviewed 10 university linear algebra students as to their conceptions of functions from high school algebra and linear transformation from their study of linear algebra. An overarching goal of this study was to examine how linear algebra students see linear…

  18. The Growing Importance of Linear Algebra in Undergraduate Mathematics.

    ERIC Educational Resources Information Center

    Tucker, Alan

    1993-01-01

    Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)

  19. Supercalculators and the Curriculum.

    ERIC Educational Resources Information Center

    Shumway, Richard

    1990-01-01

    Discussed are supercalculator capabilities and possible teaching implications. Included are six examples that use a supercalculator for topics that include volume, graphing, algebra, polynomials, matrices, and elementary calculus. A short review of the research on supercomputers in education and the impact they could have on the curriculum is…

  20. Quantum Koszul formula on quantum spacetime

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Williams, Liam

    2018-07-01

    Noncommutative or quantum Riemannian geometry has been proposed as an effective theory for aspects of quantum gravity. Here the metric is an invertible bimodule map Ω1⊗AΩ1 → A where A is a possibly noncommutative or 'quantum' spacetime coordinate algebra and (Ω1 , d) is a specified bimodule of 1-forms or 'differential calculus' over it. In this paper we explore the proposal of a 'quantum Koszul formula' in Majid [12] with initial data a degree - 2 bilinear map ⊥ on the full exterior algebra Ω obeying the 4-term relations

  1. Cutting Cakes Carefully

    ERIC Educational Resources Information Center

    Hill, Theodore P.; Morrison, Kent E.

    2010-01-01

    This paper surveys the fascinating mathematics of fair division, and provides a suite of examples using basic ideas from algebra, calculus, and probability which can be used to examine and test new and sometimes complex mathematical theories and claims involving fair division. Conversely, the classical cut-and-choose and moving-knife algorithms…

  2. Differentiation from First Principles Using Spreadsheets

    ERIC Educational Resources Information Center

    Lim, Kieran F.

    2008-01-01

    In the teaching of calculus, the algebraic derivation of the derivative (gradient function) enables the student to obtain an analytic "global" gradient function. However, to the best of this author's knowledge, all current technology-based approaches require the student to obtain the derivative (gradient) at a single point by…

  3. Calculus of Elementary Functions, Part I. Teacher's Commentary. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics including algebra, axiomatic geometry, trigonometry, and analytic geometry. It does not assume they have acquired a background of elementary functions. This teacher's guide contains background information, suggested instructional procedures, and…

  4. Math 3011--College Algebra and Trigonometry. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for a college level mathematics course designed to provide the necessary foundation for success in calculus, develop logical thinking skills, and enhance analytic skills through problem solving. Topics include relations and functions; inequalities; complex numbers;…

  5. Key Concept Mathematics and Management Science Models

    ERIC Educational Resources Information Center

    Macbeth, Thomas G.; Dery, George C.

    1973-01-01

    The presentation of topics in calculus and matrix algebra to second semester freshmen along with a treatment of exponential and power functions would permit them to cope with a significant portion of the mathematical concepts that comprise the essence of several disciplines in a business school curriculum. (Author)

  6. Some Mathematics and Physics of Ball Games.

    ERIC Educational Resources Information Center

    Hughes, D. E.

    1985-01-01

    Gives examples on the applications of arithmetic, geometry, and some calculus, vector algebra, and mechanics to ball games. Suggestions for further interesting investigations are provided together with references to other articles and books on applications of mathematics and physics to ball games and sports in general. (JN)

  7. Bridging the Vector Calculus Gap

    NASA Astrophysics Data System (ADS)

    Dray, Tevian; Manogue, Corinne

    2003-05-01

    As with Britain and America, mathematicians and physicists are separated from each other by a common language. In a nutshell, mathematics is about functions, but physics is about things. For the last several years, we have led an NSF-supported effort to "bridge the vector calculus gap" between mathematics and physics. The unifying theme we have discovered is to emphasize geometric reasoning, not (just) algebraic computation. In this talk, we will illustrate the language differences between mathematicians and physicists, and how we are trying reconcile them in the classroom. For further information about the project go to: http://www.physics.orst.edu/bridge

  8. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  9. Re-Seeing Resistances: Telling Stories

    ERIC Educational Resources Information Center

    Reda, Mary M.

    2007-01-01

    The author's mother has taught advanced classes at a small Catholic elementary school. She also does private tutoring for at-risk students from neighboring high schools and colleges in an affluent suburban area. The author teaches at a large public, urban university. Her mother tutors Algebra through Calculus in a fairly traditional lecture-style…

  10. Integration of CAI into a Freshmen Liberal Arts Math Course in the Community College.

    ERIC Educational Resources Information Center

    McCall, Michael B.; Holton, Jean L.

    1982-01-01

    Discusses four computer-assisted-instruction programs used in a college-level mathematics course to introduce computer literacy and improve mathematical skills. The BASIC programs include polynomial functions, trigonometric functions, matrix algebra, and differential calculus. Each program discusses mathematics theory and introduces programming…

  11. A Simple Interactive Software Package for Plotting, Animating, and Calculating

    ERIC Educational Resources Information Center

    Engelhardt, Larry

    2012-01-01

    We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…

  12. An Activity to Encourage Writing in Mathematics

    ERIC Educational Resources Information Center

    Van Dyke, Frances; Malloy, Elizabeth J.; Stallings, Virginia

    2014-01-01

    This article discusses an activity designed to encourage writing to learn in mathematics. There were three stages of data collection. An assessment, requiring basic algebra only, was completed by 118 undergraduates from statistics and calculus courses. Students were given summaries of all participant responses, along with the correct answers.…

  13. Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format

    ERIC Educational Resources Information Center

    Yoder, Garett; Cook, Jerry

    2014-01-01

    The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…

  14. Computer Activities for College Algebra and Precalculus.

    ERIC Educational Resources Information Center

    White, Jacci Wozniak; Norwich, Vicki Howard

    Mathematics software can be a great aid in understanding difficult mathematics concepts at all levels. This paper presents nine exercises on calculus concepts by using different software used in mathematics education. Each exercise includes instruction on how to use software in order to highlight a specific concept in mathematics. This paper also…

  15. A Model for Math Modeling

    ERIC Educational Resources Information Center

    Lin, Tony; Erfan, Sasan

    2016-01-01

    Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…

  16. Secondary Schools Curriculum Guide, Mathematics, Grades 10-12. Revised.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    Behavioral objectives for grades 10 through 12 are specified for plane geometry, algebra, general mathematics, computer mathematics, slide rule mathematics, basic college mathematics, trigonometry, analytic geometry, calculus and probability. Most sections present material in terms of portions of a school year. At least one major objective is…

  17. Project Solo; Newsletter Number Seven.

    ERIC Educational Resources Information Center

    Pittsburgh Univ., PA. Project Solo.

    The current curriculum modules under development at Project Solo are listed. The modules are grouped under the subject matter that they are designed to teach--algebra II, biology, calculus, chemistry, computer science, 12th grade math, physics, social science. Special programs written for use on the Hewlett-Packard Plotter are listed that may be…

  18. Using Technology to Promote Mathematical Discourse Concerning Women in Mathematics

    ERIC Educational Resources Information Center

    Phy, Lyn

    2008-01-01

    This paper discusses uses of technology to facilitate mathematical discourse concerning women in mathematics. Such a topic can be introduced in various traditional courses such as algebra, geometry, trigonometry, probability and statistics, or calculus, but it is not included in traditional textbooks. Through the ideas presented here, you can…

  19. Math 3310--Technical Mathematics I. Course Outline.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    This document contains the course syllabus and 12 independent practice modules for a college pre-calculus designed as the first course in a two-semester sequence for students in a Bachelor of Technology program. The course emphasizes engineering technology applications and verbal problems. Topics include a review of elementary algebra; factoring…

  20. Hermann-Bernoulli-Laplace-Hamilton-Runge-Lenz Vector.

    ERIC Educational Resources Information Center

    Subramanian, P. R.; And Others

    1991-01-01

    A way for students to refresh and use their knowledge in both mathematics and physics is presented. By the study of the properties of the "Runge-Lenz" vector the subjects of algebra, analytical geometry, calculus, classical mechanics, differential equations, matrices, quantum mechanics, trigonometry, and vector analysis can be reviewed. (KR)

  1. Controlling Population with Pollution

    ERIC Educational Resources Information Center

    Browne, Joseph

    2010-01-01

    Population models are often discussed in algebra, calculus, and differential equations courses. In this article we will use the human population of the world as our application. After quick looks at two common models we'll investigate more deeply a model which incorporates the negative effect that accumulated pollution may have on population.

  2. Investigating Students' Modes of Thinking in Linear Algebra: The Case of Linear Independence

    ERIC Educational Resources Information Center

    Çelik, Derya

    2015-01-01

    Linear algebra is one of the most challenging topics to learn and teach in many countries. To facilitate the teaching and learning of linear algebra, priority should be given to epistemologically analyze the concepts that the undergraduate students have difficulty in conceptualizing and to define their ways of reasoning in linear algebra. After…

  3. Phonological Interpretation into Preordered Algebras

    NASA Astrophysics Data System (ADS)

    Kubota, Yusuke; Pollard, Carl

    We propose a novel architecture for categorial grammar that clarifies the relationship between semantically relevant combinatoric reasoning and semantically inert reasoning that only affects surface-oriented phonological form. To this end, we employ a level of structured phonology that mediates between syntax (abstract combinatorics) and phonology proper (strings). To notate structured phonologies, we employ a lambda calculus analogous to the φ-terms of [8]. However, unlike Oehrle's purely equational φ-calculus, our phonological calculus is inequational, in a way that is strongly analogous to the functional programming language LCF [10]. Like LCF, our phonological terms are interpreted into a Henkin frame of posets, with degree of definedness ('height' in the preorder that interprets the base type) corresponding to degree of pronounceability; only maximal elements are actual strings and therefore fully pronounceable. We illustrate with an analysis (also new) of some complex constituent-order phenomena in Japanese.

  4. A preliminary study of achievement, attitudes toward success in mathematics, and mathematics anxiety with technology-based instruction in brief calculus.

    PubMed

    Alkhateeb, Haitham M

    2002-02-01

    This study was designed to compare achievement, attitudes toward success in mathematics, and mathematics anxiety of college students taught brief calculus using a graphic calculator, with the achievement and attitudes and anxiety of students taught using the computer algebra system Maple, using a technology based text book. 50 men and 50 women, students in three classes at a large public university in the southwestern United States, participated. Students' achievement in brief calculus was measured by performance on a teacher-made achievement test given at the end of the study. Analysis of variance showed no significant difference in achievement between the groups. To measure change in attitudes and anxiety, responses to paper-and-pencil inventories indicated significant differences in favor of students using the computer.

  5. Differential form representation of stochastic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  6. Schwarz maps of algebraic linear ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  7. Enabling quaternion derivatives: the generalized HR calculus

    PubMed Central

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.

    2015-01-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  8. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.

  9. Investigating the use of mastery-style online homework exercises in introductory algebra-based mechanics in a controlled clinical study

    NASA Astrophysics Data System (ADS)

    Evans, William R.; Selen, Mats A.

    2017-12-01

    Homework in introductory physics represents an important part of a student's learning experience; therefore, choosing the manner in which homework is presented merits investigation. We performed three rounds of clinical trials comparing the effects of mastery-style homework vs traditional-style homework with students in both algebra-based and calculus-based introductory mechanics. Results indicate a benefit from mastery-style over traditional-style homework, principally for weaker students who are less familiar with the material being covered and on questions that are nearer transfer to the study materials.

  10. Student Connections between Algebraic and Graphical Polynomial Representations in the Context of a Polynomial Relation

    ERIC Educational Resources Information Center

    Adu-Gyamfi, Kwaku; Bossé, Michael J.; Chandler, Kayla

    2017-01-01

    When establishing connections among representations of associated mathematical concepts, students encounter different difficulties and successes along the way. The purpose of this study was to uncover information about and gain greater insight into how student processes connections. Pre-calculus students were observed and interviewed while…

  11. Optimization of Cubic Polynomial Functions without Calculus

    ERIC Educational Resources Information Center

    Taylor, Ronald D., Jr.; Hansen, Ryan

    2008-01-01

    In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…

  12. A Comparison of Two Types of Bank Investments

    ERIC Educational Resources Information Center

    Nillsen, Rodney

    2017-01-01

    In this paper, an investment problem is investigated in terms of elementary algebra, recurrence relations, functions, and calculus at high school level. The problem comes down to understanding the behaviour of a function associated with the problem and, in particular, to finding the zero of the function. A wider purpose is not only to formulate…

  13. Problem Solving in Calculus with Symbolic Geometry and CAS

    ERIC Educational Resources Information Center

    Todd, Philip; Wiechmann, James

    2008-01-01

    Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

  14. How Do Students Acquire an Understanding of Logarithmic Concepts?

    ERIC Educational Resources Information Center

    Mulqueeny, Ellen

    2012-01-01

    The use of logarithms, an important tool for calculus and beyond, has been reduced to symbol manipulation without understanding in most entry-level college algebra courses. The primary aim of this research, therefore, was to investigate college students' understanding of logarithmic concepts through the use of a series of instructional tasks…

  15. Studying Teachers' Mathematical Argumentation in the Context of Refuting Students' Invalid Claims

    ERIC Educational Resources Information Center

    Giannakoulias, Eusthathios; Mastorides, Eleutherios; Potari, Despina; Zachariades, Theodossios

    2010-01-01

    This study investigates teachers' argumentation aiming to convince students about the invalidity of their mathematical claims in the context of calculus. 18 secondary school mathematics teachers were given three hypothetical scenarios of a student's proof that included an invalid algebraic claim. The teachers were asked to identify possible…

  16. From "Work-and-Walk-By" to "Sherpa-at-Work"

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2011-01-01

    Nowadays, many technological means are available to support teaching, such as the interactive whiteboard, class sets of laptop or netbook computers, and high speed internet access. For mathematics education there are advanced software packages for geometry, algebra, calculus, and statistics, which in many cases are available on line at no cost.…

  17. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  18. Calculus of Elementary Functions, Part II. Teacher's Commentary. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This teacher's guide is for Part II of the course. It is designed to follow Part I of the text. The guide contains background information, suggested instructional…

  19. Calculus of Elementary Functions, Part I. Student Text. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This text, Part I, contains the first five chapters of the course and two appendices. Chapters included are: (1) Polynomial Functions; (2) The Derivative of a Polynomial…

  20. Calculus of Elementary Functions, Part II. Student Text. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This text, Part II, contains material designed to follow Part I. Chapters included in this text are: (6) Derivatives of Exponential and Related Functions; (7) Area and…

  1. Secondary Schools Curriculum Guide, Mathematics, Grades 10-12, Levels 87-112.

    ERIC Educational Resources Information Center

    Rogers, Arnold R., Ed.; And Others

    Behavioral objectives for geometry, algebra, computer mathematics, trigonometry, analytic geometry, calculus, and probability are specified for grades 10 through 12. General objectives are stated for major areas under each topic and are followed by a list of specific objectives for that area. This work was prepared under an ESEA Title III…

  2. A Mathematics Entrance Exam for General (Non-Majors) Physics

    ERIC Educational Resources Information Center

    Chediak, Alex

    2010-01-01

    In a previous issue of "The Physics Teacher", John Hubisz explained how a mathematics background check has been used at three different colleges to determine the appropriate physics sequence for incoming students. Based on their performance, students are placed into either calculus-based physics (CBP), algebra-trig physics (ATP), or a year of…

  3. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    ERIC Educational Resources Information Center

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  4. A brief survey of constrained mechanics and variational problems in terms of differential forms

    NASA Technical Reports Server (NTRS)

    Hermann, Robert

    1994-01-01

    There has been considerable interest recently in constrained mechanics and variational problems. This is in part due to applied interests (such as 'non-holonomic mechanics in robotics') and in other part due to the fact that several schools of 'pure' mathematics have found that this classical subject is of importance for what they are trying to do. I have made various attempts at developing these subjects since my Lincoln lab days of the late 1950's. In this Chapter, I will sketch a Unified point of view, using Cartan's approach with differential forms. This has the advantage from the C-O-R viewpoint being developed in this Volume that the extension from 'smooth' to 'generalized' data is very systematic and algebraic. (I will only deal with the 'smooth' point of view in this Chapter; I will develop the 'generalized function' material at a later point.) The material presented briefly here about Variational Calculus and Constrained Mechanics can be found in more detail in my books, 'Differential Geometry and the Calculus of Variations', 'Lie Algebras and Quantum Mechanics', and 'Geometry, Physics and Systems'.

  5. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  6. Formal Modeling of Multi-Agent Systems using the Pi-Calculus and Epistemic Logic

    NASA Technical Reports Server (NTRS)

    Rorie, Toinette; Esterline, Albert

    1998-01-01

    Multi-agent systems have become important recently in computer science, especially in artificial intelligence (AI). We allow a broad sense of agent, but require at least that an agent has some measure of autonomy and interacts with other agents via some kind of agent communication language. We are concerned in this paper with formal modeling of multi-agent systems, with emphasis on communication. We propose for this purpose to use the pi-calculus, an extension of the process algebra CCS. Although the literature on the pi-calculus refers to agents, the term is used there in the sense of a process in general. It is our contention, however, that viewing agents in the AI sense as agents in the pi-calculus sense affords significant formal insight. One formalism that has been applied to agents in the AI sense is epistemic logic, the logic of knowledge. The success of epistemic logic in computer science in general has come in large part from its ability to handle concepts of knowledge that apply to groups. We maintain that the pi-calculus affords a natural yet rigorous means by which groups that are significant to epistemic logic may be identified, encapsulated, structured into hierarchies, and restructured in a principled way. This paper is organized as follows: Section 2 introduces the pi-calculus; Section 3 takes a scenario from the classical paper on agent-oriented programming [Sh93] and translates it into a very simple subset of the n-calculus; Section 4 then shows how more sophisticated features of the pi-calculus may bc brought into play; Section 5 discusses how the pi-calculus may be used to define groups for epistemic logic; and Section 6 is the conclusion.

  7. Assessing the Effectiveness of Studio Physics in Introductory-Level Courses at Georgia State University

    NASA Astrophysics Data System (ADS)

    Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian

    2009-11-01

    Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.

  8. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  9. Those Do What? Connecting Eigenvectors and Eigenvalues to the Rest of Linear Algebra: Using Visual Enhancements to Help Students Connect Eigenvectors to the Rest of Linear Algebra

    ERIC Educational Resources Information Center

    Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.

    2010-01-01

    This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…

  10. Military geodesy and geospace science, unit three

    NASA Astrophysics Data System (ADS)

    Heller, W. G.; Leschack, A. R.

    1981-02-01

    This lecture course provides a full-year introduction to Military Geodesy and Geospace Science. Throughout the presentation a military perspective is maintained which links Mapping, Charting, and Geodesy (MC&G) issues with modern defense requirements. Elementary preparation is assumed in the subjects of general physics, mechanics, chemistry, astronautics, and linear system theory. The student should also be familiar with differential equations, analytic geometry, and linear algebra. Some acquaintance with vector calculus is useful but not essential. The topics covered herein are intended to provide conceptual rather than working knowledge. Ideally, the student completing this course will have attained a broad understanding of the MC&G field and will be able to develop specialized expertise quickly when required. The organizational flow of the lectures is from concepts in the initial sections, particularly in Unit One, to applications and specific systems later on. As a result the student is often referred ahead to provide motivation in regard to relevancy. In later chapters, however, the situation is reversed with the student referred back to review important conceptual material as necessary.

  11. Why the nth-root function is not a rational function

    NASA Astrophysics Data System (ADS)

    Dobbs, David E.

    2017-11-01

    The set of functions ? is linearly independent over ? (with respect to any open subinterval of (0, ∞)). The titular result is a corollary for any integer n ≥ 2 (and the domain [0, ∞)). Some more accessible proofs of that result are also given. Let F be a finite field of characteristic p and cardinality pk. Then the pth-root function F → F is a polynomial function of degree at most pk - 2 if pk ≠ 2 (resp., the identity function if pk = 2). Also, for any integer n ≥ 2, every element of F has an nth root in F if and only if, for each prime number q dividing n, q is not a factor of pk - 1. Various parts of this note could find classroom use in courses at various levels, on precalculus, calculus or abstract algebra. A final section addresses educational benefits of such coverage and offers some recommendations to practitioners.

  12. A Report on the Present Status of Engineering Mathematics Test (EMaT)

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshimasa; Takafuji, Daisuke

    The aim of Engineering Mathematics Test (EMaT) is to make sure what essentials in curriculum of Engineering Mathematics is, and to assess university students’ core academic competence and achievement of Engineering Mathematics, helping assurance of students’ academic ability. It is useful for professors to evaluate teaching effect of the classes, and this evaluation would help them improve curricula. Scores can be available for both graduate school entrance examinations and employment tests, leading to selecting persons with basic academic ability in Engineering Mathematics. The scope includes fundamentals in Calculus, Linear Algebra, Differential Equations, and Probability and Statistics. It is open to all students free of charge, and is annually given once in December. In 2007, 2,396 students from 35 universities took EMaT, and the total number of students who have taken EMaT in these 5 years is 6,240.

  13. Triangles with Integer Side Lengths and Rational Internal Radius P and External Radius R

    ERIC Educational Resources Information Center

    Zelator, Konstantine

    2005-01-01

    This paper is written on a level accessible to college/university students of mathematics who are taking second-year, algebra based, mathematics courses beyond calculus I. This article combines material from geometry, trigonometry, and number theory. This integration of various techniques is an excellent experience for the serious student. The…

  14. Investigating a Link between Pre-Calculus Students' Uses of Graphing Calculators and Their Understanding of Mathematical Symbols

    ERIC Educational Resources Information Center

    Kenney, Rachael H.

    2014-01-01

    This study examined ways in which students make use of a graphing calculator and how use relates to comfort and understanding with mathematical symbols. Analysis involved examining students' words and actions in problem solving to identify evidence of algebraic insight. Findings suggest that some symbols and symbolic structures had strong…

  15. Pre-University Students' Errors in Integration of Rational Functions and Implications for Classroom Teaching

    ERIC Educational Resources Information Center

    Yee, Ng Kin; Lam, Toh Tin

    2008-01-01

    This paper reports on students' errors in performing integration of rational functions, a topic of calculus in the pre-university mathematics classrooms. Generally the errors could be classified as those due to the students' weak algebraic concepts and their lack of understanding of the concept of integration. With the students' inability to link…

  16. A Study of Placement and Grade Prediction in First College Mathematics Courses

    ERIC Educational Resources Information Center

    Madison, Bernard L.; Linde, Cassandra S.; Decker, Blake R.; Rigsby, E. Myron; Dingman, Shannon W.; Stegman, Charles E.

    2015-01-01

    A college mathematics placement test with 25 basic algebra items and 15 calculus readiness items was administered to 1572 high school seniors, and first college mathematics course grades were obtained for 319 of these students. Test results indicated that more than two thirds of the high school graduates were not college ready, and the test…

  17. Technology Tips: Building Interactive Demonstrations with Sage

    ERIC Educational Resources Information Center

    Murray, Maura

    2013-01-01

    Sage is an open-source software package that can be used in many different areas of mathematics, ranging from algebra to calculus and beyond. One of the most exciting pedagogical features of Sage (http://www.sagemath.org) is its ability to create interacts--interactive examples that can be used in a classroom demonstration or by students in a…

  18. The Relationship between Gender and Students' Attitude and Experience of Using a Computer Algebra System

    ERIC Educational Resources Information Center

    Ocak, Mehmet

    2008-01-01

    This correlational study examined the relationship between gender and the students' attitude and prior knowledge of using one of the mathematical software programs (MATLAB). Participants were selected from one community college, one state university and one private college. Students were volunteers from three Calculus I classrooms (one class from…

  19. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    NASA Astrophysics Data System (ADS)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  20. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Wang, Deng-Shan; Yin, Yan-Bin

    2017-06-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. Supported by National Natural Science Foundation of China under Grant Nos. 11375030, 11472315, and Department of Science and Technology of Henan Province under Grant No. 162300410223 and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19

  1. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less

  2. Graphical construction of a local perspective on differentiation and integration

    NASA Astrophysics Data System (ADS)

    Hong, Ye Yoon; Thomas, Michael O. J.

    2015-06-01

    Recent studies of the transition from school to university mathematics have identified a number of epistemological gaps, including the need to change from an emphasis on equality to that of inequality. Another crucial epistemological change during this transition involves the movement from the pointwise and global perspectives of functions usually established through the school curriculum to a view of function that includes a local, or interval, perspective. This is necessary for study of concepts such as continuity and limit that underpin calculus and analysis at university. In this study, a first-year university calculus course in Korea was constructed that integrated use of digital technology and considered the epistemic value of the associated techniques. The aim was to encourage versatile thinking about functions, especially in relation to properties arising from a graphical investigation of differentiation and integration. In this paper, the results of this approach for the learning of derivative and antiderivative, based on integrated technology use, are presented. They show the persistence of what Tall ( Mathematics Education Research Journal, 20(2), 5-24, 2008) describes as symbolic world algebraic thinking on the part of a significant minority of students, who feel the need to introduce algebraic methods, in spite of its disadvantages, even when no explicit algebra is provided. However, the results also demonstrate the ability of many of the students to use technology mediation to build local or interval conceptual thinking about derivative and antiderivative functions.

  3. Assessing non-uniqueness: An algebraic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  4. Derive Workshop Matrix Algebra and Linear Algebra.

    ERIC Educational Resources Information Center

    Townsley Kulich, Lisa; Victor, Barbara

    This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…

  5. Computing Gröbner Bases within Linear Algebra

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira

    In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.

  6. Using Example Generation to Explore Students' Understanding of the Concepts of Linear Dependence/Independence in Linear Algebra

    ERIC Educational Resources Information Center

    Aydin, Sinan

    2014-01-01

    Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…

  7. CAS or Pen-and-Paper: Factors That Influence Students' Choices

    ERIC Educational Resources Information Center

    Cameron, Scott; Ball, Lynda

    2015-01-01

    This paper reports on a study of choices about the use of a computer algebra system (CAS) or pen-and-paper (p&p) by a class of seven Year 11 Mathematical Methods (CAS) students as they completed a calculus worksheet. Factors that influenced students' choices are highlighted by comparing and contrasting the use of CAS and p&p between…

  8. Extending a Property of Cubic Polynomials to Higher-Degree Polynomials

    ERIC Educational Resources Information Center

    Miller, David A.; Moseley, James

    2012-01-01

    In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…

  9. Capitalizing on the Dynamic Features of Excel to Consider Growth Rates and Limits

    ERIC Educational Resources Information Center

    Taylor, Daniel; Moore-Russo, Deborah

    2012-01-01

    It is common for both algebra and calculus instructors to use power functions of various degrees as well as exponential functions to examine and compare rates of growth. This can be done on a chalkboard, with a graphing calculator, or with a spreadsheet. Instructors often are careful to connect the symbolic and graphical (and occasionally the…

  10. Math Readiness and Preparation for Competitive College Majors and Careers: The Case of Black Students.

    ERIC Educational Resources Information Center

    Thomas, Gail E.

    This study examines factors that determine the enrollment of black students in the high school math courses (i.e., advanced algebra, trigonometry, calculus) that are necessary for competitive college and major field access. The data are from a local college survey of juniors and seniors who were enrolled in eight (8) local public and private…

  11. Families of linear recurrences for Catalan numbers

    NASA Astrophysics Data System (ADS)

    Gauthier, N.

    2011-01-01

    Four different families of linear recurrences are derived for Catalan numbers. The derivations rest on John Riordan's 1973 generalization of Catalan numbers to a set of polynomials. Elementary differential and integral calculus techniques are used and the results should be of interest to teachers and students of introductory courses in calculus and number theory.

  12. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  13. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  14. Short Round Sub-Linear Zero-Knowledge Argument for Linear Algebraic Relations

    NASA Astrophysics Data System (ADS)

    Seo, Jae Hong

    Zero-knowledge arguments allows one party to prove that a statement is true, without leaking any other information than the truth of the statement. In many applications such as verifiable shuffle (as a practical application) and circuit satisfiability (as a theoretical application), zero-knowledge arguments for mathematical statements related to linear algebra are essentially used. Groth proposed (at CRYPTO 2009) an elegant methodology for zero-knowledge arguments for linear algebraic relations over finite fields. He obtained zero-knowledge arguments of the sub-linear size for linear algebra using reductions from linear algebraic relations to equations of the form z = x *' y, where x, y ∈ Fnp are committed vectors, z ∈ Fp is a committed element, and *' : Fnp × Fnp → Fp is a bilinear map. These reductions impose additional rounds on zero-knowledge arguments of the sub-linear size. The round complexity of interactive zero-knowledge arguments is an important measure along with communication and computational complexities. We focus on minimizing the round complexity of sub-linear zero-knowledge arguments for linear algebra. To reduce round complexity, we propose a general transformation from a t-round zero-knowledge argument, satisfying mild conditions, to a (t - 2)-round zero-knowledge argument; this transformation is of independent interest.

  15. More on quantum groups from the quantization point of view

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1994-12-01

    Star products on the classical double group of a simple Lie group and on corresponding symplectic groupoids are given so that the quantum double and the “quantized tangent bundle” are obtained in the deformation description. “Complex” quantum groups and bicovariant quantum Lie algebras are discussed from this point of view. Further we discuss the quantization of the Poisson structure on the symmetric algebra S(g) leading to the quantized enveloping algebra U h (g) as an example of biquantization in the sense of Turaev. Description of U h (g) in terms of the generators of the bicovariant differential calculus on F(G q ) is very convenient for this purpose. Finaly we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducble representation in the compact case.

  16. Teaching Linear Algebra: Must the Fog Always Roll In?

    ERIC Educational Resources Information Center

    Carlson, David

    1993-01-01

    Proposes methods to teach the more difficult concepts of linear algebra. Examines features of the Linear Algebra Curriculum Study Group Core Syllabus, and presents problems from the core syllabus that utilize the mathematical process skills of making conjectures, proving the results, and communicating the results to colleagues. Presents five…

  17. An Inquiry-Based Linear Algebra Class

    ERIC Educational Resources Information Center

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  18. Numerical Linear Algebra.

    DTIC Science & Technology

    1980-09-08

    February 1979 through 31 March 1980 Title of Research: NUMERICAL LINEAR ALGEBRA Principal Investigators: Gene H. Golub James H. Wilkinson Research...BEFORE COMPLETING FORM 2 OTAgSSION NO. 3. RECIPIENT’S CATALOG NUMBER ITE~ btitle) ~qEE NUMERICAL LINEAR ALGEBRA #I ~ f#7&/8 PER.ORMING ORG. REPORT NUM 27R 7

  19. The Use of Technology and Visualization in Calculus Instruction

    ERIC Educational Resources Information Center

    Samuels, Jason

    2010-01-01

    This study was inspired by a history of student difficulties in calculus, and innovation in response to those difficulties. The goals of the study were fourfold. First, to design a mathlet for students to explore local linearity. Second, to redesign the curriculum of first semester calculus around the use of technology, an emphasis on…

  20. Linear {GLP}-algebras and their elementary theories

    NASA Astrophysics Data System (ADS)

    Pakhomov, F. N.

    2016-12-01

    The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.

  1. Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (21st, Lahti, Finland, July 14-19, 1997). Volume 3.

    ERIC Educational Resources Information Center

    Pehkonen, Erkki, Ed.

    The third volume of the proceedings of 21st annual meeting of the International Group for the Psychology of Mathematics Education contains the following papers: (1) "Graphics Calculators Use in Precalculus and Achievement in Calculus" (P. Gomez and F. Femandez); (2) "Tapping into Algebraic Variables through the Graphic…

  2. Modeling the Water Balloon Slingshot

    NASA Astrophysics Data System (ADS)

    Bousquet, Benjamin D.; Figura, Charles C.

    2013-01-01

    In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments, from non-science major classes to algebra-based and calculus-based introductory physics classes.

  3. Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom

    NASA Astrophysics Data System (ADS)

    Caglayan, Günhan

    2018-05-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.

  4. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  5. Resources for Teaching Linear Algebra. MAA Notes Volume 42.

    ERIC Educational Resources Information Center

    Carlson, David, Ed.; And Others

    This book takes the position that the teaching of elementary linear algebra can be made more effective by emphasizing applications, exposition, and pedagogy. It includes the recommendations of the Linear Algebra Curriculum Study Group with their core syllabus for the first course, and the thoughts of mathematics faculty who have taught linear…

  6. Emphasizing Language and Visualization in Teaching Linear Algebra

    ERIC Educational Resources Information Center

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-01-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…

  7. Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.

  8. Chern-Simons, Wess-Zumino and other cocycles from Kashiwara-Vergne and associators

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton; Naef, Florian; Xu, Xiaomeng; Zhu, Chenchang

    2018-03-01

    Descent equations play an important role in the theory of characteristic classes and find applications in theoretical physics, e.g., in the Chern-Simons field theory and in the theory of anomalies. The second Chern class (the first Pontrjagin class) is defined as p= < F, F> where F is the curvature 2-form and < \\cdot , \\cdot > is an invariant scalar product on the corresponding Lie algebra g. The descent for p gives rise to an element ω =ω _3+ω _2+ω _1+ω _0 of mixed degree. The 3-form part ω _3 is the Chern-Simons form. The 2-form part ω _2 is known as the Wess-Zumino action in physics. The 1-form component ω _1 is related to the canonical central extension of the loop group LG. In this paper, we give a new interpretation of the low degree components ω _1 and ω _0. Our main tool is the universal differential calculus on free Lie algebras due to Kontsevich. We establish a correspondence between solutions of the first Kashiwara-Vergne equation in Lie theory and universal solutions of the descent equation for the second Chern class p. In more detail, we define a 1-cocycle C which maps automorphisms of the free Lie algebra to one forms. A solution of the Kashiwara-Vergne equation F is mapped to ω _1=C(F). Furthermore, the component ω _0 is related to the associator Φ corresponding to F. It is surprising that while F and Φ satisfy the highly nonlinear twist and pentagon equations, the elements ω _1 and ω _0 solve the linear descent equation.

  9. Advanced Mathematics Online: Assessing Particularities in the Online Delivery of a Second Linear Algebra Course

    ERIC Educational Resources Information Center

    Montiel, Mariana; Bhatti, Uzma

    2010-01-01

    This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…

  10. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    ERIC Educational Resources Information Center

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  11. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    ERIC Educational Resources Information Center

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  12. Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Huang, Hua-Lin; Yang, Yuping

    2016-01-01

    By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.

  13. Maple

    NASA Astrophysics Data System (ADS)

    Nicolaides, Roy A.; Walkington, Noel J.

    1996-06-01

    A knowledge of one or more high level symbolic mathematics programs is rapidly becoming a necessity for mathematics users from all fields of science. The aim of this book is to provide a solid grounding in Maple, one of the best known of these programs. The authors combine efficiency and economy of exposition with a complete coverage of Maple. The book has twelve chapters, of which eight are completely accessible to anyone who has completed calculus and linear sequences as taught in American universities. These chapters cover the great majority of Maple's capabilities. There are also three chapters on Maple programming that can be read without prior programming experience, although knowledge of a high level programming language (Basic, Fortran, C etc.) will help. There is also a chapter on some relevant aspects of algebra. Above all, the book allows the reader to extract value from Maple without wasting time and effort in the learning process. It is the fastest track to expertise for Maple users in mathematics and computer science.

  14. Effects of California community college students' gender, self-efficacy, and attitudes and beliefs toward physics on conceptual understanding of Newtonian mechanics

    NASA Astrophysics Data System (ADS)

    Said, Asma

    Despite the advances made in various fields, women are still considered as minorities in the fields of science and mathematics. There is a gender gap regarding women's participation and achievement in physics. Self-efficacy and attitudes and beliefs toward physics have been identified as predictors of students' performance on conceptual surveys in physics courses. The present study, which used two-way analysis of variance and multiple linear regression analyses at a community college in California, revealed there is no gender gap in achievement between male and female students in physics courses. Furthermore, there is an achievement gap between students who are enrolled in algebra-based and calculus-based physics courses. The findings indicate that attitudes and beliefs scores can be used as predictors of students' performance on conceptual surveys in physics courses. However, scores of self-efficacy cannot be used as predictors of students' performance on conceptual surveys in physics courses.

  15. Kostant polynomials and the cohomology ring for G/B

    PubMed Central

    Billey, Sara C.

    1997-01-01

    The Schubert calculus for G/B can be completely determined by a certain matrix related to the Kostant polynomials introduced in section 5 of Bernstein, Gelfand, and Gelfand [Bernstein, I., Gelfand, I. & Gelfand, S. (1973) Russ. Math. Surv. 28, 1–26]. The polynomials are defined by vanishing properties on the orbit of a regular point under the action of the Weyl group. For each element w in the Weyl group the polynomials also have nonzero values on the orbit points corresponding to elements which are larger in the Bruhat order than w. The main theorem given here is an explicit formula for these values. The matrix of orbit values can be used to determine the cup product for the cohomology ring for G/B, using only linear algebra or as described by Lascoux and Schützenberger [Lascoux, A. & Schützenberger, M.-P. (1982) C. R. Seances Acad. Sci. Ser. A 294, 447–450]. Complete proofs of all the theorems will appear in a forthcoming paper. PMID:11038536

  16. Normalized modes at selected points without normalization

    NASA Astrophysics Data System (ADS)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  17. Deducing the form factors for shear used in the calculus of the displacements based on strain energy methods. Mathematical approach for currently used shapes

    NASA Astrophysics Data System (ADS)

    Constantinescu, E.; Oanta, E.; Panait, C.

    2017-08-01

    The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.

  18. The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra.

    ERIC Educational Resources Information Center

    Carlson, David; And Others

    1993-01-01

    Presents five recommendations of the Linear Algebra Curriculum Study Group: (1) The syllabus must respond to the client disciplines; (2) The first course should be matrix oriented; (3) Faculty should consider the needs and interests of students; (4) Faculty should use technology; and (5) At least one follow-up course should be required. Provides a…

  19. Individual and Collective Analyses of the Genesis of Student Reasoning Regarding the Invertible Matrix Theorem in Linear Algebra

    ERIC Educational Resources Information Center

    Wawro, Megan Jean

    2011-01-01

    In this study, I considered the development of mathematical meaning related to the Invertible Matrix Theorem (IMT) for both a classroom community and an individual student over time. In this particular linear algebra course, the IMT was a core theorem in that it connected many concepts fundamental to linear algebra through the notion of…

  20. Bisimulation equivalence of differential-algebraic systems

    NASA Astrophysics Data System (ADS)

    Megawati, Noorma Yulia; Schaft, Arjan van der

    2018-01-01

    In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.

  1. Math remediation intervention for student success in the algebra-based introductory physics course

    NASA Astrophysics Data System (ADS)

    Forrest, Rebecca L.; Stokes, Donna W.; Burridge, Andrea B.; Voight, Carol D.

    2017-12-01

    Pretesting and early intervention measures to identify and remediate at-risk students were implemented in algebra-based introductory physics to help improve student success rates. Pretesting via a math and problem-solving diagnostic exam administered at the beginning of the course was employed to identify at-risk students based on their scores. At-risk students were encouraged to utilize an online math tutorial to increase their chances of passing the course. The tutorial covers the same math topics covered by the diagnostic exam. Results from 643 students enrolled in the course showed that the 61 at-risk students who successfully completed the math tutorial increased their odds of passing the course by roughly 4 times those of the at-risk students who did not. This intervention is easily implemented, short term, and can be administered concurrently with the course. Based on these results, the Department of Physics has implemented the math tutorials in all sections of the introductory algebra as well as the calculus-based physics courses.

  2. Parallel Algorithms for Least Squares and Related Computations.

    DTIC Science & Technology

    1991-03-22

    for dense computations in linear algebra . The work has recently been published in a general reference book on parallel algorithms by SIAM. AFO SR...written his Ph.D. dissertation with the principal investigator. (See publication 6.) • Parallel Algorithms for Dense Linear Algebra Computations. Our...and describe and to put into perspective a selection of the more important parallel algorithms for numerical linear algebra . We give a major new

  3. Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education with the North American Chapter 12th PME-NA Conference (14th, Mexico, July 15-20, 1990), Volume 1.

    ERIC Educational Resources Information Center

    Booker, George, Ed.; Cobb, Paul, Ed.; de Mendicuti, Teresa N., Ed.

    This proceedings of the annual conference of the International Group for the Psychology of Mathematics Education (PME) includes the following papers: "The Knowledge of Cats: Epistemological Foundations of Mathematics Education" (R.B. Davis) and "PME Algebra Research: A Working Perspective" (E. Filloy); "Some Misconceptions in Calculus: Anecdotes…

  4. University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…

  5. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    PubMed

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  6. Relativistic differential-difference momentum operators and noncommutative differential calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru

    2013-09-15

    The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less

  7. Geometric calculus-based postulates for the derivation and extension of the Maxwell equations

    NASA Astrophysics Data System (ADS)

    McClellan, Gene E.

    2012-09-01

    Clifford analysis, particularly application of the geometric algebra of three-dimensional physical space and its associated geometric calculus, enables a compact formulation of Maxwell's electromagnetic (EM) equations from a set of physically relevant and mathematically pleasing postulates. This formulation results in a natural extension of the Maxwell equations yielding wave solutions in addition to the usual EM waves. These additional solutions do not contradict experiment and have three properties in common with the apparent properties of dark energy. These three properties are that the wave solutions 1) propagate at the speed of light, 2) do not interact with ordinary electric charges or currents, and 3) possess retrograde momentum. By retrograde momentum, we mean that the momentum carried by such a wave is directed oppositely to the direction of energy transport. A "gas" of such waves generates negative pressure.

  8. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.

    2014-12-01

    We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.

  9. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  10. Sampled-Data Kalman Filtering and Multiple Model Adaptive Estimation for Infinite-Dimensional Continuous-Time Systems

    DTIC Science & Technology

    2007-03-01

    mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications

  11. Calculating Required Substructure Damping to Meet Prescribed System Damping Levels

    DTIC Science & Technology

    2007-06-01

    Rorres, Elementary Linear Algebra . New Jersey: John Wiley & Sons, 2005. 2. Klaus-Jurgen Bathe, Finite Element Procedures. New Jersey: Prentice Hall...will be covered in the explanation of orthogonal complement. The definitions are extracted from the book “ Linear Algebra and its Applications” by...TA = left nullspace of A; dimension m-r Applying the first part of the fundamental theorem of Linear Algebra we can now talk about the orthogonal

  12. Emphasizing language and visualization in teaching linear algebra

    NASA Astrophysics Data System (ADS)

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-06-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his approach in both lectures and tutorials, and how he employed visualization and an emphasis on language to encourage conceptual thinking. We use Tall's framework of three worlds of mathematical thinking to reflect on the effect of these activities in students' learning. An analysis of students' attitudes to the course and their test and examination results help to answer questions about the value of such an approach, suggesting ways forward in teaching linear algebra.

  13. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    ERIC Educational Resources Information Center

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  14. Path integral measure and triangulation independence in discrete gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Steinhaus, Sebastian

    2012-02-01

    A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.

  15. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  16. The Role of Proof in Comprehending and Teaching Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    Uhlig, Frank

    2002-01-01

    Describes how elementary linear algebra can be taught successfully while introducing students to the concept and practice of mathematical proof. Suggests exploring the concept of solvability of linear systems first via the row echelon form (REF). (Author/KHR)

  17. Basic Research in the Mathematical Foundations of Stability Theory, Control Theory and Numerical Linear Algebra.

    DTIC Science & Technology

    1979-09-01

    without determinantal divisors, Linear and Multilinear Algebra 7(1979), 107-109. 4. The use of integral operators in number theory (with C. Ryavec and...Gersgorin revisited, to appear in Letters in Linear Algebra. 15. A surprising determinantal inequality for real matrices (with C.R. Johnson), to appear in...Analysis: An Essay Concerning the Limitations of Some Mathematical Methods in the Social , Political and Biological Sciences, David Berlinski, MIT Press

  18. Exploring volumetrically indexed cups

    NASA Astrophysics Data System (ADS)

    Jones, Dustin L.

    2011-03-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.

  19. Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2005-01-01

    Tensor analysis is one of the more abstruse, even if one of the more useful, higher math subjects enjoined by students of physics and engineering. It is abstruse because of the intellectual gap that exists between where most physics and engineering mathematics leave off and where tensor analysis traditionally begins. It is useful because of its great generality, computational power, and compact, easy to use, notation. This paper bridges the intellectual gap. It is divided into three parts: algebra, calculus, and relativity. Algebra: In tensor analysis, coordinate independent quantities are sought for applications in physics and engineering. Coordinate independence means that the quantities have such coordinate transformations as to leave them invariant relative to a particular observer s coordinate system. Calculus: Non-zero base vector derivatives contribute terms to dynamical equations that correspond to pseudoaccelerations in accelerated coordinate systems and to curvature or gravity in relativity. These derivatives have a specific general form in tensor analysis. Relativity: Spacetime has an intrinsic geometry. Light is the tool for investigating that geometry. Since the observed geometry of spacetime cannot be made to match the classical geometry of Euclid, Einstein applied another more general geometry differential geometry. The merger of differential geometry and cosmology was accomplished in the theory of relativity. In relativity, gravity is equivalent to curvature.

  20. A Logical Process Calculus

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.

  1. A Comparison Study between a Traditional and Experimental Program.

    ERIC Educational Resources Information Center

    Dogan, Hamide

    This paper is part of a dissertation defended in January 2001 as part of the author's Ph.D. requirement. The study investigated the effects of use of Mathematica, a computer algebra system, in learning basic linear algebra concepts, It was done by means of comparing two first year linear algebra classes, one traditional and one Mathematica…

  2. Stability of Linear Equations--Algebraic Approach

    ERIC Educational Resources Information Center

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  3. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  4. Building an Understanding of Functions: A Series of Activities for Pre-Calculus

    ERIC Educational Resources Information Center

    Carducci, Olivia M.

    2008-01-01

    Building block toys can be used to illustrate various concepts connected with functions including graphs and rates of change of linear and exponential functions, piecewise functions, and composition of functions. Five brief activities suitable for a pre-calculus course are described.

  5. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

    DTIC Science & Technology

    2014-11-01

    linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

  6. On Some Algebraic and Combinatorial Properties of Dunkl Elements

    NASA Astrophysics Data System (ADS)

    Kirillov, Anatol N.

    2013-06-01

    We introduce and study a certain class of nonhomogeneous quadratic algebras together with the special set of mutually commuting elements inside of each, the so-called Dunkl elements. We describe relations among the Dunkl elements. This result is a further generalization of similar results obtained in [S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements and Schubert calculus, in Advances in Geometry (eds. J.-S. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, Boston, 1995), pp. 147-182, A. Postnikov, On a quantum version of Pieri's formula, in Advances in Geometry (eds. J.-S. Brylinski, R. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, 1995), pp. 371-383 and A. N. Kirillov and T. Maenor, A Note on Quantum K-Theory of Flag Varieties, preprint]. As an application we describe explicitly the set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [E. Mukhin, V. Tarasov and A. Varchenko, Bethe Subalgebras of the Group Algebra of the Symmetric Group, preprint arXiv:1004.4248]. Also we describe a few combinatorial properties of some special elements in the associative quasi-classical Yang-Baxter algebra in a connection with the values of the β-Grothendieck polynomials for some special permutations, and on the other hand, with the Ehrhart polynomial of the Chan-Robbins polytope.

  7. On Some Algebraic and Combinatorial Properties of Dunkl Elements

    NASA Astrophysics Data System (ADS)

    Kirillov, Anatol N.

    2012-11-01

    We introduce and study a certain class of nonhomogeneous quadratic algebras together with the special set of mutually commuting elements inside of each, the so-called Dunkl elements. We describe relations among the Dunkl elements. This result is a further generalization of similar results obtained in [S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements and Schubert calculus, in Advances in Geometry (eds. J.-S. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, Boston, 1995), pp. 147-182, A. Postnikov, On a quantum version of Pieri's formula, in Advances in Geometry (eds. J.-S. Brylinski, R. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, 1995), pp. 371-383 and A. N. Kirillov and T. Maenor, A Note on Quantum K-Theory of Flag Varieties, preprint]. As an application we describe explicitly the set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [E. Mukhin, V. Tarasov and A. Varchenko, Bethe Subalgebras of the Group Algebra of the Symmetric Group, preprint arXiv:1004.4248]. Also we describe a few combinatorial properties of some special elements in the associative quasi-classical Yang-Baxter algebra in a connection with the values of the β-Grothendieck polynomials for some special permutations, and on the other hand, with the Ehrhart polynomial of the Chan-Robbins polytope.

  8. The right-hand side of the Jacobi identity: to be naught or not to be ?

    NASA Astrophysics Data System (ADS)

    Kiselev, Arthemy V.

    2016-01-01

    The geometric approach to iterated variations of local functionals -e.g., of the (master-)action functional - resulted in an extension of the deformation quantisation technique to the set-up of Poisson models of field theory. It also allowed of a rigorous proof for the main inter-relations between the Batalin-Vilkovisky (BV) Laplacian Δ and variational Schouten bracket [,]. The ad hoc use of these relations had been a known analytic difficulty in the BV- formalism for quantisation of gauge systems; now achieved, the proof does actually not require the assumption of graded-commutativity. Explained in our previous work, geometry's self- regularisation is rendered by Gel'fand's calculus of singular linear integral operators supported on the diagonal. We now illustrate that analytic technique by inspecting the validity mechanism for the graded Jacobi identity which the variational Schouten bracket does satisfy (whence Δ2 = 0, i.e., the BV-Laplacian is a differential acting in the algebra of local functionals). By using one tuple of three variational multi-vectors twice, we contrast the new logic of iterated variations - when the right-hand side of Jacobi's identity vanishes altogether - with the old method: interlacing its steps and stops, it could produce some non-zero representative of the trivial class in the top- degree horizontal cohomology. But we then show at once by an elementary counterexample why, in the frames of the old approach that did not rely on Gel'fand's calculus, the BV-Laplacian failed to be a graded derivation of the variational Schouten bracket.

  9. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  10. Mathematics for Physics

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Goldbart, Paul

    2009-07-01

    Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.

  11. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  12. Libraries for Software Use on Peregrine | High-Performance Computing | NREL

    Science.gov Websites

    -specific libraries. Libraries List Name Description BLAS Basic Linear Algebra Subroutines, libraries only managing hierarchically structured data. LAPACK Standard Netlib offering for computational linear algebra

  13. The Effects of Formalism on Teacher Trainees' Algebraic and Geometric Interpretation of the Notions of Linear Dependency/Independency

    ERIC Educational Resources Information Center

    Ertekin, E.; Solak, S.; Yazici, E.

    2010-01-01

    The aim of this study is to identify the effects of formalism in teaching on primary and secondary school mathematics teacher trainees' algebraic and geometric interpretations of the notions of linear dependency/independency. Quantitative research methods are drawn in order to determine differences in success levels between algebraic and geometric…

  14. Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.

    ERIC Educational Resources Information Center

    Alexopoulos, John; Abraham, Paul

    2001-01-01

    Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…

  15. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  16. A Generalized Quantum Theory

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2014-09-01

    In quantum mechanics, the selfadjoint Hilbert space operators play a triple role as observables, generators of the dynamical groups and statistical operators defining the mixed states. One might expect that this is typical of Hilbert space quantum mechanics, but it is not. The same triple role occurs for the elements of a certain ordered Banach space in a much more general theory based upon quantum logics and a conditional probability calculus (which is a quantum logical model of the Lueders-von Neumann measurement process). It is shown how positive groups, automorphism groups, Lie algebras and statistical operators emerge from one major postulate - the non-existence of third-order interference (third-order interference and its impossibility in quantum mechanics were discovered by R. Sorkin in 1994). This again underlines the power of the combination of the conditional probability calculus with the postulate that there is no third-order interference. In two earlier papers, its impact on contextuality and nonlocality had already been revealed.

  17. Normalization in Lie algebras via mould calculus and applications

    NASA Astrophysics Data System (ADS)

    Paul, Thierry; Sauzin, David

    2017-11-01

    We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.

  18. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  19. Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.

    PubMed

    Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O

    1996-10-01

    This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.

  20. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary

  1. Embodied, Symbolic and Formal Thinking in Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2007-01-01

    Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…

  2. Galois groups of Schubert problems via homotopy computation

    NASA Astrophysics Data System (ADS)

    Leykin, Anton; Sottile, Frank

    2009-09-01

    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in mathbb{C}^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_{6006} .

  3. On the constrained B-type Kadomtsev-Petviashvili hierarchy: Hirota bilinear equations and Virasoro symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Hsin-Fu; Tu, Ming-Hsien

    2011-03-15

    We derive the bilinear equations of the constrained BKP hierarchy from the calculus of pseudodifferential operators. The full hierarchy equations can be expressed in Hirota's bilinear form characterized by the functions {rho}, {sigma}, and {tau}. Besides, we also give a modification of the original Orlov-Schulman additional symmetry to preserve the constrained form of the Lax operator for this hierarchy. The vector fields associated with the modified additional symmetry turn out to satisfy a truncated centerless Virasoro algebra.

  4. Handbook of applied mathematics for engineers and scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, M.

    1991-12-31

    This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.

  5. Summer Research Apprentice Program report. [Summer Research Apprentice Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curington, B.

    1982-01-01

    The Summer Research Apprentice Program is designed to provide students with their first look at college life while preparing them for possible careers in mathematics, science and engineering. The 23 students, enrolled as college freshmen for 8 hours of college credit, took courses in Trigonometry, College Algebra and introduction to Research (4 students were enrolled in Calculus 1 instead of Trigonometry and College Albebra). During this third year of operation, refinements were made in both the administration of the program and in the method of implementation.

  6. Toward Question-Asking Machines: The Logic of Questions and the Inquiry Calculus

    NASA Technical Reports Server (NTRS)

    Knuth,Kevin H.

    2005-01-01

    For over a century, the study of logic has focused on the algebra of logical statements. This work, first performed by George Boole, has led to the development of modern computers, and was shown by Richard T. Cox to be the foundation of Bayesian inference. Meanwhile the logic of questions has been much neglected. For our computing machines to be truly intelligent, they need to be able to ask relevant questions. In this paper I will show how the Boolean lattice of logical statements gives rise to the free distributive lattice of questions thus defining their algebra. Furthermore, there exists a quantity analogous to probability, called relevance, which quantifies the degree to which one question answers another. I will show that relevance is not only a natural generalization of information theory, but also forms its foundation.

  7. Some Applications Of Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2009-11-01

    An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.

  8. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    It took much effort in the early days of non-Euclidean geometry to break away from the mindset that all spaces are flat and that two distinct parallel lines do not cross. Up to that point, all that was known was Euclidean geometry, and it was difficult to imagine anything else. We have suffered a similar handicap brought on by the enormous relevance of Boolean algebra to the problems of our age-logic and set theory. Previously, I demonstrated that the algebra of questions is not Boolean, but rather is described by the free distributive algebra. To get to this stage took much effort, as many obstacles-most self-placed-had to be overcome. As Boolean algebras were all I had ever known, it was almost impossible for me to imagine working with an algebra where elements do not have complements. With this realization, it became very clear that the sum and product rules of probability theory at the most basic level had absolutely nothing to do with the Boolean algebra of logical statements. Instead, a measure of degree of inclusion can be invented for many different partially ordered sets, and the sum and product rules fall out of the associativity and distributivity of the algebra. To reinforce this very important idea, this paper will go over how these constructions are made, while focusing on the underlying assumptions. I will derive the sum and product rules for a distributive lattice in general and demonstrate how this leads to probability theory on the Boolean lattice and is related to the calculus of quantum mechanical amplitudes on the partially ordered set of experimental setups. I will also discuss the rules that can be derived from modular lattices and their relevance to the cross-ratio of projective geometry.

  9. Tensor calculus in polar coordinates using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.

  10. Statistics for wildlifers: how much and what kind?

    USGS Publications Warehouse

    Johnson, D.H.; Shaffer, T.L.; Newton, W.E.

    2001-01-01

    Quantitative methods are playing increasingly important roles in wildlife ecology and, ultimately, management. This change poses a challenge for wildlife practitioners and students who are not well-educated in mathematics and statistics. Here we give our opinions on what wildlife biologists should know about statistics, while recognizing that not everyone is inclined mathematically. For those who are, we recommend that they take mathematics coursework at least through calculus and linear algebra. They should take statistics courses that are focused conceptually , stressing the Why rather than the How of doing statistics. For less mathematically oriented wildlifers, introductory classes in statistical techniques will furnish some useful background in basic methods but may provide little appreciation of when the methods are appropriate. These wildlifers will have to rely much more on advice from statisticians. Far more important than knowing how to analyze data is an understanding of how to obtain and recognize good data. Regardless of the statistical education they receive, all wildlife biologists should appreciate the importance of controls, replication, and randomization in studies they conduct. Understanding these concepts requires little mathematical sophistication, but is critical to advancing the science of wildlife ecology.

  11. Mathematical foundations of biomechanics.

    PubMed

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  12. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    ERIC Educational Resources Information Center

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  13. Teaching of real numbers by using the Archimedes-Cantor approach and computer algebra systems

    NASA Astrophysics Data System (ADS)

    Vorob'ev, Evgenii M.

    2015-11-01

    Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of CAS. In the case of real numbers, the Archimedes-Cantor approach satisfies this requirement. The name of Archimedes brings back the exhaustion method. Cantor's name reminds us of the use of Cauchy rational sequences to represent real numbers. The usage of CAS with the Archimedes-Cantor approach enables the discussion of various representations of real numbers such as graphical, decimal, approximate decimal with precision estimates, and representation as points on a straight line. Exercises with numbers such as e, π, the golden ratio ϕ, and algebraic irrational numbers can help students better understand the real numbers. The Archimedes-Cantor approach also reveals a deep and close relationship between real numbers and continuity, in particular the continuity of functions.

  14. Noncommutative Differential Geometry of Generalized Weyl Algebras

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz

    2016-06-01

    Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.

  15. The algebraic criteria for the stability of control systems

    NASA Technical Reports Server (NTRS)

    Cremer, H.; Effertz, F. H.

    1986-01-01

    This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.

  16. Population Projection. Applications of Linear Algebra to Population Studies. Modules and Monographs in Undergraduate Mathematics and Its Applications. UMAP Module 345.

    ERIC Educational Resources Information Center

    Keller, Edward L.

    This unit, which looks at applications of linear algebra to population studies, is designed to help pupils: (1) understand an application of matrix algebra to the study of populations; (2) see how knowledge of eigen values and eigen vectors is useful in studying powers of matrices; and (3) be briefly exposed to some difficult but interesting…

  17. Gauss Elimination: Workhorse of Linear Algebra.

    DTIC Science & Technology

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  18. Linear maps preserving maximal deviation and the Jordan structure of quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamhalter, Jan

    2012-12-15

    In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less

  19. Comparative study on major bioactive components in natural, artificial and in-vitro cultured Calculus Bovis.

    PubMed

    Yan, Shi-Kai; Wu, Yan-Wen; Liu, Run-Hui; Zhang, Wei-Dong

    2007-01-01

    Major bioactive components in various Calculus Bovis, including natural, artificial and in-vitro cultured Calculus Bovis, were comparatively studied. An approach of high-performance liquid chromatography coupled with ultraviolet and evaporative light scattering detections (HPLC/UV/ELSD) was established to simultaneously determinate six bioactive components thereof, including five bile acids (cholic acid, deoxycholic acid, ursodeoxycholic, chenodeoxycholic acid, hyodeoxycholic acid) and bilirubin. ELSD and UV detector were applied to detect bile acids and bilirubin respectively. The assay was performed on a C(18) column with water-acetonitrile gradient elution and the investigated constituents were authenticated by comparing retention times and mass spectra with those of reference compounds. The proposed method was applied to analyze twenty-one Calculus Bovis extraction samples, and produced data with acceptable linearity, precision, repeatability and accuracy. The result indicated the variations among Calculus Bovis samples under different developmental conditions. Artificial and in-vitro cultured Calculus Bovis, especially in-vitro cultured ones, which contain total bioactive constituents no less than natural products and have the best batch-to-batch uniformity, suffice to be used as substitutes of natural Calculus Bovis.

  20. Efficient linear algebra routines for symmetric matrices stored in packed form.

    PubMed

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  1. Algebra for Gifted Third Graders.

    ERIC Educational Resources Information Center

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  2. Assessing students' conceptual knowledge of electricity and magnetism

    NASA Astrophysics Data System (ADS)

    McColgan, Michele W.; Finn, Rose A.; Broder, Darren L.; Hassel, George E.

    2017-12-01

    We present the Electricity and Magnetism Conceptual Assessment (EMCA), a new assessment aligned with second-semester introductory physics courses. Topics covered include electrostatics, electric fields, circuits, magnetism, and induction. We have two motives for writing a new assessment. First, we find other assessments such as the Brief Electricity and Magnetism Assessment and the Conceptual Survey on Electricity and Magnetism not well aligned with the topics and content depth of our courses. We want to test introductory physics content at a level appropriate for our students. Second, we want the assessment to yield scores and gains comparable to the widely used Force Concept Inventory (FCI). After five testing and revision cycles, the assessment was finalized in early 2015 and is available online. We present performance results for a cohort of 225 students at Siena College who were enrolled in our algebra- and calculus-based physics courses during the spring 2015 and 2016 semesters. We provide pretest, post-test, and gain analyses, as well as individual question and whole test statistics to quantify difficulty and reliability. In addition, we compare EMCA and FCI scores and gains, and we find that students' FCI scores are strongly correlated with their performance on the EMCA. Finally, the assessment was piloted in an algebra-based physics course at George Washington University (GWU). We present performance results for a cohort of 130 GWU students and we find that their EMCA scores are comparable to the scores of students in our calculus-based physics course.

  3. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  4. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  5. Capelli bitableaux and Z-forms of general linear Lie superalgebras.

    PubMed Central

    Brini, A; Teolis, A G

    1990-01-01

    The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048

  6. Student Learning of Basis, Span and Linear Independence in Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2010-01-01

    One of the earlier, more challenging concepts in linear algebra at university is that of basis. Students are often taught procedurally how to find a basis for a subspace using matrix manipulation, but may struggle with understanding the construct of basis, making further progress harder. We believe one reason for this is because students have…

  7. Application of laser speckle to randomized numerical linear algebra

    NASA Astrophysics Data System (ADS)

    Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif

    2018-02-01

    We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.

  8. Constructive Learning in Undergraduate Linear Algebra

    ERIC Educational Resources Information Center

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  9. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  10. The Matrix Pencil and its Applications to Speech Processing

    DTIC Science & Technology

    2007-03-01

    Elementary Linear Algebra ” 8th edition, pp. 278, 2000 John Wiley & Sons, Inc., New York [37] Wai C. Chu, “Speech Coding Algorithms”, New Jeresy: John...Ben; Daniel, James W.; “Applied Linear Algebra ”, pp. 342-345, 1988 Prentice Hall, Englewood Cliffs, NJ [35] Haykin, Simon “Applied Linear Adaptive...ABSTRACT Matrix Pencils facilitate the study of differential equations resulting from oscillating systems. Certain problems in linear ordinary

  11. Lattice Theory, Measures and Probability

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.

    2007-11-01

    In this tutorial, I will discuss the concepts behind generalizing ordering to measuring and apply these ideas to the derivation of probability theory. The fundamental concept is that anything that can be ordered can be measured. Since we are in the business of making statements about the world around us, we focus on ordering logical statements according to implication. This results in a Boolean lattice, which is related to the fact that the corresponding logical operations form a Boolean algebra. The concept of logical implication can be generalized to degrees of implication by generalizing the zeta function of the lattice. The rules of probability theory arise naturally as a set of constraint equations. Through this construction we are able to neatly connect the concepts of order, structure, algebra, and calculus. The meaning of probability is inherited from the meaning of the ordering relation, implication, rather than being imposed in an ad hoc manner at the start.

  12. Conformal superalgebras via tractor calculus

    NASA Astrophysics Data System (ADS)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  13. Singular optimal control and the identically non-regular problem in the calculus of variations

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1985-01-01

    A small but interesting class of optimal control problems featuring a scalar control appearing linearly is equivalent to the class of identically nonregular problems in the Calculus of Variations. It is shown that a condition due to Mancill (1950) is equivalent to the generalized Legendre-Clebsch condition for this narrow class of problems.

  14. Anticipating Mathematics Performance: A Cross-Validation Comparison of AID3 and Regression. AIR 1988 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Bloom, Allan M.; And Others

    In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…

  15. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    NASA Astrophysics Data System (ADS)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  16. Conical Lens for 5-Inch/54 Gun Launched Missile

    DTIC Science & Technology

    1981-06-01

    Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the

  17. An Integrity Framework for Image-Based Navigation Systems

    DTIC Science & Technology

    2010-06-01

    Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter

  18. Journal Writing: Enlivening Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    Meel, David E.

    1999-01-01

    Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…

  19. Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners.

    PubMed

    Hendler, R W; Shrager, R I

    1994-01-01

    Singular value decomposition (SVD) is deeply rooted in the theory of linear algebra, and because of this is not readily understood by a large group of researchers who could profit from its application. In this paper, we discuss the subject on a level that should be understandable to scientists who are not well versed in linear algebra. However, because it is necessary that certain key concepts in linear algebra be appreciated in order to comprehend what is accomplished by SVD, we present the section, 'Bare basics of linear algebra'. This is followed by a discussion of the theory of SVD. Next we present step-by-step examples to illustrate how SVD is applied to deconvolute a titration involving a mixture of three pH indicators. One noiseless case is presented as well as two cases where either a fixed or varying noise level is present. Finally, we discuss additional deconvolutions of mixed spectra based on the use of the pseudoinverse.

  20. Continuum analogues of contragredient Lie algebras (Lie algebras with a Cartan operator and nonlinear dynamical systems)

    NASA Astrophysics Data System (ADS)

    Saveliev, M. V.; Vershik, A. M.

    1989-12-01

    We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.

  1. A General Symbolic Method with Physical Applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory M.

    2000-06-01

    A solution to the problem of unifying the General Relativistic and Quantum Theoretical formalisms is given which introduces a new non-axiomatic symbolic method and an algebraic generalization of the Calculus to non-finite symbolisms without reference to the concept of a limit. An essential feature of the non-axiomatic method is the inadequacy of any (finite) statements: Identifying this aspect of the theory with the "existence of an external physical reality" both allows for the consistency of the method with the results of experiments and avoids the so-called "measurement problem" of quantum theory.

  2. Global differential geometry: An introduction for control engineers

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.; Martin, C. F.

    1982-01-01

    The basic concepts and terminology of modern global differential geometry are discussed as an introduction to the Lie theory of differential equations and to the role of Grassmannians in control systems analysis. To reach these topics, the fundamental notions of manifolds, tangent spaces, vector fields, and Lie algebras are discussed and exemplified. An appendix reviews such concepts needed for vector calculus as open and closed sets, compactness, continuity, and derivative. Although the content is mathematical, this is not a mathematical treatise but rather a text for engineers to understand geometric and nonlinear control.

  3. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  4. Applications of Maple To Algebraic Cryptography.

    ERIC Educational Resources Information Center

    Sigmon, Neil P.

    1997-01-01

    Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…

  5. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  6. Modules as Learning Tools in Linear Algebra

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  7. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  8. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  9. Spacetime algebra as a powerful tool for electromagnetism

    NASA Astrophysics Data System (ADS)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  10. The algebra of supertraces for 2+1 super de Sitter gravity

    NASA Technical Reports Server (NTRS)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  11. Placement Model for First-Time Freshmen in Calculus I (Math 131): University of Northern Colorado

    ERIC Educational Resources Information Center

    Heiny, Robert L.; Heiny, Erik L.; Raymond, Karen

    2017-01-01

    Two approaches, Linear Discriminant Analysis, and Logistic Regression are used and compared to predict success or failure for first-time freshmen in the first calculus course at a medium-sized public, 4-year institution prior to Fall registration. The predictor variables are high school GPA, the number, and GPA's of college prep mathematics…

  12. Impact of Explicit Presentation of Slopes in Three Dimensions on Students' Understanding of Derivatives in Multivariable Calculus

    ERIC Educational Resources Information Center

    McGee, Daniel Lee; Moore-Russo, Deborah

    2015-01-01

    In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of…

  13. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  14. Identification of Large Space Structures on Orbit

    DTIC Science & Technology

    1986-09-01

    requires only the eigenvector corresponding to the eigenvector 93 .:. ,S --- k’.’ L derivative being calculated. However, a set of linear algebraic ...Journal of Guidance, Control and Dynamics. 204. Noble, B. and J. W. Daniel, Applied Linear Algebra , Prentice-Hall, Inc., 1977. 205. Nurre, G. S., R. S...4.2.1. Linear Relationships . . . . . . . . . . 114 4.2.2. Nonlinear Relationships . . . . . . . . . 120 4.3. Series Expansion Methods

  15. An operator calculus for surface and volume modeling

    NASA Technical Reports Server (NTRS)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  16. A Linear Algebraic Approach to Teaching Interpolation

    ERIC Educational Resources Information Center

    Tassa, Tamir

    2007-01-01

    A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…

  17. Motivating the Concept of Eigenvectors via Cryptography

    ERIC Educational Resources Information Center

    Siap, Irfan

    2008-01-01

    New methods of teaching linear algebra in the undergraduate curriculum have attracted much interest lately. Most of this work is focused on evaluating and discussing the integration of special computer software into the Linear Algebra curriculum. In this article, I discuss my approach on introducing the concept of eigenvectors and eigenvalues,…

  18. Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z

    ERIC Educational Resources Information Center

    Beaver, Scott

    2015-01-01

    For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.

  19. A Linear Algebra Measure of Cluster Quality.

    ERIC Educational Resources Information Center

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  20. Optical linear algebra processors: noise and error-source modeling.

    PubMed

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  1. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    ERIC Educational Resources Information Center

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  2. Using Technology to Facilitate Reasoning: Lifting the Fog from Linear Algebra

    ERIC Educational Resources Information Center

    Berry, John S.; Lapp, Douglas A.; Nyman, Melvin A.

    2008-01-01

    This article discusses student difficulties in grasping concepts from linear algebra. Using an example from an interview with a student, we propose changes that might positively impact student understanding of concepts within a problem-solving context. In particular, we illustrate barriers to student understanding and suggest technological…

  3. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  4. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  5. Symmetries of the Space of Linear Symplectic Connections

    NASA Astrophysics Data System (ADS)

    Fox, Daniel J. F.

    2017-01-01

    There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.

  6. Numerical methods on some structured matrix algebra problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1996-06-01

    This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less

  7. Mathematics in the Real World.

    ERIC Educational Resources Information Center

    Borenstein, Matt

    1997-01-01

    The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…

  8. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    PubMed

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  10. Students' Use of Computational Thinking in Linear Algebra

    ERIC Educational Resources Information Center

    Bagley, Spencer; Rabin, Jeffrey M.

    2016-01-01

    In this work, we examine students' ways of thinking when presented with a novel linear algebra problem. Our intent was to explore how students employ and coordinate three modes of thinking, which we call computational, abstract, and geometric, following similar frameworks proposed by Hillel (2000) and Sierpinska (2000). However, the undergraduate…

  11. Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses

    ERIC Educational Resources Information Center

    Martínez-Sierra, Gustavo; García-González, María del Socorro

    2016-01-01

    Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…

  12. Avoiding Communication in Dense Linear Algebra

    DTIC Science & Technology

    2013-08-16

    Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...and parallelizing Strassen’s matrix multiplication algorithm (Chapter 11). 6 Chapter 2 Preliminaries 2.1 Notation and Definitions In this section we...between computations and algo- rithms). The following definition is based on [56]: Definition 2.1. A classical algorithm in linear algebra is one that

  13. Principal Component Analysis: Resources for an Essential Application of Linear Algebra

    ERIC Educational Resources Information Center

    Pankavich, Stephen; Swanson, Rebecca

    2015-01-01

    Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…

  14. Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving

    ERIC Educational Resources Information Center

    Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.

    2016-01-01

    This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…

  15. Student Connections of Linear Algebra Concepts: An Analysis of Concept Maps

    ERIC Educational Resources Information Center

    Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.

    2010-01-01

    This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding.…

  16. All Talk and More Action

    ERIC Educational Resources Information Center

    Williams-Candek, Maryellen

    2016-01-01

    How better to begin the study of linear equations in an algebra class than to determine what students already know about the subject? A seventh-grade algebra class in a suburban school undertook a project early in the school year that was completed before they began studying linear relations and functions. The project, which might have been…

  17. Transforming an Introductory Linear Algebra Course with a TI-92 Hand-Held Computer.

    ERIC Educational Resources Information Center

    Quesada, Antonio R.

    2003-01-01

    Describes how the introduction of the TI-92 transformed a traditional first semester linear algebra course into a matrix-oriented course that emphasized conceptual understanding, relevant applications, and numerical issues. Indicates an increase in students' overall performance as they found the calculator very useful, believed it helped them…

  18. Subspace in Linear Algebra: Investigating Students' Concept Images and Interactions with the Formal Definition

    ERIC Educational Resources Information Center

    Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.

    2011-01-01

    This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…

  19. Advanced Linear Algebra: A Call for the Early Introduction of Complex Numbers

    ERIC Educational Resources Information Center

    Garcia, Stephan Ramon

    2017-01-01

    A second course in linear algebra that goes beyond the traditional lower-level curriculum is increasingly important for students of the mathematical sciences. Although many applications involve only real numbers, a solid understanding of complex arithmetic often sheds significant light. Many instructors are unaware of the opportunities afforded by…

  20. An Authentic Task That Models Quadratics

    ERIC Educational Resources Information Center

    Baron, Lorraine M.

    2015-01-01

    As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…

  1. Lack of Set Theory Relevant Prerequisite Knowledge

    ERIC Educational Resources Information Center

    Dogan-Dunlap, Hamide

    2006-01-01

    Many students struggle with college mathematics topics due to a lack of mastery of prerequisite knowledge. Set theory language is one such prerequisite for linear algebra courses. Many students' mistakes on linear algebra questions reveal a lack of mastery of set theory knowledge. This paper reports the findings of a qualitative analysis of a…

  2. Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra

    ERIC Educational Resources Information Center

    Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly

    2014-01-01

    The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…

  3. Using Cognitive Tutor Software in Learning Linear Algebra Word Concept

    ERIC Educational Resources Information Center

    Yang, Kai-Ju

    2015-01-01

    This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…

  4. Student Reactions to Learning Theory Based Curriculum Materials in Linear Algebra--A Survey Analysis

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff

    2016-01-01

    In this report we examine students' perceptions of the implementation of carefully designed curriculum materials (called modules) in linear algebra courses at three different universities. The curricular materials were produced collaboratively by STEM and mathematics education faculty as members of a professional learning community (PLC) over…

  5. A Framework for Mathematical Thinking: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2009-01-01

    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  6. Partially Flipped Linear Algebra: A Team-Based Approach

    ERIC Educational Resources Information Center

    Carney, Debra; Ormes, Nicholas; Swanson, Rebecca

    2015-01-01

    In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…

  7. Definitions Are Important: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Berman, Abraham; Shvartsman, Ludmila

    2016-01-01

    In this paper we describe an experiment in a linear algebra course. The aim of the experiment was to promote the students' understanding of the studied concepts focusing on their definitions. It seems to be a given that students should understand concepts' definitions before working substantially with them. Unfortunately, in many cases they do…

  8. Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.

    ERIC Educational Resources Information Center

    Shama, Gilli; Dreyfus, Tommy

    1994-01-01

    Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…

  9. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  10. Developing CORE model-based worksheet with recitation task to facilitate students’ mathematical communication skills in linear algebra course

    NASA Astrophysics Data System (ADS)

    Risnawati; Khairinnisa, S.; Darwis, A. H.

    2018-01-01

    The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.

  11. Some Properties of Generalized Connections in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Velhinho, J. M.

    2002-12-01

    Theories of connections play an important role in fundamental interactions, including Yang-Mills theories and gravity in the Ashtekar formulation. Typically in such cases, the classical configuration space {A}/ {G} of connections modulo gauge transformations is an infinite dimensional non-linear space of great complexity. Having in mind a rigorous quantization procedure, methods of functional calculus in an extension of {A}/ {G} have been developed. For a compact gauge group G, the compact space /line { {A}{ {/}} {G}} ( ⊃ {A}/ {G}) introduced by Ashtekar and Isham using C*-algebraic methods is a natural candidate to replace {A}/ {G} in the quantum context, 1 allowing the construction of diffeomorphism invariant measures. 2,3,4 Equally important is the space of generalized connections bar {A} introduced in a similar way by Baez. 5 bar {A} is particularly useful for the definition of vector fields in /line { {A}{ {/}} {G}} , fundamental in the construction of quantum observables. 6 These works crucially depend on the use of (generalized) Wilson variables associated to certain types of curves. We will consider the case of piecewise analytic curves, 1,2,5 althought most of the arguments apply equally to the piecewise smooth case. 7,8...

  12. Transforming a fourth year modern optics course using a deliberate practice framework

    NASA Astrophysics Data System (ADS)

    Jones, David J.; Madison, Kirk W.; Wieman, Carl E.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We present a study of active learning pedagogies in an upper-division physics course. This work was guided by the principle of deliberate practice for the development of expertise, and this principle was used in the design of the materials and the orchestration of the classroom activities of the students. We present our process for efficiently converting a traditional lecture course based on instructor notes into activities for such a course with active learning methods. Ninety percent of the same material was covered and scores on common exam problems showed a 15% improvement with an effect size greater than 1 after the transformation. We observe that the improvement and the associated effect size is sustained after handing off the materials to a second instructor. Because the improvement on exam questions was independent of specific problem topics and because the material tested was so mathematically advanced and broad (including linear algebra, Fourier transforms, partial differential equations, and vector calculus), we expect the transformation process could be applied to most upper-division physics courses having a similar mathematical base.

  13. The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning

    NASA Astrophysics Data System (ADS)

    Syarifuddin, H.

    2018-04-01

    This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.

  14. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  15. Algebraic special functions and SO(3,2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less

  16. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  17. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  18. Student Logical Implications and Connections between Symbolic Representations of a Linear System within the Context of an Introductory Linear Algebra Course Employing Inquiry-Oriented Teaching and Traditional Lecture

    ERIC Educational Resources Information Center

    Payton, Spencer D.

    2017-01-01

    This study aimed to explore how inquiry-oriented teaching could be implemented in an introductory linear algebra course that, due to various constraints, may not lend itself to inquiry-oriented teaching. In particular, the course in question has a traditionally large class size, limited amount of class time, and is often coordinated with other…

  19. Reduction by invariants and projection of linear representations of Lie algebras applied to the construction of nonlinear realizations

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.

    2018-03-01

    A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.

  20. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  1. Pre-Service Teachers' Perceptions and Beliefs of Technological Pedagogical Content Knowledge on Algebra

    ERIC Educational Resources Information Center

    Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin

    2015-01-01

    The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…

  2. Ten-Year-Old Students Solving Linear Equations

    ERIC Educational Resources Information Center

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  3. Measuring the Readability of Elementary Algebra Using the Cloze Technique.

    ERIC Educational Resources Information Center

    Kulm, Gerald

    The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…

  4. Earlinet single calculus chain: new products overview

    NASA Astrophysics Data System (ADS)

    D'Amico, Giuseppe; Mattis, Ina; Binietoglou, Ioannis; Baars, Holger; Mona, Lucia; Amato, Francesco; Kokkalis, Panos; Rodríguez-Gómez, Alejandro; Soupiona, Ourania; Kalliopi-Artemis, Voudouri

    2018-04-01

    The Single Calculus Chain (SCC) is an automatic and flexible tool to analyze raw lidar data using EARLINET quality assured retrieval algorithms. It has been already demonstrated the SCC can retrieve reliable aerosol backscatter and extinction coefficient profiles for different lidar systems. In this paper we provide an overview of new SCC products like particle linear depolarization ratio, cloud masking, aerosol layering allowing relevant improvements in the atmospheric aerosol characterization.

  5. LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2010-09-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.

  6. Case Studies Listening to Students Using Kinesthetic Movement While Learning to Graph Linear Functions

    ERIC Educational Resources Information Center

    Novak, Melissa A.

    2017-01-01

    The purpose of this qualitative practitioner research study was to describe middle school algebra students' experiences of learning linear functions through kinesthetic movement. Participants were comprised of 8th grade algebra students. Practitioner research was used because I wanted to improve my teaching so students will have more success in…

  7. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    PubMed

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.

  8. A Practical Approach to Inquiry-Based Learning in Linear Algebra

    ERIC Educational Resources Information Center

    Chang, J.-M.

    2011-01-01

    Linear algebra has become one of the most useful fields of mathematics since last decade, yet students still have trouble seeing the connection between some of the abstract concepts and real-world applications. In this article, we propose the use of thought-provoking questions in lesson designs to allow two-way communications between instructors…

  9. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients

    PubMed Central

    Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972

  10. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  11. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  12. Some Comments on 'The Role of Proof in Comprehending and Teaching Elementary Linear Algebra' by F. Uhlig.

    ERIC Educational Resources Information Center

    Dorier, Jean-Luc; Robert, Aline; Rogalski, Marc

    2002-01-01

    Underlines the common points in F. Uhlig's approach published in an earlier issue of this journal about the question of proof in linear algebra. Describes some of his ideas in a new light and gives perspective for a further didactical development of Uhlig's first experiments. (Author/KHR)

  13. Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra

    ERIC Educational Resources Information Center

    Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç

    2017-01-01

    In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…

  14. A Modified Approach to Team-Based Learning in Linear Algebra Courses

    ERIC Educational Resources Information Center

    Nanes, Kalman M.

    2014-01-01

    This paper documents the author's adaptation of team-based learning (TBL), an active learning pedagogy developed by Larry Michaelsen and others, in the linear algebra classroom. The paper discusses the standard components of TBL and the necessary changes to those components for the needs of the course in question. There is also an empirically…

  15. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  16. Developing Conceptual Understanding and Definitional Clarity in Linear Algebra through the Three Worlds of Mathematical Thinking

    ERIC Educational Resources Information Center

    Hannah, John; Stewart, Sepideh; Thomas, Michael

    2016-01-01

    Linear algebra is one of the first abstract mathematics courses that students encounter at university. Research shows that many students find the dense presentation of definitions, theorems and proofs difficult to comprehend. Using a case study approach, we report on a teaching intervention based on Tall's three worlds (embodied, symbolic and…

  17. Creating Discussions with Classroom Voting in Linear Algebra

    ERIC Educational Resources Information Center

    Cline, Kelly; Zullo, Holly; Duncan, Jonathan; Stewart, Ann; Snipes, Marie

    2013-01-01

    We present a study of classroom voting in linear algebra, in which the instructors posed multiple-choice questions to the class and then allowed a few minutes for consideration and small-group discussion. After each student in the class voted on the correct answer using a classroom response system, a set of clickers, the instructor then guided a…

  18. An Example of Inquiry in Linear Algebra: The Roles of Symbolizing and Brokering

    ERIC Educational Resources Information Center

    Zandieh, Michelle; Wawro, Megan; Rasmussen, Chris

    2017-01-01

    In this paper we address practical questions such as: How do symbols appear and evolve in an inquiry-oriented classroom? How can an instructor connect students with traditional notation and vocabulary without undermining their sense of ownership of the material? We tender an example from linear algebra that highlights the roles of the instructor…

  19. Linear Algebra and the Experiences of a "Flipper"

    ERIC Educational Resources Information Center

    Wright, Sarah E.

    2015-01-01

    This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…

  20. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2017-08-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spotz, William F.

    PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of themore » underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.« less

  2. Student Performance in Measuring Distance with Wavelengths in Various Settings

    NASA Astrophysics Data System (ADS)

    White, Gary

    2015-04-01

    When physics students are asked to measure the distance between two fixed locations using a pre-defined wavelength as a ruler, there is a surprising failure rate, at least partially due to the fact that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this result, and also show some interesting features when comparing a setting involving slinkies with a setting involving surface waves on water.

  3. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    PubMed

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  4. Symbolic computer vector analysis

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  5. Optimal Assignment Problem Applications of Finite Mathematics to Business and Economics. [and] Difference Equations with Applications. Applications of Difference Equations to Economics and Social Sciences. [and] Selected Applications of Mathematics to Finance and Investment. Applications of Elementary Algebra to Finance. [and] Force of Interest. Applications of Calculus to Finance. UMAP Units 317, 322, 381, 382.

    ERIC Educational Resources Information Center

    Gale, David; And Others

    Four units make up the contents of this document. The first examines applications of finite mathematics to business and economies. The user is expected to learn the method of optimization in optimal assignment problems. The second module presents applications of difference equations to economics and social sciences, and shows how to: 1) interpret…

  6. A noncommutative catenoid

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Holm, Christoffer

    2018-01-01

    A noncommutative algebra corresponding to the classical catenoid is introduced together with a differential calculus of derivations. We prove that there exists a unique metric and torsion-free connection that is compatible with the complex structure, and the curvature is explicitly calculated. A noncommutative analogue of the fact that the catenoid is a minimal surface is studied by constructing a Laplace operator from the connection and showing that the embedding coordinates are harmonic. Furthermore, an integral is defined and the total curvature is computed. Finally, classes of left and right modules are introduced together with constant curvature connections, and bimodule compatibility conditions are discussed in detail.

  7. Approximate dynamic programming for optimal stationary control with control-dependent noise.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2011-12-01

    This brief studies the stochastic optimal control problem via reinforcement learning and approximate/adaptive dynamic programming (ADP). A policy iteration algorithm is derived in the presence of both additive and multiplicative noise using Itô calculus. The expectation of the approximated cost matrix is guaranteed to converge to the solution of some algebraic Riccati equation that gives rise to the optimal cost value. Moreover, the covariance of the approximated cost matrix can be reduced by increasing the length of time interval between two consecutive iterations. Finally, a numerical example is given to illustrate the efficiency of the proposed ADP methodology.

  8. Resolving Phase Ambiguities in the Calibration of Redundant Interferometric Arrays: Implications for Array Design

    DTIC Science & Technology

    2016-03-04

    summary of the linear algebra involved. As we have seen, the RSC process begins with the interferometric phase measurement β, which due to wrapping will...mentary Divisors) in Section 2 and the following defi- nition of the matrix determinant. This definition is given in many linear algebra texts (see...principle solve for a particular solution of this system by arbitrarily setting two object phases (whose spatial frequencies are not co- linear ) and one

  9. A Process Algebraic Approach to Software Architecture Design

    NASA Astrophysics Data System (ADS)

    Aldini, Alessandro; Bernardo, Marco; Corradini, Flavio

    Process algebra is a formal tool for the specification and the verification of concurrent and distributed systems. It supports compositional modeling through a set of operators able to express concepts like sequential composition, alternative composition, and parallel composition of action-based descriptions. It also supports mathematical reasoning via a two-level semantics, which formalizes the behavior of a description by means of an abstract machine obtained from the application of structural operational rules and then introduces behavioral equivalences able to relate descriptions that are syntactically different. In this chapter, we present the typical behavioral operators and operational semantic rules for a process calculus in which no notion of time, probability, or priority is associated with actions. Then, we discuss the three most studied approaches to the definition of behavioral equivalences - bisimulation, testing, and trace - and we illustrate their congruence properties, sound and complete axiomatizations, modal logic characterizations, and verification algorithms. Finally, we show how these behavioral equivalences and some of their variants are related to each other on the basis of their discriminating power.

  10. Definition of (so MIScalled) ''Complexity'' as UTTER-SIMPLICITY!!! Versus Deviations From it as Complicatedness-Measure

    NASA Astrophysics Data System (ADS)

    Young, F.; Siegel, Edward Carl-Ludwig

    2011-03-01

    (so MIScalled) "complexity" with INHERENT BOTH SCALE-Invariance Symmetry-RESTORING, AND 1 / w (1.000..) "pink" Zipf-law Archimedes-HYPERBOLICITY INEVITABILITY power-spectrum power-law decay algebraicity. Their CONNECTION is via simple-calculus SCALE-Invariance Symmetry-RESTORING logarithm-function derivative: (d/ d ω) ln(ω) = 1 / ω , i.e. (d/ d ω) [SCALE-Invariance Symmetry-RESTORING](ω) = 1/ ω . Via Noether-theorem continuous-symmetries relation to conservation-laws: (d/ d ω) [inter-scale 4-current 4-div-ergence} = 0](ω) = 1 / ω . Hence (so MIScalled) "complexity" is information inter-scale conservation, in agreement with Anderson-Mandell [Fractals of Brain/Mind, G. Stamov ed.(1994)] experimental-psychology!!!], i.e. (so MIScalled) "complexity" is UTTER-SIMPLICITY!!! Versus COMPLICATEDNESS either PLUS (Additive) VS. TIMES (Multiplicative) COMPLICATIONS of various system-specifics. COMPLICATEDNESS-MEASURE DEVIATIONS FROM complexity's UTTER-SIMPLICITY!!!: EITHER [SCALE-Invariance Symmetry-BREAKING] MINUS [SCALE-Invariance Symmetry-RESTORING] via power-spectrum power-law algebraicity decays DIFFERENCES: ["red"-Pareto] MINUS ["pink"-Zipf Archimedes-HYPERBOLICITY INEVITABILITY]!!!

  11. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  12. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  13. Deriving the Regression Line with Algebra

    ERIC Educational Resources Information Center

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  14. Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego

    2017-03-01

    In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.

  15. Algebraic Generalization Strategies Used by Kuwaiti Pre-Service Teachers

    ERIC Educational Resources Information Center

    Alajmi, Amal Hussain

    2016-01-01

    This study reports on the algebraic generalization strategies used by elementary and middle/high school pre-service mathematics teachers in Kuwait. They were presented with 9 tasks that involved linear, exponential, and quadratic situations. The results showed that these pre-service teachers had difficulty in generalizing algebraic rules in all 3…

  16. Introduction to Matrix Algebra, Student's Text, Unit 23.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…

  17. Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.

    2010-05-01

    The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.

  18. Implementing dense linear algebra algorithms using multitasking on the CRAY X-MP-4 (or approaching the gigaflop)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Hewitt, T.

    1985-08-01

    This note describes some experiments on simple, dense linear algebra algorithms. These experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard implementations of LU and Cholesky decomposition. The implementation described here provides the ''fastest'' execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.

  19. Visualizing the Inner Product Space R[superscript m x n] in a MATLAB-Assisted Linear Algebra Classroom

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2018-01-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…

  20. A Method for Using Adjacency Matrices to Analyze the Connections Students Make within and between Concepts: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle

    2014-01-01

    The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…

  1. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  2. A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development

    DTIC Science & Technology

    1980-06-01

    sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426

  3. Resolving phase ambiguities in the calibration of redundant interferometric arrays: implications for array design

    DTIC Science & Technology

    2015-11-30

    matrix determinant. This definition is given in many linear algebra texts (see e.g. Bretscher (2001)). Definition 3.1 : Suppose we have an n-by-n...Processing, 2, 767 Blanchard P., Greenaway A., Anderton R., Appleby R., 1996, J. Opt. Soc. Am. A, 13, 1593 Bretscher O., 2001, Linear Algebra with...frequencies are not co- linear ) and one piston phase. This particular solution will then differ from the true solution by a phase ramp in the Fourier

  4. A new S-type eigenvalue inclusion set for tensors and its applications.

    PubMed

    Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing

    2016-01-01

    In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H -eigenvalue of strong M -tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl. 2014:114, 2014).

  5. On Solving Linear Recurrences

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  6. The Quantitative Preparation of Future Geoscience Graduate Students

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways. Calculus, calculus-based physics, chemistry, statistics, programming and linear algebra were viewed as important course preparation for a successful graduate experience. A set of recommendations for departments and for new community resources includes ideas for infusing quantitative reasoning throughout the undergraduate experience and mechanisms for learning from successful experiments in both geoscience and mathematics. A full list of participants, summaries of the meeting discussion and recommendations are available at http://serc.carleton.edu/quantskills/winter06/index.html. These documents, crafted by a small but diverse group can serve as a starting point for broader community discussion of the quantitative preparation of future geoscience graduate students.

  7. Statistical Optics

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  8. Teaching Special Relativity Without Calculus

    NASA Astrophysics Data System (ADS)

    Ruby, Lawrence

    2009-04-01

    I 2007 many AAPT members received a booklet that is the first chapter of a physics textbook available on a CD. This book espouses the new educational philosophy of teaching special relativity as the first item in the topic of mechanics. Traditionally, special relativity is part of one or more modern physics chapters at the end of the text,2 and very often this material is never utilized due to time constraints. From a logical standpoint, special relativity is important in satellite communications and in cosmology, as well as in modern physics applications such as atomic theory and high-energy physics. The purpose of this paper is to show that the new philosophy can be carried out in a noncalculus physics course, by demonstrating that all of the principal results of special relativity theory can be obtained by simple algebra. To accomplish this, we shall propose alternate derivations for two results that are usually obtained with calculus. Textbooks2 typically obtain the equations for time dilation and for length contraction from simple considerations based on Einstein's second postulate.3 We shall start from this point.

  9. Communication Avoiding and Overlapping for Numerical Linear Algebra

    DTIC Science & Technology

    2012-05-08

    future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques

  10. An Investigation into Challenges Faced by Secondary School Teachers and Pupils in Algebraic Linear Equations: A Case of Mufulira District, Zambia

    ERIC Educational Resources Information Center

    Samuel, Koji; Mulenga, H. M.; Angel, Mukuka

    2016-01-01

    This paper investigates the challenges faced by secondary school teachers and pupils in the teaching and learning of algebraic linear equations. The study involved 80 grade 11 pupils and 15 teachers of mathematics, drawn from 4 selected secondary schools in Mufulira district, Zambia in Central Africa. A descriptive survey method was employed to…

  11. Some Issues about the Introduction of First Concepts in Linear Algebra during Tutorial Sessions at the Beginning of University

    ERIC Educational Resources Information Center

    Grenier-Boley, Nicolas

    2014-01-01

    Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…

  12. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  13. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

    PubMed Central

    Yu, Zhang; Zhang, Yufeng

    2009-01-01

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092

  14. The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.

    PubMed

    Yu, Zhang; Zhang, Yufeng

    2009-01-15

    With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.

  15. Contextualizing symbol, symbolizing context

    NASA Astrophysics Data System (ADS)

    Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang

    2017-08-01

    When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.

  16. Graph C ∗-algebras and Z2-quotients of quantum spheres

    NASA Astrophysics Data System (ADS)

    Hajac, Piotr M.; Matthes, Rainer; Szymański, Wojciech

    2003-06-01

    We consider two Z2-actions on the Podleś generic quantum spheres. They yield, as noncommutative quotient spaces, the Klimek-Lesmewski q-disc and the quantum real projective space, respectively. The C ∗-algebas of all these quantum spaces are described as graph C ∗-algebras. The K-groups of the thus presented C ∗-algebras are then easily determined from the general theory of graph C ∗-algebas. For the quantum real projective space, we also recall the classification of the classes of irreducible ∗-representations of its algebra and give a linear basis for this algebra.

  17. Towards classical spectrum generating algebras for f-deformations

    NASA Astrophysics Data System (ADS)

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  18. A Quantum Groups Primer

    NASA Astrophysics Data System (ADS)

    Majid, Shahn

    2002-05-01

    Here is a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes for the Part III pure mathematics course at Cambridge University, the book is suitable as a primary text for graduate courses in quantum groups or supplementary reading for modern courses in advanced algebra. The material assumes knowledge of basic and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The volume is a primer for mathematicians but it will also be useful for mathematical physicists.

  19. Combining ultrasonography and noncontrast helical computerized tomography to evaluate Holmium laser lithotripsy

    PubMed Central

    Mi, Jia; Li, Jie; Zhang, Qinglu; Wang, Xing; Liu, Hongyu; Cao, Yanlu; Liu, Xiaoyan; Sun, Xiao; Shang, Mengmeng; Liu, Qing

    2016-01-01

    Abstract The purpose of the study was to establish a mathematical model for correlating the combination of ultrasonography and noncontrast helical computerized tomography (NCHCT) with the total energy of Holmium laser lithotripsy. In this study, from March 2013 to February 2014, 180 patients with single urinary calculus were examined using ultrasonography and NCHCT before Holmium laser lithotripsy. The calculus location and size, acoustic shadowing (AS) level, twinkling artifact intensity (TAI), and CT value were all documented. The total energy of lithotripsy (TEL) and the calculus composition were also recorded postoperatively. Data were analyzed using Spearman's rank correlation coefficient, with the SPSS 17.0 software package. Multiple linear regression was also used for further statistical analysis. A significant difference in the TEL was observed between renal calculi and ureteral calculi (r = –0.565, P < 0.001), and there was a strong correlation between the calculus size and the TEL (r = 0.675, P < 0.001). The difference in the TEL between the calculi with and without AS was highly significant (r = 0.325, P < 0.001). The CT value of the calculi was significantly correlated with the TEL (r = 0.386, P < 0.001). A correlation between the TAI and TEL was also observed (r = 0.391, P < 0.001). Multiple linear regression analysis revealed that the location, size, and TAI of the calculi were related to the TEL, and the location and size were statistically significant predictors (adjusted r2 = 0.498, P < 0.001). A mathematical model correlating the combination of ultrasonography and NCHCT with TEL was established; this model may provide a foundation to guide the use of energy in Holmium laser lithotripsy. The TEL can be estimated by the location, size, and TAI of the calculus. PMID:27930563

  20. Algebraic approach to electronic spectroscopy and dynamics.

    PubMed

    Toutounji, Mohamad

    2008-04-28

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.

  1. Packing a Box with Bricks.

    ERIC Educational Resources Information Center

    Jepsen, Charles H.

    1991-01-01

    Presented are solutions to variations of a combinatorics problem from a recent International Mathematics Olympiad. In particular, the matrix algebra solution illustrates an interaction among the undergraduate areas of geometry, combinatorics, linear algebra, and group theory. (JJK)

  2. Finite-dimensional integrable systems: A collection of research problems

    NASA Astrophysics Data System (ADS)

    Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.

    2017-05-01

    This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.

  3. On squares of representations of compact Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less

  4. Mathematical modelling of contact of ruled surfaces: theory and practical application

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  5. Investigating the Conceptual Variation of Major Physics Textbooks

    NASA Astrophysics Data System (ADS)

    Stewart, John; Campbell, Richard; Clanton, Jessica

    2008-04-01

    The conceptual problem content of the electricity and magnetism chapters of seven major physics textbooks was investigated. The textbooks presented a total of 1600 conceptual electricity and magnetism problems. The solution to each problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content among the set of topics common to the texts. The variation of the distribution of conceptual coverage within each text is studied. The variation between the major groupings of the textbooks (conceptual, algebra-based, and calculus-based) is also studied. A measure of the conceptual complexity of the problems in each text is presented.

  6. DOE Fundamentals Handbook: Mathematics, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less

  7. DOE Fundamentals Handbook: Mathematics, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less

  8. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  9. Beyond the spectral theorem: Spectrally decomposing arbitrary functions of nondiagonalizable operators

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-06-01

    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, the familiar linear operator techniques that one would then hope to use often fail since the operators cannot be diagonalized. The curse of nondiagonalizability also plays an important role even in finite-dimensional linear operators, leading to analytical impediments that occur across many scientific domains. We show how to circumvent it via two tracks. First, using the well-known holomorphic functional calculus, we develop new practical results about spectral projection operators and the relationship between left and right generalized eigenvectors. Second, we generalize the holomorphic calculus to a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. This simultaneously simplifies and generalizes functional calculus so that it is readily applicable to analyzing complex physical systems. Together, these results extend the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics arise, including memoryful stochastic processes, open nonunitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator, highlighting the special role of the zero eigenvalue. Furthermore, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a new general method to construct it. We provide new formulae for constructing spectral projection operators and delineate the relations among projection operators, eigenvectors, and left and right generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples. First, we analyze stochastic transition operators in discrete and continuous time. Second, we show that nondiagonalizability can be a robust feature of a stochastic process, induced even by simple counting. As a result, we directly derive distributions of the time-dependent Poisson process and point out that nondiagonalizability is intrinsic to it and the broad class of hidden semi-Markov processes. Third, we show that the Drazin inverse arises naturally in stochastic thermodynamics and that applying the meromorphic functional calculus provides closed-form solutions for the dynamics of key thermodynamic observables. Finally, we draw connections to the Ruelle-Frobenius-Perron and Koopman operators for chaotic dynamical systems and propose how to extract eigenvalues from a time-series.

  10. Predicting performance in a first engineering calculus course: implications for interventions

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia

    2015-01-01

    At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take Engineering Analysis I, a calculus-based engineering analysis course. After the first two weeks of the semester, many students end up leaving Engineering Analysis I and moving to a mathematics intervention course. In an effort to retain more students in Engineering Analysis I, the department collaborated with university academic support services to create a summer intervention programme. Students were targeted for the summer programme based on their score on an algebra readiness exam (ARE). In a previous study, the ARE scores were found to be a significant predictor of retention and performance in Engineering Analysis I. This study continues that work, analysing data from students who entered the engineering school in the fall of 2012. The predictive validity of the ARE was verified, and a hierarchical linear regression model was created using math American College Testing (ACT) scores, ARE scores, summer intervention participation, and several metacognitive and motivational factors as measured by subscales of the Motivated Strategies for Learning Questionnaire. In the regression model, ARE score explained an additional 5.1% of the variation in exam performance in Engineering Analysis I beyond math ACT score. Students took the ARE before and after the summer interventions and scores were significantly higher following the intervention. However, intervention participants nonetheless had lower exam scores in Engineering Analysis I. The following factors related to motivation and learning strategies were found to significantly predict exam scores in Engineering Analysis I: time and study environment management, internal goal orientation, and test anxiety. The adjusted R2 for the full model was 0.42, meaning that the model could explain 42% of the variation in Engineering Analysis I exam scores.

  11. Linear discrete systems with memory: a generalization of the Langmuir model

    NASA Astrophysics Data System (ADS)

    Băleanu, Dumitru; Nigmatullin, Raoul R.

    2013-10-01

    In this manuscript we analyzed a general solution of the linear nonlocal Langmuir model within time scale calculus. Several generalizations of the Langmuir model are presented together with their exact corresponding solutions. The physical meaning of the proposed models are investigated and their corresponding geometries are reported.

  12. Families of Linear Recurrences for Catalan Numbers

    ERIC Educational Resources Information Center

    Gauthier, N.

    2011-01-01

    Four different families of linear recurrences are derived for Catalan numbers. The derivations rest on John Riordan's 1973 generalization of Catalan numbers to a set of polynomials. Elementary differential and integral calculus techniques are used and the results should be of interest to teachers and students of introductory courses in calculus…

  13. Manifolds, Tensors, and Forms

    NASA Astrophysics Data System (ADS)

    Renteln, Paul

    2013-11-01

    Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.

  14. Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.

    PubMed

    Zabet, K; Rossiter, J A; Haber, R; Abdullah, M

    2017-11-01

    This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.

  15. An Algebraic Approach to Inference in Complex Networked Structures

    DTIC Science & Technology

    2015-07-09

    44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07

  16. Labeled trees and the efficient computation of derivations

    NASA Technical Reports Server (NTRS)

    Grossman, Robert; Larson, Richard G.

    1989-01-01

    The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.

  17. College Algebra I.

    ERIC Educational Resources Information Center

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

  18. Kleene Monads: Handling Iteration in a Framework of Generic Effects

    NASA Astrophysics Data System (ADS)

    Goncharov, Sergey; Schröder, Lutz; Mossakowski, Till

    Monads are a well-established tool for modelling various computational effects. They form the semantic basis of Moggi’s computational metalanguage, the metalanguage of effects for short, which made its way into modern functional programming in the shape of Haskell’s do-notation. Standard computational idioms call for specific classes of monads that support additional control operations. Here, we introduce Kleene monads, which additionally feature nondeterministic choice and Kleene star, i.e. nondeterministic iteration, and we provide a metalanguage and a sound calculus for Kleene monads, the metalanguage of control and effects, which is the natural joint extension of Kleene algebra and the metalanguage of effects. This provides a framework for studying abstract program equality focussing on iteration and effects. These aspects are known to have decidable equational theories when studied in isolation. However, it is well known that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras fails to be recursively enumerable. Here, we prove several negative results for the metalanguage of control and effects; in particular, already the equational theory of the unrestricted metalanguage of control and effects over continuous Kleene monads fails to be recursively enumerable. We proceed to identify a fragment of this language which still contains both Kleene algebra and the metalanguage of effects and for which the natural axiomatisation is complete, and indeed the equational theory is decidable.

  19. Mathematical Techniques for Nonlinear System Theory.

    DTIC Science & Technology

    1981-09-01

    This report deals with research results obtained in the following areas: (1) Finite-dimensional linear system theory by algebraic methods--linear...Infinite-dimensional linear systems--realization theory of infinite-dimensional linear systems; (3) Nonlinear system theory --basic properties of

  20. R-Function Relationships for Application in the Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    The F-function, and its generalization the R-function, are of fundamental importance in the fractional calculus. It has been shown that the solution of the fundamental linear fractional differential equation may be expressed in terms of these functions. These functions serve as generalizations of the exponential function in the solution of fractional differential equations. Because of this central role in the fractional calculus, this paper explores various intrarelationships of the R-function, which will be useful in further analysis. Relationships of the R-function to the common exponential function, e(t), and its fractional derivatives are shown. From the relationships developed, some important approximations are observed. Further, the inverse relationships of the exponential function, el, in terms of the R-function are developed. Also, some approximations for the R-function are developed.

  1. R-function relationships for application in the fractional calculus.

    PubMed

    Lorenzo, Carl F; Hartley, Tom T

    2008-01-01

    The F-function, and its generalization the R-function, are of fundamental importance in the fractional calculus. It has been shown that the solution of the fundamental linear fractional differential equation may be expressed in terms of these functions. These functions serve as generalizations of the exponential function in the solution of fractional differential equations. Because of this central role in the fractional calculus, this paper explores various intrarelationships of the R-function, which will be useful in further analysis. Relationships of the R-function to the common exponential function, et, and its fractional derivatives are shown. From the relationships developed, some important approximations are observed. Further, the inverse relationships of the exponential function, et, in terms of the R-function are developed. Also, some approximations for the R-function are developed.

  2. Introduction to Mathematica® for Physicists

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey

    We were taught at calculus classes that integration is an art, not a science (in contrast to differentiation—even a monkey can be trained to take derivatives). And we were taught wrong. The Risch algorithm (which is known for decades) allows one to find, in a finite number of steps, if a given indefinite integral can be taken in elementary functions, and if so, to calculate it. This algorithm has been constructed in works by an American mathematician Risch near 1970; many cases were not analyzed completely in these works and were later considered by other mathematicians. The algorithm is very complicated, and no computer algebra system implements it fully. Its implementation in Mathematica is rather complete, even with extensions to some classes of special functions, but details are not publicly known. Strictly speaking, it is not quite an algorithm, because it contains algorithmically unsolvable subproblems, such as finding out if a given combination of elementary functions vanishes. But in practice computer algebra systems are quite good in solving such problems. Here we shall consider, at a very elementary level, the main ideas of the Risch algorithm; see [16] for more details.

  3. Particle-like structure of coaxial Lie algebras

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. M.

    2018-01-01

    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  4. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  5. On representations of the filiform Lie superalgebra Lm,n

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Chen, Hongjia; Liu, Wende

    2015-11-01

    In this paper, we study the representations for the filiform Lie superalgebras Lm,n, a particular class of nilpotent Lie superalgebras. We determine the minimal dimension of a faithful module over Lm,n using the theory of linear algebra. In addition, using the method of Feingold and Frenkel (1985), we construct some finite and infinite dimensional modules over Lm,n on the Grassmann algebra and the mixed Clifford-Weyl algebra.

  6. Special Year on Numerical Linear Algebra

    DTIC Science & Technology

    1988-09-01

    ORNL) Worley, Pat (ORNL) A special acknowledgement should go to Mary Drake (UT) and Mitzy Denson (ORNL) who carried the burden of making the innumerable...a time step appropriate for the regular cells with no stability restriction. Entrance to Y-12 requires a pass. Contact Mitzy Denson (615) 574-3125 to...requires a pass. Contact Mitzy Denson (615) 574-3125 to obtain one. ’This seminar is part of the Special Year on Numerical Linear Algebra sponsored by the

  7. Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform

    DTIC Science & Technology

    2002-09-01

    mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance

  8. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 33.

    DTIC Science & Technology

    1977-09-27

    reduces to an infinite system of linear homogeneous algebraic equations and leads to Mathieu functions of the k-th order. The solution is convergent in...cylinder walls to be infinitesimally thin ideal conductors. The problem is reduced to a system of Fredholm linear algebraic equations of the second...EXPECTED DEVELOPMENTS OF TRANSISTORIZED LOW-NOISE MICROWAVE AMPLIFIERS Prague SDELOVACI TECHNIKA in Czech Vol 25, No 2, Feb 77 pp 47-49 TALLO, ANTON

  9. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  10. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    NASA Astrophysics Data System (ADS)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  11. Numerical Problem Solving Using Mathcad in Undergraduate Reaction Engineering

    ERIC Educational Resources Information Center

    Parulekar, Satish J.

    2006-01-01

    Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

  12. A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment

    ERIC Educational Resources Information Center

    Young, Brent R.; van der Lee, James H.; Svrcek, William Y.

    2006-01-01

    Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

  13. Elliptic biquaternion algebra

    NASA Astrophysics Data System (ADS)

    Özen, Kahraman Esen; Tosun, Murat

    2018-01-01

    In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.

  14. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  15. Critical Analysis of the Mathematical Formalism of Theoretical Physics. I. Foundations of Differential and Integral Calculus

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2013-04-01

    Critical analysis of the standard foundations of differential and integral calculus -- as mathematical formalism of theoretical physics -- is proposed. Methodological basis of the analysis is the unity of formal logic and rational dialectics. It is shown that: (a) the foundations (i.e. d 1ptyd,;=;δ,;->;0,;δ,δ,, δ,;->;0;δ,δ,;=;δ,;->;0;f,( x;+;δ, );-;f,( x )δ,;, d,;=;δ,, d,;=;δ, where y;=;f,( x ) is a continuous function of one argument x; δ, and δ, are increments; d, and d, are differentials) not satisfy formal logic law -- the law of identity; (b) the infinitesimal quantities d,, d, are fictitious quantities. They have neither algebraic meaning, nor geometrical meaning because these quantities do not take numerical values and, therefore, have no a quantitative measure; (c) expressions of the kind x;+;d, are erroneous because x (i.e. finite quantity) and d, (i.e. infinitely diminished quantity) have different sense, different qualitative determinacy; since x;,;,,,,onst under δ,;,;,, a derivative does not contain variable quantity x and depends only on constant c. Consequently, the standard concepts ``infinitesimal quantity (uninterruptedly diminishing quantity)'', ``derivative'', ``derivative as function of variable quantity'' represent incorrect basis of mathematics and theoretical physics.

  16. Algebraic approach to electronic spectroscopy and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toutounji, Mohamad

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less

  17. Evaluation of the Impact Computer Program as a Linear Design Tool for Bird-Resistant Aircraft Transparencies.

    DTIC Science & Technology

    1980-03-01

    Pressure on a Flat Plate, Arnold Engineering Development Center, Arnold Air Force Station, Tennessee 37389, AEDC-TR-79-14. 28. G. B. Thomas , Calculus and...Equation (6) was then 0.00177 sec. The average impact force from Equation (7) was 23,245 lb. The bird impact force-time history (28) G. B. Thomas ... Calculus and Analytic Geometry, Addison- Wesley, 1965. 60 Parallel to C Windshield N is unit vector B normal to windshieldNN panel at target point ... 4C

  18. Linear systems with structure group and their feedback invariants

    NASA Technical Reports Server (NTRS)

    Martin, C.; Hermann, R.

    1977-01-01

    A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.

  19. The preconditioned Gauss-Seidel method faster than the SOR method

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori

    2008-09-01

    In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10

  20. Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2012-02-01

    We discuss the development of a research-based conceptual multiple-choice survey of magnetism. We also discuss the use of the survey to investigate gender differences in students' difficulties with concepts related to magnetism. We find that while there was no gender difference on the pre-test. However, female students performed significantly worse than male students when the survey was given as a post-test in traditionally taught calculus-based introductory physics courses with similar results in both the regular and honors versions of the course. In the algebra-based courses, the performance of female and male students has no statistical difference on the pre-test or the post-test.

Top