Science.gov

Sample records for caldera eastern transbaikalia

  1. The February 1, 2011 Mw 4.7 earthquake: Evidence of local extension in western Transbaikalia (Eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Melnikova, Valentina I.; Seredkina, Alena I.; Radziminovich, Yan B.; Melnikov, Aleksander I.; Gilyova, Nadezhda A.

    2017-03-01

    We consider the rare February 1, 2011 earthquake Mw 4.7 that occurred in the low active region of western Transbaikalia, Russia. Its epicenter relates to the Zagan metamorphic core complex (MCC). From geological data, MCCs are characterized by signs of regional extension. We calculated earthquake source parameters (hypocentral depth, moment magnitude, scalar seismic moment and focal mechanism) from the data on amplitude spectra of surface waves and the first body-wave arrivals recorded on regional stations. The results obtained show that the focus of this event was formed in the conjunction zone between the low-angle dipping zone of plastic flow (detachment) included in the structure of the Zagan MCC and the listric fault related to the adjacent basin. A normal fault focal mechanism proves the processes of horizontal extension near the MCC, with one nodal plane being low-angle dipping (dip 35°) that agrees with the dip of the detachment zone. As long as this zone is characterized by high rates of tectonic deformation, we suppose that normal-fault displacement in the earthquake origin is carried out along the low-angle dipping rupture plane. Taking into account that in the territory of western Transbaikalia, compression and strike-slip regimes of seismotectonic deformations dominate, we suppose that the extension in the focus of the earthquake under study has a local character, and is caused by the structure of the Zagan MCC.

  2. Faulting history of the Long Valley caldera, eastern California

    SciTech Connect

    Foster, J.G. . School of Natural Science)

    1993-03-01

    The faulting history that produced the Sierra Nevada Range can be seen, in part, on the eastern contact of the Sierra Nevada Block with the Owens Valley Block. By surveying a series of remnant lake shore lines in the Long Valley Caldera of eastern California, the deformation and faulting history of the area can be inferred. These beaches are ideal for studying the faulting history of the area as their location is so near the contact of the two plates. The caldera sits on the Owens Valley Block just east of the major fault which separates it from the Sierra Nevada Block. It encompasses a ten mile by twenty mile area, which was filled with a lake after its creation some 730,000 years ago. Over time, the lake slowly lowered due to erosion of its sill, successive upward tilting of the Sierra Nevada Block, and consequent downward tilting of the Owens Valley Block. These changes in the attitude of the caldera floor and the beaches of the lake left the successive, non-parallel shore lines that have now been surveyed, mapped, and dated relative to each other. Together with the regional structures and history of the area, the remnant deformed shore lines can be used to develop a picture of the faulting history of the area and its relation to the rising of the Sierra Nevada Mountains.

  3. Volcanological evolution and caldera forming eruptions of Mt. Nemrut (Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Ulusoy, İnan; Çubukçu, H. Evren; Aydar, Erkan; Labazuy, Philippe; Ersoy, Orkun; Şen, Erdal; Gourgaud, Alain

    2012-11-01

    Mt. Nemrut volcano, situated at the west of Lake Van, is one of the historically active volcanoes of the Eastern Anatolia. It has an 8.5 × 7 km diameter summit caldera. Volcanic activity of Mt. Nemrut started ~ 1 Ma ago; the most recent eruptions were in 1441, 1597 and 1692 A.D. Among the Eastern Anatolian volcanoes, Mt. Nemrut is the most hazardous volcano for its vicinity. Present day volcanic activity is represented by intra-caldera hydrothermal and fumarolic output and low-level volcano-seismic events. Geological evolution and chronostratigraphy of the volcano is subdivided in three stages: pre-caldera, syn-caldera and post-caldera stages. Pre-caldera products are dominated by felsic lava flows and domes. Trachytic Nemrut and Kantaşı pyroclastics represent the caldera forming activity, of which sequences are composed of fallout units and ignimbrite flows. Both Nemrut and Kantaşı ignimbrite units are low-aspect ratio ignimbrites, they are generally densely welded and present columnar jointed outcrops locally. Extent of Nemrut ignimbrite (volume: 32.6 km3) is greater than the Kantaşı ignimbrite (volume: 3.8 km3). Post-caldera activity of the volcano is marked by peralkaline rhyolitic (comendite) intra-caldera lava flows and explosive hydrovolcanic activities. Historical activity of the volcano is represented by bimodal basaltic-rhyolitic effusive activity along Nemrut rift zone.

  4. Seismic velocity structure and earthquake relocation for the magmatic system beneath Long Valley Caldera, eastern California

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing

    2015-04-01

    A new three-dimensional (3-D) seismic velocity model and high-precision location catalog for earthquakes between 1984 and 2014 are presented for Long Valley Caldera and its adjacent fault zones in eastern California. The simul2000 tomography algorithm is applied to derive the 3-D Vp and Vp/Vs models using first-arrivals of 1004 composite earthquakes obtained from the original seismic data at the Northern California Earthquake Data Center. The resulting Vp model reflects geological structures and agrees with previous local tomographic studies. The simultaneously resolved Vp/Vs model is a major contribution of this study providing an important complement to the Vp model for the interpretation of structural heterogeneities and physical properties in the study area. The caldera is dominated by low Vp anomalies at shallow depths due to postcaldera fill. High Vp and low Vp/Vs values are resolved from the surface to ~ 3.4 km depth beneath the center of the caldera, corresponding to the structural uplift of the Resurgent Dome. An aseismic body with low Vp and high Vp/Vs anomalies at 4.2-6.2 km depth below the surface is consistent with the location of partial melt suggested by previous studies based on Vp models only and the inflation source locations based on geodetic modeling. The Sierran crystalline rocks outside the caldera are generally characterized with high Vp and low Vp/Vs values. The newly resolved velocity model improves absolute location accuracy for the seismicity in the study area and ultimately provides the basis for a high-precision earthquake catalog based on similar-event cluster analysis and waveform cross-correlation data. The fine-scale velocity structure and precise earthquake relocations are useful for investigating magma sources, seismicity and stress interaction and other seismological studies in Long Valley.

  5. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at ~ 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single ~ 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins ~ 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  6. Crustal Deformation of Long Valley Caldera, Eastern California, Inferred from L-Band InSAR

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko

    2008-11-01

    SAR interferometric analyses using JERS-1/SAR and ALOS/PALSAR images of Long Valley caldera are performed. JERS-1/SAR interferogram (June 1993-August 1996) shows a small region of subsidence associated the Casa Diablo geothermal power plant, which is superimposed on a broad scale uplift/expansion of the resurgent dome. ALOS/PALSAR interferograms show no deformation of the resurgent dome as expected. However, it may show a small region of subsidence associated the Casa Diablo geothermal power plant.

  7. Observations of earthquake source parameters at 2 km depth in the Long Valley Caldera, eastern California

    USGS Publications Warehouse

    Prejean, Stephanie G.; Ellsworth, William L.

    2001-01-01

    To investigate seismic source parameter scaling and seismic efficiency in the Long Valley caldera, California, we measured source parameters for 41 earthquakes (M 0.5 to M 5) recorded at 2 km depth in the Long Valley Exploratory Well. Borehole recordings provide a wide frequency bandwidth, typically 1 to 200–300 Hz, and greatly reduce seismic noise and path effects compared to surface recordings. We calculated source parameters in both the time and frequency domains for P and S waves. At frequencies above the corner frequency, spectra decay faster than ω3, indicating that attenuation plays an important role in shaping the spectra (path averaged Qp = 100–400, Qs = 200–800). Source parameters are corrected for attenuation and radiation pattern. Both static stress drops and apparent stresses range from approximately 0.01 to 30 MPa. Although static stress drops do not vary with seismic moment for these data, our analyses are consistent with apparent stress increasing with increasing moment. To estimate tectonic driving stress and seismic efficiencies in the region, we combined source parameter measurements with knowledge of the stress field and a Coulomb failure criterion to infer a driving stress of 40–70 MPa. Subsequent seismic efficiencies are consistent with McGarr's (1999) hypothesis of a maximum seismic efficiency of 6%.

  8. Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California

    NASA Astrophysics Data System (ADS)

    Clor, L. E.; Hurwitz, S.; Howle, J.

    2015-12-01

    Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.

  9. Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, eastern California, USA

    USGS Publications Warehouse

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Farrar, Christopher D.

    2006-01-01

    A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO2 emissions from the thirteen areas average around 8.7 t per day; but the majority of the emissions come from four sites west of the Casa Diablo geothermal power plant. Geochemical analyses of the soil-gases from locations west and east of the plant revealed the presence of isobutane related to plant operations. The δ13C values of diffuse CO2 range from − 5.7‰ to − 3.4‰, similar to values previously reported for CO2 from hot springs and thermal wells around Long Valley.At many of the vegetation-kill sites soil temperatures reach boiling at depths ≤ 20 cm. Soil temperature/depth profiles at two of the high-emissions areas indicate that the conductive thermal gradient in the center of the areas is around 320 °C m− 1. We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the rate of hydrothermal fluid flow across the caldera and using the CO2 concentration in the thermal fluids, the heat and CO2 loss from the kill areas is easily provided by the shallow hydrothermal system, which is sourced to the west of the resurgent dome. We find no evidence that the development of new areas of vegetation kill across the resurgent dome are related to new input of magma or magmatic fluids from beneath the resurgent dome. Our findings indicate that the areas have developed as a response to changes in the shallow hydrologic system. Some of the changes are likely related to fluid production at the power plant, but at distal sites the changes are more likely related to seismicity and uplift of the dome.

  10. Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, eastern California, USA

    NASA Astrophysics Data System (ADS)

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Farrar, Christopher D.

    2006-04-01

    A survey of diffuse CO 2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO 2 emissions from the thirteen areas average around 8.7 t per day; but the majority of the emissions come from four sites west of the Casa Diablo geothermal power plant. Geochemical analyses of the soil-gases from locations west and east of the plant revealed the presence of isobutane related to plant operations. The δ13C values of diffuse CO 2 range from - 5.7‰ to - 3.4‰, similar to values previously reported for CO 2 from hot springs and thermal wells around Long Valley. At many of the vegetation-kill sites soil temperatures reach boiling at depths ≤ 20 cm. Soil temperature/depth profiles at two of the high-emissions areas indicate that the conductive thermal gradient in the center of the areas is around 320 °C m - 1 . We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the rate of hydrothermal fluid flow across the caldera and using the CO 2 concentration in the thermal fluids, the heat and CO 2 loss from the kill areas is easily provided by the shallow hydrothermal system, which is sourced to the west of the resurgent dome. We find no evidence that the development of new areas of vegetation kill across the resurgent dome are related to new input of magma or magmatic fluids from beneath the resurgent dome. Our findings indicate that the areas have developed as a response to changes in the shallow hydrologic system. Some of the changes are likely related to fluid production at the power plant, but at distal sites the changes are more likely related to seismicity and uplift of the dome.

  11. Deformation near the Casa Diablo geothermal well field and related processes Long Valley caldera, Eastern California, 1993-2000

    USGS Publications Warehouse

    Howle, J.F.; Langbein, J.O.; Farrar, C.D.; Wilkinson, S.K.

    2003-01-01

    Regional first-order leveling lines, which extend from Lee Vining, CA, to Tom's Place, CA, have been surveyed periodically since 1957 by the U.S. Geological Survey (USGS), the National Geodetic Survey (NGS), and Caltrans. Two of the regional survey lines, or leveling networks, intersect at the Casa Diablo geothermal well field. These leveling networks, referenced to a distant bench mark (C916) near Lee Vining, provide time-series vertical control data of land-surface deformation that began around 1980. These data are also useful for delineating localized subsidence at Casa Diablo related to reservoir pressure and temperature changes owing to geothermal development that began in 1985. A comparison of differences in bench-mark elevations for five time periods between 1983 and 1997 shows the development and expansion of a subsidence bowl at Casa Diablo. The subsidence coincides spatially with the geothermal well field and temporally with the increased production rates and the deepening of injection wells in 1991, which resulted in an increase in the rate of pressure decline. The subsidence, superimposed on a broad area of uplift, totaled about 310 mm by 1997. The USGS established orthogonal tilt arrays in 1983 to better monitor deformation across the caldera. One tilt array (DBR) was established near what would later become the Casa Diablo geothermal well field. This array responded to magmatic intrusions prior to geothermal development, tilting away from the well field. With the start of geothermal fluid extraction in 1985, tilt at the DBR array reversed direction and began tilting into the well field. In 1991, geothermal power production was increased by a factor of four, and reservoir pressures began a period of steep decline. These changes caused a temporary three-fold increase in the tilt rate. The tilt rate became stable in 1993 and was about 40% lower than that measured in 1991-1992, but still greater than the rates measured during 1985-1990. Data from the

  12. Assessment of chemical element migration in soil-plant complex of Urov endemic localities of East Transbaikalia

    NASA Astrophysics Data System (ADS)

    Vadim V., Ermakov; Valentina, Danilova; Sabsbakhor, Khushvakhtova; Aklexander, Degtyarev; Sergey, Tyutikov; Victor, Berezkin; Elena, Karpova

    2014-05-01

    - Salicaceae) and selenium (needles of larch - Larix sibirica L.) were found among the plants. References 1. Ermakov V., Jovanovic L. Characteristics of selenium migration in soil-plant system of East Meshchera and Transbaikalia// J. Geochem. Explor., 2010. Vol. 107, 200-205. 2. Ermakov Vadim, Jovanovic Larisa, Berezkin Victor, Tyutikov Sergey, Danilogorskaya Anastasiya, Danilova Valentina, Krechetova Elena, Degtyarev Alexander, Khushvakhtova Sabsbakhor. Chemical assessment of soil and water of Urov biogeochemical provinces of Eastern Transbaikalia// Ecologica, 2012. Vol. 19, 69, 5-9. 3. Ermakov V.V., Tuytikov S.F. Khushvakhtova S.D., Danilova V.N. Boev V.A., Barabanschikova R.N., Chudinova E.A. Peculiarities of quantitative determination of selenium in biological materials// Bulletin of the Tyumen State University Press, 2010, 3, 206-214. Supported by the Russian Foundation for Basic Research, grant number 12-05-00141a.

  13. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  14. Calderas and caldera structures: a review

    NASA Astrophysics Data System (ADS)

    Cole, J. W.; Milner, D. M.; Spinks, K. D.

    2005-02-01

    Calderas are important features in all volcanic environments and are commonly the sites of geothermal activity and mineralisation. Yet, it is only in the last 25 years that a thorough three-dimensional study of calderas has been carried out, utilising studies of eroded calderas, geophysical analysis of their structures and analogue modelling of caldera formation. As more data has become available on calderas, their individuality has become apparent. A distinction between 'caldera', 'caldera complex', 'cauldron', and 'ring structure' is necessary, and new definitions are given in this paper. Descriptions of calderas, based on dominant composition of eruptives (basaltic, peralkaline, andesitic-dacitic, rhyolitic) can be used, and characteristics of each broad group are given. Styles of eruption may be effusive or explosive, with the former dominant in basaltic calderas, and the latter dominant in andesitic-dacitic, rhyolitic and peralkaline calderas. Four 'end-member' collapse styles occur—plate or piston, piecemeal, trapdoor, and downsag—but many calderas have multiple styles. Features of so-called 'funnel' and 'chaotic' calderas proposed in the literature can be explained by other collapse styles and the terms are considered unnecessary. Ground deformation comprises subsidence or collapse (essential characteristics of a caldera) and uplifting/doming and fracturing due to tumescence and/or resurgence (frequent, but not essential). Collapse may occur on pre-existing structures, such as regional faults or on faults created during the caldera formation, and the shape of the collapse area will be influenced by depth, size and shape of the magma chamber. The final morphology of a caldera will depend on how the caldera floor breaks up; whether collapse takes place in one event or multiple events, whether vertical movement is spasmodic or continuous throughout the eruptive sequence, and whether blocks subside uniformly or chaotically at one or more collapse centres. A

  15. Caldera demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    A caldera is a large, usually circular volcanic depression formed when magma is withdrawn or erupted from a shallow underground magma reservoir. It is often difficult to visualize how calderas form. This simple experiment using flour, a balloon, tubing, and a bicycle pump, provides a helpful visualization for caldera formation.

  16. Paleomagnetism of Mesozoic Magmatic Rocks in the West Transbaikalia

    NASA Astrophysics Data System (ADS)

    Fedyukin, I.; Shatsillo, A.

    2015-12-01

    Gudzhir intrusive complex is widely spread within West Transbaikalia. The complex is presented by dykes of rocks of various composition and granite stocks within Proterozoic metamorphic rocks and Late Proterozoic granites of Angaro-Vitim batholite. Several grabens are located within the area. The grabens are filled by effusive analogues of Gudzhir complex covered by Late Jurassic-Aptian continental sedimentary rocks of Gusinoozersk series. The age of Gudzhir complex and its effusive analogues is uncertain. According to the location within sedimentary section it cannot be younger than Late Jurassic. At the same time according to the geochronological analysis (Ar-Ar method) the age of the complex is 120-100 mil.years - the end of Early Cretaceous. In the river Vitim valley (between entries of rivers Karenga and Kalar) 32 dykes of Gudzhir complex have been studied. Laboratory palaeomagnetic studies of the samples was carried out. According to the Zyidelveld diagrams within the middle- high temperature spectrum two types of magnetization components are present: high temperature components (were not used) and "transitional" magnetization component of normal polarity. The latest was considered as secondary (metachronic). Similar direction was obtained previously for the Permian-Triassic volcanites within Southern Buriatia. Obtained pole location is the same as for Middle Cretaceous samples (within SW and NE margins of Siberian platform). According to these results the rocks of Gudzhir complex were remagnetized in Cretaceous time after crustal folding. Cretaceous age of the metachronic component was obtained from the total demonstration of magnetization of primary polarity which corresponds to the Dzhalal superchrone (124-84 mil. years). According to the obtained results: 1. Post Cretaceous tectonic processes did not lead to significant movements of blocks; 2. The location of the obtained pole and its similarity to the even-aged poles of Siberia and East European platform

  17. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect

    Goff, F.; Nielson, D.L.

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  18. Yellowstone and Long Valley - A Comparison of Two Restless Calderas

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Smith, R. B.

    2007-12-01

    Three large, silicic calderas in the conterminous United States have explosively erupted volumes > 300 km3 within in the last 2 million years -- Yellowstone caldera (Wyoming) Long Valley caldera (California) and the Vallez caldera (New Mexico) all located in extensional tectonic environments. All have shown varying levels of historic unrest. Pronounced unrest episodes at Yellowstone and Long Valley calderas over the past three decades stimulated extensive research on these two closely monitored calderas, and we explore some emerging similarities and differences. Yellowstone caldera is underlain by a long-lived (> 17 my) upper-mantle hot-spot that has fed a series of caldera-forming, extending to the southwest across southern Idaho to central Oregon including three caldera-forming eruptions from the Yellowstone caldera system in the last 2 my, the most recent at 600,000 ybp. It is marked by relatively low density and low seismic velocities extending to depths of at least 400 km and a regional topographic swell with elevations exceeding 2000 m. The extensive Yellowstone hydrothermal system has a thermal output of 5 GW. The most recent magmatic eruption dated at 70,000 ybp. By comparison, Long Valley caldera is underlain by a relatively modest "hot-spot", the locus of which appears to be influenced by a dilatational jog between the dextral Eastern California Shear Zone and the Walker Lane and westward delamination of the dense lithospheric root of the adjacent Sierra Nevada. The Long Valley system has fed multiple eruptions of over the past 4 my and a single caldera-forming eruption at 760,000 ybp. It is marked by a limited topographic swell but with the elevation of the caldera floor and adjacent basins comparable to the 2000-plus m elevation of the Yellowstone swell. Long Valley caldera hydrothermal system has a thermal output of 0.3 GW (including a 40 MW geothermal power plant). The most recent eruptions from the Long Valley Caldera- Mono Domes volcanic field

  19. The Black-tailed Antechinus, Antechinus arktos sp. nov.: a new species of carnivorous marsupial from montane regions of the Tweed Volcano caldera, eastern Australia.

    PubMed

    Baker, Andrew M; Mutton, Thomas Y; Hines, Harry B; Dyck, Steve Van

    2014-02-17

    We describe a new species of dasyurid marsupial within the genus Antechinus that was previously known as a northern outlier of Dusky Antechinus (A. swainsonii). The Black-tailed Antechinus, Antechinus arktos sp. nov., is known only from areas of high altitude and high rainfall on the Tweed Volcano caldera of far south-east Queensland and north-east New South Wales, Australia. Antechinus arktos formerly sheltered under the taxonomic umbrella of A. swainsonii mimetes, the widespread mainland form of Dusky Antechinus. With the benefit of genetic hindsight, some striking morphological differences are herein resolved: A. s. mimetes is more uniformly deep brown-black to grizzled grey-brown from head to rump, with brownish (clove brown-raw umber) hair on the upper surface of the hindfoot and tail, whereas A. arktos is more vibrantly coloured, with a marked change from greyish-brown head to orange-brown rump, fuscous black on the upper surface of the hindfoot and dense, short fur on the evenly black tail. Further, A. arktos has marked orange-brown fur on the upper and lower eyelid, cheek and in front of the ear and very long guard hairs all over the body; these characters are more subtle in A. s. mimetes. There are striking genetic differences between the two species: at mtDNA, A. s. mimetes from north-east New South Wales is 10% divergent to A. arktos from its type locality at Springbrook NP, Queensland. In contrast, the Ebor A. s. mimetes clades closely with conspecifics from ACT and Victoria. A. arktos skulls are strikingly different to all subspecies of A. swainsonii. A. arktos are markedly larger than A. s. mimetes and A. s. swainsonii (Tasmania) for a range of craniodental measures. Antechinus arktos were historically found at a few proximate mountainous sites in south-east Queensland, and have only recently been recorded from or near the type locality. Even there, the species is likely in low abundance. The Black-tailed Antechinus has plausibly been detrimentally

  20. Western Transbaikalia (South East Siberia): desertification from the past towards present

    NASA Astrophysics Data System (ADS)

    Alexeeva, Nadezhda; Erbajeva, Margarita A.; Khenzykhenova, Fedora I.

    2010-05-01

    Desertification is recognized as one of the most serious environmental problem in Asia, in particular in the Baikalian region including Transbaikalia and Prebaikalia. The Baikal Rift zone is a natural border between two biogeographical provinces: Siberian (north forests, taiga - Prebaikalia) and Central-Asian (arid steppes, semi-deserts and deserts - Transbaiklia). At present time southern Transbaikal area is semi-arid region, in contrast to it, Prebaikalia is characterized by more humid environment. In the past, during Neogene paleoenvironment and biogeocoenosis of these two areas were close and they included similar faunal assemblages. However the formation of a series of south Siberian ranges and uplift of surrounding the Lake Baikal mountains have became as the main orographic barrier. As a result the West Transbaikalia has been isolated from the influence of West humid Atlantic cyclone. This evidence is considered to be the main reason of the onset the climate aridisation in the region. Moreover the influence of gradually global change of the climate change towards cool and dry was rather high too. The most important sources of information on past climate change are derived from paleoclimatic records such as terrestrial archives - deposits, paleoflora and paleofauna of the Pliocene, Pleistocene and Holocene. The mammal associations and pollen flora evidenced that during the Pliocene the landscapes with predominance of forest inhabitants were replaced by savanna like areas and to the end of Pliocene the region was occupied by mammal assemblages inhabited the open landscapes. The dominant forms in the fauna were ground squirrels (Spermophilus). At that time the evidence of the first appearance of desert dweller animals - the genus Allactaga occurred. The further aridisation and cooling strengthened during the Early Pleistocene when the mammal faunas are characterized by the predominance of ochotonids, high frequency of progressive type Borsodia chinensis

  1. PREFACE: Collapse Calderas Workshop

    NASA Astrophysics Data System (ADS)

    Gottsmann, Jo; Aguirre-Diaz, Gerardo

    2008-10-01

    Caldera-formation is one of the most awe-inspiring and powerful displays of nature's force. Resultant deposits may cover vast areas and significantly alter the immediate topography. Post-collapse activity may include resurgence, unrest, intra-caldera volcanism and potentially the start of a new magmatic cycle, perhaps eventually leading to renewed collapse. Since volcanoes and their eruptions are the surface manifestation of magmatic processes, calderas provide key insights into the generation and evolution of large-volume silicic magma bodies in the Earth's crust. Despite their potentially ferocious nature, calderas play a crucial role in modern society's life. Collapse calderas host essential economic deposits and supply power for many via the exploitation of geothermal reservoirs, and thus receive considerable scientific, economic and industrial attention. Calderas also attract millions of visitors world-wide with their spectacular scenic displays. To build on the outcomes of the 2005 calderas workshop in Tenerife (Spain) and to assess the most recent advances on caldera research, a follow-up meeting was proposed to be held in Mexico in 2008. This abstract volume presents contributions to the 2nd Calderas Workshop held at Hotel Misión La Muralla, Querétaro, Mexico, 19-25 October 2008. The title of the workshop `Reconstructing the evolution of collapse calderas: Magma storage, mobilisation and eruption' set the theme for five days of presentations and discussions, both at the venue as well as during visits to the surrounding calderas of Amealco, Amazcala and Huichapan. The multi-disciplinary workshop was attended by more than 40 scientist from North, Central and South America, Europe, Australia and Asia. Contributions covered five thematic topics: geology, geochemistry/petrology, structural analysis/modelling, geophysics, and hazards. The workshop was generously supported by the International Association of Volcanology and the Chemistry of The Earth's Interior

  2. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  3. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  4. Preliminary Hot Dry Rock geothermal evaluation of Long Valley Caldera, California

    SciTech Connect

    Gambill, D.T.

    1981-03-01

    Long Valley Caldera, formed during the catastrophic eruption of the Bishop Tuff 0.7 Myr ago, straddles the border between the Sierra Nevada and the Basin and Range tectonic provinces in eastern California. The caldera contains rhyolitic to basaltic flows, tuffs, and domes from 3.2 Myr to 450 yr old. Sierra Nevada frontal faults intersect the northwest and southeast parts of the caldera. The dominant feature within the caldera is a resurgent dome in the west-central section, which formed between about 0.7 and 0.5 Myr b.p. Teleseismic data indicate a low P-wave velocity zone below the western part of the caldera, indicating a magma chamber between 7 and 25 km depth. This conclusion is supported by gravity data. Heat flow just west of the caldera is 3.75 HFU. Just east of the caldera, measured heat flow is about 2 HFU. However, a deep well on the eastern edge of the resurgent dome has a gradient of 38/sup 0/C/km from 0.66 to 1.2 km suggesting that the magma chamber, which produced Long Valley, is largely crystallized below the resurgent dome. The high heat flow beneath the western caldera may be a manifestation of shallow silicic magma associated with the recent Inyo Craters. These data indicate a smaller magma source may lie below the western caldera. The resurgent dome and the area just west of the caldera are cited for additional Hot Dry Rock prospection. The higher temperature gradient and lack of caldera fill beyond the west margin of the caldera combine to make this area promising for future HDR evaluation.

  5. Unrest in Long Valley Caldera, California, 1978-2004

    USGS Publications Warehouse

    Hill, David P.; ,

    2006-01-01

    Long Valley Caldera and the Mono-Inyo Domes volcanic field in eastern California lie in a left-stepping offset along the eastern escarpment of the Sierra Nevada, at the northern end of the Owens Valley and the western margin of the Basin and Range Province. Over the last 4 Ma, this volcanic field has produced multiple volcanic eruptions, including the caldera-forming eruption at 760 000 a BP and the recent Mono-Inyo Domes eruptions 500–660 a BP and 250 a BP. Beginning in the late 1970s, the caldera entered a sustained period of unrest that persisted through the end of the century without culminating in an eruption. The unrest has included recurring earthquake swarms; tumescence of the resurgent dome by nearly 80 cm; the onset of diffuse magmatic carbon dioxide emissions around the flanks of Mammoth Mountain on the southwest margin of the caldera; and other indicators of magma transport at mid- to upper-crustal depths. Although we have made substantial progress in understanding the processes driving this unrest, many key questions remain, including the distribution, size, and relation between magma bodies within the mid-to-upper crust beneath the caldera, Mammoth Mountain, and the Inyo Mono volcanic chain, and how these magma bodies are connected to the roots of the magmatic system in the lower crust or upper mantle.

  6. Pavonis Mons Summit Caldera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image shows part of the summit caldera of Pavonis Mons. Pavonis the middle of three Tharsis volcanos that form a line southeast of Olympus Mons and northwest of Vallis Marineris. On Earth volcanic calderas usually form when a massive eruption has emptied out the magma chamber and the 'roof' of the chamber collapses into the resultant space. It is likely that summit calderas on Martian volcanoes form in a similar manner.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Long Valley Caldera 2003 through 2014: overview of low level unrest in the past decade

    USGS Publications Warehouse

    Wilkinson, Stuart K.; Hill, David P.; Langbein, John O.; Lisowski, Michael; Mangan, Margaret T.

    2014-01-01

    Long Valley Caldera is located in California along the eastern escarpment of the Sierra Nevada Range. The caldera formed about 760,000 years ago as the eruption of 600 km3 of rhyolite magma (Bishop Tuff) resulted in collapse of the partially evacuated magma chamber. Resurgent doming in the central part of the caldera occurred shortly afterwards, and the most recent eruptions inside the caldera occurred about 50,000 years ago. The caldera remains thermally active, with many hot springs and fumaroles, and has had significant deformation and seismicity since at least 1978. Periods of intense unrest in the 1980s to early 2000s are well documented in the literature (Hill and others, 2002; Ewert and others, 2010). In this poster, we extend the timeline forward, documenting seismicity and deformation over the past decade.

  8. Background concentrations of heavy metals in benthos from transboundary rivers of the Transbaikalia region, Russia.

    PubMed

    Kuklin, Aleksei Petrovich; Matafonov, Petr Viktorovich

    2014-02-01

    The concentrations (mg/kg dry weight) of Cu, Zn, As, Cd, Hg, and Pb were measured in benthic macroalgae and invertebrates collected in the upper transboundary tributaries of the Onon River, Transbaikalia, Russia. The background concentration ranges in Cladophora fracta, Ulothrix zonata and Zygnemataceae were: 6.4-9.1 for Cu, 27.2-73.1 for Zn, 0.4-0.9 for Cd, 6.7-35.3 for As, 0.01-0.02 for Hg, and 1.9-4.3 for Pb. In Brachycentrus americanus and Lymnaea media the concentration ranges were: 9.0-25.5 for Cu, 21.4-96.0 for Zn, 0.1-0.3 for Cd, 1.7-5.6 for As, 0.004-0.02 for Hg, and 0.4-2.2 for Pb. The concentrations of Cu, Zn, Pb, and Hg were consistent with data for uncontaminated areas. Under contamination conditions the concentrations in C. fracta were: 938 for Zn, 513 for Pb, and 9.5 for Cd; in Lymnaea media were: 46.8 for Cu, 176 for Zn, 52.3 for Pb, and 3.0 for Cd. All the organisms showed a common response to contamination, and consequently can be used as biomonitors of contamination by heavy metals.

  9. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    30 km trend that then arcs NE into the caldera. These anomalies reflect near surface rhyolite intrusions that underlie the caldera-fill sediments that have been altered to K-feldpar and clay minerals. K gamma ray anomalies also delineate this zone of alteration. The last phase of volcanism occurs in the central part of the caldera and is associated with a broad aeromagnetic high with individual high-amplitude aeromagnetic highs coincident with three large volcanic vents. No hydrothermal alteration is associated with this last phase of volcanism. On the SW side of the McDermitt volcanic field a 10 km wide, 60 km long, NNW-trending zone of late Miocene normal faults developed after cessation of volcanism and prior to Basin and Range faulting. We propose that this extensional fault zone is the eastern continuation of the NW trending Brothers Fault Zone, but changes to a NNW trend where it is deflected by the plutons that underlies the McDermitt volcanic field. Plutons that underlie all three of these Mid Miocene volcanic fields have minimized post-caldera extensional faulting. Thus only caldera ring fracture faults were available for the development of hydrothermal systems in areas where post caldera intrusive activity was localized.

  10. Evolution of the 120 ka caldera-forming eruption of Kutcharo volcano, eastern Hokkaido, Japan: Geologic and petrologic evidence for multiple vent systems and rapid generation of pyroclastic flow

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takeshi; Matsumoto, Akiko; Nakagawa, Mitsuhiro

    2016-07-01

    We investigated the eruptive sequence and temporal evolution of juvenile materials during the 120 ka Kutcharo pumice flow IV (Kp IV) eruption, which was the most voluminous (175 km3: bulk volume) caldera-forming eruption of Kutcharo volcano. The eruptive deposits are divided into four units in ascending order. Unit 1 is widely dispersed and consists of silt-sized, cohesive ash. Unit 2 is a thin, moderately sorted pumice fall deposit with a restricted distribution and small volume (< 0.2 km3). Unit 3, consisting of widely distributed ignimbrite, is the most voluminous. Unit 4 is also composed of pyroclastic flow deposits, but its distribution is limited to the northwest side of the caldera. Juvenile materials consist mainly of rhyolite pumice (74%-78% SiO2) associated with a minor amount of scoria (52%-73% SiO2) that are found only northwest of the caldera in Unit 3 and Unit 4. These scoriae can be classified on the basis of the P2O5 contents of their matrix glass into low-P, medium-P, and high-P types, which are almost entirely restricted to the lower part of Unit 3, Unit 4, and the upper part of Unit 3, respectively. These three types display distinct mixing trends with the rhyolitic compositions in SiO2-P2O5 variation diagrams. This evidence indicates that three distinct mafic magmas were independently and intermittently injected into the main body of silicic magma to erupt from the northwestern part of the magma system. Mafic injections did not occur in the southern part of the magma system. This petrologic evidence implies that the northwestern and southeastern flows of Unit 3 are heterotopic, contemporaneous products derived from multiple vent systems. Although Unit 2 was derived from an eruptive column, its volume is very small compared to Plinian fall deposits of typical caldera-forming eruptions. In our interpretation, the activity of the Kp IV eruption reached its climax rapidly, depositing Unit 3, without first producing a stable Plinian column. The

  11. A model for caldera resurgence

    NASA Astrophysics Data System (ADS)

    Stix, J.; kennedy, B.; Wilcock, J.

    2011-12-01

    A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide two crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted; this magma is chemically distinct from rhyolite magma erupted from the shallow magma chamber as ignimbrite. These observations demonstrate that resurgence is temporally linked to caldera subsidence, with the dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional faults which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat and remobilize residual crystal-rich rhyolite remaining in the shallow magma chamber. Surface resurgent uplift is produced by dacite and remobilized rhyolite rising through buoyancy, and by roof blocks sinking partway into the magma chamber. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magma to be intruded and/or erupted together. These same processes facilitate mingling and mixing of the dacite and rhyolite magmas. This sequence of events also promotes the development of magmatic-hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles, while resurgent deformation and fracturing increase the permeability of the system. These changes allow magmatic volatiles to rise and meteoric fluids

  12. Giant caldera in the Arctic Ocean: Evidence of the catastrophic eruptive event

    PubMed Central

    Piskarev, Alexey; Elkina, Daria

    2017-01-01

    A giant caldera located in the eastern segment of the Gakkel Ridge could be firstly seen on the bathymetric map of the Arctic Ocean published in 1999. In 2014, seismic and multibeam echosounding data were acquired at the location. The caldera is 80 km long, 40 km wide and 1.2 km deep. The total volume of ejected volcanic material is estimated as no less than 3000 km3 placing it into the same category with the largest Quaternary calderas (Yellowstone and Toba). Time of the eruption is estimated as ~1.1 Ma. Thin layers of the volcanic material related to the eruption had been identified in sedimentary cores located about 1000 km away from the Gakkel Ridge. The Gakkel Ridge Caldera is the single example of a supervolcano in the rift zone of the Mid-Oceanic Ridge System. PMID:28393928

  13. Venus - Sag Caldera 'Sachs Patera

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This image of Sachs Patera on Venus is centered at 49 degrees north, 334 degrees east. Defined as a sag-caldera, Sachs is an elliptical depression 130 meters (81 feet) in depth, spanning 40 kilometers (25 miles) in width along its longest axis. The morphology implies that a chamber of molten material drained and collapsed, forming a depression surrounded by concentric scarps spaced 2-to-5 kilometers (1.2- to-3 miles) apart. The arc-shaped set of scarps, extending out to the north from the prominent ellipse, is evidence for a separate episode of withdrawal; the small lobe-shaped extension to the southwest may represent an additional event. Solidified lava flows 10-to-25 kilometers (6-to-16 miles) long, give the caldera its flower-like appearance. The flows are a lighter tone of gray in the radar data because the lava is blockier in texture and consequently returns more radar waves. Much of the lava, which was evacuated from the chamber, probably traveled to other locations underground, while some of it may have surfaced further south. This is unlike calderas on Earth, where a rim of lava builds up in the immediate vicinity of the caldera.

  14. Recent crustal subsidence at Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Dzurisin, D.; Savage, J.C.; Fournier, R.O.

    1990-01-01

    Following a period of net uplift at an average rate of 15??1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984-1985 and then subsided 25??7 mm during 1985-1986 and an additional 35??7 mm during 1986-1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: {Mathematical expression}1 = 0.10 ?? 0.09 ??strain/year oriented N33?? E??9?? and {Mathematical expression}2 = 0.20 ?? 0.09 ??strain/year oriented N57?? W??9?? (extension reckoned positive). A best-fit elastic model of the 1985-1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10??5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone

  15. The Reporoa Caldera, Taupo Volcanic Zone: source of the Kaingaroa Ignimbrites

    USGS Publications Warehouse

    Nairn, I.A.; Wood, C.P.; Bailey, R.A.

    1994-01-01

    The Reporoa Caldera occupies the northern end of the Reporoa Depression, previously described as a tectonic fault-angle depression. Earlier confirmation of the topographic basin as a caldera had been hindered by the lack of an associated young pyroclastic flow deposit of large enough volume to have caused caldera collapse. New exposures on the eastern margin of the Reporoa basin reveal thick lithic lag breccias (>30 m) interbedded within the 0.24 Ma Kaingaroa Ignimbrites. These ignimbrites were previously attributed to the adjacent Okataina Volcanic Centre. Lag breccia thicknesses and maximum clast sizes decrease rapidly outward from the caldera rim, and discrete breccias are absent from ignimbrite sections more than 3 km from the rim. The lithic lag breccias, together with structural and geophysical evidence, confirm Reporoa Caldera as the source of the c. 100 km3 Kaingaroa Ignimbrites, adding another major rhyolitic volcanic centre to the seven previously recognized in the Taupo Volcanic Zone. Other, older, calderas may also be present in the Reporoa Depression. ?? 1994 Springer-Verlag.

  16. A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO

    SciTech Connect

    Wilt, M.; Haar, S.V.

    1982-03-01

    The Baca location {number_sign}1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 500 F. Stratigraphically the reservoir region can be described as a five-layer sequence that includes (1) caldera fill and the upper units of the Bandelier ash flow tuff, (2) the lower members of this tuff, which comprise the main reservoir rock at Baca, (3) the Pliocene Paliza Canyon volcanics, (4) Tertiary sands and Paleozoic sedimentary rocks, and (5) Precambrian granitic basement. Production is controlled by fractures and faults that are ultimately related to activity in the Rio Grande Rift system. Geophysically, the caldera is characterized by a gravity minimum and a resistivity low. A 40-mgal gravity minimum over the caldera is due mostly to the relatively low-density volcanics and sediments that fill the caldera and probably bears no relation to deep-seated magmatic sources. Two-dimensional gravity modeling indicates that the depth to Precambrian basement in Redondo Canyon is probably at least 3 km and may exceed 5 km in eastern parts of the caldera. Telluric and magnetotelluric surveys have shown that the reservoir region is associated with low resistivity and that a deep low-resistivity zone correlates well with the depth of the primary reservoir inferred from well data.

  17. Reanalysis of S-to-P amplitude ratios for gross attenuation structure, Long Valley caldera, California

    SciTech Connect

    Sanders, C.O.

    1993-12-01

    Because of the strong interest in the magmatism and volcanism at Long Valley caldera, eastern California, and because of recent sifnigicant improvements in our knowledge of the caldera velocity structure and earthquake locations, I have reanalyzed the local-earthquake S-to-P amplitude-ratio data of Sanders (1984) for the gross three-dimensional attenuation structure of the upper 10 km of Long Valley caldera. The primary goals of the analysis are to provide more accurate constraints on the depths of the attenuation anomalies using improved knowledge of the ray locations and an objective inversion procedure. The new image of the high S wave attenuation anomaly in the west-central cadlera suggests that the top of the principal anomaly is at 7-km depth, which is 2 km deeper than previously determined. Because of poor resolution in much of the region, some of the data remain unsatisfied by the final attenuation model. This unmodeled data may imply unresolved attenuation anomalies, perhaps small anomalies in the kilometer or two just above the central-caldera anomaly and perhaps a larger anomaly at about 7-km depth in the northwest caldera or somewhere beneath the Mono Craters. The central-caldera S wave attenuation anomaly has a location similar to mapped regions of low teleseismic P wave velocity, crustal inflation, reduced density, and aseismicity, strongly suggesting magmatic association.

  18. Investigation of the groundwater system at Masaya Caldera, Nicaragua, using transient electromagnetics and numerical simulation

    NASA Astrophysics Data System (ADS)

    MacNeil, Richard E.; Sanford, Ward E.; Connor, Charles B.; Sandberg, Stewart K.; Diez, Mikel

    2007-10-01

    The distribution of groundwater beneath Masaya Volcano, in Nicaragua, and its surrounding caldera was characterized using the transient electromagnetic method (TEM). Multiple soundings were conducted at 30 sites. Models of the TEM data consistently indicate a resistive layer that is underlain by one or more conductive layers. These two layers represent the unsaturated and saturated zones, respectively, with the boundary between them indicating the water-table elevation. A map of the TEM data shows that the water table in the caldera is a subdued replica of the topography, with higher elevations beneath the edifice in the south-central caldera and lower elevations in the eastern caldera, coinciding with the elevation of Laguna de Masaya. These TEM data, combined with regional hydrologic data, indicate that the caldera in hydrologically isolated from the surrounding region, with as much as 60 m of difference in elevation of the groundwater table across caldera-bounding faults. The water-table information and estimates of fluxes of water through the system were used to constrain a numerical simulation of groundwater flow. The simulation results indicate that basalt flows in the outer parts of the caldera have a relatively high transmissivity, whereas the central edifice has a substantially lower transmissivity. A layer of relatively high transmissivity must be present at depth within the edifice in order to deliver the observed flux of water and steam to the active vent. This hydrologic information about the caldera provides a baseline for assessing the response of this isolated groundwater system to future changes in magmatic activity.

  19. Investigation of the groundwater system at Masaya Caldera, Nicaragua, using transient electromagnetics and numerical simulation

    USGS Publications Warehouse

    MacNeil, R.E.; Sanford, W.E.; Connor, C.B.; Sandberg, S.K.; Diez, M.

    2007-01-01

    The distribution of groundwater beneath Masaya Volcano, in Nicaragua, and its surrounding caldera was characterized using the transient electromagnetic method (TEM). Multiple soundings were conducted at 30 sites. Models of the TEM data consistently indicate a resistive layer that is underlain by one or more conductive layers. These two layers represent the unsaturated and saturated zones, respectively, with the boundary between them indicating the water-table elevation. A map of the TEM data shows that the water table in the caldera is a subdued replica of the topography, with higher elevations beneath the edifice in the south-central caldera and lower elevations in the eastern caldera, coinciding with the elevation of Laguna de Masaya. These TEM data, combined with regional hydrologic data, indicate that the caldera in hydrologically isolated from the surrounding region, with as much as 60??m of difference in elevation of the groundwater table across caldera-bounding faults. The water-table information and estimates of fluxes of water through the system were used to constrain a numerical simulation of groundwater flow. The simulation results indicate that basalt flows in the outer parts of the caldera have a relatively high transmissivity, whereas the central edifice has a substantially lower transmissivity. A layer of relatively high transmissivity must be present at depth within the edifice in order to deliver the observed flux of water and steam to the active vent. This hydrologic information about the caldera provides a baseline for assessing the response of this isolated groundwater system to future changes in magmatic activity. ?? 2007.

  20. Uplift, thermal unrest and magma intrusion at Yellowstone caldera

    USGS Publications Warehouse

    Wicks, Charles W.; Thatcher, Wayne; Dzurisin, Daniel; Svarc, Jerry

    2006-01-01

    The Yellowstone caldera, in the western United States, formed 640,000 years ago when an explosive eruption ejected 1,000 km3 of material1. It is the youngest of a series of large calderas that formed during sequential cataclysmic eruptions that began 16 million years ago in eastern Oregon and northern Nevada. The Yellowstone caldera was largely buried by rhyolite lava flows during eruptions that occurred from 150,000 to 70,000 years ago1. Since the last eruption, Yellowstone has remained restless, with high seismicity, continuing uplift/subsidence episodes with movements of 70 cm historically2 to several metres since the Pleistocene epoch3, and intense hydrothermal activity. Here we present observations of a new mode of surface deformation in Yellowstone, based on radar interferometry observations from the European Space Agency ERS-2 satellite. We infer that the observed pattern of uplift and subsidence results from variations in the movement of molten basalt into and out of the Yellowstone volcanic system.

  1. Uplift, thermal unrest and magma intrusion at Yellowstone caldera.

    PubMed

    Wicks, Charles W; Thatcher, Wayne; Dzurisin, Daniel; Svarc, Jerry

    2006-03-02

    The Yellowstone caldera, in the western United States, formed approximately 640,000 years ago when an explosive eruption ejected approximately 1,000 km3 of material. It is the youngest of a series of large calderas that formed during sequential cataclysmic eruptions that began approximately 16 million years ago in eastern Oregon and northern Nevada. The Yellowstone caldera was largely buried by rhyolite lava flows during eruptions that occurred from approximately 150,000 to approximately 70,000 years ago. Since the last eruption, Yellowstone has remained restless, with high seismicity, continuing uplift/subsidence episodes with movements of approximately 70 cm historically to several metres since the Pleistocene epoch, and intense hydrothermal activity. Here we present observations of a new mode of surface deformation in Yellowstone, based on radar interferometry observations from the European Space Agency ERS-2 satellite. We infer that the observed pattern of uplift and subsidence results from variations in the movement of molten basalt into and out of the Yellowstone volcanic system.

  2. Age, duration of formation, and geotectonic position of the Zavitaya lithium granite-pegmatite system, Eastern Transbaikalia

    NASA Astrophysics Data System (ADS)

    Zagorsky, V. Ye.; Shokalsky, S. P.; Sergeev, S. A.

    2015-01-01

    The Zavitaya granite-pegmatite system with a lithium deposit is localized in the northern marginal part of the Onon terrane (Aginskii massif) and ajoins to the Ingoda-Shilka branch of the Mongol-Okhotsk suture in the south. This paper presents the first U-Pb (SHRIMP) age of granites and barren and spodumene pegmatites of the Zavitaya field. The Zavitaya polychronous granite-pegmatite system evolved through 40 million years: porphyritic biotite granites (169.0 ± 3 Ma), two mica granites-leucogranites (147.5 ± 3.1 Ma), muscovite leucogranites (140.0 ± 3.0 Ma), barren pegmatites (139.6 ± 3.1 Ma), and lithium spodumem pegmatites (129.6 ± 2.7 Ma). The formation of the system coincides with the change in geodynamic regimes of the region at the Middle Jurassic-Early Cretaceous boundary: the age of the early granites of the system and spodumene pegmatites corresponds to the termination of collision and to the beginning of the Early Cretaceous rifting, respectively.

  3. New light on caldera evolution - Askja, Iceland

    SciTech Connect

    Brown, G.C.; Everett, S.P.; Rymer, H.; McGarvie, D.W.; Foster I. )

    1991-04-01

    The large multiple-caldera volcanic system of Askja, central Iceland, is composed principally of subglacial basaltic hyaloclastite-pillow-lava formations and postglacial basaltic scoria and flows. Traditionally, such calderas are believed to be formed by downfaulting and ring-fracture collapse. Whereas this certainly applies to the smaller A.D. 1875 caldera, the older main caldera may have developed positive relief during subglacial construction of laterally confined hyaloclastite ridges above erupting fractures. This is supported by the evidence of a large negative gravity anomaly that reaches minima over the marginal low-density ridges but which is less negative within the caldera, where relatively dense postglacial lavas are believed to cover a more limited hyaloclastite succession beneath the caldera floor.

  4. Nonstatistical dynamics on the caldera

    NASA Astrophysics Data System (ADS)

    Collins, Peter; Kramer, Zeb C.; Carpenter, Barry K.; Ezra, Gregory S.; Wiggins, Stephen

    2014-07-01

    We explore both classical and quantum dynamics of a model potential exhibiting a caldera: that is, a shallow potential well with two pairs of symmetry related index one saddles associated with entrance/exit channels. Classical trajectory simulations at several different energies confirm the existence of the "dynamical matching" phenomenon originally proposed by Carpenter, where the momentum direction associated with an incoming trajectory initiated at a high energy saddle point determines to a considerable extent the outcome of the reaction (passage through the diametrically opposing exit channel). By studying a "stretched" version of the caldera model, we have uncovered a generalized dynamical matching: bundles of trajectories can reflect off a hard potential wall so as to end up exiting predominantly through the transition state opposite the reflection point. We also investigate the effects of dissipation on the classical dynamics. In addition to classical trajectory studies, we examine the dynamics of quantum wave packets on the caldera potential (stretched and unstretched). These computations reveal a quantum mechanical analogue of the "dynamical matching" phenomenon, where the initial expectation value of the momentum direction for the wave packet determines the exit channel through which most of the probability density passes to product.

  5. Nonstatistical dynamics on the caldera

    SciTech Connect

    Collins, Peter; Wiggins, Stephen; Kramer, Zeb C. Ezra, Gregory S.; Carpenter, Barry K.

    2014-07-21

    We explore both classical and quantum dynamics of a model potential exhibiting a caldera: that is, a shallow potential well with two pairs of symmetry related index one saddles associated with entrance/exit channels. Classical trajectory simulations at several different energies confirm the existence of the “dynamical matching” phenomenon originally proposed by Carpenter, where the momentum direction associated with an incoming trajectory initiated at a high energy saddle point determines to a considerable extent the outcome of the reaction (passage through the diametrically opposing exit channel). By studying a “stretched” version of the caldera model, we have uncovered a generalized dynamical matching: bundles of trajectories can reflect off a hard potential wall so as to end up exiting predominantly through the transition state opposite the reflection point. We also investigate the effects of dissipation on the classical dynamics. In addition to classical trajectory studies, we examine the dynamics of quantum wave packets on the caldera potential (stretched and unstretched). These computations reveal a quantum mechanical analogue of the “dynamical matching” phenomenon, where the initial expectation value of the momentum direction for the wave packet determines the exit channel through which most of the probability density passes to product.

  6. Nonstatistical dynamics on the caldera.

    PubMed

    Collins, Peter; Kramer, Zeb C; Carpenter, Barry K; Ezra, Gregory S; Wiggins, Stephen

    2014-07-21

    We explore both classical and quantum dynamics of a model potential exhibiting a caldera: that is, a shallow potential well with two pairs of symmetry related index one saddles associated with entrance/exit channels. Classical trajectory simulations at several different energies confirm the existence of the "dynamical matching" phenomenon originally proposed by Carpenter, where the momentum direction associated with an incoming trajectory initiated at a high energy saddle point determines to a considerable extent the outcome of the reaction (passage through the diametrically opposing exit channel). By studying a "stretched" version of the caldera model, we have uncovered a generalized dynamical matching: bundles of trajectories can reflect off a hard potential wall so as to end up exiting predominantly through the transition state opposite the reflection point. We also investigate the effects of dissipation on the classical dynamics. In addition to classical trajectory studies, we examine the dynamics of quantum wave packets on the caldera potential (stretched and unstretched). These computations reveal a quantum mechanical analogue of the "dynamical matching" phenomenon, where the initial expectation value of the momentum direction for the wave packet determines the exit channel through which most of the probability density passes to product.

  7. The worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Marti, Joan

    2015-04-01

    Collapse calderas are one of the most important volcanic structures not only because of their hazard implications, but also because of their high geothermal energy potential and their association with mineral deposits of economic interest. In 2008 we presented a new general worldwide Collapse Caldera DataBase (CCDB), in order to provide a useful and accessible tool for studying and understanding caldera collapse processes. The principal aim of the CCDB is to update the current field based knowledge on calderas, merging together the existing databases and complementing them with new examples found in the bibliography, and leaving it open for the incorporation of new data from future studies. Currently, the database includes over 450 documented calderas around the world, trying to be representative enough to promote further studies and analyses. We have performed a comprehensive compilation of published field studies of collapse calderas including more than 500 references, and their information has been summarized in a database linked to a Geographical Information System (GIS) application. Thus, it is possible to visualize the selected calderas on a world map and to filter them according to different features recorded in the database (e.g. age, structure). The information recorded in the CCDB can be grouped in seven main information classes: caldera features, properties of the caldera-forming deposits, magmatic system, geodynamic setting, pre-caldera volcanism,caldera-forming eruption sequence and post-caldera activity. Additionally, we have added two extra classes. The first records the references consulted for each caldera. The second allows users to introduce comments on the caldera sample such as possible controversies concerning the caldera origin. During the last seven years, the database has been available on-line at http://www.gvb-csic.es/CCDB.htm previous registration. This year, the CCDB webpage will be updated and improved so the database content can be

  8. Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia

    NASA Astrophysics Data System (ADS)

    Braitseva, O. A.; Melekestsev, I. V.; Ponomareva, V. V.; Sulerzhitsky, L. D.

    1995-12-01

    The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight ‘Krakatoa-type’ and three ‘Hawaiian-type’ calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000 40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000 50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500 7800 and 1300 1800 14C years BP.

  9. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry

    USGS Publications Warehouse

    Lipman, P.W.

    1997-01-01

    Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3-5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault platesubsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to

  10. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.

    Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3-5km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to

  11. The High Rock caldera complex, NW Nevada: Geologic mapping, volcanology, geochemistry, and ultra-high precision 40Ar/39Ar dating of early Yellowstone hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Hausback, B.; Smith, J.; Henry, C. D.; Hilton, R. P.; McIntosh, W. C.; Heizler, M. T.; Noble, D. C.

    2012-12-01

    Our new work reveals a complex evolution of the High Rock caldera, one of the oldest calderas related to initiation of the Yellowstone hotspot. The caldera formed at 16.43±0.01 Ma (n=2, Fish Canyon sanidine = 28.201 Ma; all ages reported here agree with stratigraphy) during eruption of the zoned (metaluminous, high-silica dacite to slightly peralkaline, low-silica rhyolite), abundantly porphyritic Summit Lake Tuff. The only exposed precaldera rocks are a suite of intermediate lavas along the western margin. They are undated but compositionally similar to 30 Ma rocks in the region, so probably unrelated to the caldera. The caldera margin is entirely buried by moat domes and post-collapse lavas and tuff. Sparsely porphyritic rhyolite lavas erupted at 16.30±0.01 Ma (n=1) north of the caldera, possibly along the ring fracture. A large suite of petrographically and compositionally nearly indistinguishable, abundantly porphyritic, peralkaline rhyolite lavas and tuffs, the Soldier Meadow (SM) rock type, erupted from vents around the entire caldera margin in two pulses at 16.14±0.01 and 16.09±0.01 Ma (n=6 and 3). The first pulse includes lavas along the western and eastern margin; the Soldier Meadow Tuff (SMT, a moderately peralkaline, crystal-rich welded ignimbrite that is thinly-layered with coarse lag breccias in the proximal area and massive in distal locations), which erupted along the eastern caldera margin; and accidental blocks (up to 3m) of SMT brought up in the interior of the caldera by later eruptions. The second pulse includes several more lavas and associated small-volume flow, fall, and surge(?) tuffs along the northeastern and southwestern margin. Distribution of the SM rock type suggests that its magma chamber underlay the entire caldera. Rocks of the second pulse are distinguished only by higher incompatible element concentrations (Rb, Zr, Nb, Th), which suggests the magma body continued to differentiate between pulses. The tuffs of Alkali Flat and

  12. Third hole planned at Valles Caldera

    NASA Astrophysics Data System (ADS)

    Gardner, Jamie

    Valles caldera, N. Mex., is the culmination of more than 13 million years of volcanism in the Jemez volcanic field and is an excellent model for resurgent calderas and for the high-temperature geothermal systems found with them. This month one of the biggest diamond drills in the world will start the third research core hole in the caldera. Valles Caldera 2B will be the tenth core hole in the Department of Energy's Continental Scientific Drilling Program.CSDP drilling in the 1.1-million-year-old caldera began in 1984 in the southwest moat zone when the research hole Valles Caldera 1 was continuously cored to 856 m. VC-1 intersected a hydrothermal outflow plume from the deep geothermal system. Data indicate multiple episodes of hydrothermal activity in the volcanic field's history, as well as multiple episodes of rhyolite magma generation during evolution of the caldera. The June 10, 1988 (vol. 63), issue of Journal of Geophysical Research—Solid Earth and Planets carried a special section on results from VC-1.

  13. Evolution of the Olympus Mons Caldera, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Robinson, Mark S.; Zuber, Maria T.

    1990-01-01

    Extensive high-resolution (15 to 20 m/pixel) coverage of Olympus Mons volcano permits the investigation of the sequence of events associated with the evolution of the nested summit caldera. The sequence of the intra-caldera events is well illustrated by image data collected on orbits 473S and 474S of Viking Orbiter 1. These data cover both the oldest and youngest portions of the caldera floor. The chronology inferred from the observations is presented which in turn can be interpreted in terms of the internal structure of the volcano (i.e., magma chamber depth and the existence of dikes).

  14. Surveying Dead Trees and CO(sub 2)-Induced Stressed Trees Using AVIRIS in the long Valley Caldera

    NASA Technical Reports Server (NTRS)

    De Jong, Steven M.

    1996-01-01

    None given. Reports on dying trees in the long Valley Caldera, in the eastern Sierra Nevada (California) Mammoth Mountains. Reports on several large areas of dying trees, and causes for their dying off, including most importantly, elevated CO(sub 2) levels.

  15. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    SciTech Connect

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  16. Hydrology of the Newberry Volcano caldera, Oregon

    USGS Publications Warehouse

    Sammel, E.A.; Craig, R.W.

    1983-01-01

    Precipitation in the Newberry Caldera is very nearly in balance with evaporation, evapotranspiration, and streamflow. Calcium, magnesium, and bicarbonate ions predominate in the more dilute ground and surface water. Thermal waters from springs and wells have concentrations of 900 milligrams per liter or more and are characterized by high concentrations of sodium and sulfate. Attempts to account for the origin of the hot springs on the basis of mixing relations and isotopic analyses were inconclusive; the springs may represent mixtures of thermal and nonthermal water which are altered by gases rising from sources beneath the caldera floor. Annual recharge to deep aquifers beneath the caldera is probably in the range 2,500 to 6,500 acre-feet. Observations in a Geological Survey drill hole suggest that part of the water may flow to aquifers at depths as much as 1,900 feet beneath the caldera floor. Potential recharge to a postulated geothermal reservoir probably is extremely small. (USGS)

  17. Caldera Formation on the Vance Seamounts

    NASA Astrophysics Data System (ADS)

    Clague, D.; Paduan, J.; Cousens, B.; Cornejo, L.; Perfit, M.; Wendt, R.; Stix, J.; Helo, C.

    2006-12-01

    The Vance Seamounts are a chain of near-ridge volcanoes located just west of the southern Juan de Fuca Ridge. The six volcanoes are built on ocean crust ranging from 0.78 Ma at the southeastern end to 2.55 Ma in the northwest. Morphologic analysis indicates that the volcanoes were constructed sequentially and get younger to the southeast towards the ridge axis. Like many near-ridge volcanoes, some of the Vance Seamounts have large offset calderas that presumably formed above evacuated shallow magma chambers within the upper ocean crust. In summer 2006, we completed 6 dives using MBARI's ROV Tiburon to study the formation of these calderas. The floor of each caldera consists of flat-lying volcaniclastite, under about 25 cm of pelagic sediment. Some caldera floors have mounds of post-caldera pillow flows. The caldera walls have a lower section covered by talus and an upper section of interbedded massive flows with columnar joints (to 11 m thick) and pillow basalts. The top of each caldera wall has a unit of volcanic mudstone to sandstone ranging from 20 cm to 2 m thick. The fine matrix of many of these samples is green hydrothermal clay. The finest siltstone to mudstone samples appear to be layers of massive tan hydrothermal clays. Talus fragments, lava and volcaniclastite outcrops are universally coated and cemented by 1 to 4 cm-thick deposits of hydrothermal Mn-oxide crusts, even on the youngest of the volcanoes. Volcanic particles in the sandstones are mostly dense angular glass, but bubble-wall fragments (limu o Pele) are present and indicate formation during low-energy pyroclastic eruptions. Without the few percent limu o Pele fragments, the glass fragments would resemble those inferred to form by quench granulation. We suggest that quench granulation is actually pyroclastic fragmentation that occurs as coalesced magmatic gas bubbles disrupt the molten lava surface at the vents. Our observations confirm that the more southeasterly offset calderas truncated thick

  18. Research Spotlight: Extraordinary uplift of Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-02-01

    In Yellowstone National Park, located in Wyoming, Montana, and Idaho, the Yellow­stone caldera, which extends about 40 kilometers by 60 kilometers, began in 2004 a period of accelerated uplift, with rates of uplift as high as 7 centimeters per year. From 2006 to 2009 the uplift rate slowed. Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) ground deformation measurements described by Chang et al. show that in the northern caldera, uplift decreased from 7 centimeters per year in 2006 to 5 in 2008 and 2 in 2009. In the southwestern portion of the caldera, uplift decreased from 4 centimeters per year in 2006 to 2 in 2008 and 0.5 in 2009, demonstrating a spatial pattern of ground motion decrease from southwest to northeast along the caldera. (”Geophysical Research Letters, doi:10.1029/2010GL045451, 2010)

  19. Intracaldera volcanism and sedimentation - Creede Caldera, Colorado

    SciTech Connect

    Heiken, G.; Krier, D.; Snow, M.G.

    1997-06-01

    Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous elastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus ({open_quotes}moat{close_quotes}) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovolcanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for elastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

  20. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo-U deposit, Transbaikalia

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Rebetsky, Yu. L.; Poluektov, V. V.; Burmistrov, A. A.

    2015-07-01

    The Antei deposit of the southeastern Transbaikalian region is one of the largest uranium mines in Russia. It is hosted by the Late Paleozoic granitic basement of the Streltsovskaya caldera and was formed as a result of Late Mesozoic tectonothermal activity. Vein and stockwork-disseminated molybdenum-uranium mineralization at this deposit is controlled by zones of intense hydrothermal alteration, cataclasis, brecciation, and intense fracturing along steeply dipping faults, which acted as conduits for mineralizing fluids and hosts to the ore bodies. The upper edge of the ore-bearing zone is located at a depth of 400 m, and its lower edge was intersected at a depth of 1300 m from the day surface. The conditions of ore localization were determined using structural-geological and petrophysical studies coupled with numerical modeling of the effects of gravitational body forces at purely elastic and postcritical elastoplastic deformational stages. The dynamics of the tectonic stress field in the rock massif was reconstructed using the results of mapping of morphogenetic and kinematic characteristics of fault and fracture systems, as well as data on petrography and mineralogy of rocks and vein-filling material. It was shown that the fault framework of the deposit was formed in four tectonic stages, three of which took place in the geologic past and one of which reflects recent geologic history. Each tectonic stage was characterized by different parameters of the tectonic stress-strain field, fault kinematics, and conditions of mineral formation. The following types of metasomatic rocks are recognized within the deposit: high-temperature K-feldspar rocks and albitites (formed during the Late Paleozoic as the primary structural elements of a granitic massif) and Late Mesozoic low-temperature preore (hydromicatized rocks), synore (hematite, albite, chlorite, and quartz) and postore (kaolinite-smectite) rocks. The following petrophysical parameters were determined for all

  1. Reconstruction of the most recent volcanic eruptions from the Valles caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Brunstad, K. A.; Gardner, J. N.

    2011-01-01

    Products of the latest eruptions from the Valles caldera, New Mexico, consist of the El Cajete Pyroclastic Beds and Battleship Rock Ignimbrite, a sequence of pyroclastic fall and density current deposits erupted at ~ 55 ka, capped by the later Banco Bonito Flow erupted at ~ 40 ka, and collectively named the East Fork Member of the Valles Rhyolite. The stratigraphy of the East Fork Member has been the subject of conflicting interpretations in the past; a long-running investigation of short-lived exposures over a period of many years enables us to present a more complete event stratigraphy for these eruptions than has hitherto been possible. The volume of rhyolitic magma erupted during the 55 ka event may have been more than 10 km 3, and for the 40 ka event can be estimated with rather more confidence at 4 km 3. During the earlier event, plinian eruptions dispersed fallout pumice over much of the Valles caldera, the southern Jemez Mountains, and the Rio Grande rift. We infer a fallout thickness of several decimeters at the site of the city of Santa Fe, and significant ash fall in eastern New Mexico. In contrast, pyroclastic density currents were channeled within the caldera moat and southwestward into the head of Cañon de San Diego, the principal drainage from the caldera. Simultaneous (or rapidly alternating) pyroclastic fallout and density current activity characterized the ~ 55 ka event, with density currents becoming more frequent as the eruption progressed through two distinct stages separated by a brief hiatus. One early pyroclastic surge razed a forest in the southern caldera moat, in a similar manner to the initial blast of the May 18, 1980 eruption of Mt. St. Helens. Ignimbrite outflow from the caldera through the drainage notch may have been restricted in runout distance due to steep, rugged topography in this vicinity promoting mixing between flows and air, and the formation of phoenix clouds. Lavas erupted during both the ~ 55 and ~ 40 ka events were

  2. Temperature data from wells in Long Valley Caldera, California

    USGS Publications Warehouse

    Farrar, Christopher; DeAngelo, Jacob; Williams, Colin; Grubb, Frederick; Hurwitz, Shaul

    2010-01-01

    The 30-by-20-km Long Valley Caldera (LVC) in eastern California (fig.1) formed at 0.76 Ma in a cataclysmic eruption that resulted in the deposition of 600 km? of Bishop Tuff outside the caldera rim (Bailey, 1989). By approximately 0.6 Ma, uplift of the central part of the caldera floor and eruption of rhyolitic lava formed the resurgent dome. The most recent eruptive activity in the area occurred approximately 600 yr ago along the Mono-Inyo craters volcanic chain (Bailey, 2004; Hildreth, 2004). LVC hosts an active hydrothermal system that includes hot springs, fumaroles, mineral deposits, and an active geothermal well field and power plant at Casa Diablo along the southwestern boundary of the resurgent dome (Sorey and Lewis, 1976; Sorey and others, 1978; Sorey and others, 1991). Electric power generation began in 1985 with about 10 Mwe net capacity and was expanded to about 40 Mwe (net) in 1991 (Campbell, 2000; Suemnicht and others, 2007). Plans for further expansion are focused mainly on targets in the caldera?s western moat (Sass and Priest, 2002) where the most recent volcanic activity has occurred (Hildreth, 2004). LVC has been the site of extensive research on geothermal resources and volcanic hazards (Bailey and others, 1976; Muffler and Williams, 1976; Miller and others, 1982; Hill and others 2002). The first geothermal exploratory drilling was done in the shallow (< 200 m deep) hydrothermal system at Casa Diablo in the 1960?s (McNitt, 1963). Many more boreholes were drilled throughout the caldera in the 1970?s and 1980?s by private industry for geothermal exploration and by the U.S. Geological Survey (USGS) and Sandia National Laboratory for volcanic and geothermal research and exploration. Temperature logs were obtained in some of these wells during or immediately following drilling, before thermal equilibration was complete. Most of the temperature logs, however, were obtained weeks, months, or years after well completion and are representative of dynamic

  3. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Isaia, Roberto; Neri, Augusto; Vitale, Stefano; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Esposti Ongaro, Tomaso; Iannuzzi, Enrico; Pistolesi, Marco; Rosi, Mauro

    2015-04-01

    Campi Flegrei is an active volcanic area situated in the Campanian Plain (Italy) and dominated by a resurgent caldera. The great majority of past eruptions have been explosive, variable in magnitude, intensity, and in their vent locations. In this hazard assessment study we present a probabilistic analysis using a variety of volcanological data sets to map the background spatial probability of vent opening conditional on the occurrence of an event in the foreseeable future. The analysis focuses on the reconstruction of the location of past eruptive vents in the last 15 ka, including the distribution of faults and surface fractures as being representative of areas of crustal weakness. One of our key objectives was to incorporate some of the main sources of epistemic uncertainty about the volcanic system through a structured expert elicitation, thereby quantifying uncertainties for certain important model parameters and allowing outcomes from different expert weighting models to be evaluated. Results indicate that past vent locations are the most informative factors governing the probabilities of vent opening, followed by the locations of faults and then fractures. Our vent opening probability maps highlight the presence of a sizeable region in the central eastern part of the caldera where the likelihood of new vent opening per kilometer squared is about 6 times higher than the baseline value for the whole caldera. While these probability values have substantial uncertainties associated with them, our findings provide a rational basis for hazard mapping of the next eruption at Campi Flegrei caldera.

  4. Hidden calderas evidenced by multisource geophysical data; example of Cappadocian Calderas, Central Anatolia

    NASA Astrophysics Data System (ADS)

    Froger, J.-L.; Lénat, J.-F.; Chorowicz, J.; Le Pennec, J.-L.; Bourdier, J.-L.; Köse, O.; Zimitoglu, O.; Gündogdu, N. M.; Gourgaud, A.

    1998-10-01

    The Cappadocian volcanic field in central Anatolia (Turkey) is characterised by a sequence of 10 Neogene ignimbrites. The associated calderas have been partly dismantled and buried by subsequent tectonic and sedimentary processes and, therefore, cannot be readily recognized in the field. Recent progress in the understanding of the stratigraphic correlations and flow patterns has identified two main probable source areas for the ignimbrites. Detailed study of these areas, based on gravity surveys, remote sensing data (SPOT and ERS1 images) and digital elevation models (DEM), has provided evidence for two major caldera complexes and their relationship to old stratovolcanoes and Neogene tectonics. The older Nevsehir-Acigöl caldera complex, located between the towns of Acigöl, Nevsehir and Cardak, is inferred to be the source of the Kavak and Zelve ignimbrites. The Nevsehir-Acigöl caldera complex is defined mainly by a -35 mGal circular gravimetry anomaly about 15 km in diameter. The boundaries of this, now buried, caldera complex are shown by high gradients on the Bouguer gravity anomaly map. The younger Derinkuyu caldera complex, located between the Erdas stratovolcano and the Ciftlik basin, is inferred to be the source of the Sarimaden, Cemilköy, Gördeles and Kizilkaya ignimbrites. It is well-defined by a rectangular (35×23 km) gravity low (-30 mGal) with a positive high (+20 mGal) in the center. Gravity, remote sensing data and the DEM provide evidence that the Erdas stratovolcano, on the northern margin of the Derinkuyu caldera complex, represents the remnants of a large stratovolcano partly cut by one or more caldera collapses. The positive anomaly within the Derinkuyu caldera complex is centered on the 15-km-wide Sahin Kalesi volcanic massif. Field evidence and structural features inferred from the DEM and remote sensing data strongly suggest that this massif is a resurgent doming associated with the Gördeles ignimbrite eruption. High-resolution ERS1

  5. Modeling sill intrusion in volcanic calderas

    NASA Astrophysics Data System (ADS)

    Macedonio, Giovanni; Giudicepietro, Flora; D'Auria, Luca; Martini, Marcello

    2015-04-01

    We present a numerical model for describing sill intrusion in volcanic calderas. The dynamics of volcanic calderas are often subject to long-term unrests, with remarkable ground deformation, seismicity, and geochemical changes, that do not culminate in an eruption. On the contrary, in some cases, unrests with minor geophysical changes are followed, in few months, by an eruption, as in the case of Rabaul Caldera in 1994 and Sierra Negra (Galapagos) in 2005. The main common features of calderas are the relevant ground deformations with intense uplift episodes, often followed by subsidence. We think that the process of sill intrusion can explain the common features observed on different calderas. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks and expands radially. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating magma intrusion in the viscous regime. The numerical simulations show that during the feeding process, the ground is subject to uplift. When the feeding stops a subsidence occurs in the central zone. For very low flexural rigidity of the elastic plate, the subsidence can occur even during the intrusion of the sill. The stress field produced by the intrusion is mainly concentrated in a circular zone that follows the sill intrusion front.

  6. Composite Calderas: The Long and Short of it

    NASA Astrophysics Data System (ADS)

    Gravley, D. M.; Hasegawa, T.; Nakagawa, M.; Wilson, C. J.

    2006-12-01

    Calderas formed in supereruptions are normally linked to a single magma body. However, caldera formation, regional tectonics, and multiple magma bodies may interact to form composite structures with complex geometries. The term composite caldera is often used without reference as to whether the `composite' is in time or space. Three examples of composite caldera styles from New Zealand and Japan show field, geophysical, geochemical and isotopic evidence to suggest that current models for the size, shape and evolution of calderas may be too simplistic. In our examples, multiple separate magma bodies distributed in either space or time, or both, may play a significant role in composite caldera formation. Multiple, clustered collapse events incremental in time: Akan caldera in Hokkaido appears to be a single, rectangular shaped caldera. However, the identification of 17 eruptive units spanning >1 Myr suggests that the caldera evolved incrementally over time and space. New gravity data shows that the caldera is actually a daisy-chain of 3 distinct collapse structures that can be correlated, using lithic componentry, to 3 major geochemical groups in the eruptive products. Multiple, clustered collapse events in a single eruption sequence: Shikotsu caldera in Hokkaido was originally thought to have formed following the eruption of a single large zoned magma chamber. However, the caldera-related deposits are characterized by several geochemically distinct pumice types that can not have been accommodated in a single magma system. Our studies suggest that the variations in pumice compositions are consistent with multiple distinct magma bodies feeding coeval eruptions from several vent sources within an area that collapsed to form a single caldera. Paired calderas with linking eruption-related regional faulting: Rotorua and Ohakuri calderas in New Zealand are 30 km apart and formed in close succession during a complex but virtually continuous eruption sequence at ca. 240 ka

  7. Geologic map of the Crystal Peak Caldera, west-central Utah

    SciTech Connect

    Steven, T.A.

    1989-01-01

    In early Oligocene time, an area 16 by 10 km across near Crystal Peak was suddenly converted from a dissected plateau to a steep-sided topographic basin; this was coincident with eruption of the Tunnel Spring tuff. Subsidence was complex; the western part of the basin seems underlain by an oval-shaped block (caldera) bounded by steep walls; whereas, the eastern part of the basin is less deeply subsided and contains thinner and more irregularly distributed fill. A gravity low closely mirrors the subsided area. In middle Oligocene time, two major ash-flow formations of the Needles Range Group invaded the caldera where they formed coherent sheets interlayered with locally derived gravels.

  8. A Comparison of Historic Caldera-Forming Events

    NASA Astrophysics Data System (ADS)

    Stix, J.

    2002-12-01

    Recent field, experimental, and theoretical studies of calderas have advanced our understanding of how calderas form. With this in mind, I compare and contrast the styles and mechanisms of caldera development for five historic events: Katmai 1912, Kilauea 1924, Fernandina 1968, Pinatubo 1991, and Miyakejima 2000. As well as affording an opportunity to compare felsic and mafic systems, these examples allow us to identify systematic similarities and differences during the process of caldera formation. Critical questions include the following. (1) What are durations of caldera formation, as well as precursory signals and triggering mechanisms? (2) Why is there frequently a mismatch between caldera volumes at the surface and magma volume changes in the subsurface? (3) What are the relative proportions of erupted magma vs. magma which is drained and/or transported laterally in the subsurface? (4) How much magma is displaced, either by eruption or by drainage, before a caldera starts forming at the surface? (5) Does caldera subsidence occur en masse, incrementally, or somewhere between these two extremes of behavior? (6) Does subsidence of the caldera block help magma to be evacuated from the chamber, or is the subsidence process a passive response to magma withdrawal by other means? In addition to addressing the above questions, I will discuss how caldera formation influences the development of "open" and "closed" magmatic systems. Finally, I will discuss the problems of scaling, as the historic examples discussed here are 1-3 orders of magnitude smaller than large-scale caldera-forming ignimbrite eruptions.

  9. Kulshan caldera: A Quaternary subglacial caldera in the North Cascades, Washington

    USGS Publications Warehouse

    Hildreth, W.

    1996-01-01

    Calderas that collapse during large pyroclastic eruptions are anomalously rare in the Cascade arc. Recognition of the early Pleistocene 4.5 ?? 8 km Kulshan caldera, filled with rhyodacite ignimbrite at the northeast foot of Mount Baker, brings to only three the Quaternary calderas identified in the Cascades. A near-vertical ring fault cut in basement rocks of the North Cascades encloses 30 km2 of intracaldera ignimbrite (and intermixed collapse breccia) >1 km thick but with no floor exposed. The Lake Tapps tephra in the Puget lowland is the correlative fallout; 200 km from the source, it is as thick as 30 cm. Features of the distal ash fall and the intracaldera tuff suggest large-scale phreatomagmatism during an eruption that may have started subglacially. Several advances of the Cordilleran ice sheet subsequently obliterated the topographic rim, removed every vestige of extracaldera ignimbrite and proximal fallout, and stripped any precaldera extrusive rocks - the former existence of which is suggested only by a few silicic intrusions that cut the circumcaldera basement. Although the caldera is not structurally resurgent, several early intracaldera rhyodacite lavas intrude and rest directly on ignimbrite or on ashy caldera-lake sediments reworked from the eruption products. Subsidence areas, pumice compositions, and volumes of magma erupted (>50 km3) are similar for the Kulshan, Rockland, and Crater Lake (Mazama) events, the three Quaternary caldera-forming eruptions now recognized in the Cascades.

  10. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  11. Imaging hydrothermal systems at Furnas caldera (Azores, Portugal): Insights from Audio-Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Hogg, Colin; Kiyan, Duygu; Rath, Volker; Byrdina, Svetlana; Vandemeulebrouck, Jean; Silva, Catarina; Viveiros, Maria FB; Ferreira, Teresa

    2016-04-01

    The Furnas volcano is the eastern-most of the three active central volcanoes of Sao Miguel Island. The main caldera formed about 30 ka BP, followed by a younger eruption at 10-12 ka BP, which forms the steep topography of more than 200 m in the measuring area. It contains several very young eruptive centers, and a shallow caldera lake. Tectonic features of varying directions have been identified in the Caldera and its vicinity. In the northern part of the caldera, containing the fumarole field of Caldeiras das Furnas, a detailed map of surface CO2 emissions was recently made available. In 2015, a pilot survey of 13 AudioMagnetoTelluric soundings (AMT) and Electrical Resistivity Tomography (ERT) data were collected along two profiles in the eastern part of Furnas caldera in order to image the electrical conductivity of the subsurface. The data quality achieved by both techniques is extraordinary and first results indicate a general correlation between regions of elevated conductivity and the mapped surface CO2 emissions, suggesting that they may both be caused by the presence hydrothermal fluids. Tensor decomposition analysis using the Groom-Bailey approach produce a generalised geo-electric strike direction, 72deg East of North, for the AMT data compared to the surface geological strike derived from the major mapped fault crossing the profiles of 105deg. An analysis of the real induction arrows at certain frequencies (at depths greater than 350 m) infer that an extended conductor at depth does not exactly correspond to the degassing structures at the surface and extends outside the area of investigation. The geometry of the most conductive regions with electrical conductivities less then1 Ώm found at various depths differ from what was expected from earlier geologic and tectonic studies and possibly may not be directly related to the mapped fault systems at the surface. On the eastern profile, which seemed to be more appropriate for 2-D modelling with 72deg strike

  12. Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    NASA Astrophysics Data System (ADS)

    Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.

    2016-08-01

    In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus

  13. Surface Deformation of Los Humeros Caldera, Mexico, Estimated by Interferometric Synthetic Aperture Radar (InSAR).

    NASA Astrophysics Data System (ADS)

    Santos Basurto, R.; Lopez Quiroz, P.; Carrasco Nuñez, G.; Doin, M. P.

    2014-12-01

    Los Humeros caldera is located in the eastern part of the Trans-Mexican Volcanic Belt, to the north of the state of Puebla and bordering the west side of the state of Veracruz. The study of the caldera, is of great interest because there is a geothermal field currently working inside of it. In fact, Los Humeros, is the third more important geothermal field in Mexico. In this work, we used InSAR to estimate the surface deformation on the caldera, aiming to contribute to its modeling and to help preventing subsidence related hazards on the geothermal field and surroundings. On this study, we calculated 34 interferograms from 21 SAR images of the ENVISAT European Space Agency Mission. The analysis of the interferograms, allow us to detect, decorrelation of the interferometric signal increased, when time spans were greater than 70 days. Also, for those with good signal correlation, the atmospheric signal dominated the interferogram, masking completely the deformation. Moreover, residual orbital ramps were detected, in some of the calculated interferograms. An algorithm capable to remove all the interferogram signal contributions but the deformation related, has been implemented. Resulting deformation and its correlation with several variables like the geology, the hydrogeology and the seismic records, were analysed through its integration in a Geographic Information System.

  14. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  15. Buried caldera of mauna kea volcano, hawaii.

    PubMed

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  16. Core lithology, Valles caldera No. 1, New Mexico

    SciTech Connect

    Gardner, J.N.; Goff, F.; Goff, S.; Maassen, L.; Mathews, K.; Wachs, D.; Wilson, D.

    1987-04-01

    Vallas caldera No. 1 (VC-1) is the first Continental Scientific Drilling Program research core hole in the Vallas caldera and the first continuously cored hole in the region. The hole penetrated 298 m of moat volcanics and caldera-fill ignimbrites, 35 m of volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones, and shales with over 95% core recovery. The primary research objectives included coring through the youngest rhyolite flow within the caldera; obtaining structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone; and penetrating a high-temperature hydrothermal outflow plume near its source. This report presents a compilation of lithologic and geophysical logs and photographs of core that were collected while drilling VC-1. It is intended to be a reference tool for researchers interested in caldera processes and associated geologic phenomena.

  17. Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption

    NASA Astrophysics Data System (ADS)

    Smith, Victoria C.; Isaia, Roberto; Engwell, Sam L.; Albert, Paul. G.

    2016-06-01

    The Campanian Ignimbrite eruption dispersed ash over much of the central eastern Mediterranean Sea and eastern Europe. The eruption started with a Plinian phase that was followed by a series of pyroclastic density currents (PDCs) associated with the collapse of the Plinian column and the caldera. The glass compositions of the deposits span a wide geochemical range, but the Plinian fallout and PDCs associated with column collapse, the Lower Pumice Flow, only erupted the most evolved compositions. The later PDCs, the Breccia Museo and Upper Pumice Flow, erupted during and after caldera collapse, tap a less evolved component, and intermediate compositions that represent mixing between the end-members. The range of glass compositions in the Campanian Ignimbrite deposits from sites across the central and eastern Mediterranean Sea allow us to trace the dispersal of the different phases of this caldera-forming eruption. We map the fallout from the Plinian column and the plumes of fine material associated with the PDCs (co-PDCs) across the entire dispersal area. This cannot be done using the usual grain-size methods as deposits in these distal regions do not retain characteristics that allow attribution to either the Plinian or co-PDC phases. The glass compositions of the tephra at ultra-distal sites (>1500 km from the vent) match those of the uppermost PDC units, suggesting that most of the ultra-distal dispersal was associated with the late co-PDC plume that was generated during caldera collapse.

  18. I. An /sup 18/O//sup 16/O investigation of the Lake City caldera, San Juan Mountains, Colorado. II. /sup 18/O//sup 16/O relationships in tertiary ash-flow tuffs from complex caldera structures in central Nevada and the San Juan Mountains, Colorado

    SciTech Connect

    Larson, P.B.

    1984-01-01

    /sup 18/O//sup 16/O analyses were made on 355 samples in and around the 11 by 14 km Lake City calders, which formed 23 m.y. ago in response to the eruption of the rhyolitic Sunshine Peak Tuff. All of the major lithologies and hydrothermal alteration facies were analyzed, and a detailed delta/sup 18/O map was made of the caldera and its surroundings. The delta/sup 18/O values within the Lake City caldera are controlled by elevation, proximity to permeable zones, and proxmity to the resurgent intrusive rocks. delta/sup 18/O values decrease systematically with stratigraphic depth within the caldera. Mineralogic alteration facies within the caldera show complementary patterns. These data show that the resurgent intrusion was the heat engine that drove the Lake City hydrothermal system. Alteration in and near the intrusion occurred at high temperatures and intermediate water/rock ratios. Away from the resurgent intrusion, water-rock interaction in the permeable zones occurred at lower temperatures and high water/rock ratios. The regional eastward tilting has raised low-/sup 18/O rocks in the western part of the caldera to higher elevations than stratigraphically equivalent rocks in the eastern part of the caldera. Mineralogical alteration patterns are also similarly displaced.

  19. Glacial influence on caldera-forming eruptions

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Bindeman, Ilya

    2011-04-01

    It has been suggested that deglaciations have influenced volcanism in several areas around the world increasing productivity of mantle melting and eruptions from crustal magma chambers. However, the connection between glaciations and increased volcanism is not straightforward. Investigation of Ar-Ar, U-Pb, and 14C ages of caldera-forming eruptions for the past million years in the glaciated arc of Kamchatka has lead to the observation that the majority of large-volume ignimbrites, which are associated with the morphologically preserved calderas, correspond in time with "maximum glacial" conditions for the past several glacial cycles. In the field, the main proof is related to the fact that glaciated multi-caldera volcanoes hosted thick glacial ice caps. Additional evidence comes from clustering Kamchatka-derived marine ash layers with glacial moraines in DSDP cores. Here we present a set of new results from numerical modelling using the Finite Element Method that investigate how the glacial load dynamic may affect the conditions for ring-fault formation in such glaciated multi-caldera volcanoes. Different scenarios were simulated by varying: (1) the thickness and asymmetric distribution of the existing ice cap, (2) the depth and size of the magmatic reservoir responsible for the subsequent collapse event, (3) the thickness and mechanical properties of the roof rock due to the alteration by hydrothermal fluids, (4) the existence of a deeper and wider magmatic reservoir and (5) possible gravitational failure triggered, in part, by subglacial rock mass build up and hydrothermal alteration. The results obtained indicate that: (1) Any ice cap plays against ring fault formation; (2) Asymmetric distribution of ice may favour the initiation of trap-door type collapse calderas; (3) Glacial erosion of part of volcanic edifice or interglacial edifice failure may facilitate subsequent ring fault formation; (4) hydrothermal system under an ice cap may lead to a quite effective

  20. Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas

    NASA Astrophysics Data System (ADS)

    Kennedy, Ben; Wilcock, Jack; Stix, John

    2012-10-01

    A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1 km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic-hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles

  1. The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance

    NASA Astrophysics Data System (ADS)

    Petrinovic, I. A.; Martí, J.; Aguirre-Díaz, G. J.; Guzmán, S.; Geyer, A.; Paz, N. Salado

    2010-07-01

    Polygenetic, silicic collapse calderas are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes that occurred at 17.15 Ma and 10.3 Ma. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. We find that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60 vol.% of crystals) reservoir of batholithic size became unstable due to the effect of increasing regional transpression, which favoured local dilation through minor strike-slip faults from which ring faults nucleated and permitted caldera collapse. Both calderas are similar in shape, location and products. The 17.15 Ma caldera has an elliptical shape (17 × 14 km) elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620 km 2 with a minimum volume estimate of 140 km 3 (DRE). The 10.3 Ma episode generated another elliptical caldera (19 × 14 km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1700 km 2, representing a minimum eruption volume of 350 km 3(DRE). In this paper we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region.

  2. The Cerro Aguas Calientes caldera, NW Argentina: an example of a tectonically controlled, polygenetic, collapse caldera, and its regional significance

    NASA Astrophysics Data System (ADS)

    Petrinovic, Ivan A.; Martí, Joan; Aguirre-Diaz, Gerardo J.; Guzmán, Silvina R.; Geyer, Adelina; Grosse, Pablo; Salado Paz, Natalia

    2010-05-01

    Polygenetic, silicic collapse calderas such as Cerro Galán, Pastos Grandes, La Pacana, Vilama, Negra Muerta, Farallón Negro, Cerro Guacha, among others are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes occurred at 17.15 Ma and 10.3 Ma, respectively. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. Our results reveal that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60 vol. % of crystals) reservoir of batholitic size became unstable due to the effect of increasing regional transpression, favouring local dilation throughout minor strike slip faults from which ring faults nucleated and permitted caldera collapse. Both episodes are similar in shape, location and products of the resulting calderas. The 17.15 Ma caldera has an elliptical shape (17 × 14 km) and is elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620 km2 with a minimum volume estimate of 138 km3 (DRE). The 10.3 Ma episode generated another elliptical caldera (19 ×14 km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1,700 km2, representing a minimum eruption volume of 341 km3 (DRE). In this work we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region.

  3. The Campi Flegrei Deep Drilling Project (CFDDP): New insight on caldera structure, evolution and hazard implications for the Naples area (Southern Italy)

    NASA Astrophysics Data System (ADS)

    De Natale, Giuseppe; Troise, Claudia; Mark, Darren; Mormone, Angela; Piochi, Monica; Di Vito, Mauro A.; Isaia, Roberto; Carlino, Stefano; Barra, Diana; Somma, Renato

    2016-12-01

    The 501 m deep hole of the Campi Flegrei Deep Drilling Project, located west of the Naples metropolitan area and inside the Campi Flegrei caldera, gives new insight to reconstruct the volcano-tectonic evolution of this highly populated volcano. It is one of the highest risk volcanic areas in the world, but its tectonic structure, eruptive history, and size of the largest eruptions are intensely debated in the literature. New stratigraphic and 40Ar/39Ar geochronological dating allow us to determine, for the first time, the age of intracaldera deposits belonging to the two highest magnitude caldera-forming eruptions (i.e., Campanian Ignimbrite, CI, 39 ka, and Neapolitan Yellow Tuff, NYT, 14.9 ka) and to estimate the amount of collapse. Tuffs from 439 m of depth yield the first 40Ar/39Ar age of ca. 39 ka within the caldera, consistent with the CI. Volcanic rocks from the NYT were, moreover, detected between 250 and 160 m. Our findings highlight: (i) a reduction of the area affected by caldera collapse, which appears to not include the city of Naples; (ii) a small volume of the infilling caldera deposits, particularly for the CI, and (iii) the need for reassessment of the collapse amounts and mechanisms related to larger eruptions. Our results also imply a revaluation of volcanic risk for the eastern caldera area, including the city of Naples. The results of this study point out that large calderas are characterized by complex collapse mechanisms and dynamics, whose understanding needs more robust constraints, which can be obtained from scientific drilling.

  4. Setting A Stopwatch for Post-Caldera Effusive Rhyolite Eruptions at Yellowstone caldera, Wyoming

    NASA Astrophysics Data System (ADS)

    Till, C. B.; Vazquez, J. A.; Boyce, J. W.

    2015-12-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone caldera (Wyoming), Long Valley caldera (California), and Valles caldera (New Mexico) in the United States. Although orders of magnitude smaller in volume than rare caldera-forming supereruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear, particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses trace element diffusion in sanidine crystals measured at nanometer-scale with NanoSIMS to reveal that rejuvenation of a near-solidus or subsolidus silicic intrusion occurred within ~10 months following a protracted period (220 k.y.) of volcanic repose, and resulted in effusion of ~3 km3 of high-silica rhyolite lava at the onset of Yellowstone's last volcanic interval. In addition we find that the frequently made assumption in geospeedometry of a step-function initial condition can be inaccurate despite petrographic evidence for resorption, and can be addressed by interrogating diffusion time scale concordance between multiple trace elements that are geochemically similar. The results of this study reveal that a sufficiently energetic rejuvenation of Yellowstone's shallow crystal-melt mush and/or hydrothermally altered wall rock could lead to an effusive eruption within months. Fortunately, any significant rejuvenation of the reservoir is likely to be associated with deformation or seismicity and identifiable by geophysical monitoring.

  5. The graben caldera of Guanajuato, Mexico

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Tristán-González, M.; Labarthe-Hernández, G.; Marti, J.

    2013-05-01

    Guanajuato has been an important gold and silver mineral district of Mexico since the 16th century until Present. Famous mines such as Rayas, La Valenciana and El Cubo, are part of this important mining development. Stratigraphy and structures are well known, and major faults and vein systems are precisely mapped. The series include a Mesozoic metamorphosed volcano-sedimentary sequence interpreted as a tectonically accreted terrane during Early Cretaceous subduction; a >1000 m thick red beds sequence, apparently Eocene and interpreted originally as molasses posterior to K/T Laramide orogeny, but more probably fanglomerates filling a graben formed during mid-Tertiary extension; an Eocene-Miocene volcanic sequence that accumulated in this tectonic basin and the surrounding area, including andesitic lavas, silicic ignimbrites and surge deposits, and rhyolitic domes. Pyroclastic rocks have not been studied with a volcanological approach, with the purpose of understanding the physical volcanic processes that formed them. Randall (1994) suggested a caldera source for some of them. Our purpose is to describe the volcanic processes involved in the mid-Tertiary units of Guanajuato. There are dacitic and andesitic lavas that were apparently contemporaneous with deposition of the Red Conglomerate of Guanajuato. The ignimbrites correspond to the Sierra Madre Occidental volcanic province. These units were originated as two main pyroclastic densety currents sequences that formed the Loseros-Bufa and the Calderones formations. The former is rhyolitic and the later andesitic-dacitic. Loseros is composed of a series of thin-bedded to laminated pyroclastic surge deposits in continuous and concordant contact with overlying Bufa massive ignimbrite. Bufa ignimbrite is partly welded, with columnar jointing, completely devitrified, and highly silicified by post-deposition hydrothermalism and/or vapor phase alteration. Co-ignimbrite lithic lag breccias are observed at several sites in

  6. The Amazcala caldera, Queretaro, Mexico. Geology and geochronology

    NASA Astrophysics Data System (ADS)

    Aguirre-Díaz, Gerardo J.; López-Martínez, Margarita

    2001-11-01

    The Amazcala caldera is located 30 km NE of Querétaro City, near Amazcala, state of Querétaro. This caldera is the northernmost caldera within the central sector of the Mexican Volcanic Belt (MVB). It has a 11×14 km 2 elliptical shape, and was formed 7.3-6.6 Ma ago. All caldera products are rhyolites. The oldest caldera unit, the Ezequiel Montes pumice (EMP), is a widespread pumice fallout emplaced around 7.3 Ma ago. An isopach map of the EMP shows two dispersal axes, oriented to the SW and SE with respect to the caldera. The EMP is 5 m thick 40 km to the SW and 35 km to the SE of the caldera. An isopleth map of the EMP shows that pumice fragments increase in size toward the caldera, from 1 cm at 40 km to 25 cm near the caldera rim. The EMP is a regional stratigraphic marker. The Colón ignimbrite, dated at 7.3±0.5 Ma, is stratigraphically above the EMP. It consists of several ash-flow units interbedded with minor pumice fall lapilli and ash, with a minimum thickness of about 80 m at Colón. The caldera rim is occupied by several rhyolite lava domes and flows, some of which extend 10 km from the rim. These domes contain parts of fresh, aphyric obsidian. The last caldera event is an intracaldera rhyolitic dome near the NE rim at about 6.6 Ma. The dome is 4×2 km 2 and is elongated in the NE direction. The Amazcala caldera is 480 km from the Middle America Trench and represents the farthest inland caldera in the central sector of the MVB. Its age of 7.3-6.6 Ma indicates that it is the oldest caldera of the MVB so far reported. This confirms the general view that the volcanic activity of the MVB initiated at its northern margin, and then migrated southward in time.

  7. Stress fields controlling the formation of nested and overlapping calderas: Implications for the understanding of caldera unrest

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Martí, J.

    2009-04-01

    Commonly, the formation of a collapse caldera does not necessarily imply the end of the volcanic activity in the area. In many cases, successive calderas may form close to the previous collapse depression or intersecting it leading to overlapping collapse structures. Occasionally, subsequent caldera collapses may take place at the interior of the first caldera creating nested collapse structures. During the last years several authors have investigated numerically how the stress field around magma chambers may favour the formation of collapse calderas assuming that the host rock surrounding the magmatic reservoir behaves as a linear elastic homogeneous medium. The numerical models presented in this work study how a caldera collapse may modify the stress field of a volcanic area and hence the conditions for the formation of future collapse calderas. Our models take into account the effect of the collapse structure considering it as a mechanical discontinuity. We also investigate the mechanical influence of the intra- and extra-caldera deposits on the formation of new calderas. All the numerical models are two-dimensional assuming plane strain and considering that the surrounding crust behaves as a linear homogeneous elastic material. The computational domain corresponds to a cross-section of the upper crust (50 × 25 km) and magma chambers are modelled as sill-like cavities located at a certain depth below the Earth's surface. The existing collapse caldera depression is 8 km wide and 2.75 km deep, however we consider the caldera infill (i.e. intra-caldera material) to be 1.25 or 1.75 km thick. We assume as loading conditions an underpressure of 10 MPa imposed at the chamber walls, that is, negative excess pressure in the chamber. In some numerical runs we have considered the existence of a previous ring fault by introducing a thin and elongate vertical weak zone at the caldera margins. We find that the stress field around shallow-level magma chambers favouring the

  8. Elongate summit calderas as Neogene paleostress indicators in Antarctica

    USGS Publications Warehouse

    Paulsen, T.S.; Wilson, T.J.

    2007-01-01

    The orientations and ages of elongate summit calderas on major polygenetic volcanoes were compiled to document Miocene to Pleistocene Sh (minimum horizontal stress) directions on the western and northern flanks of the West Antarctic rift system. Miocene to Pleistocene summit calderas along the western Ross Sea show relatively consistent ENE long axis trends, which are at a high angle to the Transantarctic Mountain Front and parallel to the N77ºE Sh direction at Cape Roberts. The elongation directions of many Miocene to Pleistocene summit calderas in Marie Byrd Land parallel the alignment of polygenetic volcanoes in which they occur, except several Pleistocene calderas with consistent NNE to NE trends. The overall pattern of elongate calderas in Marie Byrd Land is probably due to a combination of structurally controlled orientations and regional stress fields in which Sh is oriented NNE to NE at a moderate to high angle to the trace of the West Antarctic rift system.

  9. Land- and resource-use issues at the Valles Caldera

    SciTech Connect

    Intemann, P.R.

    1981-01-01

    The Valles Caldera possesses a wealth of resources from which various private parties as well as the public at large can benefit. Among the most significant of these are the geothermal energy resource and the natural resource. Wildlife, scenic, and recreational resources can be considered components of the natural resource. In addition, Native Americans in the area value the Valles Caldera as part of their religion. The use of land in the caldera to achieve the full benefits of one resource may adversely affect the value of other resources. Measures can be taken to minimize adverse affects and to maximize the benefits of all the varied resources within the caldera as equitably as possible. An understanding of present and potential land and resource uses in the Caldera, and who will benefit from these uses, can lead to the formulation of such measures.

  10. Caldera collapse at near-ridge seamounts: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Coumans, Jason P.; Stix, John

    2016-10-01

    Collapse calderas are sub-circular volcanic depressions caused by subsidence of the magma reservoir roof during an eruption. Scaled physical models of caldera collapse using flat topography have been instrumental in investigating the spatial and temporal development of calderas, in particular, two distinctive sets of concentric ring faults, one reverse and one normal. More recent analog studies have investigated the effect of non-flat topography which alters the principle stress trajectories and resulting collapse structure. This work provides the basis for investigating how naturally scaled topographic loads may affect caldera collapse in relation to shallow magma reservoirs. The objective of this study is to understand how a near-ridge seamount affects caldera collapse from both a central and offset position as the seamount migrates above the magma reservoir as a result of plate motion. We utilize scaled analog models of caldera collapse in conjunction with three-dimensional (3D) laser scanning and digital particle image velocimetry (DPIV) to investigate caldera collapse dynamics at near-ridge seamounts. Experiments using a seamount cone positioned centrally above the magma reservoir result in (1) increased subsidence along the interior outward-dipping faults and (2) a preference to more symmetric collapse patterns as indicated by the subsidence profile and structure of the caldera relative to experiments with an offset cone. When the cone is offset, the collapse is asymmetric and trapdoor in nature, with the center of greatest subsidence displaced away from the region of largest topographic load. For these latter experiments, subsidence is focused where the roof is thinnest along an initial reverse fault, followed by a transition to an antithetic graben structure. The asymmetric collapse in the experiments results in a caldera with a tilted profile. Offset calderas at near-ridge seamounts are tilted towards the ridge axis, suggesting that they may have collapsed

  11. A preliminary study of older hot spring alteration in Sevenmile Hole, Grand Canyon of the Yellowstone River, Yellowstone Caldera, Wyoming

    USGS Publications Warehouse

    Larson, P.B.; Phillips, A.; John, D.; Cosca, M.; Pritchard, C.; Andersen, A.; Manion, J.

    2009-01-01

    Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640??ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480??ka) extend from the canyon rim to more than 300??m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal) + kaolinite ?? alunite ?? dickite, and an argillic or potassic alteration association with quartz + illite ?? adularia. Disseminated fine-grained pyrite or marcasite is ubiquitous in both alteration types. These alteration associations are characteristic products of shallow volcanic epithermal environments. The contact between the two alteration types is about 100??m beneath the rim. By analogy to other active geothermal systems including active hydrothermal springs in the Yellowstone Caldera, the transition from kaolinite to illite occurred at temperatures in the range 150 to 170????C. An 40Ar/39Ar age on alunite of 154,000 ?? 16,000??years suggests that hydrothermal activity has been ongoing since at least that time. A northwest-trending linear array of extinct and active hot spring centers in the Sevenmile Hole area implies a deeper structural control for the upflowing hydrothermal fluids. We interpret this deeper structure to be the Yellowstone Caldera ring fault that is covered by the younger tuff of Sulphur Creek. The Sevenmile Hole altered area lies at the eastern end of a band of hydrothermal centers that may mark the buried extension of the Yellowstone Caldera ring fault across the northern part of the Caldera. ?? 2009 Elsevier B.V.

  12. Seismic imaging of the Medicine Lake Caldera

    SciTech Connect

    Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

    1987-04-01

    Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

  13. Central San Juan caldera cluster: regional volcanic framework

    USGS Publications Warehouse

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  14. Evolution of deep collapse caldera: from structural to gravitational process

    NASA Astrophysics Data System (ADS)

    Geshi, N.; Acocella, V.; Ruch, J.

    2012-04-01

    We discuss the evolution of deep-subsiding caldera mainly controlled by gravitational process. Progress of caldera subsidence increases its subsidence/diameter ratio (S/D ratio). We investigate the surface features of calderas undergoing significant subsidence with regard to their diameter. First, we consider the evolution of the 2000 Miyakejima caldera, from double-concentric ring faults at earlier collapsing stages, to a gravitational-erosion dominant stage at a mature stage. When the topographic S/D approaches 0.33, the topographic S/D (hereafter S/Dt) becomes significantly different from the structural S/D (hereafter S/Ds), owing to the gravitational erosion on the caldera wall and accumulation of the debris on the floor. As collapse progresses, the peripheral block bounded by the inner reverse fault and outer normal fault extends and tilts towards the caldera center; it finally collapses towards the caldera floor and the double-ring faults disappeares. Subsidence of the caldera floor induces the gravitational erosion of the wall. This process increases the topographic diameter and the filling of the floor decreases the topographic depth. Consequently, the S/Dt decreases, while the continuous caldera subsidence increases the S/Ds. This evolution finds close similarities with the caldera collapses of Krakatau (1883), Katmai (1912), Fernandina (1968), Tolbachik (1975-76), Pinatubo (1991) and Dolomieu (2007). Analogue experiments mimic the observed variation, evolving from a depression controlled by the activity of the double-ring faults to that controlled by the gravitational slumping of the wall and sedimentation at the floor. The transition occurs for S/Dt ~0.34. These results show that the control on the shape of mature calderas (S/Ds>0.07) and approaching S/Dt=0.3 passes from a mainly structural to a mainly gravitational type. Both S/Dt and S/Ds are needed to describe the evolution of a collapse and the processes accompanying it. Evaluating the S/Dt and S

  15. The Chineysky gabbronorite-anorthosite layered massif (NorthernTransbaikalia, Russia): its structure, Fe-Ti-V and Cu-PGE deposits, and parental magma composition

    NASA Astrophysics Data System (ADS)

    Gongalsky, Bronislav I.; Krivolutskaya, Nadezhda A.; Ariskin, Alexey A.; Nikolaev, George S.

    2016-12-01

    The 1858 ± 17 Ma Chineysky layered anorthosite-gabbronorite massif is located in the southern part of the Siberian platform, within the Kodaro-Udokan metallogenic province of Northern Transbaikalia. The Chineysky Massif outcrops over approximately 130 km2 and contains Russia's largest V ore resources, hosted within titanomagnetite-rich layers, concentrated in the Magnitny and Etyrko deposits. The titanomagnetite ore reserves were estimated at 2 billion tons with 30 % Fe and 10 % TiO2 on average. In addition, two large Cu-PGE deposits—Rudny and Kontactovy—are hosted in the contact rocks between the intrusion and the sandstone floor rocks. A distinctive feature of the Chineysky sulfide ore is their Cu-enriched composition with much lesser amounts of nickel and cobalt (Cu/Ni/Co 76:7:1). The sulfide ore contains up to 355 ppm PGE and 30 ppm Au + Ag. Three types of sulfide mineralization have been distinguished: (1) endo-contact disseminated sulfides within gabbronorite, (2) exo-contact impregnations in sandstone, and (3) veins of massive sulfides in the exo-contact sandstone. The ore consists predominantly of chalcopyrite, with less abundant pentlandite, pyrrhotite, Co-Ni arsenides and sulfoarsenides, linneite-group minerals, sphalerite, cubanite, and millerite. In addition, many rare minerals were recognized in the ores, including PGM (sperrylite, michenerite, merenskyite, etc.). Using the latest version of the COMAGMAT-5 program, the parental magma temperature ( 1150 °C), its composition ( 55 wt.% SiO2, 5.8 % MgO), and the most primitive olivine (Fo77) and plagioclase (An69) compositions were calculated. According to the model, titanomagnetite starts to crystallize at T < 1133 °C (fO2 = NNO + 0.5), triggering sulfide liquid immiscibility when the silicate magma had 0.15 to 0.1 wt.% S.

  16. Historical unrest at large calderas of the world

    SciTech Connect

    Newhall, C.A.; Dzurisin, D.

    1989-09-01

    This is a remarkable reference for researchers interested in volcanic hazards and silicic volcanism. Because of long repose and often obscure shapes and large size calderas are a volcanic type less obvious and less well studied. Because they represent potentially highly dangerous and highly explosive volcanos which could have large-scale and even global impact when they erupt, it is very important to understand their behavior. This new volume represents an extensive effort at compiling real observations at earth's calderas. The authors manage to incorporate a very impressive list of original references that go far beyond standard volcanological literature and also often extend back many centuries to include the perspective of longer historic time at some calderas. If volcanologists are serious about eruption forecasting, they must be willing to dig out and absorb the lessons of historic observations as well as design instruments and make good measurements. There is an initial introductory chapter of 27 pages which attempts to lead the way to interpretation of various patterns of caldera unrest, based on synthesis of the various individual cases. The meat of the volumes is in sections on the individual calderas, enriched with many maps and figures documenting the caldera unrest. A valuable asset of the compilation is its broad scope, which incorporates the activity of related or possibly related cones, domes, solfataras, etc., with the parent ( ) caldera.

  17. Origins of oblique-slip faulting during caldera subsidence

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan P.; Walter, Thomas R.; SchöPfer, Martin P. J.; Walsh, John J.; Wyk de Vries, Benjamin; Troll, Valentin R.

    2013-04-01

    Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.

  18. Title: Long Valley Caldera 2003 through 2012: Overview of low level unrest in the last decade Authors: Stuart Wilkinson, David Hill, Michael Lisowski, Deborah Bergfeld, Margaret Mangan

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. K.; Hill, D. P.; Lisowski, M.; Bergfeld, D.; Mangan, M.

    2012-12-01

    Long Valley Caldera is located in central California along the eastern escarpment of the Sierra Nevada and at the western edge of the Basin and Range. The caldera formed 0.76 Ma ago during the eruption of 600 cubic kilometers the Bishop Tuff that resulted in the collapse of the partially evacuated magma chamber. Since at least late 1978, Long Valley Caldera has experienced recurring earthquake swarms and ground uplift, suggesting future eruptions are possible. Unrest in Long Valley Caldera during the 1980s to early 2000s is well documented in the literature. Episodes of inflation centered on the resurgent dome in the western part of the caldera occurred in 1979-1980, 1983, 1989-1990, 1997-1998, and 2002-2003, accumulating ~ 80 cm of uplift. Earthquakes of M ≥ 3.0 were numerous in the caldera and in the Sierra Nevada block to the south of the caldera from 1980 through 1983 (800 events including four M~ 6 earthquakes in 1980); in the caldera from 1997 through mid-1998 (150 events); and in the Sierra Nevada block from mid-1998 through 1999 (~160 events) and more modestly from 2002 through 2003 (7 events). In this presentation, we summarize the low-levels of caldera unrest during the last decade. The number of earthquakes in Sierra Nevada block and the caldera has gradually diminished over the last decade. Fifty Sierra Nevada earthquakes had magnitudes 3.0≤M≤4.6. In the caldera, only six earthquakes had magnitudes 3.0≤M≤3.8. A three-month swarm of minor earthquakes (235 events with 0.5≤M≤3.8; most below 2.0) occurred in the caldera in mid-2010. Analysis of continuous GPS data over the last year shows an inflationary pattern within the caldera centered on the resurgent dome, with a maximum uplift rate of ~ 2-3 cm/yr. The rate of deformation is comparable to that of 2002-2003, and well below ~ 70 cm/yr rates observed during the peak of inflation in the late 1990s. Steaming ground and diffuse CO2 discharge has long been a feature of Long Valley Caldera

  19. Stratigraphy of Reforma Caldera, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    García Sánchez, L.; Macias, J. L.; Osorio, L. S.; Pola, A.; Avellán, D. R.; Arce, J. L.; Saucedo, R.; Sánchez, J. M.; García-Tenorio, F.; Cisneros, G.; Reyes-Agustín, G.; Cardona, S.; Jimenez, A.

    2015-12-01

    The Reforma caldera is located at ~35 km to the northwest of Santa Rosalía in the central part of the Baja California peninsula. It has 10 km in diameter and a maximum height of 1200 masl in the center and between 100 and 500 masl in its slopes. Reforma is within a tectonic zone affected by two fault systems: A NW-SE normal fault system linked to the opening of the Gulf of California, and a NNW-SSE and NW-SE strike-slip fault system associated with an active Riedel system. Reforma was built upon Cretaceous granites that outcrop at the caldera center, Miocene to Pliocene volcano-sedimentary rocks of the Comondú group, and Miocene marine sediments of the Santa Rosalía basin. On top of these rocks outcrop at least four submarine to subaerial ignimbrites interbedded with marine fossiliferous beds and the lower Pleistocene deposits associated to the Reforma caldera. These deposits are formed by a ignimbrite that shifts to different lithofacies that change gradually their welding, here dubbed basal, transitional, intermediate, and upper (all of then enriched in black fiammes), followed by a pumice-rich, white fiammes, and vitrophyre lithofacies, which are distributed around the 9 km wide caldera and have been associated to the caldera formation episode. Deposits related to post-caldera volcanism are andesite-basaltic lava flows erupted along the caldera rim through localized feeding dikes and andesitic and rhyolitic domes, and scoria cinder cones exposed inside and outside the caldera. On top of these deposits rest the middle Pleistocene Aguajito caldera deposits.

  20. AmeriFlux US-Vcp Valles Caldera Ponderosa Pine

    SciTech Connect

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.

  1. Imaging radar observations of Askja Caldera, Iceland

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Evans, D.; Elachi, C.

    1978-01-01

    A 'blind' test involving interpretation of computer-enhanced like- and cross-polarized radar images is used to evaluate the surface roughness of Askja Caldera, a large volcanic complex in central Iceland. The 'blind' test differs from earlier analyses of radar observations in that computer-processes images and both qualitative and quantitative analyses are used. Attention is given to photogeologic examination and subsequent survey-type field observations, along with aerial photography during the field trip. The results indicate that the 'blind' test of radar interpretation of the Askja volcanic area can be considered suitable within the framework of limitations of radar data considered explicitly from the onset. The limitations of the radar techniques can be eliminated by using oblique-viewing conditions to remove geometric distortions and slope effects.

  2. Magma storage in a strike-slip caldera

    NASA Astrophysics Data System (ADS)

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-07-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  3. Magma storage in a strike-slip caldera

    PubMed Central

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-01-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932

  4. Magma storage in a strike-slip caldera.

    PubMed

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  5. Intracaldera volcanism and sedimentation-Creede caldera, Colorado

    SciTech Connect

    Heiken, G.; Krier, D.; Snow, M.G.; McCormick, T.

    1994-12-31

    Within the Creede caldera, Colorado, many of the answers to its postcaldera volcanic and sedimentary history lie within the sequence of tuffaceous clastic sedimentary rocks and tuffs known as the Creede Formation. The Creede Formation and its interbedded ash deposits were sampled by research coreholes Creede 1 and 2, drilled during the fall of 1991. In an earlier study of the Creede Formation, based on surface outcrops and shallow mining company coreholes, Heiken and Krier (1987) concluded that the process of caldera structural resurgence was rapid and that a caldera lake had developed in an annulus (``moat``) located between the resurgent dome and caldera wall. So far we have a picture of intracaldera activity consisting of intermittent hydrovoleanic eruptions within a caldera lake for the lower third of the Creede Formation, and both magmatic and hydrovolcanic ash eruptions throughout the top two-thirds. Most of the ash deposits interbedded with the moat sedimentary rocks are extremely fine-grained. Ash fallout into the moat lake and unconsolidated ash eroded from caldera walls and the slopes of the resurgent dome were deposited over stream delta distributaries within relatively shallow water in the northwestern moat, and in deeper waters of the northern moat, where the caldera was intersected by a graben. Interbedded with ash beds and tuffaceous siltstones are coarse-grained turbidites from adjacent steep slopes and travertine from fissure ridges adjacent to the moat. Sedimentation rates and provenance for clastic sediments are linked to the frequent volcanic activity in and near the caldera; nearly all of the Creede Formation sedimentary rocks are tuffaceous.

  6. Radar observations of a volcanic terrain: Askja Caldera, Iceland

    NASA Technical Reports Server (NTRS)

    Evans, D. L.

    1978-01-01

    Surface roughness spectra of nine radar backscatter units in the Askja caldera region of Iceland were predicted from computer-enhanced like- and cross-polarized radar images. A field survey of the caldera was then undertaken to check the accuracy of the preliminary analysis. There was good agreement between predicted surface roughness of backscatter units and surface roughness observed in the field. In some cases, variations in surface roughness could be correlated with previously mapped geologic units.

  7. Evidence for dyke intrusion earthquake mechanisms near long valley caldera, California

    USGS Publications Warehouse

    Julian, B.R.

    1983-01-01

    A re-analysis of the magnitude 6 earthquakes that occurred near Long Valley caldera in eastern California on 25 and 27 May 1980, suggests that at least two of them, including the largest, were probably caused by fluid injection along nearly vertical surfaces and not by slip on faults. Several investigators 1,2 have reported difficulty in explaining both the long-period surface-wave amplitudes and phases and the locally recorded short-period body-wave first motions from these events, using conventional double-couple (shear fault) source models. They attributed this difficulty to: (1) complex sources, not representable by single-fault models; (2) artefacts of the analysis methods used; or (3) effects of wave propagation through hypothetical structures beneath the caldera. We show here that the data agree well with the predictions for a compensated linear-vector dipole (CLVD) equivalent-force system3 with its principal extensional axis horizontal and trending N 55-65?? E. Such a mechanism is what would be expected for fluid injection into dykes striking N 25-35?? W, which is the approximate strike of numerous normal faults in the area. ?? 1983 Nature Publishing Group.

  8. Geological and Geobotanical Studies of Long Valley Caldera, CA, USA Utilizing New 5m Hyperspectral Imagery

    SciTech Connect

    Martini, B.A.; Silver, E.A.; Potts, D.C.; Pickles, W.L.

    2000-07-25

    In May of 1989, a six month-long small magnitude earthquake swarm began beneath the Pleistocene-aged dacitic cumulovolcano Mammoth Mountain. The following year, increased mortality of trees in the Horseshoe Lake region was observed. Their deaths were initially attributed to the Sierran drought of the 1980's. In 1994 however, soil gas measurements made by the USGS confirmed that the kills were due to asphyxiation of the vegetation via the presence of 30-96 % CO{sub 2} in ground around the volcano[1]. Physiological changes in vegetation due to negative inputs into the ecological system such as anomalously high levels of magmatic CO{sub 2}, can be seen spectrally. With this phenomena in mind, as well as many other unanswered geological and geobotanical questions, seven lines of hyperspectral 5-meter HyMap data were flown over Long Valley Caldera located in eastern California on September 7, 1999. HyMap imagery provides the impetus to address geobotanical questions such as where the treekills are currently located at Mammoth and other locales around the caldera as well as whether incipient kills can be identified. The study site of the Horseshoe Lake treekills serves as a focus to the initial analyses of this extensive HyMap dataset due to both the treekill's geologically compelling origins and its status as a serious volcanic geohazard.

  9. Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1982-1984

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.; Janik, C.J.; Mariner, R.H.; Winnett, T.L.; Clark, M.D.

    1985-01-01

    The Long Valley caldera is a potentially active volcanic area on the eastern side of the Sierra Nevada in east-central California. Hydrologic and geochemical monitoring of surface and subsurface features began in July 1982 to determine if changes were occurring in response to processes causing earthquakes and crustal deformation. Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in chemistry result from near surface boiling and mixing. Ratios of 3-He/4-He and 13-C/12-C in hot springs and fumaroles are consistent with a magnetic source for some of the carbon and helium discharged in thermal areas, and observed changes in 3-He/4-He between 1978 and 1984 suggest changes in the magmatic component. Significant fluctuations in hot spring discharge recorded at several sites since 1982 closely followed earthquake activity. Water levels in wells have been used as strain meters to detect rock deformation associated with magmatic and tectonic activity and to construct a water table contour map. Coseismic water level fluctuations of as much as 0.6 ft have been observed but no clear evidence of deformation caused by magmatic intrusions can be seen in the well records through 1984. Temperature profiles in wells, which can be used to delineate regionally continuous zones of lateral flow of hot water across parts of the caldera, have remained constant at all but two sites. (Author 's abstract)

  10. Gravity and fault structures, Long Valley caldera, California

    SciTech Connect

    Carle, S.F.; Goldstein, N.E.

    1987-07-01

    The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

  11. Permeability and continuous gradient temperature monitoring of volcanic rocks: new insights from borehole and laboratory analysis at the Campi Flegrei caldera (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Troise, Claudia; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer; Somma, Renato; De Natale, Giuseppe

    2016-04-01

    The pilot borehole recently drilled in the eastern caldera of Campi Flegrei (Southern Italy), during the Campi Flegrei Deep Drill Project (CFDDP) (in the framework of the International Continental Scientific Drilling Program) allowed (i) estimating on-field permeability and coring the crustal rocks for laboratory experiments, and (ii) determining thermal gradient measurements down to ca. 500 m of depth. We report here a first comparative in situ and laboratory tests to evaluate the rock permeability in the very high volcanic risk caldera of Campi Flegrei, in which ground deformations likely occur as the persistent disturbance effect of fluid circulation in the shallower geothermal system. A large amount of petro-physical information derives from outcropping welded tuffs, cores and geophysical logs from previous AGIP's drillings, which are located in the central and western part of the caldera. We discuss the expected scale dependency of rock permeability results in relation with well-stratigraphy and core lithology, texture and mineralogy. The new acquired data improve the database related to physical property of Campi Flegrei rocks, allowing a better constrain for the various fluid-dynamical models performed in the tentative to understand (and forecast) the caldera behavior. We also present the first data on thermal gradient continuously measured through 0 - to 475 m of depth by a fiber optic sensor installed in the CFDDP pilot hole. As regards, we show that the obtained values of permeability, compared with those inferred from eastern sector of the caldera, can explain the different distribution of temperature at depth, as well as the variable amount of vapor phase in the shallow geothermal system. The measured temperatures are consistent with the distribution of volcanism in the last 15 ka.

  12. Submarine Volcanic Morphology of Santorini Caldera, Greece

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  13. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    NASA Astrophysics Data System (ADS)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  14. An unusual syn-eruptive bimodal eruption: The Holocene Cuicuiltic Member at Los Humeros caldera, Mexico

    NASA Astrophysics Data System (ADS)

    Dávila-Harris, Pablo; Carrasco-Núñez, Gerardo

    2014-02-01

    The Cuicuiltic Member (CM) at Los Humeros Caldera, eastern Mexican Volcanic Belt is a Holocene (6.4 ka B.P.) succession of alternated fallout deposits of contrasting composition (trachydacite pumice and basaltic andesite scoria). The CM covers approximately 250 km2 on its proximal facies and its thickness ranges from 1.5 m to 8.0 m. It postdates two caldera-forming ignimbrites (Xaltipan and Zaragoza) and numerous Plinian successions. It is subdivided in 9 units (C1 to C9) according to its textural and chemical characteristics. Sub-horizontal, topography-draping layers of trachydacite pumice lapilli, andesitic pumice lapilli and basaltic-andesite scoria lapilli with sporadic one-meter blocks are common lithofacies. The base is formed by coarse trachydacite pumice lapilli (C1 and C2), overlain by a layer with banded pumice (C3). Thin layers of ash and ash-tuff are intermittent on lower units, whilst continuous at the base of C4. The middle units, C4 and C6 are basaltic-andesite pumice, and scoria lapilli to blocks; C5 is in-between the two mafic units and it is represented by a layer of pale grey pumice lapilli. Units C7 and C8 are a mixture of white trachydacite pumice, scoria lapilli and banded pumice. The uppermost layer, C9, is a brown to grey andesitic pumice lapilli. Extensive fieldwork allowed a close and reliable correlation of layers that helps to understand the complexity of stratigraphic relations and sources for those layers. The distribution of these units is varied across the caldera, with the trachydacite layers dispersal from the centre towards the NW, whilst the andesitic units have maximum thicknesses over the SE and NE sectors of the caldera. Isopach and isopleth maps, combined with detailed mapping of near-vent spatter facies, orientation of local bomb sags and variation of mean clasts size for some layers were very useful to determine the vent location, particularly for the andesitic-basaltic layers.

  15. Radon Outgassing in the Casa Diablo Region, Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Adarkwah, N.; Cuff, K.

    2003-12-01

    A radon outgassing survey has been conducted in the Casa Diablo region of the Long Valley Caldera. The Long Valley Caldera (LVC) is an active volcanic system situated along the eastern front of the Sierra Nevada mountain range in east-central California. The survey was centered in an area .4 km northwest of the Casa Diablo geothermal power plant, located along the southwestern-most rim of the caldera?s resurgent dome. Results from previous radon emission studies in LVC indicate that high degrees of outgassing occur in association with relatively narrow networks of unsealed fractures (Cuff, et al., 2000 and Hoyos, et al., 2001). These fracture networks act as pathways for radon and other gases generated at depth as they migrate toward the surface. The purpose of the present study was to determine whether or not a relationship exists between radon emissions in the current survey area and that in a previously surveyed area approximately .8 km west of the geothermal plant. To accomplish this, we measured radon concentration in soil-gas at 35 separate sites. These sites were located within a 140 by 100 meter grid, with 20 meter spacing between each sample site. A radon outgassing map was then created using measured concentration values along with longitude and latitude values for each sample location. Geologic maps of the area were also analyzed and compared with radon outgassing maps. Analysis of these maps indicates that radon outgassing occurs through a set of crisscrossing fractures, trending southwest-northeast and northwest-southeast respectively. The northwest trending fractures are related to mapped normal faults in the area, while those with a southwest-northeast orientation are associated with an unmapped zone of faulting that is roughly perpendicular to the other faults. The latter set of fractures has a trend similar to that discovered in the previously surveyed area to the west. In both areas the highest readings were in excess of three times background

  16. Venus - A Large Elongated Caldera 'Sacajawea Patera

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan image reveals Sacajawea Patera, a large, elongate caldera located in Western Ishtar Terra on the smooth plateau of Lakshmi Planum. The image is centered at 64.5 degrees North latitude and 337 degrees East longitude. It is approximately 420 kilometers (252 miles) wide at the base. Sacajawea is a depression approximately 1-2 kilometers (0.6-1.2 miles) deep and 120 x 215 kilometers (74 x 133 miles) in diameter; it is elongate in a southwest-northeast direction. The depression is bounded by a zone of circumferential curvilinear structures interpreted to be graben and fault scarps. These structures are spaced 0.5-4 kilometers (0.3-2.5 miles) apart, are 0.6-4.0 kilometers (0.4-2.5 miles) in width and up to 100 kilometers (62 miles) in length. Extending up to approximately 140 kilometers (87 miles) in length from the southeast of the patera is a system of linear structures thought to represent a flanking rift zone along which the lateral injection and eruption of magma may have occurred. A shield edifice 12 kilometers (7 miles) in diameter with a prominent central pit lies along the trend of one of these features. The impact crater Zlata, approximately 6 kilometers (4 miles) in diameter is located within the zone of graben to the northwest of the patera. Few flow features are observed in association with Sacajawea, possibly due to age and state of degradation of the flows. Mottled bright deposits 4-20 kilometers (2.5-12 miles) in width are located near the periphery and in the center of the patera floor within local topographic lows. Diffuse patches of dark material approximately 40 kilometers (25 miles) in width are observed southwest of the patera, superposed on portions of the surrounding graben. The formation of Sacajawea is thought to be related to the drainage and collapse of a large magma chamber. Gravitational relaxation may have caused the resultant caldera to sag, producing the numerous faults and graben that circumscribe the patera. Regions of

  17. Avalanche induced Tsunamie June 21st 2014, in the Askja caldera lake Iceland.

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, A.; Gans, P. B.; Burbank, D.; Wiss, A.; Jackson, M. G.

    2014-12-01

    On July 21st 2014 a group of earth scientists and students from the University of Iceland and University of Santa Barbara, Ca, visited the caldera lake Öskjuvatn Iceland. Lake Öskjuvatn is about 12 km2, elliptical with a diameter of some 3.5 to 2.5 km. It was formed after a major rifting event that began in 1875, and culminated in March the same year by a major Plinian eruption. The lake is about 220 m deep where it is deepest. During the visit of the group a major part of the south eastern corner of the caldera was beginning to fail, only observed by analyzing photographs taken on the evening of 21st July. The group left the area at about 21:00 in the afternoon. At about 23:20 a large part of the SE mountain range fell into the caldera and the lake occupying it. Photos taken from some 15 km distance at 23:27 show a large plume rising from the within the caldera. The day after the group returned to the caldera lake after receiving news of the event. A scar of some 0.7to 1 km wide and 400 m high indicated a major avalanche had fallen into the lake. Flood marks observed around the caldera lake indicated that a major tsunami had followed the avalanche. Around a solfatara Viti, situated in the NE corner of the lake highest flood marks indicated that squashes had reached as high as 55-60 m. The group did surveillance of highest flood marks around the lake. The measurements show that the wave was about 25 to 30 m high passing over the entire lake leaving behind marks in the snow and firn reaching down to previous lake level. Where the lake shallows flood marks could be traced up to 40 to 60 m. Further investigation of the wave showed that since the lake is enclosed a bathtub effect was initiated. Strandlines after more than 10 waves could be identified of which 4 reached above 20 m (with regard to the lake level 1050 m.a.s.l.). 19 hours after the avalanche fell into the lake there was still observed a resonance in the lake. High and low rise of the lake could be

  18. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  19. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    NASA Astrophysics Data System (ADS)

    Fierstein, Judy; Hildreth, Wes

    2008-10-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka ( 14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO 2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO 2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO 2 and H 2S bubble up through the lake, weakly but widely. Geochemical analyses ( n = 148), including pre-and post-caldera lavas (53-74% SiO 2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO 2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  20. Post-Silent Canyon caldera structural setting for Pahute Mesa

    SciTech Connect

    Warren, R.G.; Byers, F.M. Jr.; Orkild, P.P.

    1985-12-31

    At Pahute Mesa, Nevada Test Site, the Silent Canyon caldera of about 14 Ma age is almost completely concealed beneath ash-flow tuffs of the 11.5 Ma old Rainier Mesa Member of the Timber Mountain Tuff. Structures unequivocally related to the caldera are not observed in the Rainier Mesa Member. Structure contours on top of Rainier Mesa Member at Pahute Mesa define a series of elongate, fault-bounded blocks. Between the East Boxcar and Almendro Faults these blocks tilt eastward away from westward-dipping normal faults and elsewhere they also have a strong northward component of dip, away from Timber Mountain caldera. Episodic movement along these faults controlled thicknesses of members of Paintbrush Tuff (13.3 - 12.7 Ma) and tuffs and lavas of Area 20 (14 - 13.3 Ma), which have steeper eastward and northward components of dip than the overlying Rainier Mesa Member and also thicken eastward within each structural block. Fault blocks north of Timber Mountain caldera on Pahute Mesa are very similar to blocks described at Yucca mountain south of the caldera, and probably were generated by regional Basin and Range extension and four episodes of caldera-forming volcanism at Timber Mountain. Faults bounding these blocks on Pahute Mesa formed during early episodes of caldera-forming volcanism at Timber Mountain and reactivated during later episodes, so that fault displacements and bedding plane attitudes increase with age. Because these faults have episodic activity, even a relatively small post-Rainier Mesa displacement may define the location of important displacement within underlying units.

  1. New evidence on the hydrothermal system in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits

    USGS Publications Warehouse

    Sorey, M.L.; Suemnicht, G.A.; Sturchio, N.C.; Nordquist, G.A.

    1991-01-01

    Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200??C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248??C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat. ?? 1991.

  2. Tectonic stress and renewed uplift at Campi Flegrei caldera, southern Italy: New insights from caldera drilling

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Kilburn, Christopher R. J.; Tramelli, Anna; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2015-06-01

    Deep drilling is a key tool for the investigation of active volcanoes in the modern Earth Sciences, as this provides the only means to obtain direct information on processes that occur at depth. Data acquired from drilling projects are fundamental to our understanding of volcano dynamics, and for mitigation of the hazards they pose for millions of people who live close to active volcanoes. We present here the first borehole measurement of the stress field in the crust of Campi Flegrei (southern Italy), a large active caldera, and one of the highest risk volcanoes worldwide. Measurements were performed to depths of ∼500 m during a pilot study for the Campi Flegrei Deep Drilling Project. These data indicate an extensional stress field, with a minimum horizontal stress of ca. 75% to 80% of the maximum horizontal stress, which is approximately equal to the vertical stress. The deviation from lithostatic conditions is consistent with a progressive increase in applied horizontal stress during episodes of unrest, since at least 1969. As the stress field is evolving with time, the outcome of renewed unrest cannot be assessed by analogy with previous episodes. Interpretations of future unrest must therefore accommodate the possibility that Campi Flegrei is approaching conditions that are more favourable to a volcanic eruption than has previously been the case. Such long-term accumulation of stress is not expected to be unique to Campi Flegrei, and so might provide a basis for improved forecasts of eruptions at large calderas elsewhere.

  3. Reconstruction of caldera collapse and resurgence processes in the offshore sector of the Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2015-04-01

    Large collapse calderas are associated with exceptionally explosive volcanic eruptions, which are capable of triggering a global catastrophe second only to that from a giant meteorite impact. Therefore, active calderas have attracted significant attention in both scientific communities and governmental institutions worldwide. One prime example of a large collapse caldera can be found in southern Italy, more precisely in the northern Bay of Naples within the Campi Flegrei Volcanic Area. The Campi Flegrei caldera covers an area of approximately 200 km² defined by a quasi-circular depression, half onland, half offshore. It is still under debate whether the caldera formation was related to only one ignimbritic eruption namely the Neapolitan Yellow Tuff (NYT) eruption at 15 ka or if it is a nested-caldera system related to the NYT and the Campanian Ignimbrite eruption at 39 ka. During the last 40 years, the Campi Flegrei caldera has experienced episodes of unrest involving significant ground deformation and seismicity, which have nevertheless not yet led to an eruption. Besides these short-term episodes of unrest, long-term ground deformation with rates of several tens of meters within a few thousand years can be observed in the central part of the caldera. The source of both short-term and long-term deformation is still under debate and possibly related to a shallow hydrothermal system and caldera resurgence attributed to a deeper magma chamber, respectively. Understanding the mechanisms for unrest and eruptions is of paramount importance as a future eruption of the Campi Flegrei caldera would expose more than 500,000 people to the risk of pyroclastic flows. This study is based on a dense grid (semi-3D) of high-resolution multi-channel seismic profiles acquired in the offshore sector of the Campi Flegrei caldera. The seismic lines show evidence for the escape of fluids and/or gases along weak zones such as faults, thereby supporting the existence of a hydrothermal

  4. Towards a General Model for Volcanic Caldera Dynamics

    NASA Astrophysics Data System (ADS)

    Macedonio, G.; Giudicepietro, F.; D'auria, L.; Martini, M.

    2014-12-01

    Volcanic calderas often show a behavior different from that of other volcanoes. In caldera complexes, it is not unusual to record long-term unrests, with remarkable ground deformation, seismicity, and geochemical changes, that do not culminate in an eruption. On the contrary, in certain cases, an unrest accompanied by minor geophysical changes can be followed in few months by an eruption, as in the case of Rabaul Caldera in 1994. Those behaviors are not simple to interpret. The dramatic advances in volcano monitoring over the last years has allowed us to record the dynamic phenomena of several calderas with great detail. This, highlighted characteristics that are typical of a single caldera, but also some features common to several calderas. The main common features are remarkable ground deformation with intense uplift episodes, that are often followed by subsidence. The ground deformations are generally characterized by strong horizontal components. The seismicity is almost always in swarms and has a spatial distribution that often shows seismic gaps. Moreover, calderas are the largest geothermal systems in the world. We think that a process of sill intrusion can explain the common features highlighted by many observations carried out on different calderas. We developed a dynamic model of sill intrusion in a shallow volcanic environment. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks, and expands with axisymmetric geometry. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating the dynamics of the sill intrusion. We performed a number of simulations, with the objective of showing the main features of the model. In the experiments, when the feeding process stops, the vertical movement reverses its trend and the area of maximum uplift undergoes subsidence. Under certain conditions the subsidence can

  5. Valles Caldera geothermal systems, New Mexico, U.S.A.

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Grigsby, Charles O.

    1982-03-01

    Valles Caldera is part of a Quaternary silicic volcano in northern New Mexico that possesses enormous geothermal potential. The caldera has formed at the intersection of the volcanically active Jemez lineament and the tectonically active Rio Grande rift. Volcanic rocks of the Jemez Mountains overlie Paleozoic—Mesozoic sediments, and Precambrian granitic basement. Although the regional heat flow along the Rio Grande rift is ~2.7 HFU , convective heat flow within the caldera exceeds 10 HFU. A moderately saline hotwater geothermal system ( T > 260° C, Cl ⋍ 3000 mg/ l) has been tapped in fractured caldera-fill ignimbrites at depths of 1800 m. Surface geothermal phenomena include central fumaroles and acid-sulfate springs surrounded by dilute thermal meteoric hot springs. Derivative hot springs from the deep geothermal reservoir issue along the Jemez fault zone, 10 km southwest of the caldera. Present geothermal projects are: (1) proposed construction of an initial 50-MW el power plant utilizing the known geothermal reservoir; (2) research and development of the prototype hot dry rock (HDR) geothermal system that circulates surface water through deep Precambrian basement (˜5MW th); (3) exploration for deep hot fluids in adjacent basin-fill sediments of the Rio Grande rift; and (4) shallow exploration drilling for hot fluids along the Jemez fault zone. 1 HFU (heat flow unit) = 1 μcal. s -2 cm -2 = 41.67 mW m -2.

  6. Science guide for the Long Valley Caldera deep hole

    SciTech Connect

    Rundle, J.B.; Eichelberger, J.C.

    1989-05-01

    The Magma Energy Program of the US Department of Energy, Geothermal Technology Division, is planning to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California, in September 1988. The location of the well is in the central part of the caldera, coincident with a large number of shallow (5-7 km) geophysical anomalies identified through many independent investigations. Results from the hole will permit the following: direct investigation of the geophysical anomalies interpreted to be magma; investigation of the patterns and conditions of deep fluid circulation and heat transport below the caldera floor; determination of the amount of collapse and subsequent resurgence of the central portion of Long Valley caldera; and determination of the intrusion history of the central plutonic complex beneath the caldera, and establishment of the relationship of intrusive to eruptive events. The hole will thus provide a stringent test of the hypothesis that magma is still present within the central plutonic complex. If the interpretation of geophysical anomalies is confirmed, the hole will provide the first observations of the environment near a large silicic magma chamber. 80 refs., 7 figs., 2 tabs.

  7. Is the Valles caldera entering a new cycle of activity?

    SciTech Connect

    Wolff, J.A.; Gardner, J.N.

    1995-05-01

    The Valles caldera formed during two major rhyolitic ignimbrite eruptive episodes (the Bandelier Tuff) at 1.61 and 1.22 Ma, after some 12 m.y. of activity in the Jemez Mountains volcanic field, New Mexico. Several subsequent eruptions between 1.22 and 0.52 Ma produced dominantly high-silica rhyolite lava domes and tephras within the caldera. These were followed by a dormancy of 0.46 m.y. prior to the most recent intracaldera activity, the longest hiatus since the inception of the Bandelier magma system at approximately 1.8 Ma. The youngest volcanic activity at approximately 60 ka produced the SW moat rhyolites, a series of lavas and tuffs that display abundant petrologic evidence of being newly generated melts. Petrographic textures conform closely to published predictions for silicic magmas generated by intrusion of basaltic magma into continental crust. The Valles caldera may currently be the site of renewed silicic magma generation, induced by intrusion of mafic magma at depth. Recent seismic investigations revealed the presence of a large low-velocity anomaly in the lower crust beneath the caldera. The generally aseismic character of the caldera, despite abundant regional seismicity, may be attributed to a heated crustal column, the local effect of 13 m.y. of magmatism and emplacement of mid-crustal plutons. 24 refs., 3 figs.

  8. Continental Scientific Drilling Program: Valles Caldera, New Mexico

    SciTech Connect

    1993-01-01

    The U.S. Continental Scientific Drilling Program attempts to develop a better understanding of the geologic and hydrologic mechanisms within the continental crust, under the auspices of an interagency group comprising the US Department of Energy, the National Science Foundation, and the U.S. Geological Survey. Ten years of research and drilling in the Valles caldera of northern New Mexico has provided a new understanding of volcanism and geothermal systems within a large caldera. Situated at the intersection of the Rio Grande rift and the Jemez volcanic lineament, the Valles caldera and Toledo calderas were formed during two massive eruptions 1.1 and 1.5 M a that vented approximately 300 to 400 km{sup 3} of high-silica rhyolitic tephra. The research at the Valles/Toledo caldera has provided more than 3000 m of corehole samples, which are stored in a repository in Grand Junction, Colorado, and are accessible to the public. This research has also helped support theories of mineral deposition within hydrothermal systems-hot water circulating through breccias, leaching elements from the rocks, and later depositing veins of economically valuable materials.

  9. A geophysical-geological transect of the Silent Canyon caldera complex, Pahute Mesa, Nevada

    SciTech Connect

    Ferguson, J.F.; Cogbill, A.H.; Warren, R.G.

    1994-03-10

    Revision of lithological logs for boreholes penetrating the volcanic center at Pahute Mesa, Neveda, has led to a thorough review of the volcanic stratigraphy and geologic structure. The authors have combined this review with a compilation of old and newly acquired gravity and seismic travel time data, producing a unified interpretation along a northwest to southeast profile. The analysis supports a new interpretation of the Silent Canyon caldera complex. The caldera is found to be more asymmetric than previously suggested, with the southeastern boundary formed by linear, high-angle normal faults and a more gently sloping northwestern boundary. The total thickness of volcanic units within the caldera complex does not appear to exceed 5 km. The shallow structure at Pahute Mesa could have a profound effect on the seismic response for regional and teleseismic signals from this nuclear test site. The Silent Canyon caldera complex is actually a set of nested calderas first filled by thick (>1 km) postcaldera lavas and subsequently buried by outflow sheets of the Timber Mountain caldera to the south. Thick, postcaldera lavas filled a half-graben structure formed west of the West Greeley fault, dropping the tops of the youngest caldera-forming units to depths in excess of 2 km. Therefore the western boundary of the caldera complex is poorly defined. East of the West Greeley fault, two overlapping calderas are defined, and stratigraphic data suggest the presence of even older calderas. The youngest caldera, the calc-alkaline Area 20 caldera, is well defined from drill hole data. The Area 20 caldera overlaps the 13.6 Ma peralkaline Grouse Canyon caldera, which is less well defined, but apparently collapsed in trap-door style along the Almendro fault. For both these calderas, collapse continued after the main caldera-forming eruption, concurrent with the accumulation of thick (>1 km) lavas within the peripheral collapse zones. 67 refs., 13 figs.

  10. Ash-flow eruptive megabreccias of the Manhattan and Mount Jefferson calderas, Nye County, Nevada

    SciTech Connect

    Shawe, D.R.; Snyder, D.B.

    1988-01-01

    A detailed field study of ash-flow megabreccias associated with the Manhattan and Mount Jefferson calderas shows that megaclasts were brecciated in sub-caldera level before incorporation in ash flows. This evidence in addition to the presence of some clast lithologies that are nowhere recognized in caldera walls and the occurrence of some megabreccia units as outflow suggest an origin by eruption rather than by collapse of caldera walls. Geophysical investigations and a mathematical analysis are presented in the paper.

  11. The hydrothermal system of the Calabozos caldera, central Chilean Andes

    NASA Astrophysics Data System (ADS)

    Grunder, Anita L.; Thompson, J. Michael; Hildreth, W.

    1987-07-01

    Active thermal springs associated with the late Pleistocene Calabozos caldera complex occur in two groups: the Colorado group which issues along structures related to caldera collapse and resurgence, and the Puesto Calabozos group, a nearby cluster that is chemically distinct and probably unrelated to the Colorado springs. Most of the Colorado group can be related to a hypothetical parent water containing ˜400 ppm Cl at ˜250°C by dilution with ≥50% of cold meteoric water. The thermal springs in the most deeply eroded part of the caldera were derived from the same parent water by boiling. The hydrothermal system has probably been active for at least as long as 300,000 years, based on geologic evidence and calculations of paleo-heat flow. There is no evidence for economic mineralization at shallow depth. The Calabozos hydrothermal system would be an attractive geothermal prospect were its location not so remote.

  12. Core log: Valles caldera No. 2A, New Mexico

    SciTech Connect

    Starguist, V.L.

    1988-01-01

    Scientific core hole VC-2A was drilled into the western ring-fracture zone at Sulphur Springs in the Valles caldera, New Mexico. VC-2A, the second scientific core hole in the caldera, was cored through a faulted and brecciated sequence of intracauldron tuffs and volcaniclastic rocks to a depth of 528 m. As of November 1, 1986, the unequilibrated bottom-hole temperature was 212/degree/C. The rocks penetrated are intensely altered and host sub-ore grade stockwork molybdenite mineralization between 25 and 125 m. This report contains a detailed core log to aid researchers in their studies of the Valles caldera magma hydrothermal system. 3 refs., 2 figs.

  13. Carbonatite ring-complexes explained by caldera-style volcanism

    PubMed Central

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R.; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas. PMID:23591904

  14. The hydrothermal system of the Calabozos caldera, central Chilean Andes

    USGS Publications Warehouse

    Grunder, A.L.; Thompson, J.M.; Hildreth, W.

    1987-01-01

    Active thermal springs associated with the late Pleistocene Calabozos caldera complex occur in two groups: the Colorado group which issues along structures related to caldera collapse and resurgence, and the Puesto Calabozos group, a nearby cluster that is chemically distinct and probably unrelated to the Colorado springs. Most of the Colorado group can be related to a hypothetical parent water containing ???400 ppm Cl at ???250??C by dilution with ???50% of cold meteoric water. The thermal springs in the most deeply eroded part of the caldera were derived from the same parent water by boiling. The hydrothermal system has probably been active for at least as long as 300,000 years, based on geologic evidence and calculations of paleo-heat flow. There is no evidence for economic mineralization at shallow depth. The Calabozos hydrothermal system would be an attractive geothermal prospect were its location not so remote. ?? 1987.

  15. Carbonatite ring-complexes explained by caldera-style volcanism.

    PubMed

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas.

  16. Formation of caldera periphery faults: an experimental study

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.; Troll, Valentin R.

    2001-06-01

    Changing stresses in multi-stage caldera volcanoes were simulated in scaled analogue experiments aiming to reconstruct the mechanism(s) associated with caldera formation and the corresponding zones of structural weakness. We evaluate characteristic structures resulting from doming (chamber inflation), evacuation collapse (chamber deflation) and cyclic resurgence (inflation and deflation), and we analyse the consequential fault patterns and their statistical relationship to morphology and geometry. Doming results in radial fractures and subordinate concentric reverse faults which propagate divergently from the chamber upwards with increasing dilation. The structural dome so produced is characterised bysteepening in the periphery, whereas the broadening apex subsides. Pure evacuation causes the chamber roof to collapse along adjacent bell-shaped reverse faults. The distribution of concentric faults is influenced by the initial edifice morphology; steep and irregular initial flanks result in a tilted or chaotic caldera floor. The third set of experiments focused on the structural interaction of cyclic inflation and subsequent moderate deflation. Following doming, caldera subsidence produces concentric faults that characteristically crosscut radial cracks of the dome. The flanks of the edifice relax, resulting in discontinuous circumferential faults that outline a structural network of radial and concentric faults; the latter form locally uplifted and tiltedwedges (half-grabens) that grade into horst-and-graben structures. This superimposed fault pattern also extends inside the caldera. We suggest that major pressure deviations in magma chamber(s) are reflected in the fault arrangement dissecting the volcanoflanks and may be used as a first-order indication of the processes and mechanisms involved in caldera formation.

  17. Workshop on recent research in the Valles caldera

    SciTech Connect

    Heiken, G.

    1985-02-01

    Over the last 5 years, there has been increased interest in the geology of the Jemez Mountains volcanic field, New Mexico. Of special interest is the Toledo-Valles caldera complex, which is targeted for research coring as part of the Continental Scientific Drilling Program. The general topics covered in this workshop were (1) hydrothermal systems and rock-water interactions, (2) volcanology and structural framework of the Jemez volcanic field, (3) determining the presence or absence of melt below the Valles caldera, and (4) deep coring and drilling technology. Separate abstracts were prepared for each presentation.

  18. Magmatic evolution of the Ilopango Caldera, El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Zezin, D.; Mann, C. P.; Hernández, W.; Stix, J.

    2010-12-01

    The Ilopango caldera (16 x 13 km) is an active, long-lived magmatic system, erupting voluminous amounts of pyroclastic material numerous times over the course of its evolution. The caldera is presently water filled and the most recent activity is a dome growth event in 1880. Established age constraints from extracaldera pyroclastic sequences, indicate caldera forming events occur ~ every 10,000 years over the last 40,000 years. The most recent pyroclastic eruption (TBJ) is constrained to A.D. 429 erupting 70 km3 DRE of pyroclastic material. We combine major element and trace element chemistry with 40Ar/39Ar age constraints of the intracaldera domes and intracaldera pyroclastic deposits to extent the caldera history. The intracaldera domes are andesitic to rhyolitic in composition (57 - 76 wt. % SiO2), some with basaltic enclaves (54 wt. % SiO2) and pyroclastic units observed inside the caldera (San Agustín Pumice Breccia) are dacitic to rhyolitic in composition (69 -75 wt. % SiO2). Formation of an intracaldera andesitic dome at 359±7.9 ka provides a minimum age of caldera formation and extends the caldera history back ~ 320 ka years. The variable composition of the intracaldera domes, the presence of mafic enclaves in the dome lavas, mafic clasts in the TB4 plinian fall, mafic banding in the TB3 and TB2, attest to the obvious involvement of a more mafic magma The highly evolved compositions of the pyroclastic units and the volume of erupted material, point towards a large evolving magma reservoir at depth. The mafic magma may replenish the subsurface reservoir and act as a catalyst for volcanic eruption. The presence of an intracaldera lake, the regularity with which the volcano erupts and the presence of a more mafic magma are the ingredients for a catastrophic disaster. The Ilopango caldera, located 10 km to the east of the capital city of San Salvador (~ 1.5 million people) poses a threat both locally and globally as demonstrated 1600 years ago as it

  19. AmeriFlux US-Vcm Valles Caldera Mixed Conifer

    SciTech Connect

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcm Valles Caldera Mixed Conifer. Site Description - The Valles Caldera Mixed Conifer site is located in the 1200 km2 Jemez River basin in north-central New Mexico. Common to elevations ranging from 3040 to 2740 m in the region, the mixed conifer stand, within the entirety of the tower footprint in all directions, provides an excellent setting for studying the seasonal interaction between snow and vegetation.

  20. Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Menendez, H. M.; Thurber, C. H.

    2011-12-01

    Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.

  1. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    USGS Publications Warehouse

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    On May 25-27, 1980, Long Valley caldera was rocked by four M=6 earthquakes that heralded the onset of a wave of seismic activity within the caldera which has continued through the present. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO2 emissions, all interpreted as resulting from magma injection into different levels beneath the caldera, as well as beneath Mammoth Mountain along the southwest rim of the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey (USGS) has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to track the unrest in real time with a sophisticated network of geophysical sensors. Hazards information obtained by this monitoring is provided to local, State, and Federal officials and to the public through the Long Valley Observatory. The Long Valley area also was scientifically important before the onset of current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcanology. In the early 1970s, intensive studies of the area began through the USGS Geothermal Investigations Program, owing to the presence of a large young silicic volcanic system. The paroxysmal eruption of Long Valley caldera about 760,000 years ago produced the Bishop Tuff and associated Bishop ash. The Bishop Tuff is a well-preserved ignimbrite deposit that has continued to provide new and developing insights into the dynamics of ignimbrite-forming eruptions. Another extremely important aspect of the Bishop Tuff is that it is the oldest known normally magnetized unit of the Brunhes Chron. Thus, the age of the Bishop Tuff is used to

  2. Application of the Gauss theorem to the study of silicic calderas: The calderas of La Primavera, Los Azufres, and Los Humeros (Mexico)

    NASA Astrophysics Data System (ADS)

    Campos-Enríquez, J. O.; Domínguez-Méndez, F.; Lozada-Zumaeta, M.; Morales-Rodríguez, H. F.; Andaverde-Arredondo, J. A.

    2005-10-01

    We explored applications (including limitations) of Gauss's theorem to the study of silicic calderas. First it enables us to determine the mass deficiency from calderas. Mass deficiency itself has also other potential applications. It enables to make qualitative comparisons between calderas. We can use the mass deficiency to test, in a quick way and as a preliminary step to a formal gravity inversion, for the feasibility of caldera types of simple geometry (i.e., piston subsidence and funnel models). This application can be done in a straightforward way, once the mass deficiency has been determined. For this purpose the mass deficiency is converted to the volume of material missing at the caldera. Subsequently, for example, this volume and the respective caldera diameter enable us to estimate the height of the cylinder fitting the piston subsidence model. If the obtained parameters are congruent with the known geology and geophysical information then the model may be considered further in the inversion of the gravity data for the detailed structure. Other simple models (i.e., the funnel model) can also be analyzed in this way. In particular, when working with a piston subsidence caldera type, the Gauss theorem enables us to estimate the caldera collapse (very difficult to obtain based on geologic information alone). These possible uses of Gauss's theorem are illustrated with the calderas of La Primavera, Los Azufres, and Los Humeros caldera (Mexico). The obtained mass deficiency from these calderas follow the linear mass deficiency-diameter trend observed for other calderas. In particular, because of their diameters and mass deficiencies, La Primavera and Krakatau calderas can be considered equiparable. This comparison is of the most importance considering that La Primavera is located in the neighbourhood of a metropolis (Guadalajara City). Since geophysical studies have already established a piston subsidence model for these calderas, we assessed Gauss's theorem

  3. Nekodake stratovolcano formed at the edge of caldera before the huge pyroclastic eruptions of Aso, Japan: petrological constraints on magma supply system

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Hasenaka, T.; Mori, Y.

    2011-12-01

    Volcanic activities prior to caldera-forming eruptions give important constraints on the magma supply system leading to catastrophic eruptions. Nekodake volcano located in the eastern end of Aso Caldera, Central Kyushu, Japan, was considered to have been active during the post-caldera period. However, the stratigraphic relations and radiometric ages suggest that the Nekodake volcano was active during the caldera forming periods, Aso-1, Aso-2, Aso-3 and Aso-4 pyroclastic flows. In the history of the activities of the Aso volcano, there are some parasitic eruptive activities between pyroclastic flows. However, the relationship between those activities and the pyroclastic flow eruptions is not clear. The purpose of this study is to clarify the petrological relation between magmas of the Nekodake volcano and those of Aso pyroclastic flows. We investigated geological features of the Nekodake volcano, and conducted whole rock chemical analysis and the petrographical description of the volcanic products of Nekodake. We classified the Nekodake volcanic products into four groups from phenocryst assemblage, and two groups from the chemical composition. We found a correlation between petrographical groups and compositional groups. For example, incompatible elements are abundant in olivine group (olivine + 2 pyroxene + plagioclases). Nekodake volcanic products and the caldera-forming products show contrasting differentiation trends on the Harker diagrams. MgO, Al2O3, and CaO contents are high and TiO2, P2O5, and Fe2O3 are low in Nekodake products compared with those in caldera-forming products. Incompatible elements of Nekodake volcanic products show characteristically lower values (K20:0. 6 wt.% - 1.5 wt.%, Rb: 14.2 - 50.0 ppm, Zr: 90.7 ppm -129.2 ppm) than those of caldera-forming products (K20: 1.2 wt.%- 5.0 wt.%, Rb: 21.2 - 165.0 ppm, Zr: 93.76 ppm -321.0 ppm). These data show that the magma reservoir of Nekodake volcano and that of the gigantic pyroclastic eruptions are

  4. RELATIONSHIP OF THE CORTEZ CALDERA TO THE CORTEZ DISSEMINATED GOLD DEPOSIT, NEVADA.

    USGS Publications Warehouse

    Rytuba, James J.; Madrid, Raul J.; McKee, E.H.

    1984-01-01

    The Cortez caldera is an oval structure ten km in diameter formed by caldera collapse and is located in the northern part of the Toiyabe Range, central Nevada. The Cortez gold deposit, a carbonate-hosted disseminated gold deposit, is located three km northeast of the northern margin of the Cortez caldera. Dike within the Cortez gold deposit have a similar age and composition as the Caetano Tuff and strike N 30-40 degree W, subparallel to the caldera margin and dip up to 45 degree toward the caldera. Remnants of the outflow facies of the Caetano Tuff near the Cortez deposit indicate that the deposit formed near the Oligocene paleosurface.

  5. Effect of petrophysical properties and deformation on vertical zoning of metasomatic rocks in U-bearing volcanic structures: A case of the Strel'tsovka caldera, Transbaikal region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.

    2014-03-01

    The development of vertical zoning of wall-rock metasomatic alteration is considered with the Mesozoic Strel'tsovka caldera as an example. This caldera hosts Russia's largest uranium ore field. Metasomatic rocks with the participation of various phyllosilicates, carbonates, albite, and zeolites are widespread in the ore field. In the eastern block of the caldera, where the main uranium reserves are accommodated, hydromica metasomatic alteration gives way to beresitization with depth. Argillic alteration, which is typical of the western block, is replaced with hydromica and beresite alteration only at a significant depth. Postore argillic alteration is superposed on beresitized rocks in the lower part of the section. Two styles of vertical metasomatic zoning are caused by different modes of deformation in the western and eastern parts of the caldera. Variations of the most important petrophysical properties of host rocks—density, apparent porosity, velocities of P- and S-waves, dynamic Young's modulus, and Poisson coefficient—have been determined by sonic testing of samples taken from different depths. It is suggested that downward migration of the brittle-ductile transition zone could have been a factor controlling facies diversity of metasomatic rocks. Such a migration was caused by a new phase of tectonothermal impact accompanied by an increase in the strain rate or by emplacement of a new portion of heated fluid. Transient subsidence of the brittle-ductile boundary increases the depth of the hydrodynamically open zone related to the Earth's surface and accelerates percolation of cold meteoric water to a greater depth. As a result, the temperature of the hydrothermal solution falls down, increasing the vertical extent of argillic alteration. High-grade uranium mineralization is also localized more deeply than elsewhere.

  6. The combined use of InSAR and GPS Time-Series to Infer the Deformation Signals at the Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Pepe, A.; Tizzani, P.; Battaglia, M.; Castaldo, R.; Lanari, R.; Zeni, G.

    2015-12-01

    We investigate the Yellowstone caldera geological unrest between 1977 and 2010 by analyzing temporal changes in differential Interferometric Synthetic Aperture Radar (InSAR), precise spirit leveling andgravity measurements. The analysis of the 1992-2010 displacement time series has been retrieved by applying an "improved" version of the Small Baseline Subset (SBAS) InSAR technique which complements a novel multi-temporal noise filtering approach with a suitable identification of the network of small baseline pairs. As a result, we have identified three areas of deformation: (i) the Mallard Lake (ML) and Sour Creek (SC) resurgent domes, (ii) a region close to the Northern Caldera Rim (NCR), and (iii) the eastern Snake River Plain (SRP). While the eastern SRP shows a signal related to tectonic deformation, the other two regions are influenced by the caldera unrest. We removed the tectonic signal from the InSAR displacements, and we modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. Our findings confirmed the existence of different distinct sources, beneath the brittle-ductile transition zone, which have been intermittently active during the last three decades. Moreover, we interpreted our results in the light of existing seismic tomography studies. Concerning the SC dome, we highlighted the role of hydrothermal fluids as the driving force behind the 1977-1983 uplift; since 1983-1993 the deformation source transformed into a deeper one with a higher magmatic component. Furthermore, our results support the magmatic nature of the deformation source beneath ML dome for the overall investigated period. Finally, the uplift at NCR is interpreted as magma accumulation, while its subsidence could either be the result of fluids migration outside the caldera or the gravitational adjustment of the source from a spherical to a sill-like geometry.

  7. Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling, and gravity measurements

    NASA Astrophysics Data System (ADS)

    Tizzani, P.; Battaglia, M.; Castaldo, R.; Pepe, A.; Zeni, G.; Lanari, R.

    2015-04-01

    We studied the Yellowstone caldera geological unrest between 1977 and 2010 by investigating temporal changes in differential Interferometric Synthetic Aperture Radar (InSAR), precise spirit leveling and gravity measurements. The analysis of the 1992-2010 displacement time series, retrieved by applying the SBAS InSAR technique, allowed the identification of three areas of deformation: (i) the Mallard Lake (ML) and Sour Creek (SC) resurgent domes, (ii) a region close to the Northern Caldera Rim (NCR), and (iii) the eastern Snake River Plain (SRP). While the eastern SRP shows a signal related to tectonic deformation, the other two regions are influenced by the caldera unrest. We removed the tectonic signal from the InSAR displacements, and we modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. Our findings confirmed the existence of different distinct sources, beneath the brittle-ductile transition zone, which have been intermittently active during the last three decades. Moreover, we interpreted our results in the light of existing seismic tomography studies. Concerning the SC dome, we highlighted the role of hydrothermal fluids as the driving force behind the 1977-1983 uplift; since 1983-1993 the deformation source transformed into a deeper one with a higher magmatic component. Furthermore, our results support the magmatic nature of the deformation source beneath ML dome for the overall investigated period. Finally, the uplift at NCR is interpreted as magma accumulation, while its subsidence could either be the result of fluids migration outside the caldera or the gravitational adjustment of the source from a spherical to a sill-like geometry.

  8. Igneous evolution of a complex laccolith-caldera, the Solitario, Trans-Pecos Texas: Implications for calderas and subjacent plutons

    USGS Publications Warehouse

    Henry, C.D.; Kunk, M.J.; Muehlberger, W.R.; McIntosh, W.C.

    1997-01-01

    The Solitario is a large, combination laccolith and caldera (herein termed "laccocaldera"), with a 16-km-diameter dome over which developed a 6 x 2 km caldera. This laccocaldera underwent a complex sequence of predoming sill, laccolith, and dike intrusion and concurrent volcanism; doming with emplacement of a main laccolith; ash-flow eruption and caldera collapse; intracaldera sedimentation and volcanism; and late intrusion. Detailed geologic mapping and 40Ar/39Ar dating reveal that the Solitario evolved over an interval of approximately 1 m.y. in three distinct pulses at 36.0, 35.4, and 35.0 Ma. The size, duration, and episodicity of Solitario magmatism are more typical of large ash-flow calderas than of most previously described laccoliths. Small volumes of magma intruded as abundant rhyolitic to trachytic sills and small laccoliths and extruded as lavas and tuffs during the first pulse at 36.0 Ma. Emplacement of the main laccolith, doming, ash-flow eruption, and caldera collapse occurred at 35.4 Ma during the most voluminous pulse. A complex sequence of debris-flow and debris-avalanche deposits, megabreccia, trachyte lava, and minor ash-flow tuff subsequently filled the caldera. The final magmatic pulse at 35.0 Ma consisted of several small laccoliths or stocks and numerous dikes in caldera fill and along the ring fracture. Solitario rocks appear to be part of a broadly cogenetic, metaluminous suite. Peralkaline rhyolite lava domes were emplaced north and west of the Solitario at approximately 35.4 Ma, contemporaneous with laccolith emplacement and the main pulse in the Solitario. The spatial and temporal relation along with sparse geochemical data suggest that the peralkaline rhyolites are crustal melts related to the magmatic-thermal flux represented by the main pulse of Solitario magmatism. Current models of laccolith emplacement and evolution suggest a continuum from initial sill emplacement through growth of the main laccolith. Although the Solitario

  9. Lithium in the McDermitt caldera, Nevada and Oregon

    USGS Publications Warehouse

    Glanzman, R.K.; McCarthy, J.H.; Rytuba, J.J.

    1978-01-01

    Anomalously high concentrations of lithium in fluviatile-lacustrine sediments near McDermitt, Nevada, may constitute a potential resource. These sediments are associated with a caldera about 45 km in diameter that is a result of volcanic activity, subsidence and sedimentation chiefly of Miocene age. The sediments originally were vitroclastic and now consist chiefly of authigenic zeolites, clay minerals, feldspar and quartz. Calcite occurs as thin beds, nodules and cement Gypsum is presnt but sparse. Most of the clay beds in the caldera contain 0.01-0.1% Li and have well above the average Li concentration for continental clays (0.006%) (Ronov et al.1). Individual smectitic clay samples from the western and southern part of the caldera contain as much as 0.65% Li and are associated with analcime and K-feldspar. Two beds, each 0.6m thick, contain 0.35% Li. Clay samples from the northern part of the caldera contain as much as 0.36% Li, and are associated with clinoptilolite and erionite. The clay beds are thinner in the north; in one section a bed 0.3 m thick contains 0.36% Li, and in another section a bed 0.1 m thick contains 0.30% Li. Lithium is probably derived from volcanic material and then incorporated into the clay beds during alteration. ?? 1978.

  10. Three-dimensional velocity structure of the Kilauea caldera, Hawaii

    USGS Publications Warehouse

    Dawson, P.B.; Chouet, B.A.; Okubo, P.G.; Villasenor, A.; Benz, H.M.

    1999-01-01

    High-resolution velocity models (0.5 km resolution) of the Kilauea caldera region are obtained by the tomographic inversion of both P- and S-waye arrival times. Data are from the permanent Hawaiian Volcano Observatory (HVO) seismic network, a broadband seismic network, and a temporary array of stations centered on the southern boundary of the caldera. A low-velocity P-wave anomaly is imaged centered on the southeastern edge of the caldera, with a velocity contrast of about 10% and a volume of 27 km3. The VP/VS model mimics the spatial extent of the P-wave anomaly, but is partitioned into two discrete anomalous volumes centered on the southern boundary of the caldera and on the upper east rift of the volcano. The corresponding Poisson's ratio in these zones is high (?? = 0.25-0.32) which is consistent with a densely-cracked, hot volume which may contain partial melt. The large-scale features of the models are consistent with results obtained from an earlier, larger-scale (2 km resolution) tomographic image of Kilauea Volcano based on HVO network data.

  11. The Salma Caldera complex, northeastern Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kellogg, K.S.

    1985-01-01

    The upper Proterozoic Salma caldera is genetically part of an elongate alkali granitic massif, Jabal Salma. Comenditic ash-flow tuffs, the oldest recognized rocks of the caldera complex, were erupted during caldera collapse associated with the rapid evacuation of the upper, mildly peralkaline part of a zoned magma reservoir. Within the tuff sequence, a massive, lithic-rich intracaldera tuff containing megabreccia blocks is overlain by a layered ash-flow sequence. Later peralkaline granite intruded the caldera ring fracture zone. Metaluminous to peraluminous magma rose beneath the caldera approximately 580 Ma ago and solidified as biotite alkali-feldspar granite, syenogranite, and granophyre. No apparent structural doming of the exposed volcanic rocks along the east side of the caldera took place, and post- emplacement deformation and metamorphism of the caldera are minimal.

  12. Caldera resurgence: new insights from the study of the Siwi-Yenkahe-Yasur system (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Brothelande, E.; Lenat, J.; Merle, O.; Peltier, A.

    2013-12-01

    On Tanna Island (Vanuatu), the Siwi caldera hosts a complex association between a permanently active explosive volcano (Yasur) and one of the fastest growing resurgent dome on Earth (Yenkahe). Uplifted coral terraces and marine tuff indicate a very high resurgence rate over the past 1000 yrs (15.6 cm.yr-1) making the Yenkahe dome one of the most relevant example of active post-caldera resurgence, but also one of the most dangerous structure of that kind. New data acquired between 2008 and 2012 brought further constraints on resurgent processes involved. Tectonic patterns inferred from structural observations on satellite images and on the field, completed by a meticulous photogrammetry study, argue for a relatively extended and shallow source of deformation. Two different approaches, using analogue and numerical modeling, were developed to explore the doming effects of different sources within the first kilometers. These models provide the first quantitative estimations on the depth and the shape of the source (magmatic and/or hydrothermal) that generated the Yenkahe dome. Analysis of external surface features, such as faults patterns and collapse scars revealed by photogrammetry and field observations, also provided new data for proposing hypotheses of a multi-step construction of the Yenkahe and discussing the potential instabilities of the dome, notably on the shore-bordering eastern flank. Geophysical investigations, combining electrical methods (T.D.E.M., E.R.T., S.P.), gravimetry and magnetism, were performed providing a wide range of information in terms of internal structure. Lithology units can be distinguished at different scales, and tectonic features connected to the surface can be defined. Conductive bodies representing the hydrothermal system can be located in relationship with these features, broaching the question of a possible phreatic or phreato-magmatic activity in the future. The combination of a wide panel of methods brings here a new image on

  13. Surveying Dead Trees and CO2-Induced Stressed Trees Using AVIRIS in the Long Valley Caldera

    NASA Technical Reports Server (NTRS)

    deJong, Steven M.

    1996-01-01

    Since 1980 the Long Valley Caldera in the eastern Sierra Nevada (California) has shown signs of renewed volcanic activity. Frequent earthquakes, a re-inflation of the caldera, hydrothermal activity and gas emissions are the outer symptoms of this renewed activity. In 1990 and 1991 several areas of dying trees were found around Mammoth Mountain. The cause of the die off of the trees was first sought in the persistent drought in the preceding years. However, the trees died regardless of age and species. Farrar et al. (1995) started a soil-gas survey in 1994 in the dead-tree areas and found carbon dioxide concentrations ranging from 30 to 96% at soil depths between 30 and 60 cm. CO2 concentrations in the atmosphere are usually around 0.03% and in the soil profile CO2 levels do commonly not exceed 4 to 5%. Although not much is known about the effect of high levels of carbon dioxide in the soil profile on roots, it is most likely that the trees are dying due to oxygen deprivation: the CO2 drives the oxygen out of the soil. So far, four sites of dead trees have been mapped around Mammoth Mountain. The two largest dying trees sites are located near Horseshoe Lake and near Mammoth Mountain Main Lodge covering approximately an area of 10 and 8 ha respectively. Analysis of the gas composition regarding the He-3/He-4 ratio and the percentage biogenic carbon reveals the source of the gas: the magma body beneath the Long Valley Caldera. Until recently it was not known that volcanoes release abundant carbon dioxide from their flanks as diffuse soil emanations. As a result of the magma gas emission around Mammoth Mountain there is an excellent sequence of dead trees, stressed trees, healthy trees and bare soil surfaces. This research site provides excellent opportunities to: (1) Study the capabilities of imaging spectrometry to map stressed (and dead) pine and fir species; (2) Study methods to separate the vivid vegetation, stressed vegetation and dead vegetation from the soil

  14. Quilotoa volcano — Ecuador: An overview of young dacitic volcanism in a lake-filled caldera

    NASA Astrophysics Data System (ADS)

    Hall, Minard L.; Mothes, Patricia A.

    2008-09-01

    Quilotoa volcano, an example of young dacitic volcanism in a lake-filled caldera, is found at the southwest end of the Ecuador's volcanic front. It has had a long series of powerful plinian eruptions of moderate to large size (VEI = 4-6), at repetitive intervals of roughly 10-15 thousand years. At least eight eruptive cycles (labeled Q-I to Q-VIII with increasing age) over the past 200 ka are recognized, often beginning with a phreatomagmatic onset and followed by a pumice-rich lapilli fall, and then a sequence of pumice, crystal, and lithic-rich deposits belonging to surges and ash flows. These unwelded pyroclastic flows left veneers on hillsides as well as very thick accumulations in the surrounding valleys, the farthest ash flow having traveled about 17 km down the Toachi valley. The bulk volumes of the youngest flow deposits are on the order of 5 km 3, but that of Q-I's 800 yr BP ash-fall unit is about 18 km 3. In the last two eruption cycles water has had a more important role. Upon Quilotoa's low-relief volcanic edifice, three calderas are recognized; the formation of the oldest one predates the Q-IV cycle and the others occurred during the Q-II and Q-I cycles. Dacite lava domes are common along the present caldera rim and most were emplaced at the end of the Q-II cycle; older domes of dark dacite belong to the Q-III and IV cycles. The explosive onset of the Q-I cycle expulsed as much as 250 million m 3 of the lake's water, resulting in large debris flows that scoured the eastern flanks of the edifice and descended the Toachi river. Little variation in the mineralogy and chemistry of Quilotoa's eruptive products is observed, suggesting that the source is a homogeneous magma body at shallow depth. Both the pyroclastic material and the domes are composed chiefly of gray porphyritic dacites carrying large phenocrysts of plagioclase, amphibole, biotite, and occasionally quartz.

  15. Carbon Dioxide Emissions From Kill Zones Around the Resurgent Dome, Long Valley Caldera, CA

    NASA Astrophysics Data System (ADS)

    Bergfeld, D.; Evans, W. C.; Farrar, C. D.; Howle, J. F.

    2004-12-01

    An episode of seismic unrest beneath the resurgent dome at Long Valley caldera (LVC) in eastern California began in 1980 and is associated with approximately 80 cm of cumulative uplift on parts of the dome since that time. Studies of hydrologic and geochemical parameters can be useful in determining the source of uplift; and of particular relevance here, studies of diffuse soil degassing and temperature have been used to examine relations between gas emissions, uplift, and energy release. We present results from an eighteen-month investigation of soil temperature, soil-gas chemistry and CO2 efflux from fourteen discrete areas of vegetation kill that have appeared inside the caldera over the past two decades. Compared with the tree-kill around Mammoth Mountain on the southwest rim of the caldera, dead zones we studied around the resurgent dome are small. Individually the areas cover between 800 and 36,000 m2. All of the areas have some sites with elevated CO2 flux and elevated soil temperature. \\delta 13C values of CO2 from sites in eight of the studied areas are between -5.7 and -3.9\\permil, and are within the range of magmatic CO2. Results from the flux measurements indicate that on average total CO2 emissions from four of the areas sum about 10 tonnes per day. The other vegetation kill areas currently have only a few sites that exhibit anomalous soil temperatures and CO2 flux, and CO2 emissions from these areas are typically less than 0.3 of a tonne per day. The chemical composition of gas emissions from thermal ground in kill zones located 1.5 to 2 km northwest of the Casa Diablo geothermal power plant demonstrate a connection between some of the dead areas and perturbations related to geothermal fluid production. These results and estimates of thermal output from two of the high flux grids are used to evaluate the premise that the gaseous and thermal anomalies are related to magmatic intrusion beneath the resurgent dome.

  16. Magmas and reservoirs beneath the Rabaul caldera (Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Bouvet de Maisonneuve, C.; Costa Rodriguez, F.; Huber, C.

    2013-12-01

    The area of Rabaul (Papua New Guinea) consists of at least seven - possibly nine - nested-calderas that have formed over the past 200 ky. The last caldera-forming eruption occurred 1400 y BP, and produced about 10 km3 of crystal-poor, two-pyroxene dacite. Since then, five effusive and explosive eruptive episodes have occurred from volcanic centres along the caldera rim. The most recent of these was preceded by decade-long unrest (starting in 1971) until the simultaneous eruption of Vulcan and Tavurvur, two vents on opposite sides of the caldera in 1994. Most eruptive products are andesitic in composition and show clear signs of mixing/mingling between a basalt and a high-K2O dacite. The hybridization is in the form of banded pumices, quenched mafic enclaves, and hybrid bulk rock compositions. In addition, the 1400 y BP caldera-related products show the presence of a third mixing component; a low-K2O rhyodacitic melt or magma. Geochemical modeling considering major and trace elements and volatile contents shows that the high-K2O dacitic magma can be generated by fractional crystallization of the basaltic magma at shallow depths (~7 km, 200 MPa) and under relatively dry conditions (≤3 wt% H2O). The low-K2O rhyodacitic melt can either be explained by extended crystallization at low temperatures (e.g. in the presence of Sanidine) or the presence of an additional, unrelated magma. Our working model is therefore that basalts ascend to shallow crustal levels before intruding a main silicic reservoir beneath the Rabaul caldera. Storage depths and temperatures estimated from volatile contents, mineral-melt equilibria and rock densities suggest that basalts ascend from ~20 km (~600 MPa) to ~7 km (200 MPa) and cool from ~1150-1100°C before intruding a dacitic magma reservoir at ~950°C. Depending on the state of the reservoir and the volumes of basalt injected, the replenishing magma may either trigger an eruption or cool and crystallize. We use evidence from major and

  17. Imaging the magmatic and hydrothermal systems of Long Valley Caldera, California with magnetotellurics

    NASA Astrophysics Data System (ADS)

    Peacock, J.; Mangan, M.; McPhee, D.; Ponce, D. A.

    2015-12-01

    Long Valley Caldera (LVC) in Eastern California contains active hydrothermal systems, areas of episodic seismicity, and areas of elevated gas emissions, all of which are related to a deeper magmatic system that is not well characterized. To better image the Long Valley magmatic system, 60 full-tensor broadband magnetotelluric (MT) stations were collected in LVC and modeled in three-dimensions to constrain the subsurface electrical resistivity structure down to 30 km. Three conductive zones are imaged in the preferred resistivity model. The most prominent conductive zone (<7 Ohm-m) is located 5 km beneath the resurgent dome (near the center of Long Valley Caldera), where it elongates in a north-south direction, and has westward connection to the surface close to well 44-16 near Deer Mountan. This conductive zone is interpreted to be an accumulation zone of hydrothermal fluids originating from a deeper magmatic source. The shape of the conductive body suggests that the fluids pool under the resurgent dome and migrate westward, upwelling just south of well 44-16 to feed the near surface geothermal system. A second conductive zone (<10 Ohm-m) is 4 km southeast of the resurgent dome and 5 km deep and coincident with the seismic swarm of 2014. This is another zone of fluid accumulation, where the source could be the fluid accumulation zone to the west or an independent deeper source. The third conductive anomaly (<10 Ohm-m) is a few kilometers south of the resurgent dome below a depth of 15 km, and collocated with a low p- and s-wave velocity zone, and directly beneath a GPS inflation area, all of which advocate for a magma mush zone of as much as 30% interstitial melt. The preferred resistivity model suggests an accumulation of hydrothermal fluids 5 km below the resurgent dome that originates from a deeper magmatic source at 15 km depth.

  18. Calderas of the Central Sector of the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.

    2001-12-01

    The central sector of the Mexican Volcanic Belt (MVB) (-99 to -103, Long W) has the largest number of calderas so far identified in this province. The calderas (with their age range in Ma, and distance to the Middle America Trench in km, in parenthesis) are: Amazcala (7-6, 480), Apaseo (7-6, 440), Huichapan (5-4, 420), Agustinos (5-4, 400), Amealco (5-4, 400), Macua (4-3, 410), Muerta (?, 380), Catedral (6-5, 370), Azufres (4.5-0.03, 370 -Pradal & Robin, 1994), and Zitácuaro (12-0.5, 320 -Capra et al., 1997). Most calderas completed their activity in about 1 Ma, but Azufres and Zitácuaro had longer lives, mostly as post-caldera lava domes and associated pyroclastic flows. Amazcala is rhyolitic, peraluminous-peralkaline, and 10x14 km in diameter. Apaseo is a 11x14 km center that started as andesitic-dacitic and ended rhyolitic and mildly peraluminous; Huichapan started with dacitic ignimbrites and ended with a major rhyolitic ignimbrite; Agustinos is a > 6 km open semi-circle structure that erupted first an andesitic ignimbrite and then a rhyolitic one; Amealco is 10 km in size and erupted a succession of three ignimbrites with mingled glasses with compositions from trachyandesite to rhyolite; Macua is a summit crater structure, 3x5 km, that erupted an unwelded rhyolitic ignimbrite; Muerta is a sector collapse caldera, 4x5 km, associated to lithics-rich ignimbrite eruptions; next to Mexico-City is Catedral, a 9x6 km in diameter caldera with silicic ignimbrites and rim and central lava domes, some of which erupted block-and-ash flows; Azufres has being a matter of debate, but according to Padral and Robin (1994), is a long-lived structure, about 20 km in diameter, with the major caldera eruption at 4.5-3.4 Ma, and repeated dome and pyroclastic flow activity until 26 Ka ago; Zitácuaro (Capra et al., 1997) is another long-lived center, with eruptive cycles at 12 Ma (the caldera-forming event), 5 Ma and 0.5 Ma (mostly domes and associated pyroclastic flows). Most

  19. Structure of La Primavera caldera, Jalisco, Mexico, deduced from gravity anomalies and drilling results

    NASA Astrophysics Data System (ADS)

    Yokoyama, I.; Mena, M.

    1991-07-01

    Previous studies of La Primavera caldera have mostly been based on surface geology and topography. Since 1980, many wells, exploring for geothermal energy, have reached depths of about 2 to 3 km at the center of the caldera. The results of the drillings, together with those of the gravity surveys, provide information about the subsurface structure of the caldera, and shed light on its formation. The drilling results and gravity anomalies at La Primavera caldera and San Marcos, located at about 40 km distance from the caldera, suggest that regional gravity anomalies can be interpreted in terms of depths of the granitic basements: the basement beneath La Primavera caldera is about 3 km deep and consists of roughly the same horizon as that beneath San Marcos. The drilling results within the caldera reveal that the depth of the caldera fills ranges from 0.3 to 1 km at the drilling sites. The andesite basement, about 1 km deep, remains approximately horizontal, and the granitic basement has a depth of about 3 km. The surface topographies, such as the postcaldera domes, scarcely disturb the subsurface strata. The local gravity anomalies show two lows within the caldera reflecting the configuration of caldera bottom, two funnel-shaped depressions, one of which corresponds to a vent of the Tala tuff deduced from geological observations. The mass deficiency within the caldera estimated from the gravity anomaly, satisfies the general relationship that the mass deficiency is proportional to the caldera diameter cubed. This means that caldera structure is three-dimensional: the larger the diameter, the deeper the funnel-shape. At present this argument may be limited to funnel-shaped calderas.

  20. Root zone of the Late Proterozoic Salma Caldera, northeastern Arabian Shield, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kellogg, Karl S.

    1985-11-01

    The eroded root of the late Proterozoic Salma caldera crops out in a striking, roughly elliptical feature, about 27 km long and 22 km wide, near the northeastern edge of the Arabian Shield. The caldera is genetically part of an elongate alkalic granitic massif (Jabal Salma) that extends 35 km from the caldera to the southwest. Comenditic ash flow tuff and lava(?) of the caldera fill, probably more than 1 km thick, are the oldest recognized rocks of the caldera complex. These rocks were erupted during caldera collapse associated with the rapid evacuation of the upper, mildly peralkalic part of a zoned magma reservoir. Within the caldera fill, a massive, lithic-rich intracaldera rhyolite, probably a lava in excess of 1 km thick, is overlain by a layered ash flow sequence. Numerous megabreccia blocks, probably derived from the caldera wall, occur in the massive rhyolite. Open folds in the layered volcanic rocks may be due to high-temperature slumping of the rocks toward the center of the caldera following collapse. Later peralkalic granite that intruded the caldera ring fracture zone occurs in an arcuate pattern outside the area of exposed caldera fill. After caldera collapse, metaluminous to peraluminous magma rose beneath the caldera at approximately 580 Ma and solidified as biotite alkali granite, rim syenogranite, and late, high-level granophyre. Rare earth element abundances indicate that the layered rhyolite tuff, peralkalic granite, and granophyre are chemically more evolved than the biotite alkali granite and rim syenogranite. The granophyre intruded the caldera fill as a dome-shaped body composed of numerous sheetlike masses. Granophyric texture resulted from rapid pressure release and quenching accompanying the intrusion of each sheet. Maximum penetration of the granophyre into overlying rocks occurred in the central region and along the west side of the caldera, where the caldera fill volcanic rocks have been removed by erosion. No apparent structural

  1. A geophysical-geological transect of the Silent Canyon caldera complex, Pahute Mesa, Nevada

    NASA Astrophysics Data System (ADS)

    Ferguson, John F.; Cogbill, Allen H.; Warren, Richard G.

    1994-03-01

    Revision of lithological logs for boreholes penetrating the volcanic center at Pahute Mesa, Nevada, has led to a thorough review of the volcanic stratigraphy and geologic structure. We have combined this review with a compilation of old and newly acquired gravity and seismic travel time data, producing a unified interpretation along a northwest to sutheast profile. The analysis supports a new interpretation of the Silent Canyon caldera complex. The caldera is found to be more asymmetric than previously suggested, with the southeastern boundary formed by linear, high-angle normal faultsand a more gently sloping northwestern boundary. The total thickness of volcanic units within the caldera complex does not appear to exceed 5 km. The shallow structure at Pahute Mesa could have a profound effect on the seismic response for regional and teleseismic signals from this nuclear test site. The Silent Canyon caldera complex is actually a set of nested calderas first filled by thick (greater than 1 km) postcaldera lavas and subsequently buried by outflow sheets of the Timber Mountain caldera to the south. Thick, postcaldera lavas filled a half-graben structure formed west of the West Greeley fault, dropping the tops of the youngest caldera-forming units to depths in excess of 2 km. Therefore the western boundary of the caldera complex is poorly defined. East of the West Greeley fault, two overlapping calderas are defined, and stratigraphic data suggest the presence of even older calderas. The youngest caldera, the calc-alkaline Area 20 caldera, is well defined from drill hole data. The Area 20 caldera overlaps the 13.6 Ma peralkaline Grouse Canyon caldera, which is less well defined, but apparently collapsed in trap-door style along the Almendro fault. For both these calderas, collapse continued after the main caldera-forming eruption, concurrent with the accumulation of thick (greater than 1 km) lavas within the peripheral collapse zones. The geophysical interpretation

  2. Eruption of reverse-zoned upper Tshirege Member, Bandelier Tuff from centralized vents within Valles caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Warren, R. G.; Goff, Cathy J.; Dunbar, Nelia

    2014-04-01

    Valles caldera (New Mexico, USA) is the type example of a resurgent caldera and source of the Tshirege Member, Bandelier Tuff, which has been long recognized as a normally zoned sequence of ignimbrites. In this paper, we present geologic, stratigraphic, chemical, and mineralogical data from upper flow units of the Tshirege Member obtained at multiple sites within and east of Valles caldera showing that the upper part of the Tshirege Member is reverse-zoned in chemistry and mineralogy. The key to deciphering these compositional changes in zoning is recognition of flow unit Qbt4u, which we informally name the high Ti-Ba unit or HTBU. The HTBU is widespread within the resurgent dome area of the caldera, but is only found in a small area outside and east of the caldera. The HTBU is the most “mafic” unit in the Tshirege Member and is identified by chemical maxima in Ti, Ba, Sr, P, V, and Th, and by unusually high contents of anorthoclase, plagioclase, orthopyroxene, ilmenite, apatite and zircon with respect to other flow units. The HTBU also contains small (≤ 1 cm) enclaves of quenched andesitic magma consisting primarily of plagioclase, orthopyroxene, clinopyroxene, glass and vesicles. Later erupted Tshirege flow units Qbt5l and Qbt5u are chemically more evolved and contain less plagioclase, orthopyroxene, ilmenite, apatite and zircon than the HTBU, and they are more evolved than flow units erupted before the HTBU (approximately 90% of the Tshirege Member). The HTBU is the host ignimbrite of a complex vent breccia exposed for over 3 km along the NW faulted face of Redondo Peak, the Valles caldera resurgent dome. Breccia clasts consist of angular to subrounded fragments ≤ 1 m in diameter of Permian red beds, Miocene basin fill sediments, Miocene to Pliocene volcanics and Quaternary ignimbrite (Otowi Member, Bandelier Tuff) that underlie Valles caldera. Flow units Qbt5l and Qbt5u overlie the HTBU vent breccia but these later units do not contain unusual

  3. Pyroclastic density current hazard maps at Campi Flegrei caldera (Italy): the effects of event scale, vent location and time forecasts.

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina

    2016-04-01

    Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.

  4. Subsurface structure of Valles Caldera; a resurgent cauldron in northern New Mexico. [Abstract only

    SciTech Connect

    Goff, F.

    1983-03-01

    Valles Caldera is a 1.1 My old silicic cauldron lying at the intersection of the Rio Grande rift and northeast-trending Jemez Lineament. Geothermal exploration in the caldera region during the last 10 years provides subsurface data which refine our knowledge of deep caldera structure, but raise some questions concerning current models of resurgent cauldrons. For example, a detailed gravity investigation using 730 stations (Segar, 1974) shows a circular negative gravity anomaly centered over the caldera (as expected) but also indicates a strong northeast-trending grain of fault blocks in pre-caldera rocks, that are generally down-faulted to the southeast toward the Rift. Gravity data do not define a diapir structure beneath the resurgent dome attributable to tumescent magma; instead of a northeast-trending horst underlies the Redondo Peak segment of the dome. Interpretation of stratigraphy from many geothermal wells suggests that the caldera and resurgent dome are floored by untilted fault blocks (Hulen and Nielson, 1982). In addition, drilling to Precambrian basement and depths of 3.2 km has not encountered a large intrusive rhyolite that might logically produce tumescence of the dome. The new data indicate that the subsurface structural configuration of Valles Caldera is controlled by pre-caldera tectonics and that a more complicated mechanism is required to explain the resurgent dome standing high inside the caldera. A refined mechanism of resurgence might be one result of CSDP drilling at Valles Caldera.

  5. Geochemistry of hydrothermal plume in the Suiyo Seamount Caldera.

    NASA Astrophysics Data System (ADS)

    Shitashima, K.; Maeda, Y.

    2002-12-01

    Chemical compounds of the hot basalt origin are discharged into the deep ocean via hydrothermal plume by the deep-sea hydrothermal activity. The hydrothermal plume is widely diffused to the ocean by mixing with ambient seawater. Chemical reactions and interactions with microorganisms in the diffusion process of the hydrothermal plume are important to comprehend the oceanic geochemical cycles. Recently, it has been clarified that the variation of hydrothermal activity is greatly controlled in the tidal current. Not only geochemical observation but also physical observation, such as water current measurement, are necessary for the understanding of the deep-sea hydrothermal systems including the behavior of hydrothermal plume. In order to observe the diffusion process of hydrothermal plumes, sampling and chemical mapping of the hydrothermal plume and measurement of water current were carried out at the Suiyo Seamount Caldera during research cruises under the ?Archaean Park? project funded by MEXT. The three-dimensional acoustic current meters were moored at the height of 13m and 125m above the bottom in the Suiyo Seamount Caldera. At the 13m height, average water current speed and current direction were 10.46 cm/second and 228.1 degrees, respectively, and maximum water current speed was over 40.46 cm/second. On the other hand, average water current speed and current direction at the 125m height were 3.87 cm/second and 57.8 degrees, respectively. The strong water current of the southwest direction in 24 hours periods existed near bottom of the caldera. In addition, downward current and water temperature depreciation were observed, when there was the strong current in 24 hours periods. These results suggest that the low-temperature ocean water around the Suiyo Seamount flows toward the bottom of caldera periodically. The mini CTDT-RMS mounted twelve 1.2L Niskin bottles and the in-situ pH sensor were installed on the ROV or manned submersible. The hydrothermal plume

  6. Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexey A.; Kislov, Evgeny V.; Danyushevsky, Leonid V.; Nikolaev, Georgy S.; Fiorentini, Marco L.; Gilbert, Sarah; Goemann, Karsten; Malyshev, Alexey

    2016-12-01

    The geology and major types of sulfide mineralization in the Yoko-Dovyren layered massif (northern Transbaikalia, Russia) are presented. This study focuses on the structure, mineralogy, and geochemistry of poorly mineralized plagiodunite and dunite in the lower part of the intrusion. Assuming these rocks contain key information on the timing of sulfide immiscibility in the original cumulate pile, we apply a novel approach which combines estimates of the average sulfide compositions in each particular rock with thermodynamic modeling of the geochemistry of the original sulfide liquid. To approach the goal, an updated sulfide version of the COMAGMAT-5 model was used. Results of simulations of sulfide immiscibility in initially S-undersaturated olivine cumulates demonstrate a strong effect of the decreasing fraction of the silicate melt, due to crystallization of silicate and oxide minerals, on the composition of the intercumulus sulfide liquid. Comparison of the observed and modeled sulfide compositions indicates that the proposed modeling reproduces well the average concentrations of Cu, Cd, Ag, and Pd in natural sulfides. This suggests the sulfide control on the distribution of these elements in the rocks. Conversely, data for Pt and Au suggest that a significant portion of these elements could present in a native form, thus depleting the intercumulus sulfide melt at an early stage of crystallization.

  7. Historical activity at Campi Flegrei caldera, southern Italy

    USGS Publications Warehouse

    Dvorak, J.; Gasparini, P.

    1990-01-01

    We cannot forecast whether the activity since 968 will culminate in another eruption or whether Campi Flegrei will remain quiet for several hundred more years. This article summarizes the historical recorded of activity in Campi Flegrei, which, with varying degrees of reliability, spans 2,000 years, and emphasizes that further scientific studies of this caldera will improve our understanding of the behavior of longquiescent volcanic system. 

  8. Geology and eruptive mechanisms of Masaya Caldera Complex, Nicaragua

    SciTech Connect

    Williams, S.N.

    1983-01-01

    Results of detailed geologic field mapping and analysis of eruptive mechanisms at Masaya Caldera Complex, Nicaragua are presented. Eruptions began at least 50,000 and possibly 460,000 y.b.p. The Las Sierras Formation, regarded as Plio-Pleistocene in age, forms the local basement. A central vent of group or vents in the developing Masaya volcanic complex produced diverse deposits, all of basaltic composition. Eruption of a pyroclastic flow-surge sequence at 2250-6500 y.b.p. culminated in wholesale collapse of a caldera with a volume of 15.3 km/sup 3/. The bulk volume of the ignimbrite is 2.2-3.4 kkm/sup 3/ and the surge deposit is 4.9-5.5 km/sup 3/. Pre-historic lava production rates of 1.9-5.5 x 10/sup 6/ m/sup 3//year are similar to rates at other volcanoes but 26-76 times greater than the historic rate of production. The average lava effusion rate of 32 m/sup 3//sec during the 1772 eruption is at least an order of magnitude greater than observed effusion rates at other Central American volcanoes, and helps explain the unusual shield-like morphology of the volcano. Pyroclastic eruptions of several types have played an important role in the evolution of the volcano. Fissure-type eruptions, unknown elsewhere in Central America, have created numerous ash and scoria deposits. Two widespread scoria-fall deposits, locally known as the Fontana Lapilli an San Judas Formation, are the first documented plinian airfall deposts of basaltic composition. The Masaya-type caldera is redefined as a caldera associated with voluminous explosive eruptions of much less than 100 km/sup 3/ of mafic magma from a summit vent.

  9. Long Valley Caldera Lake and reincision of Owens River Gorge

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  10. Outward-dipping ring-fault structure at rabaul caldera as shown by earthquake locations.

    PubMed

    Mori, J; McKee, C

    1987-01-09

    The locations of a large number of earthquakes recorded at Rabaul caldera in Papua New Guinea from late 1983 to mid-1985 have produced a picture of this active caldera's structural boundary. The earthquake epicenters form an elliptical annulus about 10 kilometers long by 4 kilometers wide, centered in the southern part of the Rabaul volcanic complex. A set of events with well-constrained depth determinations shows a ring-fault structure that extends from the surface to a depth of about 4 kilometers and slopes steeply outward from the center of the caldera. This is the first geophysical data set that clearly outlines the orientation of an active caldera's bounding faults. This orientation, however, conflicts with the configuration of many other calderas and is not in keeping with currently preferred models of caldera formation.

  11. Long Period Tremor At Sierra Negra Caldera, Galapagos

    NASA Astrophysics Data System (ADS)

    Lees, J. M.; Ebinger, C. J.; Ruiz, M. C.

    2011-12-01

    Galapagos caldera have exhibited extremely high amplitude, short time-scale surface deformations as observed in high spatial resolution InSAR along the 7 active volcanoes archipelago, and high temporal resolution GPS on Sierra Negra. A temporary array of 16 seismic stations was installed to monitor the seismic behavior on a regional scale. Several stations were deployed in and around the caldera to understand the seismic response of the modeled sill below the current lava surface. Occasional bursts of low frequency (5s) tremor have been recorded on several stations in the caldera and rim zone. The tremor clearly rises above background microseismic noise with an ovate, or Gaussian, envelope. Frequency analysis shows that the tremor exhibits frequency gliding, from slightly below 5s to slightly above, over a time span of several minutes. We presume these transient tremor episodes have a fluid dynamic origin, either hydrothermal or magmatic. The oscillatory bursts differ significantly from tremor observed at other, more silicic, volcanoes where explosions and degassing prevail. We place these events within the volcanological context afforded by seismic, geodetic, and gas emission studies.

  12. On the formation of calderas during ignimbrite eruptions

    USGS Publications Warehouse

    Druitt, T.H.; Sparks, R.S.J.

    1984-01-01

    Many large calderas result from the eruption of substantial volumes (tens or hundreds of km3) of silicic pyroclastics. Such events often begin with an airfall phase and progress to the generation of voluminous ignimbrites1-3. We propose here that many such eruptions involve two well-defined stages, based on a simple analysis of magma chamber pressure variations during an eruption. The first stage begins when an overpressured magma chamber fractures the country rock and forms a conduit to the surface. The chamber pressure decreases rapidly to values less than lithostatic pressure. We show that only small to moderate volumes of magma, representing a small fraction of the total chamber, can be erupted during this stage. In the second stage, caldera collapse results from a further decrease in magma pressure, which causes the chamber roof to fracture catastrophically and deform. Subsidence of the roof attempts to re-establish lithostatic pressures within the chamber and can drive substantial volumes of magma to the surface. Geological relationships in pyroclastic deposits associated with large caldera eruptions provide independent evidence for this model. ?? 1984 Nature Publishing Group.

  13. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse

    NASA Astrophysics Data System (ADS)

    Bachmann, Olivier; Deering, Chad D.; Ruprecht, Janina S.; Huber, Christian; Skopelitis, Alexandra; Schnyder, Cedric

    2012-01-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750-800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800-850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos

  14. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    USGS Publications Warehouse

    Hurwitz, S.; Farrar, C.D.; Williams, C.F.

    2010-01-01

    Long Valley Caldera in eastern California formed 0.76Ma ago in a cataclysmic eruption that resulted in the deposition of 600km3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~290MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40MWe. The RD in the center of the caldera was uplifted by ~80cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50??C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7??C and 129.5??C and bottom hole temperatures range between 99.4??C and 129.5??C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles, we calculate

  15. The thermal regime in the resurgent dome of Long Valley Caldera, California: Inferences from precision temperature logs in deep wells

    NASA Astrophysics Data System (ADS)

    Hurwitz, Shaul; Farrar, Christopher D.; Williams, Colin F.

    2010-12-01

    Long Valley Caldera in eastern California formed 0.76 Ma ago in a cataclysmic eruption that resulted in the deposition of 600 km 3 of Bishop Tuff. The total current heat flow from the caldera floor is estimated to be ~ 290 MW, and a geothermal power plant in Casa Diablo on the flanks of the resurgent dome (RD) generates ~40 MWe. The RD in the center of the caldera was uplifted by ~ 80 cm between 1980 and 1999 and was explained by most models as a response to magma intrusion into the shallow crust. This unrest has led to extensive research on geothermal resources and volcanic hazards in the caldera. Here we present results from precise, high-resolution, temperature-depth profiles in five deep boreholes (327-1,158 m) on the RD to assess its thermal state, and more specifically 1) to provide bounds on the advective heat transport as a guide for future geothermal exploration, 2) to provide constraints on the occurrence of magma at shallow crustal depths, and 3) to provide a baseline for future transient thermal phenomena in response to large earthquakes, volcanic activity, or geothermal production. The temperature profiles display substantial non-linearity within each profile and variability between the different profiles. All profiles display significant temperature reversals with depth and temperature gradients <50 °C/km at their bottom. The maximum temperature in the individual boreholes ranges between 124.7 °C and 129.5 °C and bottom hole temperatures range between 99.4 °C and 129.5 °C. The high-temperature units in the three Fumarole Valley boreholes are at the approximate same elevation as the high-temperature unit in borehole M-1 in Casa Diablo indicating lateral or sub-lateral hydrothermal flow through the resurgent dome. Small differences in temperature between measurements in consecutive years in three of the wells suggest slow cooling of the shallow hydrothermal flow system. By matching theoretical curves to segments of the measured temperature profiles

  16. A core hole in the southwestern moat of the Long Valley caldera: Early results

    SciTech Connect

    Wollenberg, H.A.; Sorey, M.L.; Farrar, C.D.; White, A.F.; Flexser, S.; Bartel, L.C.

    1986-12-01

    A continuously cored hole penetrated 715m into the southwestern moat of the Long Valley caldera. Temperatures in the post-caldera deposits increase rapidly with depth over the upper 335m to 202/sup 0/C, then remain nearly isothermal into the Bishop Tuff to the bottom of the hole. The depth to the Bishop is the shallowest, and the temperatures observed are among the highest in holes drilled in the caldera. The hole identifies a potential geothermal resource for the community of Mammoth Lakes, constrains the position of the principal heat source for the caldera's hydrothermal system, and serves as access for monitoring changes in water level, temperatures, and fluid chemistry.

  17. A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera

    PubMed

    Iizasa; Fiske; Ishizuka; Yuasa; Hashimoto; Ishibashi; Naka; Horii; Fujiwara; Imai; Koyama

    1999-02-12

    Manned submersible studies have delineated a large and actively growing Kuroko-type volcanogenic massive sulfide deposit 400 kilometers south of Tokyo in Myojin Knoll submarine caldera. The sulfide body is located on the caldera floor at a depth of 1210 to 1360 meters, has an area of 400 by 400 by 30 meters, and is notably rich in gold and silver. The discovery of a large Kuroko-type polymetallic sulfide deposit in this arc-front caldera raises the possibility that the numerous unexplored submarine silicic calderas elsewhere might have similar deposits.

  18. Controls on Recent Unrest at Campi Flegrei Caldera, Southern Italy

    NASA Astrophysics Data System (ADS)

    Woo, J.; Bellucci, F.; Kilburn, C. R.; Rolandi, G.

    2005-05-01

    Campi Flegrei, in Southern Italy, is an active caldera that has shown signs of unrest since 1969. Because the caldera has a population of 400,000 people, it is especially important to understand the mechanisms driving the unrest and their implication for the probability of a future eruption. Since its last ignimbrite eruption 12,000 years ago (which produced the Neapolitan Yellow Tuff), volcanic activity in Campi Flegrei has consisted of numerous eruptions (volumes ~0.1 km3 or less) surrounding the inferred caldera rim. For at least the last 3,700 years, the caldera has been subsiding at mean rates of 14-17 mm per year, punctuated by two known periods of mean uplift (1430-1538 and 1969-Present). The first period produced a net uplift of about 30 m at the port of Pozzuoli and was followed in 1538 by the eruption of Monte Nuovo (20 million m3) some 4 km to the west. The second period has to date consisted of two episodes of uplift (in 1969-72 and 1982-84), each raising Pozzuoli by about 2 m. Studies of the second period have attributed uplift either to magmatic intrusion or to the expansion of water in heated aquifers. These interpretations assumed a stationary reference condition. It is here proposed that the reference condition in fact corresponds to subsidence at about 17 mm per year. Slower subsidence then reflects the difference between background subsidence and actual intrusion of magma. The revised interpretation suggests a two-component source for the recent episodes of uplift: (1) intrusion of two batches of magma of ~0.1 km3 that have produced a permanent uplift of about 2.8 m, and (2) the expansion and later dissipation of heated water, which produced a temporary uplift of about 0.7 m that has since disappeared. The similar volumes of recent intrusions and post-NYT eruptions further suggest that Campi Flegrei is fed by discrete batches of magma. The caldera today may thus be underlain by a collection of modest magma bodies rather than a single, large

  19. Relating seismic swarms and deformation in Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Montgomery-Brown, E. K.; Ellsworth, W. L.; Hill, D. P.; Shelly, D. R.; Langbein, J. O.; Lisowski, M.; Llenos, A. L.

    2013-12-01

    Earthquake swarm activity in the South Moat Seismic Zone (SMSZ) in Long Valley caldera began increasing following the onset of slow inflation of the resurgent dome in 2011. From 1980 through 1999 the caldera produced recurring earthquake swarms in the SMSZ accompanied by an 80-cm uplift of the resurgent dome. Since 2000, the caldera has been quieter than from 1980 to 1999, but it experienced a gradual 7-cm uplift episode in 2002-2003 and currently the caldera has been gradually uplifting since 2011 at less than half of the peak uplift velocity observed in the late 1990's. Two of the recent swarms in October/November of 2012 and March 2013 have been accompanied by small deformation transients during which caldera uplift paused for about a week despite otherwise steady inflation. To better understand this recent activity, we cross correlate seismic velocity waveforms from individual events recorded by the Long Valley seismic network to identify similar clusters (families) of earthquakes and analyze their temporal recurrence. Then, we use representative waveforms from each family as templates to search the continuous waveforms from the deep borehole seismometers in the Long Valley Exploratory Well (MDH1) for repeating, yet smaller, earthquakes. MDH1 consists of two three-component instruments, located 2592 m and 2263 m below ground level, that provide 6 channels with very low background noise relative to surface seismometers. The cross correlations identify about 25 times more earthquakes with most magnitudes ranging from -1 to +0.5, determined from an empirical relationship between catalog magnitude and observed amplitude on MDH1. We apply an ETAS model to the augmented catalog to detect subtle changes in background earthquake rates that might suggest a change in stressing rate. For comparison with the change in seismicity rates, a geodetically determined stress change is estimated from a simple model of the continuous GPS data. We model the uplift from 2011 to

  20. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  1. The earliest low and high δ18O caldera-forming eruptions of the Yellowstone plume: Implications for the 30-40 Ma Oregon calderas and speculations on plume-triggered delaminations

    NASA Astrophysics Data System (ADS)

    Seligman, Angela; Bindeman, Ilya; McClaughry, Jason; Stern, Richard; Fisher, Chris

    2014-11-01

    We present new isotopic and trace element data for four eruptive centers in Oregon: Wildcat Mountain (40 Ma), Crooked River (32-28 Ma), Tower Mountain (32 Ma), and Mohawk River (32 Ma). The first three calderas are located too far east to be sourced through renewed subduction of the Farallon slab following accretion of the Yellowstone-produced Siletzia terrane at ~50 Ma. Basalts of the three eastern eruptive centers yield high Nb/Yb and Th/Yb ratios, indicating an enriched sublithospheric mantle source, while Mohawk River yields trace element and isotopic (δ18O and ɛHf) values that correlate with its location above a subduction zone. The voluminous rhyolitic tuffs and lavas of Crooked River (41 x 27 km) have δ18Ozircon values that include seven low δ18Ozircon units (1.8-4.5 ‰), one high δ18Ozircon unit (7.4-8.8 ‰), and two units with heterogeneous zircons (2.0-9.0 ‰), similar to younger Yellowstone-Snake River Plain rhyolites. In order to produce these low δ18O values, a large heat source, widespread hydrothermal circulation, and repeated remelting are all required. In contrast, Wildcat Mountain and Tower Mountain rocks yield high δ18Ozircon values (6.4-7.9 ‰) and normal to low ɛHfi values (5.2-12.6), indicating crustal melting of high-δ18O supracrustal rocks. We propose that these calderas were produced by the first appearance of the Yellowstone plume east of the Cascadia subduction zone, which is supported by plate reconstructions that put the Yellowstone plume under Crooked River at 32-28 Ma. Given the eastern location of these calderas along the suture of the accreted Siletzia terrane and North America, we suggest that the Yellowstone hotspot is directly responsible for magmatism at Crooked River, and for plume-assisted delamination of portions of the edge of the Blue Mountains that produced the Tower Mountain magmas, while the older Wildcat Mountain magmas are related to suture zone instabilities that were created following accretion of the

  2. Geologic map of the Caetano caldera, Lander and Eureka counties, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2011-01-01

    The Eocene (34 Ma) Caetano caldera in north-central Nevada offers an exceptional opportunity to study the physical and petrogenetic evolution of a large (20 km by 10–18 km pre-extensional dimensions) silicic magma chamber, from precursor magmatism to caldera collapse and intrusion of resurgent plutons. Caldera-related rocks shown on this map include two units of crystal-rich intracaldera tuff totaling over 4 km thickness, caldera collapse breccias, tuff dikes that fed the eruption, hydrothermally altered post-eruption rocks, and two generations of resurgent granitic intrusions (John et al., 2008). The map also depicts middle Miocene (about 16–12 Ma) normal faults and synextensional basins that accommodated >100 percent extension and tilted the caldera into a series of ~40° east-dipping blocks, producing exceptional 3-D exposures of the caldera interior (Colgan et al., 2008). This 1:75,000-scale map is a compilation of published maps and extensive new mapping by the authors (fig. 1), and supersedes a preliminary 1:100,000-scale map published by Colgan et al. (2008) and John et al. (2008). New mapping focused on the margins of the Caetano caldera, the distribution and lithology of rocks within the caldera, and on the Miocene normal faults and sedimentary basins that record Neogene extensional faulting. The definition of geologic units and their distribution within the caldera is based entirely on new mapping, except in the northern Toiyabe Range, where mapping by Gilluly and Gates (1965) was modified with new field observations. The distribution of pre-Cenozoic rocks outside the caldera was largely compiled from existing sources with minor modifications, with the exception of the northeastern caldera margin (west of the Cortez Hills Mine), which was remapped in the course of this work and published as a stand-alone 1:6000-scale map (Moore and Henry, 2010).

  3. Satellites images, digitized topography, and the recognition of the Xela Caldera, Quezaltenango Valley, Guatemala

    SciTech Connect

    Foley, D. . Dept. of Earth Sciences); McEwen, A.; Duffield, W. ); Heiken, G. )

    1992-01-01

    The authors propose, based on reconnaissance geology studies and interpretation of landforms as depicted by Landsat Thematic Mapper (TM) images combined with digitized topography, that the Quezaltenango basin of Guatemala is part of a caldera. The Quezaltenango basin is an elliptical depression, about 12 by 25 km and about 500 m deep. The proposed Xela Caldera extends beyond the basin more than 10 km to the north. The geomorphological features of the area that are typical of a geologically young large-scale caldera include bounding walls that have steep interior and gentle exterior slopes; broad flat areas at the base of the walls; at least one large block, about 3 by 12 km, that only partly floundered as the caldera collapsed; resurgence of a younger volcanic dome, flow and small-scale caldera complex (last active in 1818); younger volcanoes located along the structural margin of the major caldera (one of which is currently active) lobate features on the caldera margins that may indicate a multiple sequence of eruptions; and an active, high-temperature geothermal system. The valley is coincident with a gravity low. Extensive ash-flow tuff sheets that have no identified source are located north of the caldera, and may be the outflow deposits. The Xela caldera is similar in size to the Atitlan caldera, which lies about 50 km southeast of Quezaltenango. The Xela Caldera, if confirmed by future studies, may contain undiscovered geothermal resources, may present a significant geologic hazard to the more than 400,000 people who occupy the Quezaltenango valley, and may be a new member of the list of magmatic systems that have the capability to change global climate for several years.

  4. Magnetotelluric Investigation of Melt Storage Beneath Okmok Caldera, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Bedrosian, P.; Key, K.; Zelenak, G.

    2015-12-01

    Alaska accounts for nearly 99% of the seismic moment release within the US. Much of this is associated with the Aleutian volcanic arc, the most tectonically active region in North America, and an ideal location for studying arc magmatism. Okmok is an active volcano located in the central Aleutian arc, defined by a pair of nested, 10 km diameter calderas. The subdued topography of Okmok, relative to other Aleutian volcanoes, improves access and permits dense sampling within the caldera closer to the underlying magmatic system. Okmok volcano was selected as the site of study for this project due to frequent volcanic activity and the presence of a crustal magma reservoir as inferred from previous coarse resolution seismic studies. In June-July 2015, we carried out an amphibious geophysical field deployment at Okmok. Onshore work in and around the volcano included collection of an array of magnetotelluric (MT) stations and installation of a temporary, year-long seismic array. A ring of 3D offshore MT deployments made around the island augments the onshore array. An additional 2D tectonic-scale profile spans the trench, volcanic arc, and backarc. This new geophysical data will be used to gain a greater understanding of Aleutian arc melt generation, migration, and storage beneath an active caldera. We present results from the analysis of the newly collected amphibious 3D MT data. This data will be used to model the distribution and migration of melt within Okmok's crustal magma reservoir. Initial processing of the data shows strong MT signal levels, in particular from a geomagnetic storm that occurred from June 21-23, 2015. A companion abstract discussing the 2D tectonic scale MT profile, which constrains the mantle and deep crust beneath Okmok volcano, is discussed by Zelenak et al.

  5. Aeromagnetic Study of Tke Huichapan Caldera; Central Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Martin, A.; Alfaro, G.; Oyarzabal, E.

    2013-12-01

    Analysis of the aeromagnetic anomalies over the central sector of the Mexican Volcanic Belt sheds new light on the structure of the Huichapan Caldera. This volcanic center located 100 Km to the north- northwest of Mexico City is approximately 10 km in diameter and related to an ignimbrite sequence. Milan et al, (1993) and. Aguirre-Diaz and Lopez-Martinez (2009) mapped Huichapan area and described the geology and petrology of the erupted products in the region. Aguirre-Diaz and Lopez-Martinez (2009) suggest the idea of two overlapping calderas related to an ignimbrite sequence. The analyzed region is a rectangular area, approximately from 20.25 N to 20.42 N and between 99.42 W and 99.6 W. The total field aeromagnetic data was obtained with a Geometrics G-803 proton magnetometer at a flight altitude of 300 m above ground level. For the analysis of the anomalies, the data was further smoothed to construct a 1 km regularly spaced grid. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources. Two profiles were selected that cross the major anomalies on the Huichapan Caldera. The Talwani algorithm for 2-D polygonal bodies has been used for calculating the theoretical anomalies.

  6. Thermal history of caldera-forming magmatic systems

    NASA Astrophysics Data System (ADS)

    Bradshaw, R. W.; Kent, A. J.; Cooper, K. M.; Huber, C.

    2015-12-01

    Large, caldera-forming silicic eruptions require the assembly and storage of a large volume of magma, and are though to result from either (1) rare high magma flux events needed to maintain melt-rich (eruptible) magma for extended timescales, or (2) magma accumulation at lower magma fluxes, storage for extended timescales as low temperature crystal mushes and rapid rejuvenation prior to eruption. The thermal history of these magmas prior to eruption thus provides an important clue into the processes that lead to eruption, but has been difficult to quantify. However in-situ measurement of Sr and other trace elements in plagioclase, coupled with diffusion models, can be used to constrain the time magmas spend at different temperatures. Progressive differentiation of plagioclase from a silicic magma produces plagioclase with lower Sr at low An—producing a positive correlation between Sr and An, which is the opposite of what is predicted by equilibrium partitioning. Forward modeling of the temperature-dependent diffusion of Sr from this initial disequilibrium condition toward equilibrium concentrations, based on partitioning relationships of An and Sr, gives an estimate of the time individual crystals spend at specific temperatures. Preliminary high spatial resolution LA-ICP-MS analysis of Sr in plagioclase from five caldera-forming eruptions show overall positive correlations of Sr and An, suggesting that little diffusive re-equilibration has occurred. Thus, over the lifetime that these magmas reside in the upper crust (>10 k.y.) they likely spend less than a few thousand years at temperatures above 750 °C (the approximate temperature of rheological lockup). These results suggest that the magmas that feed many large caldera-forming eruptions are kept in cold storage for long timescales, and that rapid rejuvenation of mush occurs without extended thermal conditioning prior to eruption.

  7. Deformation of the Aniakchak Caldera, Alaska, mapped by InSAR

    USGS Publications Warehouse

    Kwoun, Oh-Ig; Lu, Zhiming

    2004-01-01

    The deformation of Aniakchak volcano is investigated using 19 ERS-1 / 2 interferometric synthetic aperture radar (InSAR) data from 1992 through 2002. InSAR images from the different time intervals reveal that the10-km-wide caldera has been subsiding during the time of investigation. The pattern of subsidence does not following the pyroclastic flows from the last eruption of the caldera in 1931. The maximum subsidence is near the center of the caldera, with a rate of up to 13 mm/yr. Deformation outside the caldera is insignificant. Least squares inversion of the multi-temporal deformation maps indicates that the subsidence rate has been relatively constant. Field observations have identified numerous fumaroles inside the caldera. In 1973, temperatures of 80??C were measured at a depth of 15 cm in loose volcanic rubble adjacent to the small cinder cone (about 1.5 km northeast of the vent of the 1931 eruption), whereas springs near a caldera lake had a temperature of 25??C in July 1993. Therefore, we suggest the observed subsidence at Aniakchak caldera is most likely caused by the reduction of pore fluid pressure of a hydrothermal system located a few kilometers beneath the caldera.

  8. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption

    PubMed Central

    Di Vito, Mauro A.; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P.; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-01-01

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common. PMID:27558276

  9. An overview of recent (1988 to 2014) caldera unrest: knowledge and perspectives

    NASA Astrophysics Data System (ADS)

    Acocella, V.

    2015-12-01

    Calderas are among the most active and dangerous volcanoes. Caldera unrest is defined by enhanced seismicity, gravity changes, surface deformation and degassing. Although much caldera unrest does not lead to an eruption, every eruption is preceded by an unrest episode. Therefore, the proper description of unrest and the forecast of its possible outcome is a timely and challenging task. Here we review the best known unrest at calderas from 1988 to 2014, building on previous work and propose an updated database. Where established, the root cause for unrest is always magmatic; none was purely hydrothermal or tectonic. An interpretive classification of unrest invokes two spectra - compositional (mafic to felsic) and the state of magma conduits feeding from the magma reservoir(s) to the surface (from fully plugged, through semi-plugged, to open). Magma and gas in open conduits can rise and erupt freely; magma in semi-plugged conduits erupts less frequently, yet still allows some gas to escape; plugged conduits allow neither magma nor gas to escape. Unrest in mafic calderas is subtler, less pronounced and repeated, especially with open systems, ensuring the continuous, aseismic and moderate release of magma. Plugged felsic calderas erupt infrequently, anticipated by isolated, short and seismically active unrest. Semi-plugged felsic calderas also erupt infrequently and are restless over decades or centuries, with uplift, seismicity and degassing and, on the longer-term, resurgence, suggesting repeated stalled intrusions. Finally, the expected advances in better understanding caldera unrest are discussed.

  10. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Rivalta, E.; Pinel, V.; Maccaferri, F.; Bagnardi, M.; Acocella, V.

    2015-12-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we show with numerical models that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observations. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control: 1) the shallow accumulation of magma in stacked sills, consistently with observations; 2) the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  11. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption

    USGS Publications Warehouse

    Di Vito, Mauro A.; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P.; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-01-01

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  12. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption.

    PubMed

    Di Vito, Mauro A; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-08-25

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  13. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption

    NASA Astrophysics Data System (ADS)

    di Vito, Mauro A.; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P.; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-08-01

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  14. The Monte Nuovo eruption: the only historical event of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    di Vito, Mauro Antonio; Arienzo, Ilenia; Buononato, Salvatore; Civetta, Lucia; Carandente, Antonio; D'Antonio, Massimo; di Renzo, Valeria; Orsi, Giovanni

    2010-05-01

    The Monte Nuovo eruption, the last event of the Campi Flegrei caldera, has been reconstructed through geological, volcanological and petrological investigations, and analyses of historical documents. The eruption, lasted one week and characterised by three vents, included three distinct phases. The main vent (MV) was located in the present crater, whereas two minor vents were along the southern (SV) and north-eastern (NEV) slopes of the Monte Nuovo tuff cone. The sequence of deposits has been subdivided in 5 members named A through E. The eruption began on September 29, 1538, at 7 p.m., and its first and main phase, lasted until the night of September 30. This phase generated almost continuous explosions mainly phreatomagmatic, producing pyroclastic density currents (pdćs) and minor short-lived, low eruption columns, which deposited members A and B. Member A, erupted in about 12 hours through the MV, forms the largest part of the cone. Phreatomagmatic explosions at the SV produced mainly pdćs which deposited Member B only in the southern sector of Monte Nuovo. Strombolian explosions at the SV and NEV deposited Member C over a narrow area. This activity was followed by a pause lasted two days. The eruption resumed on October 3 at 4 p.m. and lasted until the next night. This second phase of the eruption was characterized by a discontinuous sequence of low-energy phreatomagmatic and magmatic explosions at the MV, which deposited Member D. On October 6, at 4 p.m. explosive activity resumed and lasted few hours, mainly with low-energy magmatic explosions of a small dome, grown during the preceding two days, which produced Member E. During this phase 24 people died while climbing the slopes of the newly formed cone. The juvenile products of the Monte Nuovo eruption are phenocryst-poor rocks containing alkali feldspars and subordinate clinopyroxene and Fe-Ti oxides. The are light-coloured pumice and dark scoria fragments, and represent the most evolved magma erupted

  15. Deformation of the Long Valley Caldera, California: Inferences from measurements from 1988 to 2001

    USGS Publications Warehouse

    Langbein, J.O.

    2003-01-01

    Two periods of volcanic unrest occurred between 1989 and 1998 in the Long Valley Caldera, eastern California. Numerous earthquakes were recorded, and these periods of unrest were documented with high-precision geodetic measurements. The first round of unrest started rapidly in late 1989 and slowly decreased in rate through the early 1990s. For this interval there are both leveling and two-color electronic distance meter (EDM) measurements. The second round of unrest started slowly in mid-1997, climaxed in late 1997, and rapidly returned to quiescence by mid-1998. Deformation was recorded by both the two-color EDM and continuous GPS. Both episodes require inflation at 6-7 km beneath the resurgent dome, and both episodes had roughly 0.1 m extension across the resurgent dome. In addition, the data presented here suggest that there is a deeper, 10-20 km, inflation source beneath the south moat of the caldera. For both episodes, the better-resolved inflation beneath the resurgent dome is a near-vertical, prolate spheroid rather than an isotropic source, which suggests that magma came up through vertical cracks. However, the modeling suggests that the location changed with the depth from 6.0 to 6.7 km for the later episode. In contrast to the earlier episode, the 1997-1998 episode has additional deformation in the south moat, where the simplest model is that of a right-lateral slip on a steeply dipping plane that is defined by the location of earthquakes in the south moat. Models of the time-dependent behavior suggest that slip on this fault occurred from late November through December 1997, corresponding to the time of greatest moment release by the earthquake swarm in the south moat. Confounding the interpretation of these data is an active geothermal field near the center of the EDM network and adjacent to the south moat and resurgent dome. Additional modeling of leveling and EDM data within the geothermal field during a period of low rate of inflation of the dome

  16. The Loma Seca tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile.

    USGS Publications Warehouse

    Hildreth, W.; Grunder, A.L.; Drake, Robert E.

    1984-01-01

    A composite ring-structure caldera of Late Pleistocene age, 26 X 14km in size, has been discovered and mapped near the Andean crest in central Chile (35o 30'S). Rhyolitic to dacitic zoned ashflow sheets, each representing 150-300 km3 of magma, were erupted 0.8, 0.3 and 0.15 m.y. ago; the youngest of the associated collapses was closely followed by resurgent doming of the caldera floor and the development of a longitudinal graben. Post-caldera eruption of dacite and andesite have persisted into Holocene time and active hot springs are abundant along caldera-marginal and resurgent fault systems, suggesting a significant geothermal energy resource. The ash-flow magmatism has been no less important in this segment of the glaciated S Andes than in the arid central Andes and may well be accounted for by the existence of thicker crust in both regions.- L.H.

  17. Aeromagnetic Study of the Amealco Caldera, Central Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Salas, J.; Yamamoto, J.

    2008-12-01

    Analysis of the aeromagnetic anomalies over the central sector of the Mexican Volcanic Belt sheds new light on the structure of Amealco Caldera. This volcanic center located NW of Mexico City is approximately 10 km in diameter,is partially cut by a regional fault (Epitafio Huerta fault). Aguirre-Diaz (1993, 1996) has mapping the Amealco area and described the geology and petrology of the erupted products. This Caldera was formed by a large eruption which produced an ignimbrite which covers the area. The Amealco tuff is the most important volcanic unit because of its volume and distribution. After the emplacement of the central lava dome, volcanism persisted for more than a million years in the periphery and in the Caldera rim. This activity forms the Garabato dome and the Comal Scoria cone. The analyzed region is a rectangular area, approximately from 20o N to 20o 15´ N and between 100o W and 100o 20' W. The total field aeromagnetic data was obtained with a Geometrics G-803 proton magnetometer at a flight altitude of 300 m above ground level. For the analysis of the anomalies, the data was further smoothed to construct a 2 km regularly spaced grid. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by the filtering of high frequency anomalies that may be related to shallow sources. Two profiles were selected that cross the major

  18. Analogue of Caldera Dynamics: the Controlled Salt Cavern Collapse

    NASA Astrophysics Data System (ADS)

    Jousset, P. G.; Rohmer, J.

    2012-12-01

    Caldera collapse (or pit-crater) dynamics are inferred from geological observations and laboratory experiments. Here, we present an analogue of caldera collapse at field scale and possible analogy with large scale caldera dynamics. Through an original exploitation technique in sedimentary environment, a salt layer is emptied, leaving a brine-filled cavern, which eventually collapses after overburden falls into the cavern. Such a collapse was monitored in East France by many instruments (including GPS, extensometers, geophones, broadband seismological sensors, tiltmeter, gravity meter, … ), which allowed us to describe mechanisms of the collapse. Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. We show evidence of triggered micro-seismicity observed in the vicinity of this underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. High-dynamic broadband records reveal the strong time-correlation between a dramatic change in the rate of local high-frequency micro-seismicity and the passage of low-frequency seismic waves, including body, Love and Rayleigh surface waves. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Stress oscillations due to the seismic waves may have exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude

  19. Magmatic unrest at Long Valley Caldera, California, 1980-1990

    USGS Publications Warehouse

    Bailey, R.A.; Hill, D.P.

    1990-01-01

    On May 25, 1980, the resort town of Mammoth Lakes, California, was shaken by a remarkable 48-hour-long earthquake sequence that included four M=6, two M=5 and 300 M=3 quakes. The nature of the precursory seismicity plus the unusual character of the May 25-27 sequence itself suggested that it was not typical of tectonic earthquakes in the region. Discovery of 25 cm of domical uplift centred on the resurgent dome within Long Valley caldera strongly implied that this activity was accompanied, if not caused, by influex of magma into the Long Valley magma chamber. -Authors

  20. Post-caldera faulting of the Late Quaternary Menengai caldera, Central Kenya Rift (0.20°S, 36.07°E)

    NASA Astrophysics Data System (ADS)

    Riedl, Simon; Melnick, Daniel; Mibei, Geoffrey K.; Njue, Lucy; Strecker, Manfred R.

    2015-04-01

    A structural geological analysis of young caldera volcanoes is necessary to characterize their volcanic activity, assess their geothermal potential, and decipher the spatio-temporal relationships of faults on a larger tectonic scale. Menengai caldera is one of several major Quaternary trachytic caldera volcanoes that are aligned along the volcano-tectonic axis of the Kenya Rift, the archetypal active magmatic rift and nascent plate boundary between the Nubia and Somalia plates. The caldera covers an area of approximately 80 km² and is among the youngest and also largest calderas in the East African Rift, situated close to Nakuru - a densely populated urban area. There is an increasing interest in caldera volcanoes in the Kenya Rift, because these are sites of relatively young volcanic and tectonic activity, and they are considered important sites for geothermal exploration and future use for the generation of geothermal power. Previous studies of Menengai showed that the caldera collapsed in a multi-event, multiple-block style, possibly as early as 29 ka. In an attempt to characterize the youngest tectonic activity along the volcano-tectonic axis in the transition between the Central and Northern Kenya rifts we first used a high-resolution digital surface model, which we derived by structure-from-motion from an unmanned aerial vehicle campaign. This enabled us to identify previously unrecognized normal faults, associated dyke intrusions and volcanic eruptive centers, and transfer faults with strike-slip kinematics in the caldera interior and its vicinity. In a second step we verified these structures at outcrop scale, assessed their relationship with known stratigraphic horizons and dated units, and performed detailed fault measurements, which we subsequently used for fault-kinematic analysis. The most important structures that we mapped are a series of north-northeast striking normal faults, which cross-cut both the caldera walls and early Holocene lake

  1. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    PubMed

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  2. A tectonic model of the Askja caldera system based on FEM analysis

    NASA Astrophysics Data System (ADS)

    Browning, John; Gudmundsson, Agust; Thordarson, Thorvaldur

    2015-04-01

    The Askja volcanic system lies on the boundary between the Eurasian and North American tectonic plates and is an example of a multiple caldera formed in an extensional regime. Askja is composed of at least three calderas, the last of which formed during an explosive eruption in A.D. 1875. The caldera floor has been subsiding almost continuously since 1983; total subsidence in this period is around 1.1 metres. Perhaps surprisingly, there has been no slip or movement on the caldera bounding ring-faults during this subsidence period. Various models have been proposed to explain this unusual signal. Previous models suggest two magma sources, one shallow at around 3 km depth and one much larger at around 16 km depth. In this model, subsidence is caused by depressurisation in both sources as a result of cooling contraction and crystallisation. In other models subsidence results from magma being squeezed out of the shallow chamber laterally; or somehow draining back into a deep seated reservoir. In this study we examine the contribution of regional extension and structural discontinuities to the current subsidence of Askja caldera. Using a finite element numerical analysis, we ascertain the state of stresses at Askja caldera over time based on several different magma body geometries. We calculate surface displacements expected from extension around a shallow magma body, and place these findings in the context of Icelandic calderas. In addition we investigate the likely stress effects of the Askja caldera on the associated part of the Northern Volcanic Zone. The proposed model seeks to understand the volcano-tectonic conditions at Askja during caldera formation, as well as during rifting episodes. The models presented will be useful in assessing likely future rifting events and fissure swarm activity in Askja caldera, and neighbouring volcanoes.

  3. Intracaldera volcanic activity, Toledo caldera and embayment, Jemez Mountains, New Mexico

    SciTech Connect

    Heiken, G.; Goff, F.; Stix, J.; Shafiqullah, M.; Garcia, S.; Hagan, R.

    1986-02-10

    The Toledo caldera was formed at 1.47 +- 0.06 Ma during the catastrophic eruption of the lower member, Bandelier Tuff. The caldera was obscured at 1.12 +- 0.03 Ma during eruption of the equally voluminous upper member of the Bandelier Tuff that led to formation of the Valles caldera. Earlier workers interpreted a 9-km-diameter embayment, located NE of the Valles caldera (Toledo embayment), to be a remnant of the Toledo caldera. Drill hole data and new K-Ar dates of Toledo intracaldera domes redefine the position of Toledo caldera, nearly coincident with and of the same dimensions as the younger Valles caldera. the Toledo embayment may be of tectonic origin or a small Tschicoma volcanic center caldera. This interpretation is consistent with distribution of the lower member of the Bandelier Tuff and with several other field and drilling-related observations. Explosive activity associated with Cerro Toledo Rhyolite domes is recorded in tuff deposits located between the lower and upper members of the Bandelier Tuff on the northeast flank of the Jemez Mountains. Recorded in the tuff deposits are seven cycles of explosive activity. Most cycles consists of phreatomagmatic tuffs that grade upward into Plinian pumice beds. A separate deposit, of the same age and consisting of pyroclastic surges and flows, is associated with Rabbit Mountain, located on the southeast rim of the Valles-Toledo caldera complex. These are the surface expression of what may be a thicker, more voluminous intracaldera tuff sequence. The combined deposits of the lower and upper members of the Bandelier Tuff, Toledo and Valles intracaldera sediments, tuffs, and dome lavas form what we interpret to be a wedge-shaped caldera fill. This sequence is confirmed by deep drill holes and gravity surveys.

  4. A multidisciplinary study of the 2014-2015 Bárðarbunga caldera collapse, Iceland

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Jonsdóttir, Kristin; Hooper, Andy; Holohan, Eoghan; Halldorsson, Saemundur

    2016-04-01

    The collapse of the ice-filled Bárðarbunga caldera in central Iceland occurred in autumn and winter, when weather was highly unsettled and conditions for monitoring in many ways difficult. Nevertheless several detailed time series could be obtained on the collapse and to a degree the associated flood-basalt eruption in Holuhraun. This was achieved through applying an array of sensors, that were ground, air and satellite based, partly made possible through the EU-funded FUTUREVOLC supersite project. This slow caldera collapse lasted six months, ending in February 2015. The array of sensors used, coupled with the long duration of the event, allowed unprecedented detail in observing a caldera collapse. The deciphering of the course of events required the use of aircraft altimeter surveys of the ice surface, seismic and GPS monitoring, the installation of a GPS station on the glacier surface in the centre of the caldera that continuously recorded the subsidence. Full Stokes 3-D modelling of the 700-800 m thick ice in the caldera, constrained by observations, was applied to remove the component of ice deformation that had a minor effect on the measured subsidence. The maximum subsidence of the subglacial caldera floor was about 65 meters. The combined interpretation of geochemical geobarometers, subsidence geometry with GPS and InSAR deformation signals, seismicity and distinct element deformation modelling of the subsidence provided unprecedented detail of the process and mechanism of caldera collapse. The collapse involved the re-activation of pre-existing ring faults, and was initiated a few days after magma started to drain from underneath the caldera towards the eventual eruption site in Holuhraun, 45 km to the northeast. The caldera collapse was slow and gradual, and the flow rate from underneath the caldera correlates well with the lava flow rate in Holuhraun, both in terms of total volume and variations in time.

  5. The Twin Peaks caldera: A window into the emplacement and evolution of a Caldera-filling ignimbrite

    SciTech Connect

    Jellinek, A.M.; Geist, D. . Dept. of Geology)

    1993-04-01

    The Twin Peaks caldera, about 13 km west of Challis, Idaho, is an elliptical Valles-sized caldera with dimensions of 20 x 14 km. The tuff of Challis Creek (TCR) is largely a caldera-fill ignimbrite sequence that was emplaced about 45 Ma during the last stages of the Eocene Challis volcanic episode. Post-volcanic block faulting and erosion have deeply-dissected the TCR section resulting in over 1,200 meters of vertical exposure. This feature has provided a rare opportunity to both describe intracaldera-fill cooling facies and explore the pre-, syn-, and post-emplacement mechanisms controlling their development. Hardyman (1983) delineated two major intracaldera cooling units on the basis of rock texture, degree of welding, crystallinity, and pumice color relative to the matrix. In this study these two cooling units have been expanded to include one simple cooling unit, T0 (at least 140 m thick), and two compound units, T1 (140--670 m thick) and T2 (at least 800 m thick), with three and eight distinct facies respectively. The cooling units and their associated facies are defined on the basis of field observations of: (1) macroscopic textures and degree of welding, (2) weathering color, (3) matrix color, crystallinity, and lithic content, and, (4) pumice crystallinity, flattening, and color relative to the matrix. Petrographic observations of: (1) mineral assemblages and styles of phenocryst fragmentation, (2) alignment of glass shards and their relative, compaction and contortion around phenocrysts, and (3) the extent of compaction and contortion and crystallinity of collapsed pumice structures have further refined facies determinations. A preliminary model for the T2 compound cooling unit suggests that the development of the eight T2 facies can be explained by post-emplacement collapse of pore space combined with the exsolution of volatiles followed by further compaction and welding.

  6. Eastern Alaska

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this SeaWiFS image of eastern Alaska, the Aleutian Islands, Kodiak Island, Yukon and Tanana rivers are clearly visible. Also visible, but slightly hidden beneath the clouds, is a bloom in Bristol Bay. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  7. Renewed inflation of Long Valley Caldera, California (2011 to 2014)

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Wicks, Chuck; Cervelli, Peter F.; Langbein, John O.; Svarc, Jerry L.; Shelly, David R.; Hill, David P.; Lisowski, Michael

    2015-01-01

    Slow inflation began at Long Valley Caldera in late 2011, coinciding with renewed swarm seismicity. Ongoing deformation is concentrated within the caldera. We analyze this deformation using a combination of GPS and InSAR (TerraSAR-X) data processed with a persistent scatterer technique. The extension rate of the dome-crossing baseline during this episode (CA99 to KRAC) is 1 cm/yr, similar to past inflation episodes (1990–1995 and 2002–2003), and about a tenth of the peak rate observed during the 1997 unrest. The current deformation is well modeled by the inflation of a prolate spheroidal magma reservoir ∼7 km beneath the resurgent dome, with a volume change of ∼6 × 106 m3/yr from 2011.7 through the end of 2014. The current data cannot resolve a second source, which was required to model the 1997 episode. This source appears to be in the same region as previous inflation episodes, suggesting a persistent reservoir.

  8. Highly evolved rhyolitic glass compositions from the Toba Caldera, Sumatra

    SciTech Connect

    Chesner, C.A.

    1985-01-01

    The quartz latite to rhyolitic ash flow tuffs erupted form the Toba Caldera, perhaps the largest caldera on earth (100 by 30 kms), provide the unique opportunity to study a highly differentiated liquid in equilibrium with numerous mineral phases. Not only are the rocks very crystal rich (30-50%), but at present a minimum of 15 co-existing mineral phases have been identified. Both whole-rock and glass analyses were made by XRF techniques providing data on both major and trace elements. Whole rock chemistry of individual pumices from the youngest eruption at Toba (75,000 years ago), are suggestive of the eruption of two magma compositions across a boundary layer in the magma chamber. Glass chemistry of the pumices also show two distinct liquid compositions. The more silicic pumices, which have the most evolved glass compositions, are similar to the whole rock chemistry of the few aplitic pumices and cognate granitic xenoliths that were collected. This highly evolved composition resulted from the removal of up to 15 mineral phases and may be a fractionation buffered, univariant composition. The glasses from the less silicic pumices are similar to the whole rock chemistry of the more silicic pumice, thus falling nicely on a fractionation trend towards the univariant composition for these rocks. This set of glass compositions allows an independent test for the origin of distal ashes thought to have erupted from Toba and deposited in Malaysia, the Indian Ocean, and as far away as India.

  9. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    USGS Publications Warehouse

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  10. Origin of Hot Creek Canyon, Long Valley caldera, California

    SciTech Connect

    Maloney, N.J. . Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  11. Radon in groundwater of the Long Valley Caldera, California

    SciTech Connect

    Flexser, S.; Wollenberg, H.A.; Smith, A.R.

    1987-04-01

    In the Long Valley caldera, an area of recently (approx.550 y) active volcanism and current seismic activity, /sup 222/Rn concentrations in hot, warm, and cold spring waters have been measured since 1982. Rn contents of the waters correlate inversely with temperature and specific conductance, with high concentrations (1500 to 2500 pCi/l) occurring in dilute cold springs on the margins of the caldera, and low concentrations (12 to 25 pCi/l) in hot to boiling springs. Rn correlates only slightly with the uranium contents of the wide range of rocks which host the hydrological system feeding the springs. These environmental effects on the radon record may mask responses to small or distant seismic, volcanic, or crustal deformation events. To date, anomalous changes in water-borne Rn have been observed in connection with at least one earthquake, which occurred close to the monitoring site. This continuing study points out that an understanding of the geological setting, its associated hydrological system, and environmental influences is necessary to properly evaluate concentrations and changes in groundwater radioactivity.

  12. Summary of recent research in Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; McConnell, V.S.; Roeloffs, E.

    2003-01-01

    Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by active intrusion. They also indicate that in addition to a relatively shallow (7-10-km) source beneath the resurgent dome, there exists a deeper (???15-km) source beneath the south moat. Analysis of microgravimety and deformation data indicates that the composition of the shallower source may involve a combination of silicic magma and hydrothermal fluid. Pressure and temperature fluctuations in wells have accompanied periods of crustal unrest, and additional pressure and temperature changes accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful information on present and past periods of circulation of water at temperatures of 100-200??C within the crystalline basement rocks that underlie the post-caldera volcanics. The well is now being converted to a permanent geophysical monitoring station. ?? 2003 Elsevier B.V. All rights reserved.

  13. The Soldier Meadow Tuff: Eruptive and depositional processes and relationship to the High Rock Caldera, NW Nevada

    NASA Astrophysics Data System (ADS)

    Smith, J.; Hausback, B.; Henry, C. D.; Noble, D.

    2010-12-01

    The Soldier Meadow Tuff (SMT) consists mostly of a voluminous sheet of distinctive phenocryst-rich comendite ash-flow tuff distributed around the E-SE margin of the High Rock caldera (HRC), source of the 16.3 Ma Summit Lake Tuff. The SMT and related, petrographically- and compositionally-similar lavas erupted from HRC ring fractures ~15.9 Ma. The SMT is a lithologically complex single cooling unit composed of several repetitions of crystal-rich massive tuff, lag-breccia layers, and thinly-layered subunits that locally display internal fine-scale laminations and low-angle cross beds. Variations in these characteristics were mainly controlled by the velocity and density of pyroclastic currents. Deposits proximal to the ring fracture vent contain abundant lag breccia that is rare or absent in more distal exposures. High-velocity, dilute pyroclastic currents created thinly-layered surge-type beds, followed by formation of crystal-rich massive layers as velocity decreased and current density increased. The repetition of these deposits suggests the SMT erupted in several, closely-spaced pulses, each of which developed eruption columns and column collapses. Thick exposures of the SMT with multiple lag-breccia layers occur along the eastern to southern ring fractures of the HRC and suggest several distributed vents or a continuous elongate vent. The SMT is thickest, ~157 m, about 1.5 km west of Franco Reservoir, suggesting close proximity to eruptive vents. The ash-flow sheet thins away from the vents, and pumice imbrications and surge deposits indicate southeast flow away from the HRC. No SMT is exposed in the HRC, but accidental fragments of densely welded SMT up to 3 m diameter are included in post-SMT hydrovolcanic deposits found within the SE half of the caldera. The dense welding of the blocks and a negative magnetic anomaly parallel to the SMT vent area suggest a thick accumulation of SMT within that part of the HRC. Several Soldier Meadow-type lavas overlie the

  14. A New Model for Episodic Caldera Deformation at Yellowstone

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Gervais, S. M.; Lowenstern, J. B.; Wicks, C. W.

    2012-12-01

    For nearly 90 years, geodetic measurements at Yellowstone have shown recurring episodes of uplift and subsidence confined mostly to the caldera but also extending into the Norris Geyser Basin. The most recent such episode began in late 2004 with the onset of caldera-wide uplift that continued for about 5 years before switching to subsidence in late 2009. The physical mechanism driving the deformation is unknown, though several researchers have proposed kinematic models that can reproduce the observed data. The "Lake" earthquake swarm, which occurred in the northern part of Yellowstone Lake from December 2008 through January 2009, provides a new constraint on caldera deformation models. The timing of the swarm correlates with an abrupt change in local deformation, which preceded the gradual transition from uplift to subsidence in late 2009. Thus, caldera deformation, at least in the vicinity of Yellowstone Lake, consists of two (or more) distinct parts, implying the existence of two (or more) distinct deformation sources. This fresh information leads us to propose a new kinematic model for deformation at Yellowstone, which we develop from the last 15 years of continuous GPS and InSAR data. Our new model consists of three deformation sources: (1) a cauldron block source that is subject to a constant displacement at its base while its surrounding ring fault remains locked; (2) a pressurizing (or depressurizing) spherical cavity near the Norris Geyser Basin, which is known to deform separately from the caldera; and (3) a pressurizing (or depressurizing) spherical cavity at the Sour Creek Dome, which we infer from the abrupt change in deformation rate after the Lake Swarm. We use the GPS and InSAR data from the period of strongest signal, summer 2005 through summer 2007, to optimize the geometry of the three sources: the locations and depths of the spherical cavity, and the perimeter of the cauldron block. We then, while holding their geometry fixed, estimate the

  15. Changes in magma storage conditions following caldera collapse at Okataina Volcanic Center, New Zealand

    SciTech Connect

    Rubin, Allison; Cooper, Kari M.; Leever, Marissa; Wimpenny, Josh; Deering, Chad; Rooney, Tyrone; Gravley, Darren; Yin, Qing-zhu

    2015-12-15

    Large silicic volcanic centers produce both small rhyolitic eruptions and catastrophic caldera-forming eruptions. Although changes in trace element and isotopic compositions within eruptions following caldera collapse have been observed at rhyolitic volcanic centers such as Yellowstone and Long Valley, much still remains unknown about the ways in which magma reservoirs are affected by caldera collapse. We present 238U–230Th age, trace element, and Hf isotopic data from individual zircon crystals from four eruptions from the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand, in order to assess changes in trace element and isotopic composition of the reservoir following the 45-ka caldera-forming Rotoiti eruption. Our data indicate that (1) mixing of magmas derived from crustal melts and mantle melts takes place within the shallow reservoir; (2) while the basic processes of melt generation likely did not change significantly between pre- and post-caldera rhyolites, post-caldera zircons show increased trace element and isotopic heterogeneity that suggests a decrease in the degree of interconnectedness of the liquid within the reservoir following collapse; and (3) post-caldera eruptions from different vents indicate different storage times of the amalgamated melt prior to eruption. Furthermore, these data further suggest that the timescales needed to generate large volumes of eruptible melt may depend on the timescales needed to increase interconnectedness and achieve widespread homogenization throughout the reservoir.

  16. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  17. Changes in magma storage conditions following caldera collapse at Okataina Volcanic Center, New Zealand

    NASA Astrophysics Data System (ADS)

    Rubin, Allison; Cooper, Kari M.; Leever, Marissa; Wimpenny, Josh; Deering, Chad; Rooney, Tyrone; Gravley, Darren; Yin, Qing-zhu

    2016-01-01

    Large silicic volcanic centers produce both small rhyolitic eruptions and catastrophic caldera-forming eruptions. Although changes in trace element and isotopic compositions within eruptions following caldera collapse have been observed at rhyolitic volcanic centers such as Yellowstone and Long Valley, much still remains unknown about the ways in which magma reservoirs are affected by caldera collapse. We present 238U-230Th age, trace element, and Hf isotopic data from individual zircon crystals from four eruptions from the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand, in order to assess changes in trace element and isotopic composition of the reservoir following the 45-ka caldera-forming Rotoiti eruption. Our data indicate that (1) mixing of magmas derived from crustal melts and mantle melts takes place within the shallow reservoir; (2) while the basic processes of melt generation likely did not change significantly between pre- and post-caldera rhyolites, post-caldera zircons show increased trace element and isotopic heterogeneity that suggests a decrease in the degree of interconnectedness of the liquid within the reservoir following collapse; and (3) post-caldera eruptions from different vents indicate different storage times of the amalgamated melt prior to eruption. These data further suggest that the timescales needed to generate large volumes of eruptible melt may depend on the timescales needed to increase interconnectedness and achieve widespread homogenization throughout the reservoir.

  18. Changes in magma storage conditions following caldera collapse at Okataina Volcanic Center, New Zealand

    DOE PAGES

    Rubin, Allison; Cooper, Kari M.; Leever, Marissa; ...

    2015-12-15

    Large silicic volcanic centers produce both small rhyolitic eruptions and catastrophic caldera-forming eruptions. Although changes in trace element and isotopic compositions within eruptions following caldera collapse have been observed at rhyolitic volcanic centers such as Yellowstone and Long Valley, much still remains unknown about the ways in which magma reservoirs are affected by caldera collapse. We present 238U–230Th age, trace element, and Hf isotopic data from individual zircon crystals from four eruptions from the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand, in order to assess changes in trace element and isotopic composition of the reservoir following the 45-ka caldera-formingmore » Rotoiti eruption. Our data indicate that (1) mixing of magmas derived from crustal melts and mantle melts takes place within the shallow reservoir; (2) while the basic processes of melt generation likely did not change significantly between pre- and post-caldera rhyolites, post-caldera zircons show increased trace element and isotopic heterogeneity that suggests a decrease in the degree of interconnectedness of the liquid within the reservoir following collapse; and (3) post-caldera eruptions from different vents indicate different storage times of the amalgamated melt prior to eruption. Furthermore, these data further suggest that the timescales needed to generate large volumes of eruptible melt may depend on the timescales needed to increase interconnectedness and achieve widespread homogenization throughout the reservoir.« less

  19. History and results of VC-1, the first CSDP corehole in Valles caldera, New Mexico

    SciTech Connect

    Goff, F.; Rowley, J.; Gardner, J.N.; Hawkins, W.; Goff, S.; Pisto, L.; Polk, G.

    1985-01-01

    Valles Caldera No. 1 (VC-1) is the first Continental Scientific Drilling Program (CSDP) corehole drilled in the Valles caldera and the first continuously cored hole in the caldera region. The objectives of VC-1 were to penetrate a hydrothermal outflow plume near its source, to obtain structural and stratigraphic information near the intersection of the ring-fracture zone and the pre-caldera Jemez fault zone, and to core the youngest volcanic unit inside the caldera (Banco Bonito obsidian, 0.13 Ma). VC-1 penetrates 298 m of moat volcanics and caldera-fill ignimbrites, 35 m of pre-caldera volcaniclastic breccia, and 523 m of Paleozoic carbonates, sandstones and shales, with over 95% core recovery. Hydrothermal alterations are concentrated in sheared, brecciated and fractured zones from the volcaniclastic breccia to total depth with both the intensity and rank of alterations increasing with depth. Alterations consist primarily of clays, calcite, pyrite, quartz, and chlorite, but chalcopyrite has been identified as high as 518 m and molybdenite has been identified in a fractured zone at 847 m. Thermal aquifers were penetrated at various intervals from about 510 m on down. 11 refs., 5 figs.

  20. The 1996-2009 borehole dilatometer installations, operation, and maintenance at sites in Long Valley Caldera, CA

    USGS Publications Warehouse

    Myren, Glenn; Johnston, Malcolm; Mueller, Robert

    2011-01-01

    High seismicity levels with accelerating uplift (under the resurgent dome) in Long Valley caldera in the eastern Sierra Nevada from 1989 to 1997, triggered upgrades to dilational strainmeters and other instrumentation installed in the early 1980's following a series of magnitude 6 earthquakes. This included two additional high-resolution borehole strainmeters and replacement of the failed strainmeter at Devil's Postpile. The purpose of the borehole-monitoring network is to monitor crustal deformation and other geophysical parameters associated with volcanic intrusions and earthquakes in the Long Valley Caldera. Additional instrumentation was added at these sites to improve the capability of providing continuous monitoring of the magma source under the resurgent dome. Sites were selected in regions of hard crystalline rock, where the expected signals from magmatic activity were calculated to be a maximum and the probability of an earthquake of magnitude 4 or greater is large. For the most part, the dilatometers were installed near existing arrays of surface tiltmeters, seismometers, level line, and GPS arrays. At each site, attempts are made to separate tectonic and volcanic signals from known noise sources in each instrument type. Each of these sites was planned to be a multi-parameter monitoring site, which included measurements of 3-component seismic velocity and acceleration, borehole strain, tilt, pore pressure and magnetic field. Using seismicity, geophysical knowledge, geologic and topographic maps, and geologists recommendations, lists of preliminary sites were chosen. Additional requirements were access, and telemetry constraints. When the final site choice was made, a permit was obtained from the U.S. Forest Service. Following this selection process, two new borehole sites were installed on the north and south side of the Long Valley Caldera in June of 1999. One site was located near Big Spring Campground to the east of Crestview. The second site was

  1. Was Miyakejima undergoing subsidence before the 2000 caldera collapse? JERS1 InSAR results: 1992-1998

    NASA Astrophysics Data System (ADS)

    Furuya, M.

    2003-12-01

    Miyakejima volcano is a basaltic strato volcano island on the eastern edge of the Philippine Sea Plate, and was undergoing a number of eruption activities over the past centuries. In July-August 2000, the Miyakejima volcano underwent a caldera collapse, prompting many modern geodetic and geophysical measurements (e.g., Geshi et al. 2002; Furuya et al. 2003). The observation results on the pre-caldera-collapse stages are, however, limitted. Were there any precursory secular subsidence before the collapse? Though Miyazaki (1990) reported a secular subsidence at the Miyakejima, using leveling technique, there are no documented reports, to my knowledge, which employed radar interferometry to examine the ground displacements at Miyakejima. Here I will report on the results derived from the radar interferometry at Miyakejima volcano. I chose JERS-1 data (L-band HH) for the analysis, so that I could get rid of the loss of coherence; most of the Miyakejima is covered with vegetation. To remove the topographic fringes as well as to re-estimate the spatial baseline data (Rosen et al. 1996), I employed 10-meter resolution digital elevation map derived by Geographical Survey Institute, Japan. I could generate 24 differential interferograms at the time of writing this text. However, I do not yet recognize any significant "signals" that can be discriminated with the atmospheric "noise". There appears to be no specific subsidence pattern, which are detected in a number of other volcanos in the world (e.g., Lu et al. 2002; Yarai et al. 2002; Okuyama et al. 2002). I am going to show a stacked interferogram like that in Fujiwara et al. (1998) and to examine the existence of volcanic signals.

  2. DYNAMIC MIXING MODEL OF THE CHIGNAHUAPAN THERMAL SPRING IN THE GEOTHERMAL ZONE OF THE ACOCULCO CALDERA, PUEBLA, MEXICO

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A.; Torres-Rodriguez, V.

    2009-12-01

    The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.

  3. Oligocene volcanism and multiple caldera formation in the Chinati Mountains, Presidio County, Texas

    SciTech Connect

    Cepeda, J.C.; Henry, C.D.

    1983-01-01

    The Chinati Mountains caldera, which lies in Trans-Pecos Texas in the southern Basin and Range Province, was formed by eruption of the Mitchell Mesa Rhyolite. Volcanism in the Chinati Mountains area began several million years before formation of the Chinati Mountains caldera. Rocks of the Morita Ranch Formation, Infiernito caldera, and Shely Group ring the caldera on the south, east, and north. After its collapse, the caldera was filled by rhyolitic to trachytic lava flows and an ash-flow tuff of the Chinati Mountains Group. These include, from oldest to youngest, the lower trachyte, middle trachyte, lower rhyolite, upper trachyte, and upper rhyolite (ash-flow tuff). The Chinati Mountains Group was then intruded by the West Chinati Stock, the resurgent dome of the caldera. Three cycles of rhyolitic to trachytic magmatism, all derived from a zoned magma chamber, are represented by (1) Mitchell Mesa Rhyolite to lower and middle trachytes, (2) lower rhyolite to upper trachyte, and (3) upper rhyolite to West Chinati Stock. Dominant caldera collapse followed eruption of the Mitchell Mesa Rhyolite, but collapse is also associated with rhyolitic eruptions in the second and third cycles. The entire sequence erupted between 32 and 33 mya. The Chinati Mountains area is the site of one major, inactive silver mine and numerous prospects for silver, lead, zinc, copper, molybdenum, uranium, and fluorite. The Shafter silver district produced 31 million ounces of silver from Permian dolomitic limestones just south of the southern boundary of the caldera. Major prospects are associated with a quartz-monzonite porphyry intrusion (copper-molybdenum) just west of Shafter and with the West Chinati Stock (silver, lead, zinc, copper, and fluorite). All mineralization is probably genetically related to the caldera. 74 references, 15 figures, 3 tables.

  4. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador

    NASA Astrophysics Data System (ADS)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo

    2016-04-01

    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  5. From structure- to erosion-controlled subsiding calderas: evidence thresholds and mechanics

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Acocella, Valerio; Ruch, Joel

    2012-08-01

    Collapse calderas evolve by increasing their depth/diameter ratio. To properly characterize caldera evolution, a structural S/D (ratio between structural subsidence and ring-fault diameter; S s / D s ), and a topographic S/D (ratio between topographic caldera depth and topographic caldera width; S t / D t ), are considered. We review the evolution of the A.D. 2000 Miyakejima caldera, with two concentric ring faults at earlier collapsing stages, and erosion of its wall, accumulating debris on the floor, at later collapsing stages. While S t / D t and S s / D s show a similar increase at initial stages, when S s / D s ˜0.33 the S s / D s becomes significantly different from S t / D t : while continuous caldera subsidence monotonically increases S s / D s , the erosion of the wall and the filling of the floor decrease S t / D t . This evolution finds close similarities with recent caldera collapses of Krakatau (1883), Katmai (1912), Fernandina (1968), Tolbachik (1975-1976), Pinatubo (1991), and Dolomieu (2007). Analog experiments mimic the observed variation, evolving from a depression controlled by the activity of the double-ring faults to that controlled by the erosion of the wall and sedimentation at the floor. These natural and modeling results show that the control on the shape of mature calderas ( S s / D s > 0.07) and approaching S s / D s = 0.3-0.4 passes from a mainly structural to a mainly erosional control. Both S t / D t and S s / D s are needed to describe the evolution of a collapse and the processes accompanying it. Evaluating S t / D t and S s / D s allows proper description of the precise evolutionary stage of a caldera and of the relative importance of the structural and erosional processes and allows making semiquantitative comparisons between evolutionary stages.

  6. Upper crustal structure of the Yellowstone Caldera from seismic delay time analyses and gravity correlations

    SciTech Connect

    Lehman, J.A.; Smith, R.B.; Schilly, M.M.; Braile, L.W.

    1982-04-10

    The 1978 Yellowstone-Snake River Plain seismic experiment provided detailed refraction data that were recorded across a two-dimensional array of seismographs in Yellowstone National Park. A delay time analysis was applied to 173 crystalline basement P/sub g/ arrivals from these data to determine the three-dimensional distribution of velocities and the layer configuration of the upper crust beneath the Yellowstone caldera. The P wave velocity structure of the caldera is characterized by a surface layer of combined sediments and rhyolite flows, averaging 2.8 km/s, that range in thickness from 1.5 to 2.0 km. Adjacent to the caldera, the crystalline upper crustal layer has a velocity of 6.05 +- 0.01 km/s, but this layer decreases by 6% to 5.70 km/s beneath the caldera and extends northeast 15 km beyond the caldera. Smaller zones of very low P velocity, 4.0 km/s, a 30% velocity reduction compared to the 6.05 km/s layer, occur in the upper crust beneath the northeastern caldera rim and beneath the southwest caldera in the vicinity of the Upper and Midway Geyser basins. A three-dimensional gravity interpretation based upon densities derived from the seismic model suggests that the regional gravity low of -60 mGal over the caldera correlates directly with (1) the surface layer of combined sediments and rhyolite flows, (2) the low-velocity, 5.7-km/s, upper crustal layer, and (3) the 4.0-km/s low-velocity zone beneath the northeastern caldera rim. An interpretation of the seismic velocities and densities, based on experimental data and theoretical models is made.

  7. Effects of topography on facies and compositional zonation in caldera-related ignimbrites

    SciTech Connect

    Valentine, G.A.; Wohletz, K.H.; Kieffer, S.W.

    1992-02-01

    Large-scale fluid dynamical processes during explosive eruptions within calderas are examined numerically by solving the full set of two-phase hydrodynamic equations with a topographic barrier, representing the rim of a caldera. The effect of the caldera rim on eruption dynamics depends on the relative locations of the rim and the impact zone where tephra collapsing from the eruption column strikes the ground. The distance of the impact zone from the vent is proportional to the collapse (fountain) height of the eruption column. Three significantly different eruption patterns have been observed in the simulations: (1) If the impact zone is outside the caldera rim, relatively continuous pyroclastic flow occurs outside the caldera. (2) If the impact zone is on or near the caldera rim, an initial pyroclastic current flow out of the caldera and is followed by a lapse in outflow during which the cladera fills up with ash. (3) If the impact zone is inside the rim, all initial pyroclastic flows are contained within the caldera unless the flows have sufficiently high initial densities and velocities to carry them over the rim. In most cases, recirculation of pyroclasts into the base of the column causes fountain height to decrease dramatically with time due to the {open_quotes}choking{close_quotes} effect of the ash. This recycling of ash in turn reduces the ability of pyroclastic flows to surmount the rim. The numerical models suggest several processes that cause the formation of multiple cooling and flow units in deposits outside a caldera from a single eruption of steady discharge. Compositional gaps may occur in outflow ignimbrite due entirely to interaction of eruption and emplacement dynamics with topography; sharp compositional gradients within a magma chamber are not necessarily implied by compositional gaps in outflow units. 35 refs., 10 figs., 1 tab.

  8. Three-dimensional p-velocity structure of the summit caldera of Newberry Volcano, Oregon

    SciTech Connect

    Stauber, D.A.; Iyer, N.M.; Mooney, W.D.; Dawson, P.B.

    1985-01-01

    A three-dimensional high-resolution seismic study of the summit caldera of Newberry Volcano, Oregon, was conducted by the US Geological Survey using an adaptation of the method applied by Mercessian et al. (1984). Preliminary interpretation of the traveltime residuals reveals a ring of high P-velocity material coinciding with the inner ring fault system of the caldera in the upper 2 km. A zone of lower P velocities extends deeper than 2 km in the center of the caldera. 9 refs., 5 figs.

  9. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing

    USGS Publications Warehouse

    Foulger, G.R.; Julian, B.R.; Hill, D.P.; Pitt, A.M.; Malin, P.E.; Shalev, E.

    2004-01-01

    Most of 26 small (0.4??? M ???3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P - and S -wave polarities and amplitude ratios using linear-programming methods, and tracing rays through a three-dimensional Earth model derived using tomography. More than 80% of the mechanisms have positive (volume increase) isotropic components and most have compensated linear-vector dipole components with outward-directed major dipoles. The simplest interpretation of these mechanisms is combined shear and extensional faulting with a volume-compensating process, such as rapid flow of water, steam, or CO2 into opening tensile cracks. Source orientations of earthquakes in the south moat suggest extensional faulting on ESE-striking subvertical planes, an orientation consistent with planes defined by earthquake hypocenters. The focal mechanisms show that clearly defined hypocentral planes in different locations result from different source processes. One such plane in the eastern south moat is consistent with extensional faulting, while one near Casa Diablo Hot Springs reflects en echelon right-lateral shear faulting. Source orientations at Mammoth Mountain vary systematically with location, indicating that the volcano influences the local stress field. Events in a 'spasmodic burst' at Mammoth Mountain have practically identical mechanisms that indicate nearly pure compensated tensile failure and high fluid mobility. Five earthquakes had mechanisms involving small volume decreases, but these may not be significant. No mechanisms have volumetric moment fractions larger than that of a force dipole, but the reason for this fact is unknown. Published by Elsevier B.V.

  10. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.; Julian, B. R.; Hill, D. P.; Pitt, A. M.; Malin, P. E.; Shalev, E.

    2004-04-01

    Most of 26 small (0.4≲ M≲3.1) microearthquakes at Long Valley caldera in mid-1997, analyzed using data from a dense temporary network of 69 digital three-component seismometers, have significantly non-double-couple focal mechanisms, inconsistent with simple shear faulting. We determined their mechanisms by inverting P- and S-wave polarities and amplitude ratios using linear-programming methods, and tracing rays through a three-dimensional Earth model derived using tomography. More than 80% of the mechanisms have positive (volume increase) isotropic components and most have compensated linear-vector dipole components with outward-directed major dipoles. The simplest interpretation of these mechanisms is combined shear and extensional faulting with a volume-compensating process, such as rapid flow of water, steam, or CO 2 into opening tensile cracks. Source orientations of earthquakes in the south moat suggest extensional faulting on ESE-striking subvertical planes, an orientation consistent with planes defined by earthquake hypocenters. The focal mechanisms show that clearly defined hypocentral planes in different locations result from different source processes. One such plane in the eastern south moat is consistent with extensional faulting, while one near Casa Diablo Hot Springs reflects en echelon right-lateral shear faulting. Source orientations at Mammoth Mountain vary systematically with location, indicating that the volcano influences the local stress field. Events in a 'spasmodic burst' at Mammoth Mountain have practically identical mechanisms that indicate nearly pure compensated tensile failure and high fluid mobility. Five earthquakes had mechanisms involving small volume decreases, but these may not be significant. No mechanisms have volumetric moment fractions larger than that of a force dipole, but the reason for this fact is unknown.

  11. Caldera collapse in the Galápagos Islands, 1968

    USGS Publications Warehouse

    Simkin, T.; Howard, K.A.

    1970-01-01

    The summit caldera of Isla Fernandina, a large, uninhabited basaltic shield volcano, was further enlarged by 1 to 2 km3 in June 1968. A small quake and large vapor cloud on 11 June were followed 4 hours later by a remarkable volcanic ash cloud and, after another hour, by a major explosion recorded at infrasonic stations throughout the hemisphere. Seismic activity increased to a peak on 19 June, when more than 200 events per day were recorded by a seismograph 140 km away. Several hundred quakes were in the magnitude range 4.0 to 5.4 mb, but few such events were recorded after 23 June. Unusual lightning accompanied the major cloud, and, during the evening of 11 June, distant observers reported red glow and flashes from the area. Fine ash fell that night and much of the next day to distances at least 350 km from the volcano.

  12. Volcanology. A large magmatic sill complex beneath the Toba caldera.

    PubMed

    Jaxybulatov, K; Shapiro, N M; Koulakov, I; Mordret, A; Landès, M; Sens-Schönfelder, C

    2014-10-31

    An understanding of the formation of large magmatic reservoirs is a key issue for the evaluation of possible strong volcanic eruptions in the future. We estimated the size and level of maturity of one of the largest volcanic reservoirs, based on radial seismic anisotropy. We used ambient-noise seismic tomography below the Toba caldera (in northern Sumatra) to observe the anisotropy that we interpret as the expression of a fine-scale layering caused by the presence of many partially molten sills in the crust below 7 kilometers. This result demonstrates that the magmatic reservoirs of present (non-eroded) supervolcanoes can be formed as large sill complexes and supports the concept of the long-term incremental evolution of magma bodies that lead to the largest volcanic eruptions.

  13. Closing crack earthquakes within the Krafla caldera, North Iceland

    NASA Astrophysics Data System (ADS)

    Mildon, Zoë K.; Pugh, David J.; Tarasewicz, Jon; White, Robert S.; Brandsdóttir, Bryndís

    2016-11-01

    Moment tensor analysis with a Bayesian approach was used to analyse a non-double-couple (non-DC) earthquake (Mw ˜ 1) with a high isotropic (implosive) component within the Krafla caldera, Iceland. We deduce that the earthquake was generated by a closing crack at depth. The event is well located, with high signal-to-noise ratio and shows dilatational P-wave first arrivals at all stations where the first arrival can be picked with confidence. Coverage of the focal sphere is comprehensive and the source mechanism stable across the full range of uncertainties. The non-DC event lies within a cluster of microseismic activity including many DC events. Hence, we conclude that it is a true non-DC closing crack earthquake as a result of geothermal utilization and observed magma chamber deflation in the region at present.

  14. Modelling caldera collapse into a crystal mush, with application to the Bandelier Tuff, Valles caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Krahn, S. R.; Wolff, J. A.; Jellinek, M.; Ramos, F. C.

    2010-12-01

    The Valles caldera, NM, was formed in two eruptions at 1.61 Ma and 1.25 Ma that produced the Bandelier Tuff. The older Otowi Member of the Bandelier is a compositionally zoned high-silica rhyolite (>75% SiO2) with a dense rock equivalent volume of ~450 km3, and up to 5-fold variation in the incompatible element content of pumice fragments. Volume-composition relations require that 3 - 4 times the erupted volume, i.e. 1350 - 1800 km3, of leucogranitic crystal residue must complement the erupted magma. Quartz-sanidine glomerocrysts in late-erupted pumices are interpreted as fragments of the residue, but have a cumulative volume << 100 km3. Therefore, most of the residue was not erupted. The younger Tshirege member of the Bandelier Tuff, erupted from the same site 360,000 years later, is a ~250 km3 zoned high-silica rhyolitic ignimbrite similar to the Otowi, but additionally contains magmatic components of low-silica rhyolite and dacite. Also, incompatible elements in the Tshirege exhibit a much greater degree of scatter on covariation diagrams than is the case for the Otowi Member. The dacite is not closely related to the rhyolites and was introduced during a late recharge event that may have triggered the eruption. The extent and style of recycling of Otowi crystal residue into the Tshirege magma body is a long-standing question. To begin to investigate this problem, we have initiated a series of laboratory experiments designed to simulate the settling of a caldera block into a crystal mush layer underlying supernatant, eruptible, crystal-poor magma during caldera-forming super-eruptions. The extent and character of mush disruption and eruption on collapse vary with the amounts of crystal-rich and crystal-poor magma, roof block weight and thickness, melt viscosity and heterogeneity and lead to a first-order prediction that rejuvenation of the disturbed crystal mush should result in greater chemical complexity during subsequent magmatic cycles. This is consistent

  15. Appendix C: Summary of Major Metallogenic Belts in Northeast Asia (the Russian Far East, Yakutia, Siberia, Transbaikalia, Northern China, Mongolia, South Korea, and Japan)

    USGS Publications Warehouse

    Rodionov, Sergey M.; Obolenskiy, Alexander A.; Distanov, Elimir G.; Badarch, Gombosuren; Dejidmaa, Gunchin; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Ogasawara, Masatsugu; Nokleberg, Warren J.; Parfenov, Leonid M.; Prokopiev, Andrei V.; Seminskiy, Zhan V.; Smelov, Alexander P.; Yan, Hongquan; Davydov, Yuriy V.V.; Fridovskiy, Valeriy Yu.; Gamyanin, Gennandiy N.; Gerel, Ochir; Kostin, Alexei V.; Letunov, Sergey A.; Li, Xujun; Nikitin, Valeriy M.; Ratkin, Vladimir V.; Shpikerman, Vladimir I.; Sudo, Sadahisa; Sotnikov, Vitaly I.; Spiridonov, Alexander V.; Stepanov, Vitaly A.; Sun, Fengyue; Sun, Jiapeng; Sun, Weizhi; Supletsov, Valeriy M.; Timofeev, Vladimir F.; Tyan, Oleg A.; Vetluzhskikh, Valeriy G.; Wakita, Koji; Yakovlev, Yakov V.; Zorina, Lydia M.

    2010-01-01

    The major purposes of this chapter are to provide (1) an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia for readers who are unfamiliar with the region, (2) a general scientific introduction to the succeeding chapters of this volume, and (3) an overview of the methodology of metallogenic and tectonic analysis used in this study. We also describe how a high-quality metallogenic and tectonic analysis, including construction of an associated metallogenic-tectonic model will greatly benefit other mineral resource studies, including synthesis of mineral-deposit models; improve prediction of undiscovered mineral deposit as part of a quantitative mineral-resource-assessment studies; assist land-use and mineral-exploration planning; improve interpretations of the origins of host rocks, mineral deposits, and metallogenic belts, and suggest new research. Research on the metallogenesis and tectonics of such major regions as Northeast Asia (eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (the Russian Far East, Alaska, and the Canadian Cordillera) requires a complex methodology including (1) definitions of key terms, (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions, (3) compilation of a mineral-deposit database that enables a determination of mineral-deposit models and clarification of the relations of deposits to host rocks and tectonic origins, (4) synthesis of a series of mineral-deposit models that characterize the known mineral deposits and inferred undiscovered deposits in the region, (5) compilation of a series of metallogenic-belt belts constructed on the regional geologic base map, and (6) construction of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis presented here is based on publications of the major international collaborative studies of the metallogenesis and

  16. Oblique synoptic images, produced from digital data, display strong evidence of a "new" caldera in southwestern Guatemala

    USGS Publications Warehouse

    Duffield, W.; Heiken, G.; Foley, D.; McEwen, A.

    1993-01-01

    The synoptic view of broad regions of the Earth's surface as displayed in Landsat and other satellite images has greatly aided in the recognition of calderas, ignimbrite plateaus and other geologic landforms. Remote-sensing images that include visual representation of depth are an even more powerful tool for geologic interpretation of landscapes, but their use has been largely restricted to the exploration of planets other than Earth. By combining Landsat images with digitized topography, we have generated regional oblique views that display compelling evidence for a previously undocumented late-Cenozoic caldera within the active volcanic zone of southwestern Guatemala. This "new" caldera, herein called Xela, is a depression about 30 km wide and 400-600 m deep, which includes the Quezaltenango basin. The caldera depression is breached only by a single river canyon. The caldera outline is broadly circular, but a locally scalloped form suggests the occurrence of multiple caldera-collapse events, or local slumping of steep caldera walls, or both. Within its northern part, Xela caldera contains a toreva block, about 500 m high and 2 km long, that may be incompletely foundered pre-caldera bedrock. Xela contains several post-caldera volcanoes, some of which are active. A Bouguer gravity low, tens of milligals in amplitude, is approximately co-located with the proposed caldera. The oblique images also display an extensive plateau that dips about 2?? away from the north margin of Xela caldera. We interpret this landform to be underlain by pyroclastic outflow from Xela and nearby Atitla??n calderas. Field mapping by others has documented a voluminous rhyolitic pumiceous fallout deposit immediately east of Xela caldera. We speculate that Xela caldera was the source of this deposit. If so, the age of at least part of the caldera is between about 84 ka and 126 ka, the ages of deposits that stratigraphically bracket this fallout. Most of the floor of Xela caldera is covered

  17. Monitoring a supervolcano in repose: Heat and volatile flux at the yellostone caldera

    USGS Publications Warehouse

    Lowenstern, J. B.; Hurwitz, S.

    2008-01-01

    Although giant calderas ("supervolcanoes") may slumber for tens of thousands of years between eruptions, their abundant earthquakes and crustal deformation reveal the potential for future upheaval. Any eventual supereruption could devastate global human populations, so these systems must be carefully scrutinized. Insight into dormant but restless calderas can be gained by monitoring their output of heat and gas. At Yellowstone, the large thermal and CO2 fluxes require massive input of basaltic magma, which continues to invade the lower to mid-crust, sustains the overlying high-silica magma reservoir, and may result in volcanic hazard for millennia to come. The high flux of CO2 may contribute to the measured deformation of the caldera floor and can also modify the pressure, thermal, and chemical signals emitted from the magma. In order to recognize precursors to eruption, we must scrutinize the varied signals emerging from restless calderas with the goal of discriminating magmatic, hydrothermal, and hybrid phenomena.

  18. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R.; Caplan-Auerbach, Jacqueline; Dziak, Robert P.; Arnulf, Adrien F.; Mann, M. Everett

    2016-12-01

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera’s east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift.

  19. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  20. Inner structure of La Pacana Caldera (Central Andes, Chile) using gravimetry data

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pavez Alvarado, A.

    2010-12-01

    La Pacana caldera is located in the Altiplano Puna Volcanic Complex in the Chilean Andes and is a 60 by 35 km NS elongated body. It is one of the largest resurgent calderas in the world, comparable to the supervolcanoes of La Garita, Toba and Yellowstone. It has been described as being formed 4 My ago during an eruption with a VEI of 8,7, which makes it the fifth largest eruption ever in the geological record. This eruption was followed by a subsidence of 0,9 up to 2 km according to previous studies. Different models for this caldera formation were proposed but with a lack of sub surface information. We hence carried a gravimetry study to investigate its inner structure and to better off constrains on these proposed models. The residual Bouguer anomaly (figure 1) is asymetric with multiple high and low gravity, with an average amplitude of -14 mGal, which reaches -24 mGal near the resurgent dome, interpreted as the deepest part of the caldera. Based on this, we propose that the main collapse zone is not related to the topographic border, but to resurgent dome edges. This is compatible with a piecemeal collapse geometry. There are several gravity highs below strato-volcanoes and postcaldera domes within La Pacana caldera, which are interpreted as magmatic reservoirs. Our data combined with previous geological studies allowed us to separate La Pacana in two nested calderas and to trace its NNW, N and NNE borders, previously unrecognized features. The 2,5 D forward modelling cross sections constrained with geological data showed that the maximum caldera depth is 1,3 km with a minimum of 0,6 km in its southern part. We finally suggest that caldera rims are surrounded by paleozoic basement uplifted by thrust fault systems. La Pacana's residual Bouguer anomaly is small (1/2) when compared with the ones associated to other supervolcanoes (Toba, Yellowstone). La Pacana caldera constitutes then an anomaly for supervolcanoes internal structure due to its interpreted low

  1. Patterns of Fluid Circulation and Steam Generation in Caldera-Hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Barnard, M. E.; Cook, S. J.

    2009-05-01

    Steam formation is an important mechanism powering near surface phenomena in active hydrothermal systems (e.g., Yellowstone) and an established ore deposition mechanism in ancient equivalents (e.g., Creede). To gain insights into factors controlling steam formation and distribution in these systems, a series of steady-state numerical models were run on a hypothetical caldera-hosted system based on characteristics of a representative suite of calderas (e.g., Yellowstone, Valles, Creede). Base model conditions consisted of (1) a 10 km-wide caldera with a flat floor and rim height of 800 m; (2) a 500 C intrusion 1.5 km below the caldera centre; (3) a regional conductive heat flux twice continental average (0.10 W/m2); (4) host rock thermal conductivity of 2.5 W/m C, density 2650 kg/m3 and pore fraction 0.05. An impermeable intrusion was modeled with a 500 m wide surrounding region with a permeability (k) 10-3 m2 less than the system meant to represent a ductile region produced by elevated temperature (T > 350 C). The remainder of the system was given homogenous permeability. Cylindrical coordinates were used to represent caldera geometry. For these conditions, a minimum k = 10-15 m2 was required to achieve the target thermal condition of T approximately 220 C at 300 m below ground surface observed in active systems (e.g., Yellowstone). This model also resulted in a continuous steam plume originating at the intrusive contact that reached within 300 m of the surface along the edges of the caldera ~2 km from caldera centre. Models with k < 10-15 m2 produced steam, but at greater depths and failed to match the target conditions. Models with intrusion temperatures reduced by 20% shifted the steam plume toward the caldera centre and reduced its volume, but still achieved target conditions. Increasing intrusion temperature by 10% produced a second distinct plume at the caldera centre that also achieved target conditions. Increasing the rim height for these conditions

  2. Eruption History of Cone D: Implications for Current and Future Activity at Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Beget, J.; Almberg, L.; Faust-Larsen, J.; Neal, C.

    2008-12-01

    Cone B at Okmok Caldera erupted in 1817, and since then activity has beeen centered in and around Cone A in the SW part of Okmok Caldera. However, prior to 1817 at least a half dozen other eruptive centers were active at various times within the caldera. Cone D was active between ca. 2000-1500 yr BP., and underwent at least two separate intervals characterized by violent hydromagmatic explosions and surge production followed by the construction of extensive lava deltas in a 150-m-deep intra-caldera lake. Reconstructions of cone morphology indicate the hydromagmatic explosions occurred when lake levels were shallow or when the eruptive cones had grown to reach the surface of the intra-caldera lake. The effusion rate over this interval averaged several million cubic meters of lava per year, implying even higher outputs during the actual eruptive episodes. At least two dozen tephra deposits on the volcano flanks date to this interval, and record frequent explosive eruptions. The pyroclastic flows and surges from Cone D and nearby cones extend as far as 14 kilometers from the caldera rim, where dozens of such deposits are preserved in a section as much as 6 m thick at a distance of 8 km beyond the rim. A hydromagmatic explosive eruption at ca. 1500 yr BP generated very large floods and resulted in the draining of the caldera lake. The 2008 hydromagmatic explosive eruptions in the Cone D area caused by interactions with lake water resulted in the generation of surges, floods and lahars that are smaller but quite similar in style to the prehistoric eruptions at Cone E ca. 2000-1500 yr BP. The style and magnitude of future eruptions at vents around Cone D will depend strongly on the evolution of the intra-caldera lake system.

  3. Proceedings of the second workshop on hydrologic and geochemical monitoring in the Long Valley Caldera

    SciTech Connect

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

    1986-12-01

    A workshop was held to review the results of hydrologic and geochemical monitoring and scientific drilling in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and techonic processes. Data from a 2400-ft deep core hole completed in June 1986 were presented at the 1986 workshop and participants discussed the need and rationale for siting locations for future scientific drilling in the caldera.

  4. Recent geologic history of lake Atitlán, a caldera lake in western Guatemala

    USGS Publications Warehouse

    Newhall, C.G.; Paull, C.K.; Bradbury, J.P.; Higuera-Gundy, A.; Poppe, L.J.; Self, S.; Bonar, Sharpless N.; Ziagos, J.

    1987-01-01

    Heat-flow measurements inside and just outside the caldera are high (290 and 230 mW m−2), suggesting hydrothermal convection and a shallow heat source. High heat flow, a geological record of post-caldera silicic eruptions, and unexplained fluctuations of lake level (episodic tumescence ofthe lake floor?) suggest that magma remains beneath Lake Atitlán and that future eruptions are possible.

  5. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Bagnardi, Marco; Acocella, Valerio

    2016-04-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we use numerical models to show that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observation. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control the shallow accumulation of magma in stacked sills, consistently with observations as well as the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  6. Long Valley Caldera-Mammoth Mountain unrest: The knowns and unknowns

    USGS Publications Warehouse

    Hill, David P.

    2017-01-01

    This perspective is based largely on my study of the Long Valley Caldera (California, USA) over the past 40 years. Here, I’ll examine the “knowns” and the “known unknowns” of the complex tectonic–magmatic system of the Long Valley Caldera volcanic complex. I will also offer a few brief thoughts on the “unknown unknowns” of this system.

  7. Conduit enlargement during the precursory Plinian eruption of Aira Caldera, Japan

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Miyabuchi, Yasuo

    2016-09-01

    Increase in magma flux as the result of conduit enlargement is one of the key processes that triggered caldera collapse and eruption of the Ito ignimbrite from Aira Caldera at ~29 ka. We examine the total volume of the pumice fall deposit, vertical variations in grain size of pumice, and the lithic content in the Osumi pumice deposit to investigate the trigger for caldera collapse. Wider distribution of the later-stage unit and the upward coarsening of grain size throughout the Osumi pumice fall deposit indicate an increase in magma discharge toward the onset of collapse. The total volume of lithic fragments in the Osumi pumice fall deposit is estimated as ~1.6 km3, based on the lithic content in several representative outcrops and the total volume of the Osumi pumice fall deposit. The lithic fragments in the Osumi pumice fall deposit indicate intense mechanical erosion of the conduit during the Plinian eruption prior to caldera collapse. Caldera collapse requires decompression of the magma chamber by withdrawal of magma; effective enlargement of the conduit diameter during precursory eruptive phases is one of the important processes that subsequently allow the rapid discharge of a large volume of magma, which in turn facilitates decompression of the reservoir and induces caldera collapse.

  8. Post-eruptive flooding of Santorini caldera and implications for tsunami generation.

    PubMed

    Nomikou, P; Druitt, T H; Hübscher, C; Mather, T A; Paulatto, M; Kalnins, L M; Kelfoun, K; Papanikolaou, D; Bejelou, K; Lampridou, D; Pyle, D M; Carey, S; Watts, A B; Weiß, B; Parks, M M

    2016-11-08

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km(3), submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

  9. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-11-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

  10. Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone plateau volcanic field.

    USGS Publications Warehouse

    Hildreth, W.; Christiansen, R.L.; O'Neil, J.R.

    1984-01-01

    This Wyoming volcanic field has undergone repeated eruption of rhyolitic magma strongly depleted in 18O. Large calderas subsided 2.0, 1.3 and 0.6 m.y. ago on eruption of ash-flow sheets. More than 60 other rhyolite lavas and tuffs permit reconstruction of the long-term chemical and isotopic evolution of the silicic system. Narrow delta 18O ranges in the ash-flow sheets contrast with wide delta 18O variation in post-caldera lavas. The earliest post-collapse lavas are 3-6per mille lighter than the preceding ash-flow sheets. The 18O depletions were short-lived events that immediately followed caldera subsidence and sequences of post-caldera lavas record partial recovery toward pre-caldera delta 18O values. Contemporaneous extra-caldera rhyolites show no effects of the repeated depletions. Although some contamination by foundering roof rocks seems to be required, water was probably the predominant contaminant.-W.H.B.

  11. Three-dimensional gravity modeling of the geologic structure of Long Valley caldera

    SciTech Connect

    Carle, S.F.

    1988-11-10

    A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. Gravity measurements by Unocal Geothermal have been integrated with U.S. Geological Survey data, vastly improving gravity station coverage throughout the caldera. A strong regional gravity trend is mainly attributed to isostasy. A ''best fitting'' (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. A three-dimensional, multiple-unit gravity modeling program with iterative capabilities was developed to model the residual gravity. The density structure of Long Valley caldera and vicinity was modeled with 22 discrete density units, most of which were based on geologic units. Information from drill hole lithologies, surface geology, and structural geology interpretations constrain the model. Some important points revealed by the three-dimensional gravity modeling are that (1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, (2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, (3) the main west ring fracture is coincident with the Inyo Domes--Mono Craters fracture system, (4) a relatively low-density region probably underlies the caldera, and (5) a silicic magma chamber may underlie Devils Postpile. copyright American Geophysical Union 1988

  12. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    PubMed Central

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-01-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production. PMID:27824353

  13. Formation of Öskjuvatn caldera at Askja, North Iceland: Mechanism of caldera collapse and implications for the lateral flow hypothesis

    NASA Astrophysics Data System (ADS)

    Hartley, M. E.; Thordarson, T.

    2012-05-01

    The Öskjuvatn caldera at Askja volcano, North Iceland, was formed as a result of an explosive eruption at Askja on 28th-29th March 1875. Öskjuvatn is one of the youngest collapse calderas on Earth, and its initiation and growth were observed and documented by explorers and geologists working in the Askja region between 1875 and 1932. It is an example of caldera formation where the volume of the caldera collapse far exceeds the volume of associated erupted products. The discrepancy between the collapse volume and associated erupted products has been used by previous workers as a justification for the hypothesis that the injection of lateral dykes from Askja fed the February to October 1875 Nýjahraun fissure eruptions at the Sveinagjá graben, some 60 km north of Askja. However, historical accounts documenting the caldera formation in sufficient detail show clearly that Öskjuvatn formed by piecemeal collapse, taking over 40 years to reach its current form. We use these accounts to undertake a detailed examination of the stages of caldera collapse and to compare them with the known magmatic output of Askja in the years following the 1875 eruption. ArcGIS software was used to calculate the volume of Öskjuvatn during the various stages of collapse, and the volume of material erupted after 1875. While a dyke extending between Askja and Sveinagjá may be implied to account for the 'missing' volume, our results demonstrate that the volume of Öskjuvatn in July 1875 closely corresponds to the volume of rhyolitic material erupted on 28th-29th March 1875. In addition, geochemical evidence indicates that the Nýjahraun magmas were sourced from a deeper reservoir rather than by lateral injection from Askja's shallow crustal magma chamber. We therefore suggest that the injection of sills and dykes in a coherent intrusion complex beneath Askja central volcano, combined with background deflation of the magma storage zone beneath Öskjuvatn caldera over 30 to 40 years

  14. Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeast Oregon and north central Nevada.

    USGS Publications Warehouse

    Rytuba, J.J.; McKee, E.H.

    1984-01-01

    This volcanic field covers an area of 20 000 km2 and consists of seven large-volume ash-flow sheets that vented 16.1-15 m.y. ago. The volcanic field is characterized by peralkaline, high-silica rhyolite, and all but one of the sheets are comendites. Each ash-flow sheet resulted in the formation of a large collapse caldera. Thickening of the ash-flow sheets, monoclinal warping outside the caldera ring-fault and tilting-in towards the caldera of blocks bounded by curvilinear faults all indicate regional subsidence prior to caldera collapse. The McDermitt caldera complex is highly mineralized; it contains ore deposits of Hg, Sb, Cs, Li and U. The peralkaline tuffs have high contents of these elements and were the source rocks from which metals were leached by hydrothermal systems developed during the last stage of caldera-related volcanism. (Following abstract) -W.H.B.

  15. The Silent Canyon Caldera Complex--A three-dimensional model based on drill-hole stratigraphy and gravity inversion

    SciTech Connect

    Sawyer, D.A.; Anderson, M.L.; Hildenbrand, T.G; McKee, E.H.; Rowley, P.R.

    1999-12-13

    The structural framework of Pahute Mesa, nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer faults surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most if its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States.

  16. Martian Hot Springs? Silica deposits in the Nili Patera Caldera.

    NASA Astrophysics Data System (ADS)

    Skok, J. R.; Mustard, J. F.; Ehlmann, B. L.; Murchie, S. L.

    2011-12-01

    The caldera of the Syrtis Major volcanic complex shows evidence of a late-stage, chemically evolved eruption that emplaced a volcanic cone and an evolved dacitic lava flow. This cone and flow contain several light-toned deposits, spectrally defined, with the CRISM instrument, by a broad asymmetrical absorption centered at 2.21 μm that is characteristic of a Si-OH bond. Additional weak 1.4 and 1.9 μm OH- and H2O related absorption features were detected that combined with the 2.21 μm feature confirms the detection of hydrated silica (SiO2 nH2O). The deposits are expressed morphologically as low mounds in stereo HiRISE data that superpose and post-date the volcanic flows. This mineral detection and volcanic context is consistent with several formation mechanisms, notably volcanic outgassing leading to fumarole surface alteration or silica deposition in volcanically driven hot springs. Since current orbital observations do not allow conclusive determination of precise mechanism, we here focus on the hot spring silica depositional hypothesis and investigate what the current observations tell us about such a system. These deposits would occur as post-eruption volcanic heat-driven hydrothermal convection of ground and possibly magmatic waters. Convecting, heated water would dissolve the igneous minerals in the basalt that forms the majority of the caldera mobilizing significant silica. Silica saturated fluids that reach the surface cool and deposit amorphous silica as the silica solubility in the fluids decreases. The large size and mound building nature of individual deposits require a significant and sustained fluid source for deposition. That amorphous silica deposits were detected in several distinct regions illustrates the prevalence of this process in this volcanic complex. The largest deposit is located on the southern flank of the cone and forms a fan-shaped morphology as the material is sourced from a vent and flows downslope. Another small deposit was

  17. Renewed Inflation of Long Valley Caldera (2011 - Present)

    NASA Astrophysics Data System (ADS)

    Montgomery-Brown, E. K.; Wicks, C. W., Jr.; Langbein, J. O.; Hill, D. P.; Shelly, D. R.; Svarc, J. L.; Lisowski, M.

    2014-12-01

    Slow inflation resumed at Long Valley Caldera in late 2011, coinciding with renewed south moat swarm activity. Deformation is predominantly concentrated within the caldera, but a small amplitude spatially-coherent deformation extends northward to Mono Lake, suggesting the influence of multiple deformation sources. Small deviations from the nearly steady inflation are observed during the winter months. The frequency of earthquake swarms has also increased during the renewed inflation, with earthquakes occurring at about 8 km depth. While the majority of the increased seismicity occurring during the inflation can be explained by a single earthquake triggering model (e.g., Epidemic Type Aftershock Sequence), swarms occurring during the seasonal deviations observed by GPS are not well fit by this model. To study the renewed inflation, we analyze long term trends and transient deformation in GPS and InSAR data in the context of seismic and meteorological observations. InSAR data are from X-band (3.11 cm wavelength) radar satellites Terrasar-X and Tandem-X. We process initial interferograms using GAMMA, and process persistent scatterers (PS) using DORIS and StaMPS with both the multi-temporal and small baseline pair methods. PS coverage is very good and StaMPS identifies over 5 million PS, which we downsample to a spacing of 200 m for efficiency. The extension rate of the dome-crossing baseline (CA99 to KRAC) is ~1 cm/yr, similar to rates observed in previous inflation episodes (1990-95 and 2002-03), which is about a tenth of the peak rate observed during the late 1997 unrest. The current deformation can be explained by the inflation of a nearly spherical magma reservoir at ~6 km deep beneath the resurgent dome, with a volume change of ~4.5(±1)x106 m3/yr. This source appears to be in a region that was used to model previous inflation episodes. A deeper source at 12 km, used to help model the 1997 inflation may contribute to the current deformation.

  18. Seismic and gravity signature of the Ischia Island Caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Capuano, P.; de Matteis, R.; Russo, G.

    2009-04-01

    The Campania (Italy) coasts are characterized by the presence of several volcanoes. The island of Ischia, located at the northwestern end of the Gulf of Naples, belongs to the Neapolitan Volcanic District together with Phlegrean Fields and Vesuvius, having all these Pleistocene volcanoes erupted in historical times, and it is characterized by diffuse hydrothermal phenomena The island represents the emergent part of a more extensive volcanic area developed mainly westward of the island, with underwater volcanoes aligned along regional fault patterns. The activity of Ischia volcano is testified by the occurrence of eruptions in historical times, the presence of intense hydrothermal phenomena, and by seismic activity (e.g. the 1883 Casamicciola earthquake). Ischia is populated by about 50,000 inhabitants increasing, mainly in the summer, due to thriving tourism business, partially due to its active volcanic state. Hazard assessment at active, densely populated volcanoes is critically based on knowledge of the volcanoes past behavior and the definition of its present state. As a contribution to the definition of the present state of the Ischia island volcano, we obtain a model of the shallow crust using geophysical observables through seismic tomography and 3D gravity inversion. In particular we use travel times collected during the Serapis experiment on the island and its surroundings and free air anomaly. A new 3D gravity inversion procedure has been developed to take better into account the shape and the effects of topography approximating it by a triangular mesh. Below each triangle, a sequence of triangular prisms is built, the uppermost prism having the upper face coincident with the triangle following the topography. The inversion is performed searching for a regularized solution using the minimum norm stabilizer. The main results inferable from the 3D seismic and gravity images are the definition of the caldera rims hypothesize by many authors along the

  19. Relation of mercury, uranium, and lithium deposits to the McDermitt caldera complex, Nevada-Oregon

    USGS Publications Warehouse

    Rytuba, James J.; Glanzman, Richard K.

    1979-01-01

    The McDermitt caldera complex, located along the Nevada-Oregon border, is a Miocene collapse structure 45 km in diameter. Large-volume rhyolitic and peralkaline ash-flow tufts were erupted from 17.9-15.8 m.y. ago, leading to the formation of overlapping and nested calderas. Emplacement of rhyolitic ring domes, located primarily along the western margin of the calderas, represents the last phase of volcanic activity.

  20. Building and interpreting a database to understand recent caldera unrest from monitoring data

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, Riccardo; Acocella, Valerio; Scandone, Roberto; Geshi, Nobuo

    2014-05-01

    Calderas are among the most spectacular, dangerous and active volcanoes on the Earth. Activation of seismicity, surface deformation and anomalous degassing are commonly observed at many calderas, denoting unrest. The unrest can be intermittent, lasting for months to years, or persistent, over decades to centuries. Although most caldera unrest episodes do not lead to an eruption, the possibility of an impending eruption warrants detailed monitoring and study. To better understand caldera unrest, we built a database from all available publications and reports on the recent unrest episodes at calderas in the world. We focused our attention on the unrest episodes which have occurred in the last 25 years, being complementary to Newhall and Dzurisin (1988). We considered the monitoring data from more than 45 unresting calderas, 35 of which characterized by eruptions. Attention has been given to seismicity, deformation and gas variations, along with their possible interaction. The database consists of an excel sheet containing the: (a) caldera descriptive parameters (caldera name, UTM coordinates, maximum and minimum diameter, area, date of last eruption, magma composition); (b) seismic data (width, maximum and minimum depth of area undergoing seismicity, frequency and duration and maximum magnitude; (c) geodetic data (location and width of deformed area, intensity and duration of the deformation); (d) geochemical data (location of anomalies, changes in maximum temperature, variations in chemical composition, duration of the anomaly, pH changes); (e) presence of eruptions and their characterization. The preliminary analysis of the database confirms that all eruptions are preceded by an unrest episode, but not all unrest episodes culminate in an eruption; this suggests that these indicators are a necessary condition to establish the state of unrest, which may anticipate an impending eruption; however, the indicators are not always adequate to determine the occurrence of

  1. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California

    USGS Publications Warehouse

    Roeloffs, E.; Sneed, M.; Galloway, D.L.; Sorey, M.L.; Farrar, C.D.; Howle, J.F.; Hughes, J.

    2003-01-01

    Distant as well as local earthquakes have induced groundwater-level changes persisting for days to weeks at Long Valley caldera, California. Four wells open to formations as deep as 300 m have responded to 16 earthquakes, and responses to two earthquakes in the 3-km-deep Long Valley Exploratory Well (LVEW) show that these changes are not limited to weathered or unconsolidated near-surface rocks. All five wells exhibit water-level variations in response to earth tides, indicating they can be used as low-resolution strainmeters. Earthquakes induce gradual water-level changes that increase in amplitude for as long as 30 days, then return more slowly to pre-earthquake levels. The gradual water-level changes are always drops at wells LKT, LVEW, and CH-10B, and always rises at well CW-3. At a dilatometer just outside the caldera, earthquake-induced strain responses consist of either a step followed by a contractional strain-rate increase, or a transient contractional signal that reaches a maximum in about seven days and then returns toward the pre-earthquake value. The sizes of the gradual water-level changes generally increase with earthquake magnitude and decrease with hypocentral distance. Local earthquakes in Long Valley produce coseismic water-level steps; otherwise the responses to local earthquakes and distant earthquakes are indistinguishable. In particular, water-level and strain changes in Long Valley following the 1992 M7.3 Landers earthquake, 450 km distant, closely resemble those initiated by a M4.9 local earthquake on November 22, 1997, during a seismic swarm with features indicative of fluid involvement. At the LKT well, many of the response time histories are identical for 20 days after each earthquake, and can be matched by a theoretical solution giving the pore pressure as a function of time due to diffusion of a nearby, instantaneous, pressure drop. Such pressure drops could be produced by accelerated inflation of the resurgent dome by amounts too

  2. Geochemical and geochronologic data from the Hall Creek caldera, Toiyabe Range, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2017-01-01

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand

  3. Explosive eruptions during the first 100-150 years of Kilauea's caldera

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.

    2007-12-01

    The collapse of Kilauea's summit to form its modern caldera took place in 1480-1500 C.E. and was apparently almost nonexplosive. Only a layer of medium-coarse ash 1-4 cm thick at the base of the Keanakako`i Ash can reasonably be ascribed to the collapse itself. Soon thereafter, however, lava fountains probably much higher than 300 m played from multiple vents in the caldera, depositing a layer of nearly pure reticulite as thick as 65 cm on the rim. Multiple fountains, possibly from fractures bounding the collapsed blocks, best explain lateral changes in texture and componentry of the reticulite and its presence completely around the caldera. High fountains, related to high ascent rate, are required for reticulite production (Rust and Cashman, 2006). A paucity of denser material (pumice, Pele's tears) in the reticulite deposit indicates that only the top of the fountains cleared the caldera rim, with denser fallout trapped within the caldera. Thus the caldera was already several hundred meters deep when the reticulite erupted (about 1500 C.E., according to C-14 ages.) A lithic block fall and associated ash fall or surge, with subordinate vitric components, occurred soon (a few weeks to years?) after the reticulite eruption. This deposit occurs beyond the northern and northeastern rim of the caldera and is thickest and coarsest in the national park's housing area, where it contains clasts several tens of centimeters across. The block fall and ash are both pale pink, indicative of a dry, high temperature eruption. For the next 100-150 years, numerous small eruptions produced vitric ash containing several percent of lithic clasts in all grain sizes greater than 0.5 mm. The mixed deposits are dominated by poorly vesicular ash, have only small amounts of pumice, contain chunks of black glass with planar to gently concave surfaces, and commonly are somewhat palagonitized. Together, these features indicate that the explosions were phreatomagmatic, a conclusion also reached

  4. MGS-TES thermal inertia study of the Arsia Mons Caldera

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.

    2008-01-01

    Temperatures of the Arsia Mons caldera floor and two nearby control areas were obtained by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). These observations revealed that the Arsia Mons caldera floor exhibits thermal behavior different from the surrounding Tharsis region when compared with thermal models. Our technique compares modeled and observed data to determine best fit values of thermal inertia, layer depth, and albedo. Best fit modeled values are accurate in the two control regions, but those in the Arsia Mons' caldera are consistently either up to 15 K warmer than afternoon observations, or have albedo values that are more than two standard deviations higher than the observed mean. Models of both homogeneous and layered (such as dust over bedrock) cases were compared, with layered-cases indicating a surface layer at least thick enough to insulate itself from diurnal effects of an underlying substrate material. Because best fit models of the caldera floor poorly match observations, it is likely that the caldera floor experiences some physical process not incorporated into our thermal model. Even on Mars, Arsia Mons is an extreme environment where CO2 condenses upon the caldera floor every night, diurnal temperatures range each day by a factor of nearly 2, and annual average atmospheric pressure is only around one millibar. Here, we explore several possibilities that may explain the poor modeled fits to caldera floor and conclude that temperature dependent thermal conductivity may cause thermal inertia to vary diurnally, and this effect may be exaggerated by presence of water-ice clouds, which occur frequently above Arsia Mons. Copyright 2008 by the American Geophysical Union.

  5. Qualitative and Quantitative Assessment of Naturals Hazards in the Caldera of Mount Bambouto (West Cameroon)

    NASA Astrophysics Data System (ADS)

    Zangmo Tefogoum, G.; Kagou Dongmo, A.; Nkouathio, D. G.; Wandji, P.

    2009-04-01

    Mount Bambouto is polygenic stratovolcano of the Cameroon Volcanic Line, build between 21 Ma and 4,5Ma (Nkouathio et al., 2008). It is situated at about 200 km NE of mount Cameroon, at 09°55' and 10°15' East and, 05°25' and 05°50' Nord. This volcano covers an area of 500 Km2 and culminates at 2740 m at Meletan hill and bears a collapse caldera (13 x 8 km). Fissural, extrusive and explosive dynamism are responsible of the construction in three main stages this volcano including the edification of a sommital large rim caldera. Mount Bambouto structure gives rise to different natural hazards, of volcanological origin and meteorological origin. In the past time, landslides, floodings, firebush, blocks collapse took place in this area with catastrophic impact on the population. New research program had been carried out in the caldera concerning qualitative and quantitative evaluation of natural risks and catastrophes. The main factors of instability are rain, structure of the basement, slopes, lithology and anthropic activities; particularly, the occurrence of exceptional rainfall due to global change are relevant; this gives opportunity to draw landslides hazards zonation map of the Bambouto caldera which is the main risk in this area. We evaluate the financial potential of the caldera base on the average income of breeding, farming, school fees and the cost of houses and equipments for each family. The method of calculation revealed that, the yearly economy of the mounts Bambouto caldera represents about 2 billions FCFA. Some recommendations have been made in order to prevent and reduced the potential losses and the number of victims in particular by better land use planning. These help us to estimate the importance of destruction of the environment and biodiversity in case of catastrophes. We conclude that in the Bambouto caldera there is moderate to high probability that destructive phenomena due to landslides occurs within the upcoming years with enormous

  6. Stratigraphy of Pyroclastic Deposits of EL Aguajito Caldera, Baja California Sur, MÉXICO

    NASA Astrophysics Data System (ADS)

    Osorio Ocampo, L. S.; Macias, J. L.; García Sánchez, L.; Pola, A.; Saucedo, R.; Sánchez, J. M.; Avellán, D. R.; Cardona, S.; Reyes-Agustín, G.; Arce, J. L.

    2015-12-01

    El Aguajito caldera is located in the State of Baja California Sur, it comprises an area of 450 km2 and sits within the Santa Rosalía Basin which is controlled by NE-SW extensional structures and the NW-SE Cimarron Fault that transects the caldera structure. The oldest rocks are ~90 Ma granodiorites covered by an Oligocene-Miocene volcano-sedimentary sequence, the Miocene Santa Lucia Formation and La Esperanza basalt. Pliocene volcanism is represented by La Reforma caldera, El Aguajito caldera, and the Tres Vírgenes Volcanic complex. This study focuses on the cartography and stratigraphy of area in order to understand the evolution of the volcanic system. The stratigraphy from base to top consists of a series of shallow marine sediments (fossiliferous sandstones) covered by a thick sequence of ignimbrites and pyroclastic flows interbedded with volcaniclastic deposits (Gloria and El Infierno Formations). On top of these deposits is El Aguajito caldera, it consists of a 2 m thick pumice fallout followed by an ignimbrite with three transitional lithofacies: a ≤30-m thick light-pink pyroclastic flow enriched in pumice at the base that gradually becomes enrich in lithics towards the top with the occurrence of degasing pipes. On top rests a 15 m-thick light-purple ignimbrite slightly welded with fiammes and a sequence of pumiceous pyroclastic flows and fallouts. These deposits have been associate to the caldera formation with a collapse diameter of ~8 km marked by rhyolitic domes exposed along a ring collapse crowned the sequence as well as NW-SE aligned rhyolitic domes parallel to the seashore. This cartography allowed to present a preliminary new geological map with four stratigraphic units recognized so far, that were emplaced under subaerial conditions beginning with a Plinian column followed by the emplacement of El Aguajito ignimbrite with its subsequent caldera collapse and finally the extrusion of resurgent domes.

  7. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  8. Geologic map of the Cochetopa Park and North Pass Calderas, northeastern San Juan Mountains, Colorado

    USGS Publications Warehouse

    Lipman, Peter W.

    2012-01-01

    The San Juan Mountains in southwestern Colorado have long been known as a site of exceptionally voluminous mid-Tertiary volcanism, including at least 22 major ignimbrite sheets (each 150-5,000 km3) and associated caldera structures active at 33-23 Ma. Recent volcanologic and petrologic studies in the San Juan region have focused mainly on several ignimbrite-caldera systems: the southeastern area (Platoro complex), western calderas (Uncompahgre-Silverton-Lake City), and the central cluster (La Garita-Creede calderas). Far less studied has been the northeastern San Juan region, which occupies a transition between earlier volcanism in central Colorado and large-volume younger ignimbrite-caldera foci farther south and west. The present map is based on new field coverage of volcanic rocks in seventeen 7.5' quadrangles in northeastern parts of the volcanic field, high-resolution age determinations for 120 new sites, and petrologic studies involving several hundred new chemical analyses. This mapping and the accompanying lab results (1) document volcanic evolution of the previously unrecognized North Pass caldera and the morphologically beautifully preserved but enigmatic Cochetopa basin, including unique features not previously described from ignimbrite calderas elsewhere; (2) provide evidence for a more rapid recurrence of large ignimbrite eruptions than previously known elsewhere; (3) quantify the regional time-space-volume progression from the earlier Sawatch magmatic trend southward into the San Juan region; and (4) permit more rigorous comparison between the broad mid-Tertiary magmatic belt in the western U.S. Cordillera and the type continental-margin arc volcanism in the central Andes.

  9. Possible tectonomagnetic effect observed from mid-1989, to mid-1990, in Long Valley caldera, California

    SciTech Connect

    Mueller, R.J.; Johnston, M.J.S.; Langbein, J.O. )

    1991-04-01

    Precise measurements of local magnetic fields have been obtained with a differentially connected array of three proton magnetometers in the Long Valley caldera region since 1984. Two magnetometers are located inside the caldera with a third reference magnetometer located 26 km southeast of the caldera. After correction for secular variation, it is apparent that an anomalous 2 nT decrease in the magnetic field occurred from mid-1989 to mid-1990 at the magnetometer located closest to the center of the resurgent dome inside the caldera. During this period a significant increase in geodetic strain rate of 8.5 ppm/yr was observed on the two-color geodimeter network within the caldera from October, 1989, to mid-1990 and a dramatic increase in seismic activity occurred from December, 1989 to July, 1990. A simple dilatational point-source model with pressure increasing by 52 Mpa from October 1989 to August 1990 at a depth of about 7 km beneath the center of the resurgent dome can be fit to the strain data. If this same model is used to calculate piezomagnetic fields in the caldera, the results obtained agree with the observed local magnetic field data provided the Curie point isotherm is at a depth of {le}5 km. Taken together, these magnetic, seismic and geodetic data suggest that an episode of active magmatic intrusion occurred from late 1989 to mid-1990 at a depth of about 7-8 km beneath the resurgent dome within the Long Valley caldera. Other indications of this intrusion should be evident in measurements of leveling, local gravity, and seismic imaging data.

  10. Variation of Fracturing Pressures with Depth Near the Valles Caldera

    SciTech Connect

    Dash, Zora; Murphy, Hugh

    1983-12-15

    Hydraulic Fracturing at the Fenton Hill Hot Dry Rock Geothermal site near the Valles Caldera has yielded fracturing pressures from 14 to 81 MPa (2030 to 11,750 psi) at depths ranging from 0.7 to 4.4 km (2250 to 14,400 ft). This data can be fit to a fracture gradient of 19 MPa/km (0.84 psi/ft), except for an anomalous region between 2.6 to 3.2 km where fracturing pressures are about 20 MPa lower than estiamted using the above gradient. This anomaly coincides with a biotite granodiorite intrusive emplaced into a heterogeneous jointed metamorphic complex comprised of gneisses, schists and metavolcanic rocks. Microseismic events detected with sensitive downhole geophones suggest that shear failure is an important process during hydraulic fracturing of such jointed rock. Consequently the usual relation between minimum earth stress and fracture opening pressure, based upon classic tensile failure, cannot be used apriori; fracture opening pressure is instead a complex function of joint orientation and all three components of principal earth stress.

  11. Tourism Development Based on Geopark in Bakkara Caldera Toba, Indonesia

    NASA Astrophysics Data System (ADS)

    Ginting, N.; Vinky Rahman, N.; Sembiring, G.

    2017-03-01

    Bakkara Caldera Toba is an outstanding product of natural phenomena of Toba Supervolcano which has fascinating nature and culture. Bakkara has a great potential to develop world tourism further. It requires a model of sustainable planning Geopark to develop Bakkara. This sustainable concept helps to improve the local community and tourist’s quality of life and also still maintain the quality of the environment. through field observation and depth interview. The Collected data with a triangulation method. Development tourism destination such as attractions and environment; facilities and services; accessibility; image; and price to consume. It associated based on Geopark aspects there are; geological heritage; geo-conservation activities; sustainable tourism activities; educational; activities; community involvement products; strong management structure; and secure basis, infrastructure, and activities. The results of this study indicate that the Bakkara has the potential to become a tourist destination by applying the concept of Geotourism which accentuate its natural side, by optimizing the management of its destination attractions, its facilities and services, and its accessibilities.

  12. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles.

    PubMed

    Takacs-Vesbach, Cristina; Mitchell, Kendra; Jackson-Weaver, Olan; Reysenbach, Anna-Louise

    2008-07-01

    It has been suggested that the distribution of microorganisms should be cosmopolitan because of their enormous capacity for dispersal. However, recent studies have revealed that geographically isolated microbial populations do exist. Geographic distance as a barrier to dispersal is most often invoked to explain these distributions. Here we show that unique and diverse sequences of the bacterial genus Sulfurihydrogenibium exist in Yellowstone thermal springs, indicating that these sites are geographically isolated. Although there was no correlation with geographic distance or the associated geochemistry of the springs, there was a strong historical signal. We found that the Yellowstone calderas, remnants of prehistoric volcanic eruptions, delineate biogeographical provinces for the Sulfurihydrogenibium within Yellowstone (chi(2): 9.7, P = 0.002). The pattern of distribution that we have detected suggests that major geological events in the past 2 million years explain more of the variation in sequence diversity in this system than do contemporary factors such as habitat or geographic distance. These findings highlight the importance of historical legacies in determining contemporary microbial distributions and suggest that the same factors that determine the biogeography of macroorganisms are also evident among bacteria.

  13. Calderas produced by hydromagmatic eruptions through permafrost in northwest Alaska

    NASA Technical Reports Server (NTRS)

    Beget, J. E.

    1993-01-01

    Most hydromagmatic eruptions on Earth are generated by interactions of lava and ground or surface water. This eruptive process typically produces craters 0.1-1 km in diameter, although a few as large as 1-2 km were described. In contrast, a series of Pleistocene hydromagmatic eruptions through 80-100-m-thick permafrost on the Seward Peninsula of Alaska produced four craters 3-8 km in diameter. These craters, called the Espenberg maars, are the four largest maars known on Earth. The thermodynamic properties of ground ice influence the rate and amount of water melted during the course of the eruption. Large quantities of water are present, but only small amounts can be melted at any time to interact with magma. This would tend to produce sustained and highly explosive low water/magma (fuel-coolant) ratios during the eruptions. An area of 400 km(sub 2) around the Alaskan maars shows strong reductions in the density of thaw lakes, ground ice, and other surface manifestations of permafrost because of deep burial by coeval tephra falls. The unusually large Espenberg maars are the first examples of calderas produced by hydromagmatic eruptions. These distinctive landforms can apparently be used as an indicator of the presence of permafrost at the time of eruption.

  14. Stress field control during large caldera-forming eruptions

    NASA Astrophysics Data System (ADS)

    Costa, Antonio; Marti, Joan

    2016-10-01

    Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs) can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  15. The large (M>5) co-eruptive earthquakes in Bárðarbunga caldera as observed by an accelerometer and cGPS in the caldera center

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, Vala; Jónsdóttir, Kristín; Geirsson, Halldór; Rodrigo Rodríguez-Cardozo, Félix; Iglesias, Arturo; Parks, Michelle; Ófeigsson, Benedikt; Vogfjord, Kristín; Dumont, Stephanie; Magnússon, Eyjólfur; Spaans, Karsten; Bagnardi, Marco; Hensch, Martin; Heimann, Sebastian; Cesca, Simone; Tumi Guðmundsson, Magnús; Hooper, Andrew; Sigmundsson, Freysteinn

    2016-04-01

    The 2014-2015 eruptive episode in Holuhraun, northern Iceland, was accompanied by almost 70 meters of caldera subsidence in the ice-covered Bárðarbunga volcano. During the subsidence, over seventy 5.7>M>5 earthquakes occurred on the caldera rim, many of them with an unusual moment tensor (large non-double-couple component), indicating that they do not involve slip on a planar fault. Non- double-couple moment tensors are principally found in volcanoes in eruption (Shuler et al 2013), and several mechanisms for generating them have been proposed, such as: slip on a ring-fault (Nettles & Ekström, 1998); closing crack or sill (Kanamori et al 1993, Riel et al 2014); or a combination of both (Heimann et al, submitted). Thus, by what processes the seismic signal is related to the caldera subsidence is still under debate. During the caldera subsidence, a high-rate (20 Hz) GPS station and an accelerometer were installed on top of the ice, near the center of the 7x11 km caldera. The GPS station started recording about three weeks into the caldera collapse and recorded over 35 m of subsidence, and several co-seismic steps of up to 40 cm in the vertical component. The size of the co-seismic steps diminished with time during the eruption. In addition to the steps, seismic waves are clearly seen in the high-rate GPS data at the caldera station. The accelerometer was installed more than two months after the start of the eruption and recorded intermittently due to unfavorable conditions on top of the ice sheet. However, more than 80 events were observed on the accelerometer, of magnitude M 1-4.3, providing important observations of s-p times. Furthermore, the deformation of the glacier surface induced by some of the largest earthquakes, was captured by 1-day COSMO-SkyMed interferograms, providing further constraints on the earthquake process. In this presentation we analyze the signals from the two instruments, together with InSAR interferograms as well as other available data

  16. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina

    NASA Astrophysics Data System (ADS)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.

    2014-12-01

    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  17. Near real-time monitoring of volcanic surface deformation from GPS measurements at Long Valley Caldera, California

    USGS Publications Warehouse

    Ji, Kang Hyeun; Herring, Thomas A.; Llenos, Andrea L.

    2013-01-01

    Long Valley Caldera in eastern California is an active volcanic area and has shown continued unrest in the last three decades. We have monitored surface deformation from Global Positioning System (GPS) data by using a projection method that we call Targeted Projection Operator (TPO). TPO projects residual time series with secular rates and periodic terms removed onto a predefined spatial pattern. We used the 2009–2010 slow deflation as a target spatial pattern. The resulting TPO time series shows a detailed deformation history including the 2007–2009 inflation, the 2009–2010 deflation, and a recent inflation that started in late-2011 and is continuing at the present time (November 2012). The recent inflation event is about four times faster than the previous 2007–2009 event. A Mogi source of the recent event is located beneath the resurgent dome at about 6.6 km depth at a rate of 0.009 km3/yr volume change. TPO is simple and fast and can provide a near real-time continuous monitoring tool without directly looking at all the data from many GPS sites in this potentially eruptive volcanic system.

  18. Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?

    USGS Publications Warehouse

    Lipman, P.W.; McIntosh, W.C.

    2008-01-01

    The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass

  19. Magma Storage, Recharge and the Caldera Cycle at Rabaul, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fabbro, G.; Bouvet de Maisonneuve, C.; Sindang, M.

    2015-12-01

    Many calderas have a history of repeated caldera-forming eruptions, interspersed with periods of more minor activity. Rabaul, for instance, has had at least 11 ignimbrite-forming eruptions over the last 200 ky. The most recent of these was the '1400 BP' eruption, which led to caldera collapse. Since then, there has been multiple smaller eruptions, including the ongoing activity from Tavurvur and Vulcan. An important question facing volcanology today is what controls the size of eruptions at calderas such as Rabaul.Detailed stratigraphic sampling of the 1400BP eruption reveals that prior to eruption, the magma reservoir below Rabaul contained a well-mixed dacite with whole-rock SiO2 contents of 65.0-66.4 wt%. The dacite contains a single phenocryst assemblage of plag (An44-52), cpx (En43-46Fs13-15Wo40-41), opx (En69-71Fs25-28Wo3) and magnetite, along with minor apatite. The homogeneity of the dacite is underscored by the narrow range of compositions of both the matrix glass and the melt inclusions (67.8-69.0 wt% SiO2). The only exception to this is at the top of the ignimbrite, representing some of the last magma to have been withdrawn. Dispersed throughout the dacitic pumices are darker, more mafic blebs. Streaks of mingled magma with a range of SiO2 contents, down to 59.9 wt% SiO2 are also found in the pumice, suggesting that a mafic recharge magma was intruded into the base of the reservoir shortly before eruption. High TiO2 contents rule out the direct involvement of basalt, and instead imply the magma that intruded into the reservoir was an andesite with at least 56 wt% SiO2. Phenocrysts related to this recharge magma are rare, and the crystals found in the dark blebs are identical in composition to those found in the dacite, indicating that the recharge was aphyric. The present-day, post-caldera recharge magma is different to the pre-1400 BP recharge magma: it is basaltic. This suggests that the plumbing system of Rabaul is different during the pre-caldera and

  20. Under Construction: Rebuilding Kīlauea's Shallow Magma Storage System After Caldera Collapse

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Wright, T. L.

    2015-12-01

    Draining of Kīlauea's upper level magma reservoir system in ~1500 CE led to a N-S elongate, roughly circular structural caldera ~6.5 km in diameter surrounding a prominent topographic caldera (TC) 4 x 3 km in diameter. The TC was probably at least 600 m deep with a volume of ~4-6 km3. The reservoir system has been rebuilding since then, mostly during the past 200 y of relatively high magma supply. Current reservoir locations are well defined geodetically (Poland et al., 2014) but do not match the presumed configuration of magma storage before the caldera collapse, if the common assumption holds that collapse width equals reservoir width. For example, magma does not underlie the northern 1-2 km of the TC, as judged by relatively high P-wave velocities (Dawson et al., 1999) and lack of deformation related to magma storage. The northernmost reservoir, near Halemaumau, is within the TC, but an order of magnitude more magma fills the south caldera reservoir south of the TC (Poland et al., 2014). Currently, the Halemaumau reservoir is shallower than the south caldera reservoir (1-2 km vs. 3-4 km), but in the 1960s magma was likely stored 3-3.5 km deep near Halemaumau (Wright and Klein, 2014). Many deformation centers are south of the TC and have an E-W spread of ~4 km. These observations suggest an evolving storage system that, if drained today, would not form a caldera of the size or location of the TC. Yet the TC is at the summit of the volcano, the site of an older caldera (Holcomb, 1987) and a positive Bouguer gravity anomaly (Kauahikaua et al., 2000), and is apparently the preferred location of reservoir draining and caldera collapse. We think the reservoir system will continue to evolve, expanding and centering itself below the topographic caldera, which will likely be where the next collapse takes place. Dawson et al., 1999, GRL. Holcomb, 1987, USGS PP 1350. Kauahikaua et al., 2000, Geology. Poland et al., 2014, USGS PP 1801. Wright and Klein, 2014, USGS PP 1806.

  1. Structural deformation and sedimentation in an active Caldera, Rabaul, Papua New Guinea

    USGS Publications Warehouse

    Greene, H. Gary; Tiffin, D.L.; McKee, C.O.

    1986-01-01

    Recent seismic and tectonic activity in Rabaul Caldera, Papua New Guinea, suggests that magma is accumulating at a shallow depth beneath this partially submerged structure and that a new volcano may be developing. Changes in onshore elevation since 1971 (as much as 2 m on south Matupit Island) indicate that rapid and large-scale uplifts have occurred on the seafloor near the center of the caldera. The frequency of seismic events within the caldera has also increased during this period. Earthquake locations define an elliptical ring surrounding the center of this uplift within the caldera. A marine geophysical survey in 1982 by the U.S. Geological Survey's R/V "S.P. Lee" in Rabaul Caldera shows the development of a bulge in the seafloor near the center of the caldera. High-resolution seismic reflection profiles show that this bulge consists of two domal uplifts bounded and separated by two major north-south-trending fault zones. Deformed sediments overlie these zones; a prominent slump flanks the area of the bulge. Five major acoustic units were identified in the seismic reflection profiles: an acoustic basement and four sedimentary units consisting of irregularly layered, cross-layered, contorted, and well-layered sequences. The acoustic basement is probably composed of crystalline volcanic rocks, and the layered acoustic units are probably sediments, primarily ash deposited in different environments. The cross-layered, irregularly layered, and contorted units appear to have been deposited in a dynamic environment subjected to strong currents, seismicity, and/or mass wasting, while the well-layered units were deposited in a low-energy environment. Locally, well-layered sequences interfinger with the other sedimentary units, indicating a transitional environment that alternated between high-energy and low-energy depositional processes. A submarine channel cuts most of the acoustic units and appears to be the conduit for sediment transport out of the caldera; it

  2. Inversion for sources of crustal deformation and gravity change at the Yellowstone caldera

    SciTech Connect

    Vasco, D.W.; Taylor, C.L. ); Smith, R.B. )

    1990-11-10

    The Yellowstone caldera was formed in the latest of three explosive eruptions of rhyolites and ash flow tuffs totaling 3,700 km{sup 3} at 2, 1.2, and 0.6 m.y. before present. Its youthful volcanic history, widespread hydrothermal activity, intense seismicity, and extremely high heat flow, in excess of 30 times the continental average, marks the Yellowstone volcanic system as a giant caldera at unrest. Orthometric height increases of the caldera of up to 76 cm, measured from precise leveling surveys from 1923 to 1975-1977, were inverted to determine volume expansion source models for the caldera-wide deformation. For the 1923 to 1977 uplift episode, two regions of expansion were found: (1) in the northern part of the caldera near the Sour Creek resurgent dome of {approximately}0.37 km{sub 3}, and (2) in the southern part of the caldera, near the Mallard Lake resurgent dome of {approximately}0.41 km{sub 3}. Both bodies occur in the upper crust from near-surface depths to 6.0 km, but the largest volume expansions were found in the 3.0-6.0 km depth range. The southern caldera source volume, near the Mallard Lake dome, may extend down to 9.0 km. From 1976 to 1987, nearly simultaneous measurements of elevation and gravity changes were made on a profile across the northern caldera during a period of net uplift. Models of the temporal gravity variation infer that the volume increase for the northern caldera source must lie above 9.0 km and involved a density perturbation greater than +0.002 g/cm{sup 3}. The modeled volumetric sources are in the same general locations as bodies of low P wave velocities, high seismic attenuation, and large negative Bouguer gravity anomalies. It is likely that the modeled volumetric increases were caused by migration of magmas and/or the introduction of large volumes of hydrothermal fluids into the upper crust.

  3. The Silent Canyon caldera complex: a three-dimensional model based on drill-hole stratigraphy and gravity inversion

    USGS Publications Warehouse

    McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.

    1999-01-01

    The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.

  4. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    USGS Publications Warehouse

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  5. The link between circumferential dikes and eruptive fissures around calderas: insights from numerical and analog models

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Acocella, Valerio

    2016-04-01

    Active calderas are seldom associated with circumferential eruptive fissures along their rim, but eroded portions of extinct magmatic complexes reveal widespread evidence of circumferential dikes. This discrepancy suggests that, while the conditions to emplace circumferential dikes below volcanoes are easily met, mechanisms must exist to arrest the dikes before they reach the surface. Here we explain this discrepancy with laboratory experiments of air injection into a gelatin medium shaped to mimic a volcanic edifice with caldera. Our models show that the ascending dikes experience a variable degree of deflection, depending on the competition between dike overpressure, Pe, and the forcing induced by the topographic load, Pl. When Pl/Pe = 4.3 - 4.5 the analog dikes proceed almost insensitive to the stress rotation and erupt within the caldera. When Pl/Pe = 4.8 - 5.3 the analog dikes closely propagate orthogonal to the least compressive stress σ3 and stall below the caldera rim in a circumferential arrangement. Progressive buoyancy increase through repeated supply of fluid is fundamental for the occurrence of circumferential fissures. Complementary numerical models explain the observed circumferential arrangement and validate the experiments. These results contribute defining the shallow magma transfer and related hazard assessment within calderas.

  6. Geologic map of the central San Juan caldera cluster, southwestern Colorado

    USGS Publications Warehouse

    Lipman, Peter W.

    2006-01-01

    The San Juan Mountains are the largest erosional remnant of a composite volcanic field that covered much of the southern Rocky Mountains in middle Tertiary time. The San Juan field consists mainly of intermediate-composition lavas and breccias, erupted about 35-30 Ma from scattered central volcanoes (Conejos Formation) and overlain by voluminous ash-flow sheets erupted from caldera sources. In the central San Juan Mountains, eruption of at least 8,800 km3 of dacitic-rhyolitic magma as nine major ash flow sheets (individually 150-5,000 km3) was accompanied by recurrent caldera subsidence between 28.3 Ma and about 26.5 Ma. Voluminous andesitic-dacitic lavas and breccias erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of more silicic explosive volcanism. Exposed calderas vary in size from 10 to 75 km in maximum dimension; the largest calderas are associated with the most voluminous eruptions.

  7. Quiescent deformation of the Aniakchak Caldera, Alaska mapped by InSAR

    USGS Publications Warehouse

    Kwoun, Oh-Ig; Lu, Zhong; Neal, Christina; Wicks, Charles W.

    2006-01-01

    The 10-km-wide caldera of the historically active Aniakchak volcano, Alaska, subsides ∼13 mm/yr, based on data from 19 European Remote Sensing Satellite (ERS-1 and ERS-2) interferometric synthetic aperture radar (InSAR) images from 1992 through 2002. The pattern of subsidence does not reflect the distribution of pyroclastic deposits from the last eruption in 1931 and therefore is not related to compaction of fragmental debris. Weighted least-squares inversion of the deformation maps indicates a relatively constant subsidence rate. Modeling the deformation with a Mogi point source locates the source of subsidence at ∼4 km below the central caldera floor, which is consistent with the inferred depth of magma storage before the 1931 eruption. Magmatic CO2 and He have been measured at a warm soda spring within the caldera, and several sub-boiling fumaroles persist elsewhere in the caldera. These observations suggest that recent subsidence can be explained by the cooling or degassing of a shallow magma body (∼4 km deep), and/or the reduction of the pore-fluid pressure of a cooling hydrothermal system. Ongoing deformation of the volcano detected by InSAR, in combination with magmatic gas output from at least one warm spring, and infrequent low-level bursts of seismicity below the caldera, indicate that the volcanic system is still active and requires close attention for the timely detection of possible hazards.

  8. Lithology, Geochemistry and Paleomagnetism of the Table Mountain Formation at the Little Walker Caldera

    NASA Astrophysics Data System (ADS)

    Schubert, R.; Pluhar, C. J.; Carlson, C. W.; Jones, S. A.

    2015-12-01

    West of Bridgeport Valley near the Central Sierra Nevada crest, the Little Walker Caldera (LWC) erupted Stanislaus Group lavas and tuffs during the Late Miocene. Remnants of these rocks are now distributed from the western Sierra Nevada foothills across the range and into the Walker Lane. This wide distribution is attributed to the lavas flowing down paleochannels, which provide an excellent marker for deformation over the last 10 Ma. Priest (1978) identified a thick section of these lavas along Flatiron Ridge, the southeast margin of the LWC, which our preliminary data suggests may correlate with lavas in the Sweetwater Mountains to the northeast and at Rancheria Mtn near Hetch Hetchy to the southwest. The oldest unit in the Stanislaus group is the Table Mountain Formation, a trachyandesite. At Priest's measured section it is divided into three members. By our measurements, the Lower Member (Tmtl) is 256 meters thick, has a fine-grained groundmass with plagioclase and augite phenocrysts (<0.5 cm), and the presence of augite phenocrysts distinguishes it from the other members. Some Tmtl flows have chalcedony amigdules. Overlying this, the Large Plagioclase member (Tmtp) is 43.5 meters thick. Distinguished by (~1 cm) plagioclase and occasional small olivine phenocrysts. The Upper Member (Tmtu) is 116 meters thick, very fine-grained and often platy. Tmtl has a distinctive northwest-oriented normal polarity and geochemistry, similar to several localities at Rancheria Mtn. Tmtu has a reversed polarity similar to the polarity of Table Mountain Formation in the Sweetwater Mountains and lavas that directly underlie the ~9.5 Ma Tollhouse Flat member of the Eureka Valley Tuff at Rancheria Mtn. Thus, our preliminary data suggest that the lower member at Priest's Measured Section could correlate to the normal polarity samples at Rancheria Mtn. Also, that the upper Member reversed-polarity samples may correlate with lavas both at the Sweetwater Mountains and Rancheria Mtn

  9. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  10. The El Cajete Series, Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Self, S.; Kircher, D. E.; Wolff, J. A.

    1988-06-01

    Three rhyolite eruptive units totaling 3 km3 dense rock equivalent volume are the youngest products from the Valles caldera, New Mexico. These pyroclastic and effusive units, herein called the El Cajete Series, were erupted over an appreciable time period with Plinian and ignimbrite-forming activity preceding an effusive phase by a lengthy but indeterminable interval. New U-Th disequilibrium and published fission track dates support an age for the event between 170 and 130 ka. The explosive phases formed the El Cajete Plinian deposit (about 1.3 km3), minor dry pyroclastic surges, and the Battleship Rock tuff (about 1.0 km3), a valley-confined welded ignimbrite. The Plinian eruption column is estimated to have been 28 km high during deposition of the most widely dispersed pumice fall unit. Slow effusion of the Banco Bonito obsidian lava flow (<1.0 km3) onto a dissected surface cut into the El Cajete and Battleship Rock pyroclastic deposits, accompanied by minor explosive activity, terminated the event. Twenty-four bulk-rock samples from all three eruptive stages exhibit little significant compositional variation, and the three units are petrographically identical apart from differences arising from contrasting eruption styles. Very few phenocrysts appear to have been in equilibrium with their enclosing high-silica rhyolitic liquid. Plagioclase grains are typically strongly resorbed, while biotite and hornblende frequently occur in aggregate grains in which textures characteristic of plutonic rocks can be discerned. These features result from partial melting of preexisting crustal igneous rock, probably of dioritic to granodioritic composition, and subsequent eruption of the resulting liquid plus restite crystals. Rapid generation and eruption of rhyolitic magma during this most recent phase of activity in the Jemez Mountains may imply that the Valles magma system is presently in a state where small magma bodies are transient phenomena.

  11. A core hole into the hydrothermal system of the Long Valley caldera

    SciTech Connect

    Wollenberg, H.; White, A.; Flexser, S.; Sorey, M.; Farrar, C.

    1987-03-01

    To investigate the present-day hydrothermal system, the ''Shady Rest'' hole was continuously cored 715m into the southwestern moat of the Long Valley caldera. The hole intersected 100m of glacial till and 300m of postcaldera rhyolite before entering the welded Bishop Tuff and bottoming in that unit. A sharp temperature rise over the upper 350m, and near-isothermal conditions below reflect the presence of approx.200/sup 0/C water moving through open, calcite-lined fractures in silicified Early Rhyolite and Bishop Tuff. The depth to the Bishop is the shallowest encountered in holes in the caldera, and the temperatures measured are among the hottest observed in wells drilled within the caldera.

  12. Hydrologic and geochemical monitoring in Long Valley caldera, Mono County, California, 1986

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Steinemann, A.C.; Clark, M.D.

    1989-01-01

    The U.S. Geological Survey continued to monitor hydrologic and geochemical conditions in the Long Valley caldera during 1986. The monitoring is directed toward detecting changes in the hydrologic system caused by tectonic or magmatic processes. Data collected during 1986 include chemical and isotopic composition of water from selected streams sites, springs, and wells; pumpage from four geothermal wells; flow rates of selected springs and stream sites; mean daily water or gas temperatures at selected sites; mean daily atmospheric pressures and water level at selected wells, and precipitation records for two sites. Seismicity within the caldera persisted at a relatively low level compared with the more active periods of 1978-84. The most significant events of seismicity that affected hydrologic monitoring sites in Long Valley during 1986 occurred during July , in response to the Chalfant Valley earthquakes, centered about 20 miles southeast of the caldera. Water level records for three wells show distinct responses to the Chalfant Valley earthquakes. (USGS)

  13. The 2014-2015 slow collapse of the Bárðarbunga caldera, Iceland

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Jónsdóttir, Kristín; Roberts, Matthew; Ófeigsson, Benedikt G.; Högnadóttir, Thórdís; Magnússon, Eyjólfur; Jarosch, Alexander H.; Pálsson, Finnur; Einarsson, Páll; Sigmundsson, Freysteinn; Drouin, Vincent; Hjörleifsdóttir, Vala; Reynolds, Hannah I.; Dürig, Tobias; Vogfjörd, Kristín; Hensch, Martin; Munoz-Cobo Belart, Joaquin; Oddsson, Björn

    2015-04-01

    The Bárðarbunga caldera is located in central Iceland, under in NW corner of Vatnajökull ice cap. The caldera is about 65 km2 in area, with 500-600 m high topographic rims and is fully covered with up to 800 m thick ice. On 16 August 2014 an intense earthquake swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming a 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull (Sigmundsson et al., 2014). A large basaltic, effusive fissure eruption began in Holuhraun on 31 August that by January had formed a lava field of volume in excess of one cubic kilometre. The collapse of the caldera is expected to have begun a few days after the onset of the earthquake swarm, probably coinciding with the first M5 earthquake. This slow caldera collapse has been monitored through repeated mapping of the gradually increasing subsidence bowl (~80 km2 in December) with airborne profiling of the ice surface, satellite mapping, an online GPS station set up in September on the glacier surface in the centre of the caldera with a strong motion sensor added in November, and indirectly through recording of seismic activity. Satellite interferograms constrain both ice movements and the rate of collapse. The rate of collapse was greatest in the first two weeks or 0.5-1 m/day in the centre, but has since gradually declined with time. The daily rate was 0.1-0.2 m/day in January, when the maximum lowering had reached about 60 m. A gradual widening of the subsidence bowl has been observed since early September. It is asymmetric, deepest in the NE part of the caldera. Downwards displacement extends outside the pre-existing topographic caldera rims, particularly on the south side where the rims have subsided by over 10 meters. Ice-flow modelling indicates that the ice is mostly passively subsiding with the caldera floor. Thus, horizontal ice flow has had little effect on the shape of the subsidence bowl

  14. A geochemical survey using heavy mineral concentrates in the Mount Belknap caldera vicinity, Utah

    USGS Publications Warehouse

    Tucker, R.E.; Miller, W. Roger; Motooka, J.M.

    1982-01-01

    Geochemical surveys of the rocks, heavy-mineral concentrates, and surface and spring waters in the vicinity of the Mount Belknap caldera, Tushar Mountains, west-central Utah, were conducted during the summers of 1978 and 1979. Anomalous concentrations of mostly lithophile elements, particularly niobium, beryllium, lead, yttrium, tin, zinc, manganese, and molybdenum in the magnetic and nonmagnetic fraction of heavy-mineral concentrates derived from stream sediment suggest that late stage, highly differentiated felsic rocks were involved in the eruptive history of the Mount Belknap caldera. Q-mode factor analysis was used to characterize the geochemical assemblages within the survey area, and the areal distribution of high-factor scores associated with mineralization indicates favorable target areas for future exploration. The results of these studies indicate that porphyry-type molybdenum and possible associated vein-type uranium mineralized deposits may exist in or near the Mount Belknap caldera.

  15. Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006

    USGS Publications Warehouse

    Chang, W.-L.; Smith, R.B.; Wicks, C.; Farrell, J.M.; Puskas, C.M.

    2007-01-01

    The Yellowstone caldera began a rapid episode of ground uplift in mid-2004, revealed by Global Positioning System and interferometric synthetic aperture radar measurements, at rates up to 7 centimeters per year, which is over three times faster than previously observed inflation rates. Source modeling of the deformation data suggests an expanding volcanic sill of ???1200 square kilometers at a 10-kilometer depth beneath the caldera, coincident with the top of a seismically imaged crustal magma chamber. The modeled rate of source volume increase is 0.1 cubic kilometer per year, similar to the amount of magma intrusion required to supply the observed high heat flow of the caldera. This evidence suggests magma recharge as the main mechanism for the accelerated uplift, although pressurization of magmatic fluids cannot be ruled out.

  16. Graben calderas of the Sierra Madre Occidental: The case of Guanajuato, central Mexico

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Tristán-González, M.; Labarthe-Hernández, G.; Marti, J.

    2013-12-01

    The Sierra Madre Occidental (SMO) volcanic province is characterized by voluminous silicic ignimbrites that reach an accumulated thickness of 500 to 1500 m. A single ignimbrite can reach up to 350 m thick in its outflow facies. This ignimbrite sequence formed mostly within 38-23 Ma, building up a total estimated volume of ca. 580,000 km3 making the SMO the largest ignimbrite province of the world. We have showed that several and probably most of the SMO ignimbrites were erupted from fissures associated to Basin and Range fault systems or grabens (Geology, 2003), thus naming these volcano-tectonic structures as graben calderas (Caldera Volcanism book, Elsevier, 2008). Generally, the sequence observed in graben calderas include, from oldest to youngest, alluvial fan deposits combined with lacustrine deposits, pyroclastic surge deposits and minor volume ignimbrites, a large-volume ignimbrite that could be massive or made of successive layers, and sometimes silicic lava domes and/or mafic fissural lavas both with vents aligned with the graben trend. Fallout deposits, plinian or non-plinian, are not observed in the sequence. Thus, onset of caldera collapse represented by the major ignimbrite must occur just after deposition of continental sediments within the graben domain. A similar volcano-tectonic development is observed in pull-apart grabens. Therefore, extensional or transtensional tectonics, before and during caldera collapse, and the emplacement of a subgraben shallow silicic magma chamber are the necessary conditions for the development of graben calderas. We describe here the case of the Guanajuato graben caldera, located in the central part of Mexico and in the southeastern portion of the SMO volcanic province. The caldera is part of the economically important mining district of Guanajuato, with 28 silver mines, some active since the 16th century. The caldera structure, a rectangle of 10 x 16 km, was controlled by NW and NE regional fault systems. Most ore

  17. Valles caldera region, New Mexico, and the emerging continental scientific drilling program

    SciTech Connect

    Goff, F.; Gardner, J.N.

    1988-06-10

    Valles caldera is best known in recent years as an excellent example of a resurgent caldera and as the site of a high-temperature geothermal system. However, Valles caldera and the surrounding Jemez Mountains volcanic field possess a rich history of geologic research that dates back to the late 1880s. Through the years, the research focus has changed as different economic and scientific factors have exerted their influence. Early work emphasized mining activity, while modern work has stressed volcanology and, later, geothermal development. Only in the last 5 years has it been possible to view the region as a dynamic, integrated magma-hydrothermal system having a complex evolution lasting more than 13 m.y.

  18. Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006.

    PubMed

    Chang, Wu-Lung; Smith, Robert B; Wicks, Charles; Farrell, Jamie M; Puskas, Christine M

    2007-11-09

    The Yellowstone caldera began a rapid episode of ground uplift in mid-2004, revealed by Global Positioning System and interferometric synthetic aperture radar measurements, at rates up to 7 centimeters per year, which is over three times faster than previously observed inflation rates. Source modeling of the deformation data suggests an expanding volcanic sill of approximately 1200 square kilometers at a 10-kilometer depth beneath the caldera, coincident with the top of a seismically imaged crustal magma chamber. The modeled rate of source volume increase is 0.1 cubic kilometer per year, similar to the amount of magma intrusion required to supply the observed high heat flow of the caldera. This evidence suggests magma recharge as the main mechanism for the accelerated uplift, although pressurization of magmatic fluids cannot be ruled out.

  19. Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure

    NASA Astrophysics Data System (ADS)

    Hata, Maki; Takakura, Shinichi; Matsushima, Nobuo; Hashimoto, Takeshi; Utsugi, Mitsuru

    2016-10-01

    At Naka-dake cone, Aso caldera, Japan, volcanic activity is raised cyclically, an example of which was a phreatomagmatic eruption in September 2015. Using a three-dimensional model of electrical resistivity, we identify a magma pathway from a series of northward dipping conductive anomalies in the upper crust beneath the caldera. Our resistivity model was created from magnetotelluric measurements conducted in November-December 2015; thus, it provides the latest information about magma reservoir geometry beneath the caldera. The center of the conductive anomalies shifts from the north of Naka-dake at depths >10 km toward Naka-dake, along with a decrease in anomaly depths. The melt fraction is estimated at 13-15% at 2 km depth. Moreover, these anomalies are spatially correlated with the locations of earthquake clusters, which are distributed within resistive blocks on the conductive anomalies in the northwest of Naka-dake but distributed at the resistive sides of resistivity boundaries in the northeast.

  20. Hydrologic and geochemical monitoring in Long Valley caldera, Mono County, California, 1986. Water Resources Investigation

    SciTech Connect

    Farrar, C.D.; Sorey, M.L.; Sore, S.A.; Rojstaczer, S.A.; Steinemann, A.C.

    1989-01-01

    The U.S. Geological Survey continued to monitor hydrologic and geochemical conditions in the Long Valley caldera during 1986. The monitoring is directed toward detecting changes in the hydrologic system caused by tectonic or magmatic processes. Data collected during 1986 include chemical and isotopic composition of water from selected stream sites, springs, and wells; pumpage from four geothermal wells; flow rates of selected springs and stream sites; mean daily water or gas temperatures at selected sites; mean daily atmospheric pressures and water levels at selected wells, and precipitation records for two sites. Seismicity within the caldera persisted at a relatively low level compared with the more active periods of 1978-84. The most significant events of seismicity that affected hydrologic monitoring sites in Long Valley during 1986 occurred during July, in response to the Chalfant Valley earthquakes, centered about 20 miles southeast of the caldera.

  1. Tilted middle Tertiary ash-flow calderas and subjacent granitic plutons, southern Stillwater Range, Nevada: cross sections of an Oligocene igneous center

    USGS Publications Warehouse

    John, D.A.

    1995-01-01

    Steeply tilted late Oligocene caldera systems in the Stillwater caldera complex record a number of unusual features including extreme thickness of caldera-related deposits, lack of evidence for structural doming of the calderas and preservation of vertical compositional zoning in the plutonic rocks. The Stillwater caldera complex comprises three partly overlapping ash-flow calderas and subjacent plutonic rocks that were steeply tilted during early Miocene extension. The Job Canyon caldera, the oldest (ca. 29-28 Ma) caldera, consists of two structural blocks. The 25 to 23 Ma Poco Canyon and Elevenmile Canyon calderas and underlying Freeman Creek pluton overlap in time and space with each other. Caldera collapse occurred mostly along subvertical ring-fracture faults that penetrated to depths of >5 km and were repeatedly active during eruption of ash-flow tuffs. The calderas collapsed as large piston-like blocks, and there is no evidence for chaotic collapse. Preserved parts of caldera floors are relatively flat surfaces several kilometers across. -from Author

  2. Aeromagnetic mapping of the structure of Pine Canyon caldera and Chisos Mountains intrusion, Big Bend National Park, Texas

    USGS Publications Warehouse

    Drenth, B.J.; Finn, C.A.

    2007-01-01

    Analysis of aeromagnetic and gravity data reveals new details of the structure, igneous geology, and temporal evolution of the prominent, enigmatic ca.32 Ma Pine Canyon caldera and the Chisos Mountains (Big Bend National Park, Texas). The main caldera-filling Pine Canyon Rhyolite, the oldest member of the South Rim Formation, is reversely magnetized, allowing it to be used as a key marker bed for determining caldera fill thickness. Modeling of gravity and magnetic anomalies indicates that the Pine Canyon Rhyolite is probably thicker in the northeastern part of the caldera. Lineaments in the magnetic data suggest the presence of buried faults beneath the caldera that may have led to increased downdrop in the northeast versus the southwest, allowing a thicker section of caldera fill to accumulate there. The Pine Canyon caldera has been interpreted as a downsag caldera because it lacks surficial faulting, so these inferred faults are the first mapped features there that could be responsible for caldera collapse. The caldera boundary correlates well with the margins of a gravity low. General features of the caldera match well with basic models of downsag calderas, meaning that the Pine Canyon caldera may be a classic example of downsagging, of which few well-described examples exist, in terms of a geophysical signature. The source of a long-wavelength magnetic high over the Chisos Mountains is interpreted as a previously unknown broad intrusion, the long axis of which trends parallel to a major crustal boundary related to the Ouachita orogeny or an even earlier Precambrian margin. This feature represents the largest intrusion (28-34 km diameter, 1-4 km thick, 700-3000 km3 in volume) in an area where relatively small laccoliths are ubiquitous. The intrusion most likely represents a long-lived (>1 m.y.) reservoir replenished by small batches of magma of varying composition, as reflected in the variation of eruptive products from the Pine Canyon and Sierra Quemada

  3. Recrystallization and anatexis along the plutonic-volcanic contact of the Turkey Creek caldera, Arizona

    USGS Publications Warehouse

    du Bray, E.A.; Pallister, J.S.

    1999-01-01

    Unusual geologic and geochemical relations are preserved along the contact between intracaldera tuff and a resurgent intrusion within the 26.9 Ma Turkey Creek caldera of southeast Arizona. Thick intracaldera tuff is weakly argillically altered throughout, except in zones within several hundred meters of its contact with the resurgent intrusion, where the groundmass of the tuff has been variably converted to granophyre and unaltered sanidine phenocrysts are present. Dikes of similarly granophyric material originate at the tuff-resurgent intrusion contact and intrude overlying intracaldera megabreccia and tuff. Field relations indicate that the resurgent intrusion is a laccolith and that it caused local partial melting of adjacent intracaldera tuff. Geochemical and petrographic relations indicate that small volumes of partially melted intracaldera tuff assimilated and mixed with dacite of the resurgent intrusion along their contact, resulting in rocks that have petrographic and compositional characteristics transitional between those of tuff and dacite. Some of this variably contaminated, second-generation magma coalesced, was mobilized, and was intruded into overlying intracaldera rocks. Interpretation of the resurgent intrusion in the Turkey Creek and other calderas as intracaldera laccoliths suggests that intrusions of this type may be a common, but often unrecognized, feature of calderas. Development of granophyric and anatectic features such as those described here may be equally common in other calderas. The observations and previously undocumented processes described here can be applied to identification and interpretation of similarly enigmatic relations and rocks in other caldera systems. Integration of large-scale field mapping with detailed petrographic and chemical data has resulted in an understanding of otherwise intractable but petrologically important caldera-related features.

  4. Scientific core hole Valles caldera No. 2b (VC-2b), New Mexico

    SciTech Connect

    Garner, J.N.; Hulen, J.B.; Lysne, P.; Jacobson, R.; Goff, F.; Nielson, D.L.; Pisto, L.; Criswell, C.W.; Gribble, R.; Utah Univ. Research Inst., Salt Lake City, UT; Sandia National Labs., Albuquerque, NM; Los Alamos National Lab., NM; Utah Univ. Research Inst., Salt Lake City, UT; Tonto Drilling Services, Inc., Salt Lake City, UT; Los Alamo

    1989-01-01

    Research core hole was continuously cored to 1.762 km on the western flank of the caldera's resurgent dome in 1988. Bottom hole temperature is about 295{degree}C within Precambrian (1.5 Ga) quartz monzonite, deep within the liquid-dominated portions of the Sulphur Springs hydrothermal system. VC-2b may be the deepest, hottest, continuously cored hole in North America. Core recovery was 99.2%. The only major drilling problems encountered were when temperatures at the bit exceeded 225{degree}C below depths of about 1000 m. The result of these conditions was loss of viscosity and/or lubricity in the mud, apparently caused by breakdown of the high temperature polymers. Lithologies in caldera-fill indicate the drill site may be proximal to ignimbrite vents and that an intracaldera lake with temperatures approaching boiling formed soon after the caldera itself. Structural correlations between VC-2b and the 528-m-deep companion hole VC-2a indicate the earlier Toledo caldera (1.45 Ma; Otowi Member tuffs) and even older Lower Tuffs caldera experienced no structural resurgence similar to the 1.12 million year old Valles caldera. The hydrothermal system penetrated by these bores, consists of a shallow vapor-rich cap, which has evolved from an earlier 200{degree}C liquid-dominated system, overlying stacked, liquid-dominated zones up to about 300{degree}C. Geochemistry of mud returns collected during drilling suggests chloride-rich geothermal fluids were entering the bore and mixing with the drilling fluids in the fractured lower Paleozoic and Precambrian sections. 23 refs., 5 figs., 1 tab.

  5. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Folch, A.; Martí, J.

    2006-10-01

    Collapse calderas have received considerable attention due to their link to Earth's ore deposits and geothermal energy resources, but also because of their tremendous destructive potential. Although calderas have been investigated through fieldwork, numerical models and experimental studies, some important aspects on their formation still remain poorly understood. One key issue concerns the volume of magmas involved in caldera-forming eruptions. We perform analogue experiments to correlate the structural evolution of a collapse with the erupted magma chamber volume fraction. The experimental device consists of a transparent box (60 × 60 × 40 cm) filled with dry quartz sand and a water-filled latex balloon as a magma chamber analogue. Evacuation of water through a pipe causes a progressive deflation of the balloon that leads to a collapse of the overlying structure. The experimental design allows to record the temporal evolution of the collapse and to track the evolution of fractures and faults. We study the appearance and development of specific brittle structures, such as surface fractures or internal reverse faults, and correlate each different structure with the corresponding removed magma chamber volume fraction. We also determine the critical conditions for caldera onset. Experimental results show that, at any stage of caldera developments, the experimental relationship between volume fraction and chamber roof aspect ratio fits a logarithmic curve. It implies that volume fractions required to trigger caldera collapse are lower for chambers with low aspect ratios (shallow and wide) than for chambers with high aspect ratios (deep and small). These results are in agreement with natural examples and previous theoretical studies.

  6. Gas Chemistry of Submarine Hydrothermal Venting at Maug Caldera, Mariana Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Lupton, J. E.; Butterfield, D. A.; Lilley, M. D.; Evans, L. J.; Olson, E. J.; Resing, J. A.; Buck, N.; Larson, B. I.; Young, C.

    2014-12-01

    Maug volcano consists of 3 islands that define the perimeter of a submerged caldera that was formed by an explosive eruption. The caldera reaches a depth of ~225 meters, and has a prominent central cone or pinnacle that ascends within 20 meters of the sea surface. Our exploration of Maug began in 2003, when a single hydrocast in the caldera detected a strong suspended particle and helium plume reaching a maximum of δ3He = 250% at ~180 meters depth, clearly indicating hydrothermal activity within the caldera. In 2004 we returned armed with the ROPOS ROV, and two ROPOS dives discovered and sampled low temperature (~4 °C) diffuse venting associated with bacterial mats on the NE flank of the central pinnacle at 145 m depth. Samples collected with titanium gas tight bottles were badly diluted with ambient seawater but allowed an estimate of end-member 3He/4He of 7.3 Ra. Four vertical casts lowered into the caldera in 2004 all had a strong 3He signal (δ3He = 190%) at 150-190 meters depth. A recent expedition in 2014 focused on the shallow (~10 m) gas venting along the caldera interior. Scuba divers were able to collect samples of the gas bubbles using evacuated SS bottles fitted with plastic funnels. The gas samples had a consistent ~170 ppm He, 8 ppmNe, 60% CO2, 40%N2, and 0.8% Ar, and an end-member 3He/4He ratio of 6.9 Ra. This 3He/4He ratio falls within the range for typical arc volcanoes. The rather high atmospheric component (N2, Ar, Ne) in these samples is not contamination but appears to be derived from subsurface exchange between the ascending CO2 bubbles and air saturated seawater. A single vertical cast in 2014 had a maximum δ3He = 55% at 140 m depth, much lower than in 2003 and 2004. This decrease is possibly due to recent flushing of the caldera by a storm event, or may reflect a decrease in the deep hydrothermal activity. This area of shallow CO2 venting in Maug caldera is of particular interest as a natural laboratory for studying the effects of ocean

  7. Rhyodacites of Kulshan caldera, North Cascades of Washington: Postcaldera lavas that span the Jaramillo

    USGS Publications Warehouse

    Hildreth, W.; Lanphere, M.A.; Champion, D.E.; Fierstein, J.

    2004-01-01

    Kulshan caldera (4.5??8 km), at the northeast foot of Mount Baker, is filled with rhyodacite ignimbrite (1.15 Ma) and postcaldera lavas and is only the third Quaternary caldera identified in the Cascade arc. A gravity traverse across the caldera yields a steep-sided, symmetrical, complete Bouguer anomaly of -16 mGal centered over the caldera. Density considerations suggest that the caldera fill, which is incised to an observed thickness of 1 km, may be about 1.5 km thick and is flat-floored, overlying a cylindrical piston of subsided metamorphic rocks. Outflow sheets have been stripped by advances of the Cordilleran Ice Sheet, but the climactic fallout (Lake Tapps tephra) is as thick as 30 cm some 200 km south of the caldera. Ten precaldera units, which range in 40Ar/39Ar age from 1.29 to 1.15 Ma, are dikes and erosional scraps that probably never amounted to a large edifice. A dozen postcaldera rhyodacite lavas and dikes range in age from 1.15 to 0.99 Ma; rhyodacites have subsequently been absent, the silicic reservoir having finally crystallized. At least 60 early Pleistocene intermediate dikes next intruded the caldera fill, helping energize an acid-sulfate hydrothermal system and constituting the main surviving record of an early postcaldera andesite-dacite pile presumed to have been large. Most of the pre- and postcaldera rhyodacites were dated by 40Ar/39Ar or K-Ar methods, and 13 were drilled for remanent magnetic directions. In agreement with the radiometric ages, the paleomagnetic data indicate that eruptions took place before, during, and after the Jaramillo Normal Polarity Subchron, and that one rhyodacite with transitional polarity may represent the termination of the Jaramillo. Most of the biotite-hornblende-orthopyroxene-plagioclase rhyodacite lavas, dikes, and tuffs are in the range 68-73% SiO2, but there were large compositional fluctuations during the 300-kyr duration of the rhyodacite episode. The rhyodacitic magma reservoir was wider (11 km) than

  8. Vertical structure of a caldera-filling pyroclastics and post-caldera granitic sill: the Middle Miocene Kumano Acidic Rocks emplaced in the Paleogene Shimanto accretionary complex, Japan

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Geshi, N.; Oikawa, T.; Shinjoe, H.; Miura, D.; Koizumi, N.

    2009-04-01

    A 600m all-core drilling penetrated a volcano-plutonic complex associated with middle Miocene Kumano caldera, Kii Peninsula, Southwest Japan. It shows us the vertical cross section of the caldera-filling pyroclastic deposit and granitic sill intruded inside the caldera. The drilling site is located in the southern rim of the north body of Kumano igneous complex. The drilling core consists of the granite porphyry intrusion (Kumano Granite Porphyry) in the upper part (from surface to 464.3 m depth) and the welded tuff (Owase-Shirahama Pyroclastic Rocks) beneath them (464.3 and 600 m depth), which are associated with the caldera formation. The welded tuff in the core sample consists mainly of well-sorted coarse-grained volcanic ash of crystal fragments and lithic fragments. Subordinate amount of pumice fragment more than 10 cm across are scattered. Though most part of the welded tuff in the core sample is massive as observed in the surface outcrops, some parts show remarkable bedding structure. These structural characters suggest that the welded tuff is a pile of many flow units with several 10s meters thick each, which consists of basal pumice-concentrated bed, main massive tuff, and upper bedding part. The lower intrusion boundary of the Kumano Granite Porphyry is exposed at 464.3 m deep, where the granite porphyry intrudes into the host welded tuff with about 10 m thick chilled margin, in which the granite porphyry has very-fine groundmass. The groundmass texture of the granite porphyry shows systematic variation with the distance from the intrusion contact. Within about 20 m from the contact, the groundmass consists of very-fine crystals and entirely shows volcanic rock texture. For 150 m above them, the groundmass consists mainly of quartz and plagioclase and shows equigranular texture. In the upper part (less than 300m deep), the groundmass shows graphic texture with quartz and alkali feldspar. The vertical variation of the groundmass texture indicates upward

  9. Intra-caldera Events: A Look at the Hydrovolcanic Deposit Stratigraphically Located Between two Caldera-Forming Eruptions of Okmok Volcano, Umnak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Wong, L. J.

    2002-12-01

    Within the 10 km diameter caldera that characterizes Okmok Volcano, a field of post-caldera cones and deposits demonstrate many features associated with water-magma interactions. A unit deposited prior to the formation of the present caldera provides evidence for large explosive hydrovolcanic eruptions in the past as well. This unit is referred to as the Middle Scoria Unit as it is stratigraphically located between the ~9000 BP Okmok I and 2050 BP Okmok II caldera-forming events. Here, we present data on the stratigraphy, geochemistry, and eruptive mechanisms of the Middle Scoria Unit, which averages a thickness of 2.5 meters. The basal layer of the Middle Scoria consists of moderately well sorted, highly inflated juvenile clasts of basaltic composition (53.88 wt.% SiO2) that average 3 to 5 cm in size. Capping the base is a sequence of layers alternating between oxidized reddish lithic fragments and poorly vesicular scoria averaging 1 mm to 3 cm in size. The contacts between the scoria and lithic layers are less discrete in the top section, with a higher proportion of mixing averaging up to 75% for a clast-rich layer. The upper layers of the unit also show reverse grading and contain dense, poorly vesicular scoria fragments and lithic fragments of 2 mm to 1.5 cm in size. The Middle Scoria unit has been found on the neighboring Unalaska Island, approximately 30 km to the East, revealing a wide dispersal. Our results indicate that this eruption began as a highly explosive, purely magmatic and rare basaltic Plinian eruption. With time, the eruptive series evolved to incorporate external water, as demonstrated by the successions of oxidized lithic lapilli and poorly vesicular scoria layers. Our preliminary interpretations of the Middle Scoria indicate that Okmok Volcano may be capable of highly explosive basaltic Plinian and hydrovolcanic eruptions.

  10. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A. Part 1: Implications for structure of the western caldera

    SciTech Connect

    Wannamaker, P.E.

    1997-03-01

    An extensive tensor controlled-source audiomagnetotelluric (CSAMT) survey has been carried out over the Sulphur Springs geothermal area, Valles Caldera, New Mexico. Forty-five sites were acquired using two crossed transmitter bipoles placed approximately 13 km south of the center of the survey. The soundings in the Sulphur Springs area were arranged in four profiles to cross major structural features. CSAMT and magnetotelluric (MT) data taken outside Valles Caldera were constrained by drill logs and imply resistive Bandelier Tuff, underlain by conductive Paleozoic sediments, and further underlain by resistive, primarily Precambrian crystalline rocks. Model cross-sections within the caldera were derived using 2-D parameterized inversion constrained by drilling, with layered-earth inversion for starting models. Southeast of the Sulphur Creek fault, the upper 200 m of the section are of relatively low resistivity and correspond to unconsolidated land-slide and debris flows. The Bandelier Tuff below exhibits higher but variable resistivities because of alteration controlled by local faulting. Beneath the Bandelier Tuff, the Paleozoic sedimentary layer is only moderately less resistive than it is outside the caldera, with the lowest values occurring northwest of Sulphur Creek. Its low resistivity per se does not necessarily represent a hydrothermal aquifer. The Sulphur Creek fault appears to be a locus of substantial change in structural relief; upthrow of stratigraphy and basement to its west appears to be about 400--500 m. A major normal fault down to the southeast is located under the topographic expression of Freelove Canyon, which is up to 1 km farther southeast than suggested by previous geologic sections. High resistivities possibly corresponding to a vapor zone in the upper 500 m near VC-2B and VC-2A are not consistent with the CSAMT data.

  11. Eastern American Indian Communities.

    ERIC Educational Resources Information Center

    Thomas, Robert K.

    Identification of social and cultural commonalities among American Indians of the eastern U.S. reveal 4 geographical areas--(1) the eastern seaboard (the largest group in both number of distinct groups and population); (2) the inland area; (3) Louisiana (a combination of inland and seaboard characteristics); (4) the eastern Great Lakes area…

  12. Possible tectonomagnetic effect observed from mid-1989, to mid-1990, in Long Valley Caldera, California

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.; Langbein, J.O.

    1991-01-01

    Precise measurements of local magnetic fields have been obtained with a differentially connected array of three proton magnetometers in the Long Valley Caldera region since 1984. After correction for secular variation, it is apparent that an anomalous 2 nT decrease in the magnetic field occurred from mid-1989 to mid-1990 at the magnetometer located closed to the center of the resurgent dome inside the caldera. During this period a significant increase in geodetic strain rate of 8.5 ppm/a was observed on the two-color geodimeter network within the caldera from October, 1989, to mid-1990 and a dramatic increase in seismic activity occurred from December, 1989 to July, 1990. A simple dilatational point-source model with pressure increasing by 52 Mpa from October 1989 to August 1990 at a depth of about 7 km beneath the center of the resurgent dome can be fit to the strain data. Magnetic, seismic and geodetic data suggest that an episode of active magmatic intrusion occurred from late 1989 to mid-1990 at a depth of about 7-8 km beneath the resurgent dome within the caldera. -from Authors

  13. The first report of the aphids of the Valles Caldera National Preserve, New Mexico, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report 50 species, belonging to 26 genera of aphids (Hemiptera: Aphididae), collected within and near the boundary of the Valles Caldera National Preserve in the Jemez Mountains of northern New Mexico, USA. Of these, 35 (70%) represent new distribution records for New Mexico. Plant genera/species...

  14. Galileo's Last Fly-Bys of Io: NIMS Observations of Loki, Tupan, and Emakong Calderas

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly M. C.; Kamp, L. W.; Davies, A. G.; Smythe, W. D.; Carlson, R. W.; Doute, S.; McEwen, A.; Turtle, E. P.; Leader, F.; Mehlman, R.

    2002-01-01

    NIMS results from the 2001 Galileo fly-bys of Io will be presented, focusing on three calderas that may contain lava lakes. Preliminary results from the January 2002 Io fly-by will be presented. Additional information is contained in the original extended abstract.

  15. Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon

    USGS Publications Warehouse

    Rytuba, James J.

    1976-01-01

    The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.

  16. Structural controls on the emission of magmatic carbon dioxide gas, Long Valley Caldera, USA

    NASA Astrophysics Data System (ADS)

    Lucic, Gregor; Stix, John; Wing, Boswell

    2015-04-01

    We present a degassing study of Long Valley Caldera that explores the structural controls upon emissions of magmatic carbon dioxide gas. A total of 223 soil gas samples were collected and analyzed for stable carbon isotopes using a field-portable cavity ring-down spectrometer. This novel technique is flexible, accurate, and provides sampling feedback on a daily basis. Sampling sites included major and minor volcanic centers, regional throughgoing faults, caldera-related structures, zones of elevated seismicity, and zones of past and present hydrothermal activity. The classification of soil gases based on their δ13C and CO2 values reveals a mixing relationship among three end-members: atmospheric, biogenic, and magmatic. Signatures dominated by biogenic contributions (~4 vol %, -24‰) are found on the caldera floor, the interior of the resurgent dome, and areas associated with the Hilton Creek and Hartley Springs fault systems. With the introduction of the magmatic component (~100 vol %, -4.5‰), samples acquire mixing and hydrothermal signatures and are spatially associated with the central caldera and Mammoth Mountain. In particular, they are concentrated along the southern margin of the resurgent dome where the interplay between resurgence-related reverse faulting and a bend in the regional fault system has created a highly permeable fracture network, suitable for the formation of shallow hydrothermal systems. This contrasts with the south moat, where despite elevated seismicity, a thick sedimentary cover has formed an impermeable cap, inhibiting the ascent of fluids and gases to the surface.

  17. Identification of a Kulshan caldera correlative tephra in the Palouse loess of Washington State, northwest USA

    NASA Astrophysics Data System (ADS)

    King, Georgina E.; Pearce, Nicholas J. G.; Roberts, Helen M.; Smith, Victoria C.; Westgate, John A.; Gaylord, David R.; Sweeney, Mark R.

    2016-09-01

    The Kulshan caldera formed at ∼1.15 Ma on the present-day site of Mt. Baker, Washington State, northwest USA and erupted a compositionally zoned (dacite-rhyolite) magma and a correlative eruptive, the Lake Tapps tephra. This tephra has previously been described, but only from the Puget Lowland of NW Washington. Here an occurrence of a Kulshan caldera correlative tephra is described from the Quaternary Palouse loess at the Washtucna site (WA-3). Site WA-3 is located in east-central Washington, ∼340 km southeast of the Kulshan caldera and ∼300 km east-southeast of the Lake Tapps occurrence in the Puget Lowland. Major- and trace element chemistry and location of the deposit at Washtucna within reversed polarity sediments indicates that it is not correlative with the Mesa Falls, Rockland, Bishop Ash, Lava Creek B or Huckleberry Ridge tephras. Instead the Washtucna deposit is related to the Lake Tapps tephra by fractional crystallisation, but is chemically distinct, a consequence of its eruption from a compositionally zoned magma chamber. The correlation of the Washtucna occurrence to the Kulshan caldera-forming eruption indicates that it had an eruptive volume exceeding 100 km3, and that its tephra could provide a valuable early-Pleistocene chronostratigraphic marker in the Pacific Northwest.

  18. Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness.

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Lee, M.; Nadeau, P.H.; Northrop, H.R.

    1987-01-01

    The mineralogy and the origin of a suite of almost pure sericites, collected from fractures in hydrothermally altered volcanic rocks in the vicinity of the Silverton caldera in the western San Juan Mountains of Colorado, USA, are analysed.-J.A.Z.

  19. Deformation of the Wineglass Welded Tuff and the timing of caldera collapse at Crater Lake, Oregon

    USGS Publications Warehouse

    Kamata, H.; Suzuki-Kamata, K.; Bacon, C.R.

    1993-01-01

    Four types of deformation occur in the Wineglass Welded Tuff on the northeast caldera rim of Crater Lake: (a) vertical tension fractures; (b) ooze-outs of fiamme: (c) squeeze-outs of fiamme; and (d) horizontal pull-apart structures. The three types of plastic deformation (b-d) developed in the lower part of the Wineglass Welded Tuff where degree of welding and density are maximum. Deformation originated from concentric normal faulting and landsliding as the caldera collapsed. The degree of deformation of the Wineglass Welded Tuff increases toward the northeast part of the caldera, where plastic deformation occurred more easily because of a higher emplacement temperature probably due to proximity to the vent. The probable glass transition temperature of the Wineglass Welded Tuff suggests that its emplacement temperature was ???750??C where the tuff is densely welded. Calculation of the conductive cooling history of the Wineglass Welded Tuff and the preclimactic Cleetwood (lava) flow under assumptions of a initially isothermal sheet and uniform properties suggests that (a) caldera collapse occurred a maximum of 9 days after emplacement of the Wineglass Welded Tuff, and that (b) the period between effusion of the Cleetwood (lava) flow and onset of the climactic eruption was <100 years. If cooling is controlled more by precipitation during quiescent periods than by conduction, these intervals must be shorter than the calculated times. ?? 1993.

  20. Scientific proposals for a continuing scientific drilling program in the Valles-Toledo Caldera Complex

    NASA Astrophysics Data System (ADS)

    Heiken, Grant

    The Valles-Toledo caldera complex is famous as the site of early research on caldera formation and for its caldera-hosted, high-temperature geothermal system. Scientific drilling in the west half of the complex, sponsored by the Office of Basic Energy Services of the Department of Energy (DOE), is part of a long-term program to answer basic questions about caldera formation processes, silicic volcanism, high-temperature hydrothermal systems, and volcanogenic ore bodies.A DOE workshop to evaluate the drilling was held October 18-20, 1989, in Los Alamos, N. Mex.; about 50 scientists came. The purpose was to review the progress of research and to consider the scientific merit of continuing corehole drilling as proposed in the original scientific management plan [Goff and Nielson, 1986]. At the end of the first day, a long discussion was held to determine if results so far justified the expense of continuing the program. The answer was unequivocal: Yes. The next question was, Where should the next corehole be located?

  1. Topographic modelling of caldera analogues using Structure from Motion - Multiview stereo-photogrammetry

    NASA Astrophysics Data System (ADS)

    Ulusoy, İnan; Aydın, Eda; Evren Çubukçu, H.

    2016-04-01

    Analogue caldera models have long been used in volcanology to investigate structural evolution of volcanoes during tumescence and collapse periods. Influence of tectonic forces on volcanic features are also in the scope of those experiments. As well as interior modelling of the caldera experiments, topographic modelling is essential for digital monitoring and quantification purposes. Topographic modelling of those sandbox models is possible using laser scanning techniques. Particle tracking using still images is another way to demonstrate and quantify the structure and movement during the experiment. The quantum leap in the digital photography and computation tools and ease of access to both, provides the use of a new modelling technique in various scales and applications in Geology. Although the roots are older, Structure from Motion - Multiview stereo-photogrammetry (SfM-MVS) is a relatively new technique for surface modelling via several high resolution photographs. We have used SfM-MVS to digitally model the elevation of the tumescence and collapse cycles in analogue caldera experiments. Several sandbox experiments have been modelled using SfM-MVS technique stage by stage during tumescence and collapse periods. It has been possible to evaluate the structural evolution of the collapse models. Additionally, using particle tracking via still images acquired during the experiments, we have modelled the superficial evolution of the caldera structure. SfM-MVS is an effective low budget method for modelling in decimetric scale down to millimetre/micrometre precision.

  2. Monitoring super-volcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems

    USGS Publications Warehouse

    Lowenstern, J. B.; Smith, R.B.; Hill, D.P.

    2006-01-01

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption. ?? 2006 The Royal Society.

  3. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  4. Temporal models for the episodic volcanism of Campi Flegrei caldera (Italy) with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Flandoli, Franco; Neri, Augusto; Isaia, Roberto; Vitale, Stefano

    2016-11-01

    After the large-scale event of Neapolitan Yellow Tuff ( 15 ka B.P.), intense and mostly explosive volcanism has occurred within and along the boundaries of the Campi Flegrei caldera (Italy). Eruptions occurred closely spaced in time, over periods from a few centuries to a few millennia, and were alternated with periods of quiescence lasting up to several millennia. Often events also occurred closely in space, thus generating a cluster of events. This study had two main objectives: (1) to describe the uncertainty in the geologic record by using a quantitative model and (2) to develop, based on the uncertainty assessment, a long-term subdomain specific temporal probability model that describes the temporal and spatial eruptive behavior of the caldera. In particular, the study adopts a space-time doubly stochastic nonhomogeneous Poisson-type model with a local self-excitation feature able to generate clustering of events which are consistent with the reconstructed record of Campi Flegrei. Results allow the evaluation of similarities and differences between the three epochs of activity as well as to derive eruptive base rate of the caldera and its capacity to generate clusters of events. The temporal probability model is also used to investigate the effect of the most recent eruption of Monte Nuovo (A.D. 1538) in a possible reactivation of the caldera and to estimate the time to the next eruption under different volcanological and modeling assumptions.

  5. Structure and stratigraphy beneath a young phreatic vent: South Inyo Crater, Long Valley caldera, California

    SciTech Connect

    Eichelberger, J.C.; Vogel, T.A.; Younker, L.W.; Dan Miller, C.; Heiken, G.H.; Wohletz, K.H.

    1988-11-10

    An 861-m-long hole has been cored on a slanted trajectory that passed directly beneath South Inyo Crater in the west moat of Long valley Caldera, California. The purpose of the hole was to investigate the magmatic behavior that led to surface deformation and phreatic activity during the 600-year-old eruption of the Inyo vent chain. The hole was sited 216 m southwest of the crater, passed beneath its center at a depth of 566 m, and terminated 79 m northeast of the crater center at a depth of 810 m. Metamorphic basement was encountered at a depth of 779 m. The volcanic and sedimentary sequence consists solely of post-Bishop Tuff caldera fill, including 319 m of moat basalt and 342 m of early rhyolite, and is nearly 900 m thinner than in a Unocal Corporation well 900 m to the southeast. Apparently, a major fault lies between the two holes and forms part of the western structural boundary of the caldera, 3--4 km inboard of its topographic boundary. Breccia zones that intrude the caldera fill were intersected at 12.0--9.3 m and 1.2--0.8 m SW and 8.5--25.1 m NE of the crater center.

  6. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    PubMed

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.

  7. The Oligocene Creede Formation, Colorado: The sedimentary record of a deep lake within a resurgent caldera

    SciTech Connect

    Larsen, D.; Smith, G.A. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    The Oligocene Creede Formation is the sedimentary fill of the Creede caldera in the Tertiary San Juan volcanic field in southern Colorado. Scientific drill core and outcrop studies of Creede strata allow an evaluation of the post-collapse sedimentary environments present within a caldera. Although the Creede Formation is structurally disrupted, correlation of fallout tuffs in exposed strata to those in the cores has clarified stratigraphic relationships. Following ash-fallout from the caldera-forming eruption, up to 121 meters of coarse grained debris-flow strata and rockfall debris with interstratified basinward ephemeral lake deposits were deposited. The presence of pseudomorphs after ikaite and up-section increase in carbonate facies suggest that the lake water was somewhat alkaline and cold (near freezing), and evolved chemically with time. A late-stage drop in lake level combined with integration of basin-feeding drainages and decreased subsidence lead to basinward progradation of coarser deltaic and lacustrine fan deposits. Sedimentation patterns suggest that subsidence occurred largely in the northern half of the caldera, and decreased late in the lake's history allowing the basin to fill with sediment.

  8. Isotope geochemistry of thermal and nonthermal waters in the Valles caldera, Jemez Mountains, northern New Mexico

    SciTech Connect

    Vuataz, F.D.; Goff, F.

    1986-02-10

    Over 100 stable isotope and 45 tritium analyses from thermal and nonthermal waters of the Jemez Mountains region, New Mexico, have been used to define the hydrodynamics of the Valles caldera (Baca) geothermal system and related geothermal fluids of the region. Evaluation of 36 cold meteoric waters yields an equation for the Jemez Mountains meteoric water line of deltaD = 8delta/sup 18/O+12, while further evaluation of nine cold meteoric waters yields an equation relating recharge elevation to deuterium content of E(meters) = -44.9 (deltaD)-1154. Based on the deuterium content of five Baca well waters (223/sup 0/--294/sup 0/C), the average recharge elevation of the Valles geothermal system ranges from 2530 to 2890 m. This range of elevations falls between the elevations of the lowest point of the caldera floor (2400 m) and the summit of the resurgent dome inside the caldera (3430 m). Thus stable isotopes indicate that the caldera depression probably serves as a recharge basin for the deep geothermal system. Although cold spring waters of the Jemez Mountains region consist of meteoric water, tritium analyses show that most of them contain water between 20 and 75 years old.

  9. A three-dimensional gravity model of the geologic structure of Long Valley caldera

    SciTech Connect

    Carle, S.F.; Goldstein, N.E.

    1987-03-01

    Several attempts to define and interpret this anomaly have been made in the past using 2-D and 3-D models. None of the previous interpretations have yielded definitive results, but in fairness, the interpretation here has benefited from a larger gravity data base and more subsurface control than available to previous workers. All published 3-D models simplistically assumed constant density of fill. All 2-D models suffered from the inherent three-dimensionality of the complicated density structure of Long Valley caldera. In addition, previous interpreters have lacked access to geological data, such as well lithologies and density logs, seismic refraction interpretations, suface geology, and structural geology interpretations. The purpose of this study is to use all available gravity data and geological information to constrain a multi-unit, 3-D density model based on the geology of Long Valley caldera and its vicinity. Insights on the geologic structure of the caldera fill can help other geophysical interpretations in determining near-surface effects so that deeper structure may be resolved. With adequate control on the structure of the caldera fill, we are able to examine the gravity data for the presence of deeper density anomalies in the crust. 20 refs., 7 figs.

  10. A short review of our current understanding of the development of ring faults during collapse caldera formation

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Marti, Joan

    2014-09-01

    The term collapse caldera refers to those volcanic depressions resulting from the sinking of the chamber roof due to the rapid withdrawal of magma during the course of an eruption. During the last three decades, collapse caldera dynamics has been the focus of attention of numerous, theoretical, numerical and experimental studies. Nonetheless, even if there is a tendency to go for a general and comprehensive caldera dynamics model, some key aspects remain unclear, controversial or completely unsolved. This is the case of ring fault nucleation points and propagation and dip direction. Since direct information on calderas’ deeper structure comes mainly from partially eroded calderas or few witnessed collapses, ring faults layout at depth remains still uncertain. This has generated a strong debate over the detailed internal fault and fracture configuration of a caldera collapse and, in more detail, how ring faults initiate and propagate. We offer here a very short description of the main results obtained by those analogue and theoretical/mathematical models applied to the study of collapse caldera formation. We place special attention on those observations related to the nucleation and propagation of the collapse-controlling ring faults. This summary is relevant to understand the current state-of-the-art of this topic and it should be taken under consideration in future works dealing with collapse caldera dynamics.

  11. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Nikkhoo, M.; Holohan, E. P.; Walter, T. R.

    2015-07-01

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a 'sliding-trapdoor' ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano's western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that 'sliding-trapdoor' ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  12. Evidence from cosmic-ray exposure dating based on 36Cl for the pre-Minoan caldera on Santorini, Greece

    NASA Astrophysics Data System (ADS)

    Athanassas, Constantin; Bourlès, Didier; Braucher, Regis; Druitt, Tim; Nomikou, Paraskevi; Léanni, Laetitia

    2016-04-01

    The physiography of Santorini prior to the Minoan (Late Bronze Age) eruption (17th century BCE) is of great archaeological interest, given the importance of Santorini as a commercial centre and port in the Minoan empire. However, the paleogeography of the pre-Minoan caldera has been a point of controversy: Heiken and McCoy (1984) advocated the existence, in the southern part of the present-day caldera, of a pre-existing caldera formed during the 172 ka Lower Pumice eruption, whereas Druitt and Francaviglia (1992), based on the presence of in situ plinian pumice from the Minoan eruption adhering to the modern cliff, conceived the pre-Minoan (22 ka) caldera as having occupied much of the northern basin of the present-day caldera. With the goal of settling the debate we performed cosmic ray exposure dating employing in situ-produced cosmogenic 36Cl to date different generations of caldera cliffs at Santorini, and hence to identify those cliffs predating the Minoan eruption. Our methodology involved the determination of the in situ-produced cosmogenic 36Cl in basaltic and andesitic rocks cropping out in the cliffs. The samples returned 36Cl CRE ages consistent with previously published field mapping of cliff populations based on geomorphological and stratigraphic arguments (Druitt and Francaviglia 1992), suggesting that much of the present cliff line of northern Santorini predated the Minoan eruption, or was superficially modified by landslips and rockfalls during that eruption. The 36Cl CRE ages enable us to better define the paleogeography of the pre-Minoan caldera. References [1] Druitt, T. H. and Francaviglia, V.1992. Caldera formation on Santorini and the physiography of the islands in the Late Bronze Age. Bulletin of Volcanology 54, 484-493. [2] Heiken G and McCoy F (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. Journal of Geophysical Research: 89 (B10), 8841-8862.

  13. Nonlinear teleseismic tomography at Long Valley caldera, using three-dimensional minimum travel time ray tracing

    SciTech Connect

    Weiland, C.M.; Steck, L.K.; Dawson, P.B.

    1995-10-10

    The authors explore the impact of three-dimensional minimum travel time ray tracing on nonlinear teleseismic inversion. This problem has particular significance when trying to image strongly contrasting low-velocity bodies, such as magma chambers, because strongly refracted/and/or diffracted rays may precede the direct P wave arrival traditionally used in straight-ray seismic tomography. They use a simplex-based ray tracer to compute the three-dimensional, minimum travel time ray paths and employ an interative technique to cope with nonlinearity. Results from synthetic data show that their algorithm results in better model reconstructions compared with traditional straight-ray inversions. The authors reexamine the teleseismic data collected at Long Valley caldera by the U.S. Geological Survey. The most prominent feature of their result is a 25-30% low-velocity zone centered at 11.5 km depth beneath the northwestern quandrant of the caldera. Beneath this at a depth of 24.5 km is a more diffuse 15% low-velocity zone. In general, the low velocities tend to deepen to the south and east. The authors interpret the shallow feature to be the residual Long Valley caldera magma chamber, while the deeper feature may represent basaltic magmas ponded in the midcrust. The deeper position of the prominent low-velocity region in comparison to earlier tomographic images is a result of using three-dimensional rays rather than straight rays in the ray tracing. The magnitude of the low-velocity anomaly is a factor of {approximately}3 times larger than earlier models from linear arrival time inversions and is consistent with models based on observations of ray bending at sites within the caldera. These results imply the presence of anywhere from 7 to 100% partial melt beneath the caldera. 40 refs., 1 fig., 1 tab.

  14. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption

    NASA Astrophysics Data System (ADS)

    Aydar, Erkan; Gourgaud, Alain; Ulusoy, Inan; Digonnet, Fabrice; Labazuy, Philippe; Sen, Erdal; Bayhan, Hasan; Kurttas, Turker; Tolluoglu, Arif Umit

    2003-05-01

    Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions-extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/ L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.

  15. Hydrothermal fluid venting in the offshore sector of Campi Flegrei caldera: A geochemical, geophysical, and volcanological study

    NASA Astrophysics Data System (ADS)

    Di Napoli, R.; Aiuppa, A.; Sulli, A.; Caliro, S.; Chiodini, G.; Acocella, V.; Ciraolo, G.; Di Vito, M. A.; Interbartolo, F.; Nasello, C.; Valenza, M.

    2016-10-01

    The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morphobathymetric and seismostratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure formed during the shallow emplacement of the Monte Nuovo feeding dike. We also infer that the high-angle bordering faults that generated the SdF relief now preferentially allow the ascent of hot brines (with an equilibrium temperature of 179°C), thereby sustaining hydrothermal degassing on the seafloor. Systematic vertical seawater profiling shows that hydrothermal seafloor venting generates a sizeable CO2, pH, and temperature anomaly in the overlying seawater column. Data for the seawater vertical profile can be used to estimate the CO2 and energy (heat) outputs from the SdF area at ˜50 tons/d (˜0.53 kg/s) and ˜80 MW, respectively. In view of the cause-effect relationship with the Monte Nuovo eruption, and the substantial gas and energy outputs, we consider that the SdF hydrothermal system needs to be included in monitoring programs of the ongoing CFc unrest.

  16. Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Jacobs, Elaine P.; WoldeGabriel, Giday; Kelley, Shari A.; Broxton, David; Ridley, John

    2016-11-01

    The Cerro Toledo Formation (CTF), a series of intracaldera rhyolitic dome complexes and their associated extracaldera tephras and epiclastic sedimentary deposits, records the dynamic interplay between volcanic, tectonic, and geomorphic processes that were occurring along the western margin of the Rio Grande rift between major caldera-forming eruptions of the Bandelier Tuff 1.65-1.26 Ma. The Alamo Canyon and Pueblo Canyon Members differ significantly despite deposition within a few kilometers of each other on the Pajarito Plateau. These differences highlight spatial distinctions in vent sources, eruptive styles, and depositional environments along the eastern side of the Jemez Mountains volcanic field during this ca. 400,000 year interval. Intercalated pyroclastic fall deposits and sandstones of the Pueblo Canyon Member reflect deposition with a basin. Thick Alamo Canyon Member deposits of block-and-ash-flow tuff and pyroclastic fall deposits fill a paleovalley carved into coarse grained sedimentary units reflecting deposition along the mountain front. Chemistry and ages of glass from fall deposits together with clast lithologies of sedimentary units, allow correlation of outcrops, subsurface units, and sources. Dates on pyroclastic fall deposits from Alamo Canyon record deep incision into the underlying Otowi Member in the southern part of the Pajarito Plateau within 100 k.y. of the Toledo caldera-forming eruption. Reconstruction of the CTF surface shows that this period of rapid incision was followed by aggradation where sediments largely filled pre-existing paleocanyons. Complex sequences within the upper portion of the Otowi Member in outcrop and in the subsurface record changes in the style of eruptive activity during the waning stages of the Toledo caldera-forming eruption.

  17. The Campi Flegrei Deep Drilling Project: understanding the structure and mechanisms of large collapse calderas

    NASA Astrophysics Data System (ADS)

    de Natale, Giuseppe; Troise, Claudia

    2010-05-01

    Large calderas are the most dangerous volcanoes on the Earth. They are produced by collapse during explosive super-eruptions, which are capable of triggering global catastrophes comparable to large meteorite impacts. The mechanisms of unrest and eruption at calderas are at a large extent unknown and, as demonstrated by volcanological research in the last decades, they may be very different from those characterizing more commonly studied stratovolcanoes. Campi Flegrei caldera (Italy) represents an ideal natural laboratory to fully understand mechanisms of caldera dynamics and to develop techniques for eruption forecast and effective risk mitigation. It is an active volcanic area marked by a quasi-circular caldera depression, formed by huge ignimbritic eruptions. The caldera has recently experienced intense deformation, originating uplift phenomena of more than 3.5 m in 15 years, with maximum rates of 1 m/year in the period 1982-1984, which caused the temporary evacuation of 30,000 people from the centre of Pozzuoli and exposed more than 500,000 to impending eruption risk (several millions in case of an ignimbritic eruption). This area will be the target of a leading International project, the ‘Campi Flegrei Deep Drilling Project', sponsored by ICDP, aimed to study in detail, by a crustal deviated drilling reaching the depth of about 4 km, the deep structure of the caldera. The role of deep drilling at this area is crucial. It could give a fundamental, precise insight into the substructure, the geometry and character of the geothermal systems and their role in the unrest episodes, as well as to explain magma chemistry and the mechanisms of magma-water interaction. One of the main goal will be giving a precise determination of the magma depth, based on the extrapolation of the geothermal gradient in purely conductive conditions, occurring below the maximum aquifer depth. The choice of Campi Flegrei as a target for the deep study of large calderas is justified by the

  18. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    USGS Publications Warehouse

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well

  19. Digital Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Ramsey, D. W.

    2002-12-01

    Crater Lake caldera formed ~7700 cal yr B.P. by the eruption of 50 km3 of mainly rhyodacitic magma and the resulting collapse of Mount Mazama. A new 1:24,000-scale digital geologic map compiled in ArcInfo depicts the geology of this volcanic center, peripheral volcanoes, the caldera walls and floor, and superjacent pyroclastic, talus, and glacial deposits. The geology of the caldera walls was mapped in the field on photographs taken from the lake (see accompanying abstract and poster, "Geologic panoramas of the walls of Crater Lake caldera,Oregon"); the geology of the flanks of Mount Mazama and the surrounding area was mapped on aerial photographs; and features of the caldera floor were mapped on a multibeam echo-sounding bathymetric map (Gardner et al., 2001; Bacon et al., 2002). Volcanic map units are defined on the basis of chemical composition and petrographic characteristics. Map unit colors were chosen to indicate the compositions of volcanic rocks, cooler colors for mafic units and warmer colors for silicic units. Map unit color intensity indicates age, with more intense coloring for younger units. Ages of many units have been determined by K-Ar and 40Ar/39Ar dating by M.A. Lanphere. Several undated units have been correlated using paleomagnetic secular variation measurements by D.E. Champion. Crystallization facies of some of the larger lava flows are mapped separately (e.g., vitrophyre, felsite, carapace), as are breccia and lava facies of submerged postcaldera volcanoes. Also shown on the caldera floor are landslide (debris avalanche) and sediment gravity-flow deposits. A major north-south normal fault system traverses the map area west of the caldera and displaces dated late Pleistocene lava flows, allowing determination of a long-term slip rate of ~0.3 mm/yr (Bacon et al., 1999). Faults bounding large downdropped blocks of the south caldera wall are also shown. Where practical, lava flow margins are represented as intra-unit contacts. A number of small

  20. Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico

    SciTech Connect

    Shevenell, L.; Goff, F.; Vuataz, F.; Trujillo, P.E. Jr.; Counce, D.; Janik, C.J.; Evans, W.

    1987-03-01

    This report presents field, chemical, gas, and isotopic data for thermal and nonthermal waters of the southern Jemez Mountains, New Mexico. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, north of San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near-surface meteoric waters; (2) acid-sulfate waters at Sulphur Springs (Valles Caldera); (3) thermal meteoric waters in the ring fracture zone (Valles Caldera); (4) deep geothermal waters of the Baca geothermal field and derivative waters in the Soda Dam and Jemez Springs area (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. Data in this report will help in interpreting the geothermal potential of the Jemez Mountains region and will provide background for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  1. Understanding the link between circumferential dikes and eruptive fissures around calderas based on numerical and analog models

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Acocella, Valerio

    2016-06-01

    Active calderas are seldom associated with circumferential eruptive fissures, but eroded magmatic complexes reveal widespread circumferential dikes. This suggests that, while the conditions to emplace circumferential dikes are easily met, mechanisms must prevent them from reaching the surface. We explain this discrepancy with experiments of air injection into gelatin shaped as a volcano with caldera. Analog dikes show variable deflection, depending on the competition between overpressure, Pe, and topographic unloading, Pl; when Pl/Pe = 4.8-5.3, the dikes propagate orthogonal to the least compressive stress. Due to the unloading, they become circumferential and stall below the caldera rim; buoyancy is fundamental for the further rise and circumferential fissure development. Numerical models quantitatively constrain the stress orientation within the gelatin, explaining the observed circumferential dikes. Our results explain how dikes propagate below the rim of felsic and mafic calderas, but only in the latter they are prone to feed circumferential fissures.

  2. Geothermal data for 95 thermal and nonthermal waters of the Valles Caldera - southern Jemez Mountains region, New Mexico

    SciTech Connect

    Goff, F.; McCormick, Trujillo, P.E. Jr.; Counce, D.; Grigsby, C.O.

    1982-05-01

    Field, chemical, and isotopic data for 95 thermal and nonthermal waters of the southern Jemez Mountains, New Mexico are presented. This region includes all thermal and mineral waters associated with Valles Caldera and many of those located near the Nacimiento Uplift, near San Ysidro. Waters of the region can be categorized into five general types: (1) surface and near surface meteoric waters; (2) acid-sulfate waters (Valles Caldera); (3) thermal meteoric waters (Valles Caldera); (4) deep geothermal and derivative waters (Valles Caldera); and (5) mineralized waters near San Ysidro. Some waters display chemical and isotopic characteristics intermediate between the types listed. The object of the data is to help interpret geothermal potential of the Jemez Mountains region and to provide background data for investigating problems in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry.

  3. Aeromagnetic evidence for a volcanic caldera(?) complex beneath the divide of the West Antarctic Ice Sheet

    USGS Publications Warehouse

    Behrendt, John C.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1998-01-01

    A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of <1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.A 1995-96 aeromagnetic survey over part of the Sinuous Ridge (SR) beneath the West Antarctic Ice Sheet (WAIS) divide shows a 70-km diameter circular pattern of 400-1200-nT anomalies suggesting one of the largest volcanic caldera(?) complexes on earth. Radar-ice-sounding (RIS) shows the northern part of this pattern overlies the SR, and extends south over the Bentley Subglacial Trench (BST). Modeled sources of all but one the caldera(?) anomalies are at the base of < 1-2-km thick ice and their volcanic edifices have been glacially removed. The exception is a 700-m high, 15-km wide 'volcano' producing an 800-nT anomaly over the BST. 'Intrusion' of this 'volcano' beneath 3 km of ice probably resulted in pillow basalt rather than easily removed hyaloclastite erupted beneath thinner ice. The background area (-300 to -500-nT) surrounding the caldera(?) is possibly caused by a shallow Curie isotherm. We suggest uplift of the SR forced the advance of the WAIS.

  4. Dynamics of the Askja caldera landslide, July 2014, from seismic signal analysis

    NASA Astrophysics Data System (ADS)

    Schöpa, Anne; Burtin, Arnaud; Hovius, Niels; Green, Robert G.

    2016-04-01

    A voluminous landslide occurred at the Askja caldera in the Icelandic highlands on July 21st, 2014. The next day, flood marks of at least ten tsunami waves, that had reached the northern shore of the caldera lake, could be mapped out. The highest flood marks were found up to 60 m above the lake level close to famous tourist spots underlining the high hazard potential of the area. Since the landslide happened at night, no direct observations of the mass movement nor of the subsequent tsunami waves in the caldera lake were made. We present the analysis of seismic data from a network of 58 seismic stations that recorded data during the event. The seismic data give valuable information on the triggering, initiation, timing, and propagation of the landslide, with additional details on precursory signals before and oscillation waves in the caldera lake after the main landslide. From the set of seismic wave forms, characteristic features were extracted that could be used for early warning proposes. The seismic data reveals that the main slope failure along the southeastern caldera wall was a large, single event starting at 23.24 UTC. The main part of the energy was released in the first two minutes followed by smaller events, before the background noise level was re-established some 40 minutes after the main failure. Subsequent mass movements, much lower in amplitude, occurred during the following hours. About 20 minutes before the main failure, the background noise level started to rise. Ground velocities were up to three times higher that the background level with dominant frequencies between 2-4 Hz. The increase in background noise level is visible in stations up to 30 km away from the landslide area. This velocity increase is followed by a prominent velocity drop five minutes before the main failure. The spatial distribution of the velocity decrease with its centre at the detachment area of the landslide has an elliptical outline with a long axis oriented NE-SW. This

  5. Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1986-01-01

    The climactic eruption of Mount Mazama (6845 y.B.P.) vented a total of ???50 km3 of compositionally zoned rhyodacitic to basaltic magma from: (a) a single vent as a Plinian pumice fall deposit and the overlying Wineglass Welded Tuff, and (b) ring vents as ignimbrite and coignimbrite lithic breccia accompanying the collapse of Crater Lake caldera. New field and grain-size data for the ring-vent products are presented in this report. The coarse-grained, poorly bedded, clast-supported lithic breccia extends as far as 18 km from the caldera center. Like the associated ignimbrite, the breccia is compositionally zoned both radially and vertically, and silicic, mixed, and mafic types can be recognized, based on the proportion of rhyodacitic pumice. Matrix fractions in silicic breccias are depleted of fines and are lithic- and crystal-enriched relative to silicic ignimbrite due to vigorous gas sorting during emplacement. Ignimbrite occurs as a proximal veneer deposit overlying the breccia, a medial (??? 8 to ??? 25 km from the caldera center), compositionally zoned valley fill as much as > 110 m thick, and an unzoned distal ({slanted equal to or greater-than} 20 km) facies which extends as far as 55 km from the caldera. Breccia within ??? 9 km of the caldera center is interpreted as a coignimbrite lag breccia formed within the deflation zone of the collapsing ring-vent eruption columns. Expanded pyroclastic flows of the deflation zone were probably vertically graded in both size and concentration of blocks, as recently postulated for some turbidity currents. An inflection in the rate of falloff of lithic-clast size within the lithic breccia at ??? 9 km may mark the outer edge of the deflation zone or may be an artifact of incomplete exposure. The onset of ring-vent activity at Mt. Mazama was accompanied by a marked increase in eruptive discharge. Pyroclastic flows were emplaced as a semicontinuous stream, as few ignimbrite flow-unit boundaries are evident. As eruption from

  6. Evolution of the Creede Caldera and its relation to mineralization in the Creede mining district, Colorado

    USGS Publications Warehouse

    Barton, Paul B.; Rye, Robert O.; Bethke, Philip M.

    2000-01-01

    At 25 Ma a major epithermal silver and base metal deposit formed in rhyolitic welded tuff near Creede, Colorado. Nearly 24000 metric tons of silver, appreciable lead, and small amounts of zinc, copper, and gold, have been produced from large, crustified veins under Bachelor and Bulldog Mountains north and northwest of Creede. Prior geologic, hydrologic, and stable-isotope studies showed that ore deposition was associated with the mixing and boiling of waters from diverse sources and suggester that a critical part of the ore-forming fluid may have originated within the ancient lake and sediments of the lacustrine Creede Formation that filled the Creede caldera. Two drill holes that sampled the heretofore hidden lower half of the Creede Formation are the focus of this book. The Creede caldera formed at 26.9 Ma within a high constructional plateau of silicic ashflows that covered and were sporadically interlayed with, intermediate lavas and lahars from large stratovolcanoes. The Creede caldera lake had an inflow evaporation balance that did not permit rapid filling to create a brim-full deep lake. Thus salts were evaporatively concentrated; but, with the exception of possible gypsum, no evaporite minerals preserved. Cool springs deposited travertine as mounds and contributed to limestone interlaminations within the sediment. The lake bottom was anoxic, and bacterial reduction of sulfate led to extreme sulfur isotopic fractionation in diagenetic pyrite. The caldera gradually resurged, converting the initial equant lake into an arcuate moat. Resurgent doming, alluvial fans, lacustrine sediments, ashfalls, and lava domes displaced water, lifted the lake so that it overlapped what later became the southern edge of the mineralized are, and eventually filled the basin. At 25.1 Ma an unseen pluton intruded beneath the northen part of the Creede district and created a convecting olume that drew in brine from the Creede caldera fill, meteotic water from highlands to the north

  7. Older Hydrothermal Activity along the Northern Yellowstone Caldera Margin at Sulphur Creek, Yellowstone Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Manion, J. L.; Larson, P.

    2008-12-01

    The Tuff of Sulphur Creek (480 ka) is well exposed in the Seven Mile Hole area of the Grand Canyon of the Yellowstone River, Yellowstone National Park, Wyoming. The rhyolitic tuff erupted after the collapse of the Yellowstone Caldera (640 ka) and hosts more than 350 vertical meters of hydrothermal alteration. Two epithermal alteration assemblages with different mineral associations have been identified in the area: an illite-silica-pyrite phase and a kaolinite-alunite-silica-pyrite phase. Kaolinite and opal occur along the canyon rim, montmorillonite and other smectites are found at intermediate depths, and illite and sulfides (pyrite) are found deepest in the section. Our work on the north side of the Sevenmile Hole altered area has found a complex system of veining. The veins are concentrated in the eastern portion of the canyon and are less frequent to the west. Brecciated cross-cutting veins ranging from 2 to 30cm wide are found at the base of the canyon. Moving vertically up the canyons walls, the veining style becomes less complex. These veins are about 1 to 1.5cm wide and are not brecciated, occurring less frequently than the brecciated veins. The canyon walls and the canyon rim mainly contain millimeter-scale cross-cutting silica veinlets. These stockwork-like veinlets are the most abundant fracture filling that we find throughout the canyon walls. Veins at the base of the system, found in the stream bed, contain abundant sulfides (mainly pyrite). Sulfides are present in three forms: disseminated in a silica matrix, as massive pyrite in healed fractures, and encrusting clays and silica. The latter is the least common. Disseminated and massive sulfides are typically associated with the matrix in the brecciated veins. Breccias include angular clasts of altered tuff with argillized feldspar phenocrysts and fragments of earlier vein-filling opal. Sulfides are most abundant in the bottom of the canyon and in the western part of the field area. Hydrothermal

  8. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  9. A catastrophic flood caused by drainage of a caldera lake at Aniakchak Volcano, Alaska, and implications for volcanic hazards assessment

    USGS Publications Warehouse

    Waythomas, C.F.; Walder, J.S.; McGimsey, R.G.; Neal, C.A.

    1996-01-01

    Aniakchak caldera, located on the Alaska Peninsula of southwest Alaska, formerly contained a large lake (estimated volume 3.7 ?? 109 m3) that rapidly drained as a result of failure of the caldera rim sometime after ca. 3400 yr B.P. The peak discharge of the resulting flood was estimated using three methods: (1) flow-competence equations, (2) step-backwater modeling, and (3) a dam-break model. The results of the dam-break model indicate that the peak discharge at the breach in the caldera rim was at least 7.7 ?? 104 m3 s-1, and the maximum possible discharge was ???1.1 ?? 106 m3 s-1. Flow-competence estimates of discharge, based on the largest boulders transported by the flood, indicate that the peak discharge values, which were a few kilometers downstream of the breach, ranged from 6.4 ?? 105 to 4.8 ?? 106 m3 s-1. Similar but less variable results were obtained by step-backwater modeling. Finally, discharge estimates based on regression equations relating peak discharge to the volume and depth of the impounded water, although limited by constraining assumptions, provide results within the range of values determined by the other methods. The discovery and documentation of a flood, caused by the failure of the caldera rim at Aniakchak caldera, underscore the significance and associated hydrologic hazards of potential large floods at other lake-filled calderas.

  10. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera

    NASA Astrophysics Data System (ADS)

    Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro

    The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.

  11. Rhyolitic calderas of the Yukon-Tanana Terrane, east central Alaska: volcanic remnants of a mid-Cretaceous magmatic arc

    USGS Publications Warehouse

    Bacon, C.R.; Foster, H.L.; Smith, James G.

    1990-01-01

    Four large but poorly exposed rhyolitic calderas are present in the Yukon-Tanana terrane (YTT) in east central Alaska. At least two are mid-Cretaceous in age (~93 Ma). Similar volcanic rocks, the South Fork Volcanics, occur northeast of the Tintina fault in Yukon Territory. Evidence for the calderas consists of thick deposits of devitrified crystal- and lithic-rich densely welded tuff, interpreted as caldera fill, associated with lava domes or shallow intrusive rocks. Coeval outflow sheets have been largely stripped by erosion. The calderas are preserved within a northeast trending depression extending across the axis of the elongate mid-Cretaceous plutonic province. Trace element abundances in andesites and rhyolites associated with the caldera structures are similar to those of volcanic and plutonic rocks of subduction-related magmatic arcs developed on continental crust and thus are suggestive of formation in such an environment. Late Cretaceous and early Tertiary igneous rocks in the YTT near the calderas are interpreted to have been emplaced in a more extensional setting when the subduction-related magmatic front was farther oceanward. -Authors

  12. The Silent Canyon caldera: a three-dimensional model as part of a Pahute Mesa-Oasis Valley, Nevada, hydrogeologic model

    USGS Publications Warehouse

    McKee, Edwin H.; Phelps, Geoffery A.; Mankinen, Edward A.

    2001-01-01

    A 3-dimensional caldera model based on gravity inversion, drill-hole data, and geologic mapping offers the framework for a hydrogeologic evaluation of the Silent Canyon caldera in the central part of Pahute Mesa, Nevada. It has been recognized for several decades that the central part of Pahute Mesa is the site of a buried caldera called the Silent Canyon caldera. Conceptually, the structural framework of the Silent Canyon caldera is based on the idea of collapse of the caldera roof over a shallow magma chamber to form a structural basin following violent volcanic eruptions. Calderas are common in certain volcanic regions of the world, and most well-exposed calderas are broadly similar to each other, particularly the arcuate or circular shape of their collapse depression. There are other reasons for modeling the Silent Canyon caldera as a circular feature in addition to knowledge that calderas throughout the world are generally circular features. The Silent Canyon caldera is the site of one of the largest gravity lows in the Western United States, indicating a thick accumulation of low-density rocks such as lavas and tuffs—a fact confirmed by drilling on Pahute Mesa. This gravity low is bowl-shaped, and the uppermost volcanic units on Pahute Mesa form a circular outcrop pattern of inward-dipping tuff interpreted to be the result of their filling the upper part of the bowl-shaped depression. Together, these features are consistent with, and indicative of, a circular collapse structural model for the Silent Canyon caldera. The collapse depression of the Silent Canyon caldera, bounded by arcuate faults, is filled with as much as 6 km (19,800 ft) of volcanic and sedimentary rocks that are considerably less dense than the underlying and surrounding basement rocks. The boundary surface between less dense caldera fill and more dense basement is modeled as the caldera ring fault. Rocks in the upper part of the caldera fill are penetrated by drilling, and the drill

  13. The Campi Flegrei caldera (Italy): Formation and evolution in interplay with sea-level variations since the Campanian Ignimbrite eruption at 39 ka

    NASA Astrophysics Data System (ADS)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2016-11-01

    To date, the origin of the Campi Flegrei caldera is still under debate and may be related to (1) a single caldera collapse associated with the Neapolitan Yellow Tuff (NYT) eruption, (2) two subsequent caldera collapses associated with the NYT and the preceding Campanian Ignimbrite (CI) eruptions forming a nested-caldera complex, or (3) not related to a caldera collapse after all. Here, we study the submerged portion of the caldera, which has favored a marine depositional setting and, thus, represents an ideal location for the reconstruction of its formation history, utilizing multichannel seismic data. Volcanic deposits and edifices were seismically distinguished from sedimentary successions, and the stratigraphy could be refined and extended back to the Campanian Ignimbrite eruption at 39 ka. High-resolution multichannel reflection seismic data revealed the existence of a nested-caldera complex formed during the CI eruption at 39 ka and the more recent NYT eruption at 15 ka. A ring-fault bounding an inner caldera collapse structure was clearly imaged. It appears that this inner ring-fault was initially activated during the CI caldera collapse and later reactivated during the NYT caldera collapse with different amounts of subsidence. The NYT caldera probably formed during an asymmetrical collapse with a maximum subsidence of 75 m in the offshore portion. The vertical displacement related to the CI caldera collapse may be significantly larger. The submerged caldera depression accommodates post-eruption sediments. Within this high-resolution archive, two major unconformities developed at 8.6 ka and 5 ka, when resurgence-related uplift exceeded the rate of sea-level rise concurrent with the emersion of the La Starza terrace. A previously unknown post-collapse submarine volcanic mound located between Nisida Island and Nisida Bank probably formed between 4.8 and 3.7 ka. Also, the Penta Palummo Bank appears to be constructed of at least two monogenetic volcanic edifices

  14. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.

    PubMed

    Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro

    2016-07-15

    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

  15. Gravity anomalies, caldera structure, and subsurface geology in the Rotorua area, New Zealand

    SciTech Connect

    Hunt, T.M. )

    1992-04-01

    This paper discusses a re-examination of gravity which indicates that Rotorua Caldera does not have the circular, negative gravity anomaly typical of other rhyolitic calderas. New gravity measurements and residual gravity anomalies in Rotorua City are consistent with numerous rhyolite domes and ignimbrite sheets, interbedded with a thick sequence of poorly-compacted sediments. Within the city a gravity high extends from the shore of Lake Rotorua south to Whakarewarewa and is associated with a buried ridge, formed by the coalescing of two rhyolite domes. A gravity low centered near Linton Park suggests that rhyolites are thin or absent in this area and sediments extend to a depth of about 1 km. A quantitative analysis of the residual gravity anomalies was limited by insufficient information about the density, extent, and thickness of the material underlying the rhyolites, and the uncertainty in the distribution and density of silicification within the sediments.

  16. 3D Imaging of Brittle/Ductile transition of the crust beneath the resurgent calderas

    NASA Astrophysics Data System (ADS)

    Tizzani, P.; Castaldo, R.; Pepe, S.; Solaro, G.

    2012-04-01

    Rheology is a crucial factor to understand the mechanical behaviour and evolution of the crust in young and tectonically active belts. The aim of this paper is to investigate the rheological properties of the crust beneath resurgent calderas as Long Valley caldera (California USA) and Campi Flegrei (Southern Italy). Through the rheological proprieties of the calderas area, we highlight the driving process that determine the cut off of the local seismicity [K. Ito, 1993]. In this context, we consider the thermal proprieties and mechanical heterogeneity of the crust in order to develop a 3D conductive time dependent thermal model of the upper crust beneath the two calderas. More specifically we integrate geophysical information (gravimetric, seismic and boreholes data) available for the considered area in FEM environment [Manconi A. et al., 2010]. We performed a numerical solution of Fourier equation to carry out an advance optimization of the real measured data. We produce a set of forward models and propose, in order to analyse and solve the statistical problem, the Monte Carlo optimization procedures as Genetic Algorithm [Manconi A. et al., 2009]. In particular we search for the heat production, the volume source distribution and the surface emissivity parameters that providing the best-fit of the geothermal profiles data measured at boreholes, by solving the non stationary heat flow equation (Campanian Ignimbrite eruption about 40 kyr for Campi Flegrei caldera and Bishop tuff eruption about 700 kyr for Long Valley caldera). The performed thermal fields allow us to obtain the rheological stratification of the crust beneath two resurgent calderas; the models suggest that the uprising of a ductile layer which connects the upper mantle to the volcanic feeding system could determine the stress conditions that controlled the distribution of seismicity. In fact, the computed 3D imaging of Brittle/Ductile transition well agrees with the seismic hypocentral distribution

  17. Temperature field simulation with stratification model of magma chamber under Los Humeros Caldera, Puebla, Mexico

    SciTech Connect

    Verma, M.P.; Verma, S.P.; Sanvicente, H. )

    1990-01-01

    A simulation of the temperature field underlying Los Humeros caldera is obtained through numerical solution of the energy-conservation equation for a conductive heat flow process. The up-date information on geological, geochemical, geophysical and geochronological studies is used to estimate the parameters of the internal structure of the caldera. The simulation is carried out under a model of the stratification of a magma chamber. The existence of such a stratification is supported by geological and geochemical evidence. The boundary conditions, the equality of temperature and heat flux are programmed in the numeric solution of the energy-conservation equation by considering the boundary of a very small, finite thickness and smoothing the temperature curve at every step of calculation.

  18. Using InSAR to investigate long term caldera unrest: case studies from Yellowstone and Long Valley

    NASA Astrophysics Data System (ADS)

    battaglia, maurizio

    2016-04-01

    Interpreting geodetic measurements can be particularly difficult in the case of slow, years-to-decades deformation, such as that commonly observed at large Quaternary silicic calderas. For example, Yellowstone caldera has shown a complex behavior over recent decades: uplift of resurgent domes within the caldera started sometime after 1923, reaching a total of 90 cm, but in 1984 the deformation reversed to subsidence at a rate of 1-2 cm/yr until 1992. Starting in 1992, the deformation began migrating from one resurgent dome to the other, and deformation was also detected along the caldera boundary - the so-called Northern Caldera Rim - starting in the mid-1990s. Evidence from geodetic surveys suggests that magma intrusion and/or pressurization of hydrothermal fluids may both drive uplift at Yellowstone. Geodetic measurements at Long Valley caldera have also revealed multiple episodes of caldera uplift, but in contrast to Yellowstone, deformation is largely restricted to the caldera's single resurgent dome. The fact that the energy released during the resurgent dome uplift is much larger than that which can be explained by seismic activity within and around the caldera, together with the observation that the onset of accelerated deformation precedes increases in earthquake activity by several weeks, suggests that the major source of caldera unrest is probably magma intrusion beneath the resurgent dome. Here we present time series of surface deformation for Yellowstone and Long Valley retrieved by applying the SBAS InSAR technique. We estimate the average regional deformation signal by using the mean velocity values derived from coherent SAR pixels belonging to areas outside the caldera. This tectonic signal is removed from the InSAR displacement and we modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. For Yellowstone caldera, different distinct sources, either hydrothermal or magmatic, have been intermittently

  19. Magmatic resurgence in Long Valley Caldera, California: possible cause of the 1980 Mammoth Lakes earthquakes

    SciTech Connect

    Savage, J.C.; Clark, M.M.

    1982-08-06

    Changes in elevation between 1975 and October 1980 along a leveling line across the Long Valley caldera indicate a broad (half-width, 15 kilometers) uplift (maximum, 0.25 meter) centered on the old resurgent dome. This uplift is consistent with reinflation of a magma reservoir at a depth of about 10 kilometers. Stresses generated by this magmatic resurgence may have caused the sequence of four magnitude 6 earthquakes near Mammoth Lakes in May 1980.

  20. Borehole data to model caldera unrest: the example of Campi Flegrei Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Carlino, S.; De Natale, G.; Somma, R.; Troise, C.; Kilburn, C.; Tramelli, A.; Troiano, A.; Di Guiseppe, M.; Piochi, M.

    2013-12-01

    To understand the genesis and the physics governing the volcanic area of Campi Flegrei (Southern Italy) a drilling project started on July 2012, in the framework of the International Continental Scientific Drilling Program (ICDP). The Campi Flegrei Deep Drilling Project (CFDDP) schedules two phases: a pilot well, 500 m deep (I phase), and a 3.5 km deeper well (II planned phase), both located within the active resurgent caldera of Campi Flegrei, west to the city of Naples. In this framework new filed data from pilot borehole have been recorded by using a novel procedure of Leak Off Test (LOT). The test has been performed in order to obtain, before the onset of rock failure (which furnishes indication of the minimum principal stress value), a reliable value of in situ permeability. These new data, particularly the actual permeability, are fundamental to calibrate the caldera unrest model at Campi Flegrei and to advance in the quantitative analysis of volcanoes behavior for the assessment of possible future eruptive scenarios. Calderas worldwide are, in fact, characterized by frequent episodes of unrest which, only in few cases, culminate with eruption. This behavior is generally explained in terms of magma intrusion and/or disturbance of geothermal fluids in the shallow crust, which are both source of ground deformations and seismicity. A major goal is, thus, to determine the relative contribution of each process, because the potential for eruptions significantly enhanced if magma movements emerges as the primary component. Here we report the new results of the LOT and its implication in the modeling of Campi Flegrei caldera unrest.

  1. Dynamic magmatic processes at a continental rift caldera, observed using satellite geodesy

    NASA Astrophysics Data System (ADS)

    Lloyd, Ryan; Biggs, Juliet; Birhanu, Yelebe; Wilks, Matt; Gottsmann, Jo; Kendall, Mike; Lewi, Elias

    2016-04-01

    Large silicic calderas are a key feature of developing continental rifts, such as the Main Ethiopian Rift (MER), and are often observed to be deforming. Corbetti is one such example of a Holocene caldera in the MER that is undergoing deformation. However, the cause of the unrest, and the relationship to rift processes such as magma storage, transport and extension remain poorly understood. To investigate, we use InSAR (ascending and descending Cosmo-SkyMed data) and continuous GPS to observe the temporal and spatial evolution of sustained uplift at the Corbetti Caldera. Within the caldera, which was thought to have formed ~200 ka, there is evidence for numerous periods of resurgent volcanism in the form of plinian eruptions as well as effusive obsidian flows. How the sources of these varying styles of volcanism are reconciled at depth and in time is currently poorly constrained. Previous research has shown that pre-rift structures have a significant influence on the strain field, and hence on the magmatic and hydrothermal processes which drive it. The Cosmo-SkyMed data used in this study was specifically chosen such that each ascending image has a corresponding descending image acquired as contemporaneously as possible. This is necessary, given the rate of uplift, so as to reduce the number of assumptions when constructing time-series from multiple look directions, and when incorporating GPS data. We decompose the ascending and descending line-of-site deformation signals into vertical and east-west components and use finite source modeling to constrain the depth and geometry of the source of deformation. These results are then compared to available seismic, dynamic microgravity and magnetotelluric data to better understand this system, and how it is related to the volcanic hazard and local geothermal resources.

  2. Deep Borehole Measurements for Characterizing the Magma/Hydrothermal System at Long Valley Caldera, CA

    SciTech Connect

    Carrrigan, Charles R.

    1989-03-21

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crustal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. Currently active processes involving magma injection will be studied through observation of changes in pore pressure and strain. Measurements of in situ stress from recovered cores and hydraulic fracture tests will be used in conjunction with uplift data to determine those models for magmatic injection and inflation that are most applicable. Finally, studies of the thermal regime will be directed toward elucidating the coupling between the magmatic source region and the more shallow hydrothermal system in the caldera fill. To achieve this will require careful logging of borehole fluid temperature and chemistry. In addition, studies of rock/fluid interactions through core and fluid samples will allow physical characterization of the transition zone between hydrothermal and magmatic regimes.

  3. Hydrothermal outflow plume of Valles caldera, New Mexico, and a comparison with other outflow plumes

    SciTech Connect

    Goff, F.; Shevenell, L.; Gardner, J.N.; Vuataz, F.; Grigsby, C.O.

    1988-06-10

    Stratigraphic, temperature gradient, hydrogeochemical, and hydrologic data have been integrated with geologic data from previous studies to show the structural configuration of the Valles caldera hydrothermal outflow plume. Hydrologic data suggest that 25--50% of the discharge of the Valles outflow is confined to the Jemez fault zone, which predates caldera formation. Thermal gradient data from bores penetrating the plume show that shallow gradients are highest in the vicinity of the Jemez fault zone (up to 190 /sup 0/C/km). Shallow heat flow above the hydrothermal plume is as high as 500 mW m/sup -2/ near core hole VC-1 (Jemez fault zone) to 200 mW m/sup -2/ at Fenton Hill (Jemez Plateau). Chemical and isotopic data indicate that two source reservoirs within the caldera (Redondo Creek and Sulphur Springs reservoirs) are parents to mixed fluids flowing in the hydrothermal plume. However, isotopic data, borehole data, basic geology, and inverse relations between temperature and chloride content at major hot springs indicate that no single reservoir fluid and no single diluting fluid are involved in mixing. The Valles caldera hydrothermal plume is structurally dominated by lateral flow through a belt of vertical conduits (Jemez fault zone) that strike away from the source reservoir. Stratigraphically confined flow is present but dispersed over a wide area in relatively impermeable rocks. The Valles configuration is contrasted with the configuration of the hydrothermal plume at Roosevelt Hot Springs, which is dominated by lateral flow through a near-surface, widespread, permeable aquifer. Data from 12 other representative geothermal systems show that outflow plumes occur in a variety of magmatic and tectonic settings, have varying reservoir compositions, and have different flow characteristics.

  4. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.

    PubMed

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B

    2012-02-01

    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  5. Proceedings of the symposium on the Long Valley Caldera: A pre-drilling data review

    SciTech Connect

    Goldstein, N.E.

    1987-09-01

    This proceedings volume contains papers or abstracts of papers presented at a two-day symposium held at the Lawrence Berkeley Laboratory (LBL) on 17 and 18 March 1987. Speakers presented a large body of new scientific results and geologic-hydrogeoloic interpretations for the Long Valley caldera. The talks and the discussions that followed focused on concepts and models for the present-day magmatic-hydrothermal system. Speakers at the symposium also addressed the topic of where to site future scientific drill holes in the caldera. Deep scientific drilling projects such as those being contemplated by the DOE Division of Geothermal Technology (DGT), under the Magma Energy Program, and by the DOE Office of Energy Research, Division of Engineering and Geosciences (DEG), along with the USGS and NSE, under the Continental Scientific Drilling Program (CSDP), will be major and expensive national undertakings. DOE/DEG is sponsoring a program of relatively shallow coreholes in the caldera, and DOE/DGT is considering the initiation of a multiphase program to drill a deep hole for geophysical observations and sampling of the ''near magmatic'' environment as early as FY 1988, depending on the DOE budget. Separate abstracts have been prepared for the individual papers.

  6. Lithology, mineralogy, and paleontology of Quaternary lake deposits in Long Valley Caldera, California

    USGS Publications Warehouse

    Fournier, R.B.

    1989-01-01

    Drill cores and cuttings from two drill holes, about 3 km apart, in Long Valley caldera, Mono County, California, were studied using x-ray diffraction and optical methods. A thick sequence of tuffs and lake sediments was encountered in LVCH-1 (1,000 ft deep) and Republic well 66-29 (6,920 ft deep), drilled in the southeast part of the Long Valley caldera. Ostracods, diatoms, and isotopic data indicate that the sediments and tuffs were deposited in a shallow caldera lake which changed in salinity over time. Conditions ranged from very saline in the older lake to fresh in the youngest. The sequence of secondary minerals from top to bottom is: clinoptilolite, mordenite, analcime, K-feldspar (and albite). In some geothermal systems, this sequence of secondary minerals is a function of temperature; however, the paleontological and isotopic data indicate that the change in secondary minerals with increasing depth is due to the older strata being deposited in a more saline environment. No mineralogical evidence of hydrothermal alteration is present, although the high lithium content of some clays and feldspars and the isotopic composition of some sulfate (gypsum) seems to require a hydrothermal source. (Lantz-PTT)

  7. New evidence for the age of the youngest eruption in the Valles caldera, New Mexico

    SciTech Connect

    Reneau, S.L.; Gardner, J.N.; Forman, S.L.

    1996-01-01

    New geochronologic data provide evidence for an age of about 50 to 60 ka for the youngest volcanic eruptions within the Valles caldera, New Mexico - an age that is significantly younger than most previous age determinations. Thermoluminescence age estimates for buried soils beneath the El Cajete pumice, a key stratigraphic marker in the region, range from 48 to 61 ka and {sup 14}C analyses of burnt logs within volcanic surge beds near the El Cajete vent yield similar ages of 50 to >58 ka. These data conflict with fissontrack, {sup 40}Ar/{sup 39}Ar, and K-Ar ages of 130 to >200 ka, but are supported by recent analyses by electron spin resonance. The results of this study reinforce the need to apply a variety of dating methods when evaluating the age of young volcanic events and support the hypothesis that the El Cajete eruptions were part of a new cycle of volcanic activity in the Valles caldera after an exceptionally long period of quiescence of nearly 460 ka. The new age constraints also suggest a previously unrecognized link between cycles of volcanism and pulses of hydrothermal activity in the caldera, such that hydrothermal outflow appears to decrease significantly following completion of eruptive cycles. 24 refs., 3 figs., 2 tabs.

  8. Chemical and isotopic characteristics of thermal fluids in the Long Valley caldera lateral flow system, California

    SciTech Connect

    Shevenell, L.; Goff, F.; Grigsby, C.O.; Janik, C.J.; Trujillo, P.E. Jr.; Counce, D.

    1987-01-01

    Chemical and isotopic data of thermal waters in Long Valley caldera have been used to identify both the origins and characteristics of the fluids and to evaluate mixing and boiling processes occurring within the lateral flow system of the caldera. Recharge to the Long Valley geothermal system occurs in the western part of the caldera with the water being heated at depth and flowing laterally eastward in the subsurface. The lateral flow system was recently intersected by the Shady Rest Continental Scientific Drilling Program (CSDP) corehole at 335 m (1100 ft) with fluids in this 202/sup 0/C zone being more concentrated than non-boiled fluids to the east. As the Na-K-HCO/sub 3/-Cl thermal fluids flow eastward, they are increasingly mixed with isotopically depleted, dilute groundwaters similar to cold waters east of Lake Crowley. Near surface boiling of Casa Diablo well fluids at 100/sup 0/C forms waters with the compositions of Colton and Casa Diablo hot springs. Waters to the east of the Casa Diablo area are mixtures of meteoric water and boiled thermal fluids with a composition close to that of Colton Hot Spring. There is no correlation between /sup 3/H and /sup 36/Cl in thermal fluids or between these components and conservative species, and it appears that cold fluids involved in mixing must be relatively old waters, low in both meteoric /sup 3/H and /sup 36/Cl.

  9. Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field

    USGS Publications Warehouse

    Sawyer, D.A.; Sargent, K.A.

    1989-01-01

    The Silent Canyon volcanic center consists of a buried Miocene peralkaline caldera complex and outlying peralkaline lava domes. Two widespread ash flow sheets, the Tub Spring and overlying Grouse Canyon members of the Miocene Belted Range Tuff, were erupted from the caldera complex and have volumes of 60-100 km3 and 200 km3, respectively. Eruption of the ash flows was preceded by widespread extrusion of precaldera comendite domes and was followed by extrusion of postcollapse peralkaline lavas and tuffs within and outside the caldera complex. Lava flows and tuffs were also deposited between the two major ash flow sheets. Rocks of the Silent Canyon center vary significantly in silica content and peralkalinity. Weakly peralkaline silicic comendites (PI 1.0-1.1) are the most abundant precaldera lavas. Postcollapse lavas range from trachyte to silicic comendite; some have anomalous light rare earth element (LREE) enrichments. Silent Canyon rocks follow a common petrologic evolution from trachyte to low-silica comendite; above 73% SiO2, compositions of the moderately peralkaline comendites diverge from those of the weakly peralkaline silicic comendites. The development of divergent peralkaline magmas, toward both pantelleritic and weakly peralkaline compositions, is unusual in a single volcanic center. -from Authors

  10. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  11. Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements

    USGS Publications Warehouse

    Tizzani, Pietro; Battaglia, Maurizio; Zeni, Giovanni; Atzori, Simone; Berardino, Paolo; Lanari, Riccardo

    2009-01-01

    The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic field includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fluid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest.

  12. Relationship between the Porco, Bolivia, Ag-Zn-Pb-Sn deposit and the Porco Caldera

    USGS Publications Warehouse

    Cunningham, C.G.

    1994-01-01

    The Porco Ag-Zn-Pb-Sn deposit, a major Ag producer in the 16th century and currently the major Zn producer in Bolivia, consists of a swarm of fissure-filling veins in the newly recognized Porco caldera. The caldera measures 5 km by 3 km and formed in response to the eruption of the 12 Ma crystal-rich dacitic Porco Tuff. The mineralization is associated with, and is probably genetically related to, the 8.6 Ma Huayna Porco stock. The Porco deposit consists of steeply dipping irregular and curvilinear veins that cut the intracaldera Porco Tuff about 1 km east of the Huayna Porco stock. Most of the veins are aligned along the structural margin (ring fracture) of the caldera. The ore deposit is zoned around the Huayna Porco stock. The primary Ag minerals are most abundant in the upper parts of the viens. Fluid inclusions in sphalerite stalactites have homogenization temperatures of about 225??C and salinities of about 8 wt% NaCl equiv. The stalactites and the presence of sparse vapor-rich inclusions suggest deposition of sphalerite under boiling conditions. -from Authors

  13. Deep borehole measurements for characterizing the magma/hydrothermal system at Long Valley Caldera, CA

    SciTech Connect

    Carrigan, C.R.

    1989-01-01

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crystal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. 9 refs., 5 figs.

  14. Eastern Europe's Silicon Rush

    ERIC Educational Resources Information Center

    Woodard, Colin

    2007-01-01

    This article presents how the fast expansion of information technology industry in eastern Slovakia is putting a strain on its labor supply. Suddenly, computer-science graduates have become one of the former Eastern Bloc's greatest assets, attracting multinational technology companies hungry for skilled programmers, technicians, and engineers.…

  15. Reconstructing the evoluortunity to study processes related to composite volction of an eroded Miocene caldera volcano (Yamanlar volcano, İzmir, Turkey)

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Brown, Richard J.

    2016-05-01

    The Miocene Yamanlar composite volcano is located in the central part of a shear zone in western Turkey. The volcano's deeply-eroded interior provides excellent three-dimensional exposure of a faulted caldera-floor and caldera-fill rocks as well as surrounding extracaldera ignimbrites. We present a much-revised stratigraphy and geological map of Yamanlar in order to quantify the evolutionary stages of the volcano. The Yamanlar volcanic cone was composed of > 800 m of basaltic-andesite to andesite lavas and lava domes. The volcano underwent at least one phase of caldera formation associated with an explosive eruption that deposited an ignimbrite sheet within and outside the caldera. Lithofacies architecture analysis is applied to the proximal and medial exposures of the Early-Middle Yamanlar Formation, which occurs outside of the caldera. Field evidence of the succession indicates a caldera-forming eruption. Our results indicate that the formation of the Yamanlar caldera resulted from one major catastrophic eruption that generated several sustained pyroclastic density currents (PDCs) subdivided by fall deposits with sharp contacts. The ignimbrite sheet is composed of four flow units. The presence of numerous coarse-grained lithic-rich horizons within the ignimbrite sheet is consistent with caldera subsidence. Post-caldera volcanism is indicated by intrusions and lava domes erupted along the inferred caldera-bounding faults, some of which record ~ 90 m of displacement. Widespread, coarse-grained breccias that overlie the ignimbrite sheet are interpreted as debris avalanche deposits resulting from gravitational failure of the flanks of the volcano or the caldera wall during or after caldera subsidence.

  16. Ages of zircons from pre-, syn- and post-caldera eruption products of the Changbaishan Volcano, indicating rapid magmatic development

    NASA Astrophysics Data System (ADS)

    Zou, H.; Fan, Q.; Zhang, H.; Schmitt, A. K.

    2013-12-01

    The Millennium Eruption of Changbaishan Volcano with its eponymous 1000 CE eruption age represents one of the two largest volcanic eruptions on Earth in the past 2000 years. In addition to this major caldera-producing eruption of comendite magma, the Changbaishan Volcano also erupted smaller-scale comendite at ~5 ka and trachyte at ~0.3 ka. Here we report U-Th disequilibrium ages of zircons from pumice and lava of the pre-caldera (~5 ka), syn-caldera (the 1 ka Millennium eruption), and post-caldera (~0.3 ka) events. The zircon isochron ages are 12.4+/-1.5 ka (2σ, n=29, MSWD=0.87) for the 5 ka eruption, and 12.2 +/- 1.7 ka (n=16, MSWD=1.0) for the 1 ka eruption which is in agreement within uncertainty with a previously reported isochron age of 10.6+/-1.6 ka (n=11, MSWD=0.61) for a different 1 ka sample (Zou et al., 2010, Lithos). The zircon storage times in the pre-eruptive magma body are thus 7 ka for the pre-caldera eruption and 11 ka for the syn-caldera eruption. Furthermore, identical zircon ages in pre-caldera and syn-caldera rocks suggest that both comenditic eruptions tapped the same magma body. In contrast to the uniform zircon ages for the 5 ka and 1 ka comenditic eruptions, zircon ages for the post-caldera 0.3 ka trachytic eruption define multimodal age populations. The youngest peak for the 0.3 ka eruption is 2.6+/-1.8 ka (n=11, MSWD=0.90), an older peak is 130+/-10 ka (n=13, MSWD=1.7), and the oldest population is ≧230 ka (near U-Th equilibrium). The youngest mode represents zircon microphenocrysts (autocrysts) that crystallized in a trachytic magma chamber in the built-up to the 0.3 ka eruption, whereas the 130 ka and ≧230 ka zircons are interpreted as antecrysts derived from earlier episodes of magmatism. If this interpretation is correct, the zircon storage time in the eruptible magma body for the 0.3 ka eruption is extremely short at 2.3+/-1.8 ka. The distinct multimodal zircon age distributions for the 0.3 ka eruption of trachytic magma

  17. The Job Canyon caldera, Stillwater Range, west-central Nevada: A steeply tilted late Oligocene igneous complex

    SciTech Connect

    John, D.A.; Pickthorn, W.J. )

    1993-04-01

    The Job Canyon caldera (JCC) and underlying IXL pluton are the oldest ([approx]29 Ma) and most well preserved parts of the Stillwater caldera complex (SCC), southern Stillwater Range (SR). SCC consists of three partly overlapping calderas JCC, Poco Canyon caldera (PCC), and Elevenmile Canyon caldera (ECC) and the underlying IXL and Freeman Creek plutons. SCC was steeply tilted to the west or east by earliest Miocene extensional faulting exposing sections of late Oligocene rocks as thick as 10 km. JCC consists of 2 structural blocks separated by an E-striking fault zone that was later reactivated to form the north margins of PCC and ECC. The north block of JCC consists of 1.1 km of dacite and andesite lavas, overlain by 2 km of rhyolitic ash-flow tuff locally interbedded with megabreccia, overlain by 2.5 km of dacite and andesite lavas. The south block of JCC is broken into 5 small fault blocks that have thinner sequences of caldera fill consisting of rhyolite ash-flow tuff underlain locally by dacite and andesite lavas. Caldera collapse was accomplished both by large-scale displacement along steep bounding faults and by small displacement along high-angle faults in the interior of the caldera. Hydrothermal alteration of caldera fill is pervasive within JCC and in the upper part of the IXL pluton and appears to predate formation of PCC and tilting of SCC. Most alteration is propylitic and intensity of alteration increases downwards within caldera fill. Preliminary whole-rock [delta][sup 18]O values indicate that hydrothermal fluids were dominated by meteoric water. These values increase upwards to +5 to [minus]3 permil near the top suggesting that there was a steep temperature gradient with temperature increasing with depth. SCC was steeply tilted at about 24--23 Ma shortly following formation of PCC and ECC at about 25--24 Ma. Late Miocene--Holocene Basin and Range faulting has uplifted the SR exposing the older extensional faults and fossil hydrothermal system.

  18. The Late Cretaceous Middle Fork caldera, its resurgent intrusion, and enduring landscape stability in east-central Alaska

    USGS Publications Warehouse

    Bacon, Charles R.; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Slack, John F.

    2014-01-01

    The Middle Fork is a relatively well preserved caldera within a broad region of Paleozoic metamorphic rocks and Mesozoic plutons bounded by northeast-trending faults. In the relatively downdropped and less deeply exhumed crustal blocks, Cretaceous–Early Tertiary silicic volcanic rocks attest to long-term stability of the landscape. Within the Middle Fork caldera, the granite porphyry is interpreted to have been exposed by erosion of thick intracaldera tuff from an asymmetric resurgent dome. The Middle Fork of the North Fork of the Fortymile River incised an arcuate valley into and around the caldera fill on the west and north and may have cut down from within an original caldera moat. The 70 Ma land surface is preserved beneath proximal outflow tuff at the west margin of the caldera structure and beneath welded outflow tuff 16–23 km east-southeast of the caldera in a paleovalley. Within ∼50 km of the Middle Fork caldera are 14 examples of Late Cretaceous (?)–Tertiary felsic volcanic and hypabyssal intrusive rocks that range in area from <1 km2 to ∼100 km2. Rhyolite dome clusters north and northwest of the caldera occupy tectonic basins associated with northeast-trending faults and are relatively little eroded. Lava of a latite complex, 12–19 km northeast of the caldera, apparently flowed into the paleovalley of the Middle Fork of the North Fork of the Fortymile River. To the northwest of the Middle Fork caldera, in the Mount Harper crustal block, mid-Cretaceous plutonic rocks are widely exposed, indicating greater total exhumation. To the southeast of the Middle Fork block, the Mount Veta block has been uplifted sufficiently to expose a ca. 68–66 Ma equigranular granitic pluton. Farther to the southeast, in the Kechumstuk block, the flat-lying outflow tuff remnant in Gold Creek and a regionally extensive high terrace indicate that the landscape there has been little modified since 70 Ma other than entrenchment of tributaries in response to post–2

  19. Evidence for a deep crustal hot zone beneath the Diamante Caldera-Maipo volcanic complex, Southern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Drew, D.; Murray, T.; Sruoga, P.; Feineman, M. D.

    2010-12-01

    Subduction zones at convergent continental margins are dynamic environments that control the long-term evolution and interaction of the crust and residual mantle. The Southern Volcanic Zone (SVZ) of the Andes formed as a result of volcanic activity and uplift due to the eastern subduction of the Nazca Plate beneath the South American Plate. Maipo and neighboring volcanoes in the northern SVZ are unique in that the continental crust is exceptionally thick (~50 km), causing the mantle-derived magma to stall and interact with the crust at multiple levels prior to eruption. Maipo is an andesite/dacite stratovolcano that lies within the Diamante Caldera, which formed approximately 450 Ka during an explosive eruption that produced 350 km3 of rhyolitic ignimbrite. Following post-caldera reactivation Maipo has undergone a complex evolution, first erupting 86 Ka and experiencing seven eruptive events extending to historic times. The Maipo lavas represent a unique geochemical evolution resulting from fractional crystallization, crustal assimilation, and magma mixing in the lower and upper crust. By analyzing trace element compositions, major element compositions, and 87Sr/86Sr ratios in sixteen samples, we have begun to constrain the complex geochemical processes that formed this volcano and contribute to the differentiation of Andean continental crust. The major element analysis of the samples reflects the extent of differentiation resulting in dacite to andesite volcanic rock, and was used to distinguish between the seven eruptive events. The trace elements and Sr isotope ratios reflect the composition of the source rock, the extent of crustal assimilation, and the crystallization of minerals from the resulting mantle derived magma. The SiO2 weight percent (ranging from 54.3 to 68.5%) and 87Sr/86Sr ratios (0.7048 to 0.7057) show a linear correlation nearly identical to that reported by Hildreth and Moorbath (1988, CMP 98, 455-489) for nearby Cerro Marmolejo, suggesting a

  20. Eruptive history, geochronology, and post-eruption structural evolution of the late Eocene Hall Creek Caldera, Toiyabe Range, Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2017-02-24

    The magmatic, tectonic, and topographic evolution of what is now the northern Great Basin remains controversial, notably the temporal and spatial relation between magmatism and extensional faulting. This controversy is exemplified in the northern Toiyabe Range of central Nevada, where previous geologic mapping suggested the presence of a caldera that sourced the late Eocene (34.0 mega-annum [Ma]) tuff of Hall Creek. This region was also inferred to be the locus of large-magnitude middle Tertiary extension (more than 100 percent strain) localized along the Bernd Canyon detachment fault, and to be the approximate location of a middle Tertiary paleodivide that separated east and west-draining paleovalleys. Geologic mapping, 40Ar/39Ar dating, and geochemical analyses document the geologic history and extent of the Hall Creek caldera, define the regional paleotopography at the time it formed, and clarify the timing and kinematics of post-caldera extensional faulting. During and after late Eocene volcanism, the northern Toiyabe Range was characterized by an east-west trending ridge in the area of present-day Mount Callaghan, probably localized along a Mesozoic anticline. Andesite lava flows erupted around 35–34 Ma ponded hundreds of meters thick in the erosional low areas surrounding this structural high, particularly in the Simpson Park Mountains. The Hall Creek caldera formed ca. 34.0 Ma during eruption of the approximately 400 cubic kilometers (km3) tuff of Hall Creek, a moderately crystal-rich rhyolite (71–77 percent SiO2) ash-flow tuff. Caldera collapse was piston-like with an intact floor block, and the caldera filled with thick (approximately 2,600 meters) intracaldera tuff and interbedded breccia lenses shed from the caldera walls. The most extensive exposed megabreccia deposits are concentrated on or close to the caldera floor in the southwestern part of the caldera. Both silicic and intermediate post-caldera lavas were locally erupted within 400 thousand

  1. Mechanisms of crustal uplift and subsidence at the Yellowstone caldera, Wyoming

    USGS Publications Warehouse

    Dzurisin, D.; Yamashita, K.M.; Kleinman, J.W.

    1994-01-01

    Leveling surveys in 1923, 1976, and each year from 1983 to 1993 have shown that the east-central part of the Yellowstone caldera, near the base of the Sour Creek resurgent dome, rose at an average rate of 14??1 mm/year from 1923 to 1976 and 22??1 mm/year from 1976 to 1984. In contrast, no detectable movement occurred in the same area from 1984 to 1985 (-2??5 mm/year), and from 1985 to 1993 the area subsided at an average rate of 19??1 mm/year. We conclude that uplift from 1923 to 1984 was caused by: (1) pressurization of the deep hydrothermal system by fluids released from a crystallizing body of rhyolite magma beneath the caldera, then trapped beneath a self-sealed zone near the base of the hydrothermal system; and (2) aseismic intrusions of magma into the lower part of the sub-caldera magma body. Subsidence since 1985 is attributed to: (1) depressurization and fluid loss from the deep hydrothermal system, and (2) sagging of the caldera floor in response to regional crustal extension. Future intrusions might trigger renewed eruptive activity at Yellowstone, but most intrusions at large silicic calderas seem to be accommodated without eruptions. Overpressurization of the deep hydrothermal system could conceivably result in a phreatic or phreatomagmatic eruption, but this hazard is mitigated by episodic rupturing of the self-sealed zone during shallow earthquake swarms. Historical ground movements, although rapid by most geologic standards, seem to be typical of inter-eruption periods at large, mature, silicic magma systems like Yellowstone. The greatest short-term hazards posed by continuing unrest in the Yellowstone region are: (1) moderate to large earthquakes (magnitude 5.5-7.5), with a recurrence interval of a few decdes; and (2) small hydrothermal explosions, most of which affect only a small area (<0.01 km2), with a recurrence interval of a few years. ?? 1994 Springer-Verlag.

  2. Volcano hazards implications of rhyolitic melt or magma at shallow depth under Krafla Caldera

    NASA Astrophysics Data System (ADS)

    Eichelberger, John; Papale, Paolo; Sigmundsson, Freysteinn

    2014-05-01

    Krafla Caldera in northern Iceland is a well-monitored and extensively drilled caldera system that underwent a major rifting and eruption episode in 1975 to 1984. The recent surprise discovery of ~900oC "magma" (crystal+melt felsite and possibly crystal-poor rhyolite magma as well) in the Iceland Deep Drilling Project borehole #1 (IDDP-1) in 2009, as well as previous less publicized drilling encounters with rhyolite melt, challenges our understanding of caldera unrest. Further drilling may lead to improved understanding of volcanic hazards in calderas and better interpretation of precursory deformation and seismic signals that may herald eruption. Salient features of the IDDP-1 discovery relative to volcanic hazards are: 1. The rhyolite magma is at only 2.1 km depth. If such magma were known to have intruded to such shallow depth in a populated caldera, there would likely be serious discussion of evacuating the population. 2. The drill site was chosen because magma was not expected at shallow depth, based on the occurrence of seismicity to twice that depth beneath the site during the last eruption, and on 3-D resistivity structure. 3. The eruption was entirely basaltic; no rhyolite reached the surface. Thus, rhyolite magma intruded to shallow depth and was stored there without erupting and without being detected either geophysically or petrologically. An alternative, which seems unlikely, is that the rhyolite evolved from basalt or by basalt-induced partial melting after 1984. If it is possible to return to this magmatic body through further drilling, as recently proposed to the International Continental Scientific Drilling Program (ICDP) by the Krafla Magma Drilling Project, complementary field, laboratory experiments, and computational experiments can be conducted to understand the "source" and how it produces deformation, seismic, and geochemical signals at the surface. Experiments could include injection of fluid with tracers directly into the melt-bearing zone

  3. Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future eruptions

    NASA Astrophysics Data System (ADS)

    Nooner, Scott L.; Chadwick, William W.

    2009-02-01

    Since 2000, ambient seawater pressure has been precisely measured at five seafloor benchmarks inside the summit caldera at Axial Seamount to monitor volcanic inflation, using a remotely operated vehicle to deploy a mobile pressure recorder (MPR) in campaign-style surveys. Additionally, seawater pressure has been measured at the caldera center with multiyear deployments of continuously recording bottom pressure recorders (BPRs). These pressure data (converted to depth) are currently the only measurements of volcanic inflation at a submarine volcano. We show new data spanning 2004 to 2007 documenting steady inflation of 12.7 ± 0.4 cm/a at the caldera center. The spatial pattern of uplift is consistent with magma storage in a shallow reservoir underlying the caldera at a depth of ˜3.5 km, and the current uplift rate implies that magma is being supplied to the volcano at a rate of ˜7.5 × 106 m3/a. However, the supply rate immediately after the last eruption in 1998 was significantly higher, and the temporal pattern of uplift at Axial caldera appears to be governed by at least two processes occurring at very different time scales. We interpret the high uplift rates immediately following the 1998 eruption as either due to influx from one or more small satellite magma bodies or as the result of viscoelastic relaxation and/or poroelastic behavior of the crust surrounding the shallow magma chamber, and we present a numerical model which supports the latter interpretation. In contrast, we interpret the current lower uplift rate as due to a steady longterm magma supply from the mantle. This two component uplift pattern has not been observed on land volcanoes, suggesting that magma supply/storage processes beneath this ridge axis volcano differ from volcanoes on land (including Iceland). To reconstruct the uplift history at Axial, we fit the combined MPR and BPR data to two possible uplift scenarios, with which we forecast that the next eruption at Axial is likely to occur

  4. Measurement of high turbidity water behavior by ADCP at Izena Caldera in Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Furuta, S.; Arai, R.; Yamazaki, T.

    2012-12-01

    Hydrothermal processes associated with spreading centers of plate-tectonics form hydrothermal activities and the resulted seafloor massive sulfide (SMS) deposits. Given that the SMS deposits found in the western Pacific have been considered to be potential sources of gold, silver, copper, zinc, and lead, there is a strong possibility that they will be mined near future. In order to take measures against environmental impacts during the mining of SMS deposits, it is important to measure components of hydrothermal origin with high temporal and spatial resolution on site, and to understand the mass circulation and transfer systems around the mining area. The Acoustic Doppler Current Profiler (ADCP) is effective tool for measurement of current field in water column in general. In addition, it is also useful for detection of turbidity profile in the water column simultaneously, applying an acoustic propagation model to the data. Izena Caldera, which is 3 km in short, 6 km in long axes and is generically from1,600 m to 1,700 m in depth, is located at the northwest of Okinawa Island. There both attractive SMS deposits and active hydrothermal vent systems have been confirmed. Because of the active vent systems and a bowl-like geographical structure, a quite unique mass circulation and transfer background condition is expected in Izena Caldera. The mining operation will add plenty of suspended materials into the background condition. For a primary understanding of the background condition, the authors analyzed the ADCP data and found two high-turbidity water zones in Izena Caldera and their behavior relationships with the current structure. The vertical downward current affects one of the high-turbidity zones around 1,220 m in depth. The current velocity against north-south direction and east-west direction affects the other high-turbidity zone 1,550 m in depth. Also the zones are recognized the higher synchronization with the lumi-solar diurnal tide, about 24 hours. The

  5. Volcanic-Plutonic Connection in the Tilzapotla Caldera Ignimbrites in Southern Mexico

    NASA Astrophysics Data System (ADS)

    Martiny, B. M.; Moran Zenteno, D. J.; Roberge, J.; Zuñiga-Lagunes, L.; Flores-Huerta, D.; Solari, L.; Lopez-Martinez, M.

    2011-12-01

    Age and compositional similarities in broad exposures of volcanic and plutonic rocks in the central sector of the late Eocene-early Oligocene silicic volcanic province in southern Mexico provide an excellent opportunity for studying the genetic connection between the volcanic and plutonic realms. The Taxco-Tilzapotla sector is of particular interest given the presence of a NW-SE oriented elliptical dome structure (50 x 35 km) that encloses the Tilzapotla caldera, three medium-grained plutons one of which contains mafic magmatic enclaves, hypabyssal intrusive bodies, rhyolitic domes, and voluminous ignimbrites. North-south trending Laramide folds in Cretaceous marine sedimentary rocks were disrupted when late Eocene magmas intruded into the upper crust, forming the dome and producing opposite plunges in pre-dome fold axes north and south of the elliptical structure. We have obtained LA-ICPMS zircon U-Pb and Ar-Ar mineral ages as well as electron microscope analyses of different magmatic facies in order to: better understand the chronology of magmatic evolution in the area; examine the possible genetic relationship between the plutonic rocks and the principal ignimbritic units, in particular the crystal-rich units; and determine possible compositional differences that might suggest the injection of different batches of magma. U-Pb crystallization ages of 37-36 Ma were determined on zircons from different facies of the Coxcatlan granodiorite. Slightly younger zircon U-Pb crystallization ages were obtained for ignimbrites from the Tilzapotla caldera (36-35 Ma) and for the more mafic Chiautle pluton (34.6 Ma) that is exposed near the southern boundary of the dome structure. Earlier work by our group established caldera collapse and extrusion of the Tilzapotla ignimbrite at 34.3 Ma. Ar-Ar dating gives cooling ages of 33 Ma in sanidine for an intracaldera ignimbrite and some late stage silicic and intermediate magmas yielded mainly between 33-32 Ma. The new and previous

  6. Evolution of rhyolitic magma from Ata caldera: progressive melting model for chemical variation

    NASA Astrophysics Data System (ADS)

    Yokose, H.; Nakamura, Y.

    2001-12-01

    In order to understand a magmatic evolution of caldera forming rhyolitic eruption, essential fragments from Ata caldera, which is one of the four gigantic Quaternary caldera in Kyushu Japan, have been analyzed on bulk rock and glass chemistry. Rhyolitic magmas formed Ata caldera have two different rock types: pyroxene dacite and hornblende rhyolite. Phenocrystic minerals of hornblende rhyolite consists horblende, plagioclase, and quartz. On the other hand, pyroxene dacite is plagioclase as a main phenocrystic mineral, accompanied by small amounts of fine grain pyroxenes. Concentration of LIL elements, such as K2O, Ba, Na2O, Rb, in both types are the same level, but concentration of HFS elements, such as Nb, Y, Zr and Zn, decrease with increasing SiO2.Geochemical contrast between them are also obvious in the diagram of REE abundance pattern. REE patterns of hornblende rhyolites have lower than basaltic rocks and are depleted in MREE. REE patterns of pyroxene dacite are equal or even lower than that of basalt and higher than hornblende dacite. The REE pasterns imply that hornblende, which has high distribution coefficients in MREE should be residual mineral for hornblende dacite and is not liquidus facies in pyroxene dacites. Rhyolitic magmas are produced by the dehydration melting reaction which can be drawn as following equation: Pl(1) + Bi + Qz + K-feld + Hbl to melt(1) + Pl(2) + Qz + Hbl + Opx. In this reaction, accessory minerals may not be involved due to their small solubility such low temperature. When the source region become hotter, then the reaction advance further. Above equation will change to following one: Pl(2) + Qz + Hbl +- Opx +- Mt to melt(2) + Pl(3) + Cpx + Opx + Mt Incompatible elements may increase in the melt due to breaking down of hornblende and dissolving accessory minerals in more higher condition, both minerals have high distribution coefficients for HFSE. Geochemical characteristics of essential fragments from Ata caldera arranged in the

  7. Hydrological sulfur cycling in the volcanic complex of Valles Caldera - geochemical and astrobiological implications for Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, A.; Borrok, D. M.; Vaniman, D. T.; Goff, F.

    2012-12-01

    Sulfate minerals on the Martian surface provide compelling evidence of past fluid movement, chemistry, and potential habitability. However, we are uncertain about the relative influence of concurrent volcanic sulfur emissions, aqueous sulfide weathering, and climate conditions on the sulfur cycle, and we poorly understand the hydrological cycle of sulfur transport on Mars. Therefore, the goal of our research is to describe and quantify the active and historical hydrological sulfur cycle in the Valles Caldera, a ≤ 1.25 Myr giant, circular, volcanic complex located in northern New Mexico, and to compare this to available data for the sulfur cycle on Mars. The rocks of Valles Caldera (e.g., rhyolite lavas and pyroclastic deposits, intracaldera sediments and breccias, pre-caldera dacite and andesite, etc.) show wide variations in S content from 0.003 up to 3.41 wt% in fresh to hydrothermally altered units, respectively (Goff et al. 2007). Additionally, an acid-sulfate hot spring system issues from the western flank of the resurgent dome inside Valles Caldera and significantly increases the sulfate concentrations in local springs (up to 3,000 mg/L; Szynkiewicz et al. 2012). Using historical USGS stream flow measurements and sulfate concentrations (1958 to 1990), we calculated that in average ~16.4 tons of dissolved sulfate is annually removed from this volcanic system via the hydrological cycle. Initial S isotope mass balance calculations indicate that ~70 % of the dissolved sulfate (~11.5 tons/year) is likely contributed by the acid-sulfate hot springs and ~30 % (~4.9 tons/year) comes from dissolution/oxidation of S-enriched bedrock and atmospheric wet deposition. Although the acid-sulfate hot spring system is an ideal habitat for microbial S metabolism, the preservation of S isotope biosignatures is poor in geological samples because of prevailing contributions of S species from magmatic sources. In the next step of our research, we will 1) quantify the present

  8. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: summit flows, tephra, and caldera collapse

    NASA Astrophysics Data System (ADS)

    Harpel, Christopher J.; Kyle, Philip R.; Esser, Richard P.; McIntosh, William C.; Caldwell, David A.

    2004-12-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.

  9. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse

    USGS Publications Warehouse

    Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.

    2004-01-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.

  10. Relation of Mercury, Uranium, and Lithium Deposits to the McDermitt Caldera Complex, Nevada-Oregon

    USGS Publications Warehouse

    Rytuba, James J.; Glanzman, Richard K.

    1978-01-01

    The McDermitt caldera complex, located along the Nevada-Oregon border, is a Miocene collapse structure 45 kilometer in diameter. Large-volume rhyolitic and peralkaline ash-flow tuffs were erupted from 17.9 to 15.8 m.y. ago, leading to the formation of overlapping and nested calderas. Emplacement of rhyolitic ring domes, located primarily along the western margin of the calderas, represents the last phase of volcanic activity. The complex is the site of large deposits of mercury, an are deposit and several occurrences of uranium, and widespread occurrences of lithium. Mercury deposits at Cordero, McDermitt, Bretz, Ruja, and Opalite occur along ring fractures in sedimentary rocks that fill the calderas. Near the deposits the rocks are altered to zeolites and within the ore zones to potassium feldspar and silicate minerals. Although the mercury deposits contain anomalous concentrations of uranium, the most important uranium occurrences are restricted to rhyolitic ring domes emplaced along the western margin of the calderas. Lithium occurrences are located in tuffaceous rocks that are altered to zeolites and potassium feldspar. Concentrations of lithium ranging from 0.1 to 0.68 percent are associated with the clay mineral hectorite. The rhyolitic rocks erupted from the McDermitt caldera complex are enriched in mercury, uranium, and lithium and are likely source rocks for these elements in the ore deposits. Tuffaceous caldera fill-sediment averages 0.29 ppm mercury, 22 ppm uranium, and 236 ppm lithium; large-volume ash-flow tuffs contain up to 0.26 ppm mercury, 20 ppm uranium, and 300 ppm lithium.

  11. Crust and upper mantle P wave velocity structure beneath Valles Caldera, New Mexico: Results from the Jemez teleseismic tomography experiment

    NASA Astrophysics Data System (ADS)

    Steck, Lee K.; Thurber, Clifford H.; Fehler, Michael C.; Lutter, William J.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G.; Sessions, Robert

    1998-10-01

    New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative P wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of -17% beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of -23% in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities (-15%) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10%. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred.

  12. History of surface displacements at the Yellowstone Caldera, Wyoming, from leveling surveys and InSAR observations, 1923-2008

    USGS Publications Warehouse

    Dzurisin, Daniel; Wicks, Charles W.; Poland, Michael P.

    2012-01-01

    Modern geodetic studies of the Yellowstone caldera, Wyoming, and its extraordinary tectonic, magmatic, and hydrothermal systems date from an initial leveling survey done throughout Yellowstone National Park in 1923 by the U.S. Coast and Geodetic Survey. A repeat park-wide survey by the U.S. Geological Survey (USGS) and the University of Utah during 1975-77 revealed that the central part of the caldera floor had risen more than 700 mm since 1923, at an average rate of 14±1 mm/yr. From 1983 to 2007, the USGS conducted 15 smaller surveys of a single level line that crosses the northeast part of the caldera, including the area where the greatest uplift had occurred from 1923 to 1975-77. The 1983 and 1984 surveys showed that uplift had continued at an average rate of 22±1 mm/yr since 1975-77, but no additional uplift occurred during 1984-85 (-2±5 mm/yr), and during 1985-95 the area subsided at an average rate of 19±1 mm/yr. The change from uplift to subsidence was accompanied by an earthquake swarm, the largest ever recorded in the Yellowstone area (as of March 2012), starting in October 1985 and located near the northwest rim of the caldera. Interferometric synthetic aperture radar (InSAR) images showed that the area of greatest subsidence migrated from the northeast part of the caldera (including the Sour Creek resurgent dome) during 1992-93 to the southwest part (including the Mallard Lake resurgent dome) during 1993-95. Thereafter, uplift resumed in the northeast part of the caldera during 1995-96, while subsidence continued in the southwest part. The onset of uplift migrated southwestward, and by mid-1997, uplift was occurring throughout the entire caldera (essentially rim to rim, including both domes). Consistent with these InSAR observations, leveling surveys indicated 24±3 mm of uplift in the northeast part of the caldera during 1995-98. The beginning of uplift was coincident with or followed shortly after an earthquake swarm near the north caldera rim

  13. Geochemistry of low-temperature springs northwest of Yellowstone caldera: Seeking the link between seismicity, deformation, and fluid flow

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, Deborah; van Soest, Matthias C.; Huebner, Mark; Fitzpatrick, John; Revesz, Kinga M.

    2006-01-01

    A comprehensive geochemical survey of springs outside the northwest margin of the Yellowstone caldera was undertaken in 2003 and 2004. This survey was designed to detect: (1) active leakage from a huge reservoir of CO2 gas recently postulated to extend from beneath the caldera into this area; and (2) lingering evidence for subsurface flow of magmatic fluids into this area during the 1985 seismic swarm and concomitant caldera subsidence. Spring temperatures are low (< 15 °C), but two large-discharge springs contain 14C-dead carbon that can be identified as magmatic from calculated end-member values for δ13C(dead) and 3He/C(dead) of − 4‰ and 1 × 10− 10, respectively, similar to values for intra-caldera fumarolic and hot-spring gases. However, the combined discharge of magmatic C is only 5.4 tonnes/day, < 0.1% of the total output from Yellowstone. The two springs have slightly elevated 3He/4He ratios near 1 RA and anomalous concentrations of Cl, Li, and B, and appear to represent minor leakage of gas-depleted, thermal waters out of the caldera. The small CO2 signal detected in the springs is difficult to reconcile with a large underlying reservoir of gas in faulted and seismically active terrain. When considered with analyses from previous decades, the results provide no evidence to associate the ten-year period of caldera deflation that began in 1985 with expulsion of magmatic fluids through the caldera rim in this area.

  14. Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment

    SciTech Connect

    Steck, Lee K.; Fehler, Michael C.; Roberts, Peter M.; Baldridge, W. Scott; Stafford, Darrik G.; Lutter, William J.; Sessions, Robert

    1998-10-01

    New results are presented from the teleseismic component of the Jemez Tomography Experiment conducted across Valles caldera in northern New Mexico. We invert 4872 relative {ital P} wave arrival times recorded on 50 portable stations to determine velocity structure to depths of 40 km. The three principle features of our model for Valles caldera are: (1) near-surface low velocities of {minus}17{percent} beneath the Toledo embayment and the Valle Grande, (2) midcrustal low velocities of {minus}23{percent} in an ellipsoidal volume underneath the northwest quadrant of the caldera, and (3) a broad zone of low velocities ({minus}15{percent}) in the lower crust or upper mantle. Crust shallower than 20 km is generally fast to the northwest of the caldera and slow to the southeast. Near-surface low velocities are interpreted as thick deposits of Bandelier tuff and postcaldera volcaniclastic rocks. Lateral variation in the thickness of these deposits supports increased caldera collapse to the southeast, beneath the Valle Grande. We interpret the midcrustal low-velocity zone to contain a minimum melt fraction of 10{percent}. While we cannot rule out the possibility that this zone is the remnant 1.2 Ma Bandelier magma chamber, the eruption history and geochemistry of the volcanic rocks erupted in Valles caldera following the Bandelier tuff make it more likely that magma results from a new pulse of intrusion, indicating that melt flux into the upper crust beneath Valles caldera continues. The low-velocity zone near the crust-mantle boundary is consistent with either partial melt in the lower crust or mafic rocks without partial melt in the upper mantle. In either case, this low-velocity anomaly indicates that underplating by mantle-derived melts has occurred. {copyright} 1998 American Geophysical Union

  15. Superposed local and regional paleostresses: Fault-slip analysis of Neogene extensional faulting near coeval caldera complexes, Yucca Flat, Nevada

    SciTech Connect

    Minor, S.A.

    1995-06-10

    Numerous reduced stress tensors are computed by multiple inversions of 906 temporally and spatially partitioned fault-slip data from the Yucca Flat region in the southwest Nevada volcanic field to constrain the Neogene paleostress and faulting history and to investigate how the regional tectonic stress field was affected by local caldera magmatism. Perturbed, shallow (<400 m), pre-11 Ma paleostress configurations, determined west and northwest of present (post-11 Ma) Yucca Flat basin, existed during mild extensional faulting and are attributed to superposition of transient caldera-magmatic stresses on the regional stress field. A brief ({approximately} 0.5 m.y.) change to a strike-slip stress state occurred at about 13 Ma and was accompanied by small-offset, quasi-conjugate strike-slip faulting. This stress state was most distinct, relative to a normalslip state, near calderas where stress solutions and fault relations indicate closer affinities to a reverse-slip state. Inferred 11.6-11.45 Ma paleostress tensors indicate radial tension associated with either initial caldera collapse or local post-collapse topographic modification of the stress field. Post-11 Ma normal-slip stress tensors are associated with normal- and oblique-slip faults that accommodated subsidence and eastward extension of Yucca Flat basin away from the caldera complexes. These tensors do not indicate stress modifications due to residual caldera-related effects and thus were used to infer post-11 Ma regional stress changes. The stress field has rotated as much as 65{degrees} clockwise since 11 Ma during extensional development of Yucca Flat basin, with most of the rotation and extension occurring before about 8.5 Ma. Results suggest that shallow magmatism and caldera development can strongly alter extensional tectonic stress fields, fault patterns, and slip directions in the uppermost crust out to distances of roughly two magma chamber radii away from a magma body. 59 refs., 11 figs., 2 tabs.

  16. Is there a geochemical link between volcanic and plutonic rocks in the Organ Mountains caldera?

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Davidson, J.

    2013-12-01

    Results from separate volcanic and plutonic studies have led to inconsistent conclusions regarding the origins and thus links between volcanic and plutonic systems in continental arcs and the magmatic processes and time scales responsible for their compositional variations. Some have suggested that there is a geochemical and geochronological disconnect between volcanic and plutonic rocks and hence have questioned the existence of magma mush columns beneath active volcanoes. Investigating contemporary volcanic and plutonic rocks that are spatially connected is thus critical in exploring these issues. The ca. 36 Ma Organ Mountains caldera in New Mexico, USA, represents such a system exposing contemporaneous volcanic and plutonic rocks juxtaposed at the surface due to tilting during extensional tectonics along the Rio Grande Rift. Detailed geologic and structural mapping [1] and 40Ar/39Ar ages of both volcanics and plutons [2] demonstrate the spatial and temporal connection of both rock types with active magmatism over >2.5 myr. Three caldera-forming ignimbrites erupted within 600 kyr [2] from this system with a total erupted volume of 500-1,000 km3 as well as less voluminous pre- and post-caldera trachyte and andesite lavas. The ignimbrite sequence ranges from a crystal-poor, high-SiO2 rhyolite at the base to a more crystal-rich, low-SiO2 rhyolite at the top. Compositional zoning with quartz-monzonite at the base grading to syenite and alaskite at the top is also found in the Organ Needle pluton, the main intrusion, which is interpreted to be the source for the ignimbrites [1]. Other contemporaneous and slightly younger plutons have dioritic to leucogranitic compositions. We examined both volcanic and plutonic rocks with petrography and their textural variations with color cathodoluminescence, and used whole rock element and Sr, Nd and Pb isotope geochemistry to constrain magma compositions and origins. Electron microprobe analyses on feldspars have been completed to

  17. Volcanic rocks of the McDermitt Caldera, Nevada-Oregon

    USGS Publications Warehouse

    Greene, Robert C.

    1976-01-01

    The McDermitt caldera, a major Miocene eruptive center is locatedin the northernmost Great Basin directly west of McDermitt, Nev. The alkali rhyolite of Jordan Meadow was erupted from the caldera and covered an area of about 60,000 sq km; the volume of rhyolite is about 960 cubic km. Paleozoic and Mesozoic sedimentary rocks and Mesozoic granodiorite form the pre-Tertiary Basement in this area.. Overlying these is a series of volcanic rocks, probably all of Miocene age. The lowest is a dacite welded tuff, a reddish-brown rock featuring abundant phenocrysts of plagioclase, hornblende, and biotite; next is a heterogeneous unit consisting of mocks ranging from basalt to dacite. Overlying these is the basalt and andesite of Orevada View, over 700 m thick and consisting of a basal unit of cinder agglutinate overlain by basalt and andesite, much of which contains conspicuous large plagioclase phenocrysts. Near Disaster Peak and Orevada View, the basalt and andesite are overlain by additional units of silicic volcanic rocks. The lower alkali rhyolite welded tuff contains abundant phenocrysts of alkali feldspar and has a vitric phase with obvious pumice and shard texture. The rhyolite of Little Peak consists of a wide variety of banded flows or welded ruffs and breccias, mostly containing abundant alkali feldspar phenocrysts. It extends south from Disaster Peak and apparently underlies the alkali rhyolite of Jordan Meadow. The quartz latite of Sage Creek lies north of Disaster Peak and consists mostly of finely mottled quartz latite with sparse minute plagioclase phenocrysts. Volcanic rock units in the east part of the area near the Cordero mine include trachyandesite, quartz labile of McConnell Canyon, and rhyolite of McCormick Ranch. The trachyandesite is dark gray and contains less than 1 percent microphenocrysts plagioclase. It is the lowest unit exposed and may correlate with part of the basalt and andesite of Orevada View. The quartz latite of McConnell Canyon is

  18. Prolonged history of silicic peralkaline volcanism in the eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Bohrson, Wendy A.; Reid, Mary R.; Grunder, Anita L.; Heizler, Matthew T.; Harrison, T. Mark; Lee, Jeffrey

    1996-05-01

    Socorro Island, Mexico, is an alkaline and peralkaline volcanic island located in the eastern Pacific Ocean on a mid-ocean ridge spreading center that was abandoned at ˜3.5 Ma. Silicic peralkaline rocks comprise up to 80% of the surface of the island, rendering Socorro virtually unique in the Pacific Ocean. Precise, replicate 40Ar/39Ar ages of 21 peralkaline trachytes and rhyolites reveal a history of episodic volcanic activity from ˜540 to 370 ka that may have culminated with caldera formation; repose periods between these episodes may have had maximum duration of ˜30 kyr. After up to 200 kyr of quiescence, 40Ar/39Ar ages indicate that postcaldera silicic peralkaline activity commenced by 180 ka, forming the Cerro Evermann Formation. Postcaldera mafic alkaline lavas of the Lomas Coloradas Formation erupted dominantly between 70 and 150 ka based upon relative age relations. The dominant lithology of precaldera and syncaldera silicic peralkaline deposits on Socorro is nonfragmental and nonvesicular and lacks lithic fragments and fiamme; despite this, numerous lines of evidence including welding zonation, presence of a proximal ignimbrite or co-ignimbrite deposit, association with a caldera, and compositional heterogeneity within eruptive units suggest that they are dominantly ash flow tuffs. A change in eruptive style, from predominantly explosive to predominantly effusive, followed caldera formation and suggests that a change in the efficacy of magma degassing may be linked to caldera formation. On the basis of the presence of a caldera, the magma chamber associated with Socorro Island is shallow and probably resides within the upper oceanic crust or the edifice. This together with a prolonged history of silicic magmatism indicates that intrusion of mafic magma maintained thermal viability of the magmatic plumbing system. The minimum calculated growth rate for the entire volcanic edifice (7 × 10-4 km3/yr) exceeds those of nonhotspot off-axis volcanoes in the

  19. Magma plumbing system at the beginning of repeated caldera eruption: A case study on Aso-1 erupted about 270 ky ago from Aso caldera, SW Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Hoshizumi, H.; Miyabuchi, Y.

    2015-12-01

    In order to understand the commencement of magma plumbing system of a polygenetic caldera, we started petrological study on the earliest eruptive product of Aso caldera, SW Japan. Aso caldera is one of the active volcano in Japan which have produced four stages (Aso-1, -2, -3, -4) of large-scale pyroclastic flow deposits 270 to 90 ky. ago. A suite of samples were collected from the bottom of Aso-1 pyroclastic flow deposit and from the underlying tephra layer (Ono et al., 1979). The tephra comprises more than 10 pumice fall units inter-layered by dark gray volcanic ash. For whole rock chemistry, coarser pumice fragments were separated. For mineral and glass chemistry, phenocrysts and glass particles were handpicked from the sieved 500-1000 um fractions under a binocular microscope. This fraction consist of plagioclase, orthopyroxene, variably vesiculated volcanic glass fragments, and clinopyroxene phenocrysts. They were analyzed using an electron micro-probe. The suite of samples are similar and major temporal change is the chemical composition of orthopyroxenes; those from upper horizon are relatively Mg rich. Anorthite content of plagioclase phenocryst is bimodal 49-53 mol. % (major) and 57-70 mol. % (minor). Silica content of matrix glass fall in a narrow range 68-70 wt. %. Temperature and oxygen fugacity were estimated to be 865-905 deg-C and FMQ+2 log unit, respectively, using ILMAT (Lepage, 2003). Pressure and water content of the magma are estimated to be 5-7 kbar and 0.5-1 wt. % H2O, respectively, using rhyolite-MELTS (Gualda et al., 2012) on the most undifferentiated tholeiitic basalt of Aso 4KC-03 (Hunter, 1998) to reproduce the observed composition of matrix glass (68-70 wt. % SiO2) and plagioclase (An 49-53 mol. %). The calcic plagioclase (An 57-70 mol. %), however, suggest that the basalt was initially hydrous and require magma degassing before the differentiation. If we assume degassing by magma convection in a conduit (Kazahaya et al., 1994), the

  20. Tephrochronology and Paleomagnetism in the Northwest Wall of Kilauea Caldera, Hawai`i, Reveal the Age of the Observatory Shield

    NASA Astrophysics Data System (ADS)

    Rose, T.; Fiske, R.; Swanson, D.; Champion, D.; McGeehin, J.

    2002-12-01

    Chemical analysis of tephra in the northwest wall of Kilauea's caldera, and paleomagnetism of associated lava flows, allow correlation to more distal tephra and flows of known C-14 age. This correlation shows that the Observatory shield-the shield that existed before the modern caldera formed about 500 ka-must be considerably younger than previously considered. We dug a pit through a mantle of scree to exhume a 2.2-m-thick section of tephra about one-third of the way up the caldera wall. A distinct color change divides the tephra section into upper and lower parts. Glassy ash and lapilli from just below the color change have unusually high TiO2 and K2O contents (3.1 and 0.75 wt. percent, respectively) recognized at more than 30 localities in the 1.3 to 1.1 ka Kulanaokuaiki tephra south, west, and north of the summit. The paleomagnetism of lava flows beneath the exhumed tephra is equivalent to that of the Kipuka Nene flows, which underlie complete sections of Kulanaokuaiki tephra southeast of the caldera. Tephra in another exposure, at the base of the caldera wall several hundred meters northeast of the pit, consists only of beds above the high Ti-K ash. That ash, and tephra below, are apparently buried beneath a flow that is interlayered with the tephra. The exposed upper part of this flow has the same paleomagnetic direction as the Hope`o (Hornet kipuka) flow, which occurs between the upper and lower Kulanaokuaiki tephra 6 km south of the summit. The flow immediately overlying the upper part of the tephra correlates magnetically with the 1.0 ka Old Kalue flows, which directly overlie complete sections of Kulanaokuaiki tephra on Kilauea's south flank. Flows making up the upper ~30 m of the caldera wall correlate magnetically with the 0.6-0.8 ka Young Kalu`e, Ahua, Lua Manu, and Observatory lava flows that blanket wide areas around the caldera, in the Koa`e fault system, and on the south flank. We conclude that the tephra in the caldera wall, considered by some as

  1. Geology and complex collapse mechanisms of the 3.72 Ma Hannegan caldera, North Cascades, Washington, USA

    USGS Publications Warehouse

    Tucker, D.; Hildreth, W.; Ullrich, T.; Friedman, R.

    2007-01-01

    Contiguous ring faults of the 8 ?? 3.5 km Hannegan caldera enclose the Hannegan volcanics in the Cascade arc of northern Washington. The caldera collapsed in two phases, which each erupted rhyolitic ignimbrite (72.3%-75.2% SiO2). The first collapse phase, probably trap-door style, erupted the ???900-m-thick ignimbrite of Hannegan Peak at 3.722 ?? 0.020 Ma. This single cooling unit, generally welded, has an uppermost facies of nonwelded ignimbrite and fine ash. A short period of localized sedimentation followed. Eruption of the ignimbrite of Ruth Mountain then led to a second trap-door collapse as the first-phase partial ring fault propagated to the south to completely enclose the caldera. Wallrock breccias are intercalated as lenses and megabreccia blocks in both ignimbrites. The minimum intracaldera volume is 55-60 km3. No base is exposed, nor are outflow sheets preserved. Caldera collapse and glacial erosion have removed precaldera volcanic rocks, which survive only as intracaldera breccias. Rhyolite dikes and pods, one of which yielded a 40Ar/39Ar age of 3.72 ?? 0.34 Ma, intrude the ring fault and caldera fill. Dacite-andesite domes, dikes, and lava flows were emplaced subsequently; one lava flow gives a 40Ar/39Ar age of 2.96 ?? 0.20 Ma. The quartz diorite of Icy Peak and the granite of Nooksack Cirque (plutons with 206Pb/238U zircon ages of 3.42 ?? 0.10 Ma and 3.36 ?? 0.20 Ma, respectively) intrude caldera fill and basement rocks on the southwest margin of the caldera. Both plutons are now exceptionally well expose on high, glacially sculpted peaks within the caldera, indicating erosion of at least 1 km of intracaldera fill. Hannegan caldera anchors the northeast end of a linear NE-SW age-progressive migration of magmatic focus from the Chilliwack batholith to the active Mount Baker volcano. ?? 2006 Geological Society of America.

  2. Early Miocene Kırka-Phrigian Caldera, western Turkey (Eskişehir province), preliminary volcanology, age and geochemistry data

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Helvacı, Cahit

    2016-11-01

    Large rhyolitic ignimbrite occurrences are closely connected to the Early Miocene initiation of extension in the central-western Anatolia crossing the Tavşanlı-Afyon zones. Field and laboratory data performed at the apex of the Eskişehir-Afyon-Isparta volcanic area allowed recognition of newly identified caldera structure, named here "Kırka-Phrigian caldera". Transtensive/distensive tectonic stresses since 25 Ma ago resulted in the NNW-SSE elongation of the magma chamber and influenced the roughly elliptical shape of the subsided block (caldera floor). The caldera, which is roughly oval (24 km × 15 km) in shape, formed during a series of collapse events, starting at 19 Ma, by the generation of a huge volume of extra- and intracaldera ignimbrites. Intracaldera post-collapse sedimentation and further volcanism at the northern edge (at 18.6 Ma) were controlled through subsidence-related faults with generation of a series of volcanic structures (domes and lavas) showing a large compositional range. Enriched mantle components within the subcontinental lithospheric mantle began to melt via decompression melting during the initiation of extension. The heat resulting from the fractionation of ascending mantle melts produced the silicic compositions in large mushy crustal reservoirs; interaction of these melts with fertile crustal rocks further caused crustal anataxis and consequently two different compositions: Rhyolite-1 and Rhyolite-2. The eruptions of Kırka-Phrigian caldera-related ignimbrites were probably triggered by basaltic intrusion. Rock volumes and geochemical evidence suggest that silicic volcanic rocks come from a long-lived complex magma chamber system. After caldera generation there was a northern shift to small volume extra- and intra-caldera episodic rhyolitic, basaltic-trachy andesitic, trachytic and lamproitic volcanism, the latter being the youngest (16.2 Ma) indicating a more primitive magma input which originated in an enriched mantle

  3. P wave attenuation of the Yellowstone Caldera from three-dimensional inversion of spectral decay using explosion source seismic data

    NASA Astrophysics Data System (ADS)

    Clawson, Steven R.; Smith, Robert B.; Benz, Harley M.

    1989-06-01

    Using explosion source, seismic refraction data, recorded in the 1978 and 1980 Yellowstone-Snake River Plain seismic experiments, a three-dimensional inversion of differential P wave attenuation was used to assess the relative variations in Q-1 in and around the volcanically active, 45 km by 70 km, Yellowstone caldera, northwestern Wyoming. Differential attenuation was derived from spectral decay of upper crustal Pg phases, observed from six explosions and recorded at 90 temporary stations. Because of the relatively short time windows used to determine the spectral content, a maximum entropy technique was employed to estimate the spectra that yielded an optimally small variance. Differential P wave attenuation was calculated from least squares determinations of the spectral ratios corrected for source and path effects. The observed differential attenuation parameters were then inverted using a weighted least squares technique for a discretized, 70×105 km, three-dimensional surface and upper crustal Q-1 model of the Yellowstone caldera and surrounding region. Results showed that the surface layer, to depths of 2 km within the Yellowstone caldera, is characterized by relatively high attenuation with low Q values less than 30, compared to values of 38 to 50 outside the caldera. The higher attenuation in the caldera's surface layer is thought to be associated with Quaternary lake sediments, highly altered rhyolites, and the possible influence of steam in areas of hydrothermal activity. In the crystalline upper crust, at depths of 2 km to 12 km, Q values of 40 to 70 were observed in areas of thick sedimentary fill northwest of the caldera and in areas of hydrothermal activity. Within the caldera, upper crustal attenuation generally corresponded to Q of 200 in areas that are interpreted to be associated with hot but now solidified granitic material. In comparison, relatively high attenuation, Q = 40, was observed in the upper crust of the northeastern Yellowstone

  4. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, U.S.A.

    NASA Astrophysics Data System (ADS)

    Bacon, Charles R.

    1983-10-01

    New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber ˜ 7000 yr B.P. The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone ˜ 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation ˜ 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until ˜ 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between ˜ 22,000 and ˜ 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is ˜ 25,000 yr old. These relatively silicic

  5. A 12,000-year record of vertical deformation across the Yellowstone caldera margin: The shorelines of Yellowstone Lake

    NASA Technical Reports Server (NTRS)

    Locke, William W.; Meyer, Grant A.

    1994-01-01

    The 600 ka Yellowstone caldera exhibits several signs of unrest, the most evident of which is historic ground deformation including both uplift and subsidence. We document deformation in the area of the southern caldera across approximately 12,000 years using the postglactic shoreline terraces of Yellowstone Lake. Raised shoreline elevations were interpreted from 230 leveling profiles surveyed across flights of terraces, with an accuracy of +/- 0.5 m. Of about 11 recognizable terraces, the five most continuous raised shorelines were correlated around the lake basin to reveal deformation patterns. Net deformation over the past approximatley 3 kyr has been dominantly up within the caldera interior and slightly down along the caldera rim, relative to the extracaldera region. This uplift is roughly similar to the historic pattern and may largely represent the effects of the most recent inflation episode. Subtraction of the total estimated magnitude of inflation in this epsiode suggests that the overall trend of postglacial deformation has been subsidence. The cause of this trend is undetermined but is most likely related to the effects of regional extension and long-term cooling within the Yellowstone caldera.

  6. Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis

    USGS Publications Warehouse

    Seccia, D.; Chiarabba, C.; De Gori, P.; Bianchi, I.; Hill, D.P.

    2011-01-01

    We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic I/P model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high-velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low-velocity anomaly (8%–10 % reduction in I/P) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low-velocity volume (–5% reduction in I/P and as much as 40% reduction in I/S) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low-velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.

  7. Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Seccia, D.; Chiarabba, C.; de Gori, P.; Bianchi, I.; Hill, D. P.

    2011-12-01

    We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic Vp model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high-velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low-velocity anomaly (8%-10 % reduction in Vp) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low-velocity volume (˜5% reduction in Vp and as much as 40% reduction in Vs) in the depth interval 8-14 km (6-12 km below mean sea level) beneath the central section of the caldera. The two low-velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.

  8. A catalogue of caldera unrest at Taupo Volcanic Centre, New Zealand, using the Volcanic Unrest Index (VUI)

    NASA Astrophysics Data System (ADS)

    Potter, Sally H.; Scott, Bradley J.; Jolly, Gill E.; Johnston, David M.; Neall, Vince E.

    2015-09-01

    Caldera unrest occurs frequently at Taupo Volcanic Centre (TVC), New Zealand, occasionally resulting in deleterious socio-economic impacts. This large silicic volcano most recently erupted in 232 AD in an explosive, caldera-forming rhyolitic eruption, devastating the central North Island. Eruptions are preceded by volcanic unrest, often consisting of seismicity, deformation, degassing, and/or geothermal system changes. These phenomena may also occur due to non-magmatic processes, complicating eruption forecasting. As volcanic unrest may or may not lead to an eruption, it needs to be characterised to provide effective warnings; this is best achieved by understanding past unrest. In this research, a catalogue of caldera unrest at TVC is developed using an historical chronology methodology, spanning from 1872 to December 2011. The Volcanic Unrest Index (VUI), which is introduced by Potter et al. (2015), is estimated for the catalogue, demonstrating its use and providing a characterisation of unrest at TVC. Sixteen episodes of unrest are identified; 4 are classified as moderate unrest (VUI 3), and 12 are classified as minor unrest (VUI 2). There has been median interval of approximately 3 years between unrest episodes and a median unrest episode duration of just under 5 months. This research provides context for future caldera unrest crises at TVC and contributes to the global caldera unrest dataset.

  9. Conductive heat flux in VC-1 and the thermal regime of Valles caldera, Jemez Mountains, New Mexico ( USA).

    USGS Publications Warehouse

    Sass, J.H.; Morgan, P.

    1988-01-01

    Over 5% of heat in the western USA is lost through Quaternary silicic volcanic centers, including the Valles caldera in N central New Mexico. These centers are the sites of major hydrothermal activity and upper crustal metamorphism, metasomatism, and mineralization, producing associated geothermal resources. Presents new heat flow data from Valles caldera core hole 1 (VC-1), drilled in the SW margin of the Valles caldera. Thermal conductivities were measured on 55 segments of core from VC-1, waxed and wrapped to preserve fluids. These values were combined with temperature gradient data to calculate heat flow. Above 335 m, which is probably unsaturated, heat flow is 247 + or - 16 mW m-2. Inteprets the shallow thermal gradient data and the thermal regime at VC-1 to indicate a long-lived hydrothermal (and magmatic) system in the southwestern Valles caldera that has been maintained through the generation of shallow magma bodies during the long postcollapse history of the caldera. High heat flow at the VC-1 site is interpreted to result from hot water circulating below the base of the core hole, and we attribute the lower heat flow in the unsaturated zone is attributed to hydrologic recharge. -from Authors

  10. The ecology of xenophyophores (Protista) on eastern Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Thomas, Cynthia L.

    1988-12-01

    Large, agglutinating protozoans of the class Xenophyophorea are the dominant epifaunal organisms on soft and hard substrates of many bathyal seamounts in the eastern Pacific Ocean off Mexico. Observations made with the submersible Alvin and remotely towed camera sleds on 17 seamounts at 31°, 20°, 13° and 10°N revealed more than ten distinct xenophyophore test morphologies. Most of these appear to represent previously undescribed species. Reticulate forms are numerically dominant at 20°, 13° and 10°N. Xenophyophore abundances increase with decreasing latitude, being rare at 30°N, present at densities of 0.1-1.0 m -2 at 20° and 13°N and often exceeding 1.0 m -2 at 10°N, occasionally reaching 10-18 m -2. Highest concentrations are observed on caldera floors near the base of steep caldera walls, at depths between 1700 and 2500 m. Most individuals select sand-size pelagic foraminiferan tests (63-500 μm) and exclude pebble, silt and clay-size particles for test construction. Xenophyophore on seamounts modify the structure of metazoan communities and may play a role in maintenance of infaunal diversity. Twenty-seven xenophyophore tests were found to provide habitat for 16 major macrofaunal taxa (152 individuals) and three meiofaunal taxa (333 individuals). The presence of xenophyophores also enhances the abundance of isopods, tanaids, ophiuroids, nematodes and harpacticoid copepods dwelling in sediments surrounding the tests. Mobile megafauna are attracted to sediment beneath and adjacent to xenophyophores. We suggest that xenophyophores, which are abundant on many topographic features in deep water (e.g. guyots, trenches, canyons and continental slopes), are a functionally important component of deep-sea benthic communities and require further autecological and synecological investigation.

  11. Caldera Collapse in the Galapagos Islands, 1968: The largest known collapse since 1912 followed a flank eruption and explosive volcanism within the caldera.

    PubMed

    Simkin, T; Howard, K A

    1970-07-31

    The summit caldera of Isla Fernandina, a large, uninhabited basaltic shield volcano, was further enlarged by 1 to 2 km(3) in June 1968. A small quake and large vapor cloud on 11 June were followed 4 hours later by a remarkable volcanic ash cloud and, after another hour, by a major explosion recorded at infrasonic stations throughout the hemisphere. Seismic activity increased to a peak on 19 June, when more than 200 events per day were recorded by a seismograph 140 km away. Several hundred quakes were in the magnitude range 4.0 to 5.4 m(b), but few such events were recorded after 23 June. Unusual lightning accompanied the major cloud, and, during the evening of 11 June, distant observers reported red glow and flashes from the area. Fine ash fell that night and much of the next day to distances at least 350 km from the volcano.

  12. Eastern Equine Encephalitis

    MedlinePlus

    ... Facebook Tweet Share Compartir Image of Culiseta melanura mosquito, photo taken by Jason Williams, reproduced by permission from the Virginia Mosquito Control Association. Eastern equine encephalitis virus (EEEV) is ...

  13. Insights into deposition and deformation of intra-caldera ignimbrites, central Nevada

    NASA Astrophysics Data System (ADS)

    MacDonald, William D.; Palmer, H. Currie; Deino, Alan L.; Shen, Po-Yu

    2012-11-01

    Magnetic studies, together with structural and 40Ar/39Ar age analyses, were used to investigate the development and deformation of ignimbrites of the Caetano Tuff formation in central-north Nevada. Magnetic susceptibility, susceptibility anisotropy (AMS) and magnetic remanence approaches were used to decipher events accompanying emplacement and subsequent deformation of that tuff, for both intracaldera tuffs and outflow deposits. 40Ar/39Ar ages, both those presented here and previously published ages, indicate about 33.8 Ma for the age of Caetano ignimbrites, approximately at the Eocene/Oligocene boundary. Although extensive faulting associated with regional extension of the Great Basin region has dissected these deposits, the thickness of the intra-caldera ignimbrites has been estimated at 3.5 km or more. Thermal modeling for cooling of a caldera filling of 3.5 km thickness indicates acquisition of remanent magnetization can persist up to 25 ka, sufficient to average secular variation. This contrasts with rapid cooling and remanence acquisition in outflow ignimbrites typically only tens of meters thick. A 750 m thick reference section was selected for more detailed study about 10 km to the west of the type area. This reference section, fault-bounded at both base and top, represents the upper part of the formation. Its lower member includes the uppermost 250 m of the lower massive resistant unit of ignimbrites, a middle member of 375 m of well stratified pyroclastic deposits, vitrophyres and sediments, and an upper member of about 125 m of recessive ignimbrite and thin-bedded clastic and pyroclastic deposits. Structural and magnetic remanence measurements suggest 13° eastward tilting of the caldera floor occurred early during deposition of the middle member. Flow directions inferred from AMS Kmax axes in the middle member diverge about 45° relative to those in the underlying member and suggest a change in vent source accompanying the deposition of the middle

  14. Magma Genesis of Sakurajima, the Quaternary post- Aira caldera volcano, southern Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Suzuki, J.; Yoshikawa, M.; Kobayashi, T.; Miki, D.; Takemura, K.

    2012-12-01

    Sakurajima volcano is the Quaternary post-caldera volcano of Aira caldera, which was caused by the eruption of huge amount of silicic pyroclastics, situated on Ryukyu arc, southern Kyushu Island, Japan. This volcano is quite active, so it can be considered that the preparation of next caldera-forming eruption with huge amount of silicic magma is proceeding. It is, therefore, expected that the investigation of magma genesis of Sakurajima volcano give us information for the mechanism generating huge amount of silicic magma, which cause the caldera formation. We analyzed major and trace elements with Sr, Nd and Pb isotopic compositions of volcanic rocks from Sakurajima volcano. We sampled (ol) - opx - cpx - pl andesite and dacite from almost all the volcanic units defined by Fukuyama and Ono (1981). In addition to Sakurajima samples, we also studied basaltic rocks erupted at pre-caldera stage of the Aira caldera to estimate the primary magma of Sakurajima volcano. Major and trace element variations generally show linear trends on the Harker diagrams, with the exception of P2O5 and TiO2. Based on the trend of P2O5 vs.SiO2, we divided studied samples low-P (P2O5 < 0.15 wt. %) and high-P (P2O5 > 0.15 wt. %) groups and these groups also display two distinct trends on TiO2-SiO2 diagram. The composition of trace elements shows typical island arc character as depletion of Nb and enrichments of Rb, K and Pb, suggesting addition of aqueous fluids to the mantle wedge. The Zr and Nb concentrations make a liner trend (Zr/Nb = 27) and this trend across from tend of MORB (Zr/Nb = 35) to that of crustal materials (Zr/Nb=17). The Sr, Nd and Pb isotopic compositions broadly plot to on the mixing curve connecting MORB-type mantle and sediments of the Philippine Sea Plate, indicating that the primary magma was generated by partial melting of MORB-type mantle wedge, which was hydrated with fluids derived from the subducted Philippine Sea sediments. But we found that our data plot apart

  15. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    SciTech Connect

    Daniel, R.G.; Boore, D.M.

    1982-04-10

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.

  16. Mineralogical and Fluid Inclusion Studies on Seafloor Hydrothermal Vents at TA25 Caldera, Tonga Arc

    NASA Astrophysics Data System (ADS)

    Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.

    2015-12-01

    The extensive hydrothermal vent field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending hydrothermal vent on the western caldera wall. These active hydrothermal crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The hydrothermal sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.

  17. Preorogenic history of the Adirondacks as an elsonian anorogenic caldera complex

    SciTech Connect

    McLelland, J.

    1985-01-01

    The Adirondack Highlands are characterized by the close association of a distinctive trinity of metaigneous rocks: (1) anorthosites, (2) mangeritic and quartz mangeritic gneisses that tend to envelop the anorthosites, and (3) alaskitic and trondjhemitic gneisses many of which represent metamorphosed volcanic material. All rocks within the province exhibit high concentrations of iron (FeO/FeO + MgO approx. 0.8), and both titaniferous and non-titaniferous iron oxide deposits occur. The mangeritic rocks are alkaline to peralkaline while the alaskitic gneisses are meta- to peraluminous. A/CNK, KN/C, as well as oxides vs SiO/sub 2/ plots yield patterns identical to those cited by J. L. Anderson (1983) as diagnostic of Proterozoic anorogenic plutonism. Within North American this plutonism corresponds to the Elsonian magmatic event with most ages falling between 1.5 - 1.3 b.y. This belt is characterized by high-level anorogenic bimodal magmatism developed in caldera complexes with zoned magma chambers and widespread rhyolitic ash-flow tuffs. Examples of this activity are found in the St. Francois Mountains, Missouri; the Wolf River batholith, Wisconsin; and the Nain Province. The Adirondacks lie along this trend and exhibit the same bulk chemistry and chemical variation as the other complexes. In addition they show enrichment in halogens (esp. F), REE, Zr, and other trace elements associated with calderas. Fayalite and ferroaugite are widely developed. These similarities strongly suggest that prior to the Grenville Orogeny, the Adirondacks consisted of bimodal caldera complexes which were part of the Elsonian anorogenic magmatism extending across North America.

  18. Icelandite and aenigmatite-bearing pantellerite from the McDermitt caldera complex, Nevada-Oregon

    NASA Astrophysics Data System (ADS)

    Wallace, Andy B.; Drexler, John W.; Grant, Norman K.; Noble, Donald C.

    1980-08-01

    Intermediate lavas from the middle Miocene McDermitt caldera complex, Nevada-Oregon, have very high FeO* (= total Fe as FeO; 9.1 to 10.2 wt %) and low MgO (0.4 to 2.1 wt %) contents at SiO2 contents of 59.5 to 62 wt %. With the exception of significantly higher K2O contents (3.1 to 4.7 wt %), these lavas are compositionally very similar to icelandite (“tholeiitic andesite”) from oceanic areas. In addition to the voluminous comendite tuffs of the complex, a thin unit of densely welded crystal-rich pantellerite tuff of probable air-fall origin is exposed on the northern wall of the McDermitt caldera. The pantellerite tuff contains 1.5% aenigmatite phenocrysts. The high FeO*/MgO ratios of the icelandites and the peralkaline nature of the silicic rocks suggest differentiation under conditions of low fO2 and fH2O. The existence at McDermitt of a continuous series of rocks ranging from potassic icelandite to comendite and pantellerite is consistent—as are other geologic, geochemical, and geophysical data—with the derivation of the icelandites and ultimately of the voluminous peralkaline silicic rocks of the complex from mafic magma generated from upwelling mantle material. Labile U released during the crystallization of late subvolcanic bodies of peralkaline silicic magma may have provided an appreciable proportion of the epigenetic U now present in the upper part of the caldera complex. Reducing conditions produced by the very Fe-rich glassy icelandites may have contributed to the fixation of U at the Aurora and Bretz prospects. *Present address: Mackay School of Mines, University of Nevada-Reno, Reno, Nevada 89507

  19. New proximal tephras at Somma-Vesuvius: evidences of a pre-caldera, large (?) explosive eruption

    NASA Astrophysics Data System (ADS)

    Sparice, Domenico; Scarpati, Claudio; Mazzeo, Fabio Carmine; Petrosino, Paola; Arienzo, Ilenia; Gisbert, Guillem; Petrelli, Maurizio

    2017-04-01

    A 5 m thick pyroclastic and volcaniclastic sequence, never reported before, comprising a pumice fall deposit has been recognized in a disused quarry near Pollena Trocchia, on the NW slope of Somma-Vesuvius. It is composed of three stratigraphic units: a pumice fall deposit that underlies a pyroclastic density current deposit; they are overlain by a volcaniclastic unit emplaced during a quiescent period of the volcano. The pyroclastic deposits are separated by a horizon of reworked material indicating the emplacement from two distinct eruptive events. The pumice fall deposit has been subject of a detailed investigation. It consists of an ash bed overlaid by a roughly stratified pumice fall layer. The presence of ballistic clasts indicates the proximal nature of this deposit and its stratigraphic position below the Pomici di Base (22 ka) Plinian deposit allows constraining its age to the pre-caldera period (22-39 ky) of activity of Somma-Vesuvius. Samples have been collected in order to perform sedimentological (grain size and componentry), geochemical and isotopic analyses. Samples range from moderately to poorly sorted and show a trachytic composition. The comparison with literature data of compatible deposits vented from Somma-Vesuvius (Schiava, Taurano and Codola eruptions as well as borehole data) allows excluding any correlation with already known Vesuvian products suggesting that the analysed products are ascribable to a new, pre-caldera, explosive eruption. We name this new event ;Carcavone eruption;. Based on thickness, maximum lithic clasts and orientation of impact sags, showing a provenance from SE, we envisage the emplacement from a Plinian style eruption vented in the northern sector of the current caldera.

  20. Survey and assessment of post volcanic activities of a young caldera lake, Lake Cuicocha, Ecuador

    NASA Astrophysics Data System (ADS)

    Gunkel, G.; Beulker, C.; Grupe, B.; Viteri, F.

    2009-05-01

    Cuicocha is a young volcano adjacent to the inactive Pleistocene Cotacachi volcano complex, located in the western cordilleras of the Ecuadorian Andes. A series of eruptions with intensive ash emission and collapse of the caldera occurred around 4500-3000 y BP. A crater 3.2 km in diameter and a maximum depth of 450 m was formed. Further eruptions of the volcano occurred 1300 y BP and formed four smaller domes within the caldera. Over the last few hundred years, a caldera lake has developed, with a maximum depth of 148 m. The lake water is characterized by sodium carbonate with elevated concentrations of manganese, calcium and chloride. Nowadays, an emission of gases, mainly CO2, and an input of warm spring water occur in Lake Cuicocha. The zone of high activity is in the western basin of the lake at a depth of 78 m, and continuous gas emissions with sediment resuspension were observed using sonar. In the hypolimnion of the lake, CO2 accumulation occurs up to 0.2% saturation, but the risk of a limnic eruption can be excluded at present. The lake possesses monomictic stratification behaviour, and during overturn an intensive gas exchange with the atmosphere occurs. Investigations concerning the sedimentation processes of the lake suggest only a thin sediment layer of up to 10-20 cm in the deeper lake basin; in the western bay, in the area of gas emissions, the lake bottom is partly depleted of sediment in the form of holes, and no lake colmation exists. Decreases in the lake water level of about 30 cm y-1 indicate a percolation of water into fractures and fissures of the volcano, triggered by a nearby earthquake in 1987.

  1. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera

    USGS Publications Warehouse

    Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki

    2013-01-01

    Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

  2. The lifecycle of caldera-forming volcanoes in the Main Ethiopian Rift: insights from Aluto volcano

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Hutchison, W.; Yirgu, G.; Biggs, J.; Cohen, B. E.; Barfod, D. N.; Lewi, E.; Pyle, D. M.

    2015-12-01

    The silicic peralkaline volcanoes of the East African Rift are some of the least studied and yet potentially most dangerous volcanoes in the world. We present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in the Main Ethiopian Rift, using new constraints from fieldwork, remote sensing, 40Ar/39Ar geochronology and geochemistry. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at ca. 300 ka developing a ~42 km2 collapse structure. After a hiatus of ~250 kyr, a phase of post-caldera volcanism began. Since ca. 60 ka, highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. The age of the youngest volcanism is not well known. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (>80 %) of typical 'rift basalt'. Based on the field stratigraphy and the number, style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes between 1-100 × 106 m3. Comparisons with other caldera volcanoes in this section of the rift suggest that there may be parallels between Aluto's behaviour and that of other volcanic centres, both in terms of the volcanic 'lifecycle', and broad timings of caldera collapse events.

  3. Geophysical survey of the intra-caldera icefield of Mt Veniaminof, Alaska

    NASA Astrophysics Data System (ADS)

    Welch, Brian C.; Dwyer, Kieran; Helgen, Michael; Waythomas, Christopher F.; Jacobel, Robert W.

    Mt Veniaminof is a large active stratovolcano located on the Alaska Peninsula (56.2° N, 159° W). We present results of the first geophysical survey of the icefield that fills much of the 10 km × 8 km caldera that was most recently modified during the last major eruption roughly 3700 BP. The subglacial topography and ice volume are derived from an 8 MHz radio-echo sounding survey conducted in July 2005. Prominent internal reflectors are assumed to be isochronal ash/acid deposits related to local eruptions. Accumulation rates and basal melt rates are calculated using a Nye onedimensional steady-state accumulation model applied at a location that approximates an ice divide and calibrated by matching internal reflectors with published records of recent local volcanic eruptions. The model yields order of magnitude estimates of the accumulation rate of 4m a-1 water equivalent and 2m a-1 of basal melt. The subsequent geothermal flux of ˜19W m-2 is similar to active hydrothermal vents in volcanic lakes. We suggest that these values represent an upper limit for the geothermal flux within the ice-covered regions of the main caldera. We also analyze likely subglacial meltwater flow paths to examine the implications of recent eruption activity at an active intra-caldera cinder cone. Two lava-producing eruptions from the cinder cone in 1983-84 and 1993-94 melted roughly 0.17 km3 of ice. The lack of significant deformation of the internal stratigraphy to the south and east of the melt hole suggests that any subglacial drainage in those directions was entirely within subglacial deposits. We suggest that the more likely drainage route was northwest into a large outlet glacier.

  4. Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan

    USGS Publications Warehouse

    Lipman, P.W.

    1967-01-01

    Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.

  5. The Owens River as a tiltmeter for Long Valley caldera, California

    SciTech Connect

    Reid, J.B. Jr )

    1992-05-01

    In the lower 11 km of its course around the resurgent dome of Long Valley caldera, the Owens River displays two parallel meander belts, comparable in meander wavelength and amplitude but unequal in age, elevation, and discharge. It appears the two belts take turns carrying the river's flow depending on whether the dome is inflating or subsiding. The inboard belt, some 200-300 m closer to the dome and now 30-60 cm higher in elevation, contains an underfit stream and is now being abandoned. The outboard channel formed in a series of avulsions apparently induced by recent uplift of the dome. In the upper 4 km of the two-channel reach, avulsion occurred between 1856 and 1878 as inferred from the original US Coast and Geodetic Survey mapping the caldera. Avulsion had already occurred by 1856 in the lower 4 km of the river, suggesting a possible migration of the center of uplift through time. More ancient meander scars at the inboard and outboard limits of the floodplain imply additional earlier episodes of inflation and subsidence. Projection of surveyed topographic profiles across the river's floodplain to the center of the dome suggests that cumulative recent uplift is on the order of 15-35 m, or about 30-70 times greater than that measured for the caldera since 1979 (Castle et al. 1984). The duration of the era of subsidence can be estimated by comparing oxbow densities in the old and new meander belts in the upper two-channel reach; the data suggest that the dome may have been in subsidence for a period of at least 500 to 1,000 yr ending about 150 yr ago. No eruptions of the Long Valley volcanic system have accompanied these inflations and subsidings.

  6. Geochemical and Sr Nd Pb isotopic evidence for a combined assimilation and fractional crystallisation process for volcanic rocks from the Huichapan caldera, Hidalgo, Mexico

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.

    2001-03-01

    This study reports new geochemical and Sr-Nd-Pb isotopic data for Miocene to Quaternary basaltic to andesitic, dacitic, and rhyolitic volcanic rocks from the Huichapan caldera, located in the central part of the Mexican Volcanic Belt (MVB). The initial Sr and Nd isotopic ratios, except for one rhyolite, range as follows: 87Sr/ 86Sr 0.70357-0.70498 and 143Nd/ 144Nd 0.51265-0.51282. The Sr-Nd-Pb isotopic ratios are generally similar to those for volcanic rocks from other areas of the central and eastern parts of the MVB. The isotopic ratios of one older pre-caldera rhyolite (HP30) from the Huichapan area, particularly its high 87Sr/ 86Sr, are significantly different from rhyolitic rocks from this and other areas of the MVB, but are isotopically similar to some felsic rocks from the neighbouring geological province of Sierra Madre Occidental (SMO), implying an origin as a partial melt of the underlying crust. The evolved andesitic to rhyolitic magmas could have originated from a basaltic magma through a combined assimilation and fractional crystallisation (AFC) process. Different compositions, representing lower crust (LC) and upper crust (UC) as well as a hypothetical crust similar to the source of high 87Sr/ 86Sr rhyolite HP30, were tested as plausible assimilants for the AFC process. The results show that the UC represented by granitic rocks from a nearby Los Humeros area or by Cretaceous limestone (L) rocks outcropping in the northern part of the study area, and the LC represented by granulitic xenoliths from a nearby San Luis Potosı´ (SLP) area are not possible assimilants for Huichapan magmas, whereas a hypothetical crust (HA) similar in isotopic compositions to rhyolite HP30 could be considered a possible assimilant for the AFC process. Chemical composition of assimilant HA, although not well constrained at present, was inferred under the assumption that HP30 type partial melts could be generated from its partial melting. These data were then used to evaluate

  7. Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Leonov, V. L.; Izbekov, P. E.; Ponomareva, V. V.; Watts, K. E.; Shipley, N. K.; Perepelov, A. B.; Bazanova, L. I.; Jicha, B. R.; Singer, B. S.; Schmitt, A. K.; Portnyagin, M. V.; Chen, C. H.

    2010-01-01

    The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ˜ 2 to ˜ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low- δ18O values. T