NASA Technical Reports Server (NTRS)
Barker, John L.; Harnden, Joann M. K.; Montgomery, Harry; Anuta, Paul; Kvaran, Geir; Knight, ED; Bryant, Tom; Mckay, AL; Smid, Jon; Knowles, Dan, Jr.
1994-01-01
The EOS Moderate Resolution Imaging Spectrometer (MODIS) is being developed by NASA for flight on the Earth Observing System (EOS) series of satellites, the first of which (EOS-AM-1) is scheduled for launch in 1998. This document describes the algorithms and their theoretical basis for the MODIS Level 1B characterization, calibration, and geolocation algorithms which must produce radiometrically, spectrally, and spatially calibrated data with sufficient accuracy so that Global change research programs can detect minute changes in biogeophysical parameters. The document first describes the geolocation algorithm which determines geodetic latitude, longitude, and elevation of each MODIS pixel and the determination of geometric parameters for each observation (satellite zenith angle, satellite azimuth, range to the satellite, solar zenith angle, and solar azimuth). Next, the utilization of the MODIS onboard calibration sources, which consist of the Spectroradiometric Calibration Assembly (SRCA), Solar Diffuser (SD), Solar Diffuser Stability Monitor (SDSM), and the Blackbody (BB), is treated. Characterization of these sources and integration of measurements into the calibration process is described. Finally, the use of external sources, including the Moon, instrumented sites on the Earth (called vicarious calibration), and unsupervised normalization sites having invariant reflectance and emissive properties is treated. Finally, algorithms for generating utility masks needed for scene-based calibration are discussed. Eight appendices are provided, covering instrument design and additional algorithm details.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara
2016-01-01
The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.
Analysis of Sting Balance Calibration Data Using Optimized Regression Models
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Bader, Jon B.
2010-01-01
Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.
Wolski, Witold E; Lalowski, Maciej; Jungblut, Peter; Reinert, Knut
2005-01-01
Background Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry (MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from . Conclusion The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 – 15%. PMID:16102175
Methods for Calibration of Prout-Tompkins Kinetics Parameters Using EZM Iteration and GLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K; de Supinski, B
2006-11-07
This document contains information regarding the standard procedures used to calibrate chemical kinetics parameters for the extended Prout-Tompkins model to match experimental data. Two methods for calibration are mentioned: EZM calibration and GLO calibration. EZM calibration matches kinetics parameters to three data points, while GLO calibration slightly adjusts kinetic parameters to match multiple points. Information is provided regarding the theoretical approach and application procedure for both of these calibration algorithms. It is recommended that for the calibration process, the user begin with EZM calibration to provide a good estimate, and then fine-tune the parameters using GLO. Two examples have beenmore » provided to guide the reader through a general calibrating process.« less
Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test
NASA Astrophysics Data System (ADS)
Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin
2017-02-01
In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.
Out of lab calibration of a rotating 2D scanner for 3D mapping
NASA Astrophysics Data System (ADS)
Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas
2017-06-01
Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was tested with an ideal hemisphere model created in Matlab. Second, laser scanner was mounted differently, the scanner position and the rotation axis was modified. In doing so, every deviation, was compared with the algorithm results. Several measurement settings were tested repeatedly with the 3D scanner system and the calibration system. The results show that the length accuracy of the laser scanner is most critical. It influences the required size of the hemisphere and the calibration accuracy.
Analysis of Sting Balance Calibration Data Using Optimized Regression Models
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Bader, Jon B.
2009-01-01
Calibration data of a wind tunnel sting balance was processed using a search algorithm that identifies an optimized regression model for the data analysis. The selected sting balance had two moment gages that were mounted forward and aft of the balance moment center. The difference and the sum of the two gage outputs were fitted in the least squares sense using the normal force and the pitching moment at the balance moment center as independent variables. The regression model search algorithm predicted that the difference of the gage outputs should be modeled using the intercept and the normal force. The sum of the two gage outputs, on the other hand, should be modeled using the intercept, the pitching moment, and the square of the pitching moment. Equations of the deflection of a cantilever beam are used to show that the search algorithm s two recommended math models can also be obtained after performing a rigorous theoretical analysis of the deflection of the sting balance under load. The analysis of the sting balance calibration data set is a rare example of a situation when regression models of balance calibration data can directly be derived from first principles of physics and engineering. In addition, it is interesting to see that the search algorithm recommended the same regression models for the data analysis using only a set of statistical quality metrics.
NASA Astrophysics Data System (ADS)
Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing
2017-12-01
We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.
Automatic energy calibration algorithm for an RBS setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala
2013-05-06
This work describes a computer algorithm for automatic extraction of the energy calibration parameters from a Rutherford Back-Scattering Spectroscopy (RBS) spectrum. Parameters like the electronic gain, electronic offset and detection resolution (FWHM) of a RBS setup are usually determined using a standard sample. In our case, the standard sample comprises of a multi-elemental thin film made of a mixture of Ti-Al-Ta that is analyzed at the beginning of each run at defined beam energy. A computer program has been developed to extract automatically the calibration parameters from the spectrum of the standard sample. The code evaluates the first derivative ofmore » the energy spectrum, locates the trailing edges of the Al, Ti and Ta peaks and fits a first order polynomial for the energy-channel relation. The detection resolution is determined fitting the convolution of a pre-calculated theoretical spectrum. To test the code, data of two years have been analyzed and the results compared with the manual calculations done previously, obtaining good agreement.« less
NASA Astrophysics Data System (ADS)
Sitko, Rafał
2008-11-01
Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).
NASA Technical Reports Server (NTRS)
Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III
1995-01-01
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.
Numerical modeling of solar irradiance on earth's surface
NASA Astrophysics Data System (ADS)
Mera, E.; Gutierez, L.; Da Silva, L.; Miranda, E.
2016-05-01
Modeling studies and estimation of solar radiation in base area, touch from the problems of estimating equation of time, distance equation solar space, solar declination, calculation of surface irradiance, considering that there are a lot of studies you reported the inability of these theoretical equations to be accurate estimates of radiation, many authors have proceeded to make corrections through calibrations with Pyranometers field (solarimeters) or the use of satellites, this being very poor technique last because there a differentiation between radiation and radiant kinetic effects. Because of the above and considering that there is a weather station properly calibrated ground in the Susques Salar in the Jujuy Province, Republic of Argentina, proceeded to make the following modeling of the variable in question, it proceeded to perform the following process: 1. Theoretical Modeling, 2. graphic study of the theoretical and actual data, 3. Adjust primary calibration data through data segmentation on an hourly basis, through horizontal and adding asymptotic constant, 4. Analysis of scatter plot and contrast series. Based on the above steps, the modeling data obtained: Step One: Theoretical data were generated, Step Two: The theoretical data moved 5 hours, Step Three: an asymptote of all negative emissivity values applied, Solve Excel algorithm was applied to least squares minimization between actual and modeled values, obtaining new values of asymptotes with the corresponding theoretical reformulation of data. Add a constant value by month, over time range set (4:00 pm to 6:00 pm). Step Four: The modeling equation coefficients had monthly correlation between actual and theoretical data ranging from 0.7 to 0.9.
Bilinear Inverse Problems: Theory, Algorithms, and Applications
NASA Astrophysics Data System (ADS)
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical guarantees and stability theory are derived and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.
Zhan, Xue-yan; Zhao, Na; Lin, Zhao-zhou; Wu, Zhi-sheng; Yuan, Rui-juan; Qiao, Yan-jiang
2014-12-01
The appropriate algorithm for calibration set selection was one of the key technologies for a good NIR quantitative model. There are different algorithms for calibration set selection, such as Random Sampling (RS) algorithm, Conventional Selection (CS) algorithm, Kennard-Stone(KS) algorithm and Sample set Portioning based on joint x-y distance (SPXY) algorithm, et al. However, there lack systematic comparisons between two algorithms of the above algorithms. The NIR quantitative models to determine the asiaticoside content in Centella total glucosides were established in the present paper, of which 7 indexes were classified and selected, and the effects of CS algorithm, KS algorithm and SPXY algorithm for calibration set selection on the accuracy and robustness of NIR quantitative models were investigated. The accuracy indexes of NIR quantitative models with calibration set selected by SPXY algorithm were significantly different from that with calibration set selected by CS algorithm or KS algorithm, while the robustness indexes, such as RMSECV and |RMSEP-RMSEC|, were not significantly different. Therefore, SPXY algorithm for calibration set selection could improve the predicative accuracy of NIR quantitative models to determine asiaticoside content in Centella total glucosides, and have no significant effect on the robustness of the models, which provides a reference to determine the appropriate algorithm for calibration set selection when NIR quantitative models are established for the solid system of traditional Chinese medcine.
Żurawik, Tomasz Michał; Pomorski, Adam; Belczyk-Ciesielska, Agnieszka; Goch, Grażyna; Niedźwiedzka, Katarzyna; Kucharczyk, Róża; Krężel, Artur; Bal, Wojciech
2016-01-01
Fluorescence measurements of pH and other analytes in the cell rely on accurate calibrations, but these have routinely used algorithms that inadequately describe the properties of indicators. Here, we have established a more accurate method for calibrating and analyzing data obtained using the ratiometric probe 5(6)-carboxy-SNARF-1. We tested the implications of novel approach to measurements of pH in yeast mitochondria, a compartment containing a small number of free H+ ions. Our findings demonstrate that 5(6)-carboxy-SNARF-1 interacts with H+ ions inside the mitochondria in an anticooperative manner (Hill coefficient n of 0.5) and the apparent pH inside the mitochondria is ~0.5 unit lower than had been generally assumed. This result, at odds with the current consensus on the mechanism of energy generation in the mitochondria, is in better agreement with theoretical considerations and warrants further studies of organellar pH. PMID:27557123
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
NASA Astrophysics Data System (ADS)
Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji
Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.
NASA Astrophysics Data System (ADS)
AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank
In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.
Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements
Wang, Liming; Huang, Jiaji; Yuan, Xin; ...
2015-09-17
The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are establishedmore » based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.« less
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.
1998-01-01
Two different algorithms - a deterministic magnetic-field-only algorithm and a Kalman filter for gyroless spacecraft - are used to estimate the attitude and rates of the Rossi X-Ray Timing Explorer (RXTE) using only measurements from a three-axis magnetometer. The performance of these algorithms is examined using in-flight data from various scenarios. In particular, significant enhancements in accuracies are observed when' the telemetered magnetometer data are accurately calibrated using a recently developed calibration algorithm. Interesting features observed in these studies of the inertial-pointing RXTE include a remarkable sensitivity of the filter to the numerical values of the noise parameters and relatively long convergence time spans. By analogy, the accuracy of the deterministic scheme is noticeably lower as a result of reduced rates of change of the body-fixed geomagnetic field. Preliminary results show the filter-per-axis attitude accuracies ranging between 0.1 and 0.5 deg and rate accuracies between 0.001 deg/sec and 0.005 deg./sec, whereas the deterministic method needs a more sophisticated techniques for smoothing time derivatives of the measured geomagnetic field to clearly distinguish both attitude and rate solutions from the numerical noise. Also included is a new theoretical development in the deterministic algorithm: the transformation of a transcendental equation in the original theory into an 8th-order polynomial equation. It is shown that this 8th-order polynomial reduces to quadratic equations in the two limiting cases-infinitely high wheel momentum, and constant rates-discussed in previous publications.
Accuracy evaluation of a new real-time continuous glucose monitoring algorithm in hypoglycemia.
Mahmoudi, Zeinab; Jensen, Morten Hasselstrøm; Dencker Johansen, Mette; Christensen, Toke Folke; Tarnow, Lise; Christiansen, Jens Sandahl; Hejlesen, Ole
2014-10-01
The purpose of this study was to evaluate the performance of a new continuous glucose monitoring (CGM) calibration algorithm and to compare it with the Guardian(®) REAL-Time (RT) (Medtronic Diabetes, Northridge, CA) calibration algorithm in hypoglycemia. CGM data were obtained from 10 type 1 diabetes patients undergoing insulin-induced hypoglycemia. Data were obtained in two separate sessions using the Guardian RT CGM device. Data from the same CGM sensor were calibrated by two different algorithms: the Guardian RT algorithm and a new calibration algorithm. The accuracy of the two algorithms was compared using four performance metrics. The median (mean) of absolute relative deviation in the whole range of plasma glucose was 20.2% (32.1%) for the Guardian RT calibration and 17.4% (25.9%) for the new calibration algorithm. The mean (SD) sample-based sensitivity for the hypoglycemic threshold of 70 mg/dL was 31% (33%) for the Guardian RT algorithm and 70% (33%) for the new algorithm. The mean (SD) sample-based specificity at the same hypoglycemic threshold was 95% (8%) for the Guardian RT algorithm and 90% (16%) for the new calibration algorithm. The sensitivity of the event-based hypoglycemia detection for the hypoglycemic threshold of 70 mg/dL was 61% for the Guardian RT calibration and 89% for the new calibration algorithm. Application of the new calibration caused one false-positive instance for the event-based hypoglycemia detection, whereas the Guardian RT caused no false-positive instances. The overestimation of plasma glucose by CGM was corrected from 33.2 mg/dL in the Guardian RT algorithm to 21.9 mg/dL in the new calibration algorithm. The results suggest that the new algorithm may reduce the inaccuracy of Guardian RT CGM system within the hypoglycemic range; however, data from a larger number of patients are required to compare the clinical reliability of the two algorithms.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shou-Guang; Li, Qiang; Zou, Hua
2014-12-01
One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.
Information theoretic methods for image processing algorithm optimization
NASA Astrophysics Data System (ADS)
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
Quantifying the Climate-Scale Accuracy of Satellite Cloud Retrievals
NASA Astrophysics Data System (ADS)
Roberts, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Liang, L.; Di Girolamo, L.
2014-12-01
Instrument calibration and cloud retrieval algorithms have been developed to minimize retrieval errors on small scales. However, measurement uncertainties and assumptions within retrieval algorithms at the pixel level may alias into decadal-scale trends of cloud properties. We first, therefore, quantify how instrument calibration changes could alias into cloud property trends. For a perfect observing system the climate trend accuracy is limited only by the natural variability of the climate variable. Alternatively, for an actual observing system, the climate trend accuracy is additionally limited by the measurement uncertainty. Drifts in calibration over time may therefore be disguised as a true climate trend. We impose absolute calibration changes to MODIS spectral reflectance used as input to the CERES Cloud Property Retrieval System (CPRS) and run the modified MODIS reflectance through the CPRS to determine the sensitivity of cloud properties to calibration changes. We then use these changes to determine the impact of instrument calibration changes on trend uncertainty in reflected solar cloud properties. Secondly, we quantify how much cloud retrieval algorithm assumptions alias into cloud optical retrieval trends by starting with the largest of these biases: the plane-parallel assumption in cloud optical thickness (τC) retrievals. First, we collect liquid water cloud fields obtained from Multi-angle Imaging Spectroradiometer (MISR) measurements to construct realistic probability distribution functions (PDFs) of 3D cloud anisotropy (a measure of the degree to which clouds depart from plane-parallel) for different ISCCP cloud types. Next, we will conduct a theoretical study with dynamically simulated cloud fields and a 3D radiative transfer model to determine the relationship between 3D cloud anisotropy and 3D τC bias for each cloud type. Combining these results provides distributions of 3D τC bias by cloud type. Finally, we will estimate the change in frequency of occurrence of cloud types between two decades and will have the information needed to calculate the total change in 3D optical thickness bias between two decades. If we uncover aliases in this study, the results will motivate the development and rigorous testing of climate specific cloud retrieval algorithms.
Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions
NASA Astrophysics Data System (ADS)
Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob
2012-01-01
For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.
NASA Astrophysics Data System (ADS)
Wang, Wenhui; Cao, Changyong; Ignatov, Alex; Li, Zhenglong; Wang, Likun; Zhang, Bin; Blonski, Slawomir; Li, Jun
2017-09-01
The Suomi NPP VIIRS thermal emissive bands (TEB) have been performing very well since data became available on January 20, 2012. The longwave infrared bands at 11 and 12 um (M15 and M16) are primarily used for sea surface temperature (SST) retrievals. A long standing anomaly has been observed during the quarterly warm-up-cool-down (WUCD) events. During such event daytime SST product becomes anomalous with a warm bias shown as a spike in the SST time series on the order of 0.2 K. A previous study (CAO et al. 2017) suggested that the VIIRS TEB calibration anomaly during WUCD is due to a flawed theoretical assumption in the calibration equation and proposed an Ltrace method to address the issue. This paper complements that study and presents operational implementation and validation of the Ltrace method for M15 and M16. The Ltrace method applies bias correction during WUCD only. It requires a simple code change and one-time calibration parameter look-up-table update. The method was evaluated using colocated CrIS observations and the SST algorithm. Our results indicate that the method can effectively reduce WUCD calibration anomaly in M15, with residual bias of 0.02 K after the correction. It works less effectively for M16, with residual bias of 0.04 K. The Ltrace method may over-correct WUCD calibration biases, especially for M16. However, the residual WUCD biases are small in both bands. Evaluation results using the SST algorithm show that the method can effectively remove SST anomaly during WUCD events.
Zombie algorithms: a timesaving remote sensing systems engineering tool
NASA Astrophysics Data System (ADS)
Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen
2008-08-01
In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.
Online probabilistic learning with an ensemble of forecasts
NASA Astrophysics Data System (ADS)
Thorey, Jean; Mallet, Vivien; Chaussin, Christophe
2016-04-01
Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).
Generalized algebraic scene-based nonuniformity correction algorithm.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2005-02-01
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
Bleeker, H J; Lewin, P A
2000-01-01
A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.
Space-based infrared scanning sensor LOS determination and calibration using star observation
NASA Astrophysics Data System (ADS)
Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang
2015-10-01
This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.
An experimental SMI adaptive antenna array for weak interfering signals
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Gupta, I. J.
1989-01-01
A modified sample matrix inversion (SMI) algorithm designed to increase the suppression of weak interference is implemented on an existing experimental array system. The algorithm itself is fully described as are a number of issues concerning its implementation and evaluation, such as sample scaling, snapshot formation, weight normalization, power calculation, and system calibration. Several experiments show that the steady state performance (i.e., many snapshots are used to calculate the array weights) of the experimental system compares favorably with its theoretical performance. It is demonstrated that standard SMI does not yield adequate suppression of weak interference. Modified SMI is then used to experimentally increase this suppression by as much as 13dB.
An NN-Based SRD Decomposition Algorithm and Its Application in Nonlinear Compensation
Yan, Honghang; Deng, Fang; Sun, Jian; Chen, Jie
2014-01-01
In this study, a neural network-based square root of descending (SRD) order decomposition algorithm for compensating for nonlinear data generated by sensors is presented. The study aims at exploring the optimized decomposition of data 1.00,0.00,0.00 and minimizing the computational complexity and memory space of the training process. A linear decomposition algorithm, which automatically finds the optimal decomposition of N subparts and reduces the training time to 1N and memory cost to 1N, has been implemented on nonlinear data obtained from an encoder. Particular focus is given to the theoretical access of estimating the numbers of hidden nodes and the precision of varying the decomposition method. Numerical experiments are designed to evaluate the effect of this algorithm. Moreover, a designed device for angular sensor calibration is presented. We conduct an experiment that samples the data of an encoder and compensates for the nonlinearity of the encoder to testify this novel algorithm. PMID:25232912
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
Determination of calibration parameters of a VRX CT system using an “Amoeba” algorithm
Jordan, Lawrence M.; DiBianca, Frank A.; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M. Waleed
2008-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge “clouds” created by the detected x-ray photons, i.e., the “physics limit.” This paper focuses on implementing a technique called “projective compression.” which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm “variable-resolution x-ray” (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown. PMID:19430581
Determination of calibration parameters of a VRX CT system using an "Amoeba" algorithm.
Jordan, Lawrence M; Dibianca, Frank A; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M Waleed
2004-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge "clouds" created by the detected x-ray photons, i.e., the "physics limit." This paper focuses on implementing a technique called "projective compression." which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm "variable-resolution x-ray" (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown.
In-Space Calibration of a Gyro Quadruplet
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2001-01-01
This work presents a new approach to gyro calibration where, in addition to being used for computing attitude that is needed in the calibration process, the gyro outputs are also used as measurements in a Kalman filter. This work also presents an algorithm for calibrating a quadruplet rather than the customary triad gyro set. In particular, a new misalignment error model is derived for this case. The new calibration algorithm is applied to the EOS-AQUA satellite gyros. The effectiveness of the new algorithm is demonstrated through simulations.
A Nonlinear Calibration Algorithm Based on Harmonic Decomposition for Two-Axis Fluxgate Sensors
Liu, Shibin
2018-01-01
Nonlinearity is a prominent limitation to the calibration performance for two-axis fluxgate sensors. In this paper, a novel nonlinear calibration algorithm taking into account the nonlinearity of errors is proposed. In order to establish the nonlinear calibration model, the combined effort of all time-invariant errors is analyzed in detail, and then harmonic decomposition method is utilized to estimate the compensation coefficients. Meanwhile, the proposed nonlinear calibration algorithm is validated and compared with a classical calibration algorithm by experiments. The experimental results show that, after the nonlinear calibration, the maximum deviation of magnetic field magnitude is decreased from 1302 nT to 30 nT, which is smaller than 81 nT after the classical calibration. Furthermore, for the two-axis fluxgate sensor used as magnetic compass, the maximum error of heading is corrected from 1.86° to 0.07°, which is approximately 11% in contrast with 0.62° after the classical calibration. The results suggest an effective way to improve the calibration performance of two-axis fluxgate sensors. PMID:29789448
The algorithm for automatic detection of the calibration object
NASA Astrophysics Data System (ADS)
Artem, Kruglov; Irina, Ugfeld
2017-06-01
The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
Real-time particulate mass measurement based on laser scattering
NASA Astrophysics Data System (ADS)
Rentz, Julia H.; Mansur, David; Vaillancourt, Robert; Schundler, Elizabeth; Evans, Thomas
2005-11-01
OPTRA has developed a new approach to the determination of particulate size distribution from a measured, composite, laser angular scatter pattern. Drawing from the field of infrared spectroscopy, OPTRA has employed a multicomponent analysis technique which uniquely recognizes patterns associated with each particle size "bin" over a broad range of sizes. The technique is particularly appropriate for overlapping patterns where large signals are potentially obscuring weak ones. OPTRA has also investigated a method for accurately training the algorithms without the use of representative particles for any given application. This streamlined calibration applies a one-time measured "instrument function" to theoretical Mie patterns to create the training data for the algorithms. OPTRA has demonstrated this algorithmic technique on a compact, rugged, laser scatter sensor head we developed for gas turbine engine emissions measurements. The sensor contains a miniature violet solid state laser and an array of silicon photodiodes, both of which are commercial off the shelf. The algorithmic technique can also be used with any commercially available laser scatter system.
Integer-ambiguity resolution in astronomy and geodesy
NASA Astrophysics Data System (ADS)
Lannes, A.; Prieur, J.-L.
2014-02-01
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Ashcom, Jonathan B.; Shah, Vinay N.; Rachlin, Yaron; Tarokh, Vahid
2017-01-01
Atmospheric turbulence presents a fundamental challenge to Fourier phase recovery in optical interferometry. Typical reconstruction algorithms employ Bayesian inference techniques which rely on prior knowledge of the scene under observation. In contrast, redundant spacing calibration (RSC) algorithms employ redundancy in the baselines of the interferometric array to directly expose the contribution of turbulence, thereby enabling phase recovery for targets of arbitrary and unknown complexity. Traditionally RSC algorithms have been applied directly to single-exposure measurements, which are reliable only at high photon flux in general. In scenarios of low photon flux, such as those arising in the observation of dim objects in space, one must instead rely on time-averaged, atmosphere-invariant quantities such as the bispectrum. In this paper, we develop a novel RSC-based algorithm for prior-less phase recovery in which we generalize the bispectrum to higher order atmosphere-invariants (n-spectra) for improved sensitivity. We provide a strategy for selection of a high-signal-to-noise ratio set of n-spectra using the graph-theoretic notion of the minimum cycle basis. We also discuss a key property of this set (wrap-invariance), which then enables reliable application of standard linear estimation techniques to recover the Fourier phases from the 2π-wrapped n-spectra phases. For validation, we analyse the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures, and corroborate this analysis with simulation results showing performance near an atmosphere-oracle Cramer-Rao bound. Lastly, we apply techniques from the field of compressed sensing to perform image reconstruction from the estimated complex visibilities.
Empirical dual energy calibration (EDEC) for cone-beam computed tomography.
Stenner, Philip; Berkus, Timo; Kachelriess, Marc
2007-09-01
Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p1 and p2 are obtained as functions of the measured attenuation data q1 and q2 (one DECT scan = two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical micro values and density values. Since EDEC is an empirical technique it inherently compensates for scatter components. The empirical dual energy calibration technique is a pragmatic, simple, and reliable calibration approach that produces highly quantitative DECT images.
Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery.
Liu, Han; Wang, Lie; Zhao, Tuo
2015-08-01
We propose a calibrated multivariate regression method named CMR for fitting high dimensional multivariate regression models. Compared with existing methods, CMR calibrates regularization for each regression task with respect to its noise level so that it simultaneously attains improved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient conditions under which CMR achieves the optimal rate of convergence in parameter estimation. Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case numerical rate of convergence O (1/ ϵ ), where ϵ is a pre-specified accuracy of the objective function value. We conduct thorough numerical simulations to illustrate that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR to solve a brain activity prediction problem and find that it is as competitive as a handcrafted model created by human experts. The R package camel implementing the proposed method is available on the Comprehensive R Archive Network http://cran.r-project.org/web/packages/camel/.
NASA Astrophysics Data System (ADS)
Houchin, J. S.
2014-09-01
A common problem for the off-line validation of the calibration algorithms and algorithm coefficients is being able to run science data through the exact same software used for on-line calibration of that data. The Joint Polar Satellite System (JPSS) program solved part of this problem by making the Algorithm Development Library (ADL) available, which allows the operational algorithm code to be compiled and run on a desktop Linux workstation using flat file input and output. However, this solved only part of the problem, as the toolkit and methods to initiate the processing of data through the algorithms were geared specifically toward the algorithm developer, not the calibration analyst. In algorithm development mode, a limited number of sets of test data are staged for the algorithm once, and then run through the algorithm over and over as the software is developed and debugged. In calibration analyst mode, we are continually running new data sets through the algorithm, which requires significant effort to stage each of those data sets for the algorithm without additional tools. AeroADL solves this second problem by providing a set of scripts that wrap the ADL tools, providing both efficient means to stage and process an input data set, to override static calibration coefficient look-up-tables (LUT) with experimental versions of those tables, and to manage a library containing multiple versions of each of the static LUT files in such a way that the correct set of LUTs required for each algorithm are automatically provided to the algorithm without analyst effort. Using AeroADL, The Aerospace Corporation's analyst team has demonstrated the ability to quickly and efficiently perform analysis tasks for both the VIIRS and OMPS sensors with minimal training on the software tools.
Chen, Jun; Quan, Wenting; Cui, Tingwei
2015-01-01
In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
Calibration of TOMS Radiances From Ground Observations
NASA Technical Reports Server (NTRS)
Bojkov, B. R.; Kowalewski, M.; Wellemeyer, C.; Labow, G.; Hilsenrath, E.; Bhartia, P. K.; Ahmad, Z.
2003-01-01
Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of radiances from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used to derive ozone products from both satellite and ground based measurements that are normally used to validate the satellite data. Radiance comparisons employ forward models, but they are inherently more accurate than the retrieval This method employs very accurate comparisons between ground based zenith sicy radiances and satellite nadir radiances and employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. The zenith sky observations are made by the SSBUV where its calibration is maintained to a high degree of accuracy and precision. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. Initial ground observations taken from Goddard Space Flight Center compared with radiative transfer calculations has indicated the feasibility of this method. The effect of aerosols and varying ozone amounts are considered in the model simulations and the theoretical comparisons. The radiative transfer simulations show that the ground and satellite radiance comparisons can be made with an uncertainty of less than l\\% without the knowledge of the amount ozone viewed by either instrument on ground or in space. algorithms.
Axial calibration methods of piezoelectric load sharing dynamometer
NASA Astrophysics Data System (ADS)
Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu
2018-06-01
The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.
Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli
2016-01-01
Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan
2016-04-01
Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the user can choose at the end due to the specific needs. The sequential single-objective parameter screening was employed prior to the calibrations reducing the number of parameters by at least 50% in the different catchments and for the different single objectives. The single-objective calibrations led to a faster convergence of the objectives and are hence beneficial when using a DDS on single-objectives. The above mentioned parameter screening technique is generalized for multi-objectives and applied before calibration using the PA-DDS algorithm. Two different alternatives of this MO-screening are tested. The comparison of the calibration results using all parameters and using only screened parameters shows for both alternatives that the PA-DDS algorithm does not profit in terms of trade-off size and function evaluations required to achieve converged pareto fronts. This is because the PA-DDS algorithm automatically reduces search space with progress of the calibration run. This automatic reduction should be different for other search algorithms. It is therefore hypothesized that prior screening can but must not be beneficial for parameter estimation dependent on the chosen optimization algorithm.
Development of a Tool for an Efficient Calibration of CORSIM Models
DOT National Transportation Integrated Search
2014-08-01
This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...
Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji
2013-04-01
Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1992-01-01
This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).
NASA Technical Reports Server (NTRS)
Kumar, Vivek; Horio, Brant M.; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.
2015-01-01
This paper presents a search algorithm based framework to calibrate origin-destination (O-D) market specific airline ticket demands and prices for the Air Transportation System (ATS). This framework is used for calibrating an agent based model of the air ticket buy-sell process - Airline Evolutionary Simulation (Airline EVOS) -that has fidelity of detail that accounts for airline and consumer behaviors and the interdependencies they share between themselves and the NAS. More specificially, this algorithm simultaneous calibrates demand and airfares for each O-D market, to within specified threshold of a pre-specified target value. The proposed algorithm is illustrated with market data targets provided by the Transportation System Analysis Model (TSAM) and Airline Origin and Destination Survey (DB1B). Although we specify these models and datasources for this calibration exercise, the methods described in this paper are applicable to calibrating any low-level model of the ATS to some other demand forecast model-based data. We argue that using a calibration algorithm such as the one we present here to synchronize ATS models with specialized forecast demand models, is a powerful tool for establishing credible baseline conditions in experiments analyzing the effects of proposed policy changes to the ATS.
New calibration algorithms for dielectric-based microwave moisture sensors
USDA-ARS?s Scientific Manuscript database
New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...
Detection of Unexpected High Correlations between Balance Calibration Loads and Load Residuals
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Volden, T.
2014-01-01
An algorithm was developed for the assessment of strain-gage balance calibration data that makes it possible to systematically investigate potential sources of unexpected high correlations between calibration load residuals and applied calibration loads. The algorithm investigates correlations on a load series by load series basis. The linear correlation coefficient is used to quantify the correlations. It is computed for all possible pairs of calibration load residuals and applied calibration loads that can be constructed for the given balance calibration data set. An unexpected high correlation between a load residual and a load is detected if three conditions are met: (i) the absolute value of the correlation coefficient of a residual/load pair exceeds 0.95; (ii) the maximum of the absolute values of the residuals of a load series exceeds 0.25 % of the load capacity; (iii) the load component of the load series is intentionally applied. Data from a baseline calibration of a six-component force balance is used to illustrate the application of the detection algorithm to a real-world data set. This analysis also showed that the detection algorithm can identify load alignment errors as long as repeat load series are contained in the balance calibration data set that do not suffer from load alignment problems.
Complete Tri-Axis Magnetometer Calibration with a Gyro Auxiliary
Yang, Deng; You, Zheng; Li, Bin; Duan, Wenrui; Yuan, Binwen
2017-01-01
Magnetometers combined with inertial sensors are widely used for orientation estimation, and calibrations are necessary to achieve high accuracy. This paper presents a complete tri-axis magnetometer calibration algorithm with a gyro auxiliary. The magnetic distortions and sensor errors, including the misalignment error between the magnetometer and assembled platform, are compensated after calibration. With the gyro auxiliary, the magnetometer linear interpolation outputs are calculated, and the error parameters are evaluated under linear operations of magnetometer interpolation outputs. The simulation and experiment are performed to illustrate the efficiency of the algorithm. After calibration, the heading errors calculated by magnetometers are reduced to 0.5° (1σ). This calibration algorithm can also be applied to tri-axis accelerometers whose error model is similar to tri-axis magnetometers. PMID:28587115
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
An analysis of the currently available calibrations in Strömgren photometry by using open clusters
NASA Astrophysics Data System (ADS)
Jordi, C.; Masana, E.; Figueras, F.; Torra, J.
1997-05-01
In recent years, several authors have revised the calibrations used to compute physical parameters (Mv, Teff, log g, [Fe/H]) from intrinsic colours in the uvby H_beta photometric system. For reddened stars, these intrinsic colours can be computed through the standard relations among colour indices for each of the regions defined by \\cite[Stromgren (1966)]{str66} on the HR diagram. We present a discussion of the coherence of these calibrations for main-sequence stars. Stars from open clusters are used to carry out this analysis. Assuming that individual reddening values and distances should be similar for all the members of a given open cluster, systematic differences among the calibrations used in each of the photometric regions might arise when comparing mean reddening values and distances for the members of each region. To classify the stars into Stromgren's regions we extended the algorithm presented by \\cite[Figueras et al. (1991)]{fig91} to a wider range of spectral types and luminosity classes. The observational ZAMS are compared with the theoretical ZAMS from stellar evolutionary models, in the range 6500-30000 K. The discrepancies are also discussed.
Rossetti, Paolo; Bondia, Jorge; Vehí, Josep; Fanelli, Carmine G.
2010-01-01
Evaluation of metabolic control of diabetic people has been classically performed measuring glucose concentrations in blood samples. Due to the potential improvement it offers in diabetes care, continuous glucose monitoring (CGM) in the subcutaneous tissue is gaining popularity among both patients and physicians. However, devices for CGM measure glucose concentration in compartments other than blood, usually the interstitial space. This means that CGM need calibration against blood glucose values, and the accuracy of the estimation of blood glucose will also depend on the calibration algorithm. The complexity of the relationship between glucose dynamics in blood and the interstitial space, contrasts with the simplistic approach of calibration algorithms currently implemented in commercial CGM devices, translating in suboptimal accuracy. The present review will analyze the issue of calibration algorithms for CGM, focusing exclusively on the commercially available glucose sensors. PMID:22163505
Corner detection and sorting method based on improved Harris algorithm in camera calibration
NASA Astrophysics Data System (ADS)
Xiao, Ying; Wang, Yonghong; Dan, Xizuo; Huang, Anqi; Hu, Yue; Yang, Lianxiang
2016-11-01
In traditional Harris corner detection algorithm, the appropriate threshold which is used to eliminate false corners is selected manually. In order to detect corners automatically, an improved algorithm which combines Harris and circular boundary theory of corners is proposed in this paper. After detecting accurate corner coordinates by using Harris algorithm and Forstner algorithm, false corners within chessboard pattern of the calibration plate can be eliminated automatically by using circular boundary theory. Moreover, a corner sorting method based on an improved calibration plate is proposed to eliminate false background corners and sort remaining corners in order. Experiment results show that the proposed algorithms can eliminate all false corners and sort remaining corners correctly and automatically.
Robust camera calibration for sport videos using court models
NASA Astrophysics Data System (ADS)
Farin, Dirk; Krabbe, Susanne; de With, Peter H. N.; Effelsberg, Wolfgang
2003-12-01
We propose an automatic camera calibration algorithm for court sports. The obtained camera calibration parameters are required for applications that need to convert positions in the video frame to real-world coordinates or vice versa. Our algorithm uses a model of the arrangement of court lines for calibration. Since the court model can be specified by the user, the algorithm can be applied to a variety of different sports. The algorithm starts with a model initialization step which locates the court in the image without any user assistance or a-priori knowledge about the most probable position. Image pixels are classified as court line pixels if they pass several tests including color and local texture constraints. A Hough transform is applied to extract line elements, forming a set of court line candidates. The subsequent combinatorial search establishes correspondences between lines in the input image and lines from the court model. For the succeeding input frames, an abbreviated calibration algorithm is used, which predicts the camera parameters for the new image and optimizes the parameters using a gradient-descent algorithm. We have conducted experiments on a variety of sport videos (tennis, volleyball, and goal area sequences of soccer games). Video scenes with considerable difficulties were selected to test the robustness of the algorithm. Results show that the algorithm is very robust to occlusions, partial court views, bad lighting conditions, or shadows.
NASA Technical Reports Server (NTRS)
Rediniotis, Othon K.
1999-01-01
Two new calibration algorithms were developed for the calibration of non-nulling multi-hole probes in compressible, subsonic flowfields. The reduction algorithms are robust and able to reduce data from any multi-hole probe inserted into any subsonic flowfield to generate very accurate predictions of the velocity vector, flow direction, total pressure and static pressure. One of the algorithms PROBENET is based on the theory of neural networks, while the other is of a more conventional nature (polynomial approximation technique) and introduces a novel idea of local least-squares fits. Both algorithms have been developed to complete, user-friendly software packages. New technology was developed for the fabrication of miniature multi-hole probes, with probe tip diameters all the way down to 0.035". Several miniature 5- and 7-hole probes, with different probe tip geometries (hemispherical, conical, faceted) and different overall shapes (straight, cobra, elbow probes) were fabricated, calibrated and tested. Emphasis was placed on the development of four stainless-steel conical 7-hole probes, 1/16" in diameter calibrated at NASA Langley for the entire subsonic regime. The developed calibration algorithms were extensively tested with these probes demonstrating excellent prediction capabilities. The probes were used in the "trap wing" wind tunnel tests in the 14'x22' wind tunnel at NASA Langley, providing valuable information on the flowfield over the wing. This report is organized in the following fashion. It consists of a "Technical Achievements" section that summarizes the major achievements, followed by an assembly of journal articles that were produced from this project and ends with two manuals for the two probe calibration algorithms developed.
Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera
Sim, Sungdae; Sock, Juil; Kwak, Kiho
2016-01-01
LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches. PMID:27338416
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
Mahmoudi, Zeinab; Johansen, Mette Dencker; Christiansen, Jens Sandahl
2014-01-01
Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
NASA Astrophysics Data System (ADS)
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
Online Calibration of Polytomous Items Under the Generalized Partial Credit Model
Zheng, Yi
2016-01-01
Online calibration is a technology-enhanced architecture for item calibration in computerized adaptive tests (CATs). Many CATs are administered continuously over a long term and rely on large item banks. To ensure test validity, these item banks need to be frequently replenished with new items, and these new items need to be pretested before being used operationally. Online calibration dynamically embeds pretest items in operational tests and calibrates their parameters as response data are gradually obtained through the continuous test administration. This study extends existing formulas, procedures, and algorithms for dichotomous item response theory models to the generalized partial credit model, a popular model for items scored in more than two categories. A simulation study was conducted to investigate the developed algorithms and procedures under a variety of conditions, including two estimation algorithms, three pretest item selection methods, three seeding locations, two numbers of score categories, and three calibration sample sizes. Results demonstrated acceptable estimation accuracy of the two estimation algorithms in some of the simulated conditions. A variety of findings were also revealed for the interacted effects of included factors, and recommendations were made respectively. PMID:29881063
Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm
NASA Astrophysics Data System (ADS)
Gao, X.; Li, M.; Xing, L.; Liu, Y.
2018-04-01
Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.
Asymptotic Analysis Of The Total Least Squares ESPRIT Algorithm'
NASA Astrophysics Data System (ADS)
Ottersten, B. E.; Viberg, M.; Kailath, T.
1989-11-01
This paper considers the problem of estimating the parameters of multiple narrowband signals arriving at an array of sensors. Modern approaches to this problem often involve costly procedures for calculating the estimates. The ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm was recently proposed as a means for obtaining accurate estimates without requiring a costly search of the parameter space. This method utilizes an array invariance to arrive at a computationally efficient multidimensional estimation procedure. Herein, the asymptotic distribution of the estimation error is derived for the Total Least Squares (TLS) version of ESPRIT. The Cramer-Rao Bound (CRB) for the ESPRIT problem formulation is also derived and found to coincide with the variance of the asymptotic distribution through numerical examples. The method is also compared to least squares ESPRIT and MUSIC as well as to the CRB for a calibrated array. Simulations indicate that the theoretic expressions can be used to accurately predict the performance of the algorithm.
Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng
2015-01-01
The non-sugar solids (NSS) content is one of the most important nutrition indicators of Chinese rice wine. This study proposed a rapid method for the measurement of NSS content in Chinese rice wine using near infrared (NIR) spectroscopy. We also systemically studied the efficient spectral variables selection algorithms that have to go through modeling. A new algorithm of synergy interval partial least square with competitive adaptive reweighted sampling (Si-CARS-PLS) was proposed for modeling. The performance of the final model was back-evaluated using root mean square error of calibration (RMSEC) and correlation coefficient (Rc) in calibration set and similarly tested by mean square error of prediction (RMSEP) and correlation coefficient (Rp) in prediction set. The optimum model by Si-CARS-PLS algorithm was achieved when 7 PLS factors and 18 variables were included, and the results were as follows: Rc=0.95 and RMSEC=1.12 in the calibration set, Rp=0.95 and RMSEP=1.22 in the prediction set. In addition, Si-CARS-PLS algorithm showed its superiority when compared with the commonly used algorithms in multivariate calibration. This work demonstrated that NIR spectroscopy technique combined with a suitable multivariate calibration algorithm has a high potential in rapid measurement of NSS content in Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.
GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm
NASA Technical Reports Server (NTRS)
Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.
2003-01-01
The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.
Using Active Learning for Speeding up Calibration in Simulation Models.
Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2016-07-01
Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.
Using Active Learning for Speeding up Calibration in Simulation Models
Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan
2015-01-01
Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shouguang; Li, Qiang; Zou, Hua
2016-05-01
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load-time histories is then deduced. Measured data from the Beijing-Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load-time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.
Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Kiely, Aaron B.; Klimesh, Matthew A.
2010-01-01
A two-stage predictive method was developed for lossless compression of calibrated hyperspectral imagery. The first prediction stage uses a conventional linear predictor intended to exploit spatial and/or spectral dependencies in the data. The compressor tabulates counts of the past values of the difference between this initial prediction and the actual sample value. To form the ultimate predicted value, in the second stage, these counts are combined with an adaptively updated weight function intended to capture information about data regularities introduced by the calibration process. Finally, prediction residuals are losslessly encoded using adaptive arithmetic coding. Algorithms of this type are commonly tested on a readily available collection of images from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imager. On the standard calibrated AVIRIS hyperspectral images that are most widely used for compression benchmarking, the new compressor provides more than 0.5 bits/sample improvement over the previous best compression results. The algorithm has been implemented in Mathematica. The compression algorithm was demonstrated as beneficial on 12-bit calibrated AVIRIS images.
A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.; Wendt, Bruce J.
1994-01-01
A new algorithm for five-hole probe calibration and data reduction using a non-nulling method is developed. The significant features of the algorithm are: (1) two components of the unit vector in the flow direction replace pitch and yaw angles as flow direction variables; and (2) symmetry rules are developed that greatly simplify Taylor's series representations of the calibration data. In data reduction, four pressure coefficients allow total pressure, static pressure, and flow direction to be calculated directly. The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify uncertainty of five-hole results (e.g., total pressure, static pressure, and flow direction) and determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance to improve measurement technique. The new algorithm is applied to calibrate and reduce data from a rake of five-hole probes. Here, ten individual probes are mounted on a single probe shaft and used simultaneously. Use of this probe is made practical by the simplicity afforded by this algorithm.
Jung, Jaehoon; Yoon, Inhye; Paik, Joonki
2016-01-01
This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978
de Paula, Lauro C. M.; Soares, Anderson S.; de Lima, Telma W.; Delbem, Alexandre C. B.; Coelho, Clarimar J.; Filho, Arlindo R. G.
2014-01-01
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation. PMID:25493625
de Paula, Lauro C M; Soares, Anderson S; de Lima, Telma W; Delbem, Alexandre C B; Coelho, Clarimar J; Filho, Arlindo R G
2014-01-01
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation.
GIFTS SM EDU Radiometric and Spectral Calibrations
NASA Technical Reports Server (NTRS)
Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.
2007-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.
Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation
NASA Astrophysics Data System (ADS)
Bueno, Diana R.; Montano, L.
2017-04-01
Objective. Neuromusculoskeletal models involve many subject-specific physiological parameters that need to be adjusted to adequately represent muscle properties. Traditionally, neuromusculoskeletal models have been calibrated with a forward-inverse dynamic optimization which is time-consuming and unfeasible for rehabilitation therapy. Non self-calibration algorithms have been applied to these models. To the best of our knowledge, the algorithm proposed in this work is the first on-line calibration algorithm for muscle models that allows a generic model to be adjusted to different subjects in a few steps. Approach. In this paper we propose a reformulation of the traditional muscle models that is able to sequentially estimate the kinetics (net joint moments), and also its full self-calibration (subject-specific internal parameters of the muscle from a set of arbitrary uncalibrated data), based on the unscented Kalman filter. The nonlinearity of the model as well as its calibration problem have obliged us to adopt the sum of Gaussians filter suitable for nonlinear systems. Main results. This sequential Bayesian self-calibration algorithm achieves a complete muscle model calibration using as input only a dataset of uncalibrated sEMG and kinematics data. The approach is validated experimentally using data from the upper limbs of 21 subjects. Significance. The results show the feasibility of neuromusculoskeletal model self-calibration. This study will contribute to a better understanding of the generalization of muscle models for subject-specific rehabilitation therapies. Moreover, this work is very promising for rehabilitation devices such as electromyography-driven exoskeletons or prostheses.
Redundant interferometric calibration as a complex optimization problem
NASA Astrophysics Data System (ADS)
Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.
2018-05-01
Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.
A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.
A calibration method of infrared LVF based spectroradiometer
NASA Astrophysics Data System (ADS)
Liu, Jiaqing; Han, Shunli; Liu, Lei; Hu, Dexin
2017-10-01
In this paper, a calibration method of LVF-based spectroradiometer is summarize, including spectral calibration and radiometric calibration. The spectral calibration process as follow: first, the relationship between stepping motor's step number and transmission wavelength is derivative by theoretical calculation, including a non-linearity correction of LVF;second, a line-to-line method was used to corrected the theoretical wavelength; Finally, the 3.39 μm and 10.69 μm laser is used for spectral calibration validation, show the sought 0.1% accuracy or better is achieved.A new sub-region multi-point calibration method is used for radiometric calibration to improving accuracy, results show the sought 1% accuracy or better is achieved.
SeaWiFS Technical Report Series. Volume 29; The SeaWiFS CZCS-Type Pigment Algorithm
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Moore, Gerald F.; Trees, Charles C.; Clark, Dennis K.
1995-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. An algorithm is needed that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for the CZCS. This document describes the theoretical rationale of radiance band-ratio methods for determining chlorophyll-a and other important biogeochemical parameters, and their implementation for the SeaWIFS mission. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context where chlorophyll-a absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll-a (absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are less robust. The sources of variability in optical data are examined using the NIMBUS Experiment Team (NET) bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in the optical data is attributed to variability in pigment (chlorophyll-a), and total particulates, with less than 5% of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows the 490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products, such as total particulates and dissolved organic matter (DOM), are suggested.
SeaWiFS Technical Report Series. Volume 29: SeaWiFS CZCS-type pigment algorithm
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Moore, Gerald F.; Trees, Charles C.; Clark, Dennis K.
1995-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. an algorithm is needed that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for the CZCS. This document describes the theoretical rationale of radiance band-radio methods for determining chlorophyll alpha and other important biogeochemical parameters, and their implementation for the SeaWiFS mission. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context where chlorophyll alpha absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll alpha (absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are less robust. The sources of variability in optical data re examined using the NIMBUS Experiment Team (NET) bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in the optical data is attributed to variability in pigment (chlorophyll alpha, and total particulates, with less than 5% of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows that 490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products, such as total particulates and dissolved organic matter (DOM), are suggested.
NASA Astrophysics Data System (ADS)
Clergeau, Jean-François; Ferraton, Matthieu; Guérard, Bruno; Khaplanov, Anton; Piscitelli, Francesco; Platz, Martin; Rigal, Jean-Marie; Van Esch, Patrick; Daullé, Thibault
2017-01-01
1D or 2D neutron position sensitive detectors with individual wire or strip readout using discriminators have the advantage of being able to treat several neutron impacts partially overlapping in time, hence reducing global dead time. A single neutron impact usually gives rise to several discriminator signals. In this paper, we introduce an information-theoretical definition of image resolution. Two point-like spots of neutron impacts with a given distance between them act as a source of information (each neutron hit belongs to one spot or the other), and the detector plus signal treatment is regarded as an imperfect communication channel that transmits this information. The maximal mutual information obtained from this channel as a function of the distance between the spots allows to define a calibration-independent measure of position resolution. We then apply this measure to quantify the power of position resolution of different algorithms treating these individual discriminator signals which can be implemented in firmware. The method is then applied to different detectors existing at the ILL. Center-of-gravity methods usually improve the position resolution over best-wire algorithms which are the standard way of treating these signals.
NASA Technical Reports Server (NTRS)
Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)
1998-01-01
A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.
Calibrated Noise Measurements with Induced Receiver Gain Fluctuations
NASA Technical Reports Server (NTRS)
Racette, Paul; Walker, David; Gu, Dazhen; Rajola, Marco; Spevacek, Ashly
2011-01-01
The lack of well-developed techniques for modeling changing statistical moments in our observations has stymied the application of stochastic process theory in science and engineering. These limitations were encountered when modeling the performance of radiometer calibration architectures and algorithms in the presence of non stationary receiver fluctuations. Analyses of measured signals have traditionally been limited to a single measurement series. Whereas in a radiometer that samples a set of noise references, the data collection can be treated as an ensemble set of measurements of the receiver state. Noise Assisted Data Analysis is a growing field of study with significant potential for aiding the understanding and modeling of non stationary processes. Typically, NADA entails adding noise to a signal to produce an ensemble set on which statistical analysis is performed. Alternatively as in radiometric measurements, mixing a signal with calibrated noise provides, through the calibration process, the means to detect deviations from the stationary assumption and thereby a measurement tool to characterize the signal's non stationary properties. Data sets comprised of calibrated noise measurements have been limited to those collected with naturally occurring fluctuations in the radiometer receiver. To examine the application of NADA using calibrated noise, a Receiver Gain Modulation Circuit (RGMC) was designed and built to modulate the gain of a radiometer receiver using an external signal. In 2010, an RGMC was installed and operated at the National Institute of Standards and Techniques (NIST) using their Noise Figure Radiometer (NFRad) and national standard noise references. The data collected is the first known set of calibrated noise measurements from a receiver with an externally modulated gain. As an initial step, sinusoidal and step-function signals were used to modulate the receiver gain, to evaluate the circuit characteristics and to study the performance of a variety of calibration algorithms. The receiver noise temperature and time-bandwidth product of the NFRad are calculated from the data. Statistical analysis using temporal-dependent calibration algorithms reveals that the natural occurring fluctuations in the receiver are stationary over long intervals (100s of seconds); however the receiver exhibits local non stationarity over the interval over which one set of reference measurements are collected. A variety of calibration algorithms have been applied to the data to assess algorithms' performance with the gain fluctuation signals. This presentation will describe the RGMC, experiment design and a comparative analysis of calibration algorithms.
Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm
NASA Astrophysics Data System (ADS)
Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.
2011-12-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) CMORPH product. The algorithm has several potential future applications such as: improving the performance accuracy of hydrologic forecasting models over the Nile Basin, and utilizing the enhanced rainfall datasets and better-calibrated hydrologic models to assess the impacts of climate change on the region's water availability.
Weighted least squares techniques for improved received signal strength based localization.
Tarrío, Paula; Bernardos, Ana M; Casar, José R
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.
Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization
Tarrío, Paula; Bernardos, Ana M.; Casar, José R.
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling. PMID:22164092
A portable foot-parameter-extracting system
NASA Astrophysics Data System (ADS)
Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan
2016-03-01
In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert M.
2013-01-01
A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.
Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred
2013-01-01
A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.
Urban, Jan; Hrouzek, Pavel; Stys, Dalibor; Martens, Harald
2013-01-01
Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations.
Hrouzek, Pavel; Štys, Dalibor; Martens, Harald
2013-01-01
Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations. PMID:23586036
Imager for Mars Pathfinder (IMP) image calibration
Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.
1999-01-01
The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-01-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-07-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.
Experimental data filtration algorithm
NASA Astrophysics Data System (ADS)
Oanta, E.; Tamas, R.; Danisor, A.
2017-08-01
Experimental data reduction is an important topic because the resulting information is used to calibrate the theoretical models and to verify the accuracy of their results. The paper presents some ideas used to extract a subset of points from the initial set of points which defines an experimentally acquired curve. The objective is to get a subset with significantly fewer points as the initial data set and which accurately defines a smooth curve that preserves the shape of the initial curve. Being a general study we used only data filtering criteria based geometric features that at a later stage may be related to upper level conditions specific to the phenomenon under investigation. Five algorithms were conceived and implemented in an original software consisting of more than 1800 computer code lines which has a flexible structure that allows us to easily update it using new algorithms. The software instrument was used to process the data of several case studies. Conclusions are drawn regarding the values of the parameters used in the algorithms to decide if a series of points may be considered either noise, or a relevant part of the curve. Being a general analysis, the result is a computer based trial-and-error method that efficiently solves this kind of problems.
A numerically-stable algorithm for calibrating single six-ports for national microwave reflectometry
NASA Astrophysics Data System (ADS)
Hodgetts, T. E.
1990-11-01
A full description and analysis of the numerically stable algorithm currently used for calibrating single six ports or multi states for national microwave reflectometry, employing as standards four one port devices having known voltage reflection coefficients, is given.
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...
Design of the OMPS limb sensor correction algorithm
NASA Astrophysics Data System (ADS)
Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark
The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.
A stoichiometric calibration method for dual energy computed tomography
NASA Astrophysics Data System (ADS)
Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo
2014-04-01
The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic reconstruction algorithm (filtered back projection). With a more advanced method (sinogram affirmed iterative technique), the values become 1.0 mm, 0.5 mm and 0.4 mm for protons, helium and carbon ions, respectively. These results allow one to conclude that the present adaptation of the stoichiometric calibration yields a highly accurate method for characterizing tissue with DECT for ion beam therapy and potentially for photon beam therapy.
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
Zhang, Hong-guang; Lu, Jian-gang
2016-02-01
Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
Data fusion for a vision-aided radiological detection system: Calibration algorithm performance
NASA Astrophysics Data System (ADS)
Stadnikia, Kelsey; Henderson, Kristofer; Martin, Allan; Riley, Phillip; Koppal, Sanjeev; Enqvist, Andreas
2018-05-01
In order to improve the ability to detect, locate, track and identify nuclear/radiological threats, the University of Florida nuclear detection community has teamed up with the 3D vision community to collaborate on a low cost data fusion system. The key is to develop an algorithm to fuse the data from multiple radiological and 3D vision sensors as one system. The system under development at the University of Florida is being assessed with various types of radiological detectors and widely available visual sensors. A series of experiments were devised utilizing two EJ-309 liquid organic scintillation detectors (one primary and one secondary), a Microsoft Kinect for Windows v2 sensor and a Velodyne HDL-32E High Definition LiDAR Sensor which is a highly sensitive vision sensor primarily used to generate data for self-driving cars. Each experiment consisted of 27 static measurements of a source arranged in a cube with three different distances in each dimension. The source used was Cf-252. The calibration algorithm developed is utilized to calibrate the relative 3D-location of the two different types of sensors without need to measure it by hand; thus, preventing operator manipulation and human errors. The algorithm can also account for the facility dependent deviation from ideal data fusion correlation. Use of the vision sensor to determine the location of a sensor would also limit the possible locations and it does not allow for room dependence (facility dependent deviation) to generate a detector pseudo-location to be used for data analysis later. Using manually measured source location data, our algorithm-predicted the offset detector location within an average of 20 cm calibration-difference to its actual location. Calibration-difference is the Euclidean distance from the algorithm predicted detector location to the measured detector location. The Kinect vision sensor data produced an average calibration-difference of 35 cm and the HDL-32E produced an average calibration-difference of 22 cm. Using NaI and He-3 detectors in place of the EJ-309, the calibration-difference was 52 cm for NaI and 75 cm for He-3. The algorithm is not detector dependent; however, from these results it was determined that detector dependent adjustments are required.
NASA Astrophysics Data System (ADS)
Rausch, Kameron; Houchin, Scott; Cardema, Jason; Moy, Gabriel; Haas, Evan; De Luccia, Frank J.
2013-12-01
National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands are currently calibrated via weekly updates to look-up tables (LUTs) utilized by operational ground processing in the Joint Polar Satellite System Interface Data Processing Segment (IDPS). The parameters in these LUTs must be predicted ahead 2 weeks and cannot adequately track the dynamically varying response characteristics of the instrument. As a result, spurious "predict-ahead" calibration errors of the order of 0.1% or greater are routinely introduced into the calibrated reflectances and radiances produced by IDPS in sensor data records (SDRs). Spurious calibration errors of this magnitude adversely impact the quality of downstream environmental data records (EDRs) derived from VIIRS SDRs such as Ocean Color/Chlorophyll and cause increased striping and band-to-band radiometric calibration uncertainty of SDR products. A novel algorithm that fully automates reflective band calibration has been developed for implementation in IDPS in late 2013. Automating the reflective solar band (RSB) calibration is extremely challenging and represents a significant advancement over the manner in which RSB calibration has traditionally been performed in heritage instruments such as the Moderate Resolution Imaging Spectroradiometer. The automated algorithm applies calibration data almost immediately after their acquisition by the instrument from views of space and on-onboard calibration sources, thereby eliminating the predict-ahead errors associated with the current offline calibration process. This new algorithm, when implemented, will significantly improve the quality of VIIRS reflective band SDRs and consequently the quality of EDRs produced from these SDRs.
Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao
2014-09-15
Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.
A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System
Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju
2014-01-01
Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998
NASA Astrophysics Data System (ADS)
Orłowska-Szostak, Maria; Orłowski, Ryszard
2017-11-01
The paper discusses some relevant aspects of the calibration of a computer model describing flows in the water supply system. The authors described an exemplary water supply system and used it as a practical illustration of calibration. A range of measures was discussed and applied, which improve the convergence and effective use of calculations in the calibration process and also the effect of such calibration which is the validity of the results obtained. Drawing up results of performed measurements, i.e. estimating pipe roughnesses, the authors performed using the genetic algorithm implementation of which is a software developed by Resan Labs company from Brazil.
Analysis of pre-flight modulator voltage calibration data for the Voyager plasma science experiment
NASA Technical Reports Server (NTRS)
Nastov, Ognen
1988-01-01
The Voyager Plasma Science (PLS) modulator calibration (MVM) data analysis was undertaken in order to check the correctness of the fast A/D converter formulas that connect low voltage monitor signals (MV) with digital outputs (DN), to determine the proportionality constants between the actual modulator grid potential (V) and the monitor voltage (MV), and to establish an algorithm to link the digitized readouts (DN) with the actual grid potential (V). The analysis results are surprising in that the derived conversion constants deviate by fairly significant amounts from their nominal values. However, it must be kept in mind that the test results which were used for analysis may be very imprecise. Even if it is assumed that the test result errors are very large, they do no appear to be capable to account for all discrepancies between the theoretical expectations and the results of the analysis. Measurements with the flight spare instrument appear to be the only means of investigating these effects further.
New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration
NASA Astrophysics Data System (ADS)
Keshavarz, Kasra; Alizadeh, Hossein
2017-04-01
Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other hand, knowing that there is no multi-objective optimization mechanism in SUFI-2, are the final estimations Pareto-optimal? Can systematic methods be applied to select the final estimations? Dealing with these questions, a new auto-calibration algorithm was proposed where the uncertainty measures were considered as two objectives to find non-dominated interval estimations of parameters by means of coupling Monte Carlo simulation and Multi-Objective Particle Swarm Optimization. Both the proposed algorithm and SUFI-2 were applied to calibrate parameters of water resources planning model of Helleh river basin, Iran. The model is a comprehensive water quantity-quality model developed in the previous researches using WEAP software in order to analyze the impacts of different water resources management strategies including dam construction, increasing cultivation area, utilization of more efficient irrigation technologies, changing crop pattern, etc. Comparing the Pareto frontier resulted from the proposed auto-calibration algorithm with SUFI-2 results, it was revealed that the new algorithm leads to a better and also continuous Pareto frontier, even though it is more computationally expensive. Finally, Nash and Kalai-Smorodinsky bargaining methods were used to choose compromised interval estimation regarding Pareto frontier.
NASA Astrophysics Data System (ADS)
Mao, Heng; Wang, Xiao; Zhao, Dazun
2009-05-01
As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.
Camera calibration method of binocular stereo vision based on OpenCV
NASA Astrophysics Data System (ADS)
Zhong, Wanzhen; Dong, Xiaona
2015-10-01
Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.
System and method for calibrating a rotary absolute position sensor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)
2012-01-01
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.
NASA Astrophysics Data System (ADS)
Gektin, Yu. M.; Egoshkin, N. A.; Eremeev, V. V.; Kuznecov, A. E.; Moskatinyev, I. V.; Smelyanskiy, M. B.
2017-12-01
A set of standardized models and algorithms for geometric normalization and georeferencing images from geostationary and highly elliptical Earth observation systems is considered. The algorithms can process information from modern scanning multispectral sensors with two-coordinate scanning and represent normalized images in optimal projection. Problems of the high-precision ground calibration of the imaging equipment using reference objects, as well as issues of the flight calibration and refinement of geometric models using the absolute and relative reference points, are considered. Practical testing of the models, algorithms, and technologies is performed in the calibration of sensors for spacecrafts of the Electro-L series and during the simulation of the Arktika prospective system.
Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2015-01-01
While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726
Using the cloud to speed-up calibration of watershed-scale hydrologic models (Invited)
NASA Astrophysics Data System (ADS)
Goodall, J. L.; Ercan, M. B.; Castronova, A. M.; Humphrey, M.; Beekwilder, N.; Steele, J.; Kim, I.
2013-12-01
This research focuses on using the cloud to address computational challenges associated with hydrologic modeling. One example is calibration of a watershed-scale hydrologic model, which can take days of execution time on typical computers. While parallel algorithms for model calibration exist and some researchers have used multi-core computers or clusters to run these algorithms, these solutions do not fully address the challenge because (i) calibration can still be too time consuming even on multicore personal computers and (ii) few in the community have the time and expertise needed to manage a compute cluster. Given this, another option for addressing this challenge that we are exploring through this work is the use of the cloud for speeding-up calibration of watershed-scale hydrologic models. The cloud used in this capacity provides a means for renting a specific number and type of machines for only the time needed to perform a calibration model run. The cloud allows one to precisely balance the duration of the calibration with the financial costs so that, if the budget allows, the calibration can be performed more quickly by renting more machines. Focusing specifically on the SWAT hydrologic model and a parallel version of the DDS calibration algorithm, we show significant speed-up time across a range of watershed sizes using up to 256 cores to perform a model calibration. The tool provides a simple web-based user interface and the ability to monitor the calibration job submission process during the calibration process. Finally this talk concludes with initial work to leverage the cloud for other tasks associated with hydrologic modeling including tasks related to preparing inputs for constructing place-based hydrologic models.
GIFTS SM EDU Data Processing and Algorithms
NASA Technical Reports Server (NTRS)
Tian, Jialin; Johnson, David G.; Reisse, Robert A.; Gazarik, Michael J.
2007-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration stage. The calibration procedures can be subdivided into three stages. In the pre-calibration stage, a phase correction algorithm is applied to the decimated and filtered complex interferogram. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected blackbody reference spectra. In the radiometric calibration stage, we first compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. During the post-processing stage, we estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. We then implement a correction scheme that compensates for the effect of fore-optics offsets. Finally, for off-axis pixels, the FPA off-axis effects correction is performed. To estimate the performance of the entire FPA, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation.
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
[A plane-based hand-eye calibration method for surgical robots].
Zeng, Bowei; Meng, Fanle; Ding, Hui; Liu, Wenbo; Wu, Di; Wang, Guangzhi
2017-04-01
In order to calibrate the hand-eye transformation of the surgical robot and laser range finder (LRF), a calibration algorithm based on a planar template was designed. A mathematical model of the planar template had been given and the approach to address the equations had been derived. Aiming at the problems of the measurement error in a practical system, we proposed a new algorithm for selecting coplanar data. This algorithm can effectively eliminate considerable measurement error data to improve the calibration accuracy. Furthermore, three orthogonal planes were used to improve the calibration accuracy, in which a nonlinear optimization for hand-eye calibration was used. With the purpose of verifying the calibration precision, we used the LRF to measure some fixed points in different directions and a cuboid's surfaces. Experimental results indicated that the precision of a single planar template method was (1.37±0.24) mm, and that of the three orthogonal planes method was (0.37±0.05) mm. Moreover, the mean FRE of three-dimensional (3D) points was 0.24 mm and mean TRE was 0.26 mm. The maximum angle measurement error was 0.4 degree. Experimental results show that the method presented in this paper is effective with high accuracy and can meet the requirements of surgical robot precise location.
Nigatu, Yeshambel T; Liu, Yan; Wang, JianLi
2016-07-22
Multivariable risk prediction algorithms are useful for making clinical decisions and for health planning. While prediction algorithms for new onset of major depression in the primary care attendees in Europe and elsewhere have been developed, the performance of these algorithms in different populations is not known. The objective of this study was to validate the PredictD algorithm for new onset of major depressive episode (MDE) in the US general population. Longitudinal study design was conducted with approximate 3-year follow-up data from a nationally representative sample of the US general population. A total of 29,621 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have an MDE in the past year at Wave 1 were included. The PredictD algorithm was directly applied to the selected participants. MDE was assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule, based on the DSM-IV criteria. Among the participants, 8 % developed an MDE over three years. The PredictD algorithm had acceptable discriminative power (C-statistics = 0.708, 95 % CI: 0.696, 0.720), but poor calibration (p < 0.001) with the NESARC data. In the European primary care attendees, the algorithm had a C-statistics of 0.790 (95 % CI: 0.767, 0.813) with a perfect calibration. The PredictD algorithm has acceptable discrimination, but the calibration capacity was poor in the US general population despite of re-calibration. Therefore, based on the results, at current stage, the use of PredictD in the US general population for predicting individual risk of MDE is not encouraged. More independent validation research is needed.
Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao
2014-01-01
Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872
NASA Astrophysics Data System (ADS)
Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.
2015-12-01
We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.
Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration
NASA Astrophysics Data System (ADS)
Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut
2017-04-01
Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization
Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Suorsa, Raymond; Sridhar, Banavar
1991-01-01
A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.
Kalman Filter for Calibrating a Telescope Focal Plane
NASA Technical Reports Server (NTRS)
Kang, Bryan; Bayard, David
2006-01-01
The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.
Improving Environmental Model Calibration and Prediction
2011-01-18
REPORT Final Report - Improving Environmental Model Calibration and Prediction 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: First, we have continued to...develop tools for efficient global optimization of environmental models. Our algorithms are hybrid algorithms that combine evolutionary strategies...toward practical hybrid optimization tools for environmental models. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 18-01-2011 13
Data Fusion for a Vision-Radiological System: a Statistical Calibration Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enqvist, Andreas; Koppal, Sanjeev; Riley, Phillip
2015-07-01
Presented here is a fusion system based on simple, low-cost computer vision and radiological sensors for tracking of multiple objects and identifying potential radiological materials being transported or shipped. The main focus of this work is the development of calibration algorithms for characterizing the fused sensor system as a single entity. There is an apparent need for correcting for a scene deviation from the basic inverse distance-squared law governing the detection rates even when evaluating system calibration algorithms. In particular, the computer vision system enables a map of distance-dependence of the sources being tracked, to which the time-dependent radiological datamore » can be incorporated by means of data fusion of the two sensors' output data. (authors)« less
Calibration of Passive Microwave Polarimeters that Use Hybrid Coupler-Based Correlators
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.
2003-01-01
Four calibration algorithms are studied for microwave polarimeters that use hybrid coupler-based correlators: 1) conventional two-look of hot and cold sources, 2) three looks of hot and cold source combinations, 3) two-look with correlated source, and 4) four-look combining methods 2 and 3. The systematic errors are found to depend on the polarimeter component parameters and accuracy of calibration noise temperatures. A case study radiometer in four different remote sensing scenarios was considered in light of these results. Applications for Ocean surface salinity, Ocean surface winds, and soil moisture were found to be sensitive to different systematic errors. Finally, a standard uncertainty analysis was performed on the four-look calibration algorithm, which was found to be most sensitive to the correlated calibration source.
Tuo, Rui; Jeff Wu, C. F.
2016-07-19
Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less
Interim Calibration Report for the SMMR Simulator
NASA Technical Reports Server (NTRS)
Gloersen, P.; Cavalieri, D.
1979-01-01
The calibration data obtained during the fall 1978 Nimbus-G underflight mission with the scanning multichannel microwave radiometer (SMMR) simulator on board the NASA CV-990 aircraft were analyzed and an interim calibration algorithm was developed. Data selected for the analysis consisted of in flight sky, first-year sea ice, and open water observations, as well as ground based observations of fixed targets with varied temperatures of selected instrument components. For most of the SMMR channels, a good fit to the selected data set was obtained with the algorithm.
NASA Technical Reports Server (NTRS)
Guenther, Bruce W.; Godden, Gerald D.; Xiong, Xiao-Xiong; Knight, Edward J.; Qiu, Shi-Yue; Montgomery, Harry; Hopkins, M. M.; Khayat, Mohammad G.; Hao, Zhi-Dong; Smith, David E. (Technical Monitor)
2000-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) radiometric calibration product is described for the thermal emissive and the reflective solar bands. Specific sensor design characteristics are identified to assist in understanding how the calibration algorithm software product is designed. The reflected solar band software products of radiance and reflectance factor both are described. The product file format is summarized and the MODIS Characterization Support Team (MCST) Homepage location for the current file format is provided.
Optimizing the learning rate for adaptive estimation of neural encoding models
2018-01-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069
Optimizing the learning rate for adaptive estimation of neural encoding models.
Hsieh, Han-Lin; Shanechi, Maryam M
2018-05-01
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.
Automatic calibration system for analog instruments based on DSP and CCD sensor
NASA Astrophysics Data System (ADS)
Lan, Jinhui; Wei, Xiangqin; Bai, Zhenlong
2008-12-01
Currently, the calibration work of analog measurement instruments is mainly completed by manual and there are many problems waiting for being solved. In this paper, an automatic calibration system (ACS) based on Digital Signal Processor (DSP) and Charge Coupled Device (CCD) sensor is developed and a real-time calibration algorithm is presented. In the ACS, TI DM643 DSP processes the data received by CCD sensor and the outcome is displayed on Liquid Crystal Display (LCD) screen. For the algorithm, pointer region is firstly extracted for improving calibration speed. And then a math model of the pointer is built to thin the pointer and determine the instrument's reading. Through numbers of experiments, the time of once reading is no more than 20 milliseconds while it needs several seconds if it is done manually. At the same time, the error of the instrument's reading satisfies the request of the instruments. It is proven that the automatic calibration system can effectively accomplish the calibration work of the analog measurement instruments.
Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques
NASA Astrophysics Data System (ADS)
Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.
2012-04-01
Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) CMORPH product. The algorithm has several potential future applications such as: improving the performance accuracy of hydrologic forecasting models over the Nile Basin, and utilizing the enhanced rainfall datasets and better-calibrated hydrologic models to assess the impacts of climate change on the region's water availability using global circulation models and regional climate models.
Dinç, Erdal; Ozdemir, Abdil
2005-01-01
Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.
The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.
2006-01-01
The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.
NASA Astrophysics Data System (ADS)
Hagan, David H.; Isaacman-VanWertz, Gabriel; Franklin, Jonathan P.; Wallace, Lisa M. M.; Kocar, Benjamin D.; Heald, Colette L.; Kroll, Jesse H.
2018-01-01
The use of low-cost air quality sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions, and there is thus a critical need for understanding and optimizing the performance of such sensors in the field. Here we describe the deployment, calibration, and evaluation of electrochemical sensors on the island of Hawai`i, which is an ideal test bed for characterizing such sensors due to its large and variable sulfur dioxide (SO2) levels and lack of other co-pollutants. Nine custom-built SO2 sensors were co-located with two Hawaii Department of Health Air Quality stations over the course of 5 months, enabling comparison of sensor output with regulatory-grade instruments under a range of realistic environmental conditions. Calibration using a nonparametric algorithm (k nearest neighbors) was found to have excellent performance (RMSE < 7 ppb, MAE < 4 ppb, r2 > 0.997) across a wide dynamic range in SO2 (< 1 ppb, > 2 ppm). However, since nonparametric algorithms generally cannot extrapolate to conditions beyond those outside the training set, we introduce a new hybrid linear-nonparametric algorithm, enabling accurate measurements even when pollutant levels are higher than encountered during calibration. We find no significant change in instrument sensitivity toward SO2 after 18 weeks and demonstrate that calibration accuracy remains high when a sensor is calibrated at one location and then moved to another. The performance of electrochemical SO2 sensors is also strong at lower SO2 mixing ratios (< 25 ppb), for which they exhibit an error of less than 2.5 ppb. While some specific results of this study (calibration accuracy, performance of the various algorithms, etc.) may differ for measurements of other pollutant species in other areas (e.g., polluted urban regions), the calibration and validation approaches described here should be widely applicable to a range of pollutants, sensors, and environments.
An Open-Source Auto-Calibration Routine Supporting the Stormwater Management Model
NASA Astrophysics Data System (ADS)
Tiernan, E. D.; Hodges, B. R.
2017-12-01
The stormwater management model (SWMM) is a clustered model that relies on subcatchment-averaged parameter assignments to correctly capture catchment stormwater runoff behavior. Model calibration is considered a critical step for SWMM performance, an arduous task that most stormwater management designers undertake manually. This research presents an open-source, automated calibration routine that increases the efficiency and accuracy of the model calibration process. The routine makes use of a preliminary sensitivity analysis to reduce the dimensions of the parameter space, at which point a multi-objective function, genetic algorithm (modified Non-dominated Sorting Genetic Algorithm II) determines the Pareto front for the objective functions within the parameter space. The solutions on this Pareto front represent the optimized parameter value sets for the catchment behavior that could not have been reasonably obtained through manual calibration.
A high-precision voltage source for EIT
Saulnier, Gary J; Liu, Ning; Ross, Alexander S
2006-01-01
Electrical impedance tomography (EIT) utilizes electrodes placed on the surface of a body to determine the complex conductivity distribution within the body. EIT can be performed by applying currents through the electrodes and measuring the electrode voltages or by applying electrode voltages and measuring the currents. Techniques have also been developed for applying the desired currents using voltage sources. This paper describes a voltage source for use in applied-voltage EIT that includes the capability of measuring both the applied voltage and applied current. A calibration circuit and calibration algorithm are described which enables all voltage sources in an EIT system to be calibrated to a common standard. The calibration minimizes the impact of stray shunt impedance, passive component variability and active component non-ideality. Simulation data obtained using PSpice are used to demonstrate the effectiveness of the circuits and calibration algorithm. PMID:16636413
Calibration for single multi-mode fiber digital scanning microscopy imaging system
NASA Astrophysics Data System (ADS)
Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong
2015-11-01
Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.
A new algorithm for attitude-independent magnetometer calibration
NASA Technical Reports Server (NTRS)
Alonso, Roberto; Shuster, Malcolm D.
1994-01-01
A new algorithm is developed for inflight magnetometer bias determination without knowledge of the attitude. This algorithm combines the fast convergence of a heuristic algorithm currently in use with the correct treatment of the statistics and without discarding data. The algorithm performance is examined using simulated data and compared with previous algorithms.
Sky camera geometric calibration using solar observations
Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan
2016-09-05
A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. Themore » performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. In conclusion, calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.« less
Design and test of a simulation system for autonomous optic-navigated planetary landing
NASA Astrophysics Data System (ADS)
Cai, Sheng; Yin, Yanhe; Liu, Yanjun; He, Fengyun
2018-02-01
In this paper, a simulation system based on commercial projector is proposed to test the optical navigation algorithms for autonomous planetary landing in laboratorial scenarios. The design work of optics, mechanics and synchronization control are carried out. Furthermore, the whole simulation system is set up and tested. Through the calibration of the system, two main problems, synchronization between the projector and CCD and pixel-level shifting caused by the low repeatability of DMD used in the projector, are settled. The experimental result shows that the RMS errors of pitch, yaw and roll angles are 0.78', 0.48', and 2.95' compared with the theoretical calculation, which can fulfill the requirement of experimental simulation for planetary landing in laboratory.
Ozdemir, Durmus; Dinc, Erdal
2004-07-01
Simultaneous determination of binary mixtures pyridoxine hydrochloride and thiamine hydrochloride in a vitamin combination using UV-visible spectrophotometry and classical least squares (CLS) and three newly developed genetic algorithm (GA) based multivariate calibration methods was demonstrated. The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares (GILS) and Genetic Regression (GR). The sample data set contains the UV-visible spectra of 30 synthetic mixtures (8 to 40 microg/ml) of these vitamins and 10 tablets containing 250 mg from each vitamin. The spectra cover the range from 200 to 330 nm in 0.1 nm intervals. Several calibration models were built with the four methods for the two components. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in the range of <0.01 and 0.43 microg/ml for all the four methods. The SEP values for the tablets were in the range of 2.91 and 11.51 mg/tablets. A comparison of genetic algorithm selected wavelengths for each component using GR method was also included.
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Algorithm theoretical basis for GEDI level-4A footprint above ground biomass density.
NASA Astrophysics Data System (ADS)
Kellner, J. R.; Armston, J.; Blair, J. B.; Duncanson, L.; Hancock, S.; Hofton, M. A.; Luthcke, S. B.; Marselis, S.; Tang, H.; Dubayah, R.
2017-12-01
The Global Ecosystem Dynamics Investigation is a NASA Earth-Venture-2 mission that will place a multi-beam waveform lidar instrument on the International Space Station. GEDI data will provide globally representative measurements of vertical height profiles (waveforms) and estimates of above ground carbon stocks throughout the planet's temperate and tropical regions. Here we describe the current algorithm theoretical basis for the L4A footprint above ground biomass data product. The L4A data product is above ground biomass density (AGBD, Mg · ha-1) at the scale of individual GEDI footprints (25 m diameter). Footprint AGBD is derived from statistical models that relate waveform height metrics to field-estimated above ground biomass. The field estimates are from long-term permanent plot inventories in which all free-standing woody plants greater than a diameter size threshold have been identified and mapped. We simulated GEDI waveforms from discrete-return airborne lidar data using the GEDI waveform simulator. We associated height metrics from simulated waveforms with field-estimated AGBD at 61 sites in temperate and tropical regions of North and South America, Europe, Africa, Asia and Australia. We evaluated the ability of empirical and physically-based regression and machine learning models to predict AGBD at the footprint level. Our analysis benchmarks the performance of these models in terms of site and region-specific accuracy and transferability using a globally comprehensive calibration and validation dataset.
GIFTS SM EDU Level 1B Algorithms
NASA Technical Reports Server (NTRS)
Tian, Jialin; Gazarik, Michael J.; Reisse, Robert A.; Johnson, David G.
2007-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) SensorModule (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the GIFTS SM EDU Level 1B algorithms involved in the calibration. The GIFTS Level 1B calibration procedures can be subdivided into four blocks. In the first block, the measured raw interferograms are first corrected for the detector nonlinearity distortion, followed by the complex filtering and decimation procedure. In the second block, a phase correction algorithm is applied to the filtered and decimated complex interferograms. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected spectrum. The phase correction and spectral smoothing operations are performed on a set of interferogram scans for both ambient and hot blackbody references. To continue with the calibration, we compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. We now can estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. The correction schemes that compensate for the fore-optics offsets and off-axis effects are also implemented. In the third block, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation. Finally, in the fourth block, the single pixel algorithms are applied to the entire FPA.
NASA Astrophysics Data System (ADS)
Sozzi, B.; Olivieri, M.; Mariani, P.; Giunti, C.; Zatti, S.; Porta, A.
2014-05-01
Due to the fast-growing of cooled detector sensitivity in the last years, on the image 10-20 mK temperature difference between adjacent objects can theoretically be discerned if the calibration algorithm (NUC) is capable to take into account and compensate every spatial noise source. To predict how the NUC algorithm is strong in all working condition, the modeling of the flux impinging on the detector becomes a challenge to control and improve the quality of a properly calibrated image in all scene/ambient conditions including every source of spurious signal. In literature there are just available papers dealing with NU caused by pixel-to-pixel differences of detector parameters and by the difference between the reflection of the detector cold part and the housing at the operative temperature. These models don't explain the effects on the NUC results due to vignetting, dynamic sources out and inside the FOV, reflected contributions from hot spots inside the housing (for example thermal reference far of the optical path). We propose a mathematical model in which: 1) detector and system (opto-mechanical configuration and scene) are considered separated and represented by two independent transfer functions 2) on every pixel of the array the amount of photonic signal coming from different spurious sources are considered to evaluate the effect on residual spatial noise due to dynamic operative conditions. This article also contains simulation results showing how this model can be used to predict the amount of spatial noise.
A First Order Wavefront Estimation Algorithm for P1640 Calibrator
NASA Technical Reports Server (NTRS)
Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.;
2012-01-01
P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.
Signal, Matthew; Le Compte, Aaron; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.
2012-01-01
Abstract Background Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG <2.6 mmol/L) in neonates. Subjects and Methods CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index. Results Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 μmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 μmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 μmol/L. Conclusions Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data. PMID:22856622
Signal, Matthew; Le Compte, Aaron; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Chase, J Geoffrey
2012-10-01
Neonatal hypoglycemia is common and may cause serious brain injury. Diagnosis is by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing the number of BG measurements. Calibration algorithms convert sensor signals into CGM output. Thus, these algorithms directly affect measures used to quantify hypoglycemia. This study was designed to quantify the effects of recalibration and filtering of CGM data on measures of hypoglycemia (BG <2.6 mmol/L) in neonates. CGM data from 50 infants were recalibrated using an algorithm that explicitly recognized the high-accuracy BG measurements available in this study. CGM data were analyzed as (1) original CGM output, (2) recalibrated CGM output, (3) recalibrated CGM output with postcalibration median filtering, and (4) recalibrated CGM output with precalibration median filtering. Hypoglycemia was classified by number of episodes, duration, severity, and hypoglycemic index. Recalibration increased the number of hypoglycemic events (from 161 to 193), hypoglycemia duration (from 2.2% to 2.6%), and hypoglycemic index (from 4.9 to 7.1 μmol/L). Median filtering postrecalibration reduced hypoglycemic events from 193 to 131, with little change in duration (from 2.6% to 2.5%) and hypoglycemic index (from 7.1 to 6.9 μmol/L). Median filtering prerecalibration resulted in 146 hypoglycemic events, a total duration of hypoglycemia of 2.6%, and a hypoglycemic index of 6.8 μmol/L. Hypoglycemia metrics, especially counting events, are heavily dependent on CGM calibration BG error, and the calibration algorithm. CGM devices tended to read high at lower levels, so when high accuracy calibration measurements are available it may be more appropriate to recalibrate the data.
NASA Technical Reports Server (NTRS)
Wang, Menghua
2003-01-01
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.
Uribe-Patarroyo, Néstor; Alvarez-Herrero, Alberto; Martínez Pillet, Valentín
2012-07-20
We present the study, characterization, and calibration of the polarization modulation package (PMP) of the Imaging Magnetograph eXperiment (IMaX) instrument, a successful Stokes spectropolarimeter on board the SUNRISE balloon project within the NASA Long Duration Balloon program. IMaX was designed to measure the Stokes parameters of incoming light with a signal-to-noise ratio of at least 103, using as polarization modulators two nematic liquid-crystal variable retarders (LCVRs). An ad hoc calibration system that reproduced the optical and environmental characteristics of IMaX was designed, assembled, and aligned. The system recreates the optical beam that IMaX receives from SUNRISE with known polarization across the image plane, as well as an optical system with the same characteristics of IMaX. The system was used to calibrate the IMaX PMP in vacuum and at different temperatures, with a thermal control resembling the in-flight one. The efficiencies obtained were very high, near theoretical maximum values: the total efficiency in vacuum calibration at nominal temperature was 0.972 (1 being the theoretical maximum). The condition number of the demodulation matrix of the same calibration was 0.522 (0.577 theoretical maximum). Some inhomogeneities of the LCVRs were clear during the pixel-by-pixel calibration of the PMP, but it can be concluded that the mere information of a pixel-per-pixel calibration is sufficient to maintain high efficiencies in spite of inhomogeneities of the LCVRs.
Zhang, Lin; Small, Gary W; Arnold, Mark A
2003-11-01
The transfer of multivariate calibration models is investigated between a primary (A) and two secondary Fourier transform near-infrared (near-IR) spectrometers (B, C). The application studied in this work is the use of bands in the near-IR combination region of 5000-4000 cm(-)(1) to determine physiological levels of glucose in a buffered aqueous matrix containing varying levels of alanine, ascorbate, lactate, triacetin, and urea. The three spectrometers are used to measure 80 samples produced through a randomized experimental design that minimizes correlations between the component concentrations and between the concentrations of glucose and water. Direct standardization (DS), piecewise direct standardization (PDS), and guided model reoptimization (GMR) are evaluated for use in transferring partial least-squares calibration models developed with the spectra of 64 samples from the primary instrument to the prediction of glucose concentrations in 16 prediction samples measured with each secondary spectrometer. The three algorithms are evaluated as a function of the number of standardization samples used in transferring the calibration models. Performance criteria for judging the success of the calibration transfer are established as the standard error of prediction (SEP) for internal calibration models built with the spectra of the 64 calibration samples collected with each secondary spectrometer. These SEP values are 1.51 and 1.14 mM for spectrometers B and C, respectively. When calibration standardization is applied, the GMR algorithm is observed to outperform DS and PDS. With spectrometer C, the calibration transfer is highly successful, producing an SEP value of 1.07 mM. However, an SEP of 2.96 mM indicates unsuccessful calibration standardization with spectrometer B. This failure is attributed to differences in the variance structure of the spectra collected with spectrometers A and B. Diagnostic procedures are presented for use with the GMR algorithm that forecasts the successful calibration transfer with spectrometer C and the unsatisfactory results with spectrometer B.
Radiometrically accurate scene-based nonuniformity correction for array sensors.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2003-10-01
A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.
Hus, Vanessa; Lord, Catherine
2014-08-01
The recently published Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2) includes revised diagnostic algorithms and standardized severity scores for modules used to assess younger children. A revised algorithm and severity scores are not yet available for Module 4, used with verbally fluent adults. The current study revises the Module 4 algorithm and calibrates raw overall and domain totals to provide metrics of autism spectrum disorder (ASD) symptom severity. Sensitivity and specificity of the revised Module 4 algorithm exceeded 80 % in the overall sample. Module 4 calibrated severity scores provide quantitative estimates of ASD symptom severity that are relatively independent of participant characteristics. These efforts increase comparability of ADOS scores across modules and should facilitate efforts to examine symptom trajectories from toddler to adulthood.
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
An Accurate Temperature Correction Model for Thermocouple Hygrometers 1
Savage, Michael J.; Cass, Alfred; de Jager, James M.
1982-01-01
Numerous water relation studies have used thermocouple hygrometers routinely. However, the accurate temperature correction of hygrometer calibration curve slopes seems to have been largely neglected in both psychrometric and dewpoint techniques. In the case of thermocouple psychrometers, two temperature correction models are proposed, each based on measurement of the thermojunction radius and calculation of the theoretical voltage sensitivity to changes in water potential. The first model relies on calibration at a single temperature and the second at two temperatures. Both these models were more accurate than the temperature correction models currently in use for four psychrometers calibrated over a range of temperatures (15-38°C). The model based on calibration at two temperatures is superior to that based on only one calibration. The model proposed for dewpoint hygrometers is similar to that for psychrometers. It is based on the theoretical voltage sensitivity to changes in water potential. Comparison with empirical data from three dewpoint hygrometers calibrated at four different temperatures indicates that these instruments need only be calibrated at, e.g. 25°C, if the calibration slopes are corrected for temperature. PMID:16662241
A holistic calibration method with iterative distortion compensation for stereo deflectometry
NASA Astrophysics Data System (ADS)
Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian
2018-07-01
This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.
Multiple-Objective Stepwise Calibration Using Luca
Hay, Lauren E.; Umemoto, Makiko
2007-01-01
This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.
An iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring
NASA Astrophysics Data System (ADS)
Li, J. Y.; Kitanidis, P. K.
2013-12-01
Reservoir forecasting and management are increasingly relying on an integrated reservoir monitoring approach, which involves data assimilation to calibrate the complex process of multi-phase flow and transport in the porous medium. The numbers of unknowns and measurements arising in such joint inversion problems are usually very large. The ensemble Kalman filter and other ensemble-based techniques are popular because they circumvent the computational barriers of computing Jacobian matrices and covariance matrices explicitly and allow nonlinear error propagation. These algorithms are very useful but their performance is not well understood and it is not clear how many realizations are needed for satisfactory results. In this presentation we introduce an iterative ensemble quasi-linear data assimilation approach for integrated reservoir monitoring. It is intended for problems for which the posterior or conditional probability density function is not too different from a Gaussian, despite nonlinearity in the state transition and observation equations. The algorithm generates realizations that have the potential to adequately represent the conditional probability density function (pdf). Theoretical analysis sheds light on the conditions under which this algorithm should work well and explains why some applications require very few realizations while others require many. This algorithm is compared with the classical ensemble Kalman filter (Evensen, 2003) and with Gu and Oliver's (2007) iterative ensemble Kalman filter on a synthetic problem of monitoring a reservoir using wellbore pressure and flux data.
Borehole Volumetric Strainmeter Calibration From a Nearby Seismic Broadband Array at Etna Volcano
NASA Astrophysics Data System (ADS)
Currenti, G.; Zuccarello, L.; Bonaccorso, A.; Sicali, A.
2017-10-01
Strainmeter and broadband seismic signals have been analyzed jointly with the aim of calibrating a borehole strainmeter at Etna volcano by using a seismo-geodetic technique. Our results reveal a good coherence between the dynamic strains estimated from seismometer data and strains recorded by a dilatometer in a low-frequency range [0.03-0.06 Hz] at the arrival of teleseismic waves. This significant coherence enabled estimating the calibration coefficient and making a comparison with calibration results derived from other methods. In particular, we verified that the proposed approach provides a calibration coefficient that matches the results obtained from the comparison of the recorded strain both with theoretical strain tides and with normal-mode synthetic straingrams. The approach presented here has the advantage of exploiting recorded seismic data, avoiding the use of computed strain from theoretical models.
In-flight calibration/validation of the ENVISAT/MWR
NASA Astrophysics Data System (ADS)
Tran, N.; Obligis, E.; Eymard, L.
2003-04-01
Retrieval algorithms for wet tropospheric correction, integrated vapor and liquid water contents, atmospheric attenuations of backscattering coefficients in Ku and S band, have been developed using a database of geophysical parameters from global analyses from a meteorological model and corresponding simulated brightness temperatures and backscattering cross-sections by a radiative transfer model. Meteorological data correspond to 12 hours predictions from the European Center for Medium range Weather Forecasts (ECMWF) model. Relationships between satellite measurements and geophysical parameters are determined using a statistical method. The quality of the retrieval algorithms depends therefore on the representativity of the database, the accuracy of the radiative transfer model used for the simulations and finally on the quality of the inversion model. The database has been built using the latest version of the ECMWF forecast model, which has been operationally run since November 2000. The 60 levels in the model allow a complete description of the troposphere/stratosphere profiles and the horizontal resolution is now half of a degree. The radiative transfer model is the emissivity model developed at the Université Catholique de Louvain [Lemaire, 1998], coupled to an atmospheric model [Liebe et al, 1993] for gaseous absorption. For the inversion, we have replaced the classical log-linear regression with a neural networks inversion. For Envisat, the backscattering coefficient in Ku band is used in the different algorithms to take into account the surface roughness as it is done with the 18 GHz channel for the TOPEX algorithms or an additional term in wind speed for ERS2 algorithms. The in-flight calibration/validation of the Envisat radiometer has been performed with the tuning of 3 internal parameters (the transmission coefficient of the reflector, the sky horn feed transmission coefficient and the main antenna transmission coefficient). First an adjustment of the ERS2 brightness temperatures to the simulations for the 2000/2001 version of the ECMWF model has been applied. Then, Envisat brightness temperatures have been calibrated on these adjusted ERS2 values. The advantages of this calibration approach are that : i) such a method provides the relative discrepancy with respect to the simulation chain. The results, obtained simultaneously for several radiometers (we repeat the same analyze with TOPEX and JASON radiometers), can be used to detect significant calibration problems, more than 2 3 K). ii) the retrieval algorithms have been developed using the same meteorological model (2000/2001 version of the ECMWF model), and the same radiative transfer model than the calibration process, insuring the consistency between calibration and retrieval processing. Retrieval parameters are then optimized. iii) the calibration of the Envisat brightness temperatures over the 2000/2001 version of the ECMWF model, as well as the recommendation to use the same model as a reference to correct ERS2 brightness temperatures, allow the use of the same retrieval algorithms for the two missions, providing the continuity between the two. iv) by comparison with other calibration methods (such as systematic calibration of an instrument or products by using respectively the ones from previous mission), this method is more satisfactory since improvements in terms of technology, modelisation, retrieval processing are taken into account. For the validation of the brightness temperatures, we use either a direct comparison with measurements provided by other instruments in similar channel, or the monitoring over stable areas (coldest ocean points, stable continental areas). The validation of the wet tropospheric correction can be also provided by comparison with other radiometer products, but the only real validation rely on the comparison between in-situ measurements (performed by radiosonding) and retrieved products in coincidence.
Torralba, Marta; Díaz-Pérez, Lucía C.
2017-01-01
This article presents a self-calibration procedure and the experimental results for the geometrical characterisation of a 2D laser system operating along a large working range (50 mm × 50 mm) with submicrometre uncertainty. Its purpose is to correct the geometric errors of the 2D laser system setup generated when positioning the two laser heads and the plane mirrors used as reflectors. The non-calibrated artefact used in this procedure is a commercial grid encoder that is also a measuring instrument. Therefore, the self-calibration procedure also allows the determination of the geometrical errors of the grid encoder, including its squareness error. The precision of the proposed algorithm is tested using virtual data. Actual measurements are subsequently registered, and the algorithm is applied. Once the laser system is characterised, the error of the grid encoder is calculated along the working range, resulting in an expanded submicrometre calibration uncertainty (k = 2) for the X and Y axes. The results of the grid encoder calibration are comparable to the errors provided by the calibration certificate for its main central axes. It is, therefore, possible to confirm the suitability of the self-calibration methodology proposed in this article. PMID:28858239
Alignment and Calibration of Optical and Inertial Sensors Using Stellar Observations
2007-01-01
Force, Department of Defense, or the U.S Government. References [1] R. G. Brown and P. Y. Hwang . Introduction to Ran- dom Signals and Applied Kalman ...and stellar observations using an extended Kalman filter algorithm. The approach is verified using simulation and experimental data, and con- clusions...an extended Kalman filter (EKF) algorithm (see [10], [11]) to recur- sively estimate camera alignment and calibration param- eters by measuring the
Hus, Vanessa; Lord, Catherine
2014-01-01
The Autism Diagnostic Observation Schedule, 2nd Edition includes revised diagnostic algorithms and standardized severity scores for modules used to assess children and adolescents of varying language abilities. Comparable revisions have not yet been applied to the Module 4, used with verbally fluent adults. The current study revises the Module 4 algorithm and calibrates raw overall and domain totals to provide metrics of ASD symptom severity. Sensitivity and specificity of the revised Module 4 algorithm exceeded 80% in the overall sample. Module 4 calibrated severity scores provide quantitative estimates of ASD symptom severity that are relatively independent of participant characteristics. These efforts increase comparability of ADOS scores across modules and should facilitate efforts to increase understanding of adults with ASD. PMID:24590409
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Prabhakaran, R.; Tompkins, S.
1987-01-01
The hole-drilling technique for the measurement of residual stresses using electrical resistance strain gages has been widely used for isotropic materials and has been adopted by the ASTM as a standard method. For thin isotropic plates, with a hole drilled through the thickness, the idealized hole-drilling calibration constants are obtained by making use of the well-known Kirsch's solution. In this paper, an analogous attempt is made to theoretically determine the three idealized hole-drilling calibration constants for thin orthotropic materials by employing Savin's (1961) complex stress function approach.
Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis
NASA Technical Reports Server (NTRS)
Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.
1999-01-01
This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.
A Universal Tare Load Prediction Algorithm for Strain-Gage Balance Calibration Data Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
An algorithm is discussed that may be used to estimate tare loads of wind tunnel strain-gage balance calibration data. The algorithm was originally developed by R. Galway of IAR/NRC Canada and has been described in the literature for the iterative analysis technique. Basic ideas of Galway's algorithm, however, are universally applicable and work for both the iterative and the non-iterative analysis technique. A recent modification of Galway's algorithm is presented that improves the convergence behavior of the tare load prediction process if it is used in combination with the non-iterative analysis technique. The modified algorithm allows an analyst to use an alternate method for the calculation of intermediate non-linear tare load estimates whenever Galway's original approach does not lead to a convergence of the tare load iterations. It is also shown in detail how Galway's algorithm may be applied to the non-iterative analysis technique. Hand load data from the calibration of a six-component force balance is used to illustrate the application of the original and modified tare load prediction method. During the analysis of the data both the iterative and the non-iterative analysis technique were applied. Overall, predicted tare loads for combinations of the two tare load prediction methods and the two balance data analysis techniques showed excellent agreement as long as the tare load iterations converged. The modified algorithm, however, appears to have an advantage over the original algorithm when absolute voltage measurements of gage outputs are processed using the non-iterative analysis technique. In these situations only the modified algorithm converged because it uses an exact solution of the intermediate non-linear tare load estimate for the tare load iteration.
On the Hilbert-Huang Transform Theoretical Foundation
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Blank, Karin; Huang, Norden E.
2004-01-01
The Hilbert-Huang Transform [HHT] is a novel empirical method for spectrum analysis of non-linear and non-stationary signals. The HHT is a recent development and much remains to be done to establish the theoretical foundation of the HHT algorithms. This paper develops the theoretical foundation for the convergence of the HHT sifting algorithm and it proves that the finest spectrum scale will always be the first generated by the HHT Empirical Mode Decomposition (EMD) algorithm. The theoretical foundation for cutting an extrema data points set into two parts is also developed. This then allows parallel signal processing for the HHT computationally complex sifting algorithm and its optimization in hardware.
Response simulation and theoretical calibration of a dual-induction resistivity LWD tool
NASA Astrophysics Data System (ADS)
Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei
2014-03-01
In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.
Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata
2006-07-01
Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.
Zhang, Jiarui; Zhang, Yingjie; Chen, Bo
2017-12-20
The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.
Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Lu, Shuai; Singh, Ruchi
2011-09-23
Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimatemore » parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.« less
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
Magnetometer bias determination and attitude determination for near-earth spacecraft
NASA Technical Reports Server (NTRS)
Lerner, G. M.; Shuster, M. D.
1979-01-01
A simple linear-regression algorithm is used to determine simultaneously magnetometer biases, misalignments, and scale factor corrections, as well as the dependence of the measured magnetic field on magnetic control systems. This algorithm has been applied to data from the Seasat-1 and the Atmosphere Explorer Mission-1/Heat Capacity Mapping Mission (AEM-1/HCMM) spacecraft. Results show that complete inflight calibration as described here can improve significantly the accuracy of attitude solutions obtained from magnetometer measurements. This report discusses the difficulties involved in obtaining attitude information from three-axis magnetometers, briefly derives the calibration algorithm, and presents numerical results for the Seasat-1 and AEM-1/HCMM spacecraft.
NASA Technical Reports Server (NTRS)
Murphy, J.; Park, W.; Fitzgerald, A.
1985-01-01
The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.
External calibration of polarimetric radars using point and distributed targets
NASA Technical Reports Server (NTRS)
Yueh, S. H.; Kong, J. A.; Shin, R. T.
1991-01-01
Polarimetric calibration algorithms using combinations of point targets and reciprocal distributed targets are developed. From the reciprocity relations of distributed targets, and equivalent point target response is derived. Then the problem of polarimetric calibration using two point targets and one distributed target reduces to that using three point targets, which has been previously solved. For calibration using one point target and one reciprocal distributed target, two cases are analyzed with the point target being a trihedral reflector or a polarimetric active radar calibrator (PARC). For both cases, the general solutions of the system distortion matrices are written as a product of a particular solution and a matrix with one free parameter. For the trihedral-reflector case, this free parameter is determined by assuming azimuthal symmetry for the distributed target. For the PARC case, knowledge of one ratio of two covariance matrix elements of the distributed target is required to solve for the free parameter. Numerical results are simulated to demonstrate the usefulness of the developed algorithms.
External calibration of polarimetric radars using point and distributed targets
NASA Astrophysics Data System (ADS)
Yueh, S. H.; Kong, J. A.; Shin, R. T.
1991-08-01
Polarimetric calibration algorithms using combinations of point targets and reciprocal distributed targets are developed. From the reciprocity relations of distributed targets, and equivalent point target response is derived. Then the problem of polarimetric calibration using two point targets and one distributed target reduces to that using three point targets, which has been previously solved. For calibration using one point target and one reciprocal distributed target, two cases are analyzed with the point target being a trihedral reflector or a polarimetric active radar calibrator (PARC). For both cases, the general solutions of the system distortion matrices are written as a product of a particular solution and a matrix with one free parameter. For the trihedral-reflector case, this free parameter is determined by assuming azimuthal symmetry for the distributed target. For the PARC case, knowledge of one ratio of two covariance matrix elements of the distributed target is required to solve for the free parameter. Numerical results are simulated to demonstrate the usefulness of the developed algorithms.
Genetic algorithms for the application of Activated Sludge Model No. 1.
Kim, S; Lee, H; Kim, J; Kim, C; Ko, J; Woo, H; Kim, S
2002-01-01
The genetic algorithm (GA) has been integrated into the IWA ASM No. 1 to calibrate important stoichiometric and kinetic parameters. The evolutionary feature of GA was used to configure the multiple local optima as well as the global optimum. The objective function of optimization was designed to minimize the difference between estimated and measured effluent concentrations at the activated sludge system. Both steady state and dynamic data of the simulation benchmark were used for calibration using denitrification layout. Depending upon the confidence intervals and objective functions, the proposed method provided distributions of parameter space. Field data have been collected and applied to validate calibration capacity of GA. Dynamic calibration was suggested to capture periodic variations of inflow concentrations. Also, in order to verify this proposed method in real wastewater treatment plant, measured data sets for substrate concentrations were obtained from Haeundae wastewater treatment plant and used to estimate parameters in the dynamic system. The simulation results with calibrated parameters matched well with the observed concentrations of effluent COD.
Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping
2011-04-01
In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.
Henrion, Sebastian; Spoor, Cees W; Pieters, Remco P M; Müller, Ulrike K; van Leeuwen, Johan L
2015-07-07
Images of underwater objects are distorted by refraction at the water-glass-air interfaces and these distortions can lead to substantial errors when reconstructing the objects' position and shape. So far, aquatic locomotion studies have minimized refraction in their experimental setups and used the direct linear transform algorithm (DLT) to reconstruct position information, which does not model refraction explicitly. Here we present a refraction corrected ray-tracing algorithm (RCRT) that reconstructs position information using Snell's law. We validated this reconstruction by calculating 3D reconstruction error-the difference between actual and reconstructed position of a marker. We found that reconstruction error is small (typically less than 1%). Compared with the DLT algorithm, the RCRT has overall lower reconstruction errors, especially outside the calibration volume, and errors are essentially insensitive to camera position and orientation and the number and position of the calibration points. To demonstrate the effectiveness of the RCRT, we tracked an anatomical marker on a seahorse recorded with four cameras to reconstruct the swimming trajectory for six different camera configurations. The RCRT algorithm is accurate and robust and it allows cameras to be oriented at large angles of incidence and facilitates the development of accurate tracking algorithms to quantify aquatic manoeuvers.
Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don
2004-01-01
A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.
Radiometric calibration of an ultra-compact microbolometer thermal imaging module
NASA Astrophysics Data System (ADS)
Riesland, David W.; Nugent, Paul W.; Laurie, Seth; Shaw, Joseph A.
2017-05-01
As microbolometer focal plane array formats are steadily decreasing, new challenges arise in correcting for thermal drift in the calibration coefficients. As the thermal mass of the cameras decrease the focal plane becomes more sensitive to external thermal inputs. This paper shows results from a temperature compensation algorithm for characterizing and radiometrically calibrating a FLIR Lepton camera.
Improvement in the Characterization of MODIS Subframe Difference
NASA Technical Reports Server (NTRS)
Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong
2016-01-01
MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
Self calibrating monocular camera measurement of traffic parameters.
DOT National Transportation Integrated Search
2009-12-01
This proposed project will extend the work of previous projects that have developed algorithms and software : to measure traffic speed under adverse conditions using un-calibrated cameras. The present implementation : uses the WSDOT CCTV cameras moun...
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.
1989-01-01
The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.
SeaWiFS Technical Report Series. Volume 41; Case Studies for SeaWiFS Calibration and Validation
NASA Technical Reports Server (NTRS)
Yeh, Eueng-nan; Barnes, Robert A.; Darzi, Michael; Kumar, Lakshmi; Early, Edward A.; Johnson, B. Carol; Mueller, James L.; Trees, Charles C.
1997-01-01
This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes the calibration and characterization of the GSFC sphere, which was used in the recent recalibration of the SeaWiFS instrument. Chapter 2 presents a revision of the diffuse attenuation coefficient, K(490), algorithm based on the SeaWiFS wavelengths. Chapter 3 provides an implementation scheme for an algorithm to remove out-of-band radiance when using a sensor calibration based on a finite width (truncated) spectral response function, e.g., between the 1% transmission points. Chapter 4 describes the implementation schemes for the stray light quality flag (local area coverage [LAC] and global area coverage [GAC]) and the LAC stray light correction.
Method and apparatus for calibrating multi-axis load cells in a dexterous robot
NASA Technical Reports Server (NTRS)
Wampler, II, Charles W. (Inventor); Platt, Jr., Robert J. (Inventor)
2012-01-01
A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.
NASA Astrophysics Data System (ADS)
Feng, Zhixin
2018-02-01
Projector calibration is crucial for a camera-projector three-dimensional (3-D) structured light measurement system, which has one camera and one projector. In this paper, a novel projector calibration method is proposed based on digital image correlation. In the method, the projector is viewed as an inverse camera, and a plane calibration board with feature points is used to calibrate the projector. During the calibration processing, a random speckle pattern is projected onto the calibration board with different orientations to establish the correspondences between projector images and camera images. Thereby, dataset for projector calibration are generated. Then the projector can be calibrated using a well-established camera calibration algorithm. The experiment results confirm that the proposed method is accurate and reliable for projector calibration.
Wang, JianLi; Sareen, Jitender; Patten, Scott; Bolton, James; Schmitz, Norbert; Birney, Arden
2014-05-01
Prediction algorithms are useful for making clinical decisions and for population health planning. However, such prediction algorithms for first onset of major depression do not exist. The objective of this study was to develop and validate a prediction algorithm for first onset of major depression in the general population. Longitudinal study design with approximate 3-year follow-up. The study was based on data from a nationally representative sample of the US general population. A total of 28 059 individuals who participated in Waves 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions and who had not had major depression at Wave 1 were included. The prediction algorithm was developed using logistic regression modelling in 21 813 participants from three census regions. The algorithm was validated in participants from the 4th census region (n=6246). Major depression occurred since Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions, assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule-diagnostic and statistical manual for mental disorders IV. A prediction algorithm containing 17 unique risk factors was developed. The algorithm had good discriminative power (C statistics=0.7538, 95% CI 0.7378 to 0.7699) and excellent calibration (F-adjusted test=1.00, p=0.448) with the weighted data. In the validation sample, the algorithm had a C statistic of 0.7259 and excellent calibration (Hosmer-Lemeshow χ(2)=3.41, p=0.906). The developed prediction algorithm has good discrimination and calibration capacity. It can be used by clinicians, mental health policy-makers and service planners and the general public to predict future risk of having major depression. The application of the algorithm may lead to increased personalisation of treatment, better clinical decisions and more optimal mental health service planning.
Description of algorithms for processing Coastal Zone Color Scanner (CZCS) data
NASA Technical Reports Server (NTRS)
Zion, P. M.
1983-01-01
The algorithms for processing coastal zone color scanner (CZCS) data to geophysical units (pigment concentration) are described. Current public domain information for processing these data is summarized. Calibration, atmospheric correction, and bio-optical algorithms are presented. Three CZCS data processing implementations are compared.
Autonomous On-Board Calibration of Attitude Sensors and Gyros
NASA Technical Reports Server (NTRS)
Pittelkau, Mark E.
2007-01-01
This paper presents the state of the art and future prospects for autonomous real-time on-orbit calibration of gyros and attitude sensors. The current practice in ground-based calibration is presented briefly to contrast it with on-orbit calibration. The technical and economic benefits of on-orbit calibration are discussed. Various algorithms for on-orbit calibration are evaluated, including some that are already operating on board spacecraft. Because Redundant Inertial Measurement Units (RIMUs, which are IMUs that have more than three sense axes) are almost ubiquitous on spacecraft, special attention will be given to calibration of RIMUs. In addition, we discuss autonomous on board calibration and how it may be implemented.
Hotplate precipitation gauge calibrations and field measurements
NASA Astrophysics Data System (ADS)
Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.
2018-01-01
First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.
Active Subspace Methods for Data-Intensive Inverse Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiqi
2017-04-27
The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.
Colorimetric calibration of wound photography with off-the-shelf devices
NASA Astrophysics Data System (ADS)
Bala, Subhankar; Sirazitdinova, Ekaterina; Deserno, Thomas M.
2017-03-01
Digital cameras are often used in recent days for photographic documentation in medical sciences. However, color reproducibility of same objects suffers from different illuminations and lighting conditions. This variation in color representation is problematic when the images are used for segmentation and measurements based on color thresholds. In this paper, motivated by photographic follow-up of chronic wounds, we assess the impact of (i) gamma correction, (ii) white balancing, (iii) background unification, and (iv) reference card-based color correction. Automatic gamma correction and white balancing are applied to support the calibration procedure, where gamma correction is a nonlinear color transform. For unevenly illuminated images, non- uniform illumination correction is applied. In the last step, we apply colorimetric calibration using a reference color card of 24 patches with known colors. A lattice detection algorithm is used for locating the card. The least squares algorithm is applied for affine color calibration in the RGB model. We have tested the algorithm on images with seven different types of illumination: with and without flash using three different off-the-shelf cameras including smartphones. We analyzed the spread of resulting color value of selected color patch before and after applying the calibration. Additionally, we checked the individual contribution of different steps of the whole calibration process. Using all steps, we were able to achieve a maximum of 81% reduction in standard deviation of color patch values in resulting images comparing to the original images. That supports manual as well as automatic quantitative wound assessments with off-the-shelf devices.
NASA Technical Reports Server (NTRS)
Tonkay, Gregory
1990-01-01
The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.
NASA Technical Reports Server (NTRS)
Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)
2002-01-01
This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.
A Multialgorithm Approach to Land Surface Modeling of Suspended Sediment in the Colorado Front Range
Stewart, J. R.; Kasprzyk, J. R.; Rajagopalan, B.; Minear, J. T.; Raseman, W. J.
2017-01-01
Abstract A new paradigm of simulating suspended sediment load (SSL) with a Land Surface Model (LSM) is presented here. Five erosion and SSL algorithms were applied within a common LSM framework to quantify uncertainties and evaluate predictability in two steep, forested catchments (>1,000 km2). The algorithms were chosen from among widely used sediment models, including empirically based: monovariate rating curve (MRC) and the Modified Universal Soil Loss Equation (MUSLE); stochastically based: the Load Estimator (LOADEST); conceptually based: the Hydrologic Simulation Program—Fortran (HSPF); and physically based: the Distributed Hydrology Soil Vegetation Model (DHSVM). The algorithms were driven by the hydrologic fluxes and meteorological inputs generated from the Variable Infiltration Capacity (VIC) LSM. A multiobjective calibration was applied to each algorithm and optimized parameter sets were validated over an excluded period, as well as in a transfer experiment to a nearby catchment to explore parameter robustness. Algorithm performance showed consistent decreases when parameter sets were applied to periods with greatly differing SSL variability relative to the calibration period. Of interest was a joint calibration of all sediment algorithm and streamflow parameters simultaneously, from which trade‐offs between streamflow performance and partitioning of runoff and base flow to optimize SSL timing were noted, decreasing the flexibility and robustness of the streamflow to adapt to different time periods. Parameter transferability to another catchment was most successful in more process‐oriented algorithms, the HSPF and the DHSVM. This first‐of‐its‐kind multialgorithm sediment scheme offers a unique capability to portray acute episodic loading while quantifying trade‐offs and uncertainties across a range of algorithm structures. PMID:29399268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Le; Yu, Yu; Zhang, Pengjie, E-mail: lezhang@sjtu.edu.cn
Photo- z error is one of the major sources of systematics degrading the accuracy of weak-lensing cosmological inferences. Zhang et al. proposed a self-calibration method combining galaxy–galaxy correlations and galaxy–shear correlations between different photo- z bins. Fisher matrix analysis shows that it can determine the rate of photo- z outliers at a level of 0.01%–1% merely using photometric data and do not rely on any prior knowledge. In this paper, we develop a new algorithm to implement this method by solving a constrained nonlinear optimization problem arising in the self-calibration process. Based on the techniques of fixed-point iteration and non-negativemore » matrix factorization, the proposed algorithm can efficiently and robustly reconstruct the scattering probabilities between the true- z and photo- z bins. The algorithm has been tested extensively by applying it to mock data from simulated stage IV weak-lensing projects. We find that the algorithm provides a successful recovery of the scatter rates at the level of 0.01%–1%, and the true mean redshifts of photo- z bins at the level of 0.001, which may satisfy the requirements in future lensing surveys.« less
Radiometric calibration of the Earth observing system's imaging sensors
NASA Technical Reports Server (NTRS)
Slater, P. N.
1987-01-01
Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.
DEM Calibration Approach: design of experiment
NASA Astrophysics Data System (ADS)
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
Augmenting epidemiological models with point-of-care diagnostics data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.
Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less
Augmenting epidemiological models with point-of-care diagnostics data
Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.; ...
2016-04-20
Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less
NASA Astrophysics Data System (ADS)
Hu, Chen; Chen, Mian-zhou; Li, Hong-bin; Zhang, Zhu; Jiao, Yang; Shao, Haiming
2018-05-01
Ordinarily electronic voltage transformers (EVTs) are calibrated off-line and the calibration procedure requires complex switching operations, which will influence the reliability of the power grid and induce large economic losses. To overcome this problem, this paper investigates a 110 kV on-site calibration system for EVTs, including a standard channel, a calibrated channel and a PC equipped with the LabView environment. The standard channel employs a standard capacitor and an analogue integrating circuit to reconstruct the primary voltage signal. Moreover, an adaptive full-phase discrete Fourier transform (DFT) algorithm is proposed to extract electrical parameters. The algorithm involves the process of extracting the frequency of the grid, adjusting the operation points, and calculating the results using DFT. In addition, an insulated automatic lifting device is designed to realize the live connection of the standard capacitor, which is driven by a wireless remote controller. A performance test of the capacitor verifies the accurateness of the standard capacitor. A system calibration test shows that the system ratio error is less than 0.04% and the phase error is below 2‧, which meets the requirement of the 0.2 accuracy class. Finally, the developed calibration system was used in a substation, and the field test data validates the availability of the system.
Differential Evolution algorithm applied to FSW model calibration
NASA Astrophysics Data System (ADS)
Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.
2014-03-01
Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.
Accuracy of a new real-time continuous glucose monitoring algorithm.
Keenan, D Barry; Cartaya, Raymond; Mastrototaro, John J
2010-01-01
Through minimally invasive sensor-based continuous glucose monitoring (CGM), individuals can manage their blood glucose (BG) levels more aggressively, thereby improving their hemoglobin A1c level, while reducing the risk of hypoglycemia. Tighter glycemic control through CGM, however, requires an accurate glucose sensor and calibration algorithm with increased performance at lower BG levels. Sensor and BG measurements for 72 adult and adolescent subjects were obtained during the course of a 26-week multicenter study evaluating the efficacy of the Paradigm REAL-Time (PRT) sensor-augmented pump system (Medtronic Diabetes, Northridge, CA) in an outpatient setting. Subjects in the study arm performed at least four daily finger stick measurements. A retrospective analysis of the data set was performed to evaluate a new calibration algorithm utilized in the Paradigm Veo insulin pump (Medtronic Diabetes) and to compare these results to performance metrics calculated for the PRT. A total of N = 7193 PRT sensor downloads for 3 days of use, as well as 90,472 temporally and nonuniformly paired data points (sensor and meter values), were evaluated, with 5841 hypoglycemic and 15,851 hyperglycemic events detected through finger stick measurements. The Veo calibration algorithm decreased the overall mean absolute relative difference by greater than 0.25 to 15.89%, with hypoglycemia sensitivity increased from 54.9% in the PRT to 82.3% in the Veo (90.5% with predictive alerts); however, hyperglycemia sensitivity was decreased only marginally from 86% in the PRT to 81.7% in the Veo. The Veo calibration algorithm, with sensor error reduced significantly in the 40- to 120-mg/dl range, improves hypoglycemia detection, while retaining accuracy at high glucose levels. 2010 Diabetes Technology Society.
Zou, Hong-Yan; Wu, Hai-Long; OuYang, Li-Qun; Zhang, Yan; Nie, Jin-Fang; Fu, Hai-Yan; Yu, Ru-Qin
2009-09-14
Two second-order calibration methods based on the parallel factor analysis (PARAFAC) and the alternating penalty trilinear decomposition (APTLD) method, have been utilized for the direct determination of terazosin hydrochloride (THD) in human plasma samples, coupled with the excitation-emission matrix fluorescence spectroscopy. Meanwhile, the two algorithms combing with the standard addition procedures have been applied for the determination of terazosin hydrochloride in tablets and the results were validated by the high-performance liquid chromatography with fluorescence detection. These second-order calibrations all adequately exploited the second-order advantages. For human plasma samples, the average recoveries by the PARAFAC and APTLD algorithms with the factor number of 2 (N=2) were 100.4+/-2.7% and 99.2+/-2.4%, respectively. The accuracy of two algorithms was also evaluated through elliptical joint confidence region (EJCR) tests and t-test. It was found that both algorithms could give accurate results, and only the performance of APTLD was slightly better than that of PARAFAC. Figures of merit, such as sensitivity (SEN), selectivity (SEL) and limit of detection (LOD) were also calculated to compare the performances of the two strategies. For tablets, the average concentrations of THD in tablet were 63.5 and 63.2 ng mL(-1) by using the PARAFAC and APTLD algorithms, respectively. The accuracy was evaluated by t-test and both algorithms could give accurate results, too.
Status of the calibration and alignment framework at the Belle II experiment
NASA Astrophysics Data System (ADS)
Dossett, D.; Sevior, M.; Ritter, M.; Kuhr, T.; Bilka, T.; Yaschenko, S.;
2017-10-01
The Belle II detector at the Super KEKB e+e-collider plans to take first collision data in 2018. The monetary and CPU time costs associated with storing and processing the data mean that it is crucial for the detector components at Belle II to be calibrated quickly and accurately. A fast and accurate calibration system would allow the high level trigger to increase the efficiency of event selection, and can give users analysis-quality reconstruction promptly. A flexible framework to automate the fast production of calibration constants is being developed in the Belle II Analysis Software Framework (basf2). Detector experts only need to create two components from C++ base classes in order to use the automation system. The first collects data from Belle II event data files and outputs much smaller files to pass to the second component. This runs the main calibration algorithm to produce calibration constants ready for upload into the conditions database. A Python framework coordinates the input files, order of processing, and submission of jobs. Splitting the operation into collection and algorithm processing stages allows the framework to optionally parallelize the collection stage on a batch system.
Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2009-01-01
This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).
NASA Technical Reports Server (NTRS)
Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.
NASA Astrophysics Data System (ADS)
Cao, Changyong; Wang, Wenhui; Blonski, Slawomir; Zhang, Bin
2017-05-01
The Suomi National Polar-orbiting Partnership Program (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Thermal Emissive Bands (TEBs) have been performing well since the data became available on 20 January 2012, and the Sensor Data Record data reached validated maturity on 18 March 2014. While overall the validation has shown that these channels have an estimated absolute uncertainty on the order of 0.1 K based on extensive comparisons, there is a remaining issue that persisted over the years. A calibration bias on the order of 0.1 K is introduced in channels such as M15 during the quarterly blackbody temperature warm-up/cooldown, and the bias is further amplified by the sea surface temperature (SST) retrieval algorithm up to 0.3 K in the global daily-averaged products which causes an apparent spike in the SST time series. Our investigation reveals that this bias is caused by a fundamental but flawed theoretical assumption in the VIIRS calibration equation, which states that the shape of the calibration curve is assumed unchanged from prelaunch to postlaunch without any constrains. While the assumption may work to account for long-term degradation, it has a shortcoming during the blackbody unsteady state. In this study, we present a diagnostic and correction method with a compensatory term (Ltrace) to reconcile the assumption such that it removes the calibration bias during the blackbody temperature changes. The methodology has been tested using historical data, and the results are very positive. The implementation has minimal impacts on the operational data processing system and is readily available for use in operations.
Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P
2015-12-01
The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.
Delahanty, Ryan J; Kaufman, David; Jones, Spencer S
2018-06-01
Risk adjustment algorithms for ICU mortality are necessary for measuring and improving ICU performance. Existing risk adjustment algorithms are not widely adopted. Key barriers to adoption include licensing and implementation costs as well as labor costs associated with human-intensive data collection. Widespread adoption of electronic health records makes automated risk adjustment feasible. Using modern machine learning methods and open source tools, we developed and evaluated a retrospective risk adjustment algorithm for in-hospital mortality among ICU patients. The Risk of Inpatient Death score can be fully automated and is reliant upon data elements that are generated in the course of usual hospital processes. One hundred thirty-one ICUs in 53 hospitals operated by Tenet Healthcare. A cohort of 237,173 ICU patients discharged between January 2014 and December 2016. The data were randomly split into training (36 hospitals), and validation (17 hospitals) data sets. Feature selection and model training were carried out using the training set while the discrimination, calibration, and accuracy of the model were assessed in the validation data set. Model discrimination was evaluated based on the area under receiver operating characteristic curve; accuracy and calibration were assessed via adjusted Brier scores and visual analysis of calibration curves. Seventeen features, including a mix of clinical and administrative data elements, were retained in the final model. The Risk of Inpatient Death score demonstrated excellent discrimination (area under receiver operating characteristic curve = 0.94) and calibration (adjusted Brier score = 52.8%) in the validation dataset; these results compare favorably to the published performance statistics for the most commonly used mortality risk adjustment algorithms. Low adoption of ICU mortality risk adjustment algorithms impedes progress toward increasing the value of the healthcare delivered in ICUs. The Risk of Inpatient Death score has many attractive attributes that address the key barriers to adoption of ICU risk adjustment algorithms and performs comparably to existing human-intensive algorithms. Automated risk adjustment algorithms have the potential to obviate known barriers to adoption such as cost-prohibitive licensing fees and significant direct labor costs. Further evaluation is needed to ensure that the level of performance observed in this study could be achieved at independent sites.
Shape calibration of a conformal ultrasound therapy array.
McGough, R J; Cindric, D; Samulski, T V
2001-03-01
A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.
Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Guo, Zhiming; Huang, Wenqian; Chen, Liping; Wang, Xiu; Peng, Yankun
This paper indicates the feasibility to use near infrared (NIR) spectroscopy combined with synergy interval partial least squares (siPLS) algorithms as a rapid nondestructive method to estimate the soluble solid content (SSC) in strawberry. Spectral preprocessing methods were optimized selected by cross-validation in the model calibration. Partial least squares (PLS) algorithm was conducted on the calibration of regression model. The performance of the final model was back-evaluated according to root mean square error of calibration (RMSEC) and correlation coefficient (R2 c) in calibration set, and tested by mean square error of prediction (RMSEP) and correlation coefficient (R2 p) in prediction set. The optimal siPLS model was obtained with after first derivation spectra preprocessing. The measurement results of best model were achieved as follow: RMSEC = 0.2259, R2 c = 0.9590 in the calibration set; and RMSEP = 0.2892, R2 p = 0.9390 in the prediction set. This work demonstrated that NIR spectroscopy and siPLS with efficient spectral preprocessing is a useful tool for nondestructively evaluation SSC in strawberry.
NASA Technical Reports Server (NTRS)
Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.
2009-01-01
The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses
A quantitative comparison of soil moisture inversion algorithms
NASA Technical Reports Server (NTRS)
Zyl, J. J. van; Kim, Y.
2001-01-01
This paper compares the performance of four bare surface radar soil moisture inversion algorithms in the presence of measurement errors. The particular errors considered include calibration errors, system thermal noise, local topography and vegetation cover.
A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature
NASA Astrophysics Data System (ADS)
Sun, Jun; Hossain, Md. Moinul; Xu, Chuan-Long; Zhang, Biao; Wang, Shi-Min
2017-05-01
This paper presents a novel geometric calibration method for focused light field camera to trace the rays of flame radiance and to reconstruct the three-dimensional (3-D) temperature distribution of a flame. A calibration model is developed to calculate the corner points and their projections of the focused light field camera. The characteristics of matching main lens and microlens f-numbers are used as an additional constrains for the calibration. Geometric parameters of the focused light field camera are then achieved using Levenberg-Marquardt algorithm. Total focused images in which all the points are in focus, are utilized to validate the proposed calibration method. Calibration results are presented and discussed in details. The maximum mean relative error of the calibration is found less than 0.13%, indicating that the proposed method is capable of calibrating the focused light field camera successfully. The parameters obtained by the calibration are then utilized to trace the rays of flame radiance. A least square QR-factorization algorithm with Plank's radiation law is used to reconstruct the 3-D temperature distribution of a flame. Experiments were carried out on an ethylene air fired combustion test rig to reconstruct the temperature distribution of flames. The flame temperature obtained by the proposed method is then compared with that obtained by using high-precision thermocouple. The difference between the two measurements was found no greater than 6.7%. Experimental results demonstrated that the proposed calibration method and the applied measurement technique perform well in the reconstruction of the flame temperature.
Precise calibration of few-cycle laser pulses with atomic hydrogen
NASA Astrophysics Data System (ADS)
Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.
2017-12-01
Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.
Cho, Jae Heon; Lee, Jong Ho
2015-11-01
Manual calibration is common in rainfall-runoff model applications. However, rainfall-runoff models include several complicated parameters; thus, significant time and effort are required to manually calibrate the parameters individually and repeatedly. Automatic calibration has relative merit regarding time efficiency and objectivity but shortcomings regarding understanding indigenous processes in the basin. In this study, a watershed model calibration framework was developed using an influence coefficient algorithm and genetic algorithm (WMCIG) to automatically calibrate the distributed models. The optimization problem used to minimize the sum of squares of the normalized residuals of the observed and predicted values was solved using a genetic algorithm (GA). The final model parameters were determined from the iteration with the smallest sum of squares of the normalized residuals of all iterations. The WMCIG was applied to a Gomakwoncheon watershed located in an area that presents a total maximum daily load (TMDL) in Korea. The proportion of urbanized area in this watershed is low, and the diffuse pollution loads of nutrients such as phosphorus are greater than the point-source pollution loads because of the concentration of rainfall that occurs during the summer. The pollution discharges from the watershed were estimated for each land-use type, and the seasonal variations of the pollution loads were analyzed. Consecutive flow measurement gauges have not been installed in this area, and it is difficult to survey the flow and water quality in this area during the frequent heavy rainfall that occurs during the wet season. The Hydrological Simulation Program-Fortran (HSPF) model was used to calculate the runoff flow and water quality in this basin. Using the water quality results, a load duration curve was constructed for the basin, the exceedance frequency of the water quality standard was calculated for each hydrologic condition class, and the percent reduction required to achieve the water quality standard was estimated. The R(2) value for the calibrated BOD5 was 0.60, which is a moderate result, and the R(2) value for the TP was 0.86, which is a good result. The percent differences obtained for the calibrated BOD5 and TP were very good; therefore, the calibration results using WMCIG were satisfactory. From the load duration curve analysis, the WQS exceedance frequencies of the BOD5 under dry conditions and low-flow conditions were 75.7% and 65%, respectively, and the exceedance frequencies under moist and mid-range conditions were higher than under other conditions. The exceedance frequencies of the TP for the high-flow, moist and mid-range conditions were high and the exceedance rate for the high-flow condition was particularly high. Most of the data from the high-flow conditions exceeded the WQSs. Thus, nonpoint-source pollutants from storm-water runoff substantially affected the TP concentration in the Gomakwoncheon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ciesielski, Krzysztof Chris; Udupa, Jayaram K.
2011-01-01
In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm A should have a well defined continuous counterpart MA, referred to as its model, which constitutes an asymptotic of A when image resolution goes to infinity; (2) the equality of two such models MA and MA′ establishes a theoretical (asymptotic) equivalence of their digital counterparts A and A′. Such a comparison is of full theoretical value only when, for each involved algorithm A, its model MA is proved to be an asymptotic of A. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms. The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model M∇ is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity A∇. We also argue that, in a sense, M∇ is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided. PMID:21442014
ON THE CALIBRATION OF DK-02 AND KID DOSIMETERS (in Estonian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehvaert, H.
1963-01-01
For the periodic calibration of the DK-02 and WD dosimeters, the rotating stand method which is more advantageous than the usual method is recommended. The calibration can be accomplished in a strong gamma field, reducing considerably the time necessary for calibration. Using a point source, the dose becomes a simple function of time and geometrical parameters. The experimental values are in good agreement with theoretical values. (tr-auth)
Automated Attitude Sensor Calibration: Progress and Plans
NASA Technical Reports Server (NTRS)
Sedlak, Joseph; Hashmall, Joseph
2004-01-01
This paper describes ongoing work a NASA/Goddard Space Flight Center to improve the quality of spacecraft attitude sensor calibration and reduce costs by automating parts of the calibration process. The new calibration software can autonomously preview data quality over a given time span, select a subset of the data for processing, perform the requested calibration, and output a report. This level of automation is currently being implemented for two specific applications: inertial reference unit (IRU) calibration and sensor alignment calibration. The IRU calibration utility makes use of a sequential version of the Davenport algorithm. This utility has been successfully tested with simulated and actual flight data. The alignment calibration is still in the early testing stage. Both utilities will be incorporated into the institutional attitude ground support system.
NASA Astrophysics Data System (ADS)
Ratliff, Bradley M.; LeMaster, Daniel A.
2012-06-01
Pixel-to-pixel response nonuniformity is a common problem that affects nearly all focal plane array sensors. This results in a frame-to-frame fixed pattern noise (FPN) that causes an overall degradation in collected data. FPN is often compensated for through the use of blackbody calibration procedures; however, FPN is a particularly challenging problem because the detector responsivities drift relative to one another in time, requiring that the sensor be recalibrated periodically. The calibration process is obstructive to sensor operation and is therefore only performed at discrete intervals in time. Thus, any drift that occurs between calibrations (along with error in the calibration sources themselves) causes varying levels of residual calibration error to be present in the data at all times. Polarimetric microgrid sensors are particularly sensitive to FPN due to the spatial differencing involved in estimating the Stokes vector images. While many techniques exist in the literature to estimate FPN for conventional video sensors, few have been proposed to address the problem in microgrid imaging sensors. Here we present a scene-based nonuniformity correction technique for microgrid sensors that is able to reduce residual fixed pattern noise while preserving radiometry under a wide range of conditions. The algorithm requires a low number of temporal data samples to estimate the spatial nonuniformity and is computationally efficient. We demonstrate the algorithm's performance using real data from the AFRL PIRATE and University of Arizona LWIR microgrid sensors.
Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development
NASA Astrophysics Data System (ADS)
Aspinall, Michael D.; Jones, Ashley R.
2018-01-01
Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.
WFC3/UVIS Dark Calibration: Monitoring Results and Improvements to Dark Reference Files
NASA Astrophysics Data System (ADS)
Bourque, M.; Baggett, S.
2016-04-01
The Wide Field Camera 3 (WFC3) UVIS detector possesses an intrinsic signal during exposures, even in the absence of light, known as dark current. A daily monitor program is employed every HST cycle to characterize and measure this current as well as to create calibration files which serve to subtract the dark current from science data. We summarize the results of the daily monitor program for all on-orbit data. We also introduce a new algorithm for generating the dark reference files that provides several improvements to their overall quality. Key features to the new algorithm include correcting the dark frames for Charge Transfer Efficiency (CTE) losses, using an anneal-cycle average value to measure the dark current, and generating reference files on a daily basis. This new algorithm is part of the release of the CALWF3 v3.3 calibration pipeline on February 23, 2016 (also known as "UVIS 2.0"). Improved dark reference files have been regenerated and re-delivered to the Calibration Reference Data System (CRDS) for all on-orbit data. Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.
MISR - Science Data Validation Plan
NASA Technical Reports Server (NTRS)
Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.
2000-01-01
This Science Data Validation Plan describes the plans for validating a subset of the Multi-angle Imaging SpectroRadiometer (MISR) Level 2 algorithms and data products and supplying top-of-atmosphere (TOA) radiances to the In-flight Radiometric Calibration and Characterization (IFRCC) subsystem for vicarious calibration.
The Chandra Source Catalog: Algorithms
NASA Astrophysics Data System (ADS)
McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-09-01
Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.
Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968 to 1971)
NASA Technical Reports Server (NTRS)
Geist, J.
1972-01-01
A description is given work performed on a program to develop an electrically calibrated detector (also called absolute radiometer, absolute detector, and electrically calibrated radiometer) that could be used to realize, maintain, and transfer a scale of total irradiance. The program includes a comprehensive investigation of the theoretical basis of absolute detector radiometry, as well as the design and construction of a number of detectors. A theoretical analysis of the sources of error is also included.
Optimization Techniques for Analysis of Biological and Social Networks
2012-03-28
analyzing a new metaheuristic technique, variable objective search. 3. Experimentation and application: Implement the proposed algorithms , test and fine...alternative mathematical programming formulations, their theoretical analysis, the development of exact algorithms , and heuristics. Originally, clusters...systematic fashion under a unifying theoretical and algorithmic framework. Optimization, Complex Networks, Social Network Analysis, Computational
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); OReilly, John E.; Maritorena, Stephane; OBrien, Margaret C.; Siegel, David A.; Toole, Dierdre; Mueller, James L.; Mitchell, B. Greg; Kahru, Mati;
2000-01-01
Volume 11 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapters 1 and 2 present the OC2 (version 2) and OC4 (version 4) chlorophyll a algorithms used in the SeaWiFS data second and third reprocessings, August 1998 and May 2000, respectively. Chapter 3 describes a revision of the K(490) algorithm designed to use water-leaving radiances at 490 nm which was implemented for the third reprocessing. Finally, Chapter 4 is an analysis of in situ radiometer calibration data over several years at the University of California, Santa Barbara (UCSB) to establish the temporal consistency of their in-water optical measurements.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
NASA Astrophysics Data System (ADS)
Xu, B. Y.; Ye, Y.; Liao, L. C.
2016-07-01
A new method was developed to determine the methamphetamine and morphine concentrations in urine and saliva based on excitation-emission matrix fluorescence coupled to a second-order calibration algorithm. In the case of single-drug abuse, the results showed that the average recoveries of methamphetamine and morphine were 95.3 and 96.7% in urine samples, respectively, and 98.1 and 106.2% in saliva samples, respectively. The relative errors were all below 5%. The simultaneous determination of methamphetamine and morphine in urine using two second-order algorithms was also investigated. Satisfactory results were obtained with a self-weighted alternating trilinear decomposition algorithm. The root-mean-square errors of the predictions were 0.540 and 0.0382 μg/mL for methamphetamine and morphine, respectively. The limits of detection of the proposed methods were very low and sufficient for studying methamphetamine and morphine in urine.
The Status of the Tropical Rainfall Measuring Mission (TRMM) after 2 Years in Orbit
NASA Technical Reports Server (NTRS)
Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A. T. C.; Stocker, E.; Adler, R. F.; Hou, A.; Kakar, R.; Wentz, F.
1999-01-01
The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms, in related modeling applications and in new datasets tailored specifically for these applications. This paper reports the latest results regarding the calibration of the TRMM Microwave Imager, (TMI), Precipitation Radar (PR) and Visible and Infrared Sensor (VIRS). For the TMI, a new product is in place that corrects for a still unknown source of radiation leaking in to the TMI receiver. The PR calibration has been adjusted upward slightly (by 0.6 dBZ) to better match ground reference targets, while the VIRS calibration remains largely unchanged. In addition to the instrument calibration, great strides have been made with the rainfall algorithms as well, with the new rainfall products agreeing with each other to within less than 20% over monthly zonally averaged statistics. The TRMM Science Data and Information System (TSDIS) has responded equally well by making a number of new products, including real-time and fine resolution gridded rainfall fields available to the modeling community. The TRMM Ground Validation (GV) program is also responding with improved radar calibration techniques and rainfall algorithms to provide more accurate GV products which will be further enhanced with the new multiparameter 10 cm radar being developed for TRMM validation and precipitation studies. Progress in these various areas has, in turn, led to exciting new developments in the modeling area where Data Assimilation, and Weather Forecast models are showing dramatic improvements after the assimilation of observed rainfall fields.
NASA Technical Reports Server (NTRS)
Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin
2013-01-01
The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.
An Attitude Filtering and Magnetometer Calibration Approach for Nanosatellites
NASA Astrophysics Data System (ADS)
Söken, Halil Ersin
2018-04-01
We propose an attitude filtering and magnetometer calibration approach for nanosatellites. Measurements from magnetometers, Sun sensor and gyros are used in the filtering algorithm to estimate the attitude of the satellite together with the bias terms for the gyros and magnetometers. In the traditional approach for the attitude filtering, the attitude sensor measurements are used in the filter with a nonlinear vector measurement model. In the proposed algorithm, the TRIAD algorithm is used in conjunction with the unscented Kalman filter (UKF) to form the nontraditional attitude filter. First the vector measurements from the magnetometer and Sun sensor are processed with the TRIAD algorithm to obtain a coarse attitude estimate for the spacecraft. In the second phase the estimated coarse attitude is used as quaternion measurements for the UKF. The UKF estimates the fine attitude, and the gyro and magnetometer biases. We evaluate the algorithm for a hypothetical nanosatellite by numerical simulations. The results show that the attitude of the satellite can be estimated with an accuracy better than 0.5{°} and the computational load decreases more than 25% compared to a traditional UKF algorithm. We discuss the algorithm's performance in case of a time-variance in the magnetometer errors.
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Bregman, Jesse D.; Wooden, Diane H.; Salama, Alberto; Metcalfe, Leo
1996-01-01
We present three new absolutely calibrated continuous stellar spectra from 3 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- alpha(sup 1) Cen, alpha TrA, and epsilon Car-augment our previous archive of complete absolutely calibrated spectra for northern K and M giants. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors. KAO and IRAS data in the 15-30 micron range suggest that the spectra of cool giants are close to Rayleigh-Jeans slopes. Our observations of alpha(sup 1) Cen, absolutely calibrated via our adopted Sirius model, indicate an angular diameter in very good agreement with values in the literature, demonstrating 'closure' of the set of spectra within our absolute framework. We compare our observed alpha(sup 1) Cen spectrum with a published grid of theoretical models from Kurucz, and adopt a plausible theoretical shape, that fits our spectrum, as a secondary reference spectrum in the southern sky.
Kalukin, Andrew; Endo, Satashi
2016-08-30
Test the feasibility of incorporating atmospheric models to improve simulation algorithms of image collection, developed at NGA. Various calibration objects will be used to compare simulated image products with real image products.
A generalized forest growth projection system applied to the Lake States region.
USDA FS
1979-01-01
A collection of 12 papers describing the need, design, calibration database, potential diameter growth function, crown ratio, modifier, and mortality functions, as well as a diameter growth allocation rule, management algorithms, computer program, tests, and Lake State climate during calibration.
Principal Component Noise Filtering for NAST-I Radiometric Calibration
NASA Technical Reports Server (NTRS)
Tian, Jialin; Smith, William L., Sr.
2011-01-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.
An information-theoretic approach to the gravitational-wave burst detection problem
NASA Astrophysics Data System (ADS)
Katsavounidis, E.; Lynch, R.; Vitale, S.; Essick, R.; Robinet, F.
2016-03-01
The advanced era of gravitational-wave astronomy, with data collected in part by the LIGO gravitational-wave interferometers, has begun as of fall 2015. One potential type of detectable gravitational waves is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a new detection algorithm - called oLIB - that can be used in relatively low-latency to turn calibrated strain data into a detection significance statement. This pipeline consists of 1) a sine-Gaussian matched-filter trigger generator based on the Q-transform - known as Omicron -, 2) incoherent down-selection of these triggers to the most signal-like set, and 3) a fully coherent analysis of this signal-like set using the Markov chain Monte Carlo (MCMC) Bayesian evidence calculator LALInferenceBurst (LIB). We optimally extract this information by using a likelihood-ratio test (LRT) to map these search statistics into a significance statement. Using representative archival LIGO data, we show that the algorithm can detect gravitational-wave burst events of realistic strength in realistic instrumental noise with good detection efficiencies across different burst waveform morphologies. With support from the National Science Foundation under Grant PHY-0757058.
Selection of the initial design for the two-stage continual reassessment method.
Jia, Xiaoyu; Ivanova, Anastasia; Lee, Shing M
2017-01-01
In the two-stage continual reassessment method (CRM), model-based dose escalation is preceded by a pre-specified escalating sequence starting from the lowest dose level. This is appealing to clinicians because it allows a sufficient number of patients to be assigned to each of the lower dose levels before escalating to higher dose levels. While a theoretical framework to build the two-stage CRM has been proposed, the selection of the initial dose-escalating sequence, generally referred to as the initial design, remains arbitrary, either by specifying cohorts of three patients or by trial and error through extensive simulations. Motivated by a currently ongoing oncology dose-finding study for which clinicians explicitly stated their desire to assign at least one patient to each of the lower dose levels, we proposed a systematic approach for selecting the initial design for the two-stage CRM. The initial design obtained using the proposed algorithm yields better operating characteristics compared to using a cohort of three initial design with a calibrated CRM. The proposed algorithm simplifies the selection of initial design for the two-stage CRM. Moreover, initial designs to be used as reference for planning a two-stage CRM are provided.
NASA Astrophysics Data System (ADS)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.
2015-02-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.
Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis
1996-01-01
The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.
NASA Technical Reports Server (NTRS)
Ellsworth, Joel C.
2017-01-01
During flight-testing of the National Aeronautics and Space Administration (NASA) Gulfstream III (G-III) airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) SubsoniC Research Aircraft Testbed (SCRAT) between March 2013 and April 2015 it became evident that the sensor array used for stagnation point detection was not functioning as expected. The stagnation point detection system is a self calibrating hot-film array; the calibration was unknown and varied between flights, however, the channel with the lowest power consumption was expected to correspond with the point of least surface shear. While individual channels showed the expected behavior for the hot-film sensors, more often than not the lowest power consumption occurred at a single sensor (despite in-flight maneuvering) in the array located far from the expected stagnation point. An algorithm was developed to process the available system output and determine the stagnation point location. After multiple updates and refinements, the final algorithm was not sensitive to the failure of a single sensor in the array, but adjacent failures beneath the stagnation point crippled the algorithm.
Requirements for Calibration in Noninvasive Glucose Monitoring by Raman Spectroscopy
Lipson, Jan; Bernhardt, Jeff; Block, Ueyn; Freeman, William R.; Hofmeister, Rudy; Hristakeva, Maya; Lenosky, Thomas; McNamara, Robert; Petrasek, Danny; Veltkamp, David; Waydo, Stephen
2009-01-01
Background In the development of noninvasive glucose monitoring technology, it is highly desirable to derive a calibration that relies on neither person-dependent calibration information nor supplementary calibration points furnished by an existing invasive measurement technique (universal calibration). Method By appropriate experimental design and associated analytical methods, we establish the sufficiency of multiple factors required to permit such a calibration. Factors considered are the discrimination of the measurement technique, stabilization of the experimental apparatus, physics–physiology-based measurement techniques for normalization, the sufficiency of the size of the data set, and appropriate exit criteria to establish the predictive value of the algorithm. Results For noninvasive glucose measurements, using Raman spectroscopy, the sufficiency of the scale of data was demonstrated by adding new data into an existing calibration algorithm and requiring that (a) the prediction error should be preserved or improved without significant re-optimization, (b) the complexity of the model for optimum estimation not rise with the addition of subjects, and (c) the estimation for persons whose data were removed entirely from the training set should be no worse than the estimates on the remainder of the population. Using these criteria, we established guidelines empirically for the number of subjects (30) and skin sites (387) for a preliminary universal calibration. We obtained a median absolute relative difference for our entire data set of 30 mg/dl, with 92% of the data in the Clarke A and B ranges. Conclusions Because Raman spectroscopy has high discrimination for glucose, a data set of practical dimensions appears to be sufficient for universal calibration. Improvements based on reducing the variance of blood perfusion are expected to reduce the prediction errors substantially, and the inclusion of supplementary calibration points for the wearable device under development will be permissible and beneficial. PMID:20144354
The Challenge of Promoting Algorithmic Thinking of Both Sciences- and Humanities-Oriented Learners
ERIC Educational Resources Information Center
Katai, Z.
2015-01-01
The research results we present in this paper reveal that properly calibrated e-learning tools have potential to effectively promote the algorithmic thinking of both science-oriented and humanities-oriented students. After students had watched an illustration (by a folk dance choreography) and an animation of the studied sorting algorithm (bubble…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, Thomas E.; Maddalena, Randy L.
2007-01-01
The role of terrestrial vegetation in transferring chemicals from soil and air into specific plant tissues (stems, leaves, roots, etc.) is still not well characterized. We provide here a critical review of plant-to-soil bioconcentration ratio (BCR) estimates based on models and experimental data. This review includes the conceptual and theoretical formulations of the bioconcentration ratio, constructing and calibrating empirical and mathematical algorithms to describe this ratio and the experimental data used to quantify BCRs and calibrate the model performance. We first evaluate the theoretical basis for the BCR concept and BCR models and consider how lack of knowledge and datamore » limits reliability and consistency of BCR estimates. We next consider alternate modeling strategies for BCR. A key focus of this evaluation is the relative contributions to overall uncertainty from model uncertainty versus variability in the experimental data used to develop and test the models. As a case study, we consider a single chemical, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and focus on variability of bioconcentration measurements obtained from 81 experiments with different plant species, different plant tissues, different experimental conditions, and different methods for reporting concentrations in the soil and plant tissues. We use these observations to evaluate both the magnitude of experimental variability in plant bioconcentration and compare this to model uncertainty. Among these 81 measurements, the variation of the plant/soil BCR has a geometric standard deviation (GSD) of 3.5 and a coefficient of variability (CV-ratio of arithmetic standard deviation to mean) of 1.7. These variations are significant but low relative to model uncertainties--which have an estimated GSD of 10 with a corresponding CV of 14.« less
NASA Astrophysics Data System (ADS)
Venable, Demetrius D.; Whiteman, David N.; Calhoun, Monique N.; Dirisu, Afusat O.; Connell, Rasheen M.; Landulfo, Eduardo
2011-08-01
We have investigated a technique that allows for the independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system. This technique utilizes a procedure whereby a light source of known spectral characteristics is scanned across the aperture of the lidar system's telescope and the overall optical efficiency of the system is determined. Direct analysis of the temperature-dependent differential scattering cross sections for vibration and vibration-rotation transitions (convolved with narrowband filters) along with the measured efficiency of the system, leads to a theoretical determination of the water vapor mixing ratio calibration factor. A calibration factor was also obtained experimentally from lidar measurements and radiosonde data. A comparison of the theoretical and experimentally determined values agrees within 5%. We report on the sensitivity of the water vapor mixing ratio calibration factor to uncertainties in parameters that characterize the narrowband transmission filters, the temperature-dependent differential scattering cross section, and the variability of the system efficiency ratios as the lamp is scanned across the aperture of the telescope used in the Howard University Raman Lidar system.
NONPOINT SOURCE MODEL CALIBRATION IN HONEY CREEK WATERSHED
The U.S. EPA Non-Point Source Model has been applied and calibrated to a fairly large (187 sq. mi.) agricultural watershed in the Lake Erie Drainage basin of north central Ohio. Hydrologic and chemical routing algorithms have been developed. The model is evaluated for suitability...
Evaluation of the TOPSAR performance by using passive and active calibrators
NASA Technical Reports Server (NTRS)
Alberti, G.; Moccia, A.; Ponte, S.; Vetrella, S.
1992-01-01
The preliminary analysis of the C-band cross-track interferometric data (XTI) acquired during the MAC Europe 1991 campaign over the Matera test site, in Southern Italy is presented. Twenty three passive calibrators (Corner Reflector, CR) and 3 active calibrators (Active Radar Calibrator, ARC) were deployed over an area characterized by homogeneous background. Contemporaneously to the flight, a ground truth data collection campaign was carried out. The research activity was focused on the development of motion compensation algorithms, in order to improve the height measurement accuracy of the TOPSAR system.
Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio
2013-10-24
The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.
Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio
2013-01-01
The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770
Laser's calibration of an AOTF-based spectral colorimeter
NASA Astrophysics Data System (ADS)
Emelianov, Sergey P.; Khrustalev, Vladimir N.; Kochin, Leonid B.; Polosin, Lev L.
2003-06-01
The paper is devoted to expedients of AOTF spectral colorimeters calibration. The spectrometer method of color values measuring with reference to spectral colorimeters on AOTF surveyed. The theoretical exposition of spectrometer data processing expedients is offered. The justified source of radiation choice, suitable for calibration of spectral colorimeters is carried out. The experimental results for different acousto-optical mediums and modes of interaction are submitted.
Generation of high-dynamic range image from digital photo
NASA Astrophysics Data System (ADS)
Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han
2016-10-01
A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.
COBE ground segment gyro calibration
NASA Technical Reports Server (NTRS)
Freedman, I.; Kumar, V. K.; Rae, A.; Venkataraman, R.; Patt, F. S.; Wright, E. L.
1991-01-01
Discussed here is the calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE) spacecraft gyroscopes, with the emphasis on the adaptation for COBE of an algorithm previously developed for the Solar Maximum Mission. Detailed choice of parameters, convergence, verification, and use of the algorithm in an environment where the reference attitudes are determined form the Sun, Earth, and star observations (via the Diffuse Infrared Background Experiment (DIRBE) are considered. Results of some recent experiments are given. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature on the spacecraft electronics.
NASA Technical Reports Server (NTRS)
Kyle, H. L.; House, F. B.; Ardanuy, P. E.; Jacobowitz, H.; Maschhoff, R. H.; Hickey, J. R.
1984-01-01
In-flight calibration adjustments are developed to process data obtained from the wide-field-of-view channels of Nimbus-6 and Nimbus-7 after the failure of the Nimbus-7 longwave scanner on June 22, 1980. The sensor characteristics are investigated; the satellite environment is examined in detail; and algorithms are constructed to correct for long-term sensor-response changes, on/off-cycle thermal transients, and filter-dome absorption of longwave radiation. Data and results are presented in graphs and tables, including comparisons of the old and new algorithms.
Calibration of DEM parameters on shear test experiments using Kriging method
NASA Astrophysics Data System (ADS)
Bednarek, Xavier; Martin, Sylvain; Ndiaye, Abibatou; Peres, Véronique; Bonnefoy, Olivier
2017-06-01
Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.
Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.
1998-01-01
This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.
Space based optical staring sensor LOS determination and calibration using GCPs observation
NASA Astrophysics Data System (ADS)
Chen, Jun; An, Wei; Deng, Xinpu; Yang, Jungang; Sha, Zhichao
2016-10-01
Line of sight (LOS) attitude determination and calibration is the key prerequisite of tracking and location of targets in space based infrared (IR) surveillance systems (SBIRS) and the LOS determination and calibration of staring sensor is one of the difficulties. This paper provides a novel methodology for removing staring sensor bias through the use of Ground Control Points (GCPs) detected in the background field of the sensor. Based on researching the imaging model and characteristics of the staring sensor of SBIRS geostationary earth orbit part (GEO), the real time LOS attitude determination and calibration algorithm using landmark control point is proposed. The influential factors (including the thermal distortions error, assemble error, and so on) of staring sensor LOS attitude error are equivalent to bias angle of LOS attitude. By establishing the observation equation of GCPs and the state transition equation of bias angle, and using an extend Kalman filter (EKF), the real time estimation of bias angle and the high precision sensor LOS attitude determination and calibration are achieved. The simulation results show that the precision and timeliness of the proposed algorithm meet the request of target tracking and location process in space based infrared surveillance system.
A novel implementation of homodyne time interval analysis method for primary vibration calibration
NASA Astrophysics Data System (ADS)
Sun, Qiao; Zhou, Ling; Cai, Chenguang; Hu, Hongbo
2011-12-01
In this paper, the shortcomings and their causes of the conventional homodyne time interval analysis (TIA) method is described with respect to its software algorithm and hardware implementation, based on which a simplified TIA method is proposed with the help of virtual instrument technology. Equipped with an ordinary Michelson interferometer and dual channel synchronous data acquisition card, the primary vibration calibration system using the simplified method can perform measurements of complex sensitivity of accelerometers accurately, meeting the uncertainty requirements laid down in pertaining ISO standard. The validity and accuracy of the simplified TIA method is verified by simulation and comparison experiments with its performance analyzed. This simplified method is recommended to apply in national metrology institute of developing countries and industrial primary vibration calibration labs for its simplified algorithm and low requirements on hardware.
On the use of video projectors for three-dimensional scanning
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo
2017-08-01
Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.
Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna Roberts
Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order polynomial with 16-bit precision, significant improvement over the one and two-point correction algorithms. All algorithm have been implemented in software with satisfactory results and the third order gain equalization non-uniformity correction algorithm has been implemented in hardware.
Teaching Camera Calibration by a Constructivist Methodology
ERIC Educational Resources Information Center
Samper, D.; Santolaria, J.; Pastor, J. J.; Aguilar, J. J.
2010-01-01
This article describes the Metrovisionlab simulation software and practical sessions designed to teach the most important machine vision camera calibration aspects in courses for senior undergraduate students. By following a constructivist methodology, having received introductory theoretical classes, students use the Metrovisionlab application to…
NASA Astrophysics Data System (ADS)
Ha, Jeongmok; Jeong, Hong
2016-07-01
This study investigates the directed acyclic subgraph (DAS) algorithm, which is used to solve discrete labeling problems much more rapidly than other Markov-random-field-based inference methods but at a competitive accuracy. However, the mechanism by which the DAS algorithm simultaneously achieves competitive accuracy and fast execution speed, has not been elucidated by a theoretical derivation. We analyze the DAS algorithm by comparing it with a message passing algorithm. Graphical models, inference methods, and energy-minimization frameworks are compared between DAS and message passing algorithms. Moreover, the performances of DAS and other message passing methods [sum-product belief propagation (BP), max-product BP, and tree-reweighted message passing] are experimentally compared.
A theoretical comparison of evolutionary algorithms and simulated annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-08-28
This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less
A practical indoor context-aware surveillance system with multi-Kinect sensors
NASA Astrophysics Data System (ADS)
Jia, Lili; You, Ying; Li, Tiezhu; Zhang, Shun
2014-11-01
In this paper we develop a novel practical application, which give scalable services to the end users when abnormal actives are happening. Architecture of the application has been presented consisting of network infrared cameras and a communication module. In this intelligent surveillance system we use Kinect sensors as the input cameras. Kinect is an infrared laser camera which its user can access the raw infrared sensor stream. We install several Kinect sensors in one room to track the human skeletons. Each sensor returns the body positions with 15 coordinates in its own coordinate system. We use calibration algorithms to calibrate all the body positions points into one unified coordinate system. With the body positions points, we can infer the surveillance context. Furthermore, the messages from the metadata index matrix will be sent to mobile phone through communication module. User will instantly be aware of an abnormal case happened in the room without having to check the website. In conclusion, theoretical analysis and experimental results in this paper show that the proposed system is reasonable and efficient. And the application method introduced in this paper is not only to discourage the criminals and assist police in the apprehension of suspects, but also can enabled the end-users monitor the indoor environments anywhere and anytime by their phones.
Research on vacuum utraviolet calibration technology
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang
2014-11-01
Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.
Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z
2013-11-25
The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.
Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research
NASA Technical Reports Server (NTRS)
Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael
2009-01-01
Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S; Chao, C; Columbia University, NY, NY
2014-06-01
Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less
Algorithms for Coastal-Zone Color-Scanner Data
NASA Technical Reports Server (NTRS)
1986-01-01
Software for Nimbus-7 Coastal-Zone Color-Scanner (CZCS) derived products consists of set of scientific algorithms for extracting information from CZCS-gathered data. Software uses CZCS-generated Calibrated RadianceTemperature (CRT) tape as input and outputs computer-compatible tape and film product.
Multiple Source DF (Direction Finding) Signal Processing: An Experimental System,
The MUltiple SIgnal Characterization ( MUSIC ) algorithm is an implementation of the Signal Subspace Approach to provide parameter estimates of...the signal subspace (obtained from the received data) and the array manifold (obtained via array calibration). The MUSIC algorithm has been
Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version
NASA Technical Reports Server (NTRS)
Wentz, Frank J.; Le Vine, David M.
2011-01-01
This document provides the theoretical basis for the Aquarius salinity retrieval algorithm. The inputs to the algorithm are the Aquarius antenna temperature (T(sub A)) measurements along with a number of NCEP operational products and pre-computed tables of space radiation coming from the galaxy and sun. The output is sea-surface salinity and many intermediate variables required for the salinity calculation. This revision of the Algorithm Theoretical Basis Document (ATBD) is intended to be the final pre-launch version.
Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions
Chen, Shengyong; Xiao, Gang; Li, Xiaoli
2014-01-01
This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954
Discordance between net analyte signal theory and practical multivariate calibration.
Brown, Christopher D
2004-08-01
Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.
Halftoning Algorithms and Systems.
1996-08-01
TERMS 15. NUMBER IF PAGESi. Halftoning algorithms; error diffusions ; color printing; topographic maps 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...graylevels for each screen level. In the case of error diffusion algorithms, the calibration procedure using the new centering concept manifests itself as a...Novel Centering Concept for Overlapping Correction Paper / Transparency (Patent Applied 5/94)I * Applications To Error Diffusion * To Dithering (IS&T
Accuracy metrics for judging time scale algorithms
NASA Technical Reports Server (NTRS)
Douglas, R. J.; Boulanger, J.-S.; Jacques, C.
1994-01-01
Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.
SeaWiFS technical report series. Volume 28: SeaWiFS algorithms, part 1
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mcclain, Charles R.; Arrigo, Kevin; Esaias, Wayne E.; Darzi, Michael; Patt, Frederick S.; Evans, Robert H.; Brown, James W.
1995-01-01
This document provides five brief reports that address several algorithm investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. This volume, therefore, has been designated as the first in a series of algorithm volumes. Chapter 1 describes the initial suite of masks, used to prevent further processing of contaminated radiometric data, and flags, which are employed to mark data whose quality (due to a variety of factors) may be suspect. In addition to providing the mask and flag algorithms, this chapter also describes the initial strategy for their implementation. Chapter 2 evaluates various strategies for the detection of clouds and ice in high latitude (polar and sub-polar regions) using Coastal Zone Color Scanner (CZCS) data. Chapter 3 presents an algorithm designed for detecting and masking coccolithosphore blooms in the open ocean. Chapter 4 outlines a proposed scheme for correcting the out-of-band response when SeaWiFS is in orbit. Chapter 5 gives a detailed description of the algorithm designed to apply sensor calibration data during the processing of level-1b data.
Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data
NASA Astrophysics Data System (ADS)
Veerakachen, Watcharee; Raksapatcharawong, Mongkol
2015-09-01
Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.
Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2013-01-01
The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.
A critical evaluation of automated blood gas measurements in comparative respiratory physiology.
Malte, Christian Lind; Jakobsen, Sashia Lindhøj; Wang, Tobias
2014-12-01
Precise measurements of blood gases and pH are of pivotal importance to respiratory physiology. However, the traditional electrodes that could be calibrated and maintained at the same temperature as the experimental animal are increasingly being replaced by new automated blood gas analyzers. These are typically designed for clinical use and automatically heat the blood sample to 37°C for measurements. While most blood gas analyzers allow for temperature corrections of the measurements, the underlying algorithms are based on temperature-effects for human blood, and any discrepancies in the temperature dependency between the blood sample from a given species and human samples will bias measurements. In this study we review the effects of temperature on blood gases and pH and evaluate the performance of an automated blood gas analyzer (GEM Premier 3500). Whole blood obtained from pythons and freshwater turtles was equilibrated in rotating Eschweiler tonometers to a variety of known P(O2)'s and P(CO2)'s in gas mixtures prepared by Wösthoff gas mixing pumps and blood samples were measured immediately on the GEM Premier 3500. The pH measurements were compared to measurements using a Radiometer BMS glass capillary pH electrode kept and calibrated at the experimental temperature. We show that while the blood gas analyzer provides reliable temperature-corrections for P(CO2) and pH, P(O2) measurements were substantially biased. This was in agreement with the theoretical considerations and emphasizes the need for critical calibrations/corrections when using automated blood gas analyzers. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
A back-fitting algorithm to improve real-time flood forecasting
NASA Astrophysics Data System (ADS)
Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan
2018-07-01
Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.
Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent
Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less
NASA Astrophysics Data System (ADS)
Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun
2016-10-01
The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.
Calibration of the ART-XC/SRG X-ray Mirror Modules
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Kolodziejczak, J.; Elsner, R.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.
2014-01-01
Seven x-ray mirror modules are being fabricated at the Marshall Space Flight Center (MSFC) for the Astronomical Roentgen Telescope (ART) instrument to be launched on board of the Spektrum Roentgen Gamma (SRG) Mission. As they are completed, the modules are tested and calibrated at the MSFC's 104-m Stray Flight Facility. The results of these calibration measurements and comparisons with theoretical models will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.
2000-12-01
A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorptionmore » of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.« less
NASA Astrophysics Data System (ADS)
Jumadi, Nur Anida; Beng, Gan Kok; Ali, Mohd Alauddin Mohd; Zahedi, Edmond; Morsin, Marlia
2017-09-01
The implementation of surface-based Monte Carlo simulation technique for oxygen saturation (SaO2) calibration curve estimation is demonstrated in this paper. Generally, the calibration curve is estimated either from the empirical study using animals as the subject of experiment or is derived from mathematical equations. However, the determination of calibration curve using animal is time consuming and requires expertise to conduct the experiment. Alternatively, an optical simulation technique has been used widely in the biomedical optics field due to its capability to exhibit the real tissue behavior. The mathematical relationship between optical density (OD) and optical density ratios (ODR) associated with SaO2 during systole and diastole is used as the basis of obtaining the theoretical calibration curve. The optical properties correspond to systolic and diastolic behaviors were applied to the tissue model to mimic the optical properties of the tissues. Based on the absorbed ray flux at detectors, the OD and ODR were successfully calculated. The simulation results of optical density ratio occurred at every 20 % interval of SaO2 is presented with maximum error of 2.17 % when comparing it with previous numerical simulation technique (MC model). The findings reveal the potential of the proposed method to be used for extended calibration curve study using other wavelength pair.
A game-theoretic approach for calibration of low-cost magnetometers under noise uncertainty
NASA Astrophysics Data System (ADS)
Siddharth, S.; Ali, A. S.; El-Sheimy, N.; Goodall, C. L.; Syed, Z. F.
2012-02-01
Pedestrian heading estimation is a fundamental challenge in Global Navigation Satellite System (GNSS)-denied environments. Additionally, the heading observability considerably degrades in low-speed mode of operation (e.g. walking), making this problem even more challenging. The goal of this work is to improve the heading solution when hand-held personal/portable devices, such as cell phones, are used for positioning and to improve the heading estimation in GNSS-denied signal environments. Most smart phones are now equipped with self-contained, low cost, small size and power-efficient sensors, such as magnetometers, gyroscopes and accelerometers. A magnetometer needs calibration before it can be properly employed for navigation purposes. Magnetometers play an important role in absolute heading estimation and are embedded in many smart phones. Before the users navigate with the phone, a calibration is invoked to ensure an improved signal quality. This signal is used later in the heading estimation. In most of the magnetometer-calibration approaches, the motion modes are seldom described to achieve a robust calibration. Also, suitable calibration approaches fail to discuss the stopping criteria for calibration. In this paper, the following three topics are discussed in detail that are important to achieve proper magnetometer-calibration results and in turn the most robust heading solution for the user while taking care of the device misalignment with respect to the user: (a) game-theoretic concepts to attain better filter parameter tuning and robustness in noise uncertainty, (b) best maneuvers with focus on 3D and 2D motion modes and related challenges and (c) investigation of the calibration termination criteria leveraging the calibration robustness and efficiency.
Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
Ruddick, K G; Ovidio, F; Rijkeboer, M
2000-02-20
The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.
Free LittleDog!: Towards Completely Untethered Operation of the LittleDog Quadruped
2007-08-01
helpful Intel Open Source Computer Vision ( OpenCV ) library [4] wherever possible rather than reimplementing many of the standard algorithms, however...correspondences between image points and world points, and feeding these to a camera calibration function, such as that provided by OpenCV , allows one to solve... OpenCV calibration function to that used for intrinsic calibration solves for Tboard→camerai . The position of the camera 37 Figure 5.3: Snapshot of
Calibration of a spatial light modulator containing dual frequency liquid crystal
NASA Astrophysics Data System (ADS)
Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank
2005-08-01
Characterization and calibration process for a liquid crystal (LC) spatial light modulator (SLM) containing dual frequency liquid crystal is described. Special care was taken when dealing with LC cell gap non-uniformity and defect pixels. The calibration results were fed into a closed loop control algorithm to demonstrate correction of wavefront distortions. The performance characteristics of the device were reported. Substantial improvements were made in speed (bandwidth), resolution, power consumption and system weight/volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.
2015-01-12
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less
Modeling in vivo fluorescence of small animals using TracePro software
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Rajwa, Bartek; Freniere, Edward R.; Smith, Linda; Hassler, Richard; Robinson, J. Paul
2007-02-01
The theoretical modeling of fluorescence excitation, emission, and propagation within living tissue has been a limiting factor in the development and calibration of in vivo small animal fluorescence imagers. To date, no definitive calibration standard, or phantom, has been developed for use with small animal fluorescence imagers. Our work in the theoretical modeling of fluorescence in small animals using solid modeling software is useful in optimizing the design of small animal imaging systems, and in predicting their response to a theoretical model. In this respect, it is also valuable in the design of a fluorescence phantom for use in in vivo small animal imaging. The use of phantoms is a critical step in the testing and calibration of most diagnostic medical imaging systems. Despite this, a realistic, reproducible, and informative phantom has yet to be produced for use in small animal fluorescence imaging. By modeling the theoretical response of various types of phantoms, it is possible to determine which parameters are necessary for accurately modeling fluorescence within inhomogenous scattering media such as tissue. Here, we present the model that has been developed, the challenges and limitations associated with developing such a model, and the applicability of this model to experimental results obtained in a commercial small animal fluorescence imager.
New Method of Calibrating IRT Models.
ERIC Educational Resources Information Center
Jiang, Hai; Tang, K. Linda
This discussion of new methods for calibrating item response theory (IRT) models looks into new optimization procedures, such as the Genetic Algorithm (GA) to improve on the use of the Newton-Raphson procedure. The advantages of using a global optimization procedure like GA is that this kind of procedure is not easily affected by local optima and…
Efficient calibration for imperfect computer models
Tuo, Rui; Wu, C. F. Jeff
2015-12-01
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
Towards improving the NASA standard soil moisture retrieval algorithm and product
NASA Astrophysics Data System (ADS)
Mladenova, I. E.; Jackson, T. J.; Njoku, E. G.; Bindlish, R.; Cosh, M. H.; Chan, S.
2013-12-01
Soil moisture mapping using passive-based microwave remote sensing techniques has proven to be one of the most effective ways of acquiring reliable global soil moisture information on a routine basis. An important step in this direction was made by the launch of the Advanced Microwave Scanning Radiometer on the NASA's Earth Observing System Aqua satellite (AMSR-E). Along with the standard NASA algorithm and operational AMSR-E product, the easy access and availability of the AMSR-E data promoted the development and distribution of alternative retrieval algorithms and products. Several evaluation studies have demonstrated issues with the standard NASA AMSR-E product such as dampened temporal response and limited range of the final retrievals and noted that the available global passive-based algorithms, even though based on the same electromagnetic principles, produce different results in terms of accuracy and temporal dynamics. Our goal is to identify the theoretical causes that determine the reduced sensitivity of the NASA AMSR-E product and outline ways to improve the operational NASA algorithm, if possible. Properly identifying the underlying reasons that cause the above mentioned features of the NASA AMSR-E product and differences between the alternative algorithms requires a careful examination of the theoretical basis of each approach. Specifically, the simplifying assumptions and parametrization approaches adopted by each algorithm to reduce the dimensionality of unknowns and characterize the observing system. Statistically-based error analyses, which are useful and necessary, provide information on the relative accuracy of each product but give very little information on the theoretical causes, knowledge that is essential for algorithm improvement. Thus, we are currently examining the possibility of improving the standard NASA AMSR-E global soil moisture product by conducting a thorough theoretically-based review of and inter-comparisons between several well established global retrieval techniques. A detailed discussion focused on the theoretical basis of each approach and algorithms sensitivity to assumptions and parametrization approaches will be presented. USDA is an equal opportunity provider and employer.
Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods
NASA Astrophysics Data System (ADS)
Gong, W.; Duan, Q.; Huo, X.
2017-12-01
Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.
NASA Astrophysics Data System (ADS)
Butt, Ali
Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.
Articulated Arm Coordinate Measuring Machine Calibration by Laser Tracker Multilateration
Majarena, Ana C.; Brau, Agustín; Velázquez, Jesús
2014-01-01
A new procedure for the calibration of an articulated arm coordinate measuring machine (AACMM) is presented in this paper. First, a self-calibration algorithm of four laser trackers (LTs) is developed. The spatial localization of a retroreflector target, placed in different positions within the workspace, is determined by means of a geometric multilateration system constructed from the four LTs. Next, a nonlinear optimization algorithm for the identification procedure of the AACMM is explained. An objective function based on Euclidean distances and standard deviations is developed. This function is obtained from the captured nominal data (given by the LTs used as a gauge instrument) and the data obtained by the AACMM and compares the measured and calculated coordinates of the target to obtain the identified model parameters that minimize this difference. Finally, results show that the procedure presented, using the measurements of the LTs as a gauge instrument, is very effective by improving the AACMM precision. PMID:24688418
Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip.
Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru
2015-01-01
Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.
Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip
Yamaguchi, Suguru
2015-01-01
Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values. PMID:26421312
Research on three-dimensional reconstruction method based on binocular vision
NASA Astrophysics Data System (ADS)
Li, Jinlin; Wang, Zhihui; Wang, Minjun
2018-03-01
As the hot and difficult issue in computer vision, binocular stereo vision is an important form of computer vision,which has a broad application prospects in many computer vision fields,such as aerial mapping,vision navigation,motion analysis and industrial inspection etc.In this paper, a research is done into binocular stereo camera calibration, image feature extraction and stereo matching. In the binocular stereo camera calibration module, the internal parameters of a single camera are obtained by using the checkerboard lattice of zhang zhengyou the field of image feature extraction and stereo matching, adopted the SURF operator in the local feature operator and the SGBM algorithm in the global matching algorithm are used respectively, and the performance are compared. After completed the feature points matching, we can build the corresponding between matching points and the 3D object points using the camera parameters which are calibrated, which means the 3D information.
Note: Ultrasonic gas flowmeter based on optimized time-of-flight algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. F.; Tang, Z. A.
2011-04-15
A new digital signal processor based single path ultrasonic gas flowmeter is designed, constructed, and experimentally tested. To achieve high accuracy measurements, an optimized ultrasound driven method of incorporation of the amplitude modulation and the phase modulation of the transmit-receive technique is used to stimulate the transmitter. Based on the regularities among the received envelope zero-crossings, different received signal's signal-to-noise ratio situations are discriminated and optional time-of-flight algorithms are applied to take flow rate calculations. Experimental results from the dry calibration indicate that the designed flowmeter prototype can meet the zero-flow verification test requirements of the American Gas Association Reportmore » No. 9. Furthermore, the results derived from the flow calibration prove that the proposed flowmeter prototype can measure flow rate accurately in the practical experiments, and the nominal accuracies after FWME adjustment are lower than 0.8% throughout the calibration range.« less
Calibration Method of an Ultrasonic System for Temperature Measurement
Zhou, Chao; Wang, Yueke; Qiao, Chunjie; Dai, Weihua
2016-01-01
System calibration is fundamental to the overall accuracy of the ultrasonic temperature measurement, and it is basically involved in accurately measuring the path length and the system latency of the ultrasonic system. This paper proposes a method of high accuracy system calibration. By estimating the time delay between the transmitted signal and the received signal at several different temperatures, the calibration equations are constructed, and the calibrated results are determined with the use of the least squares algorithm. The formulas are deduced for calculating the calibration uncertainties, and the possible influential factors are analyzed. The experimental results in distilled water show that the calibrated path length and system latency can achieve uncertainties of 0.058 mm and 0.038 μs, respectively, and the temperature accuracy is significantly improved by using the calibrated results. The temperature error remains within ±0.04°C consistently, and the percentage error is less than 0.15%. PMID:27788252
NASA Technical Reports Server (NTRS)
Deb, Rahul; Snyder, Jeff G.
2005-01-01
A viewgraph presentation describing thermoelectric materials, an algorithm for heat capacity measurements and the process of flash thermal diffusivity. The contents include: 1) What are Thermoelectrics?; 2) Thermoelectric Applications; 3) Improving Thermoelectrics; 4) Research Goal; 5) Flash Thermal Diffusivity; 6) Background Effects; 7) Stainless Steel Comparison; 8) Pulse Max Integral; and 9) Graphite Comparison Algorithm.
Modelling the fate of pesticides in paddy rice-fish pond farming system in Northern Vietnam
NASA Astrophysics Data System (ADS)
Lamers, M.; Nguyen, N.; Streck, T.
2012-04-01
During the last decade rice production in Vietnam has tremendously increased due to the introduction of new high yield, short duration rice varieties and an increased application of pesticides. Since pesticides are toxic by design, there is a natural concern on the possible impacts of their presence in the environment on human health and environment quality. In North Vietnam, lowland and upland rice fields were identified to be a major non-point source of agrochemical pollution to surface and ground water, which are often directly used for domestic purposes. Field measurements, however, are time consuming, costly and logistical demanding. Hence, quantification, forecast and risk assessment studies are hampered by a limited amount of field data. One potential way to cope with this shortcoming is the use of process-based models. In the present study we developed a model for simulating short-term pesticide dynamics in combined paddy rice field - fish pond farming systems under the specific environmental conditions of south-east Asia. Basic approaches and algorithms to describe the key underlying biogeochemical processes were mainly adopted from the literature to assure that the model reflects the current standard of scientific knowledge and commonly accepted theoretical background. The model was calibrated by means of the Gauss-Marquardt-Levenberg algorithm and validated against measured pesticide concentrations (dimethoate and fenitrothion) during spring and summer rice crop season 2008, respectively, of a paddy field - fish pond system typical for northern Vietnam. First simulation results indicate that our model is capable to simulate the fate of pesticides in such paddy - fish pond farming systems. The model efficiency for the period of calibration, for example, was 0.97 and 0.95 for dimethoate and fenitrothion, respectively. For the period of validation, however, the modeling efficiency slightly decreased to 0.96 and 0.81 for dimethoate and fenitrothion, respectively. In our presentation we will picture key model features and algorithms and demonstrate that our model provides a useful and appropriate tool for analyzing and quantifying the transport and behavior of pesticides in paddy rice farming systems.
Calibrator device for the extrusion of cable coatings
NASA Astrophysics Data System (ADS)
Garbacz, Tomasz; Dulebová, Ľudmila; Spišák, Emil; Dulebová, Martina
2016-05-01
This paper presents selected results of theoretical and experimental research works on a new calibration device (calibrators) used to produce coatings of electric cables. The aim of this study is to present design solution calibration equipment and present a new calibration machine, which is an important element of the modernized technology extrusion lines for coating cables. As a result of the extrusion process of PVC modified with blowing agents, an extrudate in the form of an electrical cable was obtained. The conditions of the extrusion process were properly selected, which made it possible to obtain a product with solid external surface and cellular core.
Calibration Techniques for Accurate Measurements by Underwater Camera Systems
Shortis, Mark
2015-01-01
Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172
Goddard high resolution spectrograph science verification and data analysis
NASA Technical Reports Server (NTRS)
1992-01-01
The data analysis performed was to support the Orbital Verification (OV) and Science Verification (SV) of the GHRS was in the areas of the Digicon detector's performance and stability, wavelength calibration, and geomagnetic induced image motion. The results of the analyses are briefly described. Detailed results are given in the form of attachments. Specialized software was developed for the analyses. Calibration files were formatted according to the specifications in a Space Telescope Science report. IRAS images were restored of the Large Magellanic Cloud using a blocked iterative algorithm. The algorithm works with the raw data scans without regridding or interpolating the data on an equally spaced image grid.
Scanning microwave microscopy applied to semiconducting GaAs structures
NASA Astrophysics Data System (ADS)
Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry
2018-02-01
A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.
NASA Astrophysics Data System (ADS)
Fu, Liyue; Song, Aiguo
2018-02-01
In order to improve the measurement precision of 6-axis force/torque sensor for robot, BP decoupling algorithm optimized by GA (GA-BP algorithm) is proposed in this paper. The weights and thresholds of a BP neural network with 6-10-6 topology are optimized by GA to develop decouple a six-axis force/torque sensor. By comparison with other traditional decoupling algorithm, calculating the pseudo-inverse matrix of calibration and classical BP algorithm, the decoupling results validate the good decoupling performance of GA-BP algorithm and the coupling errors are reduced.
Particle swarm optimization algorithm based low cost magnetometer calibration
NASA Astrophysics Data System (ADS)
Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.
2011-12-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments
Multidimensional Signal Processing for Sensing & Communications
2015-07-29
Superresolution (RISR) Algorithm,” IEEE Radar Conference, Cincinnati, OH, 19-23 May 2014, pp. 1278-1282. 5. J. Jakabosky, S.D. Blunt, and B. Himed...2014. B.D. Cordill, S.A. Seguin, and S.D. Blunt, “Mutual Coupling Calibration using the Reiterative Superresolution (RISR) Algorithm,” IEEE Radar
Automated model optimisation using the Cylc workflow engine (Cyclops v1.0)
NASA Astrophysics Data System (ADS)
Gorman, Richard M.; Oliver, Hilary J.
2018-06-01
Most geophysical models include many parameters that are not fully determined by theory, and can be tuned
to improve the model's agreement with available data. We might attempt to automate this tuning process in an objective way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in various programming languages, but interfacing such software to a complex geophysical model simulation presents certain challenges. To tackle this problem, we have developed an optimisation suite (Cyclops
) based on the Cylc workflow engine that implements a wide selection of optimisation algorithms from the NLopt Python toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the optimisation suite is particularly straightforward. As a test case, we applied the Cyclops to calibrate a global implementation of the WAVEWATCH III (v4.18) third-generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a 1-year period (1997), before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of the root mean square error of hindcast significant wave height compared with collocated altimeter records. We describe the results of a calibration in which up to 19 parameters were optimised.
NASA Astrophysics Data System (ADS)
Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud
2016-10-01
The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.
Scientific impact of MODIS C5 calibration degradation and C6+ improvements
NASA Astrophysics Data System (ADS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.
2014-12-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6+ approach removed an additional negative decadal trend of Terra ΔNDVI ~ 0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.;
2014-01-01
The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on the order of several tenths of 1% of the top-of-atmosphere (TOA) reflectance in the visible and near-infrared MODIS bands B1-B4, and provides a good consistency between the two MODIS sensors. MAIAC analysis over the southern USA shows that the C6C approach removed an additional negative decadal trend of Terra (Delta)NDVI approx.0.01 as compared to Aqua data. This change is particularly important for analysis of vegetation dynamics and trends in the tropics, e.g., Amazon rainforest, where the morning orbit of Terra provides considerably more cloud-free observations compared to the afternoon Aqua measurements.
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
NASA Astrophysics Data System (ADS)
Kurien, Binoy George
Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.
The Day-1 GPM Combined Precipitation Algorithm: IMERG
NASA Astrophysics Data System (ADS)
Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.
2012-12-01
The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional. Then we will present some early examples of IMERG data products and compare them with existing products to illustrate how the design of IMERG affects the overall performance of the algorithm.
Algorithm Updates for the Fourth SeaWiFS Data Reprocessing
NASA Technical Reports Server (NTRS)
Hooker, Stanford, B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Robinson, Wayne D.; Feldman, Gene Carl; Bailey, Sean W.
2003-01-01
The efforts to improve the data quality for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data products have continued, following the third reprocessing of the global data set in May 2000. Analyses have been ongoing to address all aspects of the processing algorithms, particularly the calibration methodologies, atmospheric correction, and data flagging and masking. All proposed changes were subjected to rigorous testing, evaluation and validation. The results of these activities culminated in the fourth reprocessing, which was completed in July 2002. The algorithm changes, which were implemented for this reprocessing, are described in the chapters of this volume. Chapter 1 presents an overview of the activities leading up to the fourth reprocessing, and summarizes the effects of the changes. Chapter 2 describes the modifications to the on-orbit calibration, specifically the focal plane temperature correction and the temporal dependence. Chapter 3 describes the changes to the vicarious calibration, including the stray light correction to the Marine Optical Buoy (MOBY) data and improved data screening procedures. Chapter 4 describes improvements to the near-infrared (NIR) band correction algorithm. Chapter 5 describes changes to the atmospheric correction and the oceanic property retrieval algorithms, including out-of-band corrections, NIR noise reduction, and handling of unusual conditions. Chapter 6 describes various changes to the flags and masks, to increase the number of valid retrievals, improve the detection of the flag conditions, and add new flags. Chapter 7 describes modifications to the level-la and level-3 algorithms, to improve the navigation accuracy, correct certain types of spacecraft time anomalies, and correct a binning logic error. Chapter 8 describes the algorithm used to generate the SeaWiFS photosynthetically available radiation (PAR) product. Chapter 9 describes a coupled ocean-atmosphere model, which is used in one of the changes described in Chapter 4. Finally, Chapter 10 describes a comparison of results from the third and fourth reprocessings along the US. Northeast coast.
CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm
NASA Astrophysics Data System (ADS)
Kar, Jayanta; Vaughan, Mark A.; Lee, Kam-Pui; Tackett, Jason L.; Avery, Melody A.; Garnier, Anne; Getzewich, Brian J.; Hunt, William H.; Josset, Damien; Liu, Zhaoyan; Lucker, Patricia L.; Magill, Brian; Omar, Ali H.; Pelon, Jacques; Rogers, Raymond R.; Toth, Travis D.; Trepte, Charles R.; Vernier, Jean-Paul; Winker, David M.; Young, Stuart A.
2018-03-01
Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures - i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime - depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to the upper possible signal acquisition range of 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) are reduced from 3.6 % ± 2.2 % in the version 3 data set to 1.6 % ± 2.4 % in the version 4 release.
NASA Astrophysics Data System (ADS)
Fernandez-Moran, R.; Wigneron, J.-P.; De Lannoy, G.; Lopez-Baeza, E.; Parrens, M.; Mialon, A.; Mahmoodi, A.; Al-Yaari, A.; Bircher, S.; Al Bitar, A.; Richaume, P.; Kerr, Y.
2017-10-01
This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (HR, and NRp, p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and HR = 0.1, whereas values of ω = 0.06 - 0.08 and HR = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, HR and NRp, p = H,V) were tested in this study, treating SMOS SM retrievals as homogeneous over each pixel instead of retrieving SM over a representative fraction of the pixel, as implemented in the operational SMOS L2 and L3 algorithms. Globally-constant values of ω = 0.10, HR = 0.4 and NRp = -1 (p = H,V) were found to yield SM retrievals that compared best with in situ SM data measured at many sites worldwide from the International Soil Moisture Network (ISMN). The calibration was repeated for collections of in situ sites classified in different land cover categories based on the International Geosphere-Biosphere Programme (IGBP) scheme. Depending on the IGBP land cover class, values of ω and HR varied, respectively, in the range 0.08-0.12 and 0.1-0.5. A validation exercise based on in situ measurements confirmed that using either a global or an IGBP-based calibration, there was an improvement in the accuracy of the SM retrievals compared to the SMOS L3 SM product considering all statistical metrics (R = 0.61, bias = -0.019 m3 m-3, ubRMSE = 0.062 m3 m-3 for the IGBP-based calibration; against R = 0.54, bias = -0.034 m3 m-3 and ubRMSE = 0.070 m3 m-3 for the SMOS L3 SM product). This result is a key step in the calibration of the roughness and vegetation parameters in the operational SMOS retrieval algorithm. The approach presented here is the core of a new forthcoming SMOS optimized SM product.
Increasing the object recognition distance of compact open air on board vision system
NASA Astrophysics Data System (ADS)
Kirillov, Sergey; Kostkin, Ivan; Strotov, Valery; Dmitriev, Vladimir; Berdnikov, Vadim; Akopov, Eduard; Elyutin, Aleksey
2016-10-01
The aim of this work was developing an algorithm eliminating the atmospheric distortion and improves image quality. The proposed algorithm is entirely software without using additional hardware photographic equipment. . This algorithm does not required preliminary calibration. It can work equally effectively with the images obtained at a distances from 1 to 500 meters. An algorithm for the open air images improve designed for Raspberry Pi model B on-board vision systems is proposed. The results of experimental examination are given.
Task-Level Control for a Full Semi-Autonomous Mission: Test Platform Development and Demonstration
NASA Technical Reports Server (NTRS)
Rock, Stephen M.; LeMaster, Edward A.
2001-01-01
Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS, including indoor and deep-space applications. Conventional GPS pseudolite arrays require that the devices be pre-calibrated through a survey of their locations, typically to sub-centimeter accuracy. This can sometimes be a difficult task, especially in remote or hazardous environments. By using the GPS signals that the pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a Self-Calibrating Pseudolite Array (SCPA). In order to provide the bi-directional ranging signals between devices necessary for array self-calibration, pseudolite transceivers must be used. The basic principles behind the use of transceivers to create an SCPA were first presented in paper presented to the Institute of Navigation GPS-98 Conference. This paper begins with a brief review of the transceiver architecture and the fundamental direct-ranging algorithm presented in that paper. This is followed by a description of a prototype self-differencing transceiver system that has been constructed, and a presentation of experimental code- and carrier-phase ranging data obtained using that system. A second algorithm is then described which uses these fundamental range measurements between transceiver pairs to self-calibrate a larger stationary array and to provide positioning information for a vehicle moving within that array. Simulation results validating the accuracy and effective convergence of this algorithm are also presented.
Dambergs, Robert G; Mercurio, Meagan D; Kassara, Stella; Cozzolino, Daniel; Smith, Paul A
2012-06-01
Information relating to tannin concentration in grapes and wine is not currently available simply and rapidly enough to inform decision-making by grape growers, winemakers, and wine researchers. Spectroscopy and chemometrics have been implemented for the analysis of critical grape and wine parameters and offer a possible solution for rapid tannin analysis. We report here the development and validation of an ultraviolet (UV) spectral calibration for the prediction of tannin concentration in red wines. Such spectral calibrations reduce the time and resource requirements involved in measuring tannins. A diverse calibration set (n = 204) was prepared with samples of Australian wines of five varieties (Cabernet Sauvignon, Shiraz, Merlot, Pinot Noir, and Durif), from regions spanning the wine grape growing areas of Australia, with varying climate and soils, and with vintages ranging from 1991 to 2007. The relationship between tannin measured by the methyl cellulose precipitation (MCP) reference method at 280 nm and tannin predicted with a multiple linear regression (MLR) calibration, using ultraviolet (UV) absorbance at 250, 270, 280, 290, and 315 nm, was strong (r(2)val = 0.92; SECV = 0.20 g/L). An independent validation set (n = 85) was predicted using the MLR algorithm developed with the calibration set and gave confidence in the ability to predict new samples, independent of the samples used to prepare the calibration (r(2)val = 0.94; SEP = 0.18 g/L). The MLR algorithm could also predict tannin in fermenting wines (r(2)val = 0.76; SEP = 0.18 g/L), but worked best from the second day of ferment on. This study also explored instrument-to-instrument transfer of a spectral calibration for MCP tannin. After slope and bias adjustments of the calibration, efficient calibration transfer to other laboratories was clearly demonstrated, with all instruments in the study effectively giving identical results on a transfer set.
Long-Term Stability Assessment of Sonoran Desert for Vicarious Calibration of GOES-R
NASA Astrophysics Data System (ADS)
Kim, W.; Liang, S.; Cao, C.
2012-12-01
Vicarious calibration refers to calibration techniques that do not depend on onboard calibration devices. Although sensors and onboard calibration devices undergo rigorous validation processes before launch, performance of sensors often degrades after the launch due to exposure to the harsh space environment and the aging of devices. Such in-flight changes of devices can be identified and adjusted through vicarious calibration activities where the sensor degradation is measured in reference to exterior calibration sources such as the Sun, the Moon, and the Earth surface. Sonoran desert is one of the best calibration sites located in the North America that are available for vicarious calibration of GOES-R satellite. To accurately calibrate sensors onboard GOES-R satellite (e.g. advanced baseline imager (ABI)), the temporal stability of Sonoran desert needs to be assessed precisely. However, short-/mid-term variations in top-of-atmosphere (TOA) reflectance caused by meteorological variables such as water vapor amount and aerosol loading are often difficult to retrieve, making the use of TOA reflectance time series for the stability assessment of the site. In this paper, we address this issue of normalization of TOA reflectance time series using a time series analysis algorithm - seasonal trend decomposition procedure based on LOESS (STL) (Cleveland et al, 1990). The algorithm is basically a collection of smoothing filters which leads to decomposition of a time series into three additive components; seasonal, trend, and remainder. Since this non-linear technique is capable of extracting seasonal patterns in the presence of trend changes, the seasonal variation can be effectively identified in the time series of remote sensing data subject to various environmental changes. The experiment results performed with Landsat 5 TM data show that the decomposition results acquired for the Sonoran Desert area produce normalized series that have much less uncertainty than those of traditional BRDF models, which leads to more accurate stability assessment.
Water content measurement in forest soils and decayed wood using time domain reflectometry
Andrew Gray; Thomas Spies
1995-01-01
The use of time domain reflectometry to measure moisture content in forest soils and woody debris was evaluated. Calibrations were developed on undisturbed soil cores from four forest stands and on point samples from decayed logs. An algorithm for interpreting irregularly shaped traces generated by the reflectometer was also developed. Two different calibration...
Robot Path Planning in Uncertain Environments: A Language Measure-theoretic Approach
2014-01-01
Paper DS-14-1028 to appear in the Special Issue on Stochastic Models, Control and Algorithms in Robotics, ASME Journal of Dynamic Systems...Measurement and Control Robot Path Planning in Uncertain Environments: A Language Measure-theoretic Approach⋆ Devesh K. Jha† Yue Li† Thomas A. Wettergren‡† Asok...algorithm, called ν⋆, that was formulated in the framework of probabilistic finite state automata (PFSA) and language measure from a control -theoretic
2006 Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan;
2006-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
NASA Astrophysics Data System (ADS)
Lavalle, M.; Hensley, S.; Lou, Y.; Saatchi, S. S.; Pinto, N.; Simard, M.; Fatoyinbo, T. E.; Duncanson, L.; Dubayah, R.; Hofton, M. A.; Blair, J. B.; Armston, J.
2016-12-01
In this paper we explore the derivation of canopy height and vertical structure from polarimetric-interferometric SAR (PolInSAR) data collected during the 2016 AfriSAR campaign in Gabon. AfriSAR is a joint effort between NASA and ESA to acquire multi-baseline L- and P-band radar data, lidar data and field data over tropical forests and savannah sites to support calibration, validation and algorithm development in preparation for the NISAR, GEDI and BIOMASS missions. Here we focus on the L-band UAVSAR dataset acquired over the Lope National Park in Central Gabon to demonstrate mapping of canopy height and vertical structure using PolInSAR and tomographic techniques. The Lope site features a natural gradient of forest biomass from the forest-savanna boundary (< 100 Mg/ha) to dense undisturbed humid tropical forests (> 400 Mg/ha). Our dataset includes 9 long-baseline, full-polarimetric UAVSAR acquisitions along with field and lidar data from the Laser Vegetation Ice Sensor (LVIS). We first present a brief theoretical background of the PolInSAR and tomographic techniques. We then show the results of our PolInSAR algorithms to create maps of canopy height generated via inversion of the random-volume-over-ground (RVOG) and random-motion-over-ground (RVoG) models. In our approach multiple interferometric baselines are merged incoherently to maximize the interferometric sensitivity over a broad range of tree heights. Finally we show how traditional tomographic algorithms are used for the retrieval of the full vertical canopy profile. We compare our results from the different PolInSAR/tomographic algorithms to validation data derived from lidar and field data.
Kuenze, Christopher; Eltouhky, Moataz; Thomas, Abbey; Sutherlin, Mark; Hart, Joseph
2016-05-01
Collecting torque data using a multimode dynamometer is common in sports-medicine research. The error in torque measurements across multiple sites and dynamometers has not been established. To assess the validity of 2 calibration protocols across 3 dynamometers and the error associated with torque measurement for each system. Observational study. 3 university laboratories at separate institutions. 2 Biodex System 3 dynamometers and 1 Biodex System 4 dynamometer. System calibration was completed using the manufacturer-recommended single-weight method and an experimental calibration method using a series of progressive weights. Both calibration methods were compared with a manually calculated theoretical torque across a range of applied weights. Relative error, absolute error, and percent error were calculated at each weight. Each outcome variable was compared between systems using 95% confidence intervals across low (0-65 Nm), moderate (66-110 Nm), and high (111-165 Nm) torque categorizations. Calibration coefficients were established for each system using both calibration protocols. However, within each system the calibration coefficients generated using the single-weight (System 4 = 2.42 [0.90], System 3a = 1.37 [1.11], System 3b = -0.96 [1.45]) and experimental calibration protocols (System 4 = 3.95 [1.08], System 3a = -0.79 [1.23], System 3b = 2.31 [1.66]) were similar and displayed acceptable mean relative error compared with calculated theoretical torque values. Overall, percent error was greatest for all 3 systems in low-torque conditions (System 4 = 11.66% [6.39], System 3a = 6.82% [11.98], System 3b = 4.35% [9.49]). The System 4 significantly overestimated torque across all 3 weight increments, and the System 3b overestimated torque over the moderate-torque increment. Conversion of raw voltage to torque values using the single-calibration-weight method is valid and comparable to a more complex multiweight calibration process; however, it is clear that calibration must be done for each individual system to ensure accurate data collection.
NASA Astrophysics Data System (ADS)
Shecter, Liat; Oiknine, Yaniv; August, Isaac; Stern, Adrian
2017-09-01
Recently we presented a Compressive Sensing Miniature Ultra-spectral Imaging System (CS-MUSI)1 . This system consists of a single Liquid Crystal (LC) phase retarder as a spectral modulator and a gray scale sensor array to capture a multiplexed signal of the imaged scene. By designing the LC spectral modulator in compliance with the Compressive Sensing (CS) guidelines and applying appropriate algorithms we demonstrated reconstruction of spectral (hyper/ ultra) datacubes from an order of magnitude fewer samples than taken by conventional sensors. The LC modulator is designed to have an effective width of a few tens of micrometers, therefore it is prone to imperfections and spatial nonuniformity. In this work, we present the study of this nonuniformity and present a mathematical algorithm that allows the inference of the spectral transmission over the entire cell area from only a few calibration measurements.
Geostationary Lightning Mapper: Lessons Learned from Post Launch Test
NASA Astrophysics Data System (ADS)
Edgington, S.; Tillier, C. E.; Demroff, H.; VanBezooijen, R.; Christian, H. J., Jr.; Bitzer, P. M.
2017-12-01
Pre-launch calibration and algorithm design for the GOES Geostationary Lightning Mapper resulted in a successful and trouble-free on-orbit activation and post-launch test sequence. Within minutes of opening the GLM aperture door on January 4th, 2017, lightning was detected across the entire field of view. During the six-month post-launch test period, numerous processing parameters on board the instrument and in the ground processing algorithms were fine-tuned. Demonstrated on-orbit performance exceeded pre-launch predictions. We provide an overview of the ground calibration sequence, on-orbit tuning of the instrument, tuning of the ground processing algorithms (event filtering and navigation). We also touch on new insights obtained from analysis of a large and growing archive of raw GLM data, containing 3e8 flash detections derived from over 1e10 full-disk images of the Earth.
Theoretical and Empirical Analysis of a Spatial EA Parallel Boosting Algorithm.
Kamath, Uday; Domeniconi, Carlotta; De Jong, Kenneth
2018-01-01
Many real-world problems involve massive amounts of data. Under these circumstances learning algorithms often become prohibitively expensive, making scalability a pressing issue to be addressed. A common approach is to perform sampling to reduce the size of the dataset and enable efficient learning. Alternatively, one customizes learning algorithms to achieve scalability. In either case, the key challenge is to obtain algorithmic efficiency without compromising the quality of the results. In this article we discuss a meta-learning algorithm (PSBML) that combines concepts from spatially structured evolutionary algorithms (SSEAs) with concepts from ensemble and boosting methodologies to achieve the desired scalability property. We present both theoretical and empirical analyses which show that PSBML preserves a critical property of boosting, specifically, convergence to a distribution centered around the margin. We then present additional empirical analyses showing that this meta-level algorithm provides a general and effective framework that can be used in combination with a variety of learning classifiers. We perform extensive experiments to investigate the trade-off achieved between scalability and accuracy, and robustness to noise, on both synthetic and real-world data. These empirical results corroborate our theoretical analysis, and demonstrate the potential of PSBML in achieving scalability without sacrificing accuracy.
D Data Acquisition Based on Opencv for Close-Range Photogrammetry Applications
NASA Astrophysics Data System (ADS)
Jurjević, L.; Gašparović, M.
2017-05-01
Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Comiso, Josefino C.; Fraser, Robert S.; Firestone, James K.; Schieber, Brian D.; Yeh, Eueng-Nan; Arrigo, Kevin R.; Sullivan, Cornelius W.
1994-01-01
Although the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program relies on the scientific community for the collection of bio-optical and atmospheric correction data as well as for algorithm development, it does have the responsibility for evaluating and comparing the algorithms and for ensuring that the algorithms are properly implemented within the SeaWiFS Data Processing System. This report consists of a series of sensitivity and algorithm (bio-optical, atmospheric correction, and quality control) studies based on Coastal Zone Color Scanner (CZCS) and historical ancillary data undertaken to assist in the development of SeaWiFS specific applications needed for the proper execution of that responsibility. The topics presented are as follows: (1) CZCS bio-optical algorithm comparison, (2) SeaWiFS ozone data analysis study, (3) SeaWiFS pressure and oxygen absorption study, (4) pixel-by-pixel pressure and ozone correction study for ocean color imagery, (5) CZCS overlapping scenes study, (6) a comparison of CZCS and in situ pigment concentrations in the Southern Ocean, (7) the generation of ancillary data climatologies, (8) CZCS sensor ringing mask comparison, and (9) sun glint flag sensitivity study.
A Theoretical Analysis of Why Hybrid Ensembles Work.
Hsu, Kuo-Wei
2017-01-01
Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.
NASA Astrophysics Data System (ADS)
Becker, R.; Usman, M.
2017-12-01
A SWAT (Soil Water Assessment Tool) model is applied in the semi-arid Punjab region in Pakistan. The physically based hydrological model is set up to simulate hydrological processes and water resources demands under future land use, climate change and irrigation management scenarios. In order to successfully run the model, detailed focus is laid on the calibration procedure of the model. The study deals with the following calibration issues:i. lack of reliable calibration/validation data, ii. difficulty to accurately model a highly managed system with a physically based hydrological model and iii. use of alternative and spatially distributed data sets for model calibration. In our study area field observations are rare and the entirely human controlled irrigation system renders central calibration parameters (e.g. runoff/curve number) unsuitable, as it can't be assumed that they represent the natural behavior of the hydrological system. From evapotranspiration (ET) however principal hydrological processes can still be inferred. Usman et al. (2015) derived satellite based monthly ET data for our study area based on SEBAL (Surface Energy Balance Algorithm) and created a reliable ET data set which we use in this study to calibrate our SWAT model. The initial SWAT model performance is evaluated with respect to the SEBAL results using correlation coefficients, RMSE, Nash-Sutcliffe efficiencies and mean differences. Particular focus is laid on the spatial patters, investigating the potential of a spatially differentiated parameterization instead of just using spatially uniform calibration data. A sensitivity analysis reveals the most sensitive parameters with respect to changes in ET, which are then selected for the calibration process.Using the SEBAL-ET product we calibrate the SWAT model for the time period 2005-2006 using a dynamically dimensioned global search algorithm to minimize RMSE. The model improvement after the calibration procedure is finally evaluated based on the previously chosen evaluation criteria for the time period 2007-2008. The study reveals the sensitivity of SWAT model parameters to changes in ET in a semi-arid and human controlled system and the potential of calibrating those parameters using satellite derived ET data.
Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin
Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.
2006-01-01
The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.
Yang, Sheng-Sung; Ho, Chia-Lu; Siu, Sammy
2010-12-01
In this paper, we propose an algorithm based on the central limit theorem to compute the sensitivity of the multilayer perceptron (MLP) due to the errors of the inputs and weights. For simplicity and practicality, all inputs and weights studied here are independently identically distributed (i.i.d.). The theoretical results derived from the proposed algorithm show that the sensitivity of the MLP is affected by the number of layers and the number of neurons adopted in each layer. To prove the reliability of the proposed algorithm, some experimental results of the sensitivity are also presented, and they match the theoretical ones. The good agreement between the theoretical results and the experimental results verifies the reliability and feasibility of the proposed algorithm. Furthermore, the proposed algorithm can also be applied to compute precisely the sensitivity of the MLP with any available activation functions and any types of i.i.d. inputs and weights.
Calibrating LOFAR using the Black Board Selfcal System
NASA Astrophysics Data System (ADS)
Pandey, V. N.; van Zwieten, J. E.; de Bruyn, A. G.; Nijboer, R.
2009-09-01
The Black Board SelfCal (BBS) system is designed as the final processing system to carry out the calibration of LOFAR in an efficient way. In this paper we give a brief description of its architectural and software design including its distributed computing approach. A confusion limited deep all sky image (from 38-62 MHz) by calibrating LOFAR test data with the BBS suite is shown as a sample result. The present status and future directions of development of BBS suite are also touched upon. Although BBS is mainly developed for LOFAR, it may also be used to calibrate other instruments once their specific algorithms are plugged in.
Participation in the Infrared Space Observatory (ISO) Mission
NASA Technical Reports Server (NTRS)
Joseph, Robert D.
2002-01-01
All the Infrared Space Observatory (ISO) data have been transmitted from the ISO Data Centre, reduced, and calibrated. This has been rather labor-intensive as new calibrations for both the ISOPHOT and ISOCAM data have been released and the algorithms for data reduction have improved. We actually discovered errors in the calibration in earlier versions of the software. However the data reduction improvements have now converged and we have a self-consistent, well-calibrated database. It has also been a major effort to obtain the ground-based JHK imaging, 450 micrometer and 850 micrometer imaging and the 1-2.5 micrometer near-infrared spectroscopy for most of the sample galaxies.
Financial model calibration using consistency hints.
Abu-Mostafa, Y S
2001-01-01
We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.
Real-time calibration and alignment of the LHCb RICH detectors
NASA Astrophysics Data System (ADS)
HE, Jibo
2017-12-01
In 2015, the LHCb experiment established a new and unique software trigger strategy with the purpose of increasing the purity of the signal events by applying the same algorithms online and offline. To achieve this, real-time calibration and alignment of all LHCb sub-systems is needed to provide vertexing, tracking, and particle identification of the best possible quality. The calibration of the refractive index of the RICH radiators, the calibration of the Hybrid Photon Detector image, and the alignment of the RICH mirror system, are reported in this contribution. The stability of the RICH performance and the particle identification performance are also discussed.
Stochastic calibration and learning in nonstationary hydroeconomic models
NASA Astrophysics Data System (ADS)
Maneta, M. P.; Howitt, R.
2014-05-01
Concern about water scarcity and adverse climate events over agricultural regions has motivated a number of efforts to develop operational integrated hydroeconomic models to guide adaptation and optimal use of water. Once calibrated, these models are used for water management and analysis assuming they remain valid under future conditions. In this paper, we present and demonstrate a methodology that permits the recursive calibration of economic models of agricultural production from noisy but frequently available data. We use a standard economic calibration approach, namely positive mathematical programming, integrated in a data assimilation algorithm based on the ensemble Kalman filter equations to identify the economic model parameters. A moving average kernel ensures that new and past information on agricultural activity are blended during the calibration process, avoiding loss of information and overcalibration for the conditions of a single year. A regularization constraint akin to the standard Tikhonov regularization is included in the filter to ensure its stability even in the presence of parameters with low sensitivity to observations. The results show that the implementation of the PMP methodology within a data assimilation framework based on the enKF equations is an effective method to calibrate models of agricultural production even with noisy information. The recursive nature of the method incorporates new information as an added value to the known previous observations of agricultural activity without the need to store historical information. The robustness of the method opens the door to the use of new remote sensing algorithms for operational water management.
Stray-Light Correction of the Marine Optical Buoy
NASA Technical Reports Server (NTRS)
Brown, Steven W.; Johnson, B. Carol; Flora, Stephanie J.; Feinholz, Michael E.; Yarbrough, Mark A.; Barnes, Robert A.; Kim, Yong Sung; Lykke, Keith R.; Clark, Dennis K.
2003-01-01
In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.
Nonoptical definition of applanation surface.
Draeger, J; Rumberger, E; Hechler, B; Wirt, H; Levedag, S; Rudolph, G; Ludwig, B; Klemm, M
1987-01-01
Based on the Imbert-Fick law and the theoretical considerations of Goldmann, new applanation tonometers were designed, still using an applanation diameter of 3.06 mm to avoid a new biometric calibration. Three different electronic recording devices were used for the area assessment. An optical, a capacitance and a digital line sensor were tested in first calibration experiments.
Active learning in camera calibration through vision measurement application
NASA Astrophysics Data System (ADS)
Li, Xiaoqin; Guo, Jierong; Wang, Xianchun; Liu, Changqing; Cao, Binfang
2017-08-01
Since cameras are increasingly more used in scientific application as well as in the applications requiring precise visual information, effective calibration of such cameras is getting more important. There are many reasons why the measurements of objects are not accurate. The largest reason is that the lens has a distortion. Another detrimental influence on the evaluation accuracy is caused by the perspective distortions in the image. They happen whenever we cannot mount the camera perpendicularly to the objects we want to measure. In overall, it is very important for students to understand how to correct lens distortions, that is camera calibration. If the camera is calibrated, the images are rectificated, and then it is possible to obtain undistorted measurements in world coordinates. This paper presents how the students should develop a sense of active learning for mathematical camera model besides the theoretical scientific basics. The authors will present the theoretical and practical lectures which have the goal of deepening the students understanding of the mathematical models of area scan cameras and building some practical vision measurement process by themselves.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
NASA Technical Reports Server (NTRS)
Witteborn, Fred C.; Cohen, Martin; Bregman, Jesse D.; Wooden, Diane H.; Heere, Karen; Shirley, Eric L.
1999-01-01
Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the KI.5 III star alpha Boo is measured from 3 to 30 microns, and that of the C-type asteroid 1 Ceres from 5 to 30 microns. While these "standard" spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically, they provide a model-independent means of calibrating celestial flux in the spectral range from 12 to 30 microns, where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux-calibrated by theoretical modeling of these hot stars, strengthens our confidence in the applicability of the stellar models as primary irradiance standards.
NASA Technical Reports Server (NTRS)
Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.
1998-01-01
Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.
NASA Technical Reports Server (NTRS)
Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)
2000-01-01
Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements
Histogram-driven cupping correction (HDCC) in CT
NASA Astrophysics Data System (ADS)
Kyriakou, Y.; Meyer, M.; Lapp, R.; Kalender, W. A.
2010-04-01
Typical cupping correction methods are pre-processing methods which require either pre-calibration measurements or simulations of standard objects to approximate and correct for beam hardening and scatter. Some of them require the knowledge of spectra, detector characteristics, etc. The aim of this work was to develop a practical histogram-driven cupping correction (HDCC) method to post-process the reconstructed images. We use a polynomial representation of the raw-data generated by forward projection of the reconstructed images; forward and backprojection are performed on graphics processing units (GPU). The coefficients of the polynomial are optimized using a simplex minimization of the joint entropy of the CT image and its gradient. The algorithm was evaluated using simulations and measurements of homogeneous and inhomogeneous phantoms. For the measurements a C-arm flat-detector CT (FD-CT) system with a 30×40 cm2 detector, a kilovoltage on board imager (radiation therapy simulator) and a micro-CT system were used. The algorithm reduced cupping artifacts both in simulations and measurements using a fourth-order polynomial and was in good agreement to the reference. The minimization algorithm required less than 70 iterations to adjust the coefficients only performing a linear combination of basis images, thus executing without time consuming operations. HDCC reduced cupping artifacts without the necessity of pre-calibration or other scan information enabling a retrospective improvement of CT image homogeneity. However, the method can work with other cupping correction algorithms or in a calibration manner, as well.
Machado, Juliana Pereira; Veiga, Eugenia Velludo; Ferreira, Paulo Alexandre Camargo; Martins, José Carlos Amado; Daniel, Ana Carolina Queiroz Godoy; Oliveira, Amanda dos Santos; da Silva, Patrícia Costa dos Santos
2014-01-01
Objective To determine and to analyze the theoretical and practical knowledge of Nursing professionals on indirect blood pressure measurement. Methods This cross-sectional study included 31 professionals of a coronary care unit (86% of the Nursing staff in the unit). Of these, 38.7% of professionals were nurses and 61.3% nurse technicians. A validated questionnaire was used to theoretical evaluation and for practice assessment the auscultatory technique was applied in a simulation environment, under a non-participant observation. Results To the theoretical knowledge of the stages of preparation of patient and environment, 12.9% mentioned 5-minute of rest, 48.4% checked calibration, and 29.0% chose adequate cuff width. A total of 64.5% of professionals avoided rounding values, and 22.6% mentioned the 6-month deadline period for the equipment calibration. On average, in practice assessment, 65% of the steps were followed. Lacks in knowledge were primary concerning lack of checking the device calibration and stethoscope, measurement of arm circumference to choose the cuff size, and the record of arm used in blood pressure measurement. Conclusion Knowledge was poor and had disparities between theory and practice with evidence of steps taken without proper awareness and lack of consideration of important knowledge during implementation of blood pressure measurement. Educational and operational interventions should be applied systematically with institutional involvement to ensure safe care with reliable values. PMID:25295455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Kuo-Hsing; Meyer, Kristin De; Department of Electrical Engineering, KU Leuven, Leuven
Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined withmore » a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.« less
Landsat-7 Enhanced Thematic Mapper plus radiometric calibration
Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.
1997-01-01
Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.
NASA Technical Reports Server (NTRS)
Eskins, Jonathan
1988-01-01
The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.
Zahari, Marina; Lee, Dominic Savio; Darlow, Brian Alexander
2016-10-01
The displayed readings of Masimo pulse oximeters used in the Benefits Of Oxygen Saturation Targeting (BOOST) II and related trials in very preterm babies were influenced by trial-imposed offsets and an artefact in the calibration software. A study was undertaken to implement new algorithms that eliminate the effects of offsets and artefact. In the BOOST-New Zealand trial, oxygen saturations were averaged and stored every 10 s up to 36 weeks' post-menstrual age. Two-hundred and fifty-seven of 340 babies enrolled in the trial had at least two weeks of stored data. Oxygen saturation distribution patterns corresponding with a +3 % or -3 % offset in the 85-95 % range were identified together with that due to the calibration artefact. Algorithms involving linear and quadratic interpolations were developed, implemented on each baby of the dataset and validated using the data of a UK preterm baby, as recorded from Masimo oximeters with the original software and a non-offset Siemens oximeter. Saturation distributions obtained were compared for both groups. There were a flat region at saturations 85-87 % and a peak at 96 % from the lower saturation target oximeters, and at 93-95 and 84 % respectively from the higher saturation target oximeters. The algorithms lowered the peaks and redistributed the accumulated frequencies to the flat regions and artefact at 87-90 %. The resulting distributions were very close to those obtained from the Siemens oximeter. The artefact and offsets of the Masimo oximeter's software had been addressed to determine the true saturation readings through the use of novel algorithms. The implementation would enable New Zealand data be included in the meta-analysis of BOOST II trials, and be used in neonatal oxygen studies.
SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seliger, T; Engenhart-Cabillic, R; Czarnecki, D
2016-06-15
Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry andmore » its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.« less
Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples
NASA Technical Reports Server (NTRS)
Ratnatunga, Kavan U.; Casertano, Stefano
1991-01-01
A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.
Final Report of DOE Grant No. DE-FG02-04ER41306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera
2013-12-10
Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less
Performance of b-jet identification in the ATLAS experiment
Aad, G; Abbott, B; Abdallah, J; ...
2016-04-04
The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag ratemore » for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty.« less
Walsh, Colin G; Sharman, Kavya; Hripcsak, George
2017-12-01
Prior to implementing predictive models in novel settings, analyses of calibration and clinical usefulness remain as important as discrimination, but they are not frequently discussed. Calibration is a model's reflection of actual outcome prevalence in its predictions. Clinical usefulness refers to the utilities, costs, and harms of using a predictive model in practice. A decision analytic approach to calibrating and selecting an optimal intervention threshold may help maximize the impact of readmission risk and other preventive interventions. To select a pragmatic means of calibrating predictive models that requires a minimum amount of validation data and that performs well in practice. To evaluate the impact of miscalibration on utility and cost via clinical usefulness analyses. Observational, retrospective cohort study with electronic health record data from 120,000 inpatient admissions at an urban, academic center in Manhattan. The primary outcome was thirty-day readmission for three causes: all-cause, congestive heart failure, and chronic coronary atherosclerotic disease. Predictive modeling was performed via L1-regularized logistic regression. Calibration methods were compared including Platt Scaling, Logistic Calibration, and Prevalence Adjustment. Performance of predictive modeling and calibration was assessed via discrimination (c-statistic), calibration (Spiegelhalter Z-statistic, Root Mean Square Error [RMSE] of binned predictions, Sanders and Murphy Resolutions of the Brier Score, Calibration Slope and Intercept), and clinical usefulness (utility terms represented as costs). The amount of validation data necessary to apply each calibration algorithm was also assessed. C-statistics by diagnosis ranged from 0.7 for all-cause readmission to 0.86 (0.78-0.93) for congestive heart failure. Logistic Calibration and Platt Scaling performed best and this difference required analyzing multiple metrics of calibration simultaneously, in particular Calibration Slopes and Intercepts. Clinical usefulness analyses provided optimal risk thresholds, which varied by reason for readmission, outcome prevalence, and calibration algorithm. Utility analyses also suggested maximum tolerable intervention costs, e.g., $1720 for all-cause readmissions based on a published cost of readmission of $11,862. Choice of calibration method depends on availability of validation data and on performance. Improperly calibrated models may contribute to higher costs of intervention as measured via clinical usefulness. Decision-makers must understand underlying utilities or costs inherent in the use-case at hand to assess usefulness and will obtain the optimal risk threshold to trigger intervention with intervention cost limits as a result. Copyright © 2017 Elsevier Inc. All rights reserved.
-redshifted), Observed Flux, Statistical Error (Based on the optimal extraction algorithm of the IRAF packages were acquired using different instrumental settings for the blue and red parts of the spectrum to avoid extracted for systematics checks of the wavelength calibration. Wavelength and flux calibration were applied
System calibration method for Fourier ptychographic microscopy
NASA Astrophysics Data System (ADS)
Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli
2017-09-01
Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.
2009-01-01
A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Wu, C. F. Jeff
Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Prabhakaran, R.; Tompkins, S.
1987-01-01
The first step in the extension of the semidestructive hole-drilling technique for residual stress measurement to orthotropic composite materials is the determination of the three calibration constants. Attention is presently given to an experimental determination of these calibration constants for a highly orthotropic, unidirectionally-reinforced graphite fiber-reinforced polyimide composite. A comparison of the measured values with theoretically obtained ones shows agreement to be good, in view of the many possible sources of experimental variation.
A fast combination calibration of foreground and background for pipelined ADCs
NASA Astrophysics Data System (ADS)
Kexu, Sun; Lenian, He
2012-06-01
This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters (ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters (MDACs). The considered calibration technique takes the advantages of both foreground and background calibration schemes. In this combination calibration algorithm, a novel parallel background calibration with signal-shifted correlation is proposed, and its calibration cycle is very short. The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC. The high convergence speed of this background calibration is achieved by three means. First, a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code. Second, before correlating the signal, it is shifted according to the input signal so that the correlation error converges quickly. Finally, the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants. Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2 × 221 conversions.
NASA Technical Reports Server (NTRS)
Doty, Keith L
1992-01-01
The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.
A Theoretical Analysis of Why Hybrid Ensembles Work
2017-01-01
Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296
Testing calibration routines for LISFLOOD, a distributed hydrological model
NASA Astrophysics Data System (ADS)
Pannemans, B.
2009-04-01
Traditionally hydrological models are considered as difficult to calibrate: their highly non-linearity results in rugged and rough response surfaces were calibration algorithms easily get stuck in local minima. For the calibration of distributed hydrological models two extra factors play an important role: on the one hand they are often costly on computation, thus restricting the feasible number of model runs; on the other hand their distributed nature smooths the response surface, thus facilitating the search for a global minimum. Lisflood is a distributed hydrological model currently used for the European Flood Alert System - EFAS (Van der Knijff et al, 2008). Its upcoming recalibration over more then 200 catchments, each with an average runtime of 2-3 minutes, proved a perfect occasion to put several existing calibration algorithms to the test. The tested routines are Downhill Simplex (DHS, Nelder and Mead, 1965), SCEUA (Duan et Al. 1993), SCEM (Vrugt et al., 2003) and AMALGAM (Vrugt et al., 2008), and they were evaluated on their capability to efficiently converge onto the global minimum and on the spread in the found solutions in repeated runs. The routines were let loose on a simple hyperbolic function, on a Lisflood catchment using model output as observation, and on two Lisflood catchments using real observations (one on the river Inn in the Alps, the other along the downstream stretch of the Elbe). On the mathematical problem and on the catchment with synthetic observations DHS proved to be the fastest and the most efficient in finding a solution. SCEUA and AMALGAM are a slower, but while SCEUA keeps converging on the exact solution, AMALGAM slows down after about 600 runs. For the Lisflood models with real-time observations AMALGAM (hybrid algorithm that combines several other algorithms, we used CMA, PSO and GA) came as fastest out of the tests, and giving comparable results in consecutive runs. However, some more work is needed to tweak the stopping criteria. SCEUA is a bit slower, but has very transparent stopping rules. Both have closed in on the minima after about 600 runs. DHS equals only SCEUA on convergence speed. The stopping criteria we applied so far are too strict, causing it to stop too early. SCEM converges 5-6 times slower. This is a high price for the parameter uncertainty analysis that is simultaneously done. The ease with which all algorithms find the same optimum suggests that we are dealing with a smooth and relatively simple response surface. This leaves room for other deterministic calibration algorithms being smarter than DHS in sliding downhill. PEST seems promising but sofar we haven't managed to get it running with LISFLOOD. • Duan, Q.; Gupta, V. & Sorooshian, S., 1993, Shuffled complex evolution approach for effective and efficient global minimization, J Optim Theory Appl, Kluwer Academic Publishers-Plenum Publishers, 76, 501-521 • Nelder, J. & Mead, R., 1965, A simplex method for function minimization, Comput. J., 7, 308-313 • Van Der Knijff, J. M.; Younis, J. & De Roo, A. P. J., 2008, LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation, International Journal of Geographical Information Science, • Vrugt, J.; Gupta, H.; Bouten, W. & Sorooshian, S., 2003, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39 • Vrugt, J.; Robinson, B. & Hyman, J., 2008, Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces, IEEE Trans Evol Comput, IEEE,
Du, Hui; Chen, Xiaobo; Xi, Juntong; Yu, Chengyi; Zhao, Bao
2017-12-12
Large-scale surfaces are prevalent in advanced manufacturing industries, and 3D profilometry of these surfaces plays a pivotal role for quality control. This paper proposes a novel and flexible large-scale 3D scanning system assembled by combining a robot, a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. A mathematical model is established for the global data fusion. Subsequently, a robust method is introduced for the establishment of the end coordinate system. As for hand-eye calibration, the calibration ball is observed by the scanner and the laser tracker simultaneously. With this data, the hand-eye relationship is solved, and then an algorithm is built to get the transformation matrix between the end coordinate system and the world coordinate system. A validation experiment is designed to verify the proposed algorithms. Firstly, a hand-eye calibration experiment is implemented and the computation of the transformation matrix is done. Then a car body rear is measured 22 times in order to verify the global data fusion algorithm. The 3D shape of the rear is reconstructed successfully. To evaluate the precision of the proposed method, a metric tool is built and the results are presented.
Empirical retrieval of sea spray aerosol production using satellite microwave radiometry
NASA Astrophysics Data System (ADS)
Savelyev, I. B.; Yelland, M. J.; Norris, S. J.; Salisbury, D.; Pascal, R. W.; Bettenhausen, M. H.; Prytherch, J.; Anguelova, M. D.; Brooks, I. M.
2017-12-01
This study presents a novel approach to obtaining global sea spray aerosol (SSA) production source term by relying on direct satellite observations of the ocean surface, instead of more traditional approaches driven by surface meteorology. The primary challenge in developing this empirical algorithm is to compile a calibrated, consistent dataset of SSA surface flux collected offshore over a variety of conditions (i.e., regions and seasons), thus representative of the global SSA production variability. Such dataset includes observations from SEASAW, HiWASE, and WAGES field campaigns, during which the SSA flux was measured from the bow of a research vessel using consistent and state-of-the-art eddy covariance methodology. These in situ data are matched to observations of the state of the ocean surface from Windsat polarimetric microwave satellite radiometer. Previous studies demonstrated the ability of WindSat to detect variations in surface waves slopes, roughness and foam, which led to the development of retrieval algorithms for surface wind vector and more recently whitecap fraction. Similarly, in this study, microwave emissions from the ocean surface are matched to and calibrated against in situ observations of the SSA production flux. The resulting calibrated empirical algorithm is applicable for retrieval of SSA source term throughout the duration of Windsat mission, from 2003 to present.
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Giglio, Louis
1994-01-01
This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicity accounting for diverse hydrometeor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. It is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.
Koay, Cheng Guan; Chang, Lin-Ching; Carew, John D; Pierpaoli, Carlo; Basser, Peter J
2006-09-01
A unifying theoretical and algorithmic framework for diffusion tensor estimation is presented. Theoretical connections among the least squares (LS) methods, (linear least squares (LLS), weighted linear least squares (WLLS), nonlinear least squares (NLS) and their constrained counterparts), are established through their respective objective functions, and higher order derivatives of these objective functions, i.e., Hessian matrices. These theoretical connections provide new insights in designing efficient algorithms for NLS and constrained NLS (CNLS) estimation. Here, we propose novel algorithms of full Newton-type for the NLS and CNLS estimations, which are evaluated with Monte Carlo simulations and compared with the commonly used Levenberg-Marquardt method. The proposed methods have a lower percent of relative error in estimating the trace and lower reduced chi2 value than those of the Levenberg-Marquardt method. These results also demonstrate that the accuracy of an estimate, particularly in a nonlinear estimation problem, is greatly affected by the Hessian matrix. In other words, the accuracy of a nonlinear estimation is algorithm-dependent. Further, this study shows that the noise variance in diffusion weighted signals is orientation dependent when signal-to-noise ratio (SNR) is low (
Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem
2017-11-01
We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model. The proposed method is used to estimate consecutively the values of the two sets of model parameters. Numerical results corresponding to both synthetic and real functional magnetic resonance imaging measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model. Copyright © 2017 John Wiley & Sons, Ltd.
Iterative Magnetometer Calibration
NASA Technical Reports Server (NTRS)
Sedlak, Joseph
2006-01-01
This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.
NASA Astrophysics Data System (ADS)
Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William
2017-09-01
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuanyuan; Diao, Ruisheng; Huang, Renke
Maintaining good quality of power plant stability models is of critical importance to ensure the secure and economic operation and planning of today’s power grid with its increasing stochastic and dynamic behavior. According to North American Electric Reliability (NERC) standards, all generators in North America with capacities larger than 10 MVA are required to validate their models every five years. Validation is quite costly and can significantly affect the revenue of generator owners, because the traditional staged testing requires generators to be taken offline. Over the past few years, validating and calibrating parameters using online measurements including phasor measurement unitsmore » (PMUs) and digital fault recorders (DFRs) has been proven to be a cost-effective approach. In this paper, an innovative open-source tool suite is presented for validating power plant models using PPMV tool, identifying bad parameters with trajectory sensitivity analysis, and finally calibrating parameters using an ensemble Kalman filter (EnKF) based algorithm. The architectural design and the detailed procedures to run the tool suite are presented, with results of test on a realistic hydro power plant using PMU measurements for 12 different events. The calibrated parameters of machine, exciter, governor and PSS models demonstrate much better performance than the original models for all the events and show the robustness of the proposed calibration algorithm.« less
Estimation Filter for Alignment of the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Bayard, David
2007-01-01
A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.
Quemerais, Marie Aude; Doron, Maeva; Dutrech, Florent; Melki, Vincent; Franc, Sylvia; Antonakios, Michel; Charpentier, Guillaume; Hanaire, Helene; Charpentier, Guillaume
2014-01-01
There is room for improvement in the algorithms used in closed-loop insulin therapy during the prandial period. This pilot study evaluated the efficacy and safety of the Diabeloop algorithm (model predictive control type) during the postprandial period. This 2-center clinical trial compared interstitial glucose levels over two 5-hour periods (with/without the algorithm) following a calibrated lunch. On the control day, the amount of insulin delivered by the pump was determined according to the patient’s usual parameters. On the test day, 50% or 75% of the theoretical bolus required was delivered, while the algorithm, informed of carbohydrate intake, proposed changes to insulin delivery every 15 minutes using modeling to forecast glucose levels. The primary endpoint was percentage of time spent at near normoglycemia (70-180 mg/dl). Twelve patients with type 1 diabetes (9 men, age 35.6 ± 12.7 years, HbA1c 7.3 ± 0.8%) were included. The percentage of time spent in the target range was 84.5 ± 20.8 (test day) versus 69.2 ± 33.9% (control day, P = .11). The percentage of time spent in hypoglycemia < 70 mg/dl was 0.2 ± 0.8 (test) versus 4.4 ± 8.2% (control, P = .18). Interstitial glucose at the end of the test (5 hours) was 127.5 ± 40.1 (test) versus 146 ± 53.5 mg/dl (control, P = .25). The insulin doses did not differ, and no differences were observed between the 50% and 75% boluses. In a semi-closed-loop configuration with manual priming boluses (25% or 50% reduction), the Diabeloop v1 algorithm was as successful as the manual method in determining the prandial bolus, without any exposure to excessive hypoglycemic risk. PMID:25097057
Sensitivity-Based Guided Model Calibration
NASA Astrophysics Data System (ADS)
Semnani, M.; Asadzadeh, M.
2017-12-01
A common practice in automatic calibration of hydrologic models is applying the sensitivity analysis prior to the global optimization to reduce the number of decision variables (DVs) by identifying the most sensitive ones. This two-stage process aims to improve the optimization efficiency. However, Parameter sensitivity information can be used to enhance the ability of the optimization algorithms to find good quality solutions in a fewer number of solution evaluations. This improvement can be achieved by increasing the focus of optimization on sampling from the most sensitive parameters in each iteration. In this study, the selection process of the dynamically dimensioned search (DDS) optimization algorithm is enhanced by utilizing a sensitivity analysis method to put more emphasis on the most sensitive decision variables for perturbation. The performance of DDS with the sensitivity information is compared to the original version of DDS for different mathematical test functions and a model calibration case study. Overall, the results show that DDS with sensitivity information finds nearly the same solutions as original DDS, however, in a significantly fewer number of solution evaluations.
Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices
Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser
2012-01-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.
Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kang, Bryan H.
2004-01-01
This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.
3D kinematic measurement of human movement using low cost fish-eye cameras
NASA Astrophysics Data System (ADS)
Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.
2017-02-01
3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.
Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging
Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.
2014-01-01
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321
NASA Astrophysics Data System (ADS)
Krimi, Soufiene; Beigang, René
2017-02-01
In this contribution, we present a highly accurate approach for real-time thickness measurements of multilayered coatings using terahertz time domain spectroscopy in reflection geometry. The proposed approach combines the benefits of a model-based material parameters extraction method to calibrate the specimen under test, a generalized modeling method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity and the precision of the minimum thickness measurement limit. Furthermore, a novel self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the car painting process and the influence of the spraying conditions and the sintering process on ceramic thermal barrier coatings (TBCs) in aircraft industry. In addition, the developed approach enables for some applications the simultaneous determination of the complex refractive index and the coating thickness. Hence, a pre-calibration of the specimen under test is not required for such cases. Due to the high robustness of the self-calibration method and the genetic optimization algorithms, the approach has been successfully applied to resolve individual layer thicknesses within multi-layered coated samples down to less than 10 µm. The regression method can be applied in time-domain, frequency-domain or in both the time and frequency-domain simultaneously. The data evaluation uses general-purpose computing on graphics processing units and thanks to the developed highly parallelized algorithm lasts less than 300 ms. Thus, industrial requirements for fast thickness measurements with an "every-second-cycle" can be fulfilled.
NASA Astrophysics Data System (ADS)
Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.
2018-06-01
A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.
Interpolation bias for the inverse compositional Gauss-Newton algorithm in digital image correlation
NASA Astrophysics Data System (ADS)
Su, Yong; Zhang, Qingchuan; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan
2018-01-01
It is believed that the classic forward additive Newton-Raphson (FA-NR) algorithm and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm give rise to roughly equal interpolation bias. Questioning the correctness of this statement, this paper presents a thorough analysis of interpolation bias for the IC-GN algorithm. A theoretical model is built to analytically characterize the dependence of interpolation bias upon speckle image, target image interpolation, and reference image gradient estimation. The interpolation biases of the FA-NR algorithm and the IC-GN algorithm can be significantly different, whose relative difference can exceed 80%. For the IC-GN algorithm, the gradient estimator can strongly affect the interpolation bias; the relative difference can reach 178%. Since the mean bias errors are insensitive to image noise, the theoretical model proposed remains valid in the presence of noise. To provide more implementation details, source codes are uploaded as a supplement.
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2005-10-01
A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.
Optimized star sensors laboratory calibration method using a regularization neural network.
Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen
2018-02-10
High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.
Improving integrity of on-line grammage measurement with traceable basic calibration.
Kangasrääsiö, Juha
2010-07-01
The automatic control of grammage (basis weight) in paper and board production is based upon on-line grammage measurement. Furthermore, the automatic control of other quality variables such as moisture, ash content and coat weight, may rely on the grammage measurement. The integrity of Kr-85 based on-line grammage measurement systems was studied, by performing basic calibrations with traceably calibrated plastic reference standards. The calibrations were performed according to the EN ISO/IEC 17025 standard, which is a requirement for calibration laboratories. The observed relative measurement errors were 3.3% in the first time calibrations at the 95% confidence level. With the traceable basic calibration method, however, these errors can be reduced to under 0.5%, thus improving the integrity of on-line grammage measurements. Also a standardised algorithm, based on the experience from the performed calibrations, is proposed to ease the adjustment of the different grammage measurement systems. The calibration technique can basically be applied to all beta-radiation based grammage measurements. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hashmall, J.; Garrick, J.
1993-01-01
Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.
Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration
NASA Technical Reports Server (NTRS)
Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas
2016-01-01
The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.
Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration
NASA Technical Reports Server (NTRS)
Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas
2016-01-01
The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.
Improving the Numerical Stability of Fast Matrix Multiplication
Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...
2016-10-04
Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less
NASA Astrophysics Data System (ADS)
Meneses-Fabian, Cruz
2016-12-01
This paper presents a non-iterative, fast, and simple algorithm for phase retrieval, in phase-shifting interferometry of three unknown and unequal phase-steps, based on the geometric concept of the volume enclosed by a surface. This approach can be divided in three stages; first the background is eliminated by the subtraction of two interferograms, for obtaining a secondary pattern; second, a surface is built by the product of two secondary patterns and the volume enclosed by this surface is computed; and third, the ratio between two enclosed volumes is approximated to a constant that depends on the phase-steps, with which a system of equations is established, and its solution allows the measurement of the phase-steps to be obtained. Additional advantages of this approach are its immunity to noise, and its capacity to support high spatial variations in the illumination. This approach is theoretically described and is numerically and experimentally verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuo, Rui; Jeff Wu, C. F.
Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less
Calibration of polarimetric radar systems with good polarization isolation
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.; Tassoudji, M. Ali
1990-01-01
A practical technique is proposed for calibrating single-antenna polarimetric radar systems using a metal sphere plus any second target with a strong cross-polarized radar cross section. This technique assumes perfect isolation between antenna ports. It is shown that all magnitudes and phases (relative to one of the like-polarized linear polarization configurations) of the radar transfer function can be calibrated without knowledge of the scattering matrix of the second target. Comparison of the values measured (using this calibration technique) for a tilted cylinder at X-band with theoretical values shows agreement within + or - 0.3 dB in magnitude and + or - 5 degrees in phase. The radar overall cross-polarization isolation was 25 dB. The technique is particularly useful for calibrating a radar under field conditions, because it does not require the careful alignment of calibration targets.
SeaWiFS Postlaunch Calibration and Validation Analyses
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Ainsworth, Ewa J.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.; Robinson, Wayne D.; Wang, Menghua; Bailey, Sean W.
2000-01-01
The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project was an extensive one. These evaluations have resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issues that could be identified up to the time of each reprocessing. The number of chapters (21) needed to document this extensive work in the SeaWiFS Postlaunch Technical Report Series requires three volumes. The chapters in Volumes 9, 10, and 11 are in a logical order sequencing through sensor calibration, atmospheric correction, masks and flags, product evaluations, and bio-optical algorithms. The first chapter of Volume 9 is an overview of the calibration and validation program, including a table of activities from the inception of the SeaWiFS Project. Chapter 2 describes the fine adjustments of sensor detector knee radiances, i.e., radiance levels where three of the four detectors in each SeaWiFS band saturate. Chapters 3 and 4 describe the analyses of the lunar and solar calibration time series, respectively, which are used to track the temporal changes in radiometric sensitivity in each band. Chapter 5 outlines the procedure used to adjust band 7 relative to band 8 to derive reasonable aerosol radiances in band 7 as compared to those in band 8 in the vicinity of Lanai, Hawaii, the vicarious calibration site. Chapter 6 presents the procedure used to estimate the vicarious calibration gain adjustment factors for bands 1-6 using the waterleaving radiances from the Marine Optical Buoy (MOBY) offshore of Lanai. Chapter 7 provides the adjustments to the coccolithophore flag algorithm which were required for improved performance over the prelaunch version. Chapter 8 is an overview of the numerous modifications to the atmospheric correction algorithm that have been implemented. Chapter 9 describes the methodology used to remove artifacts of sun glint contamination for portions of the imagery outside the sun glint mask. Finally, Chapter 10 explains a modification to the ozone interpolation method to account for actual time differences between the SeaWiFS and Total Ozone Mapping Spectrometer (TOMS) orbits.
Nonlinear Kalman filters for calibration in radio interferometry
NASA Astrophysics Data System (ADS)
Tasse, C.
2014-06-01
The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visibilities are understood and analytically stable. Recursive algorithms are particularly well adapted for pre-calibration and sky model estimate in a streaming way. This may be useful for the SKA-type instruments that produce huge amounts of data that have to be calibrated before being averaged.
NASA Technical Reports Server (NTRS)
Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake
2016-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in detail the recent calibration improvements implemented in the MODIS L1B C6.
The JPSS Ground Project Algorithm Verification, Test and Evaluation System
NASA Astrophysics Data System (ADS)
Vicente, G. A.; Jain, P.; Chander, G.; Nguyen, V. T.; Dixon, V.
2016-12-01
The Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) is an operational system that provides services to the Suomi National Polar-orbiting Partnership (S-NPP) Mission. It is also a unique environment for Calibration/Validation (Cal/Val) and Data Quality Assessment (DQA) of the Join Polar Satellite System (JPSS) mission data products. GRAVITE provides a fast and direct access to the data and products created by the Interface Data Processing Segment (IDPS), the NASA/NOAA operational system that converts Raw Data Records (RDR's) generated by sensors on the S-NPP into calibrated geo-located Sensor Data Records (SDR's) and generates Mission Unique Products (MUPS). It also facilitates algorithm investigation, integration, checkouts and tuning, instrument and product calibration and data quality support, monitoring and data/products distribution. GRAVITE is the portal for the latest S-NPP and JPSS baselined Processing Coefficient Tables (PCT's) and Look-Up-Tables (LUT's) and hosts a number DQA offline tools that takes advantage of the proximity to the near-real time data flows. It also contains a set of automated and ad-hoc Cal/Val tools used for algorithm analysis and updates, including an instance of the IDPS called GRAVITE Algorithm Development Area (G-ADA), that has the latest installation of the IDPS algorithms running in an identical software and hardware platforms. Two other important GRAVITE component are the Investigator-led Processing System (IPS) and the Investigator Computing Facility (ICF). The IPS is a dedicated environment where authorized users run automated scripts called Product Generation Executables (PGE's) to support Cal/Val and data quality assurance offline. This data-rich and data-driven service holds its own distribution system and allows operators to retrieve science data products. The ICF is a workspace where users can share computing applications and resources and have full access to libraries and science and sensor quality analysis tools. In this presentation we will describe the GRAVITE systems and subsystems, architecture, technical specifications, capabilities and resources, distributed data and products and the latest advances to support the JPSS science algorithm implementation, validation and testing.
Intersatellite Calibration of Microwave Radiometers for GPM
NASA Astrophysics Data System (ADS)
Wilheit, T. T.
2010-12-01
The aim of the GPM mission is to measure precipitation globally with high temporal resolution by using a constellation of satellites logically united by the GPM Core Satellite which will be in a non-sunsynchronous, medium inclination orbit. The usefulness of the combined product depends on the consistency of precipitation retrievals from the various microwave radiometers. The calibration requirements for this consistency are quite daunting requiring a multi-layered approach. The radiometers can vary considerably in their frequencies, view angles, polarizations and spatial resolutions depending on their primary application and other constraints. The planned parametric algorithms will correct for the varying viewing parameters, but they are still vulnerable to calibration errors, both relative and absolute. The GPM Intersatellite Calibration Working Group (aka X-CAL) will adjust the calibration of all the radiometers to a common consensus standard for the GPM Level 1C product to be used in precipitation retrievals. Finally, each Precipitation Algorithm Working Group must have its own strategy for removing the residual errors. If the final adjustments are small, the credibility of the precipitation retrievals will be enhanced. Before intercomparing, the radiometers must be self consistent on a scan-wise and orbit-wise basis. Pre-screening for this consistency constitutes the first step in the intercomparison. The radiometers are then compared pair-wise with the microwave radiometer (GMI) on the GPM Core Satellite. Two distinct approaches are used for sake of cross-checking the results. On the one hand, nearly simultaneous observations are collected at the cross-over points of the orbits and the observations of one are converted to virtual observations of the other using a radiative transfer model to permit comparisons. The complementary approach collects histograms of brightness temperature from each instrument. In each case a model is needed to translate the observations from one set of viewing parameters to those of the GMI. For the conically scanning window channel radiometers, the models are reasonably complete. Currently we have compared TMI with Windsat and arrived at a preliminary consensus calibration based on the pair. This consensus calibration standard has been applied to TMI and is currently being compared with AMSR-E on the Aqua satellite. In this way we are implementing a rolling wave spin-up of X-CAL. In this sense, the launch of GPM core will simply provide one more radiometer to the constellation; one hopes it will be the best calibrated. Water vapor and temperature sounders will use a different scenario. Some of the precipitation retrieval algorithms will use sounding channels. The GMI will include typical water vapor sounding channels. The radiances are ingested directly via 3DVAR and 4DVAR techniques into forecast models by many operational weather forecast agencies. The residuals and calibration adjustments of this process will provide a measure of the relative calibration errors throughout the constellation. The use of the ARM Southern Great Plains site as a benchmark for calibrating the more opaque channels is also being investigated.
Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps
NASA Astrophysics Data System (ADS)
Tong, Rui; Komma, Jürgen
2017-04-01
The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.
Intracalibration of particle detectors on a three-axis stabilized geostationary platform
NASA Astrophysics Data System (ADS)
Rowland, W.; Weigel, R. S.
2012-11-01
We describe an algorithm for intracalibration of measurements from plasma or energetic particle detectors on a three-axis stabilized platform. Modeling and forecasting of Earth's radiation belt environment requires data from particle instruments, and these data depend on measurements which have an inherent calibration uncertainty. Pre-launch calibration is typically performed, but on-orbit changes in the instrument often necessitate adjustment of calibration parameters to mitigate the effect of these changes on the measurements. On-orbit calibration practices for particle detectors aboard spin-stabilized spacecraft are well established. Three-axis stabilized platforms, however, pose unique challenges even when comparisons are being performed between multiple telescopes measuring the same energy ranges aboard the same satellite. This algorithm identifies time intervals when different telescopes are measuring particles with the same pitch angles. These measurements are used to compute scale factors which can be multiplied by the pre-launch geometric factor to correct any changes. The approach is first tested using measurements from GOES-13 MAGED particle detectors over a 5-month time period in 2010. We find statistically significant variations which are generally on the order of 5% or less. These results do not appear to be dependent on Poisson statistics nor upon whether a dead time correction was performed. When applied to data from a 5-month interval in 2011, one telescope shows a 10% shift from the 2010 scale factors. This technique has potential for operational use to help maintain relative calibration between multiple telescopes aboard a single satellite. It should also be extensible to inter-calibration between multiple satellites.
SeaWiFS calibration and validation plan, volume 3
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William; Guenther, Bruce; Endres, Daniel; Mitchell, B. Greg; Barnes, Robert
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be the first ocean-color satellite since the Nimbus-7 Coastal Zone Color Scanner (CZCS), which ceased operation in 1986. Unlike the CZCS, which was designed as a proof-of-concept experiment, SeaWiFS will provide routine global coverage every 2 days and is designed to provide estimates of photosynthetic concentrations of sufficient accuracy for use in quantitative studies of the ocean's primary productivity and biogeochemistry. A review of the CZCS mission is included that describes that data set's limitations and provides justification for a comprehensive SeaWiFS calibration and validation program. To accomplish the SeaWiFS scientific objectives, the sensor's calibration must be constantly monitored, and robust atmospheric corrections and bio-optical algorithms must be developed. The plan incorporates a multi-faceted approach to sensor calibration using a combination of vicarious (based on in situ observations) and onboard calibration techniques. Because of budget constraints and the limited availability of ship resources, the development of the operational algorithms (atmospheric and bio-optical) will rely heavily on collaborations with the Earth Observing System (EOS), the Moderate Resolution Imaging Spectrometer (MODIS) oceans team, and projects sponsored by other agencies, e.g., the U.S. Navy and the National Science Foundation (NSF). Other elements of the plan include the routine quality control of input ancillary data (e.g., surface wind, surface pressure, ozone concentration, etc.) used in the processing and verification of the level-0 (raw) data to level-1 (calibrated radiances), level-2 (derived products), and level-3 (gridded and averaged derived data) products.
Automatic Calibration of Stereo-Cameras Using Ordinary Chess-Board Patterns
NASA Astrophysics Data System (ADS)
Prokos, A.; Kalisperakis, I.; Petsa, E.; Karras, G.
2012-07-01
Automation of camera calibration is facilitated by recording coded 2D patterns. Our toolbox for automatic camera calibration using images of simple chess-board patterns is freely available on the Internet. But it is unsuitable for stereo-cameras whose calibration implies recovering camera geometry and their true-to-scale relative orientation. In contrast to all reported methods requiring additional specific coding to establish an object space coordinate system, a toolbox for automatic stereo-camera calibration relying on ordinary chess-board patterns is presented here. First, the camera calibration algorithm is applied to all image pairs of the pattern to extract nodes of known spacing, order them in rows and columns, and estimate two independent camera parameter sets. The actual node correspondences on stereo-pairs remain unknown. Image pairs of a textured 3D scene are exploited for finding the fundamental matrix of the stereo-camera by applying RANSAC to point matches established with the SIFT algorithm. A node is then selected near the centre of the left image; its match on the right image is assumed as the node closest to the corresponding epipolar line. This yields matches for all nodes (since these have already been ordered), which should also satisfy the 2D epipolar geometry. Measures for avoiding mismatching are taken. With automatically estimated initial orientation values, a bundle adjustment is performed constraining all pairs on a common (scaled) relative orientation. Ambiguities regarding the actual exterior orientations of the stereo-camera with respect to the pattern are irrelevant. Results from this automatic method show typical precisions not above 1/4 pixels for 640×480 web cameras.
A Trajectory Algorithm to Support En Route and Terminal Area Self-Spacing Concepts: Third Revision
NASA Technical Reports Server (NTRS)
Abbott, Terence S.
2012-01-01
This document describes an algorithm for the generation of a four dimensional trajectory. Input data for this algorithm are similar to an augmented Standard Terminal Arrival (STAR) with the augmentation in the form of altitude or speed crossing restrictions at waypoints on the route. This version of the algorithm accommodates constant radius turns and cruise altitude waypoints with calibrated airspeed, versus Mach, constraints. The algorithm calculates the altitude, speed, along path distance, and along path time for each waypoint. Wind data at each of these waypoints are also used for the calculation of ground speed and turn radius.
New algorithms for identifying the flavour of [Formula: see text] mesons using pions and protons.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S
2017-01-01
Two new algorithms for use in the analysis of [Formula: see text] collision are developed to identify the flavour of [Formula: see text] mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using [Formula: see text] decays from [Formula: see text] collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV . The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a [Formula: see text] meson is the first of its kind.
Algorithm for automatic analysis of electro-oculographic data
2013-01-01
Background Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. Methods The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. Results The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. Conclusion The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics. PMID:24160372
Algorithm for automatic analysis of electro-oculographic data.
Pettersson, Kati; Jagadeesan, Sharman; Lukander, Kristian; Henelius, Andreas; Haeggström, Edward; Müller, Kiti
2013-10-25
Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics.
Photogrammetric 3D reconstruction using mobile imaging
NASA Astrophysics Data System (ADS)
Fritsch, Dieter; Syll, Miguel
2015-03-01
In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.
Zhang, Tao; Chen, Liping; Li, Yao
2015-12-30
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.
Noninvasive identification of the total peripheral resistance baroreflex
NASA Technical Reports Server (NTRS)
Mukkamala, Ramakrishna; Toska, Karin; Cohen, Richard J.
2003-01-01
We propose two identification algorithms for quantitating the total peripheral resistance (TPR) baroreflex, an important contributor to short-term arterial blood pressure (ABP) regulation. Each algorithm analyzes beat-to-beat fluctuations in ABP and cardiac output, which may both be obtained noninvasively in humans. For a theoretical evaluation, we applied both algorithms to a realistic cardiovascular model. The results contrasted with only one of the algorithms proving to be reliable. This algorithm was able to track changes in the static gains of both the arterial and cardiopulmonary TPR baroreflex. We then applied both algorithms to a preliminary set of human data and obtained contrasting results much like those obtained from the cardiovascular model, thereby making the theoretical evaluation results more meaningful. This study suggests that, with experimental testing, the reliable identification algorithm may provide a powerful, noninvasive means for quantitating the TPR baroreflex. This study also provides an example of the role that models can play in the development and initial evaluation of algorithms aimed at quantitating important physiological mechanisms.
Hyer, D; Mart, C
2012-06-01
The aim of this study was to develop a phantom and analysis software that could be used to quickly and accurately determine the location of radiation isocenter using the Electronic Portal Imaging Device (EPID). The phantom could then be used as a static reference point for performing other tests including: radiation vs. light field coincidence, MLC and Jaw strip tests, and Varian Optical Guidance Platform (OGP) calibration. The solution proposed uses a collimator setting of 10×10 cm to acquire EPID images of the new phantom constructed from LEGO® blocks. Images from a number of gantry and collimator angles are analyzed by the software to determine the position of the jaws and center of the phantom in each image. The distance between a chosen jaw and the phantom center is then compared to the same distance measured after a 180 degree collimator rotation to determine if the phantom is centered in the dimension being investigated. The accuracy of the algorithm's measurements were verified by independent measurement to be approximately equal to the detector's pitch. Light versus radiation field as well as MLC and Jaw strip tests are performed using measurements based on the phantom center once located at the radiation isocenter. Reproducibility tests show that the algorithm's results were objectively repeatable. Additionally, the phantom and software are completely independent of linac vendor and this study presents results from two major linac manufacturers. An OGP calibration array was also integrated into the phantom to allow calibration of the OGP while the phantom is positioned at radiation isocenter to reduce setup uncertainty contained in the calibration. This solution offers a quick, objective method to perform isocenter localization as well as laser alignment, OGP calibration, and other tests on a monthly basis. © 2012 American Association of Physicists in Medicine.
Kumar, Keshav
2018-03-01
Excitation-emission matrix fluorescence (EEMF) and total synchronous fluorescence spectroscopy (TSFS) are the 2 fluorescence techniques that are commonly used for the analysis of multifluorophoric mixtures. These 2 fluorescence techniques are conceptually different and provide certain advantages over each other. The manual analysis of such highly correlated large volume of EEMF and TSFS towards developing a calibration model is difficult. Partial least square (PLS) analysis can analyze the large volume of EEMF and TSFS data sets by finding important factors that maximize the correlation between the spectral and concentration information for each fluorophore. However, often the application of PLS analysis on entire data sets does not provide a robust calibration model and requires application of suitable pre-processing step. The present work evaluates the application of genetic algorithm (GA) analysis prior to PLS analysis on EEMF and TSFS data sets towards improving the precision and accuracy of the calibration model. The GA algorithm essentially combines the advantages provided by stochastic methods with those provided by deterministic approaches and can find the set of EEMF and TSFS variables that perfectly correlate well with the concentration of each of the fluorophores present in the multifluorophoric mixtures. The utility of the GA assisted PLS analysis is successfully validated using (i) EEMF data sets acquired for dilute aqueous mixture of four biomolecules and (ii) TSFS data sets acquired for dilute aqueous mixtures of four carcinogenic polycyclic aromatic hydrocarbons (PAHs) mixtures. In the present work, it is shown that by using the GA it is possible to significantly improve the accuracy and precision of the PLS calibration model developed for both EEMF and TSFS data set. Hence, GA must be considered as a useful pre-processing technique while developing an EEMF and TSFS calibration model.
Evolution of the JPSS Ground Project Calibration and Validation System
NASA Technical Reports Server (NTRS)
Purcell, Patrick; Chander, Gyanesh; Jain, Peyush
2016-01-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.
Evolution of the JPSS Ground Project Calibration and Validation System
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Jain, Peyush
2014-01-01
The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.
NASA Astrophysics Data System (ADS)
Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut
2018-05-01
Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.
Daytime sky polarization calibration limitations
NASA Astrophysics Data System (ADS)
Harrington, David M.; Kuhn, Jeffrey R.; Ariste, Arturo López
2017-01-01
The daytime sky has recently been demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K. Inouye Solar Telescope and other large telescopes under construction can benefit from precise polarimetric calibration of large mirrors. Several atmospheric phenomena and instrumental errors potentially limit the technique's accuracy. At the 3.67-m AEOS telescope on Haleakala, we performed a large observing campaign with the HiVIS spectropolarimeter to identify limitations and develop algorithms for extracting consistent calibrations. Effective sampling of the telescope optical configurations and filtering of data for several derived parameters provide robustness to the derived Mueller matrix calibrations. Second-order scattering models of the sky show that this method is relatively insensitive to multiple-scattering in the sky, provided calibration observations are done in regions of high polarization degree. The technique is also insensitive to assumptions about telescope-induced polarization, provided the mirror coatings are highly reflective. Zemax-derived polarization models show agreement between the functional dependence of polarization predictions and the corresponding on-sky calibrations.
Wong, Carlos K H; Siu, Shing-Chung; Wan, Eric Y F; Jiao, Fang-Fang; Yu, Esther Y T; Fung, Colman S C; Wong, Ka-Wai; Leung, Angela Y M; Lam, Cindy L K
2016-05-01
The aim of the present study was to develop a simple nomogram that can be used to predict the risk of diabetes mellitus (DM) in the asymptomatic non-diabetic subjects based on non-laboratory- and laboratory-based risk algorithms. Anthropometric data, plasma fasting glucose, full lipid profile, exercise habits, and family history of DM were collected from Chinese non-diabetic subjects aged 18-70 years. Logistic regression analysis was performed on a random sample of 2518 subjects to construct non-laboratory- and laboratory-based risk assessment algorithms for detection of undiagnosed DM; both algorithms were validated on data of the remaining sample (n = 839). The Hosmer-Lemeshow test and area under the receiver operating characteristic (ROC) curve (AUC) were used to assess the calibration and discrimination of the DM risk algorithms. Of 3357 subjects recruited, 271 (8.1%) had undiagnosed DM defined by fasting glucose ≥7.0 mmol/L or 2-h post-load plasma glucose ≥11.1 mmol/L after an oral glucose tolerance test. The non-laboratory-based risk algorithm, with scores ranging from 0 to 33, included age, body mass index, family history of DM, regular exercise, and uncontrolled blood pressure; the laboratory-based risk algorithm, with scores ranging from 0 to 37, added triglyceride level to the risk factors. Both algorithms demonstrated acceptable calibration (Hosmer-Lemeshow test: P = 0.229 and P = 0.483) and discrimination (AUC 0.709 and 0.711) for detection of undiagnosed DM. A simple-to-use nomogram for detecting undiagnosed DM has been developed using validated non-laboratory-based and laboratory-based risk algorithms. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Fast algorithm for computing complex number-theoretic transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Liu, K. Y.; Truong, T. K.
1977-01-01
A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.
ERIC Educational Resources Information Center
Murrieta, Hector; Amerson, Gordon
2011-01-01
The purpose of this study was to validate the development and proposal of what the authors call STEMs (Standards Tests to Evaluate Mastery) and have defined them as calibrated classroom assessments that increase student motivation and provide authentic evaluation of student learning. Theoretical and empirical research on classroom assessment and…
Strain-gage bridge calibration and flight loads measurements on a low-aspect-ratio thin wing
NASA Technical Reports Server (NTRS)
Peele, E. L.; Eckstrom, C. V.
1975-01-01
Strain-gage bridges were used to make in-flight measurements of bending moment, shear, and torque loads on a low-aspect-ratio, thin, swept wing having a full depth honeycomb sandwich type structure. Standard regression analysis techniques were employed in the calibration of the strain bridges. Comparison of the measured loads with theoretical loads are included.
40 CFR 86.004-16 - Prohibition of defeat devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... information which the Administrator may request to be submitted) regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...
40 CFR 86.004-16 - Prohibition of defeat devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... information which the Administrator may request to be submitted) regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...
40 CFR 86.004-16 - Prohibition of defeat devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... information which the Administrator may request to be submitted) regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...
OMPS Sensor Performance and Algorithm Description
NASA Astrophysics Data System (ADS)
Branham, M. S.; Farrow, S. V.; Novicki, M.; Bhaswar, S.; Baker, B.
2009-12-01
The Ozone Mapping and Profiler Suite (OMPS), built by Ball Aerospace, is the next-generation U.S. ozone monitoring sensor suite, designed and built for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), under contract to the Integrated Program Office, administered by the Air Force, National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) under contract to Northrop Grumman. The first flight of an OMPS is scheduled for early 2011 on the NPOESS Preparatory Project (NPP) satellite. The OMPS sensor data will be used to generate the ozone calibrated sensor data and environmental data record (EDR) products. The final OMPS sensor performance and algorithms for NPP will be presented, now that the FM1 flight sensor suite has completed sell off and is integrated on the NPP spacecraft. Challenges requiring future development, and during intensive calibration/validation on orbit will be described. Also, an overview of the sensor suite, the FM1 measurement performance, and details of the retrieval algorithms will be provided in this presentation.
NASA Astrophysics Data System (ADS)
Toropov, S. Yu; Toropov, V. S.
2018-05-01
In order to design more accurately trenchless pipeline passages, a technique has been developed for calculating the passage profile, based on specific parameters of the horizontal directional drilling rig, including the range of possible drilling angles and a list of compatible drill pipe sets. The algorithm for calculating the parameters of the trenchless passage profile is shown in the paper. This algorithm is based on taking into account the features of HDD technology, namely, three different stages of production. The authors take into account that the passage profile is formed at the first stage of passage construction, that is, when drilling a pilot well. The algorithm involves calculating the profile by taking into account parameters of the drill pipes used and angles of their deviation relative to each other during the pilot drilling. This approach allows us to unambiguously calibrate the designed profile for the HDD rig capabilities and the auxiliary and navigation equipment used in the construction process.
Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.
2014-10-29
Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.
An Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy;
2004-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
Improved pulse laser ranging algorithm based on high speed sampling
NASA Astrophysics Data System (ADS)
Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang
2016-10-01
Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.
Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goupee, A.; Kimball, R.; de Ridder, E. J.
2015-04-02
In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.
Calibrating the orientation between a microlens array and a sensor based on projective geometry
NASA Astrophysics Data System (ADS)
Su, Lijuan; Yan, Qiangqiang; Cao, Jun; Yuan, Yan
2016-07-01
We demonstrate a method for calibrating a microlens array (MLA) with a sensor component by building a plenoptic camera with a conventional prime lens. This calibration method includes a geometric model, a setup to adjust the distance (L) between the prime lens and the MLA, a calibration procedure for determining the subimage centers, and an optimization algorithm. The geometric model introduces nine unknown parameters regarding the centers of the microlenses and their images, whereas the distance adjustment setup provides an initial guess for the distance L. The simulation results verify the effectiveness and accuracy of the proposed method. The experimental results demonstrate the calibration process can be performed with a commercial prime lens and the proposed method can be used to quantitatively evaluate whether a MLA and a sensor is assembled properly for plenoptic systems.
Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.
An accurate system for onsite calibration of electronic transformers with digital output.
Zhi, Zhang; Li, Hong-Bin
2012-06-01
Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.
An accurate system for onsite calibration of electronic transformers with digital output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi Zhang; Li Hongbin; State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074
Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differentialmore » method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.« less
An accurate system for onsite calibration of electronic transformers with digital output
NASA Astrophysics Data System (ADS)
Zhi, Zhang; Li, Hong-Bin
2012-06-01
Calibration systems with digital output are used to replace conventional calibration systems because of principle diversity and characteristics of digital output of electronic transformers. But precision and unpredictable stability limit their onsite application even development. So fully considering the factors influencing accuracy of calibration system and employing simple but reliable structure, an all-digital calibration system with digital output is proposed in this paper. In complicated calibration environments, precision and dynamic range are guaranteed by A/D converter with 24-bit resolution, synchronization error limit is nanosecond by using the novelty synchronization method. In addition, an error correction algorithm based on the differential method by using two-order Hanning convolution window has good inhibition of frequency fluctuation and inter-harmonics interference. To verify the effectiveness, error calibration was carried out in the State Grid Electric Power Research Institute of China and results show that the proposed system can reach the precision class up to 0.05. Actual onsite calibration shows that the system has high accuracy, and is easy to operate with satisfactory stability.
Statistical photocalibration of photodetectors for radiometry without calibrated light sources
NASA Astrophysics Data System (ADS)
Yielding, Nicholas J.; Cain, Stephen C.; Seal, Michael D.
2018-01-01
Calibration of CCD arrays for identifying bad pixels and achieving nonuniformity correction is commonly accomplished using dark frames. This kind of calibration technique does not achieve radiometric calibration of the array since only the relative response of the detectors is computed. For this, a second calibration is sometimes utilized by looking at sources with known radiances. This process can be used to calibrate photodetectors as long as a calibration source is available and is well-characterized. A previous attempt at creating a procedure for calibrating a photodetector using the underlying Poisson nature of the photodetection required calculations of the skewness of the photodetector measurements. Reliance on the third moment of measurement meant that thousands of samples would be required in some cases to compute that moment. A photocalibration procedure is defined that requires only first and second moments of the measurements. The technique is applied to image data containing a known light source so that the accuracy of the technique can be surmised. It is shown that the algorithm can achieve accuracy of nearly 2.7% of the predicted number of photons using only 100 frames of image data.
Automatic Calibration Method for Driver’s Head Orientation in Natural Driving Environment
Fu, Xianping; Guan, Xiao; Peli, Eli; Liu, Hongbo; Luo, Gang
2013-01-01
Gaze tracking is crucial for studying driver’s attention, detecting fatigue, and improving driver assistance systems, but it is difficult in natural driving environments due to nonuniform and highly variable illumination and large head movements. Traditional calibrations that require subjects to follow calibrators are very cumbersome to be implemented in daily driving situations. A new automatic calibration method, based on a single camera for determining the head orientation and which utilizes the side mirrors, the rear-view mirror, the instrument board, and different zones in the windshield as calibration points, is presented in this paper. Supported by a self-learning algorithm, the system tracks the head and categorizes the head pose in 12 gaze zones based on facial features. The particle filter is used to estimate the head pose to obtain an accurate gaze zone by updating the calibration parameters. Experimental results show that, after several hours of driving, the automatic calibration method without driver’s corporation can achieve the same accuracy as a manual calibration method. The mean error of estimated eye gazes was less than 5°in day and night driving. PMID:24639620
Accuracy evaluation of optical distortion calibration by digital image correlation
NASA Astrophysics Data System (ADS)
Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan
2017-11-01
Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.
Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm
NASA Technical Reports Server (NTRS)
Povitsky, A.
1998-01-01
In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step computations immediately after the completion of the forward step computations for the first portion of lines This algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm. The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains. It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the parallelization penalty about two times over the basic algorithm for the range of the number of processors (subdomains) considered and the number of grid nodes per subdomain.
Diffeomorphic demons: efficient non-parametric image registration.
Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas
2009-03-01
We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.
NASA Astrophysics Data System (ADS)
Ham, Woonchul; Song, Chulgyu
2017-05-01
In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.
Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination
Fasano, Giancarmine; Grassi, Michele
2017-01-01
In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651
Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2017-09-24
In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.
Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.
Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang
2016-06-29
With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%).
System calibration method for Fourier ptychographic microscopy.
Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli
2017-09-01
Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Inácio, Maria Raquel Cavalcanti; de Lima, Kássio Michell Gomes; Lopes, Valquiria Garcia; Pessoa, José Dalton Cruz; de Almeida Teixeira, Gustavo Henrique
2013-02-15
The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg(-1), limit of quantification of 20.7 g kg(-1), accuracy estimated as root mean square error of prediction of 4.8 g kg(-1), mean selectivity of 0.79 g kg(-1), sensitivity of 5.04×10(-3) g kg(-1), precision of 27.8 g kg(-1), and signal-to-noise ratio of 1.04×10(-3) g kg(-1). These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.
TOPEX/POSEIDON microwave radiometer performance and in-flight calibration
NASA Technical Reports Server (NTRS)
Ruf, C. S.; Keihm, Stephen J.; Subramanya, B.; Janssen, Michael A.
1994-01-01
Results of the in-flight calibration and performance evaluation campaign for the TOPEX/POSEIDON microwave radiometer (TMR) are presented. Intercomparisons are made between TMR and various sources of ground truth, including ground-based microwave water vapor radiometers, radiosondes, global climatological models, special sensor microwave imager data over the Amazon rain forest, and models of clear, calm, subpolar ocean regions. After correction for preflight errors in the processing of thermal/vacuum data, relative channel offsets in the open ocean TMR brightness temperatures were noted at the approximately = 1 K level for the three TMR frequencies. Larger absolute offsets of 6-9 K over the rain forest indicated a approximately = 5% gain error in the three channel calibrations. This was corrected by adjusting the antenna pattern correction (APC) algorithm. AS 10% scale error in the TMR path delay estimates, relative to coincident radiosondes, was corrected in part by the APC adjustment and in part by a 5% modification to the value assumed for the 22.235 FGHz water vapor line strength in the path delay retrieval algorithm. After all in-flight corrections to the calibration, TMR global retrieval accuracy for the wet tropospheric range correction is estimated at 1.1 cm root mean square (RMS) with consistent peformance under clear, cloudy, and windy conditions.
ERIC Educational Resources Information Center
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao
2013-01-01
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
A DSP-based neural network non-uniformity correction algorithm for IRFPA
NASA Astrophysics Data System (ADS)
Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu
2009-07-01
An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.
Li, Bin; Fu, Hong; Wen, Desheng; Lo, WaiLun
2018-05-19
Eye tracking technology has become increasingly important for psychological analysis, medical diagnosis, driver assistance systems, and many other applications. Various gaze-tracking models have been established by previous researchers. However, there is currently no near-eye display system with accurate gaze-tracking performance and a convenient user experience. In this paper, we constructed a complete prototype of the mobile gaze-tracking system ' Etracker ' with a near-eye viewing device for human gaze tracking. We proposed a combined gaze-tracking algorithm. In this algorithm, the convolutional neural network is used to remove blinking images and predict coarse gaze position, and then a geometric model is defined for accurate human gaze tracking. Moreover, we proposed using the mean value of gazes to resolve pupil center changes caused by nystagmus in calibration algorithms, so that an individual user only needs to calibrate it the first time, which makes our system more convenient. The experiments on gaze data from 26 participants show that the eye center detection accuracy is 98% and Etracker can provide an average gaze accuracy of 0.53° at a rate of 30⁻60 Hz.
Heading Toward Launch with the Integrated Multi-Satellite Retrievals for GPM (IMERG)
NASA Technical Reports Server (NTRS)
Huffman, George J.; Bolvin, David T.; Nelkin, Eric J.; Adler, Robert F.
2012-01-01
The Day-l algorithm for computing combined precipitation estimates in GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). We plan for the period of record to encompass both the TRMM and GPM eras, and the coverage to extend to fully global as experience is gained in the difficult high-latitude environment. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in the three groups that are contributing expertise: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; 2) the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following cloud motion; and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures. In this talk we summarize the major building blocks and important design issues driven by user needs and practical data issues. One concept being pioneered by the IMERG team is that the code system should produce estimates for the same time period but at different latencies to support the requirements of different groups of users. Another user requirement is that all these runs must be reprocessed as new IMERG versions are introduced. IMERG's status at meeting time will be summarized, and the processing scenario in the transition from TRMM to GPM will be laid out. Initially, IMERG will be run with TRMM-based calibration, and then a conversion to a GPM-based calibration will be employed after the GPM sensor products are validated. A complete reprocessing will be computed, which will complete the transition from TMPA.
Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E
2014-09-16
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.
Calibration-free optical chemical sensors
DeGrandpre, Michael D.
2006-04-11
An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.
Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.
Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir
2016-06-01
This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
NASA Astrophysics Data System (ADS)
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less
Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.; ...
2017-09-27
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less
Calibration and validation of wearable monitors.
Bassett, David R; Rowlands, Alex; Trost, Stewart G
2012-01-01
Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
Jackman, Patrick; Sun, Da-Wen; Elmasry, Gamal
2012-08-01
A new algorithm for the conversion of device dependent RGB colour data into device independent L*a*b* colour data without introducing noticeable error has been developed. By combining a linear colour space transform and advanced multiple regression methodologies it was possible to predict L*a*b* colour data with less than 2.2 colour units of error (CIE 1976). By transforming the red, green and blue colour components into new variables that better reflect the structure of the L*a*b* colour space, a low colour calibration error was immediately achieved (ΔE(CAL) = 14.1). Application of a range of regression models on the data further reduced the colour calibration error substantially (multilinear regression ΔE(CAL) = 5.4; response surface ΔE(CAL) = 2.9; PLSR ΔE(CAL) = 2.6; LASSO regression ΔE(CAL) = 2.1). Only the PLSR models deteriorated substantially under cross validation. The algorithm is adaptable and can be easily recalibrated to any working computer vision system. The algorithm was tested on a typical working laboratory computer vision system and delivered only a very marginal loss of colour information ΔE(CAL) = 2.35. Colour features derived on this system were able to safely discriminate between three classes of ham with 100% correct classification whereas colour features measured on a conventional colourimeter were not. Copyright © 2012 Elsevier Ltd. All rights reserved.
Retrieval of Aerosol Properties from MODIS Terra, MODIS Aqua, and VIIRS SNPP: Calibration Focus
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Mattoo, Shana; Sawyer, Virginia; Kleidman, Richard; Patadia, Falguni; Zhou, Yaping; Gupta, Pawan; Shi, Yingxi; Remer, Lorraine; Holz, Robert
2016-01-01
MODIS-DT Collection 6 - Aqua/Terra level 2, 3; entire record processed - "Trending" issues reduced - Still a 15% or 0.02 Terra vs Aqua offset. - Terra/Aqua convergence improved with C6+, but bias remains. - Other calibration efforts yield mixed results. VIIRS--DT in development - VIIRS is similar, yet different then MODIS - With 50% wider swath, VIIRS has daily coverage - Ensures algorithm consistency with MODIS. - Currently: 20% NPP vs Aqua offset over ocean. - Only small bias (%) over land (2012--2016) - Can VIIRS/MODIS create aerosol CDR? Calibration for MODIS - VIIRS continues to fundamentally important. It's not just Terra, or just Aqua, or just NPP--VIIRS, I really want to push synergistic calibration.
NASA Astrophysics Data System (ADS)
Jiang, Shyh-Biau; Yeh, Tse-Liang; Chen, Li-Wu; Liu, Jann-Yenq; Yu, Ming-Hsuan; Huang, Yu-Qin; Chiang, Chen-Kiang; Chou, Chung-Jen
2018-05-01
In this study, we construct a photomultiplier calibration system. This calibration system can help scientists measuring and establishing the characteristic curve of the photon count versus light intensity. The system uses an innovative 10-fold optical attenuator to enable an optical power meter to calibrate photomultiplier tubes which have the resolution being much greater than that of the optical power meter. A simulation is firstly conducted to validate the feasibility of the system, and then the system construction, including optical design, circuit design, and software algorithm, is realized. The simulation generally agrees with measurement data of the constructed system, which are further used to establish the characteristic curve of the photon count versus light intensity.
NASA Technical Reports Server (NTRS)
Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne
2000-01-01
The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.
Implementation and performance of shutterless uncooled micro-bolometer cameras
NASA Astrophysics Data System (ADS)
Das, J.; de Gaspari, D.; Cornet, P.; Deroo, P.; Vermeiren, J.; Merken, P.
2015-06-01
A shutterless algorithm is implemented into the Xenics LWIR thermal cameras and modules. Based on a calibration set and a global temperature coefficient the optimal non-uniformity correction is calculated onboard of the camera. The limited resources in the camera require a compact algorithm, hence the efficiency of the coding is important. The performance of the shutterless algorithm is studied by a comparison of the residual non-uniformity (RNU) and signal-to-noise ratio (SNR) between the shutterless and shuttered correction algorithm. From this comparison we conclude that the shutterless correction is only slightly less performant compared to the standard shuttered algorithm, making this algorithm very interesting for thermal infrared applications where small weight and size, and continuous operation are important.
NASA Astrophysics Data System (ADS)
Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan
2018-05-01
The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL
Zhang, Tao; Chen, Liping; Li, Yao
2015-01-01
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120
Computing Game-Theoretic Solutions for Security in the Medium Term
This project concerns the design of algorithms for computing game- theoretic solutions . (Game theory concerns how to act in a strategically optimal...way in environments with other agents who also seek to act optimally but have different , and possibly opposite, interests .) Such algorithms have...recently found application in a number of real-world security applications, including among others airport security, scheduling Federal Air Marshals, and
Noninvasive glucose sensing by transcutaneous Raman spectroscopy
NASA Astrophysics Data System (ADS)
Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.
2015-05-01
We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.
Noninvasive glucose sensing by transcutaneous Raman spectroscopy.
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V
2015-05-01
We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ~1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.
Mapping From an Instrumented Glove to a Robot Hand
NASA Technical Reports Server (NTRS)
Goza, Michael
2005-01-01
An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand Cartesian reference frame. A calibration must be performed to make the glove and robot-hand fingertip positions correspond more precisely. The calibration procedure involves a few simple hand poses designed to provide well-defined fingertip positions. One of the poses is a fist. In each of the other poses, a finger touches the thumb. The calibration subalgorithm uses the sensor readings from these poses to modify the kinematical models to make the two sets of fingertip positions agree more closely.
Towards System Calibration of Panoramic Laser Scanners from a Single Station
Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner
2017-01-01
Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548
Predicting complications of percutaneous coronary intervention using a novel support vector method.
Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan
2013-01-01
To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer-Lemeshow χ(2) value (seven cases) and the mean cross-entropy error (eight cases). The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains.
Predicting complications of percutaneous coronary intervention using a novel support vector method
Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan
2013-01-01
Objective To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Materials and methods Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. Results The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer–Lemeshow χ2 value (seven cases) and the mean cross-entropy error (eight cases). Conclusions The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains. PMID:23599229
Low Frequency Flats for Imaging Cameras on the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Kossakowski, Diana; Avila, Roberto J.; Borncamp, David; Grogin, Norman A.
2017-01-01
We created a revamped Low Frequency Flat (L-Flat) algorithm for the Hubble Space Telescope (HST) and all of its imaging cameras. The current program that makes these calibration files does not compile on modern computer systems and it requires translation to Python. We took the opportunity to explore various methods that reduce the scatter of photometric observations using chi-squared optimizers along with Markov Chain Monte Carlo (MCMC). We created simulations to validate the algorithms and then worked with the UV photometry of the globular cluster NGC6681 to update the calibration files for the Advanced Camera for Surveys (ACS) and Solar Blind Channel (SBC). The new software was made for general usage and therefore can be applied to any of the current imaging cameras on HST.
A method of camera calibration with adaptive thresholding
NASA Astrophysics Data System (ADS)
Gao, Lei; Yan, Shu-hua; Wang, Guo-chao; Zhou, Chun-lei
2009-07-01
In order to calculate the parameters of the camera correctly, we must figure out the accurate coordinates of the certain points in the image plane. Corners are the important features in the 2D images. Generally speaking, they are the points that have high curvature and lie in the junction of different brightness regions of images. So corners detection has already widely used in many fields. In this paper we use the pinhole camera model and SUSAN corner detection algorithm to calibrate the camera. When using the SUSAN corner detection algorithm, we propose an approach to retrieve the gray difference threshold, adaptively. That makes it possible to pick up the right chessboard inner comers in all kinds of gray contrast. The experiment result based on this method was proved to be feasible.
Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization
Xi, Maolong; Lu, Dan; Gui, Dongwei; ...
2016-11-27
Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less
Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization
NASA Astrophysics Data System (ADS)
Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan
2017-01-01
Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.